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ABSTRACT 
Proteins specifically localize to various subcellular structures, and both the localization patterns 
and the structures themselves change over time. Protein location is essential information for 
understanding subcellular signaling networks as proteins that are never in the same compartment 
or localized to the same protein complexes or scaffolds cannot interact directly. Furthermore, the 
probability that a set of proteins can interact is proportional to the local concentrations of those 
proteins. Location proteomics complements the study of an organism's complete set of protein 
sequences, structures, and behaviors by gathering knowledge about the positions of all proteins 
within the cell under all conditions. Many computational approaches for quantifying the subcellular 
distributions of proteins, differences among them, and the shapes of the membranes that bound 
them have been developed relatively recently, e.g., for understanding the differences in cells 
obtained from normal and diseased tissues or over the cell cycle, modeling cytoskeletal dynamics, 
learning the range of possible nuclear and cellular shapes, and learning the effects of gene 
expression changes on cellular shapes. Investigation of the dynamics of this patterning and 
structure extends the often static approach to location proteomics and becomes significant in light 
of studies showing cell cycle-related changes in the levels or subcellular distribution of 19% and 
23% of human proteins, respectively. 

We present work on three projects creating models of dynamic protein localization and nuclear and 
cellular shape. First, we learn a model of cell cycle-related variation of images of nuclei in an 
unsupervised manner, i.e., without information on the cell cycle phase of a cell or artificial 
synchronization of cells to the same phase, using manifold learning. The manifold’s coordinates 
predict ground truth cell cycle phase with a testing adjusted R-square of 0.70. Second, we extended 
previous work that created a nonparametric, generative shape space model of two-dimensional 
nuclear shape to represent the joint distribution between three-dimensional nuclear and plasma 
membrane shapes. To extend this static representation to a dynamic one, we proposed a 
nonparametric, generative model of trajectories in shape spaces based on kernel density 
estimation, and we additionally synthesized videos of nuclear and plasma membrane shape 
dynamics by performing a random walk through shape space. We additionally performed 
simulation experiments to investigate the reduction of the computational complexity of shape space 
construction from quadratic to linear time. Third, we learned maps of the spatiotemporal 
localization of nine proteins in helper T cells during the process of synapse formation with antigen-
presenting cells. These maps were built under two experimental conditions, specifically when 
antigen-presenting cells presented a full set of stimulatory surface proteins and when one of these 
surface proteins, B7, was blocked. We found statistically significant differences in the distribution of 
four of these proteins between the two conditions, which have implications for understanding T cell 
signaling.
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CHAPTER 1: INTRODUCTION 
Proteins specifically localize to various subcellular structures, and both the localization patterns 
and the structures themselves change over time [1-6]. Protein location is essential information as 
proteins that are never in the same compartment within a cell will not interact directly, and even 
freely diffusing molecules in the cytoplasm or extracellular space may only be active when in close 
proximity or even bound to protein complexes or scaffolds. Furthermore, variations in the local 
concentrations of active proteins will proportionally affect the probability that those proteins can 
interact [7]. 

Location proteomics complements the study of an organism's complete set of protein sequences, 
structures, and behaviors by gathering knowledge about the positions of all proteins within the cell 
under all conditions [8, 9]. Quantifying location patterns using such methods can be both more 
accurate and precise than visually assigned labels [10]. Categorical labels such as Gene Ontology 
terms [11] are subject to errors both from visual assignment or sequence-based computational 
prediction of labels and from ignoring the fact that many proteins take on patterns that are 
mixtures of otherwise categorical patterns [12]. A high-resolution method for acquiring location 
data is the acquisition of microscopic images of cells fluorescently or otherwise labeled or stained 
for particular proteins. Many computational approaches for quantifying the subcellular 
distributions of proteins, differences among them, and the shapes of the membranes that bound 
them have been developed relatively recently, e.g., for understanding the differences in cells 
obtained from normal and diseased tissues [13] or over the cell cycle [2], modeling cytoskeletal 
dynamics [14-16], learning the range of possible nuclear [17-19] and cellular [8, 20, 21] shapes and 
learning the effects of gene expression changes on cellular shapes [22].  

Producing models of subcellular structures has the goal of increasing understanding of cellular 
organization. There are two main categories of statistical model, discriminative and generative. A 
discriminative model can use its representation, a vector of parameter values, to predict a 
categorical label or continuous dependent variable. A generative model, on the other hand, also 
explicitly encodes the statistical relationship between the label or independent variable and its 
representation so that one can also predict the distribution of representation parameters given 
values for the label or independent variable. A model's parameters can ideally be efficiently learned 
from appropriate collected data, microscopic image data in our case. Previous work by our group 
has demonstrated that generative models learned from images can be used not only to discriminate 
between known variations in subcellular protein localization patterns but also to synthesize images 
of novel hypothetical cells and structures within them [8, 16, 23-25]. These can be used to provide 
realistic geometry and structure to simulation studies examining reaction networks within the cell 
[24-30], which often use highly idealized or simplified geometry (e.g., [27, 31-33]). Simulations of 
cellular structures have already produced interesting insights into the workings of the cell [34-39]. 

Investigation of the dynamics of this patterning and structure extends the often static approach to 
location proteomics [5-7, 12, 15, 24, 40-43]. Cellular structure is diverse, due to cell type, 
environmental conditions, and the cell’s health, and dynamic, showing variation over the course of 
the cell cycle for all dividing cells, adoption of characteristic shapes during migration [6, 38, 39, 44]. 
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Cataloging the variety of dynamic arrangements of proteins and the interactions between them and 
understanding the effects of environmental conditions on those behaviors motivates the projects 
composing this dissertation. This dissertation covers three projects related by being statistical 
modeling studies of protein patterns and other subcellular structures as temporal processes. 

INFERRING CELL CYCLE-RELATED CHANGES IN PROTEIN PATTERNS FROM STATIC IMAGES OF 

ASYNCHRONOUS CELLS 
Specific aim 1: To build models of the subcellular location patterns of proteins over the cell cycle from 
static images of asynchronous cells. 

Static image acquisition requires fewer considerations than that of time-series images, e.g., less 
need for environmental maintenance and no issues with photobleaching, phototoxicity, or stains 
that are toxic after a few hours [45], and large databases of static images are readily available.1 This 
makes learning about cellular structure and protein distributions from static images attractive 
because it becomes more likely that there are enough images to correctly estimate parameters 
when there are many more images and the imaged cells will not be perturbed by measurement, 
which increases confidence in the results obtained. 

Recent approaches to modeling cell cycle related processes include significant limitations due to 
simplifying assumptions, which are, of course, to be expected of initial modeling attempts. Zhou et 
al. [46] construct classifiers from hand-labeled time-series data. The mitotic phases are 
distinguished, but the rest of the cell cycle is lumped into a category labeled interphase. Sigal et al. 
[2] instead considers cell cycle phase to be a continuous variable and does not discriminate 
between discrete phases. Their approach aligns the time series images of single cycles of individual 
cells using the total fluorescence of a histone marker, which increases approximately linearly over 
time. A protein is marked cell cycle dependent if the rate of change of mean protein intensity inside 
the nucleus is significantly non-constant, so protein localization and, as a result, its dynamics are 
described in limited spatial detail. 

While there exist a couple of simple solutions involving binning images of chromatin stains by total 
intensity and area and assumptions of near-ideal data, there does not seem to be any published 
work on learning representations of the cell cycle from single images of cells without 
synchronization or multiple additional markers. Widefield microscopy often produces images with 
out-of-focus cells, some commonly-used fluorescent dyes are absorbed to different degrees by 
individual cells in the same image, and 2D confocal images capture only a plane from the nucleus. 
As a result, binning techniques based only on intensity and area can be unable to separate G1 and 
G2 cells, for example. Some microscopic techniques permit the use of more than three fluorescent 
markers, permitting the use of cell cycle-related markers like fluorescently tagged cyclins, but these 
can require either special equipment for imaging or processing techniques that only work with 
fixed samples. Adding markers also increases the possibility of significantly affecting the behaviors 

                                                             
1 E.g., http://murphylab.web.cmu.edu/data/, http://images.yeastrc.org/imagerepo/searchImageRepoInit.do, 
http://www.proteinatlas.org/, http://ypl.uni-graz.at/pages/, http://locate.imb.uq.edu.au/downloads.shtml, 
http://hgpd.lifesciencedb.jp/cgi/index.cgi. 

http://murphylab.web.cmu.edu/data/
http://images.yeastrc.org/imagerepo/searchImageRepoInit.do
http://www.proteinatlas.org/
http://ypl.uni-graz.at/pages/
http://locate.imb.uq.edu.au/downloads.shtml
http://hgpd.lifesciencedb.jp/cgi/index.cgi
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of cells that are of interest. Our goal is to use a single vital nuclear dye on live cells to minimize 
changes in the cell prior to and the expenses and effort needed for imaging. 

One of the goals of location proteomics is demonstrable understanding and support of simulations, 
and the production of generative statistical models that can synthesize plausible images of cells 
under different conditions can act not only as initialization for simulation but validation for 
properties of cells inferred from simulation. The Murphy and Rohde groups have collaborated to 
create a system for building generative models of cellular components (for a review see Buck et al. 
2012 [47]), and these will inspire the models in this proposal as we extend them to include cell 
cycle-related variation. None of the aforementioned cell cycle modeling efforts yields generative 
models of this kind, so this is a novel undertaking. 

The first project of this dissertation concerns learning a model of protein appearance as it depends 
on cell cycle phase, but in an unsupervised manner, i.e., we do not have the time since the last cell 
division as we might in longer time-series images of cells. We divide this problem into two 
subproblems: learning a model of the nuclear channel's appearance dependent on phase, and 
learning a model of protein appearance given (possibly inferred) phase. This will allow us to take 
advantage of data sets where there are only a few cells labeled for any particular protein of interest 
but perhaps tens of thousands of cells with the same nuclear marker (this is the case with the 
Human Protein Atlas, a repository of high-quality confocal immunofluorescent images). Inference of 
the sort that will be necessary here is called latent regression analysis (LRA), introduced by Tarpey 
and Petkova in [48] and independently developed by us, which recognizes this task as a regression 
problem where the independent variable is unobserved, or latent. For this project, the dependent 
variables are the features representing the images of nuclei, and the independent variable is phase. 

The manifold learning problem is the assignment of low-dimensional coordinates to points 
originally existing in a high-dimensional space, usually by a smooth mapping, so LRA is a type of 
manifold learning. In some cases, algorithms for the latter might work as first approximations to 
methods for the former, but usually the assumptions of these methods are inappropriate for the cell 
cycle phase inference problem. Principal component analysis (PCA), kernel PCA [49], and other 
methods assume Gaussianity of the latent variable space, whereas the latent variable of phase is 
better represented by a bounded distribution because the cell cycle has a clear start and finish due 
to cytokinesis events. Isomap [50], locally linear embedding [51], and Laplacian Eigenmaps [52] 
depend on k-nearest neighbor graphs, which can change significantly in the presence of noise or 
high variability [50], while we want robustness to noise or even modeling of it as interesting 
variability. Many methods do not always produce a smooth mapping from the high- to the low-
dimensional and vice versa [49-52], but this is necessary for inferring the latent value for an 
observed feature vector and generating feature vectors from latent values. Tarpey and Petkova's 
LRA satisfies these three requirements, but the original algorithm for it needs some extension to be 
usable for this project. We have done preliminary implementation of such extensions and discuss 
these modifications to LRA as part of planned future work in Chapter 5. As an initial effort prior to 
that work, we used Isomap to show that manifold learning could reconstruct temporal relationships 
from features representing single nuclear images, as discussed in Buck et al. 2009 [45] (included as 
Chapter 2). 
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MODELING CELLULAR AND NUCLEAR SHAPES OVER TIME GIVEN STATIC OR TIME-SERIES 

IMAGES AND SIMULATING NOVEL SHAPES USING THESE MODELS 
Specific aim 2: To build a model of the evolution of a cell's 3D nuclear and plasma membrane shapes 
over time. 

The second project is to model and simulate variation in the shape of the plasma and nuclear 
membranes over time. Murphy, Zhao, and Peng have investigated the correlation between the 
cellular shape and the nuclear shape in both two- and three-dimensional parametric models [8, 21]. 
Other prior work by and in collaboration with the Rohde group also produced a nonparametric 
generative model of two-dimensional nuclear shape that represented both the range of and 
probabilities associated with plausible nuclear shapes [19]. Shapes that were not observed were 
synthesized, and the probability of observing these hypothetical shapes was derived from how 
often similar real shapes were observed. The nonparametric nature of that model and the method 
used to synthesize plausible shapes both permitted pixel-level detail in the generated shapes that 
was only limited by the resolution of the shapes given as training data. This contrasts with the 
parametric methods, which were limited to representing shapes as particular classes of polygons 
(i.e., star-shaped polygons) and triangle meshes (each horizontal cross-section of the mesh had to 
be a star-shaped polygon). The parametric methods worked well for fibroblast-like cells but would 
fail in the case of cell boundaries that are not star-shaped polygons like those of neurons or even 
some fibroblasts. 

These nonparametric models are based on shape spaces, which are constructed in three steps. First, 
the shapes must be represented in some way. Common representations are parametric, e.g., 
outlines represented as splines [8] or the principal components of star [8] or arbitrary [20] 
polygons. In this case, a shape image, where a value of one means a pixel is part of the shape and a 
value of zero means it is not, was used to nonparametrically represent each shape [18]. This is 
useful for preserving detail, especially from high resolution images where parametric models would 
grow to have a very large number of parameters and so lose a major advantage they have over 
nonparametric models. Second, there must be a measure of distance between any pair of shapes. 
For parametric models, this is commonly Euclidean distance [8, 21], but it can also be Mahalanobis 
distance, distance along a nearest neighbor graph, or a variety of other measures. In [18], the 
distance metric chosen was one computed by a nonrigid image registration framework called 
LDDMM [53], which constructs a deformation field (a nonlinear but smoothed transformation of 
the space of the image) for each of the two shape images such that the deformed images are the 
same. While these deformation fields are being computed, they also measure the "effort" required 
to deform the images using these fields, and this quantified effort is the distance metric used in [18]. 
Third, the distance is computed between all pairs of shapes and stored in a distance matrix, and a 
method analogous to PCA called multidimensional scaling (MDS) is applied to the distance matrix. 
MDS's output is a set of points with some number of coordinates where the first coordinate 
represents as much of the variance in the distance matrix as possible, the second coordinate 
represents as much of the variance that remains as possible, and so on. Each of these points 
corresponds to one of the shapes used to compute the distance matrix. These points and the space 



 

  5 

in which their coordinates live is called a shape space because the coordinates will represent major 
modes of variation of the shapes just as with the parametric models [8, 20, 44]. 

We extended the nonparametric model into three dimensions and to include nuclear shape-cellular 
shape correlations, and then we learned a shape space model for a set of 92 3D shapes extracted 
from images of HeLa cells. Furthermore, cellular shapes are dynamic, and simulations of cells at 
certain timescales should take the changes of these shapes into account. Thus we created a 
temporal model of cellular shape dynamics based on a random walk through the shape space and 
synthesized video showing these dynamics. We proposed methods to reduce the computational 
complexity of computing shape spaces. Finally, we proposed a statistical model of the dynamics of 
shapes that is learnable from time-series shape data. A more detailed introduction is given in 
Chapter 3. 

MODELING THE DYNAMIC LOCALIZATION OF PROTEINS INVOLVED IN T CELL-ANTIGEN 

PRESENTING CELL (APC) SYNAPSE FORMATION FROM TIME-SERIES IMAGES 
Specific aim 3: To build models of the subcellular location patterns of proteins over time during 
formation of the T cell-antigen-presenting cell synapse. To further determine the likely temporal 
sequence of and dependency between protein pattern changes. 

Our last project attempts to model the subcellular location patterns of multiple proteins during 
formation of T cell synapses. In a pioneering study, the Wülfing group [54] acquired and analyzed a 
large dataset consisting of time-series images of such T cells labeled for one of 30 proteins. They 
manually segmented images into individual cells and classified each cell at each of 12 time points as 
having one of six spatial patterns, combined this data for each protein, and clustered proteins 
according to these combined data. 

Automation and knowledge discovery both interest our group, and our work on this project reflects 
that. Systems-scale analysis requires that approaches for the identification of cells from 
microscopic videos, extraction of their spatiotemporal protein distributions, and comparison of 
many cells and proteins under multiple conditions all be developed such that they are as automatic 
as possible. Knowledge discovery often makes use of representations that can encode a wider range 
of phenomena than can human-selected labels in order to capture whatever patterns may be 
present in the data. This is often coupled with methods to automatically infer these patterns 
directly from the data. Murphy and Baek-Hwan Cho have performed cluster analysis on a 
discriminative feature-based representation of T cell protein distributions at the time of synapse 
formation after creating an almost automatic processing pipeline where the only inputs are the 
images themselves and manually specified synapse locations [55]. This is, to our knowledge, the 
only computational pipeline for nearly completely automatic pattern discovery in T cells near the 
time of synapse formation. 

We improve on each of the steps in Murphy and Cho's pipeline and extend the analysis to build 
generative models over all time points, not just at the time of synapse formation, to produce a 
spatiotemporal model of protein distribution. We add the step of standardizing the shape of each 
cell to a template shape so that each cell has a common coordinate system. This standardization can 
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be done with LDDMM [53] (which we use) or alternative nonrigid image registration methods [56, 
57]. Such standardization is often applied to medical scans such as cranial MRIs in order to evaluate 
variation in the anatomy of specific populations [53, 58-60]. After standardization, the distributions 
of proteins within cells can be directly compared without further parametric simplification. We 
then hierarchically cluster average standardized images of cells from a set of sensors under two 
conditions to examine pattern variability. We similarly cluster simplified models that emphasize 
various aspects of the subcellular distribution within a T cell. 

Our goal is to ultimately recognize any subtle and unexpected pattern in protein localization in the 
T cell synapse in a completely automated manner. Further introduction to this topic is provided in 
Chapter 4. 
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CHAPTER 2: PROTEIN LOCALIZATION DEPENDENCE ON CELL CYCLE 

INFERRED FROM STATIC, ASYNCHRONOUS IMAGES2 

ABSTRACT 
Protein subcellular location is one of the most important determinants of protein function during 
cellular processes. Changes in protein behavior during the cell cycle are expected to be involved in 
cellular reprogramming during disease and development, and there is therefore a critical need to 
understand cell-cycle dependent variation in protein localization which may be related to aberrant 
pathway activity. With this goal, it would be useful to have an automated method that can be 
applied on a proteomic scale to identify candidate proteins showing cell-cycle dependent variation 
of location.  Fluorescence microscopy, and especially automated, high-throughput microscopy, can 
provide images for tens of thousands of fluorescently-tagged proteins for this purpose.  Previous 
work on analysis of cell cycle variation has traditionally relied on obtaining time-series images over 
an entire cell cycle; these methods are not applicable to the single time point images that are much 
easier to obtain on a large scale.  Hence a method that can infer cell cycle-dependence of proteins 
from asynchronous, static cell images would be preferable. In this work, we demonstrate such a 
method that can associate protein pattern variation in static images with cell cycle progression. We 
additionally show that a one-dimensional parameterization of cell cycle progression and protein 
feature pattern is sufficient to infer association between localization and cell cycle. 

INTRODUCTION 
The study of subcellular location via imaging is a critical aspect of proteomics that complements 
studies of sequence, structure, binding interactions, and biochemical activity. Automated 
determination of protein subcellular localization from microscope images has not only been 
demonstrated to be feasible for the major organelles [61] but can outperform visual analysis [10].  
Protein location varies with numerous factors including cell type, microenvironment, treatment 
conditions and time. Temporal effects can occur in many places and at many scales, from the 
millisecond to the day, but one of the most obvious and important temporal processes is the cell 
cycle. Many proteins interact in orchestrating growth, DNA replication, and cellular division. 

The problem of identifying cell-cycle dependent variation in protein localization has been a 
significant focus of previous work [2, 62, 63]. As aberrations in protein localization are invariably 
related to reprogrammed cell behavior, determining changes in trafficking of proteins through 
various organelles during the cell cycle can aid understanding of the dynamics of disease and 
development. An automated method to identify those proteins that might potentially exhibit a cell-
cycle dependent localization would be a very useful prospective tool for detailed further 
investigation of their role in various biological processes. 

Previous work examining the cell cycle dependence of protein location usually (1) discretizes the 
cell cycle into a set of phases (e.g., G0/G1, S, G2, M) or (2) artificially synchronizes the cells under 

                                                             
2 This chapter was published as T. E. Buck, A. Rao, L. P. Coelho et al., "Cell cycle dependence of protein 
subcellular location inferred from static, asynchronous images." pp. 1016-9 
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examination; both methods attempt thereby to boost correlative effects observed. Sigal et al. 2006 
[2] addressed these limitations by capturing time-lapse images and synchronizing them in silico 
(i.e., aligning profiles of nuclear intensity of different cells across time). However, time-lapse images 
can be more difficult to obtain than single images of cells because many microscopes do not 
maintain a viable environment for the cells they image (e.g., cells die after some time, and even 
while alive they are not under constant conditions). Furthermore, repeated excitation of dyes for 
fluorescence imaging causes photobleaching, reducing signal and leading to toxic chemical changes 
(phototoxicity), further perturbing cells. Lower exposure times reduce these effects but attenuate 
signal. Time-series images have another limitation: imaging more cells means the microscope takes 
longer between frames to revisit a particular cell, potentially compromising cell tracking 
algorithms. A method using unsynchronized cells with single-image capture would have the 
advantages of avoiding repeated exposure to fluorescence excitation (permitting higher-energy 
exposure to obtain better signal) and fewer environment viability requirements. 

Thus, when imaging proteins in an asynchronous population of cells at a single time point, there is a 
need to resolve which proteins show a dependence on the cell cycle and which proteins are static 
across the cell cycle. This paper proposes a method to infer the association between protein 
location patterns in unsynchronized static cell images and cell cycle progression in an unsupervised 
manner, i.e., without explicit knowledge of the cell cycle stage for a particular cell. 

In this work, we consider images of cells, specifically of their nuclei and of the distribution of a 
particular tagged protein. Using certain statistics computed on the nuclear image ("nuclear 
features") as a representation of cell-cycle phase, we infer a one-dimensional statistical manifold 
(parameterized by γ1) for progression in cell cycle. Observing its relationship with features 
extracted from protein images allows us to identify those protein image features that correlate 
strongly with cell-cycle progression. The subspace of all such protein features uniquely identifies 
another statistical manifold along which proteins may show a variation in subcellular localization 
(which may or may not be associated with the cell cycle). We further demonstrate that variation in 
the protein distribution due to the cell cycle can be detected and used to rank proteins by how 
much they vary in this manner. We conclude that this is a feasible task and discuss possible 
improvements. 

METHODS 

IMAGE DATASET 
We used two datasets for our experiments.  The first is a single time-series of images of HeLa cells 
expressing RFP-labeled histone H2B as described previously [46]. Images were taken every half 
hour with a fixed exposure time, and environmental conditions were kept stable at 37°C and 5% 
CO2.  This dataset was used for validating our proposed method.  The second data set consists of 
single exposures of unsynchronized NIH 3T3 cells expressing fluorescently-tagged proteins, 
collected as described previously [64]. Our RandTag project generates and images thousands of 
clones that are CD-tagged to express different GFP fusion proteins under native regulation [65]. We 
used images for sixteen of these clones in this paper.  For each image, DNA was labeled using the 
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viable dye Hoechst 33342. Images were captured using an IC-100 microscope with a 40X objective 
and a resolution of 0.1613 µm/pixel. 

IMAGE PROCESSING 
Time-series images were processed as follows. Segmentation and tracking of nuclei were 
performed as in [46]. Background was removed by subtracting the modal pixel value of all pixels 
below the mean pixel value for the image.  Images were divided by the 95th percentile of pixel 
intensities from inside nuclear regions, in order to normalize nuclei across images. As fewer than 
5% of the nuclei and thus nuclear pixels at any given time had condensed their DNA for mitosis, the 
95th percentile should be near the maximum intensity of interphase nuclei. Further computation 
only included images of nuclei if the rest of each nucleus' cell cycle was also available (mother cell's 
cytokinesis to next cytokinesis). 

Static images were filtered for meaningful signal as follows.  Background was removed from both 
the nuclear and protein channels by the same method as above. An image was removed if its 
maximum intensity (after background subtraction) was less than 30 in both the nuclear and protein 
channels (manually selected). Clones for which no images passed this threshold were ignored. 

Static images were segmented into individual cell regions as follows. First, the unprocessed nuclear 
channels were normalized to [0, 1]. A seeded watershed algorithm was used to segment the image 
into separate nuclei. Regional maxima of the h-maxima transform, which suppresses maxima 
smaller than some threshold, were used as seeds (using a manually selected threshold of seven 
times the first quartile of the Gaussian-filtered channel). The watershed surface was the difference 
of Gaussian-filtered versions of the channel (with standard deviations of the minimum nuclear 
diameter and half the minimum, set to 5 μm; the former was also morphologically dilated by a disk 
half the minimum diameter to adjust the edges). A background seed consisting of the border pixels 
of the image as well as any seeds touching the border was used to ensure compact segmentation of 
the nuclei. Seeds were then imposed as minima in the watershed surface by morphological 
reconstruction. Matlab's Image Processing Toolbox was used for most of these operations. 

Cellular regions were similarly decided by seeded watershed. Seeds were the nuclei found as above 
(including the same background seed to prevent inclusion of protein from border cells into the 
regions of cells of interest). The watershed surface was a Gaussian-filtered version of the 
unprocessed protein channel (standard deviation of a tenth of the maximum nuclear diameter, 25 
µm), also with minima imposed by the seeds. 

FEATURE EXTRACTION 
Subcellular Location Features: We have previously described several sets of features for describing 
protein patterns in fluorescence micrographs and demonstrated that these provide high accuracy 
for various purposes [61]. We therefore began with the SLF7 set [10], which consists of 84 features 
including edge, morphological, Haralick texture, and DNA correlation features.  To this we added 
two additional feature sets.  The first was a set of 30 wavelet features consisting of the root sum of 
squares of the detail channels for a 10-level Daubechie-4 wavelet decomposition. The second (to 
further enhance characterization of textures at different scales), was a set of 13 Haralick texture 
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features for the protein images spatially downsampled by factors of 2, 4 and 8 (giving 39 features). 
Thus, protein patterns were described by a total of 153 features. 

Nuclear features: After binarizing the DNA image to obtain nuclear shapes, we extracted features to 
represent nuclear appearance. Features include total, minimum, mean, standard deviation of, and 
maximum intensity, area, perimeter, long, short, and ratio of medial axes, and Haralick texture 
features. Haralick features were computed on the original nuclei and three lower resolutions 
obtained by downsampling by factors of two. Haralick features were averaged across horizontal, 
vertical, and diagonal directions after quantizing the images to eight gray levels. This resulted in a 
total of 62 features per nucleus. 

The intermediate goal is to obtain a scalar field parameterization of this 62-dimensional feature 
space so that we could study the relationship between cell-cycle stage and its natural parametric 
progression. As will become clear below, such a parameterization permits the exploration of a 
possible association between each protein-pattern variation and cell-cycle stage. Isomap manifold 
embedding is performed for dimension reduction from the feature space (62-D) to a scalar field 
(γ1); this approximately preserves the geometry of the feature space and allows γ1 to act as a 
surrogate for cell cycle phase. A traversal along this scalar field correlates with a corresponding 
variation in intensity or nuclear area by construction. 

MANIFOLD EMBEDDING 
 The manifold embedding problem is defined as follows: Given data in a high dimensional space 
(possibly generated from a low dimensional manifold), attempt to recover the underlying low-
dimensional structure of data embedded in the high-dimensional space. Isomap [66] is a technique 
that is used to model the intrinsic geometry of a high-dimensional space using only distances 
between all pairs of data points. It has three main steps. 

First, a nearest-neighbor graph is constructed (we chose to use local determination of 
dimensionality and tangent space for this construction [67]). Each edge is assigned the weight of 
the Euclidean distance between its two points. Second, a pairwise geodesic distance matrix is 
formed from the weight of the shortest path between each pair of vertices. Third, multidimensional 
scaling applied on the geodesic distance matrix finds the final embedding at a specified 
dimensionality. Isomap's outputs, the embedding coordinates for the input data points, are 
returned in order of greatest variance explained, and progressively lower dimensional manifolds 
omit more of these later coordinates (that is, the target dimensionality of the manifold does not 
affect the values of the embedding coordinates). 

Manifold coordinates for data points not used to compute the manifold are estimated using a 
modified version of Isomap's coordinate determination method (multidimensional scaling [68]). 

For time-series data, the manifold was built using half of the training data as input to Isomap, half of 
which served as landmarks (using a version of Isomap that saves memory and computation time by 
only preserving distances of all data points to the set of landmarks).  
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For static images, the 62 nuclear features were given as input to Isomap. The first dimension of the 
resulting embedding coordinates was taken as a one dimensional manifold and termed the cell 
cycle parameter. 

REGRESSION 
The relationship between protein features and γ1 was modeled using stepwise polynomial 
regression. Each protein feature and its powers from two to eight became candidate predictors for 
γ1 to model possible nonlinear relationships. Stepwise regression was used to select a subset of the 
candidate predictors in order to minimize the number of predictors not contributing improvements 
to the model. The method of stepwise regression is an iterative heuristic procedure to select the 
best predictors of the dependent variable that, for each iteration, adds a feature that improves 
prediction compared with current features, removes one that does not decrease prediction by being 
eliminated, or exits when neither happens. The criteria of addition or rejection are F-tests below or 
above specified threshold, respectively. 

Stepwise regression was also used to model and check how well the manifold coordinates found on 
the time-series data correlate with actual time. Time was defined as the number of frames since an 
individual cell's cytokinesis from its sister cell divided by the total number of frames before the cell 
divided. 

RESULTS 

TIME-SERIES EVALUATION OF THE CELL CYCLE PARAMETER  
We began by determining whether a cell cycle parameter learned from nuclear features could 
adequately predict the actual time of each frame in a time-series image.  Figure 2. shows the 
correlation between the nuclear manifold learned from time-series data and actual cell cycle time. 
Cell cycle time clearly progresses in a non-random fashion across the manifold. Using stepwise 
polynomial regression to regress cell cycle time against the two coordinates, a testing adjusted R-
square of 0.70 is achieved (raw nuclear features as predictors produce an R-square of 0.74), 
indicating that the manifold embedding quite reliably approximates the original geometry of the 
actual hyperspace, including changes according to time. 

PREDICTING THE CELL CYCLE PARAMETER FOR STATIC PROTEIN IMAGES 
 In order to predict the cell cycle parameter for images of randomly-tagged cell clones, we applied 
the above methods to 16 clones in two combinations: The protein distribution was represented as 
either the original 153 SLF features or those features reduced by Isomap to a 9-dimensional 
manifold. As a test of how well variation in protein pattern was correlated with our estimate cell 
cycle positions, we  determined how well the protein features could be used as regression 
predictors of the cell cycle parameter. Statistics are averages computed by cross-validation. The 
level of correlation was measured by the testing adjusted R-square. 
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Figure 2.1.  Relationship between manifold learned on nuclear features of the time-series data and actual cell 
cycle time. The horizontal axis is first manifold coordinate, and the vertical axis is second. Color indicates 
fractional time since cytokinesis as shown in the color bar. 

In Figure 2.2, the two tests described above are grouped by protein.  The original feature set tended 
to better predict the cell cycle parameter, while lower variance in estimation of the testing adjusted 
R-square was observed after Isomap-based dimensionality reduction. Images for various cells 
sorted by cell cycle parameter for one of these proteins (Trim24) are shown in Figure 2.3. 

 

Figure 2.2.  Cell cycle parameter predictions are grouped by tagged clone (horizontal axis, each pair of blue and 
red bars). Error bars are standard deviation. Raw protein features (left bar in pairs) predict cell cycle parameter 
γ1 with a greater testing adjusted R-square (vertical axis) than the first 9 dimensions of an Isomap embedding of 
the same protein features (right bar).  However, the Isomap embedding produces reduced-variance estimates 
across cross-validation folds. 
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Figure 2.3.  Images of Trim24 ordered by γ1. γ1 progresses from left to right, then top to bottom. Trim24 is the 
second protein from the left in Figure 2.2. 

CONCLUSION 
 We have presented a system for inferring correlation of subcellular protein distribution with cell 
cycle time from unsynchronized images of cells using a one dimensional manifold computed on 
simple nuclear image features. The cell cycle parameter (γ1) can be tested for ability to be predicted 
on a per-protein basis from protein image features. This relationship provides a way to screen 
proteins for dependence of their localization on the cell cycle using only static, asynchronous 
images. Future work will include modifying the cell cycle learning method to incorporate prior 
knowledge from time-series data, examination of generalizability to other cell lines and nuclear 
tagging, and comparison of results to curated information regarding cell cycle variation in protein 
localization. 

ACKNOWLEDGMENT 
The authors thank Drs. Xiaobo Zhou and Stephen Wong for providing time-series images, Dr. Elvira 
Osuna Highley for helpful discussions, Jimmy Xu, Bur Chu, and Charlotte Chou for image acquisition, 
and Armaghan Naik for critical reading of the manuscript. 

 





 

  15 

CHAPTER 3: RANDOM-WALK BASED SIMULATION OF CELL AND 

NUCLEAR SHAPE CHANGES3 

ABSTRACT 
Precise spatial modeling and simulation of subcellular protein location requires models of the 
shapes of the plasma membrane and organelles. Previous work by our groups created parametric 
representations of nuclear and plasma membrane shapes learned from data using star polygons 
and spline or principal component approximations thereof [8, 21], with later work [17, 69] 
addressing more general nonparametric models of nuclear shapes using nonrigid image 
registration method-based shape space construction [53]. Here, we first extend LDDMM for 
application to larger, 3D cellular shapes. We then extend the shape space model to represent the 
joint distribution of multiple shapes, in this case nuclear and cellular shape. These advances are 
then combined to simulate the nuclear and plasma membrane shapes of HeLa cells according to a 
simplified random walk transition model. In addition, we propose two improvements: reducing the 
computational complexity of shape space construction from quadratic to linear in the number of 
shapes given the assumption that the constructed shape space will be of low Euclidean dimension; 
and a nonparametric kernel density estimation-based transition model for modeling the temporal 
evolution of shapes in a shape space that can be trained from time series data. 

INTRODUCTION 
In order to model the distribution of protein within a cell, there must be an environment within 
which the protein exists. It is well known that proteins and reaction networks within the cell sense, 
influence, and are influenced by cellular shape [4, 44, 70]. Therefore modeling and simulation of 
subcellular reaction networks should be based on realistic rather than simplified membrane 
geometries and protein distributions, and both of these can be sampled from models built from 
image data. Samples of structural shapes and protein distributions can be obtained through 
microscopy, which can then be analyzed computationally to measure the parameters of models of 
these structures. Spatial models of protein distributions should, in fact, be dependent on realistic 
geometric models, so modeling the shape of the cell, the organelles, and even structures formed by 
other proteins like microtubules and the actin network is a prerequisite to accurate and precise 
protein distribution modeling. 

Initial parametric [8, 21] and nonparametric [17, 69] models were introduced by our group and the 
Rhode group to learn generative statistical models of cellular and nuclear shapes along with protein 
distribution in relation to the shapes. The parametric models were constructed to represent the 2D 
[8] and 3D [21] nuclear and plasma membrane shapes. The reconstruction error for shapes used to 
build the model was quite low, and the models for protein distributions based on these shape 
models performed almost as well as discriminative features in classifying proteins according to 
subcellular location pattern. However, these models were incapable of representing shapes that are 
not star polygons (or stacks of star polygons in 3D) and are based on the simplifying assumption 

                                                             
3 This represents joint work with Gustavo K. Rohde and Robert F. Murphy 
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that a Gaussian distribution in the parameter space is sufficient to describe the probability 
distribution of the set of observed shapes. 

The nonparametric models were formulated to reduce the assumptions about shapes necessary to 
build the models and increase the range of representable shapes. The model is nonparametric in 
two ways. First, shapes are not simplified by parametric representation and remain as images, 
where a value of zero or black means a pixel is not inside the shape in the value of one or white 
means a pixel is inside the shape. Second, the model of shape variation grows with the number of 
observed shapes, becoming more detailed rather than being represented by a fixed number of 
parameters. Images are not a good Euclidean representation of shape. One does not expect that 
linearly interpolating between two images of shapes represented as vectors will produce a vector 
representing another valid shape. Rather, the result will be an image of one shape transparently 
overlaid onto the other. One could not therefore straightforwardly construct a parametric model of 
shape variation with the shape image representation, e.g., by PCA applied to these vectors. Models 
can be constructed even if one can only measure the distance between two images, however. 

Methods exist to interpolate between shapes when represented as images, compute distances 
between them, and then construct spaces in which more similar shapes are nearer and less similar 
ones farther, bypassing direct parameterization of the shapes. Models constructed in [17, 69] used 
nonrigid image registration and interpolation methods from the large deformation diffeomorphic 
metric mapping (LDDMM) framework [53] to compute distances between images. These methods 
iteratively deform one image until its appearance matches the other image's appearance. The 
LDDMM image registration process minimizes an energy to find a velocity field 𝑣�, which define 
paths along which the space of one image (the moving image) can be moved to match that image to 
the other (the fixed image): 

𝑣� = argmin
𝑣:�̇�𝑡=𝑣𝑡(𝜙𝑡)

�� ‖𝑣𝑡‖𝑉2 𝑑𝑡
1

0
+

1
𝜎2 �

𝐼0 ∘ 𝜙1−1 − 𝐼1�
2� 

(1) 

 
The two images 𝐼0 and 𝐼1 are the moving and fixed images, respectively, defined on the domain 
Ω ⊆ ℝ𝑛, where 𝑛 = 2 or 𝑛 = 3, as 𝐼0, 𝐼1:Ω → ℝ𝑑, where 𝑑 = 1 for scalar images. ‖∙‖𝑉 = ‖𝐿 ∙‖, where 
𝐿 is a differential operator and ‖∙‖ is the 2-norm, i.e., the root sum of squares (or square integral in 
a continuous domain). 𝐿 = (−𝛼∆ + 𝛾)𝛽𝐼𝑑 with parameters 𝛼, 𝛾, and 𝛽 where ∆ is the Laplacian 
operator and 𝐼𝑑 is the identity operator. We use 𝛽 = 2.  𝜙𝑡 = ∫ 𝑣𝑡(𝜙𝑡)𝑑𝑡

𝑡
0 = ∫ �̇�𝑡 𝑑𝑡

𝑡
0 , 𝑡 ∈ [0,1],𝜙𝑡 ∈

𝒢,𝒢 = Diff(Ω), where Diff(Ω) is the set of continuously differentiable functions with continuously 
differentiable inverses, is the partial deformation or path toward the deformation 𝜙1 that matches 
𝐼0 to 𝐼1. Solving for the optimal registration can be implemented in one of several ways. Locally 
optimal velocity fields for registering two images must satisfy: 

𝐿†𝐿𝑣𝑡 + 𝑏𝑡 = 0 (2) 

 
𝑏𝑡 is defined as: 
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𝑏𝑡(𝑥) = −𝜁 �𝐽𝑡0(𝑥)− 𝐽𝑡1(𝑥)�∇𝐽𝑡0(𝑥) (3) 

 
𝐽𝑡0 =  𝐼0 ∘ 𝜙𝑡,0, 𝐽11 =  𝐼1, 𝜁 is a constant, and 𝑥 is a position in the image 𝑥 ∈ Ω. (3) can be rearranged 
to solve directly for the velocities: 

𝑣𝑡 = −�𝐿†𝐿�−1𝑏𝑡 (4) 

 
𝐿† is the adjoint of 𝐿. 

A distance metric can be defined based on a deformation matching the two images that is the 
infimum of the integral of ‖𝑣𝑡‖𝑉 across all possible maps registering 𝐼0 to 𝐼1: 

𝜌(𝐼0, 𝐼1) = inf �� ‖𝑣𝑡‖𝑉 𝑑𝑡
1

0
�𝐼1 = 𝐼0 ∘ 𝜙1−1,𝜙1 ∈ 𝒢� 

(5) 

 
An approximation to that distance can be computed by numerically integrating ‖𝑣𝑡‖𝑉 using the 𝑣 
produced during numerical integration of (4) (the Christensen-Rabbit-Miller algorithm [53, 71]), 
which is also an approximation to the optimal deformation that determines the distance. See 
Algorithm 3.1 for details of a simplified version of the Christensen-Rabbit-Miller algorithm that 
does not include step size control. 
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Algorithm 3.1: Numerical implementation of shape interpolation and distance measurement using the 
Christensen-Rabbit-Miller approximation to LDDMM [5] without step size control. The function 𝐢𝐧𝐭𝐞𝐫𝐩(𝒗,𝒖) 
samples 𝒗 at the coordinates in 𝒖 by trilinear interpolation (cf. Matlab’s “interp3”). The function 𝐅𝐅𝐓(𝒗) 
computes the fast Fourier transform of 𝒗 on the discrete domain of 𝑰𝟎, while 𝐈𝐅𝐅𝐓(𝑽) computes the inverse 
transform on 𝑽. 
 
Function 𝑠𝑡𝑒𝑝(𝐼0𝑡 , 𝐼1𝑡,𝛿,𝛼, 𝛾) 

Perform a single step in a numerical integration of (1). 
𝐼0𝑡 is 𝐼0 after the integration has progressed to time 𝑡, and 𝐼1𝑡 is analogous. 
𝛿 is the time step. 
𝛼 and 𝛾 are parameters of 𝐿. 
𝑏𝑐(𝑤) ← �𝐼0𝑡(𝑤)− 𝐼1𝑡(𝑤)� ∙ ∇𝐼0𝑡(𝑤),𝑤 ∈ {1, … ,𝑃}3, 𝑐 ∈ {𝑥,𝑦, 𝑧} 
𝑣𝛿 ← − IFFT(FFT(𝐿)−2 ∙ FFT(𝑏)) 
𝑣𝛿 ← 𝑣𝛿 − 𝑣𝛿(〈1,1,1〉) 
𝑣𝛿(𝑤) ← 0,𝑤 ∈ {1,𝑃} × {1, … ,𝑃} × {1, … ,𝑃} 
𝑣𝛿(𝑤) ← 0,𝑤 ∈ {1, … ,𝑃} × {1,𝑃} × {1, … ,𝑃} 
𝑣𝛿(𝑤) ← 0,𝑤 ∈ {1, … ,𝑃} × {1, … ,𝑃} × {1,𝑃} 
𝑣𝛿(𝑤) ← 𝛿 ∙ 𝑣𝛿(𝑤) 

𝜌𝛿 ← 𝛿��
6𝛼
𝑃3

� �−∆𝑣𝛿(𝑤) + 𝛾 ∙ 𝑣𝛿(𝑤)�2
𝑤∈{1,…,𝑃}3𝑐∈{𝑥,𝑦,𝑧}

 

return(𝑣𝛿 ,𝜌𝛿) 
 
Function 𝐿𝐷𝐷𝑀𝑀(𝐼0, 𝐼1,𝛿,𝛼, 𝛾, 𝜖) 

Run an Euler integration of (1) as an approximation to  the shortest deformation path 
connecting 𝐼0 and 𝐼1. 
𝑡 ← 0 
𝐼00 ← 𝐼0, 𝐼10 ← 𝐼1 
𝑣0,0 ← 𝐼𝑑, 𝑣1,0 ← 𝐼𝑑 
𝜌0,0 ← 0 
𝜌1,0 ← 0 
While ∑ |𝐼0𝑡(𝑤) − 𝐼1𝑡(𝑤)|𝑤∈{1,…,𝑃}3 > 𝜖 

𝑢0,𝛿 ,𝜎0,𝛿 ← 𝑠𝑡𝑒𝑝(𝐼0𝑡, 𝐼1𝑡,𝛿,𝛼, 𝛾) 
𝑢1,𝛿 ,𝜎1,𝛿 ← 𝑠𝑡𝑒𝑝(𝐼1𝑡, 𝐼0𝑡 ,𝛿,𝛼, 𝛾) 
𝑣0,𝑡+𝛿 ← interp�𝑣0,𝑡, 𝐼𝑑 + 𝑢0,𝛿� 
𝑣1,𝑡+𝛿 ← interp�𝑣1,𝑡, 𝐼𝑑 + 𝑢1,𝛿� 
𝐼0𝑡+𝛿 ← interp�𝐼0,𝑣0,𝑡+𝛿� 
𝐼1𝑡+𝛿 ← interp�𝐼1,𝑣1,𝑡+𝛿� 
𝜌0,𝑡+𝛿 ← 𝜌0,𝑡 + 𝜎0,𝛿 
𝜌1,𝑡+𝛿 ← 𝜌1,𝑡 + 𝜎1,𝛿 
𝑡 ← 𝑡 + 𝛿 

return�𝑣0,𝑡,𝑣1,𝑡,𝜌0,𝜌1, 𝑡� 
 
Function 𝐿𝐷𝐷𝑀𝑀𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐼0, 𝐼1,𝛿,𝛼, 𝛾, 𝜖) 

Compute the approximate distance between 𝐼0 and 𝐼1. This is an upper bound of 𝜌(𝐼0, 𝐼1) [5]. 
𝑣0,𝑣1,𝜌0,𝜌1, 𝑡 ← 𝐿𝐷𝐷𝑀𝑀(𝐼0, 𝐼1,𝛿,𝛼, 𝛾, 𝜖) 
return�𝜌0,𝑡 + 𝜌1,𝑡� 
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Algorithm 3.1: Numerical implementation of shape interpolation and distance measurement using the 
Christensen-Rabbit-Miller approximation to LDDMM [5] without step size control. The function 𝐢𝐧𝐭𝐞𝐫𝐩(𝒗,𝒖) 
samples 𝒗 at the coordinates in 𝒖 by trilinear interpolation (cf. Matlab’s “interp3”). The function 𝐅𝐅𝐓(𝒗) 
computes the fast Fourier transform of 𝒗 on the discrete domain of 𝑰𝟎, while 𝐈𝐅𝐅𝐓(𝑽) computes the inverse 
transform on 𝑽. 
 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿𝐷𝐷𝑀𝑀𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒(𝐼0, 𝐼1,𝛿,𝛼, 𝛾, 𝜖, 𝜅) 

Approximate a shape along the shortest deformation path between 𝐼0 and 𝐼1. 
𝜅 is the ratio of the distance between the desired shape and 𝐼0 and the distance between 𝐼0 
and 𝐼1. 
𝑣0,𝑣1,𝜌0,𝜌1, 𝑡 ← 𝐿𝐷𝐷𝑀𝑀(𝐼0, 𝐼1,𝛿,𝛼, 𝛾, 𝜖) 
If 𝜅 ≤ 𝜌0,𝑡

𝜌0,𝑡+𝜌1,𝑡
 

𝑡𝜅 ← 𝜌0−1 �𝜅 ∙ �𝜌0,𝑡 + 𝜌1,𝑡�� 
𝐼0
𝑡𝜅 ← interp�𝐼0,𝑣0,𝑡𝜅� 

return�𝐼0
𝑡𝜅� 

 
Else 

𝑡𝜅 ← 𝜌1−1 �(1 − 𝜅) ∙ �𝜌0,𝑡 + 𝜌1,𝑡�� 
𝐼1
𝑡𝜅 ← interp�𝐼1,𝑣1,𝑡𝜅� 

return�𝐼1
𝑡𝜅� 

 
The integration can be stopped by measuring the similarity between the deformed moving image 
and the fixed image in some way, e.g., a low difference in the mean absolute intensity difference 
between the registered image and the fixed image. This can be used to construct a parameter space, 
or a shape space, for the major modes of variation in these shapes. Once can obtain the shape space 
using  

Shapes were represented as binary images, where an intensity of one indicates a pixel is inside the 
shape and zero outside. Image interpolation would thus produce other valid binary images and so 
shapes (unlike linear interpolation between images, which would fade between the shapes). By 
using such shape images, training shapes could remain at high resolution and free from 
simplification due to parameterization (parameters are, after all, derived from shape images), so 
the models were less data set-specific. 

Prior work by the Murphy and Rhode groups created generative models of two-dimensional 
nuclear shape using LDDMM [17, 69]. They measured the global modes of variation among shapes 
by constructing a shape space. A distance matrix can be constructed for a set of shapes by 
computing the approximate distance between every pair of shapes (see cartoon in Figure 3.2). 
Given a set of shapes and their distance matrix, they produced a set of points, one per shape, of 
some chosen low dimensionality where closer points are more similar shapes and further points 
more dissimilar. The positions of the points were chosen using multidimensional scaling (MDS), 
which chooses positions using the top eigenvectors (the ones associated with the largest 
eigenvalues) of the doubly-centered squared distance matrix 𝐵 = �𝑑𝑖𝑗2 −

1
𝑚
∑ 𝑑𝑟𝑗2𝑚
𝑟=1 − 1

𝑚
∑ 𝑑𝑖𝑠2𝑚
𝑠=1 +

1
𝑚2 ∑ ∑ 𝑑𝑟𝑠2𝑚

𝑠=1
𝑚
𝑟=1 �

𝑚×𝑚
, where 𝑑𝑖𝑗  is the distance between shapes 𝑖 and 𝑗 and 𝑚 is the number of 
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shapes. Like with PCA, the coordinates returned by MDS are in decreasing order of variance 
explained by each coordinate, although the variance explained is in the distance matrix rather than 
the original coordinates of the points. Shape spaces can help distinguish between populations of 
shapes by examining the co-location and trends of shapes depending on their positions in the space. 

In addition, one can construct a generative statistical model of shape by fitting a probability density 
to the low-dimensional space space coordinates. Sampling from this distribution and using a 
suitable set of interpolations [69] enables synthesis of novel shapes that resemble a population of 
the shapes used to train the model. The same authors used kernel density estimation (KDE) to 
estimate the probability of observing any shape in the shape space, including the incident number 
of shapes that had not actually been observed. Using a Delaunay tessellation of the given points, a 
shape for a given point in the shape space could be synthesized by interpolating between the 
vertices of the Delaunay cell containing the given point [69]. 

These nonparametric models were constructed to represent single 2D shapes. Here, we will 
generalize the method to represent multiple 3D shapes (with a focus on simultaneously encoding 
the nuclear and cellular shapes for each cell) with high aspect ratios and to nonparametrically 
encode the joint distribution. This will involve a generalization of the simplified Christensen-
Rabbit-Miller algorithm used for the previous studies beyond its straightforward extension to 3D. 
Furthermore, we will build a hypothetical model of shape dynamics based on a random walk 
through the shape space and simulate those dynamics to produce synthetic videos of plausible 
cellular shapes. Finally, we present a nonparametric model of dynamics that can be learned from 
time-series shape data. 

METHODS 

IMAGE DATA 
We used 92 3D images of HeLa cells as described in [72], specifically the propidium iodide (DNA) 
and total protein channels. These images have a voxel size of 0.049 μm in the horizontal plane and 
of 0.203 μm along the optical axis. 

IMAGE PREPROCESSING, SEGMENTATION, AND ALIGNMENT 
In order to extract meaningful shapes from image data, the images should first be preprocessed to 
ease the process of segmentation; the segmentation method then estimates the shape of the object 
in the preprocessed image; and finally the shape must be aligned to other shapes in some respects 
so that they are more comparable. 

The images were preprocessed and segmented largely as in [16] according to the following steps: 

1. Images were downsampled to a quarter of the size in the horizontal plane so that voxels 
were approximately cubical (0.196 μm horizontally, 0.203 μm vertically [21]). 

2. The downsampled images were deconvolved with Matlab's deconvblind function, where the 
initial guess given for the point spread function was a one computed for the microscope and 
objective used. 
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3. The horizontal slices of each image containing the tops and bottoms of the cell and nucleus 
were determined. For previous work using these data [14, 73], these slices were identified 
manually for the HeLa cells that were specifically fluorescently labeled for tubulin. To apply 
these selections to the other HeLa cells, we computed the cumulative distribution function 
(CDF) along the optical axis for the slices in each DNA and total protein image with manual 
selections, identified the CDF values for the manually selected top and bottom slices in each 
of those images, computed the mean CDF values for top and bottom slices, and then 
automatically identified top and bottom slices for all images (including, for consistency, 
ones that had been manually labeled) using these mean values. 

4. Each horizontal slice of each image between the top and bottom of the nucleus (DNA image) 
or the cell (total protein image) was segmented individually using an active contour method 
[74]. The largest object in the output from the active contour method was considered the 
segmentation for that image (objects were defined as sets of 26-connected voxels). 

All cells’ cellular and nuclear shape images were then aligned to each other in a manner adapted 
from [17]: 

1. The bottoms of the cellular shapes were all more or less flattened against the glass slide, so 
the cells were vertically translated such that their bottoms were all in the same slice. The 
bottom was defined as the first slice of the shape image where the cellular shape’s area was 
at least 50% of the area of the maximum intensity projection into the horizontal plane of the 
cellular shape. 

2. Further alignment steps were done in two dimensions by finding correspondences between 
the mean intensity projections of the shape images, i.e., for a shape image, a 2D image where 
a pixel had a value of the mean of that pixel across all slices of the shape image. Moments 

𝜇𝑖𝑗′ = ∬ 𝑑𝑥 𝑑𝑦 𝑥𝑖𝑦𝑗𝑓(𝑥,𝑦)Ω , where Ω is the image domain and 𝑓(𝑥,𝑦) is the value of the 

image at 〈𝑥,𝑦〉, and central moments 𝜇𝑖𝑗 = ∬ 𝑑𝑥 𝑑𝑦 (𝑥 − 𝜇10′ )𝑖�𝑦 − 𝜇0𝑗′ �
𝑗𝑓(𝑥,𝑦)Ω , were used 

for each alignment step. 
3. The 2D images were translated to position the centroid in the center of the image. The 

centroid of each 2D image was computed as 〈𝜇10′ ,𝜇0𝑗′ 〉. 
4. The 2D images were rotated to point the major axis of each image in a constant direction. 

The major axis’ angle was computed as 1
2

atan2(2 ∙ 𝜇11,𝜇20 − 𝜇02). 
5. The 2D images were flipped along either axis to have nonpositive skew along both axes. The 

skew was computed as 〈𝜇30,𝜇03〉. 
6. The XY translation, rotation, and flipping was applied to the original 3D cellular and nuclear 

shape images. 
7. Finally, the aligned 3D shape images were downsampled in the horizontal plane for 

computational convenience (specifically, to speed distance computations). Downsampling 
was to half the size for the 3D HeLa model presented here. 

Examples of shapes before and after alignment are provided in Figure 3.. 
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Figure 3.1: The shapes derived from four images of individual cells before (top) and after (bottom) alignment. 
Black is background, grey inside the plasma membrane, and white inside the nucleus. 
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Figure 3.2: Cartoon illustration of pairwise comparison of a set of shapes to construct a distance matrix. This is 
distance matrix is required to compute the shape space coordinates of shapes using MDS. The choice of distance 
metric is not trivial or obvious in the case of images (or any other representation) of shapes. 

 

JOINT REPRESENTATION OF 3D CELLULAR AND NUCLEAR SHAPES 
Cells are three-dimensional, so realistic modeling of their shapes should represent three-
dimensional variation in the shapes. We therefore extended the shape space model to three 
dimensions by using volumetric images. In order to model the joint distribution of cellular and 
nuclear shape, we used ternary images where an intensity of zero indicated background, one inside 
the plasma membrane but outside the nucleus, and two inside the nucleus. This eliminates the need 
to explicitly model the conditional dependency of one shape on the other in contrast with the 
previous parametric models [8, 21]. Each cell’s ternary shape image was formed by adding the 
cellular and nuclear shapes for that cell. This prevented segmentation errors from producing a 
nucleus that protruded significantly from its plasma membrane by limiting intensities of two to 
being inside the cellular shape. 

LDDMM FOR SHAPE IMAGES WITH HIGH ASPECT RATIOS 
The method used in the 2D nuclear shape models was a numerical integration of (4) defined on a 
discrete image domain that iteratively deforms pixels along the gradient of the moving image times 
the difference between the moving and fixed images (a simplified version of the Christensen-
Rabbit-Miller algorithm, itself an approximation to LDDMM). This can be intuitively understood for 
binary shape images as pulling edges of the moving shape inwards where they are outside the fixed 
shape and outward when they are inside. The integration is greedy in the sense that numerical 
instead of analytical integration is used without correction by a shooting method, so the method 
will find deformations and distances that are close to, but not necessarily, optimal (see Figure 10 in 
[53]).  
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Before application to the moving image, the deformation is low-pass filtered. In the frequency 

domain of discrete 3D images,  �𝐿†𝐿�−1  becomes �𝛾 + 2𝛼∑ 1−cos2𝜋∆𝑥𝑖𝑘𝑖
∆𝑥𝑖

2
3
𝑖=1 �

−2
, where the 

summation is over the three image dimensions, ∆𝑥𝑖 (taken here to be 1) is the difference between 
the 𝑖th coordinates of adjacent pixels, 𝑘𝑖 ∈ �0, 1

𝑁
, 2
𝑁

, … ,𝑁/2−1
𝑁

,−1,−𝑁/2−1
𝑁

,−𝑁/2−2
𝑁

, … ,− 1
𝑁
� are the 

frequencies. For discrete images, �𝐿†𝐿�𝑏𝑡 is a discrete convolution of 𝑏𝑡 with the discrete spatial 

form of  �𝐿†𝐿�−1, the 1D version of which is shown in Figure 3.9 for images of varying size. 

Unfortunately, the filter �𝐿†𝐿�−1 is large enough (i.e., attenuates high frequencies well enough) to 
prevent proper deformation (in a reasonable number of iterations) of thin shapes like those of 
many cell types because flat, thin parts of the shapes will expand or contract vertically very slowly, 
and the sharp edges of these thin regions end up having low smoothed gradient magnitudes. We 
solved this by spatially scaling the filter and the resulting deformation so that each iteration moves 
pixels by a greater degree horizontally than it does vertically without resizing image data. 
Specifically, we resampled the discrete spatial form of  �𝐿†𝐿�−1 such that its horizontal radius was 
16 times its vertical radius. This results in the possibility of moving the top surface of a flat, thin 
shape below the bottom surface and vice versa, so we additionally limit step sizes to producing a 
maximal displacement per step, e.g., 0.5 voxels in the vertical direction but 2 voxels in the 
horizontal plane. Note that this latter modification is the part of the full Christensen-Rabbit-Miller 
algorithm missing in the original 2D model. An example of the problem and its solution when 
registering pairs of real cellular and nuclear shapes using these modifications is presented in Figure 
3.3. Interpolation using the same solution is demonstrated in Figure 3.4. 

 

Figure 3.3: Registration of  the 3D cellular and nuclear shapes of one HeLa cell onto those of another using the 
version of LDDMM presented here without and with step size control. The first row is the source cell being 
morphed, the second row is the target onto which the source is to be mapped, the third row is the result of 
morphing without the anisotropic kernel or the limit on deformation per step, and the fourth row is the result of 
morphing with both of these features enabled. Note that the shape in the third row is severely distorted due to 
large step sizes in the vertical direction. 
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Figure 3.4: Interpolation between the 3D cellular and nuclear shapes of two HeLa cells using the version of 
LDDMM presented here. Each row shows a single 3D image with the bottom slice in the leftmost column, the next 
slice up to its right, etc. The top and bottom rows are the true shapes, and the intermediate rows are interpolated 
images at a quarter, a half, and three quarters of the distance between the two shapes. LDDMM ran for 128 
iterations and terminated after the absolute error between the two images was reduced to 6% of the original 
error. 

 

NUMERICAL INTEGRATION IMPROVEMENTS 
The Christensen-Rabbit-Miller algorithm [53, 71], an approximation to LDDMM used in [69], is a 
straightforward and elegant registration method. It uses an Euler integrator, which can be used in 
many applications for fast and simply implementable solutions. However, for some differential 
equations, Euler integration is known for its susceptibility to oscillation when the values being 
integrated should instead converge. We initially attempted to construct a convergence criterion 
based on the distance metric rather than a measure of the absolute or squared error between the 
deformed images. The distance metric is integrated along with the other ODEs. We found that the 
distance metric did not converge completely; rather, it seemed to fall into a pattern of growing 
linearly after some number of iterations of slowing growth, and we found that this was due to 
oscillation. This oscillation can be inferred from the linear growth in the example in Figure 3.5 
where the two images are being interpolated and eventually show a positive linear trend in 
integrated distance rather than leveling off after many iterations. We did not expect convergence to 
occur soon: We computed the p-values of 𝑡 statistics of the coefficients of a quadratic fit to the latter 
portion of this plot, obtaining both an overwhelmingly linear fit and very small p-values (Figure 
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3.5). The oscillation can be seen explicitly at higher step sizes by observing that the two shapes’ 
boundaries trade places, e.g., as in Figure 3.6. 

We therefore extended the Christensen-Rabbit-Miller algorithm to use any explicit Runge-Kutta 
integration scheme. An example integration using a pair of integrators of orders 4 and 5 is shown in 
Figure 3.7 (the implementation used Matlab's ode45 function) to illustrate better convergence in 
distance computation when integration error is controlled by a Runge-Kutta integrator pair. The 
shape space models produced here use the Bogacki-Shampine order (2, 3) method [75], which 
controls error through an adaptive step size based on comparison of an order 2 and an order 3 
integration. For computational convenience, however, we take steps of the maximum size allowable 
by the maximal displacement per step limit, so this behavior is not apparent when comparing the 
Euler and Bogacki-Shampine integrators (Figure 3.8). 

 

Figure 3.5: Integrated LDDMM distance for the source and target images (the plots overlap) versus the Euler 
integrator’s iteration index as computed during interpolation with the simplified Christensen-Rabbit-Miller 
algorithm [53, 69, 71]. This integrator produces an oscillating deformation field (not visible here but in Figure 
3.6) due to its fixed step size and linearity assumption, resulting in long runs without convergence in the 
integrated LDDMM distance. This distance is the integral of ‖𝒗𝜹‖𝑽, which is strictly positive and so grows linearly 
(visible here as the linear portion of the source and target plots) due to the continuing deformation to the image. 
We can demonstrate the linearity of the latter portion of the plot by fitting a quadratic regression model to it. 
Regressing the source image's distances vs. iteration index at the last 25% of iterations (marked on the plot) 
produces a linear coefficient of 2.9e-04 with a t test p-value so low as to be returned as zero (using Matlab) and a 
quadratic coefficient of -2.7e-08 with a similar p-value. Using just the last 10% of iterations (not specifically 
marked in the plot) results in a linear coefficient of 3.6e-04 with p-value 2.8e-244 and the quadratic -4.5e-08 with 
p-value 2.3e-180. 

 

 



 

  27 

 

Figure 3.6: Oscillation in the simplified Christensen-Rabbit-Miller algorithm due to its Euler integrator with a 
fixed step size. The two shape images on the left, the source and the target images, are interpolated using an 
exaggerated step size of 0.25. The second panel shows the difference between the deformed source during 
interpolation iterations 10 and 11 while the fourth shows the difference between the same for iterations 9 and 
10. The third and fifth panels show analogous images for the target. The deformed source and target for iteration 
11 are shown in the rightmost two panels. The deformations for iterations 10 and 11 are essentially each other’s 
inverse, indicating oscillation. 
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Figure 3.7: Interpolation with the Christensen-Rabbit-Miller algorithm modified to use an order (4,5) Runge-
Kutta integrator (Matlab’s ode45) with error control and adaptive step size appears to achieve convergence in 
LDDMM distance. The two plots show the distances travelled by the source (red) and the target (green). Time is 
in terms of the differential equations being integrated, not compute time as in Figure 3.8, so the plots here are 
comparable to Figure 3.5 (where at each iteration the integration time advances by a constant step size). The 
right side of the plot suggests that distance integrated per unit time is reducing over time and is perhaps 
converging. 
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Figure 3.8: Interpolation between the two shapes in Figure 3.4 involves simultaneously registering the shapes to 
one another, and convergence of this process can be measured by the convergence in the absolute error between 
the two deformed images. Absolute error decreases more slowly per unit compute time with the improved 
method versus the Euler integrator-based method. However, the improved method achieves convergence in 
fewer iterations: After 38 iterations, the improved method has matched almost all voxels (89,600 voxels, initial 
error of about 3400 with up to a difference of two between corresponding voxels, and final error of below 200), 
while the Euler method takes 79 iterations. Both methods compute similar distances between the shapes, and as 
shown in the lower panels, the per-voxel absolute error between the two images is qualitatively and 
quantitatively similar. 
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APPLICATION TO LARGER IMAGES 
Larger images for this model mean more detailed representation of shapes and shape variation. 
LDDMM's low pass filter �𝐿†𝐿�−1 is the size of the image being deformed. Memory consumption and 
computation time grows quickly with image size as a result, limiting LDDMM’s useful application to 
high-resolution shape images. The base numerical implementation of the LDDMM algorithm 
presented in [53] assumes that images are in a periodic domain, i.e., that pixels on the left edge of 
an image are adjacent to those on the right edge and those on the top adjacent to those in the 
bottom. This assumption is inappropriate for cells in an effectively Euclidean space. We removed 
this assumption by padding the images to double size with blank pixels, but this exacerbates the 
problem of memory consumption, especially for shapes that may come from images of size 
1024×1024 pixels. To solve this problem, we note that the low pass filter seems to converge to a 
single, spatially limited shape as the size of the image becomes very large (Figure 3.9). (We 
attempted to find the limiting shape of the filter but were unsuccessful.) We approximate the shape 
of the filter by computing it at a size of 64³ voxels and subtract in the minimum value. Assuming 
that this truncated filter is a satisfactory approximation to the true filter, it becomes obvious that 
we can apply the filter to images in a windowed fashion, i.e., by selecting a rectangular portion of 
the image, extracting the sub-image corresponding to the rectangular portion after padding with 
the radius of the filter, convolving the sub-image with the truncated filter, and setting the 
convolution result of the rectangular portion to corresponding region in the convolution result for 
the sub-image. Our generalized LDDMM method therefore has the option of interpolating large 
images in this windowed fashion. A further modification to our implementation of this method 
allows saving the result of each iteration of integration to disk to drastically reduce the memory 
requirements. 

The windowed method will not be further discussed as it was not essential to the results given here, 
where computation times for interpolations of images large enough to merit this modification were 
too high to feasibly compute an entire distance matrix (although we were able to run at least one 
successful interpolation iteration for images of up to size 2048×2048×26 voxels). 



 

  31 

 

Figure 3.9: Right half of the LDDMM low-pass kernels in one-dimensional spaces of size 𝟐𝟏, … ,𝟐𝟐𝟎 (black to cyan 
curves; higher intensity color corresponds to larger space size) with kernel parameters 𝜶 = 𝟏,𝜸 = 𝟎.𝟎𝟒. A 
Gaussian fit to the kernel from the largest space size is included for comparison (red curve). Note the 
convergence towards zero of the kernels at and beyond a distance of 40 from the center of the kernel. 

 

SHAPE SPACES IN LINEAR TIME 
Building a shape space using multidimensional scaling requires a distance matrix with 𝑛(𝑛 − 1)/2 
unique entries. For a large number of shapes and costly distance computations, this can be 
prohibitively expensive, limiting the number of shapes one can place in the space. For example, 
computing the distance matrix for 92 shape images of size 320×320×14 voxels extracted from 
fluorescent images of HeLa cells required 32 weeks of computation. 

A shape space is an arrangement of points in a 𝑑-dimensional Euclidean space that minimizes the 
squared error between its distance matrix and the one given as input. Thus the quantities being 
estimated, i.e., the low-dimensional arrangement, can be completely represented as a Euclidean 
distance matrix even if the original distance matrix is non-Euclidean. This implies that the 
first 𝑑 + 2 columns of the arrangement's distance matrix can be used to reconstruct the entire 
distance matrix and thus the arrangement itself (ignoring rotation and flipping of the arrangement) 
as specified in [76]. (Note that we solve for columns using a weighted sum of the given columns 
with nonnegative weights in order to have a nonnegative reconstructed matrix.) While we do not 
know the values of the arrangement’s distance matrix, we can consider the first 𝑑 + 2 columns of 
the input distance matrix an approximation of the arrangement's columns and use them to 
reconstruct the entire distance matrix. 

MODELS OF SHAPE DYNAMICS 
Shapes and structures within the cell are dynamic, changing with the migration of the cell, the cell 
cycle, and other behaviors. Therefore models of these objects should ideally be dynamic as well as 
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realistic in three dimensions, as processes within the cell will change and be changed by these 
objects, and the results of simulations will depend on the temporal nature of shape and distribution. 

A rather simple model of shape dynamics with a level of (apparent) temporal smoothness is a 
random walk through the space of shape parameters, The random walk starts at one of the input 
cells' shape space coordinates. (This step could be replaced by sampling from a KDE model of 
probability density in the shape space.) Each step in the random walk is the previous position plus a 
normally distributed displacement. LDDMM interpolations are used to synthesize shapes at each of 
these points from the input cells nearby in shape space as in [69]. 

Previous work used KDE to model the probability distribution over the shape space [69]. We 
extended the model to include a nonparametric representation of shape dynamics by using KDE to 
approximate the joint probability distribution of a shape in two consecutive frames. This model can 
be used to predict likely shapes in the previous or next time points given a shape at the current time 
point. The distribution of shapes in the next frame for a shape in the current frame can be derived 
simply by conditioning the KDE model on the current frame’s position in the shape space. 

RESULTS 

HELA 3D SHAPE SPACE MODEL 
Figure 3.10 shows the shape space constructed for the 92 3D HeLa images and an example of a 
shape synthesized for a randomly selected position in shape space. 

 

Figure 3.10: A, 2D projection of a 3D shape space constructed for the 92 aligned 3D HeLa cellular and nuclear 
shapes. Each cell is colored with a random hue, and its nuclear shape is shown in a lighter shade than is its 
cellular shape. Each of the outlined regions in the shape space is shown at a higher magnification in the boxes to 
the right, where the regions have the same outline style (dashed or dotted) as the corresponding magnification. 
Note the morphological trend of rounded shapes on the left and elongated shapes on the right. B, the shape 
corresponding to the X-shaped marker, which has not been observed, has been synthesized from nearby 
observed shapes and is shown here. 
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SHAPE SPACES IN LINEAR TIME 
We empirically demonstrated that this assumption roughly holds using several tests. We generated 
test data 𝑿 = �𝒙𝑖𝐓�𝑁×1 in the unit hypercube (𝒙𝑖 ∈ [0, 1]𝑑) for 𝑁 = 200. For the first test, we 
computed the distance matrix for these points, reconstructed the matrix using the first 4 columns 
and some number of randomly selected entries, and used MDS to produce a two-dimensional 
arrangement. For 𝑑 = 2, the reconstructed matrix is exactly the true distance matrix to within 
machine precision, as demonstrated by measuring the mean distance between the reconstructed 
point and its corresponding original point (Figure 3.11). These reconstructions are shown along 
with the output of the noisy reconstruction method from [77]. 

While this result is encouraging, we also empirically tested distance matrix reconstruction on 
LDDMM distances. Figure 3.12 shows three shape spaces constructed for a set of 10 synthetic 

shapes. Each is a superellipse, i.e., the set of points satisfying �𝑥
𝑎
�
𝑐

+ �𝑦
𝑏
�
𝑐

= 1. The first shape space 
was computed from the full LDDMM distance matrix and correctly shows the cyclical relationship 
between the shapes; the second was computed from the distance matrix reconstructed using the 
nonnegative direct solution method from [76]; and the third was computed from the distance 
matrix reconstructed using the method from [77]. This appears to be a failure case. However, the 
relevant assumption behind the successful results in Figure 3.11 was that the points come from a 
Euclidean space of low dimension (but the right panel of that figure shows good results even when 
the true dimension is higher than the assumed dimension). This does not hold for all distance 
matrices, i.e., it does not hold for the much larger set of non-Euclidean distance matrices. MDS also 
produces a set of eigenvalues associated with each of the components of the coordinates it returns. 
The presence of negative values indicates a non-Euclidean distance matrix, and indeed LDDMM 
distance matrices tend to have these negative eigenvalues. For the 10 synthetic shapes, the distance 
matrix has 60% negative eigenvalues representing 25% of the variance in the distance matrix. Real 
shapes show the same tendency: The distance matrix from the 3D HeLa shape space presented 
above has 50% negative eigenvalues representing 23% of the variance. 
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Figure 3.11: Mean distance between a two-dimensional reconstructed point and its corresponding original point 
versus the proportion of observed entries in the input distance matrix for original point dimensionalities of two 
and ten (left and right) for 200 points. MDS on the complete distance matrix (green dotted and dashed line) 
produces the lowest error achievable, and the mean nearest neighbor distance in the original space (red dashed 
line) is provided as a scale reference. Using a direct distance matrix reconstruction method (blue solid line), the 
two-dimensional points are perfectly reconstructed, and the error is close to that of multidimensional scaling for 
the 10 dimensional points for all proportions. For comparison, a noisy reconstruction method by Mishra 
(magenta dotted line) does not perform as well, especially with a smaller proportion. 
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Figure 3.12: Shape spaces constructed for 10 superellipses.  These superellipses lie on a cycle in a space with two 
parameters, namely aspect ratio (𝒂

𝒃
) and exponent (𝒄) (the top panel clearly shows a cyclical arrangement of 

shapes and colors the shapes by their parameters). This would be a failure case for the linear time shape space 
construction method proposed, but the distance matrix is non-Euclidean, so rather it is a failure to satisfy the 
assumption of being Euclidean. The top panel shows the shape space constructed from the complete distance 
matrix, the middle panel shows the shape space constructed from the reconstructed distance matrix where only 
the first 4 columns (out of 10) were observed by solving directly for missing entries using known entries as in 
[76] (but with the non-negativity constraint), and the bottom panel shows the same using the distance matrix 
reconstruction method from [77]. 
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MODELS OF SHAPE DYNAMICS 
We have generated a random walk path through the shape space of length 500 and synthesized the 
shapes corresponding to each point on the path. These are best viewed assembled in video form, 
but several example frames are presented in Figure 3.13. Both training of and synthesis from 3D 
joint shape space models have been added to CellOrganizer [25] (http://cellorganizer.org/), our 
lab’s publicly available, open-source/free software cellular organization modeling toolkit. 

 

 

 

Figure 3.13: Frames 1 (first row, left), 100 (first row, right), 200 (second row, left, etc.), 300, 400, and 500 of a 
500 frame random walkthrough shape space. The nucleus is shown in  green and the plasma membrane in  
magenta, and both are shown as transparent 3D surfaces, so they overlap to make the nucleus appear  white. 

  

Unfortunately, we have as yet been unable to acquire high-resolution time-series shape data. As a 
result, we have not had an opportunity to learn a useful KDE-based transition model. For the 
segmentations of the T cell data in Chapter 4, we did attempt to construct a shape space from 380 T 
cell shapes using the linear time method above and then built a KDE-based transition model. 
However, there was no apparent correlation between the shape space position of a T cell and time 
relative to that cell’s synapse formation, and along with the result in Figure 3.12 this led to our 
decision to exclude the result. 

http://cellorganizer.org/
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CONCLUSION 
We have learned a shape space model of the joint distribution of 3D HeLa nuclear and cellular 
shapes. We have produced movies of simulated cell shapes using a random walk transition model. 
As part of this effort, we have also created an improved LDDMM-based image registration and 
interpolation method and implementation designed to operate on cellular images with high aspect 
ratio. Although the KDE-based transition model we proposed has yet to be learned from high-
quality data, it is ready for application when such data becomes available, e.g., during acquisition of 
higher-resolution images of T cells as will likely happen in future work related to Chapter 4. Finally, 
we introduced the concept of learning shape spaces in linear time using distance matrix completion 
due to the linearity of the number of parameters of a low-dimensional Euclidean shape space, and 
future work will involve deriving proper estimators. 
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CHAPTER 4: AUTOMATED ANALYSIS OF SPATIOTEMPORAL 

PATTERNING OF PROTEINS IN HELPER T CELLS DURING SYNAPSE 

FORMATION4 

ABSTRACT 
The subcellular distribution of a protein, a signaling molecule, or a metabolite significantly 
modulates the possibility of its interaction with other molecules because molecules that never meet 
will never directly interact. Many cellular systems involve patterning of protein localization that 
evolves over time and can produce or be affected by changes in cellular and organelle shape. The 
process of synapse formation between helper T cells and antigen-presenting cells (APCs) is an ideal 
model for studying spatiotemporal patterning as the T cells adopt a definite polarity that is easily 
detected through brightfield microscopy. Fluorescently labeling signals and collecting 3D 
microscopic videos can provide a wealth of information about how each signal is patterned over 
time. Previous work by our groups has manually identified basic patterns of signals and quantified 
the rate at which they occur for each signal a set of time points spaced near synapse formation. 
Here we present a computational framework to automatically produce detailed models of the 
spatiotemporal patterning signals around the time of synapse formation. We cluster the resulting 
models to identify similar and dissimilar patterns, and we statistically compare the enrichment of 
each signal across conditions in order to find significant changes caused by the reduction in 
costimulation of the T cell during B 7 blockade. 

INTRODUCTION 
The distributions of proteins affect function by scaling the probability of the interactions in which 
those proteins participate. The opportunity for interaction between proteins is proportional to the 
product of the concentrations of the proteins involved, even if these probabilities vary widely 
between the various interactions [7]. Protein location can be found by cell fractionation or inferred 
by computational predictions based on sequence and/or 3D structure. Fluorescent microscopy 
coupled with fluorescent labeling of proteins presents an alternative method that can provide high-
resolution spatial information that allows distinction between localization patterns with differences 
too subtle to distinguish by eye [78] and measurement of co-localization given more than one 
labeled protein. 

Location changes associated with function are well-known and widespread. Cyclin B1 is a classic 
example: It is transferred between nucleus and cytoplasm as part of regulation of the cell cycle. 
Similar changes in nuclear localization and changes in one measure of subcellular localization 
pattern occur in approximately 19% and 23% of proteins, respectively [3]. Mislocalization, on the 
other hand, can lead to diseases such as retinitis pigmentosa, by means of ER retention of 
rhodopsin, and Alzheimer's disease, due to aggregation of amyloid-β and possibly disruption in 
nuclear trafficking [79]. 

                                                             
4This represents joint work with Kole T. Roybal, Baek-Hwan Cho, Christoph Wülfing, and Robert F. Murphy 
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Significant efforts towards discovering and documenting protein location have taken both manual 
and computational forms. UniProt contains a manually curated catalog of protein localization [80], 
and the Human Protein Atlas contains location information specifically derived from visual 
inspection of immunohistochemical and immunofluorescent data [81]. Large-scale, automated 
studies of localization have become feasible due to the development of sensitive computer vision 
methods for discriminating between subcellular localization patterns [47, 82-84]. Methods for 
detection of changes in localization over both short and long timescales have been developed and 
applied to large sets of proteins [2, 3, 40]. 

CD4+ T cells form immunological synapses with antigen-presenting cells (APCs) with functionally 
relevant spatiotemporal organization in addition to obvious morphological changes [1, 7, 85]. While 
there has been much interest in spatiotemporal patterning of proteins and other signaling 
molecules in the T cell near the time of synapse formation since the discovery of widespread non-
uniformity [86], complete cataloging of these patterns has not yet occurred [43]. We have 
previously enumerated a set of distinct subcellular location patterns taken on by fluorescently 
labeled sensors in the T cell, including diffuse, central, and peripheral interface accumulation [1]. 
After collecting a large number of videos of cells labeled for many sensors, we previously 
determined by visual inspection the proportion of cells showing each pattern for each sensor and 
each experimental condition [7, 43, 87, 88]. We used hierarchical clustering to visualize the 
similarities between sensors under each condition and inferred the mechanisms producing 
differences between conditions. In one study, 30 sensors were compared under activation by three 
different T cell receptors suggesting that the central accumulation of signaling complexes is related 
to efficient signal transduction between APC and T cell [1]. Similar techniques showed that Itk-
deficient cells displayed different localization for 14 of 16 sensors and that Cdc42’s central 
accumulation pattern is required for Itk-dependent actin accumulation at the interface [7]. 

As the analysis of spatiotemporal localization has proved tremendously helpful for illuminating T 
cell signaling, we are motivated to automate the analysis to determine significant differences in 
accumulation patterns, to increase consistency of interpretation of data across large data sets, and 
to reduce the need for manual intervention. We previously constructed a computational pipeline for 
automatically determining the set of 3D patterns presented by T cells at the time of synapse 
formation [55], but to our knowledge, no other work has been done on automatic quantification of 
spatiotemporal protein patterns in T cells. The current work extends our previous pipeline with the 
construction of multiple types of generative spatiotemporal models from time-series data, and we 
statistically compare models built for a set of eight sensors (listed in Table 4.1) imaged under two 
different experimental conditions, full stimulus (i.e., the control set, with stimulation of the T cell by 
both major histocompatibility complex and B7 proteins) and B7 blockade (where costimulation by 
B7 proteins is prevented by the presence of anti-B7 antibodies). 

METHODS 

IMAGE DATA 
We used previously collected images of primed CD4+ T cells cultured with APCs as in [1]. These T 
cells had been retrovirally transduced with a fusion protein composed of one of the sensors and 
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green fluorescent protein (GFP). Each batch of T cells imaged was subjected to one of two 
experimental conditions, full stimulus and B7 blockade. Each image was collected as a time series 
with a 2D brightfield image and a 3D GFP channel collected every 20 seconds for an average of 45 
frames (range: 26–46). This produced the 92 movies used in this study. Voxels in these 3D images 
were of size 0.406 µm in the horizontal plane and 0.4 µm along the optical axis. The number of 
movies used for each condition-sensor combination is listed in Table 4.1. 

Table 4.1: The number of movies and number of manually marked synapses used to construct each condition-
sensor combination’s spatiotemporal model (92 movies, 14,452 marked time points in total). Each synapse was 
marked at up to 12 time points. 

  Number of movies Number of synapse time 
points marked 

  Full stimulus B7 blockade Full stimulus B7 blockade 

Se
ns

or
 

ARP3 5 5 1180 993 
Actin 6 11 832 772 
CPalpha1 6 7 1328 1094 
Cofilin 7 5 1219 1024 
Coronin1A 5 8 1056 959 
MRLC 5 3 529 397 
WASP 4 5 910 641 
WAVE2 5 5 808 710 

 

MANUAL ANNOTATION 
We manually tracked the 2D locations and frame numbers of immunological synapses from the 
brightfield movies. First, the location and frame of each synapse formation event was identified as 
when either the T cell–APC interface had reached its full width or the cells had been in contact for 
40 seconds, whichever came first. Second, at least a subset of frames for the same cell couple were 
identified from frames -40 to 120 seconds and 180, 300, and 420 seconds relative to synapse 
formation. We tracked an average of 15 synapses per movie (range: 1–43) for a total of 1401 
tracked cell couples. This is a manual, not an automatic, step, but it involves much less labor 
compared to completely visual examination to evaluate patterns and manual segmentations for 
enrichment analysis. The number of manual annotations used to construct the final model of each 
condition-sensor combination is listed in Table 4.1 and is less than or equal to the number of 
annotations due to segmentation failures. 

IMAGE PREPROCESSING 
For each manually marked synapse point, we extracted a 71×71 pixel window from all Z slices to 
make downstream operations uniform for each cell. We chose the window size by noting that cells 
are mostly under 23 pixels in diameter in the horizontal plane and giving 1.5 times this amount of 
room in any direction from the synapse point. Synapse points where the windows overlap the edges 
of the image had missing voxels’ intensities filled by replication of the nearest observed voxel’s 
intensity. See Figure 4.1 and Figure 4.2 for examples of images after this preprocessing. 

IMAGE SEGMENTATION 
We designed our segmentation method to produce segmentations of small objects with high 
internal contrast and low contrast with background and to produce smooth segmentation surfaces 
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near the edges of objects with widely varying shapes. These two design goals are addressed by the 
following image preprocessing and segmentation steps. 

Window images were transformed into edge magnitude images prior to being passed to the 
segmentation algorithm as follows. First, we subtracted background intensity, which we estimated 
using the mode of intensity values below the mean intensity value. This is justified by the large 
proportion of background voxels in most windows. Second, we normalized intensities by dividing 
by the 99.9th percentile of intensity, an approximation to the maximum intended to provide some 
robustness. Third, we used global histogram equalization to suppress intensity variation within 
cells after observing that some of the sensors showed high contrast patterns of subcellular location. 
Such patterns resulted in strong edges in the image resulting from the second preprocessing step, 
and these edges would have attracted snakes more strongly than the boundaries of the cells. 
However, due to the large amount of background in the images and relatively low intensity of the 
background noise, the output from the third step showed much more uniform intensity inside cells. 
Fourth, we used anisotropic diffusion [89] to reduce noise and enhance edges. Fifth, we produced 
an edge potential image using the gradient magnitude at each pixel, where the gradient was 
computed using Scharr's 5×5 filter [90] instead of centered finite differences. (Although Scharr’s 
design was for precision in gradient direction estimation, we primarily used this filter to compute 
gradients with larger neighborhoods to combat noise sensitivity and weak corner gradients.) 

The segmentation for a cell was initialized to be a sphere of approximately the same radius as a 
typical T cell and centered near the cell's manually specified synapse point. The center of the sphere 
was found by: initializing it to have the same XY coordinates as the manual point; setting the Z 
coordinate to place the point in the middle Z slice; and smoothing the histogram-equalized 
preprocessed image and performing hill climbing, starting from that point and climbing the 
gradient of the smoothed image, to find the nearest local maximum of intensity. We used the snakes 
active contour method of [91] as extended to 3D segmentations represented as triangle meshes 
[92] to segment the windows of the fluorescence images of the sensors produced as above. We used 
a simplified implementation of the method in [92] that did not use the multiresolution scheme 
(called the “hierarchical approximation” in that paper). The snake method was run on the edge 
images produced as above, and the method's parameters were manually tuned to these edge 
images. The snake method was run in two stages with distinct sets of parameters, a coarse stage 
and a fine stage, where the coarse stage was initialized with the aforementioned sphere and 
produced a triangle mesh as output and the fine stage was initialized with the coarse stage's output 
mesh. The coarse stage's parameters were selected to find a rough shape for each cell with more 
severe smoothness constraints in an attempt to prevent over- and under-segmentation, while the 
fine stage's parameters were chosen to allow the segmentation's surface to bend more significantly 
in order to gain precision. See Table 4.2 for a list of the parameters used.5 See Figure 4.1 and Figure 
4.2 for examples of images of cells and their segmentation results. 

                                                             
5 These parameters are named to correspond to the parameters used in the open source implementation 
available at http://www.mathworks.com/matlabcentral/fileexchange/28149-snake-active-contour. 

http://www.mathworks.com/matlabcentral/fileexchange/28149-snake-active-contour
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Table 4.2: The manually tuned parameters used for both stages of segmentation by the snakes method.  

Parameter name Coarse stage Fine stage 
α 0.15 0.15 
β 0.1 0.1 
γ 0.2 5 
δ 0.1 0.1 
κ 1 10 
λ 0.95 0.75 
Iterations 240 240 
GIterations 0 5 
Wline -5 -5 
Wedge 0 0 
σ1 1 1 
σ2 2 1 
σ3 2 1 

 

One improvement to the pipeline would be to discard under- or over-segmented images of cells by 
computing features representing both the segmentation and its relationship to the intensity image 
and constructing a classifier that can distinguish between correctly and incorrectly segmented cells. 
During earlier development of this pipeline, we manually labeled 100 segmentations as good or 
bad. We chose as features: deciles of quantities measured at each vertex of the segmentation mesh, 
specifically the intensity in the histogram-equalized image, the gradient of intensity in the same 
image, minimum and maximum curvature, and the scalar product of the direction of the gradient of 
intensity and the mesh's normal; deciles of positive entries in the distance matrix between the 
mesh's vertices; and the volume and solidity (volume of the object divided by the volume of the 
object's convex hull) of the mesh. A support vector machine was trained on this data using a radial 
basis function kernel and an inner loop of 10-fold cross-validation to choose the penalty and kernel 
parameters. We used an outer loop of 10-fold cross-validation to evaluate the generalization error 
of this method, both with and without feature selection. 

RIGID ALIGNMENT WITH RESPECT TO THE SYNAPSE 
In order to represent the probability distribution of relative protein concentration in various parts 
of the cell as measured from multiple imaged cells, each image of a cell must be assigned a 
coordinate system where anatomically similar positions in multiple cells are assigned similar 
coordinates. Cells of the same tissue or cell line can vary widely in shape in general. The helper T 
cells imaged are no exception, but they have certain anatomical markers that can help in 
determining the coordinates for each voxel in an image of the cell. When the synapse has formed, 
there will often be a flat interface between the T cell and the APC that establishes a polarization axis 
that can be viewed as one of the coordinates. The rest of the cell will be amorphous but largely 
rounded. For these reasons, our previous work [1] used half-ellipsoidal diagrams to illustrate 
spatial patterning of sensors in T cells. We will use the same idealized shape to establish a 
coordinate system for each cell. 

The shapes of these cells as determined by the segmentation method are triangle meshes. In order 
to process the segmentations as images, the meshes were rasterized into 3D images by testing if 
each voxel were within the mesh and setting the voxel to one if so and to zero otherwise. For a more 
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precise representation of the segmentation, we antialiased this image by rasterizing the mesh at 
twice the size in each dimension and then downsampled this rasterization by a factor of two. 

Images at high enough resolution might allow one to precisely locate the boundaries of the T cell 
and the portion corresponding to the synapse, if applicable. The images used in this study, however, 
are at a low enough resolution that error in segmentation of even a couple of voxels will mask any 
easily detectable features such as the edges of the synapse. We therefore approximately extracted 
the orientation and position of each cell as follows. First, we assumed that the manual annotation 
for the synapse point for a cell was approximately at the center of the synapse, so the location in the 
horizontal plane was set to the synapse point and the vertical coordinate to the weighted centroid 
computed by weighting each voxel of the segmentation by the negative exponential of distance in 
the horizontal plane from the synapse point. Second, we assumed that the orientation of the 
synapse plane was perpendicular to a ray originating from the weighted centroid of the 
segmentation volume and directed through the synapse point. We approximated the orientation of 
a cell's synapse plane by the vector pointing from the centroid to the 3D synapse point. Third, we 
assumed that the cells should have approximately the same distribution regardless of volume, so 
we uniformly scaled the images so that the segmentations had the same volume as a template 
shape. 

While we are interested in improvements to the segmentation and alignment methods, we can 
attempt to temporally smooth or filter the alignments after the fact. Assuming that the position and 
orientation of the cell do not change extremely between frames, we can smooth these quantities 
across time. For each individual cell, we computed the centroid of the segmentation and the 
direction and length of the vector pointing from the centroid to the 3D synapse point for each frame 
in which that cell appeared. We smoothed these seven values for this cell using LOWESS with a 
smoothing parameter of 0.5 or 2/𝑛𝑙   where 𝑛𝑙 is the number of successfully segmented frames for 
this cell, whichever parameter is greater, and we smoothed only if 𝑛𝑙 ≥ 3. 

NONRIGID STANDARDIZATION OF CELL SHAPE 
The next step is to standardize the coordinate system within a cell across all cells. At this point in 
the pipeline, cells are aligned, but some positions that are inside some cells are likely outside some 
other cells. We wish to assign coordinates to each point in a segmented cell in a way that gives 
similar coordinates to anatomically similar structures in different cells and that assigns no 
coordinates to the inside of only a subset of the cells. One can do this by finding a transformation of 
the space in which the cell is embedded such that the cell is shaped like a common template shape 
after applying the transformation. A nonrigid image registration method like LDDMM [53] can 
determine for each pixel of the segmentation image the corresponding position in the space of a 
given template shape. We used a method that is an approximation to LDDMM, specifically the 
extension to the Christensen-Rabbit-Miller algorithm [53, 71] described in Chapter 3. The half 
ellipsoid is an appropriate template for a T cell forming a synapse. LDDMM computes only one of 
many possible transformations, so we assume its output is sufficiently close to correct to be useful. 
Figure 4.1D shows the intensity image in Figure 4.1C after standardizing the cell’s shape using 
LDDMM. 
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We would like to point out that the standardized intensity image will have the same density of 
protein per voxel as the original intensity image even with the stretching and compression of parts 
of the cell. Doing so assumes that the protein distribution in question maintains the concentration 
of protein in each voxel, so the hypothetical cell, otherwise identical to the cell being standardized 
but with the standardized shape, would have had more protein molecules in the enlarged regions 
and fewer in the reduced regions. The obvious alternative assumption is that the cell rather 
maintains the absolute number of protein molecules, in which case voxels that are stretched should 
decrease in intensity in the standardized image and those that are compressed should increase in 
intensity (the correct scaling for each voxel is the determinant of the Jacobian of the deformation 
field that maps voxels in the standardized image to locations in the original image). Unfortunately, 
we would not know ahead of time which assumption, if either, holds for an arbitrary protein being 
imaged, so we chose the former assumption. 

PROTEIN DISTRIBUTION MODELS 
The most straightforward model of sensor intensity operates directly on the standardized images 
themselves. Simply taking the mean and standard deviation of standardized images of individual 
cells expressing the same sensor under the same condition gives a fair approximation of the 
variability of that sensor's subcellular distribution (Figure 4.3). However, the high dimensionality of 
these images when represented as vectors of voxel intensities interferes with common statistical 
analysis that assumes a computationally feasibly low number of features and fewer data than 
features, e.g., measures of covariance and methods like PCA and MANOVA that depend on them. 
While one approach to this problem would be to create very low-dimensional representations of 
these, we instead devised a set of models with relatively high dimensionalities that represent 
certain aspects of the standardized images in order to apply hierarchical clustering, which does not 
suffer as readily from high dimensionality representations. 

Each of the models represents an image as a vector. These vectors can be formed from the intensity 
values of all of the voxels within the template shape for all time points, where the intensities for 
each time point are normalized so that the values of the vector are probabilities, not intensities. We 
call this the full model, which represents the sensor distribution in the greatest detail. We also used 
four simplified representations of these probabilities: only the values from a slice parallel to and 
approximately at the synapse, specifically, the slice 10% of the distance from the synapse to the 
back of the cell (the synapse slice model); the mean value across all voxels at each distance from the 
synapse (the axial marginal model); the mean value across voxels in the synapse slice at each 
position in the horizontal plane (the synapse horizontal marginal model); and the values from all of 
the slices parallel to the synapse and between 0 and 25% of the distance from the synapse (the 
forward cytoplasm model). 

STATISTICAL TESTING BETWEEN CONDITIONS 
We sought to compare sensor distributions and test for sensors with statistically significant 
changes (in some respect) between conditions. A statistical test between models of sensor 
distribution must be sufficiently sensitive to discriminate between differences in true patterns but 
sufficiently insensitive to discriminate between individual cells with the same true pattern. A test 
can also be inappropriate from a computational standpoint: A chi-square test between two raw 
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intensity models can use such large statistic values and numbers of degrees of freedom as to make 
computation of p-values by double precision floating-point arithmetic infeasible. 

To statistically compare the distributions of sensors between the full stimulus and B7 blockade 
conditions, we computed the enrichment for each sensor, each time point, and each cell. We defined 
enrichment to be the ratio of two values: the mean probability in the distribution of that sensor for 
that cell at that time point within a region corresponding to the synapse; and the mean probability 
in the entire cell. This synapse region was defined as the top 10% of probability density for the 
average probability distribution across all cells, for all time points, and for all sensors. The mean 
probability distribution and the derived synapse region are shown in Figure 4.5. Enrichment was 
therefore a one-dimensional model of the pattern in a cell. We compared enrichment between the 
full stimulus and B7 blockade conditions for each time point of each sensor using Welch’s 𝑡 test 
[93]. We assumed that the enrichment was lognormal distributed because it is always at least one 
and so obviously not normally distributed. This resulted in a total of 96 tests, and we applied 
Bonferroni–Holm correction to keep the false positive rate at most 0.05 [94]. 

CLUSTER ANALYSIS 
Measurement of the similarity between distributions of sensors within and between conditions is 
the primary motivation of the study. We would like to determine the range of sensor distributions 
in general, the distributions of individual sensors, and a causal relationship between condition 
changes and sensor distributions. While we would like to automatically find the basis set of 
patterns of individual cells, the segmentation and alignment errors for images of low resolution 
would be major confounding effects. Averaging over many images of standardized cells will smooth 
over this error, producing models with lower spatial resolution but with gross features relatively 
intact. We therefore clustered average models to compare sensors and conditions. 

In order to visualize relative similarity between the spatiotemporal distributions of a low number 
of sensors (eight) under the two conditions, we applied single-linkage hierarchical clustering to 
trajectories, i.e., vectors formed by concatenating probability models of a condition-sensor 
combination for all time points. This clustering method starts with each model as being in a distinct 
cluster and iteratively merges the closest two clusters until only one cluster remains. Single-linkage 
means that the dissimilarity between two clusters is defined as the smallest Euclidean distance 
between any model in one cluster and any model in the other. This produces a binary tree structure 
where at each branch point models in one branch are closer to each other than they are to the other 
branch. Clustering results can be visualized using a dendrogram, a representation of that tree 
structure where the height of a branch is proportional to the dissimilarity between the two clusters 
meeting at that branch point, as in Figure 4.8. One can measure the faithfulness of a dendrogram's 
representation of the distances between clustered models by computing the cophenetic coefficient, 
i.e., the correlation between the dendrogram's dissimilarity measure between each pair of models 
and the Euclidean distance between those two models. As this is a measure of correlation, values 
closer to one are better. 
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RESULTS 

STANDARDIZED IMAGES OF INDIVIDUAL CELLS REPRODUCE LOCALIZATION PATTERNS 
Figure 2.3 shows an example of an individual cell's image being processed to produce a 
standardized image in the space of the template. Figure 4.2 shows 20 randomly selected frames 
from randomly selected cells as raw intensity, segmentation, segmented intensity, and standardized 
intensity images. We manually evaluated 100 randomly selected frames for segmentation and 
alignment problems, finding 4 poor segmentations, 13 misalignments, and 8 cases that should not 
have been included. Thus our pipeline acceptably processes 82% of images of cells without gross 
errors. 

 

Figure 4.1: Illustration of the image analysis pipeline for an 
individual cell. A, brightfield image centered on a T cell-
APC couple. B–H, single slices of 3D images that are 
approximately perpendicular to the synapse, which is 
shown facing upward in E–H. B, false-colored raw Coronin-
1A–GFP fluorescence image with color bar. C, cell shape 
extracted by segmentation algorithm. D, segmented 
intensity image. E, aligned segmentation (synapse now 
approximately facing upwards). F, aligned segmented 
intensity image. G, standard template shape. H, segmented 
intensity image deformed into the shape of a standardized 
cell. 
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Figure 4.2: 20 randomly selected cells are shown, each one as a quadruplet of panels within a column showing the 
middle slices of 3D images. These quadruplets contain the contrast-stretched raw intensity image (top row, fifth 
row, etc.), the same slice from the segmentation (second row, etc.), the segmented intensity (third row, etc.), and 
the standardized intensity (fourth row, etc.). Intensity is false-colored (colorbar at right). Only one case shows 
severe oversegmentation. 



 

 49 
 

      

      

Figure 4.2 (continued): 20 randomly selected cells are shown, each one as a quadruplet of panels within a column 
showing the middle slices of 3D images. These quadruplets contain the contrast-stretched raw intensity image 
(top row, fifth row, etc.), the same slice from the segmentation (second row, etc.), the segmented intensity (third 
row, etc.), and the standardized intensity (fourth row, etc.). Intensity is false-colored (colorbar at right). Only one 
case shows severe oversegmentation. 
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Figure 4.3: Illustrations of spatiotemporal models of three sensors (cofilin, MRLC, and WAVE2) that have distinct 
subcellular distributions at different times. Each panel contains slices perpendicular to the synapse of the full 
model at 0 or 180 seconds after synapse formation for each sensor. Within a panel, the slices start at the upper 
left corner and move vertically through the model to the upper right, then wrap to the lower left corner and 
continue to move vertically towards the lower right slice. 
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Figure 4.4A: Illustrations of the spatiotemporal model for actin under the full stimulus condition. Each panel of 
the image shown is a slice of the model that is parallel to the synapse. The horizontal axis is distance from the 
synapse, and the synapse is towards the leftmost column of slices. The vertical axis is time. 
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Figure 4.4B: Same as Figure 4.4A, but for ARP3 under the full stimulus condition.  

 

Figure 4.4C: Same as Figure 4.4A, but for capping protein α-1 under the full stimulus condition.  
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Figure 4.4D: Same as Figure 4.4A, but for cofilin under the full stimulus condition. 

 

Figure 4.4E: Same as Figure 4.4A, but for coronin-1A under the full stimulus condition.  
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Figure 4.4F: Same as Figure 4.4A, but for MRLC under the full stimulus condition.  

 

Figure 4.4G: Same as Figure 4.4A, but for WASP under the full stimulus condition. 



 

 55 
 

 

Figure 4.4H: Same as Figure 4.4A, but for WAVE2 under the full stimulus condition.  
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Figure 4.4I: Same as Figure 4.4A, but for actin under the B7 blockade condition.  

 

Figure 4.4J: Same as Figure 4.4A, but for ARP3 under the B7 blockade condition. 
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Figure 4.4K: Same as Figure 4.4A, but for capping protein α-1 under the B7 blockade condition.  

 

Figure 4.4L: Same as Figure 4.4A, but for cofilin under the B7 blockade condition. 
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Figure 4.4M: Same as Figure 4.4A, but for coronin-1A under the B7 blockade condition.  

 

Figure 4.4N: Same as Figure 4.4A, but for MRLC under the B7 blockade condition.  
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Figure 4.4O: Same as Figure 4.4A, but for WASP under the B7 blockade condition. 

 

Figure 4.4P: Same as Figure 4.4A, but for WAVE2 under the B7 blockade condition.  
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EFFECTIVENESS OF THE SEGMENTATION FILTERING AND ALIGNMENT SMOOTHING STEPS 
Using an outer loop of 10-fold cross-validation and no feature selection, the weighted accuracy for 
the segmentation filtering classifier was 93%. We did not use feature selection because an earlier 
test without the volume and solidity features produced a weighted accuracy 51% after selecting 
features using stepwise discriminant analysis versus 91% without feature selection. This earlier 
work was done with a randomly selected subset of another small subset of the full image data used 
to produce the rest of the results in this paper. We attempted to replicate these results on randomly 
selected subsets of the full data but we were unable to construct a classifier with accuracies 
consistently above even 70% weighted accuracy. Therefore, we did not filter segmentations to 
produce the results in this paper. 

We visually evaluated the alignment smoothing method. Out of 70 randomly selected frames of 
randomly selected cells, 7 improved in alignment, 8 worsened, 47 were nearly the same quality, and 
8 could not be readily evaluated by eye. Due to the lack of improvement, we did not smooth 
alignments to produce the results in this paper. 

AVERAGE PROBABILITY MODELS OF CONDITION-SENSOR COMBINATIONS SHOW TEMPORAL 
CHANGES WITHIN MODELS AND DIFFERENCES BETWEEN SENSORS 
Figure 4.3 shows average spatiotemporal probability models for cofilin, myosin II regulatory light 
chain (MRLC), and WAVE2 when T cells experience either a full stimulus or reduced costimulation 
due to B7 blockade. Cofilin has a nuclear localization signal and appears in the nucleus, and it 
enriches at the synapse during and shortly after synapse formation. MRLC is concentrated distally 
before synapse formation, and it becomes and remains enriched at the synapse for minutes. 
WAVE2's pattern resembles cofilin's without the nuclear localization. 

STATISTICALLY SIGNIFICANT CHANGES IN ENRICHMENT BETWEEN FULL STIMULUS AND B7 
BLOCKADE 
Figure 4.5 shows the region of the template used to compute the numerator of enrichment (recall 
that this is the mean probability in this region for a model of one cell at one time point; the 
denominator is the mean over the whole model). Figure 4.6 and Figure 4.7 show plots of 
enrichment versus time for each sensor under both conditions. Both figures indicate which sensors 
at which times had significant differences (p < 0.05) in enrichment after corrections to control false 
positive rate. The p-values obtained are listed in Table 4.3. ARP3, capping protein α-1, cofilin, 
coronin-1, and WAVE2 showed significantly decreased enrichment at one or more time point, and 
the model visualizations in Figure 4.3 and Figure 4.4 readily show some of these differences. 



 

 61 
 

 

Figure 4.5:  In order to compute enrichment, we extracted a region corresponding to the synapse from the mean 
distribution of sensor within the template across all sensors, time points, and individually imaged cells.  Each 
panel contains slices perpendicular to the synapse of a 3D model. Within a row, the slices start at the left side and 
move vertically through the model to the right side. The synapse is at the top of each slice. The upper row shows 
the mean distribution of all sensor and time points. The color map for probability is shown on the right. The 
lower row shows the top 10% of probabilities in the mean distribution in  yellow and the rest of the template in 

 blue. 
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Figure 4.6A:  Enrichment measured for all sensors at all time points for the full stimulus condition. An asterisk in 
the legend indicates that that sensor had at least one time point with a statistically significant difference between 
conditions. 
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Figure 4.6A, but for the B7 blockade condition. 
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Figure 4.7A: Enrichment measured for full stimulus (solid lines) and B7 blockade (dashed lines) conditions for 
ARP3 at all time points. An asterisk between the plots indicates that at that time point the sensor was statistically 
significantly different between conditions. 
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Figure 4.7B: Figure 4.7A, but for capping protein α-1. 
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Figure 4.7C: Figure 4.7A, but for cofilin. 
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Figure 4.7D: Figure 4.7A, but for coronin-1. 
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Figure 4.7E: Figure 4.7A, but for WAVE2. 
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Table 4.3: Bonferroni-Holm-corrected p-values for Welch’s 𝒕 test between the enrichments of corresponding time 
points of each sensor’s full models for full stimulus and B7 blockade conditions. Values in boldface are significant 
(p < 0.05). 

 

 
Time (seconds) 

 

 
-40 -20 0 20 40 60 80 100 120 180 300 420 

Se
ns

or
 

ARP3 2.77E+00 1.58E-02 3.01E-07 5.29E-04 1.16E-04 3.05E-03 2.89E-05 5.48E-05 6.21E-04 8.03E-02 2.37E-02 1.38E-04 

Actin 1.85E+00 9.95E-01 2.00E+00 8.21E-01 8.21E-01 4.41E+00 4.41E+00 5.82E+00 4.78E+00 6.01E+00 4.97E+00 9.74E-02 

CPalpha1 4.97E+00 4.41E+00 1.35E+00 1.93E+00 4.20E-01 6.12E-03 2.28E-03 7.10E-03 5.42E-02 1.07E-03 2.28E-04 5.42E-02 

Cofilin 5.05E+00 1.05E+00 1.15E-01 4.45E-02 5.74E-04 1.45E-04 2.47E-05 5.95E-04 1.74E-05 1.62E-04 1.28E-02 1.23E+00 

Coronin1A 4.00E+00 5.16E+00 2.02E-03 9.79E-01 1.54E-02 5.70E-03 5.89E-03 1.29E-02 9.50E-03 6.51E-02 3.45E-04 2.07E-02 

MRLC 5.26E+00 4.15E+00 1.99E+00 3.20E+00 3.36E+00 1.92E+00 4.00E+00 5.82E+00 2.42E+00 2.99E+00 4.37E+00 5.00E+00 

WASP 5.45E+00 5.58E+00 2.40E-01 1.43E+00 3.20E+00 1.87E+00 4.00E+00 9.95E-01 4.32E+00 1.85E+00 6.01E+00 5.16E+00 

WAVE2 3.48E+00 3.49E-03 1.96E-04 1.38E-05 3.75E-05 6.89E-06 4.03E-08 1.69E-05 3.82E-09 1.29E-02 3.44E-02 9.79E-01 

 

HIERARCHICAL CLUSTERING RESULTS ARE CONSISTENT ACROSS DIVERSE MODEL TYPES 
Figure 4.8 shows the results of applying hierarchical clustering to models of condition-sensor 
combinations for each of the model types. These clusterings consistently grouped actin, ARP3, 
coronin-1A, capping protein α-1, and WASP under both conditions, and WAVE2 under full stimulus 
more closely than any were grouped with cofilin or MRLC under either condition or WAVE2 under 
B7 blockade across all probability models. The only exception to this rule was WAVE2 under B7 
blockade with the full model, which was grouped with the other models immediately before its 
cluster merged with that of MRLC. Pairs of models constructed for cofilin and MRLC under either 
condition are more distant from the corresponding other condition's model than most of the 
models of the five closely grouped sensors are from each other. Cofilin and MRLC tend to be paired 
to the corresponding other condition's model (in 3 and 4 model types, respectively). These effects 
can be seen in Figure 4.8. 

As these models differ significantly in how they represent protein distribution, the hierarchical 
clustering results suggest that the condition-sensor combination models must differ in several 
respects: overall distribution of the sensor, the distribution at the synapse plane, the distribution 
over the majority of the cytoplasm (which is near the synapse plane), the marginal distribution 
along the cell's axis, and the horizontal marginal distribution at the synapse plane. The full model, 
as the name implies will contain the most information about T cell signaling patterns: interfacial 
patterns and nuclear and distal accumulation are all included. However, the reduced models allow 
focus on more interesting aspects of the spatial distribution through bias. For example, the synapse 
slice model allows interfacial patterns to be compared, e.g., by distance between models, without 
having differences at the synapse washed out by the much larger number of voxels occupied by the 
rest of the cell. The axial marginal model, on the other hand, suppresses information about 
interfacial patterns and focuses on differences in accumulation at the synapse in general, at the 
distal end of the cell, and within the nucleus. The synapse horizontal marginal model gives the least 
information of interest about patterns as it corresponds to averaging over a direction significant to, 
e.g., peripheral patterns, and does not include information on nuclear or distal accumulation, but it 
gives information on asymmetry of interfacial accumulation of signals. (Note that there are better, 
orientation-independent measures of this asymmetry that could be used in future work.)  
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Figure 4.8A: Hierarchical clusterings of full models constructed for eight sensors under full stimulus and B7 
blockade conditions. Each panel in the image to the right of the dendrogram shows a single slice from the 3D 
model of the sensor's distribution at a time point (time is the horizontal axis). The slices are perpendicular to the 
synapse and through the middle of the model (the synapse is facing upward). Cophenetic coefficient of 0.85. 
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Figure 4.8B: Same as Figure 4.8A, but for the synapse slice model. The slices are parallel to the synapse and 10% 
of the distance from the synapse along the cell's axis. Cophenetic coefficient of 0.86. 
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Figure 4.8C: Same as Figure 4.8A, but for the axial marginal model. The slices are perpendicular to 
the synapse and through the middle of the model (the synapse is facing upward). Cophenetic 
coefficient of 0.88. 
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Figure 4.8D: Same as Figure 4.8A, but for the synapse horizontal marginal model. The slices are 
parallel to the synapse and 10% of the distance from the synapse along the cell's axis. Cophenetic 
coefficient of 0.87. 

 

 

 

 



 

74   

 

Figure 4.8E: Same as Figure 4.8A, but for the forward cytoplasm model. The slices are parallel to the 
synapse and 10% of the distance from the synapse along the cell's axis. Cophenetic coefficient of 
0.79. 

 

CONCLUSION 
We have built a pipeline to construct spatiotemporal models of subcellular sensor distributions in T 
cells. These models show obvious differences between sensors and conditions even with the limited 
precision of the segmentation and alignment steps. In fact, differences of distribution and 
measurements of enrichment may have been artificially reduced due to these limitations. We have 
additionally developed methods to compare these models, both by clustering and statistical 
hypothesis testing. We found that a set of eight sensors imaged in two conditions clustered 
consistently across several types of model representing drastically different aspects of subcellular 
distribution. 

Future work will focus on both the next major step, exploitation of the system for enhancing our 
mechanistic understanding of signaling networks, and incremental improvements to each step in 
the pipeline. We have submitted a grant proposal to combine models constructed by the methods 
presented here with causal network inference algorithms that work with (largely observational) 
time-series data to produce a plausible causal signaling network from images of sensors similar to 
those used in this work. Our goal will be to not only infer causal interactions but to construct a 
generative causal network model containing autoregressive models relating the parameters of the 
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spatial distributions of signal molecules. More distant work would likely construct simulations of 
these molecules inside realistic cell shapes and further from higher resolution image data and 
search for molecular interactions that could reproduce the interactions of the spatial distributions 
implied by the causal network. 

Improvements to the pipeline, while likely time-consuming, are likely to be straightforward. We 
plan to manually annotate images to objectively evaluate segmentation and alignment methods to 
enhance their accuracy and precision. The morphing step is computationally expensive, so we will 
search for more efficient algorithms. Ideally, we would be able to completely automatically segment 
and track T cells in movies without any manual annotation. 
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CHAPTER 5: CONCLUSION 

CONTRIBUTIONS 
We summarize the contributions of this dissertation for each chapter. 

CHAPTER 2: PROTEIN LOCALIZATION DEPENDENCE ON CELL CYCLE INFERRED FROM STATIC, 
ASYNCHRONOUS IMAGES 

• As an initial effort towards learning a model of cell cycle-related variation in images of 
nuclei in an unsupervised manner, we showed that manifold learning could reconstruct 
temporal relationships from features representing single nuclear images. Specifically, we 
applied Isomap to nuclear intensity, shape, and texture features and found good 
correspondence (a testing adjusted R-square of 0.70) between the embedding coordinates 
returned by Isomap for a nuclear image and the amount of time since the last cell division 
for that image. 

CHAPTER 3: RANDOM-WALK BASED SIMULATION OF CELL AND NUCLEAR SHAPE CHANGES 
• We have produced a nonparametric generative joint model of 3D nuclear and cellular shape. 
• We have generalized the image registration, interpolation, and distance computation 

method from [69] (the simplified Christensen-Rabbit-Miller algorithm approximation to the 
LDDMM framework [53]) to: 

o have flexible kernel size so that cells with high aspect ratio, i.e., large, flat, thin 
regions as in fibroblasts, can have distances computed in a reasonable amount of 
time; 

o  integrate its ODEs using any explicit Runge-Kutta integration method; and 
o have adaptive step size for error control and limitation of the maximum 

deformation per step (the latter being part of the complete Christensen-Rabbit-
Miller algorithm). 

• We have demonstrated application of low-rank distance matrix completion [76] in order to 
reduce the computational complexity of Euclidean shape space construction to linear time. 

o This will likely be useful for shape space construction with parametric shape 
representations for very large numbers of shapes and parameters. 

o This will have to be extended to include estimators for low-rank approximations to 
non-Euclidean distance matrices or, more directly, estimators for positions in a 
shape space, as the number of degrees of freedom in a shape space is linear in the 
number of shapes and in the dimensionality of the shape space. 

o This was use to demonstrate the non-Euclidean nature of LDDMM distance matrices. 

CHAPTER 4: AUTOMATED ANALYSIS OF SPATIOTEMPORAL PATTERNING OF PROTEINS IN HELPER 
T CELLS DURING SYNAPSE FORMATION 

• We have constructed a computational pipeline that produces five types of spatiotemporal 
model of subcellular protein distribution in T cells around the time of synapse formation 
given raw images and a single point located at the center of the synapse of each cell for each 
frame of a time series. 
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o We used histogram equalization to flatten intensity variations within cells to 
produce an image closer to white-on-black to simplify image segmentation. 

o We segmented the cells using an active contour method with smoothness 
constraints (such constraints do not exist with traditional watershed-based 
methods). 

o We used our improved version of LDDMM (Chapter 3) to standardize the shape of 
each segmented cell to a half-ellipsoid shape so that each cell had a comparable 
coordinate system. 

o We created five models summarizing different aspects of the distribution of a sensor 
within the standardized shape. 

o Finally, we learned the parameters of each of these spatiotemporal models from 
thousands of cells for each condition-sensor combination. 

• We have hierarchically clustered model parameters learned for eight sensors across two 
conditions and shown that a set of condition-sensor combinations consistently show similar 
spatiotemporal distributions. 

• We have automatically produced enrichment plots for each of the condition-sensor 
combinations and statistically tested enrichment between conditions at each time point and 
for each sensor. Enrichment was significantly different (𝑝 < 0.05 after correction) for 
multiple time points for four sensors. 

FUTURE WORK 
We present likely and possible future work for each chapter below. 

Generally, future work for each of these projects involves its application, hopefully by a large 
number of experimentalists and not just by us, to carefully selected data sets in order to provide 
insight into the changes associated with different experimental conditions. For example, while one 
may simply measure the rate at which cells proliferate while evaluating a particular drug, one might 
also perform high content screening by inferring cell cycle-related distributions for many proteins 
for control and treated cells and noting which ones change significantly between the two 
conditions. One could also build models of the shape spaces and trajectories through those shape 
spaces from timeseries imaging assays of migratory cell invasion and ask how conditions (drugs, 
oxygenation, temperature, etc.) change the behavior of the cell in terms of its shape. Given time-
series images of embryonic development, one might wish to quantify changes in patterning of 
transcription factors under control and knockout conditions. The present and future products of all 
three chapters could give automatic and consistent quantification of the effects of perturbation in 
each of these three cases. The two major long-term goals for this work are: to increase the speed 
and performance of these methods such that they become indispensable tools for other 
researchers; and to generalize the methods so that they apply to wider classes of data. 
Accomplishing the latter goal will involve computer vision work to properly extract and 
characterize objects from images (e.g., cells of other morphologies, modeled in works such as [21, 
95], or the aforementioned embryos) and model construction for the distributions of sensors 
within these objects. 
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CHAPTER 2: PROTEIN LOCALIZATION DEPENDENCE ON CELL CYCLE INFERRED FROM STATIC, 
ASYNCHRONOUS IMAGES 
Before further methods development, we would ideally collect ground truth in the form of a 
number of high-resolution videos of cells from multiple cell lines expressing a fluorescent nuclear 
marker, e.g., a histone–GFP fusion protein. We would then track cells over the course of these 
videos and mark cell divisions so that we could regress nuclear appearance onto time since the last 
cell division (we could also call this a continuous version of cell cycle phase). With a sufficient 
number of cells, we could discard all but one frame of each cell's video to create an artificial dataset 
that simulates having acquired only static images. 

For one or several methods intended to build a model of cell cycle-related variation in nuclear 
appearance, we would learn parameters from features representing nuclear images in this 
simulated static image set. These trained models would be used to predict cell cycle phase, and the 
predicted phases would be compared with the ground truth phases, e.g., by correlation or R-square. 
We would then use the trained nuclear model to infer phase for a large set of static images that 
include both nuclear and randomly tagged protein channels. These inferred phases would provide 
the independent variable values for building regression models identifying the phase-related 
variation in each protein's distribution. Statistical hypothesis testing could filter the regression 
models to give a set of candidates for proteins that significantly change location over the cell cycle. 

As further effort on this project, we have already produced a statistical model and machine learning 
method for a kind of manifold learning tailored to this kind of data (under certain assumptions). 
Latent regression analysis (LRA) [48] is a related, simpler model and associated learning algorithm 
where the data are assumed to come from a linear process that has a beginning and end, i.e., the 
data are distributed on a line segment in feature space, and have subsequently been corrupted with 
(usually Gaussian) noise. The probability of data appearing at a particular position on this line 
segment is not necessarily uniform as it can come from any beta distribution. This model can be 
used to fit data where the expected distribution of individuals is somewhere between a two-
component mixture model and a continuous, linear process, and the fitted model's beta 
distribution's shape will indicate to what degree the process is in fact a mixture model by to what 
degree the distribution looks U-shaped (that is, the probability is concentrated at the ends of the 
line segment). 

Our work on this project has extended LRA to use a polynomial parametric curve rather than a line 
segment, to use a generalized beta distribution rather than a beta distribution, and to impose a 
prior belief on the level of noise expected in the data. (Note that we envision this model before [48] 
was published.) These modifications provide several generalizations to the assumptions of LRA: 
that the features are possibly nonlinearly related to the process of interest; that the process may be 
a finite mixture of more than two groups; and that some groups may be more concentrated while 
others more spread out, as if part of a continuous mixture. The prior belief would hopefully also 
eliminate singularities, i.e., failures of the learning algorithm, to which both Gaussian mixture model 
and LRA fitting are prone. We implemented the learning algorithm for this polynomial extension of 
LRA, but we found that certain portions of the implementation will require modification so that 
certain values can be stably computed using floating point operations. As we ran out of funding for 
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this project before we could research and then make these modifications, we have not finished the 
implementation. This model could be of more general use than just for this project, perhaps for 
many applications where people currently fit mixture models primarily due to the lack of 
(knowledge of) any alternatives, so part of our future work would be to complete this 
implementation and use it to learn models of phase from nuclear image features. 

Ultimately, the LRA model may be extendable to more than one latent variable, which could have 
applications in, for example, learning how the phenotype of the nucleus changes over the course of 
the cell cycle as a drug is applied in unknown concentrations (e.g., due to variable penetration of the 
drug into the environment or variation in the amount of drugs taken up by each individual cell). 
This could also be used to find a continuous basis for subcellular protein distributions. 

An interesting outcome of having models of the cell cycle-related variation of protein distributions 
is that we could attempt to infer causal relationships between protein distributions. Granger 
causality measures the degree to which statistical predictability of one variable is affected by 
knowledge of the value of another variable. This is usually referred to as "Granger causality" due to 
it being a statistical rather than a causal measure in the general case. However, recent theoretical 
work has shown that under certain circumstances Granger causality is an indicator of truly causal 
relationships [96]. It is possible that we could use a modified form of Granger causality, which is 
usually applied to time-series data, with the continuous models of cell cycle-dependent protein 
distribution that we would produce to infer possible interactions between proteins while imaging 
only one a time. 

CHAPTER 3: RANDOM-WALK BASED SIMULATION OF CELL AND NUCLEAR SHAPE CHANGES 
The next step for this work would be to derive estimators for the position of each training shape in 
a low-dimensional Euclidean shape space from a potentially non-Euclidean and incomplete the 
observed distance matrix. We know that this is possible because the output from MDS has a number 
of degrees of freedom linear in the number of shapes and the dimensionality of the shape space 
while the distance matrix's degrees of freedom increase quadratic with the number of shapes in the 
general case. The question is how to estimate these positions with low bias without requiring the 
entire distance matrix. 

Afterwards, we would acquire microscopic videos of fluorescently labeled cells from which we 
could extract high-quality cellular and nuclear shapes; build a shape space with the reduced-
complexity method so that we could feasibly use a large number of shapes; and train the 
nonparametric KDE-based transition model on trajectories in the shape space. We would then have 
a model where we could predict trajectories of shapes anywhere in the shape space. Applying this 
to movies of migrating cells should produce transition probabilities from migrating to stopping or 
turning that vary depending on the general processivity for that cell type as well as experimental 
conditions and thus be useful for detecting and quantifying changes in cell behavior. 

Finally, the improvements in the model proposed here would be migrated to CellOrganizer and 
made available online. 
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CHAPTER 4: AUTOMATED ANALYSIS OF SPATIOTEMPORAL PATTERNING OF PROTEINS IN HELPER 
T CELLS DURING SYNAPSE FORMATION 
Near-future work here would improve the image processing for more accurate and precise 
spatiotemporal maps of sensor distributions. This will allow us to confidently model cell-to-cell 
variability in sensor distributions, e.g., by clustering the patterns of sensors in individual cells 
rather than clustering their averaged models. As a consequence, we might even discover rare or 
subtle patterns not found through visual inspection. The result of this would be a classification of 
every cell as belonging to one of these patterns, in which case we could produce tables showing the 
prevalence of each pattern as a function of time as in [7] and we could easily statistically compare 
these low-dimensional representations of distributions across sensors and across conditions. 

Reliable subcellular distributions for proteins and other signaling molecules could provide negative 
examples of protein-protein interactions, which are difficult enough to definitively produce that 
protein interaction networks are based on high throughput data for only positive examples [97, 98], 
and negative examples are either guessed randomly (as the vast majority interactions do not occur 
[97]) or are sometimes hypothesized from disagreement between interaction detection methods 
[99]. With our maps, we would measure a linear number of maps (i.e., one for each sensor) and 
compare them computationally, e.g., in a pair-wise manner (or with larger tuples of proteins). This 
would not eliminate the combinatorial explosion of the number of tests involved, but it would 
eliminate the explosion of the number of experiments needed. A negative example would be 
detected by an extremely low probability of interaction as measured by a low intersection of the 
probability distributions of the proteins involved in the interaction. While a high degree of overlap 
between the distributions does not necessarily imply that the proteins interact, proteins that 
interact at a high rate, i.e., in a particular location in the cell and at a particular time relative to 
synapse formation, would necessarily also appear in that location and at that time in high 
concentrations. Therefore, very low probability density in a location at a time for at least one of a 
set of proteins implies that the set simultaneously directly interacts at that location and time with 
very low probability. We should thus be able to produce spatiotemporal maps of interactions that 
cannot happen with much probability, constraining the structure of the as yet unknown true 
interaction network with spatial and temporal resolution. 

More importantly, these learned models can be used with Granger causality-based methods in 
order to infer significant likely causal interaction (not merely statistical predictability) between 
many sensors as mentioned above [96]. Ideally, this would result in a high-confidence causal 
network of sensors along with a model of how the spatiotemporal distribution of one sensor or the 
presence of a perturbation affects the distribution of another sensor. We would then validate or 
refute these causal interactions by manipulating causes both experimentally and through this 
causal network and comparing prediction with outcome. 

In the more distant future, we would like to apply methods developed as above to other signaling 
networks within cells, between cells, between organisms, or to other similar systems. 
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