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Abstract

Data sets with many discrete variables and relatively few cases arise in many domains. Several
studies have sought to identify the Markov Blanket (MB) of a target variable by filtering
variables using statistical decisions for conditional independence and then applying a classifier
using the MB predictors. Other studies have applied the PC algorithm or heuristic procedures, to
estimate a DAG model of the MB and classify by Bayesian updating. The PC output is not a
DAG or MB, and how a DAG representation of the MB is formed in these studies is not
specified. Using a filter from the HITON feature selection procedure, we find a Markov
equivalence class using the PC algorithm, provide an explicit algorithm for converting the output
to a graphical Markov Blanket, and classify by Bayesian updating. We apply this procedure
(PCX) to five empirical data sets from different domains, and compare it with results from
HITON, which applies several state-of-the-art classifiers. The PCX classifier has fewer variables
than those found by the HITON procedure, and gives comparable classification accuracy while
supplying insight into possible causal relations among the variables.
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1. INTRODUCTION

In genetics, proteomics, clinical diagnosis, and many other domains, data sets arise with a very
small ratio of cases to variables. Such data present familiar dimensional difficulties for
classification of a target variable, and even more difficulty for the determination of those
variables that actually influence, or are influenced by, a target variable. Classification that relies
on large numbers of variables is often inapplicable, for example in clinical diagnosis problems;
the use of inessential variables tends to increase the variance of classification estimates; and
classification with large number of variables provides no insight into causal relationships, insight
that can be important in guiding further empirical research. Hence, the twin problems arise of
finding among a large number of variables a small subset essential to and sufficient for,
classification, and of estimating the causal relations relating those variables to the target variable.

Recent work by Aliferis, et al. [2], has provided an important approach to the first of these
problems. In a two-stage procedure, Aliferis, et al., find a subset of variables estimated to
constitute the Markov Blanket of the target variable, i.e., the smallest set of predictor variables
conditional on which all other variables in the dataset are independent of the target variable.
They then use non-Bayesian classifiers with the reduced variable set, finding comparable
accuracy to the results of applying the classifiers to the full original variable set. If the joint
distribution of the full set of variables satisfies the Markov property for a directed acyclic graph
(DAG), and a converse property, faithfulness, both of which are specified below, and the
assumption that all common causes of variables in the original data set are also in that data set,
and any probability constraints assumed by the classifier also hold, their procedure is guaranteed
to find the correct Markov Blanket with probability 1 in the large sample limit.

The notion of a Markov Blanket (MB) for a variable X in a dataset D has two senses: it is the
minimal set of variables conditional on which all other variables in D are independent of X, and
it is also a DAG of that minimal set together with the target node. When the parameters of a MB
DAG are estimated, the result is a Bayesian network, which, using standard Bayesian updating
procedures, itself provides the basis of a classifier that assumes only a multinomial distribution
of the discrete variables. Bayesian networks also have a causal interpretation: a directed edge
from one variable to another, X -> Y, represents the claim that X is a direct cause of Y with
respect to other variables in a DAG, i.e., if other variables were to be held fixed at appropriate
values, and X were varied by an intervention (e.g., randomization), X and Y would covary [1, 3,].
An MB DAG can thus provide both a classifier and some insight into causal relations between a
reduced set of predictors and the target variable.

We describe a two stage algorithm that finds an MB DAG and uses it as a classifier with
conventional Bayesian updating. Our procedure uses the variables selected by the first stage of
the HITON algorithm to find a reduced set of variables. Our second stage, the PCX algorithm,
finds the MB DAG, further reducing the number of prediction variables needed, estimates the
parameters by maximum likelihood, and classifies cases. Using five data sets employed by
Aliferis, et al. [2], we show that the procedure results in a smaller number of predictors in all
cases than does the full HITON algorithm, while providing comparable classification accuracy
and yielding hypotheses about the causal structure of the system.



2. REPRESENTATION AND BACKGROUND ALGORITHMS

A Bayesian network is a DAG whose nodes are random variables with a joint probability
distribution that factors according to the product of distributions of each variable conditional on
its parents (i.e., variables with edges directed into it) in the graph. Equivalently, the distribution
and graph satisfy the local Markov condition: each variable is independent of its non descendants
conditional on its parents. A probability distribution is faithful to a DAG if and only if all
conditional independence relations in the distribution are consequences of the local Markov
condition applied to the DAG. Two DAGs are Markov equivalent if they imply the same
conditional independence relations by the local Markov condition. The Markov Equivalence
class of a DAG G, ME(G) is the set of all DAGs Markov equivalent to G. For variable set V and
variable X in V, the set of Markov Blanket variables in V for X, MB(V, X) is the smallest subset
of V not containing X such that X is independent of V \ MB(V,X). Given a DAG G with vertex
set V and a probability distribution P on V locally Markov for G, the Markov Blanket Bayesian
network for V, X, G, MB(G, V, X) is the subgraph of G on vertices MB(V,X) (less the edges
between parents of X and between parents of children of X) and the marginal of P on that subset.
The edge structure of MB(G, V, X) consists of the directed edges into X from the parents of X in
G, the directed edges from X into the children of X in G, and the directed edges from the parents
of the children of X in G into the children of X in G [4]. Classification by updating with MB(G,
V, X) [4] imposes no restrictions on the probability distribution of the target variable conditional
on the variables in the Markov Blanket beyond those implicit in the discretization and the
conditional independence constraints implied by the graphical structure and the Markov
condition.

In discussing previous literature and in our own procedure, we refer to the PC algorithm. The
orientation rules of the original presentation of the algorithm [1] are incomplete and the
complexity is sensitive to the implementation of the orientation procedure; our implementation
employs a complete set of orientation rules [14]. Assuming i.i.d. samples from a probability
distribution faithful to a DAG for the initial variable set, the PC algorithm converges probability
1 to a graphical object called a pattern or essential graph that represents ME(G) in the large
sample limit [1], a property we will refer to as soundness.

Some features of the PC output should be noted. The output of PC is a mixed graph with
undirected edges, directed edges, and possibly doubly directed edges. Variables adjacent—in the
output—i.e., connected by an edge of some kind—represent adjacencies common to all DAGs in
the conjectured Markov equivalence class. Doubly directed edges can arise because statistical
decisions yield combinations of conditional independence relations inconsistent with the Markov
and faithfulness assumptions for any DAG on the specified variable set. For example, if there are
unrecorded variables that influence two or more recorded variables, even if the joint distribution
on the unrecorded and recorded variables were faithful to a DAG, the marginal probability
distribution on the recorded variables may not be Markov and faithful for any DAG. In forming
an estimated Markov Blanket DAG from PC output it becomes essential to direct undirected
edges and remove one orientation in doubly directed edges. Further, the PC output will typically
have directed edges that may be in the underlying DAG, but are not in the MB DAG of the
target.

Complexity is dominated by the adjacency search. For a DAG whose vertices each have degree k
and n variables the adjacency stage of the algorithm requires C(2, n) 2" statistical tests (for k < n-



2). The actual degree of the DAG, if any exists, is of course unknown in advance. The PC
algorithm requires the user to set one parameter, used as the alpha value in tests of conditional
independence. Although the procedure has been criticized on this ground, the algorithm can be
implemented with decisions about conditional information measures, but there is little to be
gained thereby, since application of these measures likewise requires a threshold. Finally, the
results of PC are asymptotically correct in the following senses: edges not in the output are not in
the DAG; oriented edges in the output are in the DAG; orientations in the output are in the DAG

[5].

3. SURVEY

There are many studies applying Markov Blanket classifiers and comparing their accuracy with a
variety of alternatives, but fewer studies that generate the Markov Blanket from data, and those
usually for small numbers of variables. Theoretically correct Bayesian algorithms [4] for finding
DAGs are now known, but have not been applied to the problem of finding MBs for data sets
with large variables.

An exception is the work of Koller and Sahami [5] who use a heuristic procedure to find the
Markov Blanket variables in datasets with large numbers of variables. The heuristic is based on
two (not always true) assumptions, that the target influences the predictors, and that the variables
most strongly associated with the target are in its Markov Blanket. No classifier is studied. In
Kohler and Sahami’s experiments with large variable sets, one hundred or more predictor
variables remain.

Two algorithms similar to ours, GS [6] and IAMBnPC [7] have been proposed. GS uses a
measure of association with the target variable and conditional independence tests to find a
reduced set of variables estimated to be the Markov Blanket; it then applies an algorithm to
produce an MB graph and classifier. The second stage of the procedure is unsound. IAMBnC
uses a dynamical variant of the variable selection filter, followed by PC. How a graphical
Markov Blanket is obtained from PC output is not explained. A variant interlAMBnPC, [9]
interleaves the PC algorithm with the filter. On the standard ALARM network test example, PC
applied directly performs better than any of these algorithms, although PC is known to be
inferior on this structure to a Bayesian algorithm that searches over ME sets [8]. On simulated
data with 1000 variables, interl AMBnPC performed best; PC was not applied directly. A final
procedure, HITON, [2] on which we rely in this paper, supplements the dynamic variable filter
of IAMBnPC with a “wrapper” using any of several non-Bayesian classifiers, and then classifies
the target with the non-Bayesian classifier. A graphical MB is not produced. The results are
compared on five empirical data sets from a variety of domains each with a very large ratio of
variables to cases. We adapted the first stage of the HITON algorithm, which is described as
Figure 1.

Our study, using an algorithm PCX, similar to IAMBnPC, differs in three ways from these
valuable precedents. (1) our implementation of PC reduces the runtime of orientation rules and
maximizes orientation information; (2) we apply our procedure to the large empirical data sets
used in the Aliferis, et al. paper and compare the results; (3) the papers cited above give no
indication of how PC output, which for reasons given in the previous section is not itself an MB



or even a DAG, and is typically consistent with several such structures, is converted into an MB.
Any such conversion is somewhat arbitrary; we give an explicit algorithm for the conversion.

HITON-PC(Data D, Target 7)
“returns parents and children of 7
CurrentPC = {}

Repeat

Find variable Vi ( CurrentPC that maximizes association(Vi T) and
admit Vi into CurrentPC

If there is a variable X and a subset S of CurrentPC s.t. 7/(X : T | S))
remove X from CurrentPC;
mark X and do not consider it again in phase I

Until no more variables are left to consider

Return CurrentPC

HITON-MB(Data D, Target 7)

“returns a set of candidate Markov Blanket nodes of 7

PC = parents and children of 7 returned by HITON-PC(D, T)

PCPC = parents and children of the parents and children of T’

CurrentMB = PC U PCPC

// Retain only parents of common children

V' potential spouse X € CurrentMBand V Y € PC:
if—3 SC {Y} U V-{T, X}sothat L (T;X|S)
then retain X in CurrentMB

else remove it
Return CurrentMB

Figure 1: Pseudo-code for the first stage of HITON

4. DATA

The data we use were kindly provided to us by Aliferis et al. The data sets are described in Table
1. The thrombin problem concerns identification of biomolecules that bind to thrombin and have
potential as anti-clotting properties. [9] Prediction variables are molecular structural properties.



Arrhythmia data concern classification of subjects into 8 disease categories from clinical and
EKG data [10]. Ohsumed data concern identification of Medline documents relevant to neonatal
diseases [11]. The lung cancer problem requires diagnosis of squamus vs. adenocarcinoma from
gene expression data. [12] The prostate cancer problem concerns diagnosis of prostate cancer

from mass spectroscopy of human sera.

Table 1. Dataset Characteristics

Dataset | Thrombin Arrhythmia Ohsumed Lung Cancer | Prostate
Cancer

# 139,351 279 14,373 12,600 779

Variable

Variable | binary nominal/ordina | continuous continuous continuous

Types 1/continuous

Target binary nominal binary binary binary

Sample | 2,543 417 5,000 160 326

Size

C. V. |1 10 1 5 10

Folds

5. PROCEDURE

For each of five data sets, we use data and the initial variable filter of the HITON algorithm to
obtain a reduced set of variables relevant to the target. The algorithm PCX is then applied to
obtain a graphical MB, and the MB is tested on the data with varying cross validation folds
(chosen, for comparability, to be the same as in the HITON study), and the classification results
are given as confusion matrices (choosing the most probable value of the target for each case),
along with the area under the Receiver Operating Characteristic (ROC) curve (AUC). The
variables selected by the HITON filter and cross-validation samples were kindly provided us by
Aliferis, et al., and we use their projections of continuous variables to categorical values'.
Aliferis et al. apply HITON with several state-of-the-art classifiers, selected differently for
different data sets. Classifier parameters in their study were adjusted for each specific cross-
validation run. In our experiments, PCX has two adjustable parameters: the significance (or
alpha level) used in all independence tests in the algorithm and the depth of search used in the

! The discretization process was done by first normalizing the data. After normalization, the discretization routine uses the null
hypothesis to determine significance, with a=0.05. If not significantly associated, then discretize according to: 0 (less then -1
standard deviation); 1 between -1 and 1 standard deviation); 2 (greater than 1 standard deviation). If significant, and (1) a
binary chisquare test is done (tests for significance after ordering and testing, dividing at all possible points on the ordered set,
assigning values 0,1); (2) a ternary kruskalwallis test is done (using a sliding window of varying width to assign values after
ordering of 0,1,2), the parameters for the best of binary and ternary are used to discretize the feature, and values are assigned
0,1 or 0,1,2 respectively.




PC algorithm which is called by PCX. Depth of search in the PC component can be limited, but
we used unlimited depth in our experiments. Except in the case of a data set for lung cancer, in
applying PCX we pretest for alpha level and fix the alpha level in all cross validation runs. The
lung cancer data is an extreme case. It has 12,000 variables but only 160 samples. The
performance metrics become less stable at a fixed alpha level. The default alpha level used in
three of the cross validation runs produced no positives in the other two. In these two runs the
alpha level was adjusted upwards.

The PCX algorithm is described in Figure 2: The input parameters are D;: a training data set
with m variables and n samples; Dy, a test or prediction data set that has the same variables as
D; T: the classification variable; d: the maximum size of condition sets for the conditional
independence tests in PC search; and a is the significance level. The output is the graphical
Markov Blanket structure (MB) for T and the confusion matrix M.

For each classification problem, we use the variables from the HITON filter and the data as
inputs to the PCX algorithm. The classification procedure is tested with the same n fold cross
validation for each data set as used by Aliferis et al., training on 90% of the data and testing on
the remaining 10% of the data. We choose the alpha level for each problem from a preliminary
sample of the data. For each data set, the alpha level is constant for all cross-validation runs.
The * statistic with a significance level is used to test for statistical independence in the PC
portion of PCX. The p- value is used to select and order the associated nodes in the RAMSEY
subprocedure of PCX.



PCX (Data D,, Data D,, Target T, Depth d, Alpha a)

“returns a graphical Markov Blanket structure (MB) for 7 : MB(T) and the confusion matrix M”
V (T) = RAMSEYProcedure(7)

Repeat

V (Vi) = RAMSEYProcedure( Vi), where Vi & V (T)

Until no more variables are left to consider

V=V () U V() (i=1...m)

Run the PC algorithm over V

//The result is a pattern P, possibly with double headed or undirected edges
V double headed edge Vi <> T €P, or undirected edge Vi— TEP :
replace the edge with T— Vi
Delete all edges adjacent to parents of 7, except for the edges from the parent to 7’
V double headed edge Vi <> Vj €P, or undirected edge Vi—Vj EP:
If Vj is a child of T"and Vi is not
replace the edge with an edge Vi — Vj
else if (Vj and Vi are both the children of T) or (neither ¥j nor Vi are the children of T)
delete this edge
Delete all edges into parents of 7 or parents of children of T
Delete all edges out of children of T

For each remaining node that is neither a parent of 7, nor a child of 7, nor a parent of a child of 7,
delete the node.

//the resulting graph is a Markov Blanket of 7> MB(T)
Classify cases by Bayesian updating using MB(T)
Return MB(T) and M.

RAMSEYProcedure(Target X)
“returns a set of associated nodes to X: V(X)”

For X, find the set of variables V (X) that are associated with X; Order them by their strength of
association with X by the associated p- value.

For each Vi in V (X),
if (3Vj inV(X),sothat L (Vi; X|Vj ))or(3Vjand Vkin V(X),sothat L (Vi, X|Vj,Vk))
remove Vi from V(X).

//Test the variables with lowest association with X first, and condition first on variables with highest
association with X.

Return V (X)

Figure 2: Pseudo-code for PCX




6. RESULTS

In Table 2 We show the task-specific performance averaged over cross-validation runs. The
results by PCX are compared with the results by HITON algorithm averaged over the
classifiers. We give the average AUC, the average prediction accuracy and the number of
predictor variables.

We show the best fitting MB DAG for the five experiments (figure 3). The number of times
each edge occurs in all repeated cross validations is shown in parentheses.

Table 2. Average performance comparison (PCX / HITON over the state-of-the-art

classiﬁersz)

Data sets Thrombin | Arrhythmia Ohsumed Lung Cancer Prostate
Cancer

Accuracy 94.50 /NA | 63.39/65.85 89.5/NA 94.21 /NA 93.76 / NA

AUC 82.18/ NA/NA 81.22/83.04 | 92.28/97.60 | 94.45/96.14

92.70

#Predictor 23/32 12/63 22 /34 7/16 13/16

Variables

Variable 6059 /4354 233/4.4 653.3/422.7 1800/ 787.5 59.9/48.7

Reduction®

C. V. Folds 1 10 1 5 10

2 Classifiers include polynomial-kernel, Support Vector Machines, K-Nearest Neighbors , Feed-forward Neural Networks,

Decision Trees, Naive Bayes Classifier

? Variable reduction = the original number of the variables / the number of the predictor variables
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(4)
V12468
V5963

{c) Markov Blanket DAG for Lung Cancer

(8)
(5)

(10)
\Vf‘n’/ V270

{b) Markov Blanket DAG for Arrhythmia

Figure 3: MB DAGs
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(&) Markov Blanket DAG for Thrombin

Figure 3(cont.): MB DAGs

7. DISCUSSION

On average PCX reduces the set of predictor variables to 46% of those used in HITON, in some
cases to a sufficiently small set for entry into hand calculators or paper and pencil decision
procedures in clinical settings and simplifying genetic marker identification. On the four of the
five empirical data sets it procedures excellent classification results using the most probable
value of the target variable as classification criterion. The Arrhythmia data set is difficult for all
classifiers considered. The AUC results for PCX are slightly poorer than the average of the
classifiers used in the Aliferis, et al. study. The worst one, the thrombin data set, yields 10.5%
lower AUC than HITON. In each data set some directed edges are robust over almost all cross
validation runs, but there is considerable variation. Heuristic Bayesian search procedures could
provide probability values assigned to each edge, but nothing seems to be known about the
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calibration of such probabilities—i.e., how frequently an edge with a given probability occurs in
searches over datasets from a wide sample of DAGs and with varying sample sizes.

It is possible that different graphical MBs consistent with the PC output would give slightly
different classification results. The rules used in converting PC output to a graphical MB are
chiefly arbitrary in these respects (1) Undirected and bidirected edges between a child of the
target and another non-target, non-child variable are replaced by edges directed into the child.
This shows a preference for including selected variables in the final MB. (2) Undirected and
bidirected edges adjacent to the target variable are replaced by directed edges out of the target
variable. This shows a preference for a smaller number of parameters. (3) Edges between
children are deleted, principally to avoid the trouble of checking for cycles. In any particular
case these choices might be suboptimal decisions and an iterative post-search that investigates
alternative orientations and further edge additions among the final variables might be
preferable.

The removal of bidirected edges from the graphical MB involves a loss of potentially important
information about causal structure, since with PC such edges indicate that unrecorded variables
contribute to the association between the two adjacent measured variables. Hence the causal
claims implied by the MB DAGs shown in our figures cannot be taken literally in many cases.
A sound algorithm, FCI, is available for identifying aspects of causal structure when latent
variables may be present, and could be substituted for PC in the PCX algorithm, but it is
considerably slower than PC.

It should be noted that the part of the HITON procedure we have used does not in general
correctly identify variables adjacent to the target, although in principle it correctly identifies the
union of the set of variables adjacent to the target and the set of variables adjacent to those
variables.

The PCX algorithm could easily be improved in several ways. (1) the speed of the algorithm
could be increased by giving the PC algorithm information about which edges were removed by
the HITON procedure--those removals are sound, and the PC algorithm accepts such
background knowledge; (2) the procedure could be followed by a heuristic search that changes
the directions of some edges, particularly making children of the target into parents, and
possibly adds edges; (3) it is impossible to simultaneously estimate parameters in MB DAG
models in which there are many multivalued parents because the contingency tables become too
large to store, a limitation that could be overcome by dynamical maximum likelihood estimation
of the conditional probability for each test instance as it arises; (4) a few cases in the test set for
which the predictors have values that do not occur in the training set are simply passed in the
present implementation—they could be estimated uninformatively with uniform Dirichelet
priors instead of maximum likelihood, but that would essentially give the same prediction for
every such case; better, in keeping with (3), the probability of the target for such could instead
be estimated by the average of the probability of the target on the nearest similar cases
represented in the training set, weighted by the frequency of their occurrence. We have not
implemented any of these improvements for lack of time.

This work, and previous work on producing a graphical Markov Blanket for classification, does
not address the interesting problem of simultaneously building classifiers for all variables in a
large variable data set, or the problem of discovering a causal model for all variables in such
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data. A variety of heuristic procedures have been proposed, but no sound procedure that is
faster than PC seems to be known as yet.
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