
Inferring Viral Capsid Self-Assembly
Pathway from Bulk Experiment Measurement

via Parameter Fitting Methods
Lu Xie

CMU-CB-15-105

April 2015

Department of Computational Biology
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Dr. Russell Schwartz, Chair

Dr. James Faeder
Dr. Fred Homa

Dr. Nikolaos Sahinidis

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright © 2015 Lu Xie

This research was supported by U.S. National Institute of Health award No. 1R01AI076318 and the Department
of Computational Biology, Carnegie Mellon University. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, donors or the U.S. Government.



Keywords: Self-Assembly, Coarse-Grained Model, Stochastic Simulation, Parameter-Fitting



Once a Schwartz Lab member,

Always one.



iv



Abstract

Self-assembly is a common phenomenon in the macro-molecular environment

inside the cell and is critical for many cellular functions. Viral capsid assembly has

been studied as a key model for self-assembly systems by researchers from different

fields. There nonetheless remains a substaintial gap between experimental obser-

vations and current models, as the direct measurement of the assembly dynamics

is currently intractible. Simulation-based methods can help bridge the gap, but the

validity of such methods relies on the accuracy of a variety of physical parameters

needed to instantiate the models, which also currently cannot be aquired by direct

measurement.

The work of this thesis is focused on developing a parameter-learning framework

that can infer kinetic parameters of viral assembly models by fitting the models to in-

direct bulk experimental measurements. The underlying rationale is based on the as-

sumption that the set of parameters that minimizes the difference between simulated

and experimental results would be the most plausible candidate. The framework

extends existing stochastic self-assembly simulation methods, viral capsid models,

and a prior heuristic optimization method to a flexible architecture that is adaptive to

multiple data sources and alternative optimization methods.

The thesis specifically explores prospects for greater efficiency and accuracy

through the use of more advanced algorithms or data sources for simulation-based

model fitting. The framework has been tested on three in vitro viral assembly sys-

tems: human papillomavirus (HPV), heptatitis B virus (HBV) and cowpea chlorotic

mottle virus (CCMV). The best fitting results from static light scattering (SLS)

experiments suggest distinct in vitro assembly pathways for the three icosahedral

viruses. Simulation experiments introducing synthetic non-covalent mass spectrom-

etry (NCMS) data suggest that richer data sources can lead to substantial improve-
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ment in fitting accuracy. Complementary experiments on alternative optimization

algorithms based on derivative free optimization (DFO) suggest that algorithmic ad-

vances can also substantially improve accuracy of model fits. Together, these results

suggest that the methods can effectively reconstruct model parameters and assem-

bly pathways given currently feasible algorithms and data sources, but that there is

room for further advancement in improving both experimental and computational

technologies underlying the approach.
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Chapter 1

Introduction

1.1 Impact on self-assembly systems

Self-assembly is a ubiquitous phenomenon in the organization of molecules in living systems.

A considerable portion of proteins in eukaryotic cells normally function as parts of molecular

complexes [1] and almost all critical functions to a cell’s life —- including signal transduction,

the assembly and degradation of proteins and nucleic acids, cell movement and morphology —

depend on self-assembly of some specialized molecular structures, complexes or machinaries.

Developing accurate, quantitative models of self-assembly processes is therefore essential to the

overall mission of comprehending complex biological systems.

A particularly important example of self-assembly system is the viral capsid self-assembly

process, which has proven a fertile field for modeling complex assembly systems. As an essential

step of the life cycle of many virus species, capsid assembly may reveal potential targets for anti-

viral treatment [2, 3, 4, 5] as well as potential vehicles for gene therapy. The understanding of the

mechanism of viral capsid assembly may also enlighten the study of non-organic self-assembly

structures.

Despite the importance of virus self-assembly and other complex assembly processes, our

understanding of the detailed steps of complex assembly reactions remains primitive, at least at
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the quantitative level. This limitation is largely due to technological reasons: we currently have

no experimental technology that can monitor particle-by-particle assembly of a small, rapidly

building structure such as a virus. Existing methods for characterizing the structure of such

systems at fine detail rely on averaging over large numbers of particles (e.g., crystallography

and cryo-electron microscopy), making them unsuitable for monitoring step-by-step process of

a stochastic system, such as virus assembly. Methods for monitoring assembly kinetics at fine

temporal scales so far provide only indirect, bulk measures of assembly progress, again making

them unsuitable for inferring specific assembly pathways of individual viruses.

This thesis is aimed at revealing possible assembly pathways of virus self-assembly systems

with the assistance of computational simulations and optimization methods. The approaches

developed in this thesis, in theory, will work with any self-assembly systems that have accessible

data on bulk measurements and coarse-grained conformations of basic building blocks.

1.2 Previous studies

Simulation-based methods have long played an key role in studying the detailed dynamics of

molecular interaction systems [6, 7], especially where direct experimental observation is infeasi-

ble. For example, simulation methods have made it possible to infer various emergent properties

of hypothetical assembly models [8, 9, 10, 12], to explore the effects of perturbations in pa-

rameter spaces [10, 13, 14, 15], and to examine possible assembly pathways and mechanisms

accessible to theoretical models [13, 16, 17, 18, 19]. Systems biologists have developed ever

more complex and comprehensive models of biological systems [22], culminating in such re-

cent landmarks as the simulation of whole cells [23]. Explicit models of self-assembly reaction

networks, however, have been largely neglected from such efforts to build predictive simula-

tion models. This gap may reflect both the computational difficulty of handling the enormously

complex networks of possible reactions produced by even simple assembly processes and the ex-

perimental difficulty of precisely measuring the kinetic parameters of any non-trivial molecular
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assembly process to properly instantiate simulations.

Due to the large size, long time scales, and enormous space of possible pathways a large

assembly might pursue [18], deterministic fine-grained simulators such as all-atom molecular

dynamics might fail, and successful simulators require significant coarse-graining [20, 21]. Pre-

vailing methods accomplish this by using “local rule” models [9, 11, 33, 34], which concisely

represent a system in terms of simplified assembly subunits with sets of discrete binding sites.

Local rules provide a concise way to implicitly represent a potentially enormous ensemble of

possible reaction trajectories by providing an efficient way to enumerate possible reactions ac-

cessible to a system from any starting state. Such local rule binding models can be combined

with Brownian dynamics models [10] and/or stochastic simulation algorithm (SSA) models [31]

to yield computationally tractable simulations of the assembly of potentially thousands of sub-

units into icosahedral capsid structures. Nonetheless, these methods have not traditionally been

able to provide detailed quantitative models of specific capsid assemblies because they depend

on detailed interaction parameters that we currently cannot measure experimentally.

Researchers have made several attempts to improve the accuracy of estimating kinetic pa-

rameters, such as using simulation models to find rate ranges plausible for productive assembly

[24, 25], using analytical fits of small numbers of parameters to match to light-scattering data

[26], applying additional constraints on possible assembly pathways such as those imposed by

virus-specific nucleic acid interactions [27], inferring approximate averaged rates from global

estimates of the free energy of assembly [26], inferring approximate rate parameters from struc-

tural models [28, 29], or scanning parameter spaces to put constraints on the range of possible

behaviors of a viral system [10, 12, 14, 15, 19, 30, 31]. Precise rate constants are not known

for any real viral system, however, and previous simulation studies have suggested that assem-

bly mechanisms can be highly sensitive to changes in these and other parameters [19], casting

doubt on the ability of any such approximations to yield faithful reproductions of real assembly

behavior.
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Model-fitting methods provide a potential solution to this problem by allowing one to learn

experimentally unobservable parameters by fitting simulations to indirect experimental measures

of biological systems [32, 35, 36, 37]. Model-fitting in a computational or mathematical model

is typically treated as an optimization problem over the parameter space to minimize deviation

between the model and some measurable behavior of the real system. Simulation-based model-

fitting has proven effective for a variety of simpler network models in biology [35, 36, 37, 38] and

has previously been combined with rule-based modeling for systems that face similar problems

of combinatorial blowup in pathway space to the capsid system [32, 39, 40, 41, 42, 43, 44, 45].

In general, stochastic models have long been assisting the research of estimating parameters of

biological and biochemical systems [46, 47, 48, 49]. We have previously show that the SSA-

based approach to local rule-based capsid assembly modeling is particularly amenable to data

fitting because it greatly accelerates simulation relative to the more involved Brownian models by

avoiding explicit simulations of particle diffusion, while simultaneously reducing the parameter

space to a small number of kinetic parameters [31, 50, 51] that are nonetheless sufficient to

capture many potential ensembles of assembly trajectories [12, 19].

1.3 Parameter inference framework

The main contribution of this thesis is the development of a parameter inference framework

that implements and generalizes the idea of learning kinetic rates of self-assembly models. The

framework is built upon an existing coarse-grained rule-based viral assembly model and stochas-

tic simulator [31], and made adaptable to different optimization algorithms and data sources. The

major functional elements of this approach and their interactions are shown in Figure 1.1, and

the remaining chapters of this thesis will be devoted to explain these function blocks.

Chapter 2 will describe the viral capsid models used in this thesis and the functionality of the

self-assembly simulator. The simulator takes capsid models and kinetic parameters as input, and

produces temporal status description of the assembly progress. The output can be customized and
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Figure 1.1: Parameter inference framework

processed into a comparable form with the experimentally measured data. As an important step

of implementation, the work flow of parallelizing and managing the simulations on a computer

cluster will also be explained in this chapter.

Chapter 3 will describe the optimization algorithms that have been tested inside the frame-

work. The optimization algorithms evaluate the deviation between the experimental data and

outputs from the simulator, and generate new sets of parameters to be sent to the simulator. The

iterative interaction between the two modules will terminate once the algorithms decide that the

output from the simulator is close enough to the experimental data.

Chapter 4 will describe the application of the framework onto experimentally measured static

light scattering (SLS) data for three viral systems: HPV, HBV and CCMV. The bestfits, num-

ber of evaluated parameter sets and final sets of parameters will be compared across different

algorithms.

Chapter 5 will extend the application of the framework onto synthetic datasets including SLS

data and non-covalent mass spectrometry (NCMS) data. Detailed comparisons will be shown

with respect to the deviation from true parameters and the accuracy of making predictions.
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Chapter 6 will describe the methods for analyzing possible assembly pathways from the best-

fitting trajectories. The results show distinct types of assembly pathway for structurely similar

virus species. More results will be provided regarding prediction of in vivo assembly based on

the inferred in vivo parameters and assumptions on in vitro environments.

Chapter 7 will summarize the work of the thesis, discuss the advantages and disadvantages

of current framework, and provide possible directions for future developments.
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Chapter 2

Modeling and Simulation*

2.1 Coarse-grained capsid model

Regardless of their species and structual complexity, all viruses have at least one layer of protein

coat that encapsulates and protects their nucleic acid [59]. Due to the limits of viral genome

capacity, this protein coat, or capsid, is generally formed in a highly symmetric helical or icosa-

hedral structure by many identical copies of a small number of viral proteins [59]. In this section

I will describe the computational models of some virus capsids and their components used in this

thesis.

The quality of the virus capsid model that best serves the scope of this thesis is determined by

two factors: simulation time cost and the necessity for reproducing experimental measurements.

Equipped with state-of-the-art hardware and appropriate approximation algorithms, molecular

dynamics nowadays can stretch the length of all-atom simulation for full virus capsid to the scale

of milliseconds and provide in depth insights for the viral physiologies [52, 53, 54, 55], however,

the duration of such large scale simulations is still way too short for fitting in vitro assembly

processes that may span minutes to hours. Pure numeric simulations that only track the sizes of

*The capsid model and simulation tools described in this chapter are based on the local rules theory by Berger
et al. [9], the simulation work by Schwartz et al. [10, 11, 33], and the discrete event simulator for self-assembly
(DESSA) developed by Zhang et al. [31, 58] and later improved by Kandapur and Feng.
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intermediate assemblies would result in much faster simulation, but interpreting certain types of

experimental measurements, such as dynamic light scattering (DLS) [56] and small angle X-ray

scattering (SAXS) [57], requires the information of relative geometric positions of the subunits

in the intermediates. To balance the time cost and fineness requirements, the capsid model must

be simple enough for efficient computations yet complex enough to carry geometric information.

The basic unit in our virus capsid model is called ”subunit”, which may represent a sin-

gle coat-protein or coat-protein oligomers, depending on the experimental condition where the

data is collected. A subunit interacts with its neighboring subunits through binding sites, and

each binding site has a binding rate (on-rate), a breaking rate (off-rate), and a binding partner

which is another binding site of a neighboring subunit. The subunit types, binding site types and

their geometric coordination are extracted from real virus capsid structure (see an example in

Figure 2.1).

A subunit model contains the following information:

• The relative geometric coordinates of its binding sites.

• The partner type of each binding site.

• The on-/off-rate of each binding site.

The on- and off-rates are the parameters that we sought to infer by fitting experimental data. A

capsid model consists of all types of its subunit models. Due to its highly symmetric structure, a

capsid model may only have a few types of subunits. In this thesis, three capsid models are used:

HPV, HBV and CCMV. Their capsid models and corresponding complete capsids are shown in

Figure 2.2, and their properities are listed in Table 2.1.

2.2 Simulation methods

The use of rule-based coarse-grained capsid models for dynamic assembly simulation was first

introduced in combination with Brownian dynamics simulation [9, 11], and has come to be the
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Figure 2.1: Extracting capsid and subunit model from real virus capsid structure. Top left: HBV
capsid structure [60] shown in PyMol. Top right: local symmetry of HBV capsid. Bottom right:
coarse-grained subunit structure preserving local symmetry [61]. Bottom left: subunit types and
their binding sites.

predominent approach for modeling work in this field. In the process of simulation, subunits

diffuse and collide following the principles of Brownian motion, and the binding dynamics are

quantified with a transition state energetic model when a collision happens. Such model is a

significant reduction from molecular dynamics, yet still able to lead to numerous discoveries of

successful and unsuccessful assembly mechanisms that became guiding principles of this field.
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Figure 2.2: Capsid models (A, B, C) and corresponding complete capsids (D, E, F) for HPV (A,
D), HBV (B, E) and CCMV (C,F). Rules for binding are shown in Table 2.1. The black dots in
the complete capsids represent subunits, and the asterisks represent binding sites that are linked
to their belonging subunit by the solid lines.

Such principles include the tradeoff between growth rate and yield due to kinetic trapping [10],

the switch in conformation to avoid these traps [11], the need for weak binding to promote

assembly efficiency [10, 11], and the potential for exploiting such kinetic effects by capsid-

targeted anti-viral strategies [33]. Despite being adopted by many research groups [12, 13, 15]

and used for many similar approaches [62, 63, 64, 65, 66], the Brownian dynamics simulation

has its own shortcomings that render it incapable of quantitative parameter search. First, the

simulation is too slow to be practical for the large number of trajectories required by parameter

search. Second, it depends on excessive numbers of physical parameters that cannot be easily

linked to experimentally measureable properties of subunits.

Another popular approach to investigate virus capsid assembly is numerically solving a set

of ordinary differential equations (ODEs) that describes all the possible reactions among inter-

mediate assembly species obeying the law of mass action. It is a deterministic approach based

on the assumptions of reactant abundance and well-mixed environment. It has been used to ana-

lyze the assembly of a relatively small dodecahedron virus model that builds from 12 pentamers
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Table 2.1: Properties of capsid models
Virus # of subunit types Subunit size # of subunits in a capsid Binding rules

HPV 2 Pentamer 72

A+ binds A-
B+ binds B-
C+ binds C-
Do binds Do

HBV 2 Dimer 120

A+ binds A-
B+ binds B-
C+ binds C-
D+ binds D-

CCMV 2 Dimer 90
A+ binds A-
B+ binds B-
C+ binds C-

[8, 26, 30]. Described by 12 cascading ODE equations, this method successfully recapitulates

experimentally observed sigmoidal kinetics and explains the lag phase and equilibrium behavior.

Stepping up to more complex models, however, the ODE-based model faces a substantial obsta-

cle of combinatorial explosion in complexity as the number of intermediate species and possible

reactions grows exponetially with respect to the size of capsid [18, 19]. Furthermore, the funda-

mental assumptions of ODE-based model may not hold for in vivo environments, which impedes

the transistion from in vitro inference to in vivo prediction.

To address the issues of time, space and parameter complexity, Jamalyaria et al.[50] and

Zhang et al.[31] developed a stochastic approximation simulation algorithm that is tailored for

large scale self-assembly systems. The resulting simulator, named DESSA, reads the geometric

and kinetic rules from the capsid model, and creates an event queue of binding and breaking

events whose firing times are randomly drawn according to the Gillespie algorithm [67]. The

simulator will continue to add, execute or invalidate the events until there is no more event or

the maximum simulation time is reached. When a binding event is executed, DESSA will align

the two assemblies along the binding site and perform a rotation to put the assemblies in the

right positions on a capsid. Like ODE models, DESSA does not consider particle diffusion and

assumes well-mixed environment. The output of DESSA can be customizedin various ways. For
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the particular version (1.5.8) of DESSA used in the present parameter inference work, the output

is a text file containing a temporal list of counts of all intermediate assemblies. The source and

usage of DESSA 1.5.8 are shown in Appendix A.

2.3 Deployment on computer cluster

One challenge to the task of parameter learning via stochastic simulation is the uncertainty

brought by stochastic noise. There are two possible ways to suppress stochasticity: perform-

ing simulation with more subunits or averaging the trajectories of many replica simulations. The

second solution is more favorable for parallelized execution on computer clusters. The param-

eter learning task was performed on the Lane cluster administrated by Computational Biology

Department, School of Computer Science, Carnegie Mellon University. The cluster provides

several queues, each of which has around a hundred processor cores, for public and private sub-

mission, and each submitted simulation task is regarded as a job. The jobs on the cluster are

managed by the terascale open-source resource and queue manager (TORQUE). Direct submis-

sion of thousands of jobs at once may put too much stress on the cluster, so I have written a

single-threaded script in MATLAB to submit and monitor the jobs and import their text-based

outputs to MATLAB. The script works via a polling loop. Its flowchart is shown in Figure 2.3.

The script was designed to accommodate several design constraints:

• It is written in MATLAB due to closer integration to the optimizaion part.

• It should reside on a compute-node, not head-node, of the cluster. Single-threaded execu-

tion helps reduce the resource consumption.

• A job is considered ”active” after being submitted until termination, regardless of its status

on the queue.

• It is able to limit the number of active jobs on each queue. A “full queue” may refer to the

situation that the maximum number of active jobs is reached, while the queue itself may
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still have open slots.

• It is able to do on-line adjustments of the job limits of the queues according to their crowd-

ness. Future scripts might add automatic “load-balancing” function.

• It is robust against several exceptions, such as network interruption, non-residing compute-

node crash, and corrupted file transfer.

• It is able to set a waiting time between queue queries to avoid stressing TORQUE.

Deployment is tightly coupled with the parameter inference algorithms by feeding them with

trajectories required for computing objective values with respect to given sets of parameters.

Because the most time-consuming step is carrying out the JAVA-coded simulations, scripting the

deployment in MATLAB might not create a concern of cost of time, but it certainly would be

more convenient if the system were ported to a light-weight and free scripting platform, such as

Python or Shell.
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Figure 2.3: Flowchart of job submission, management, and result collection on TORQUE-
managed cluster.
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Chapter 3

Parameter Inference Algorithms*

3.1 System-specific challenges

In general, the parameter inference task for a computational or mathematical model of a system

of interest is posed as an optimization problem. The goal of this optimization is to minimize an

objective function f(~x) that measures deviation between simulated and real data with respect to

the parameter vector ~x in the parameter space. While a variety of generic optimization methods

can in principle be applied to the problems under this broad definition, the choice of appropriate

methods for any particular system will depend on many specific characteristics of the system to

be fit. Virus assembly systems present several special challenges to the optimization approaches

to parameter inference.

One specific characteristic of virus assembly system is the lack of closed-form expressions

for non-trivial models of capsid assembly. Even for a relatively small dodecahedron capsid model

with 12 subunits and 12 ODEs seemed impractical to be solved analytically [8, 58]. As a result

of that, the parameter fitting problem falls under the class of simulation optimization, where the

objective function needs to be evaluated through one or several simulation runs [68].

*The description of Kumar method is mainly based on the published work of Kumar et al. [32] and Xie et al.
[70], and the description of DFO methods is mainly based on the submitted work of Xie et al. [71].
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Another striking obstacle is the computational cost of assembly simulations, which can take

from minutes to hours for the production of a single trajectory, depending on the capsid models

and parameter values. This is largely because of an extensive amount of trial-and-error involved

in nucleation-limited growth processes characteristic of virus assembly. A single data fitting task

may require sampling up to hundreds of thousands of these trajectories, which may take weeks

to months to accomplish on a computer cluster with around 100 Intel Nehalem cores.

An even bigger obstacle is the high stochastic noise, a feature inherent to the stochastic

modeling method described in Chapter 2. Traditional numerical optimization done in optimizing

quality of fit of a parameter set is accomplished by methods such as gradient descent, Newton-

Raphson, or Levenberg-Marquardt that depend on taking derivatives of the deviation between

real and simulated data [69]. Stochastic noise in the simulated data results in discontinuities in

derivatives, a significant problem for these methods.

To address the above chellenges, Kumar et al. [32] developed a heuristic global/local search

algorithm, upon which Xie et al. [70, 71] later improved. Section 3.3 introduces the use of

two derivative free optimization (DFO) methods: multi-level coordinate search (MCS) [72] and

stable noisy optimization by branch and fit (SNOBFIT) [73].

3.2 Heuristic global/local search scheme (Kumar method)

A remarkable amount of research has been done on designing methods for optimization of

stochastic simulation systems [68, 74, 75, 76, 77]. The embedded noise in such systems may

introduce errors to gradient estimation. As a result of that issue, some optimization algorithms

for stochastic systems, such as quasi-gradient methods and algorithms of type Kiefer-Wolfowitz

[78], avoid directly dealing with the gradient of the objective function. The other techniques

that have been developed to approximate gradients in these systems, such as specialized finite

difference schemes and infinitesimal perturbation analysis, may impose restrictive conditions on

the form of the potential surface to be fit [32]. A different yet important class of method is the

16



response surface approach, which fits a smoothed regression model to the potential surface and

optimizes with respect to the regression model. The minimum of the regression model is then

regarded to be the estimate of the minimum of the objective function in the parameter space

[76]. Though they require fewer simulation runs than gradient-based methods, response surface

methods can perform poorly under certain conditions, such as poor approximation of the meta-

model of the search space, inadequate sampling in the search space, or a search space that is

characterized by very sharp ridges and/or large valleys with close to zero curvature [76, 79].

Kumar et al. developed a heuristic global/local optimization strategy for parameter infer-

ence of capsid assembly systems to deal with the particular computational challenges introduced

by stochastic simulations [32]. In the local optimization part, the method interpolates between

response surface and quasi-gradient approximations to provide both fast handling of smooth re-

gions and robust handling of more difficult regions of the objective function. In the improved

version of Kumar method [70], the local optimization algorithm proceeds in five steps:

1. Given a grid size s, the algorithm picks a set of vectors surrounding the current parameter

~x in the parameter space, then conducts simulations and collects objective function values

on these vectors. The set of vectors are chosen in an arbitrary way to provide enough

samples for fitting a quadratic response surface, while avoiding exponential blow-up: 1)

+/- each individual element by s while keep the rest stationary; 2) + +/+ -/- +/- - each pair

of elements by s while keep the rest stationary. This results in 2n2 vectors for n parameters.

2. The algorithm fits the vectors including ~x and their objective function values with the

following quadratic function:

f(~x) = c00 +
n∑

i=1

c0ixi +
n∑

i=1

n∑
j=i

cijxixj (3.1)

Where xi’s are the elements in the parameter vector and f(~x) is the corresponding objec-

tive function value. The coefficients, c, are obtained by calling nlinfit in MATLAB, and
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~xRS , the minimum of f(~x) in the grid of −2s � ~x � 2s is found by calling fmincon in

MATLAB.

3. The algorithm evaluates the gradient of f(~x) by using a subset of the samples and their

objective function values:

∇f(xi) =
f(< ~x1, · · · , ~xi + s, · · · , ~xn >)− f(< ~x1, · · · , ~xi − s, · · · , ~xn >)

2s
(3.2)

4. The algorithm selects a new candidate for the minimum of the objective function by an

interpolation between response surface model and gradient descent:

~xnew =
~xRS + r(~x− s∇f/‖∇f‖)

r + 1
(3.3)

Here, r serves as a bias factor, which will be discussed in the global search part of this

section.

5. The algorithm evaluates the objective function value at ~xnew.

The steps of the local search are illustrated in Figure 3.1.

The heurisitic global search is posed on top of the local search scheme. If indeed ~xnew yields

a lower objective value, in which case the search sets ~x ← ~xnew, s ← 2s, r ← r/2. Otherwise,

it disregards ~xnew and let s ← s/2, r ← 2r. The underlying idea of this heuristic global search

scheme is to expand the search region and put more bias towards the prediction of response

surface once the objective value is improved, and vice versa. This approach relies on a similar

intuition to the standard Levenberg-Marquardt optimization method [80, 81] which interpolates

between two forms of fit to empirically adjust between algorithms more suitable to handle smooth

or rough regions of the parameter space. The search terminates when the predefined minimum

grid size is reached.

Based on the original Kumar method [32], Xie et al. have made the following improvements

[70]:
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Figure 3.1: Illustration for the local search steps in Kumar method with 2 parameters. Left: es-
timatiion of gradient. Red dot is the current parameter set, and the blue dots are samples. The
darker lines indicate the descending direction of the gradient. The black dot is the candidate
predicted by gradient descent. Middle: fitting quadratic response surface model. Right: interpo-
lation between response surface model and gradient descent. The new red dot represents the new
candidate for minimum via an approximate r = 1 interpolation.

• Automated the choice of samples and quadratic functions for any number of parameters,

while in the original method the samples and functions were chosen on a case-by-case

basis.

• Decoupled the grid size s and bias factor r, which are controlled by a single factor in the

original method. This increased the flexibility in making adjustments and adaptiveness to

different profiles of parameter space.

• Put more emphasis on evaulating the new candidates. As the direction of the global search

is driven by the objective value of the new candidate, the noise-induced inaccuracy in

evaluating new candidates will dramatically mislead the direction of the global search.

The Kumar method is integrated into the parameter inference framework as shown in Fig-

ure 3.2. Note that the Kumar method is not a system-specific but a generic solver, and it can be

applied to any optimization problem with similar concerns of stochasticity and time complexity.

The applications of the Kumar method will be shown in the Chapters 4 and 5.
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Figure 3.2: The flowchart showing how Kumar method is integrated into the parameter inference
framework. The hub prepares jobs for submission to the queue, and translates trajectories into
objective function values. The job manager is decribed in Figure 2.3.

3.3 Derivative-free optimization (DFO) methods

As a heuritic algorithm incubated with the consideration of handling stochastic noise, the Kumar

method is, nevertheless, partially dependent on the numerical estimation of the first derivative

of the objective function, and its quadratic response surface model might be somewhat naı̈ve.

A big leap forward would be using optimization methods that completely eliminate the use of

derivatives, which motivates the choice of employing DFO methods. As the name suggests, the

class of DFO methods avoid computation of derivatives of objective function, making them in

principle less susceptible to stochastic noise than are gradient-based methods. DFO methods in

general tend to be well suited to systems such as stochastic capsid assembly, that are character-

ized by high noisy and high computational cost for evaluating the objective function. Rios et

al. have published a review of 22 DFO algorithms and their performance comparison on 502 test

problems, and found MCS to be the best among the freely available solvers [82]. As a good start

to explore the potential of DFO methods for this problem, MCS was chosen as an alternative

optimization algorithm in the parameter inference framework. Xie et al. also choose SNOBFIT
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as an alternative method because it is specifically designed for optimizing noisy systems. They

are both global optimization solvers but with different approaches: MCS searches for the global

optimum via bisecting boxed regions in the parameter space [72], and SNOBFIT approximates

the objective function by using more sophisticated surrogate functions [73].

The integration of the two methods into the parameter inference framework is shown in Fig-

ure 3.3. SNOBFIT functions in a similar fashion to the Kumar method, and can be regarded as a

black box solver and direct substitute for the Kumar solver. MCS functions as the driver of the

optimization progress, and it treats the virus capsid assembly system as a black box optimization

problem. The applications of the DFO methods will be shown in the Chapters 4 and 5.
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Figure 3.3: The flowchart showing how SNOBFIT (top) and MCS (bottom) are integrated into
the parameter inference framework. The functions of the hub and job manager refer to Figure 3.2
and Figure 2.3, respectively.
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Chapter 4

Application on Experimental Datasets*

4.1 Sources of datasets

Parameter inference has been conducted on experimental datasets of human papillomavirus (HPV),

hepatitis B virus (HBV) and cowpea chlorotic mottle virus (CCMV). Datasets for the three sys-

tems were gathered from prior studies by Casini et al. [83] (HPV), Zlotnick et al. [26] (HBV),

and Zlotnick et al. [84] (CCMV). In each case, the source of data collection is 90◦ static light-

scattering (SLS) measurements of temporal evolution of in vitro capsid assembly systems. The

SLS measures the intensity of light scattered by the coat protein solution in arbitrary unit (a.u.),

which reflects the turbidity of the solution.

For HPV, light-scattering data was gathered from purified L1 coat protein capsomers in citrate

buffer with 0.5 M NaCl at pH 5.20 for 250 minutes per experiment [83]. The L1 protein was

expressed in E. coli [83]. The data was provided directly by David Wu (Department of Chemical

and Biological Engineering, Colorado School of Mines) in electronic format. The parameters are

inferred from fitting three curves corresponding to capsomer concentrations of 0.53, 0.72, and

0.80 µM.

*The content of this chapter is mainly based on the published work of Xie et al. [70], and the DFO application
part is mainly based on the submitted work of Xie et al. [71].
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For HBV, data was gathered from stock solutions of Cp149 coat protein dimers in 0.1 M

sodium bicarbonate and 5 mM DTT at pH9.5 for 600 seconds per experiment [26]. The Cp149

protein is truncated from the full length Cp183 protein by discarding the 34 nucleic acid binding

residues on the C-terminus [85]. The data points are derived from the appropriate figures in the

reference (Figure 4C in Zlotnick et al. [26]). The parameters are inferred from fitting coat dimer

concentrations of 5.4, 8.2, and 10.8 µM. The beginning stages of the light scattering curves of

the three concentrations (the first 53.7, 26.6 and 10.3 seconds, respectively) are smoothed by

numerical average in order to alleviate the influence of instrument noise and the resolution limit

of the print media.

For CCMV, data was gathered from solutions of coat protein dimers in 200 mM sodium cit-

rate and 1M NaCl for 300 seconds per experiment [84]. The coat protein dimers are collected via

dissociation of viral capsids separated from affected cowpeas [86]. The data points are derived

from the appropriate figures in the reference (Figure 1B in Zlotnick et al. [84]). The parameters

are inferred from fitting coat dimer concentrations of 14.1, 15.6, and 18.75 µM. An artificial 2.5

second lag phase was added for each curve to account for the timing uncertainty at the beginning

of assembly, an important issue for CCMV because of its comparatively more rapid initiation

than the other systems.

4.2 Objective function

The objective function measures the quality of fit, but the output from the simulator must be

converted in advance to a form that is comparable with the experimental measure. As described in

Section 2.2, DESSA 1.5.8 produces counts of intermediate assemblies of each size as a function

of time in the simulation. Following Casini et al. [83] we can approximate the SLS curve

produced by any given parameter vector ~x over time t as follows:

24



R(t, ~x) =
k × c×

∑n
i=1

(
Ni(t, ~x)× i2

)∑n
i=1

(
Ni(t, ~x)× i

) = k × c× S(t, ~x) (4.1)

Here R(t, ~x) is the value of a simulated SLS curve at time point t with parameter vector ~x,

c is the concentration of subunits, Ni(t, ~x) is the number of assemblies consisting of i subunits

at time t for parameter vector ~x, and k is a scaling factor. The number of subunits in a full

viral capsid, n, is specified by virus species: 72 for HPV, 120 for HBV, and 90 for CCMV.

To simplify later formulas, the notation S(t, ~x) is introduced for the average assembly size, or

equvalently, pre-scaled simulated curve. The parameter vector ~x consists of a set of on- and off-

rates for all possible binding interactions described by the local rule set. R(t, ~x) is estimated for

each parameter vector ~x by averaging over a set of trajectories to minimize stochastic noise, as

described in the following section. In contrast to the prior single-curve fitting [32], a generalized

multi-curve fitting scheme is designed to fit ~x and possibly k to a set of true light-scattering curves

depicted as E1, · · · , Em representing measurements of assembly at m distinct concentrations (see

Appendix B.3 for details about fitting multiple curves simultaneously). The objective function is

defined as the root-mean-square deviation (RMSD) between true curves and the corresponding

simulated curves S1(t, ~x), · · · , Sm(t, ~x) for a given parameter vector ~x:

f(~x) =

√√√√ 1

m

m∑
j=1

( 1

Tj

Tj∑
t=1

(
Ej(t)− k × cj × Sj(t, ~x)

)2)
=

√√√√ 1

m

m∑
j=1

( ~Ej − kcj ~Sj)T ( ~Ej − kcj ~Sj)

Tj

(4.2)

The objective function is computed over a series of discrete time points 0, · · · , Tj , where Tj

is the total number of time points measured in curve j. ~E and ~S are E(t) and S(t) in vector form,

respectively, and the superscript T stands for vector transpose.

The fitting also requires the scaling factor k, which is handled differently for the three viruses

due to the differences in how the datasets are reported in their studies. For HPV, the scaling factor

is reported as k = 7.04 × 10−8 [83] and that value is used throughout the parameter inference.
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No scaling factor is reported for the HBV and CCMV studies and they are therefore treated as

additional unknowns to be learned. To infer k, it is necessary to assume that no assembly event

has occurred at the initial time point for each true light-scattering curve, allowing the use of the

approximation E(0) = R(0, ~x) = k × c. The scaling factor is then estimated by minimizing the

objective function with given parameter vector ~x:

k̂ = argmin
k

f(k|~x) = argmin
k

√√√√ 1

m

m∑
j=1

( 1

Tj

Tj∑
t=1

(
E∗

j (t) + k × cj − k × cj × Sj(t|~x)
)2)

(4.3)

Here E∗ is the modified experimental curve that is shifted along the Y axis with the property

that E∗(0) = 0, so E∗ + k× c starts at k× c, which meets the above assumption. By finding the

zero of the derivative with respect to k, the maximum likelihood estimate of k is obtained by:

k̂ =

m∑
j=1

(
cj
Tj

Tj∑
t=1

(
E∗

j (t)×
(
Sj(t|~x)− 1

)))
m∑
j=1

(
c2j
Tj

Tj∑
t=1

(
Sj(t|~x)− 1

)2) =

m∑
j=1

cj ~E
∗T
j (~Sj−1)

Tj

m∑
j=1

c2j (
~Sj−1)T (~Sj−1)

Tj

(4.4)

The fitting strategy varies for the three viruses based on differences in how the data is re-

ported. For HPV, a single known k is reported and therefore the learning of k is omitted. For

HBV, a single unknown k is assumed to be shared across all curves, and therefore it is learned

before multi-curve fitting, and the Ej in Equation 4.2 should be replaced by E∗
j accordingly. For

CCMV, the strategy differs in such a way that each curve must be fit with a separate k, and this

is achieved by applying Equations 4.3 and 4.4 to each curve at a time. The strategy of using

separate values of k for each curve calls for an alternative objective function that averages the

RMSD across curves:
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f(~x) =
1

m

m∑
j=1

√√√√ 1

Tj

Tj∑
t=1

(
E∗

j (t)− k̂j × cj ×
(
Sj(t, ~x)− 1

))2
=

1

m

m∑
j=1

√
‖ ~E∗

j − k̂jcj(Sj − 1)‖22
Tj

(4.5)

Here kj is the scaling factor for curve j. The reason for using the new objective function

is that the kj’s and ~x that minimize the RMSD of each individual curve will also minimize

Equation 4.5, but not necessarily Equation 4.2.

4.3 Optimization scheme

The optimization proceeds by an initial scan in a reduced 2-D parameter space derived by assum-

ing all on-rates in the system are equal and all off-rates are equal. The scan allows the methods to

identify a good starting location and proper grid size. Due to the limits of computational time, a

search in the full-parameter space that requires many more samples to fit would be too expensive.

Instead, the procedure performs a series of staged searches with non-decreasing degrees of free-

dom. The first stage starts in the same 2-D space of the scan, and each following stage uses the

optimum of the previous search stage as an initial guess for a search in an expanded parameter

space produced by allowing two previously equal off-rates to vary independently. This process

repeats until each off-rate is independently fit. A single on-rate is assumed for all binding sites

but off-rates are fit independently so as to balance the need for a model with enough degrees

of freedom to fit the data against the need for a model simple enough to be computationally

tractable. In the prior study of fitting to the HPV model [32], the on-rates are considered inde-

pendent but the alternative is chosen here to implicitly model binding rate as diffusion-limited

and thus essentially equal between binding sites.

The order in which independent rates are introduced is determined manually for each virus

according to geometric similarities among binding sites. For HPV, after learning a single on-

and off-rate for all binding sites, the off-rates of the four sites are then broken into two groups
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(A |BCD), then three groups (A |BC |D), followed by four (A |B |C |D), and finaly the faster

simulation of HPV model allows for a five parameter search with the four off-rates plus a unified

on-rate. For HBV, the steps by which groups are subdivided are AD |BC, A |D |BC, and A |D

|B |C. The scheme for CCMV is AB |C, and A |B |C. No additional on-rate search is added for

HBV and CCMV. The labels of the binding sites refer to Figure 2.2.

Both the initial scan and following search are conducted in log10-based parameter space.

To evaluate the objective function with given parameter, simulations are conducted with 720,

600 and 450 subunits for HPV, HBV and CCMV, respectively. The number of replica runs

on each sample varies for the three optimization methods: for Kumar method, 40 trajectories

are simulated for each concentration on grid samples, and 250 on predictions; for MCS and

SNOBFIT, the number is 50 for all samples, as they do not differentiate samples in such way.

The Kumar method has been applied on all three virus models, while MCS and SNOBFIT are

only applied on HPV and HBV models due to the high time cost of simulating the CCMV model.

In addition to the parameters and function values, SNOBFIT also requires information about

the uncertainty of the function values. For simplicity, that is not estimated for every sample,

but rather estimated at the starting point by bootstrapping from 1000 trajectories. Each time,

50 trajectories are randomly picked out of the 1000 and the corresponding RMSD is computed.

This repeats for 100 iterations with replacements and the standard deviation of the 100 RMSDs

is treated as an estimate of stochastic noise for every point sampled.

4.4 Results

The search begins for each virus model with an initial scan of a broad range within a simplified 2-

D parameter space, in which all on-rates are assumed to be equal as are all off-rates. These initial

scans are used to initialize a broader search, but are also useful for visualizing the complexity of

the parameter space. Figure 4.1 shows the results of these two-dimensional scans for the three

viruses. Figure 4.1A reveals a seemingly simple objective function for HPV, consistent with
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Figure 4.1: Contour plots demonstrating quality of fit in a reduced two-dimensional parameter
space. Each plot shows quality of fit as a function of one association rate along the x axis and one
dissociation rate along the y axis, with all bonds assumed to exhibit the same pair of rates. Axes
are shown on a logarithmic scale. Quality of fit is denoted by shading of the curves, with lighter
shades representing high RMSD, i.e., poor fit, and darker shades representing low RMSD, i.e.,
good fit. (A) Quality of fit of HPV for unified dissociation rates from 0.001 to 10 s−1 and unified
association rates from 14 to 1.4×105 M−1 s−1. (B) Quality of fit of HBV for unified dissociation
rates from 102 to 106 s−1 and unified association rates from 1.1× 103 to 1.1× 107 M−1 s−1. (C)
Quality of fit of CCMV for unified dissociation rates from 102 to 106 s−1 and unified association
rates from 3.2× 103 to 3.2× 107 M−1 s−1

the results of the prior work [32], with a single strong local minimum and a relatively smooth

approach to that minimum across the space examined. Note that this convex appearance does not

guarantee that the space is truly convex, as there may be roughness at a finer scale than what is

examined in 2-D, or that the full parameter space is similarly simple. Figure 4.1B shows a more

complex objective function for HBV, with two comparably deep local minima and at least one

other less-pronounced minimum. Figure 4.1C shows the comparable plot for CCMV, revealing

a qualitatively similar multi-valley profile to HBV, although with broader and more pronounced

maxima and minima. Collectively, then, the three viruses show different portraits consistent

with significant variability from system-to-system in the nature of the objective surface and the

apparent difficulty of the associated global optimization problem.

The search next proceeds with the application of all three optimization methods. Table 4.1

shows the final fit parameters, number of samples, and lowest RMSDs achieved by all applica-

tions. One additional step to make the results more comparable is the normalization of RMSD.

29



Table 4.1: Parameters, number of samples, and lowest RMSDs from best-fitting experimental
SLS data. The unit of on-rate is M−1 s−1, and the unit of off-rate is s−1.
Virus Method Min RMSD # samples On-rate A-off B-off C-off D-off
HPV Kumar 0.0754 1524 1.4e3 0.12 0.11 0.12 0.13
HPV MCS 0.0667 2959 1.4e3 0.21 0.11 0.11 0.11
HPV SNOBFIT 0.0679 1574 1.5e3 0.044 4.8 4.8 4.8
HBV Kumar 0.0592 886 1.4e6 1.2e5 1.4e5 1.4e5 1.2e5
HBV MCS 0.0487 1615 1.24e6 9.86e4 1.15e5 1.15e5 9.91e4
HBV SNOBFIT 0.0476 1229 8.9e5 5.2e4 1.9e5 2.5e4 9.3e4
CCMV Kumar 0.0460 515 1.2e6 3.0e4 3.0e4 3.9e4

The same quantity in raw RMSD may reflect worse quality of fit if the SLS curves have a smaller

span of intensity range without normalization, and vice versa. Each RMSD in Table 4.1 is nor-

malized by root mean square height (RMSH) of the curves in its respective dataset. For HPV

with known k, the normalizer is:

F =

√√√√ 1

m

m∑
j=1

(
1

Tj

Tj∑
t=1

E2
j ) (4.6)

For HBV with single inferred k:

F (k) =

√√√√ 1

m

m∑
j=1

( 1
Tj

Tj∑
t=1

(E∗
j + k × cj)2

)
(4.7)

For CCMV with inferred vector ~k:

F (~k) =
1

m

m∑
j=1

√√√√ 1

Tj

Tj∑
t=1

(E∗
j + kj × cj)2 (4.8)

The RMSH is equivalent to the RMSD between the curves and zero lines.

For HPV, the Kumar and MCS methods have a tight agreement on the inferred rate, while

SNOBFIT has a 44-fold increase of B, C, D off-rates in comparison to the rates inferred by

Kumar method. The normalized RMSDs suggest that the quality of fits are similar, with MCS

performing best, followed by SNOBFIT, then Kumar. The methods also show variations in
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numbers of samples they required to make a fit, with Kumar most efficient by this measure,

followed by SNOBFIT, then MCS.

For HBV, the table shows similar parameter inferences as well for the methods, with the most

extreme outlier being a variation of 5.7-fold between inferred C off-rates between the Kumar and

SNOBFIT methods. The RMSDs suggest that the quality of fits are also similar, with SNOBFIT

performing best, followed by MCS, then Kumar. In terms of numbers of samples, Kumar is again

the most efficient by this measure, followed by SNOBFIT, then MCS.

Comparing across the virus models, a greater number of degrees of freedom for a model (5

for HPV, 4 for HBV, 3 for CCMV) will lead to a greater the number of sampled points.

The best fit curves show the quality of fits for HPV, HBV and CCMV (Figure 4.2). The

three methods gives quite consistent and generally good fits to HPV and HBV for both short-

and long-timescale features of the curves, while the two DFO methods gives closer fits for the

highest concentration. For HPV, all methods have a slight tendency to over-estimate the middle

concentration, and Kumar method to under-estimate the highest concentration. The true HPV

data tends to show a sharper initial slope at the end of the lag phase than do the simulated

curves, although that may in part reflect deviation between the idealized light-scattering model

we assume and the true sensitivity of the instrument for smaller oligomers. For HBV, all methods

somewhat underestimated the lowest concentration and overestimated the middle concentration.

MCS gives a closer fit to the highest concentration, while SNOBFIT gives a closer fit to the

middle concentration.

4.5 Discussion

In general, all of the methods found plausible fits to the experimental curves. Compared to the

shapes of best-fit curves and the values of inferred parameters, the underlying assembly pathways

might be of much greater interest for revealing the in vitro assembly process. In Chapter 6, some

computational methods will be presented for analyzing the assembly pathways and theoretical
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Figure 4.2: Best fit curves for each method to the real SLS data. Each subpart shows three
concentrations used in fitting, with true data in solid black lines and the best model fits in dashed
grey lines. A: Kumar on HPV; B: MCS on HPV; C: SNOBFIT on HPV; D: Kumar on HBV; E:
MCS on HBV; F: SNOBFIT on HBV; G: Kumar on CCMV.

models described for the prediction of in vivo assembly.

Given the nature of the SLS measure, one may raise the question that whether a single SLS

curve corresponds to a unique assembly pathway, or SLS itself is an under-determined mea-

surement for revealing the complexity of assembly? One possible improvement might be using

alternative data sources that have more channels of observations, such as non-covalent mass

spectrometry (NCMS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS),
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etc. In Chapter 5, synthetic SLS and NCMS datasets are used to investigate the uncertainty of

inferred pathways from SLS data and the advantages of increased accuracy from fitting NCMS

data.
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Chapter 5

Application on Synthetic Datasets*

5.1 Sources of datasets

To evaluate the qualities of fit resulting from different possible algorithms and data sources,

it is necessary to have multiple data types on a common system with a known ground-truth

parameter set and simulation model. Since there is, to the author’s knowledge, no alternative

method for learning these properties of a complex molecular assembly, a synthetic variant of the

HBV model was created with the HBV structure (Figure 2.2) but a set of artificially chosen rate

constants selected to maintain a realistic nucleation-limited growth mechanism while producing

rapid assembly. Such synthetic datasets were produced at four concentrations corresponding

to c = 5.3, 6.4, 8.0 and 10.6 µM, if we assume our simulations each represent a cubic volume

of dimensions 0.5 × 0.5 × 0.5 m3 (0.125 fL). For more details about generating data under

multiple concentrations please read Appendix B.3. Table 5.1 provides the corresponding on-

rates in M−1s−1 and off-rates in s−1.

Two types of synthetic bulk-measure data are generated: static light scattering (SLS) and non-

covalent mass spectrometry (NCMS). The synthetic SLS data are produced by feeding DESSA

1.5.8 with the parameters in Table 5.1, and then converting its output with Equation B.12. For

*The content of this chapter is mainly based on the submitted work of Xie et al. [71].
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Table 5.1: On and off-rates at each binding site used in our synthetic data generation and fitting.
The binding site labels refer to Figure 2.2.

Binding site On-rate (M−1 s−1) Off-rate (s−1)
A 9.48e5 7.94e3
B 5.98e5 1.26e4
C 3.78e5 2.00e4
D 2.38e5 3.16e4

the convenience in fitting synthetic data, we set the values of k such that kc = 1, 1, 1.5, and 2 for

concentrations c = 5.3, 6.4, 8.0 and 10.6 µM, respectively.

The synthetic NCMS data are produced by a highly idealized model representative of the

ideal theoretically possible from NCMS, assuming the ability of exact peak assignments, decon-

volution of contributions of distinct charge states, and precise quantification of mass fractions

at each peak. Although real data would be far noisier and more ambiguous, an idealized model

would better serve the goal of providing a comparative model of a maximally data-rich system.

Under these assumptions, NCMS is simulated by averaging the mass fraction of each intermedi-

ate assembly (including full capsid) at every second:

Mi(t, ~x0) =
Ni(t, ~x0)× i∑n

j=1

(
Nj(t, ~x0)× j

) (5.1)

Here n is the number of subunits in a full capsid (n = 120 for HBV), Mi(t, ~x0) is the mass

fraction of assemblies that have i subunits at time point t with parameter ~x0 from Table 5.1,

Ni(t, ~x0) is the number of assemblies that has i subunits at time point t with the same parameter.

For each concentration, the datasets of both SLS and NCMS are averaged from 10,000 trajec-

tories of 250 seconds assembly time with 600 assembly subunits per simulation. The synthetic

datasets are divided into three variants of parameter inference:

1. 1-SLS, which only contains the SLS curve with c = 8.0 µM;

2. 3-SLS, which contains the SLS curves with c = 5.3, 8.0 and 10.6 µM;

3. MS, which contains the NCMS data with c = 8.0 µM.
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The synthetic SLS and NCMS datasets under c = 6.4 µM are used to verify how the model

will behave at a new concentration using parameters inferred from a different concentration.

5.2 Objective function

The objective function for fitting 1-SLS and 3-SLS datasets is identical to that for fitting real

HPV SLS curves with a single known k (Equation 4.2). The objective function for fitting MS

dataset is the RMSD between all pairs of mass fraction curves:

f(~x) =

√√√√ 1

n

n∑
i=1

( 1
T

T∑
t=1

(
Mi(t, ~x0)−M∗

i (t, ~x)
)2) (5.2)

As the mass fraction curve for every assembly has the same number of time points, the above

equation can be rewritten in the form of Frobenius norm:

f(~x) =
‖M(~x0)−M∗(~x)‖F√

nT
(5.3)

Here the mass fractions are represented in matrix form with Mi(t) being the element at index

(i, t) of M.

5.3 Optimization scheme

Unlike the real SLS datasets, the fast simulation of synthetic datasets make it feasible to search

directly in the 8-parameter space (on- and off-rates for each of four binding sites) with more

points evaluated every iteration, rather than using the parameter subdivision scheme we applied

to the real data. For the Kumar method, on each search iteration, the fit objective function

is evaluated at 128 grid points in the log parameter space and a new minimum candidate is

predicted based on the objective values. The grid points are picked in the same fashion as in

section 3.2. The function value is evaluated by averaging 40 replica trajectories at each grid
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point and 1280 replicas at the minimum candidate to minimize stochastic noise. On average,

each point is evaluated by (128 × 40 + 1280)/(128 + 1) ≈ 49.6 trajectories, which is close in

number to the 50 trajectories used for evaluating each point in MCS and SNOBFIT. MCS is again

used as a caller for our simulator, with the MCS solver determining which parameter points to

evaluate and when to terminate the search. SNOBFIT is fed with values at 128 points and asked

for 128 new points to evaluate each iteration, with the search terminating after 10 non-improving

iterations.

The uncertainty required by SNOBFIT is estimated by bootstrapping from 10,000 trajectories

with the true parameter set. Each time 50 trajectories were randomly drawn to compute the

RMSD, and this repeated for 100 times with replacements. The mean of the 100 RMSDs are

treated as the estimate of stochastic noise for all sample points. Comparing to the noise estimated

from initial point of fitting real HBV SLS data, the two estimates differ by about 20%, suggesting

that it is reasonable to apply a common noise value to all points evaluated along the search

invoked by SNOBFIT.

The parameters inferred by fitting synthetic datasets were then used to predict the assembly

behavior under concentration c = 6.4 µM, where the deviation in SLS curves and mass fractions

are investigated.

5.4 Results

The quantitative results of fitting all datasets with all methods and their prediction deviations are

shown in Table 5.2. Comparing the deviation of inferred parameters across different datasets

and methods, we can conclude that SNOBFIT gives the most consistent estimates across data

types, while the Kumar method is most dependent on the quality of the data source. SNOBFIT

consistently gives the lowest best-fit RMSD, while the Kumar method gives the highest RMSD.

The difference in best-fit RMSD across the three datasets is small, however. All three methods

make much better predictions, in terms of RMSD, from fitting to the richer datasets. The RMSD
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Table 5.2: Quantitative assessment of synthetic data fitting for the Kumar, MCS, and SNOBFIT
methods.
The columns, in order identify the data source, number of functional evaluations required, mean
error in parameter fits, RMSD of the best-fit parameters to the training data, RMSD of the best-
fit parameters to SLS data at a concentration not used in training, and RMSD of the best-fit
parameters to NCMS data at a concentration not used in training.
Method Dataset # samples Mean parameter

deviation
Best-fit
RMSD

Prediction
SLS RMSD

Prediction
MS RMSD

Kumar 1-SLS 2710 2.01 0.0667 0.981 1.01
MCS 1-SLS 2021 1.48 0.0325 0.174 0.716
SNOBFIT 1-SLS 2322 0.85 0.0161 0.0545 0.113
Kumar 3-SLS 4645 1.99 0.0787 0.132 0.766
MCS 3-SLS 2361 1.62 0.0572 0.123 0.613
SNOBFIT 3-SLS 3225 0.46 0.0188 0.0166 0.0180
Kumar MS 3097 0.34 0.0457 0.0558 0.0502
MCS MS 1657 1.11 0.0296 0.0929 0.0533
SNOBFIT MS 3741 0.88 0.0198 0.0133 0.0138

of SLS is, again, normalized by RMSH of Equation 4.6 and the RMSD of MS is normalized by:

F =

√√√√ 1

n

n∑
i=1

( 1
T

T∑
t=1

Mi(t, ~x0)2
)

(5.4)

Given that small changes in RMSD can correspond to significant changes in inferred pa-

rameters, the consideration of fit quality is extended to consider not just the best-fit but also the

range of fits within the margin of noise of the best-fit for each method and data source. Fig-

ure 5.1 shows boxplots for each optimization based on the set of quasi-optimal parameter sets

that give RMSD scores within 2 standard deviations of the best-fit. The standard deviation here

is the same quantity as what is used to estimate noise levels for SNOBFIT by bootstrapping.

This provides a rough assessment of the degree of uncertainty in each parameter to some extent.

The Kumar method gives the tightest distribution of quasi-optimum parameter sets, which re-

sults from the nature of its local optimization strategy. SNOBFIT gives the widest distribution of

quasi-optimum parameter sets. Fitting richer datasets tightens the distribution of quasi-optimum

parameter sets for each method, showing that the greater complexity of data is helpful in more
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Figure 5.1: Deviation of inferred log parameters from true values on the synthetic data sets for
each algorithm and data type. In each plot, circles mark the deviation with minimum RMSD, and
boxes mark mean and range of variation for high-quality fits, defined to be those whose RMSD
is within two standard deviations of the estimated noise level. The eight parameters in log space
on each plot correspond to A on-rate, B on-rate, C on-rate, and D on-rate in M−1 s−1 followed by
A off-rate, B off-rate, C off-rate, and D off-rate in s−1. The subfigures show the three algorithms
separated by column (A, D, G) Kumar; (B, E, H) MCS; (C, F, I) SNOBFIT and the three data
sources separated by row (A, B, C) 1-SLS; (D, E, F) 3-SLS; (G, H, I) NCMS.

precisely pinning down the true optimal fits.

The quality of fits is next examined in terms of true and inferred profiles of assembly progress

versus time, which provide a more direct view of fit quality. Figure 5.2 compares fits to simulated

SLS profiles for each data set used in fitting. For the 1-SLS data (Figure 5.2 A), only SNOBFIT

gives a close fit to the experimental curve, with best-fits from Kumar and MCS showing sub-

stantially shorter lag phases and less pronounced sigmoidal behavior than the true curve. 3-SLS

(Figure 5.2 B) leads to an improvement for all three methods, although SNOBFIT still yields no-

ticeably better fits than the others. All three methods give good fits to the NCMS data (Figure 5.2
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Figure 5.2: Best fit curves for each method to the synthetic data as assessed by light scattering
intensity for (A) 1-SLS; (B) 3-SLS; and (C) NCMS. Each subpart shows the curve simulated
from the true parameters in solid black lines and the best fits for the Kumar method in dashed
blue, MCS in dashed red, and SNOBFIT in dashed green.

C), with apparently similar fit quality for the three.

A more stringent test is given by examining fits to mass fractions of specific intermediate

species (Figure 5.3). For this purpose, three sizes of assemblies are selected as representatives

of three ranges of abundance, as assessed by mass fraction: full capsid (high abundance), trimer

of subunits (medium abundance), and decamer of subunits (low abundance). As expected, the

algorithms all do a better job fitting more abundant species, which is unsurprising since those

species would have greater weight in computing the objective function. The high abundance

capsomer species is fit well by SNOBFIT for all data sources but by Kumar and MCS only when

fit to NCMS data. The medium abundance trimer intermediate (Figure 5.3, 2nd column) is fit

poorly by all three methods on 1-SLS data, very well only by SNOBFIT for 3-SLS data, and fit

well by all three methods for NCMS data. The low-abundance decamer species (Figure 5.3, 3rd

column) is poorly fit by all three methods, with peak accuracy of roughly a factor of two for all

three methods on NCMS data.

An even more stringent test, to help control for the possibility of overfitting, is to evaluate fit

quality at an additional concentration not used in parameter inference. In relative concentrations,

this experiment involves learning fits from c = 8.0 µM for 1-SLS and NCMS data or from c =

5.3, 8.0 and 10.6 µM for 3-SLS data, then evaluating the quality of the fit in each case at c = 6.4

µM. Figure 5.4 shows qualities of fit for simulated SLS curves. For 1-SLS (Figure 5.4 A), only
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SNOBFIT yields a high quality prediction, with moderate but noticeably worse quality for MCS

and very poor fitting for the Kumar method. Prediction from 3-SLS data (Figure 5.4 B) similarly

shows a high-quality fit only for SNOBIT. Kumar and MCS show nearly identical fits to one

another, with the Kumar fit substantially better than it was for 1-SLS but the MCS fit very similar

to that found by MCS on 1-SLS data. All methods give plausible fits with parameters inferred

from fitting NCMS data (Figure 5.4 C), although the SNOBFIT curve is still slightly better than

those from Kumar and MCS.

The pattern seen in predicted mass fractions (Figure 5.5) is similar to that found in Figure 5.3

testing fit to the training data. The high-abundance capsomer species is fit well only by SNOBFIT

for 1-SLS and 3-SLS data, but by all three methods for NCMS data. Fitting is poorer for the

medium-abundance trimer species for all methods, but still reasonable for all three with NCMS

data, good only for SNOBFIT with 3-SLS data, and poor for all three methods with 1-SLS data.

None of the methods achieves a close fit to the low-abundance decamer species from any data

set, although all come within approximately a factor of two for NCMS data.

5.5 Discussion

The use of synthetic datasets provided us with a relatively fair testbed for assessing different

optimization algorithms and data sources. While a variety of parameters and pathways may result

in very similar SLS curves, fitting more than SLS curve at once or using more sophisticated

solver such as SNOBFIT can help approximate the true parameters and mass fractions. The

advantage of using a rich data source such as NCMS can somehow eclipse the differences in

solver performance.

One limitation of this study is in the estimation of parameter uncertainty. In Figure 5.1,

the uncertainty in each parameter is estimated individually by considering sub-optimal objective

values. These estimates provide only a limited view of the true range of parameter values con-

sistent witht the data. Further studies will be needed to reveal correlations among parameters
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and/or build a more sophisticated probabilistic model of objective values across the full space of

parameters.

43



Figure 5.3: Best fit curves from synthetic data for a representative sample of mass fractions.
Each subfigure compares true mass fraction in solid black lines versus the best fits for the Kumar
method in dashed blue, MCS in dashed red, and SNOBFIT in dashed green. Columns corre-
spond to (A, D, G, J, M) mass fractions of a high-abundance trimer species, (B, E, H, K, N) a
low-abundance decamer species, and (C, F, I, L, O) complete capsid. Rows correspond to data
sources: (A, B, C) 1-SLS; (D, E, F) 5.3 µM, (G, H, I) 8.0 µM, and (J, K, L) 10.6 µM concentration
curves from 3-SLS; and (M, N, O) NCMS.
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Figure 5.4: Predicted versus true light scattering curves for synthetic data by each method and
data source for a concentration not used in data-fitting. Each subfigure compares true SLS in
solid black lines versus the predictions of the Kumar method in dashed blue, MCS in dashed red,
and SNOBFIT in dashed green for one data source at a concentration omitted from data-fitting.
(A) 1-SLS; (B) 3-SLS; (C) NCMS.
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Figure 5.5: Predicted versus true mass fractions for synthetic data by each method and data
source for a concentration not used in data-fitting for a representative selection of intermediate
species. Each subfigure compares true SLS in solid black lines versus the predictions of the
Kumar method in dashed blue, MCS in dashed red, and SNOBFIT in dashed green for one data
source at a concentration omitted from data-fitting. Rows correspond to data source: (A, B, C)
1-SLS; (D, E, F) 3-SLS; (G, H, I) NCMS. Columns to intermediate species profiled: (A, D, G)
medium-abundance trimer intermediate; (B, E, H) low-abundance decamer intermediate; (C, F,
I) high-abundance complete capsomer.
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Chapter 6

Self-Assembly Pathway Analysis*

A key point of the studies in the thesis is to infer features of capsid assembly pathways and

provide a basis for predicting assembly behavior under more realistic representation of the in

vivo environment. This chapter will describe the methods that help analyze the in vitro assembly

pathways of virus capsids, and the prediction of in vivo assembly made by kinetic approximation

of in vivo conditions. All the work presented in this chapter is based on the parameters inferred

from in vitro SLS data.

6.1 Analysis by mass fraction

A mass fraction plot (Figure 6.1) shows the distribution of intermediates as a function of time

for a single simulation trajectory. They are generated by re-running the simulator with the best-

fitting parameters for experimental SLS data, and collect output every 10 steps (see Appendix A

for information about selecting the number of steps).

The mass fraction plot of HPV (Figure 6.1 A) is generated with 720 subunits at 0.80 µM. The

curves show no preference for building up any specific pools of small oligomers. Neither do they

*The content of section 6.1and 6.2 is based on the published work of Xie et al. [70]; the content of section 6.3 is
derived from the Masters thesis work of Feng [87] and submitted work of Smith et al. [88] with partial contribution
from the author; the content of section 6 is derived from the published and submitted work of Smith et al. [88, 89],
with partial contribution from the author.

47



Figure 6.1: Mass fractions of intermediates versus time for sample trajectories of the three capsid
systems. Each curve corresponds to a single size of intermediate species. Insets in each plot show
magnification of early stages of the reaction. While all possible intermediate sizes are plotted,
for simplicity a key is provided only for sizes 28. (A) Mass fractions versus time for 720 HPV
capsomer subunits at 0.80 µM. (B) Mass fractions versus time for 600 HPV dimer subunits at
10.8 µM. (C) Mass fractions versus time for 450 CCMV dimer subunits at 14.1 µM.
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show a pronounced depletion for larger oligomers, as one would expect for a nucleation-limited

assembly. Rather, the plots show the mass fraction of each intermediate coming up slightly later

and slightly lower than the next smaller intermediate. This pattern is consistent with a model of

assembly by successive accretion of individual capsomers without a defined nucleation step.

Profiles of intermediates present a very different picture for HBV than was seen for HPV.

Figure 6.1 B shows a sample simulation trajectory for HBV with 600 subunits at 10.8 mM. The

most prominent feature of the plot is a set of intermittent spikes in which the system rapidly

cycles through a series of successively larger intermediates, culminating in production of a new

capsid. These spikes are the signature of nucleation-limited growth, with each spike touched

off by production of some small nucleus followed by rapid completion of the capsid through a

series of elongation reactions. Another prominent feature of the plot is the existence of a pool

of free trimers (hexamers of coat protein) forming quickly and persisting during the assembly

reaction. Monomers and trimers of subunits (dimers and hexamers of coat proteins) apparently

reach an equilibrium with one another early in the reaction that readjusts with the production of

each capsid.

The overall assembly process of the CCMV model also appears qualitatively more similar to

that of HBV than HPV. Mass fractions of CCMV intermediates versus time, shown in Figure 6.1

C for 450 subunits at 14.1 µM, again show the spikes characteristic of a nucleation-limited growth

mechanism. Like with HBV, there are also persistent pools of oligomers throughout the assembly,

with trimers appearing to dominate as with HBV. Unlike with HBV, a small standing population

of pentamers becomes apparent late in the reaction. Both viruses show a qualitatively similar

process of gradual accumulation of trimers in the lag between nucleations, which are then rapidly

depleted during elongation of a new capsid.
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6.2 Analysis by reactant usage

The reactant usage plot (Figure 6.2) visualizes the pathway space by plotting how frequently any

given reactant oligomer sizes are used to assemble any given product oligomer size. Each panel

in Figure 6.2 is an average from 50 trajectories. The horizontal index is the size of a reactant, and

the vertical index is the size of a product. The brightness of each grid box indicates the fraction

of times a given size of product is built with a given size of reactant.

For HPV, Figure 6.2 A-C confirms that each oligomer size is normally produced by addition

of a single capsomer to the next smaller oligomer size, with the exception of some rare reactions

between pairs of oligomers during the earlier steps of assembly. This conclusion is consistent

with that found by the prior work of fitting to a single light-scattering curve [32]. Comparison

between concentrations shows that the same non-nucleation-limited capsomer addition pathway

is used across the concentration range with only variation in the frequency of relatively rare

oligomer-oligomer binding steps early in assembly. At higher concentrations, such oligomer-

oligomer binding is more often observed, although still rare.

For HBV, the reactant usage profile in Figure 6.2 D-F reveals that monomers and trimers

are used at random for individual steps of the assembly, with monomers usually favored but

trimers used roughly 10-20% of the time at most elongation steps. The system thus appears to

be described not by a single pathway but by an ensemble of many distinct assembly pathways.

The production of small oligomers revealed in the inset shows a more complex profile, with

more frequent use of trimers and occasionally pentamers, and with production of octamers in

particular occurring primarily by binding of trimers to pentamers. While it is difficult to define a

precise set of steps as the nucleation from this profile, the results do suggest that a low-frequency

pentameric form plays an important role in initiating assembly. The profiles are nearly identical

across the twofold concentration change shown in Figure 6.2, D-F.

For CCMV, reaction frequencies visualized in Figure 6.2 G-I shows that assembly most often

proceeds by monomer additions, but that trimer additions occur with lower frequencies, pro-
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Figure 6.2: Visualization of reaction usage for viral assembly reactions. Each plot is organized
into a set of rows and columns such that the shading of the box in row i and column j denotes
the fraction of oligomers of size i produced by a binding reaction involving an oligomer of size
j. Lighter colors indicate higher frequencies, and darker colors indicate lower frequencies, with
black representing a reaction unobserved in the course of the simulations. Each subfigure shows
the full plot of all possible assembly sizes. Inset in the upper right show magnification of a
portion of the upper-left region of the full plot corresponding to reactions producing smaller
oligomers. (A) HPVat 0.53 µM. (B) HPVat 0.72 µM. (C) HPVat 0.80 µM. (D) HBVat 5.4 µM.
(E) HBVat 8.2 µM. (F) HBVat 10.8 µM. (G) CCMV at 14.1 µM. (H) CCMV at 15.6 µM. (I)
CCMV at 18.75 µM.

viding an ensemble of secondary assembly pathways. Early steps in assembly show a similar

frequency profile to that observed for HBV, although there also appears to be a single frequently

used step involving large (10-mer and 17-mer) oligomers that is not seen with HBV. Like HBV,

CCMV is inferred to assemble through an ensemble of distinct pathways rather than a single de-

fined pathway. Pathway usage appears insensitive to at least the range of concentration changes
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examined in Figure 6.2 G-I.

6.3 Analysis by particle visualization

The simulation inside DESSA carries much more information than the numerial output of inter-

mediate counts use for fitting SLS and NCMS data. The DESSA simulator can be customized

so that it will produce detailed information, such as reactants and products of binding/breaking

events, subunit positions of all intermediates, as functions of time.

By back-tracing the formation path from a complete capsid to the originating subunit, Smith

et al. extracted the entire pathway and made the in vitro assembly progress of a CCMV cap-

sid into a movie by combining continuous MATLAB plots. Figure 6.3 A shows an important

snapshot that captures the most plausible structure of a nucleus. The timeline of the movie is

proportional to the appearance time of the assembly normalized by the formation time of the

capsid. By carefully checking the pathway, Smith et al. found that no significant structure was

formed by the presence of the suspected nucleus, and the completion of the capsid rapidly follows

this snapshot.

With the help of GPU acceleration, Feng was able to recreate a much more vivid movie of

HPV assembly progress (Figure 6.3 B). In his effort, the real all-atom structure of an HPV cap-

somer is mapped to the simulation-predicted position by spatial translation and rotation. The

position of each assembly is randomly picked because of DESSA’s disregard of particle diffu-

sion. The frames are drawn from the simulation trajectory at an interval of approximately 40

simulation steps. Each frame contains 170,784 atoms whose positions are determined by GPU

implementation of his algorithm and then rendered by PyMol. The movie is composed by 50

such frames with each lasting for 1 second.
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6.4 Predictions of in vivo assembly

To approximate the transition from in vitro to in vivo assembly, the model must be improved to

account for two major factors: molecular crowding and the effects introduced by nucleic acid.

Given the best-fitting parameters inferred from SLS data, necessary modifications are made to

these parameters to reflect the two effects on the new model.

The effect of molecular crowding is learned through off-lattice particle simulations imple-

mented with Greens function reaction dynamics [88, 90, 91]. In these simulations, different

percentages of the reaction volume are occupied by inert particles and the influence on kinetic

rates is monitored. Parameters are modified for CCMV at 15.6 µM, HBV at 8.2 µM and HPV

at 0.72 µM under 0% to 45% crowding conditions, and then fed to DESSA for simulated results

(Figure 6.4). For CCMV at low crowding levels, Figure 6.4 A shows a pattern of decreasing

speed and yield of assembly, with the assembly rate reaching a minimum at 25% crowding. The

effect reverses at higher crowding levels, with the assembly rate at 35% crowding approaching

that of the uncrowded system, and with 40% and 45% crowding yielding faster assembly at in-

termediate time points of the simulation. All trajectories go to equivalent levels of completion

eventually, although with varying kinetics. Figure 6.4 B shows curves for HBV, which show

qualitatively similar behavior to those for CCMV. HBV also shows a pattern of decreasing speed

and quantity of assembly at low crowding levels, again reaching a minimum at 25% crowding,

but increased assembly with respect to both speed and yield as crowding levels continue to in-

crease. Crowding levels above 30% begin to approach the assembly rate of the 0% crowding

state. 45% crowding yields higher assembly rates than 0% crowding levels in the later stages of

assembly. HBV yields a higher apparent variance in the final yield of completed capsids than

does CCMV. With HBV, assembly yield initially drops along with assembly rate as crowding

is introduced, with yields at 1035% crowding well below those of the uncrowded case. Yield

approaches that of the uncrowded system by 40% crowding and surpasses it at 45% crowding.

Figure 6.4 C shows curves for HPV, which show strikingly different behavior than the CCMV
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or HBV simulations. HPV shows a monotonic decrease in both rate and yield of assembly with

increasing crowding rates. The curves also show a much lower variance than did the HBV or

CCMV curves, with the effects of increasing crowding clearly distinguishable from the noise in

the individual averaged simulated light scattering curves.

To simulate RNA effects within the stochastic simulator, it was necessary to develop fast

approximations to the full effects of RNA on the on- and off-rates of subunit-subunit interactions.

For this purpose, we used a set of simple analytical approximations of specific effects RNA would

be expected to have on capsid assembly. The modification needed to introduce a model of RNA

to CCMV assembly were subdivided into four factors [89]:

• The entropy of RNA chain compression.

• Energetic and entropic contributions to the free energy of RNA-RNA interactions.

• Free energy of RNA-protein interactions.

• Local coat protein concentration by RNA.

The modifications are made to the best-fitting parameters of CCMV 15.6 µM SLS data. Fig-

ure 6.5 shows simulated light scattering curves for CCMV under conditions of no RNA factor,

each individual factor, and the combination of all four factors. Because of the large difference in

time scales between reactions, Figure 6.5 is shown in two versions showing a slow timescale (part

A for 100 seconds) and a fast timescale (part B for the first second). The effect of RNA compres-

sion moderately reduces the speed of capsid assembly, although assembly is still achieved. The

RNA-RNA interaction effect alone prevents any large intermediates from being formed, with

nothing above an 8-mer assembled in any simulation run. On the other hand, RNA-protein inter-

action and increased protein concentration both dramatically increase the rate of capsid assembly.

Both of these simulated curves show similar kinetics to the combined RNA effects curve, which

also shows a far faster assembly rate than the hollow capsid curve.
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6.5 Discussion

Simulation-based approaches have the advantage of providing data in both high volume and

fine detail that are well suited to the task of pathway analysis. Three computational methods

- mass fraction, reactant usage and visualization - have been explored in this chapter and they

serve as analytic tools for understanding the detailed information on capsid assembly contained

within the raw simulated trajectories. While each of them reveals different features of interest

regarding the pathways, a combined approach may further assist the analysis. For example,

the movies made from the assembly process have great visual impact, but it is hard to pinpoint

critical structures from fast moving objects; this problem might be better addressed by finding

“urn-points” from the associated numerical output where significant changes of rate of assembly

progress are observed.

The prediction of in vivo capsid assembly depends on three bases: the inferred parame-

ters from fitting experimental data; theoretical and mathematical derivations of free energies of

protein-protein, protein-RNA and RNA-RNA interactions; and simulations based on adjusted

kinetic rates. The studies regarding this subject are still in preliminary state. Furthermore, other

factors missing from the current study, such as chaperone proteins, may play important roles in

assisting in vivo assembly. Building a more general and realistic model better accounting for

likely cellular influences on assembly pathways remains a promising future direction.
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Figure 6.3: Visualization of CCMV and HPV in vitro assembly. (A) A snapshot of simulated
CCMV in vitro assembly at 14.1 µM. Courtesy of G. Smith. [89] (B) A snapshot of simulated
HPV in vitro assembly at 0.53 µM. Courtesy of X. Feng. [87]
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Figure 6.4: Simulated light scattering curves for CCMV at 15.6 µM (A), HBV at 8.2 µM (B),
and HPV at 0.72 µM (C). Each curve represents an average simulated light scattering over 100
simulation trajectories. Curves are shown for levels of nonspecific crowding agents from 0% to
45% of simulation solution volume in increments of 5%. (Figure 1 in [88])
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Figure 6.5: Simulated light scattering curves for CCMV capsid assembly under all individual
RNA effects as well as the hollow capsid and combined RNA effects case. Each curve repre-
sents an average simulated light scattering over 100 simulation trajectories. (A) shows the entire
simulation time course while (B) shows the first second. (Figure S1 in [89])
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Chapter 7

Conclusion*

In this theis, the author has integrated existing methods for simulation-based data fitting for

learning physical parameters of self-assembly systems into a broader framework and applied

these methods to a study of kinetic rate parameters of three icosahedral virus capsid assembly

systems. The results of this work lead to two major conclusions about the methodology and the

capsid systems themselves:

• The results demonstrate that the algorithms are, at least in principle, able to learn differ-

ent kinds of assembly pathways and rate parameters for a small collection of icosahedral

viruses with qualitatively similar structures and bulk assembly kinetics. Our parameter es-

timation technique generates good fits between experimental and simulated light-scattering

curves, even when fitting a common parameter set to multiple curves at different concen-

trations to reduce redundancy of solutions.

• The results are suggestive of some of the variability in assembly mechanisms that may

exist between structurally similar viruses. The inferred models show a variety of behaviors,

including either nucleation-limited or non-nucleation-limited assembly, monomer-based or

hierarchical oligomer-based assembly, and assembly consistent with a single well-defined

*A large portion of this chapter is derived from the published work of Xie et al. ([70]) and submitted work of
Xie et al. ([71])
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pathway or assembly that can only be described as an ensemble of a very large collection

of distinct pathways.

7.1 Variety in assembly pathways

Two out of the three viruses, HBV and CCMV, fit pathways with many similar features despite

different shell geometries and despite sizeable differences in inferred rate parameters. The third

virus, HPV, shows very different behavior in both rates and pathways. These three examples,

then, collectively demonstrate that there may not be any consistent paradigm of virus assembly

but rather a diversity of strategies for assembly comparable to the great diversity seen in viral

structures and other features of their life cycles.

The inferred models raise several questions about assembly of the specific viruses examined.

One surprising result is the apparent lack of nucleation-limited assembly in the HPV model, a

feature noted in previous work on that system [32]. Numerous theoretical models have suggested

nucleation-limited growth as a key feature for preventing kinetic traps in assembly [10, 13, 14, 15,

30] and there are indeed large amounts of incomplete species in the HPV simulations. This lack

of nucleation-limited growth may reflect some inability of the model to learn the correct assembly

pattern, perhaps because it lacks some important feature essential to true HPV assembly. The

prior work left open the possibility that the model-fitting technique might have some inherent

inability to discover nucleation-limited parameter sets, although the currently available results

from HBV and CCMV now refute that hypothesis.

Another intriguing observation is the apparent lack of a single defined pathway for HBV and

CCMV in favor of what is, effectively, a random sampling from a large ensemble of possible

pathways involving either incorporation of monomers or oligomers at each step of assembly.

While there is no clear reason as to why virus assembly should not proceed by stochastic sam-

pling from a large set of possible pathways, the assumption that a reaction has a defined pathway

is nonetheless often implicit in how people reason about biochemical systems. A failure of this
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assumption may have important implications for the use of simplified theoretical models to de-

scribe and reason about such systems, especially on small scales at which the stochastic nature

of the pathway space should be particularly pronounced.

Furthermore, an absence of any individual reactions necessary to productive assembly may

have important practical implications for efforts to develop capsid assembly targeted antivirals

[92, 93, 94]. A final observation is that the similar pathway usage across concentrations suggests

that all three viruses sit at points in parameter space that are relatively insensitive to perturbation,

in contrast to expectations from theoretical studies [19] that pathway usage is quite sensitive to

small changes in model parameters across a large fraction of the parameter space. It is possible

that such robustness to perturbation might be a general feature evolutionarily selected in real

capsid assembly, although far more examples would be needed to draw any such conclusion with

confidence.

7.2 Advantage of using DFO methods

Comparison of the three optimization methods leads to the conclusion that SNOBFIT does better

than the other two methods at fitting parameters of the three virus capsid assembly models across

data types. MCS is known to be a superior method to SNOBFIT for some other applications

[82] but SNOBFIT appears to be particularly well suited to dealing with the high stochastic

noise typical of this data fitting problem. Note that this stochastic noise is inherent to the fact

of using an SSA model to sample trajectories, a decision that itself has proven necessary for

sampling large enough numbers of trajectories in reasonable amounts of time. This same issue

would be expected to confront any simulation-based optimization of a system faced with similar

combinatorial blowup of intermediate species, a general issue of self-assembly models but also

one confronting other systems for which similar rule-based modeling have been applied [39,

40, 41, 42, 43, 44, 45]. It is therefore arguable that the observations in this thesis are likely

to be far more broadly applicable than just fitting capsid assembly models. On the other hand,
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SNOBFIT tends to identify a larger uncertainty in fits than do the other methods. In these cases,

the other methods are probably underestimating their true uncertainty since they do not survey

the parameter space as thoroughly. The Kumar method largely relies on local optimization and

thus might be expected to miss near-optima that also yield plausible fits to the true data. MCS

is intended to be a global optimizer like SNOBFIT but might be expected to do a less complete

survey of near optima in the presence of noise, explaining why it yields intermediate estimates

of variance between the Kumar method and SNOBFIT.

7.3 Potential benefit from richer data

When comparing results across data sources, one must be cautious in considering conclusions

given by this thesis as definitive because of the dependence of the results largely on synthetic

data. The need for synthetic data, rather than solely real experimental measurements, is largely

due to 3 concerns:

• It is impossible to rigorously evaluate accuracy of fitting without a known ground truth,

which is unavailable for any real system.

• The interest in understanding the limits theoretically possible for these approaches calls for

exploring an idealized model rather than any true data as the representation of maximally

data-rich experimental data.

• With synthetic data, it is feasible to work in a parameter domain in which trajectories are

qualitatively similar to those of the real system but much faster to simulate, allowing the

test of full potential of the algorithms rather than relying on heuristic compromises needed

with the real HBV data.

Point (1) is the most difficult issue to sidestep but is also the major reason work in this direction

is important: at present, there is, to the author’s knowledge, no alternative approach to our data-

fitting methods for learning detailed kinetic models of a non-trivial self-assembly system. Point
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(2) merits further study using a variety of real data sources, including NCMS [95], DLS [96],

and SAXS [97], which should provide information somewhere between the 3-SLS used in the

current practice and the idealized model of NCMS in its ability to precisely constrain the feasible

parameter set. While all of these methods have been used for capsid assembly studies previously,

the author does not know any one system for multiple such data types are available to allow a

fair comparison and believe it is wisest to identify likely best practices by purely in silico studies

like that published here before committing to a major experimental undertaking. Point (3) is an

issue of compute power and is in principle solvable by applying more powerful computers for

longer times than currently available. To drop the heuristic compromises on the real data for our

current cluster hardware (typically consisting of 80 compute nodes in continuous use), however,

would require years of continuous compute time and is therefore achievable in principle but not

in practice. The kinds of resources that direction would require exist but again it would be wiser

to identify best practices with these compromises to either find ways to bring down the cost or

develop a clearer justification for a major commitment of compute hardware to this task.

7.4 Future directions

There are many avenues by which this work might be further advanced. The major computational

bottleneck in the workflow of parameter inference is the time spent on ruuning simulations. One

possible solution is to port Java-based DESSA into a faster computer language such as C++,

while another possible solution is to incorporate hybrid SSA-ODE algorithms to reduce the time

spent on futile trial-and-error events.

Despite their better ability to identify the global optimum, the DFO methods are, nevertheless,

generic optimization methods without any particular optimization for self-assembly problems or

reaction networks more broadly. It is possible to derive a more specific optimization method

targeted to the stochasticity of such problems. For example, methods with surrogate functions

constructed with respect to the likelihood of a self-assembly simulation trajectory given a set
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of parameters (see Appendix C) might give closer approximate to the objective function than

methods with generic surrogate functions.

Although synthetic data filled an important role in evaluating the methods of this thesis, more

definitive results will require evaluating parameter fits inferred from real instances of more data-

rich measurements. The work of parameter inference from DLS data has already been initiated

and led by Thomas as the subject of his Masters thesis in progress. There are, however, substan-

tial technical challenges to using DLS data. For example, the fitting of DLS measurements re-

quires transferring large volumes of detailed geometric information from the Java-based DESSA

to the MATLAB-based optimizer, which requires tighter integration between the simulator and

optimizer than is available in the current implementation.

Another promising direction is the assessment of parameter sensitivity, i.e., how the objec-

tive function would respond to fluctuations of parameters and/or combinations of parameters.

The rates in Table 4.1 show that relatively large variations in parameters may still yield simi-

lar RMSD values, which raises the question of the uncertainty in the inferred parameters. As a

primitive way of assessing uncertainties in the parameters, Figure 5.1 includes parameters that

yield RMSDs within two deviations from the optimal value. This single-parameter sensitivity

analysis, however, fails to account for the combined influence of groups of two or more parame-

ters. A more sophisticated multiparameter model is needed to more thoroughly account for these

cross-parameter effects and to give more accurate estimates of confidence intervals for optimal

parameters.

Finally, virus capsids, due to their high symmetry and very large number of possible path-

ways, would be expected to be a particularly challenging system for such simulation-based data

fitting, which has tremendous potential as a way of solving problems in macromolecular assem-

bly that are not amenable to any purely experimental or purely theoretical technologies currently

available. While there is much to be done in learning the limits of these methods and establishing

best practices for their use, there is strong reason to believe they can be a transformative technol-
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ogy for understanding macromolecular assembly processes and for the much broader project of

developing predictive quantitative models of complex systems in biology.
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Appendix A

Simulator usage

The simulations in this thesis are performed by DESSA 1.5.8, which can be obtained from here:

http://www.cs.cmu.edu/˜russells/projects/dessa/dessa.html

The compiliation and execution of DESSA require the presence of vecmath package. An

example source of vecmath would be:

http://www.java2s.com/Code/JarDownload/vecmath/vecmath-1.5.2.jar.

zip

Assume vecmath exists as vecmath.jar file in the same folder of DESSA source files. The

compilation of DESSA is done by Java 2 SDK in the following way:

javac -cp vecmath.jar *.java

There are two ways to run DESSA. The first method needs all .class files and vecmath.jar to

be present in the same folder, and call the following command:

java -cp .:vecmath.jar Test capsidmodel.xml aaa bbb ccc ddd

Here Test is the main class, capsidmodel.xml contains the capsid model in .xml format, aaa

defines the number of stochastic steps per output, bbb defines the length of the simulation in

seconds, ccc is the random number seed, and ddd regulates the width of output table. The

DESSA package contains a few samples of capsid models, which describe binding interactions
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and corresponding times in the .xml format.

To create a more portable version of DESSA excutable, you can pack DESSA and vecmath

into a single dessa.jar file as:

jar -xf vecmath.jar

echo ’Main-Class: Test’ > manifest.txt

echo ’Class-Path: .’ >> manifest.txt

jar -cvfm dessa.jar manifest.txt *.class javax

and the subsequent excution of DESSA would be simply:

java -jar dessa.jar capsidmodel.xml aaa bbb ccc ddd

You might need to increase the maximum memory allocated to DESSA if you encounter the

out of memory exception. For example,

java -Xmx2048m -jar dessa.jar capsidmodel.xml aaa bbb ccc ddd

would allocate 2048MB memory to DESSA.
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Appendix B

Convertion between time and rate

In the work of this thesis, the parameters of the capsid models are rate constants measured in

M−1s−1 and s−1 for binding and breaking, respectively. In fact, the DESSA simulator can only

take inputs in the format of particle numbers and expected reaction time encoded in the .xml files.

In this section, the author will demonstrate the conversion between time and rate.

For a breaking reaction, the rate is simply the inversion of time. For binding reactions, two

types of binding reactions will be discussed separately.

B.1 Heterogeneous binding

For a heterogeneous binding reaction between binding sites A+ and A− with rate constant k:

A+ + A−
k−→ AA

The molar reaction rate is defined as:

d[AA]

dt
= k[A+][A−] (B.1)

Here [A+], [A−], [AA] are molar concentrations of unbound A+, A− and bound AA, respec-
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tively. Let N be Avogadro’s number, and V be the volume of the system, the above equation can

be rewritten in the unit of number of binding sites:

d<AA>
NV

dt
= k

< A+ >

NV

< A− >

NV
(B.2)

Or:

d < AA >

dt
=

k

NV
< A+ >< A− > (B.3)

Here < A+ >,< A− >,< AA > are numbers of unbound A+, A− and bound AA, respec-

tively. In DESSA, for a binding reaction with expected time T , the expected waiting time for

firing a reaction with given number of molecules would be T
<A+><A−>

, whose inversion would

be the time-based reaction rate:

d < AA >

dt
=

< A+ >< A− >

T
(B.4)

Comparing Equations B.3 and B.4, we have:

k =
NV

T
(B.5)

B.2 Homogeneous binding

For a heterogeneous binding reaction between binding sites A0 and itself with rate constant k:

A0 + A0
k−→ AA

The molar reaction rate is defined as:

d[AA]

dt
=

k

2
[A0][A0] (B.6)

80



Similar to the approach in the heterogeneous case, the above equation can be rewritten in the

unit of number of binding sites:

d<AA>
NV

dt
=

k

2

< A0 >

NV

< A0 > −1
NV

(B.7)

Or:

d < AA >

dt
=

k

2NV
< A0 > (< A0 > −1) (B.8)

Note that due to the symmetry of this reaction, there are only <A0>(<A0>−1)
2

pairs of A0 to

trigger possible reactions. The time-based rate is:

d < AA >

dt
=

< A0 > (< A0 > −1)
2T

(B.9)

Again:

k =
NV

T
(B.10)

B.3 Conclusion

Comparing Equations B.5 and B.10, we may conclude that the binding rate constant is NV
T

for

both heterogeneous and homogeneous cases. The volume can be determined by the concentration

of a specie in experiment and number of corresponding specie in simulation, for example, once

we know the concentration and number of subunits, the volume is:

V =
< S >

N [S]
(B.11)

Taking the above equation into k = NV
T

, we finally have the relation between rate constant

and time:
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k =
< S >

T [S]
(B.12)

Note that the information of concentration is necessary for deriving rate constants, but con-

centration becomes a degree of freedom when generating synthetic data. In this case, artificial

concentrations are chosen for more comprehensive meaning of the parameters, while DESSA

does not require such information to operate.

When working with multiple concentrations simultaneously, it is necessary to assure a coher-

ent binding rate across simulations under different concentrations. As Equation B.12 suggests,

there are three methods to enforce the coherence against change in concentration:

1. Scale < S > proportional to [S].

2. Scale T proportional to 1
[S]

.

3. Scale <S>
T

proportional to [S].

The second method is most favorable for its simplicity, fast simulation and low memory

occupancy.
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Appendix C

Likelihood of a trajectory

A trajectory of stochastic simulation is generated with respect to the probability of firing such

series of reactions. In this section, a likelihood model will be derived based on a simple reversible

dimerization reaction described by a forward rate k1 and reverse rate k2:

A+B
k1−→←−
k2

AB

The probability of firing a reaction at the ith step is:

p(i) = k(i)n(i) exp
(
− k1nA(i)nB(i)t(i)− k2nAB(i)t(i)

)
(C.1)

Here nA(i), nB(i), nAB(i) are number of A,B,AB particles at the ith step, respectively. The

values of k(i) and n(i) depend on the type of the ith reaction: k(i) = k1, n(i) = nA(i)nB(i) if

the reaction is forward, or k(i) = k2, n(i) = nAB(i) if it is backward. The last variable t(i) is the

time gap between the (i− 1)th and ith step. In total, the likelihood of a trajectory can be derived

as a function of rates:

L(k1, k2) =
∏
i

p(i) =
∏
i

(
k(i)n(i) exp

(
− k1nA(i)nB(i)t(i)− k2nAB(i)t(i)

))
(C.2)
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And the log-likelihood is:

`(k1, k2) =
∑
i

log k(i) +
∑
i

log n(i)− k1
∑
i

nA(i)nB(i)t(i)− k2
∑
i

nAB(i)t(i)

= r1 log k1 + r2 log k2 + LN − k1N1 − k2N2

(C.3)

Here r1, r2 are number of forward and backward reactions, respectively. When a trajectory

is given, the values of r1, r2, LN =
∑

i log n(i), N1 =
∑

i nA(i)nB(i)t(i), N2 =
∑

i nAB(i)t(i)

become constant, and the trajectory can therefore be characterized by the five constants.

The main purpose of deriving the likelihood model is to reduce the number of trajectory sim-

ulations, which is the most time-consuming step in the parameter inference framework. Under

the current framework, a trajectory is only used to evaluate the objective function at its produc-

ing set of parameters, but probabilistically such trajectory may also be produced by other sets of

parameters with different levels of likelihood. This likelihood model makes it possible to use one

trajectory to evaluate multiple sets of parameters, which may lead to the reduction of simulation

runs.

The trajectory likelihood model may also shed light on the derivation of the likelihood of ob-

jective function value given a set of parameters, as the objective value is calculated through fitting

the trajectories. The likelihood model of objective value may contribute to better approximation

of the objective function over parameter space.
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