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Abstract

We investigate the use of Boltzmann machines in semi-supervised classification.
We treat the labeled / unlabeled dataset as a Markov random field, and derive a
Boltzmann machine learning algorithm for it to learn the feature weights, label
noise and labels for unlabeled data all at once. We present some Markov chain
Monte Carlo methods needed for learning, and discuss the need to regularize
model parameters. Preliminary experimental results are presented.
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1 Introduction

In many classification applications, labeled training data are scarce but unla-
beled data are abundant. It is very useful if we can use unlabeled data to aid
labeled data in learning a classifier. Semi-supervised learning deals with exactly
this problem [See01]. We assume the dataset in question has the property that
nearby (under some local distance metric, e.g. Euclidean) data points tend to
have the same labels. Under this assumption the spatial distribution of data,
revealed by large amount of unlabeled data, is correlated to classification. We
can propagate labels from labeled data to the whole dataset through dense
unlabeled data regions.

We formulate the problem as a Markov random field, with nodes being all
data points, and edge weights a function of the local distance metric. We pro-
pose the use of Boltzmann machine to learn parameters that maximize the
likelihood of labeled data, and to compute the labels on unlabeled data. The
Boltzmann machine model allows for the learning of individual scaling factors of
each dimension, and the learning of label noise. We derive the gradient ascent
formula, and suggest several Markov chain Monte Carlo sampling schemes to
facilitate learning. We present preliminary experimental results, and discuss the
need to regularize the parameters.

2 Boltzmann machine model

2.1 Problem Setup

Let (z1,y1)-..(x1,y1) be labeled data, where Y, = {y1...yi} € {1...C} are
the class labels. Let (zi11,y141) - - - (Zi4u, Yi+w) be unlabeled data where Yy =
{Y14+1-..Y1+o} are unobserved, usually I < u. Let X = {z1...214,} € RP.
The problem is to estimate Yy from X and Y7.

Intuitively, we want data points that are close to have similar labels. So we
define our model as

H+u

P(YIX) = 2 expl3_ 3 6ui,u)As] M

i=1 j<i

where Z is the partition function. A;; is a non-negative decreasing function
of some distance metric over data points. For any give pair of points z;,z;,
the label configuration Y in which they have the same label is thus exp(A4;;)
times more likely than a configuration where they have different labels. A;; in
the simplest case decays exponentially with regard to the Euclidean distance
d;; between z;,x;, with a single hyper-parameter 0. We will discuss a more
complex model later. Other choices of distance are possible e.g. when z is



discrete. The complete model for now is

IHu 2
1 &,
P(Y|X)=_exp | D> 0y exp(—55) (2)
i=1 j<i

Eq.(2) defines a fully connected Boltzmann machine [AHS85] over all data
points. A;; are the connection weights, which are tied together by o. Note
when d;; = 0, A;; = 1, and when d;; > 30, A;; = 0, i.e. o acts like a threshold
on interaction range. With the model, we can compute the likelihood of labeled
data P(Y|X,o). We find the maximum a posteriori (MAP) estimate of o:

opMAP = argmgxP(a|X,YL):argmgxP(YﬂX,a)P(a) (3)
= argmax » P(Yy,Yy|X,0)P(0) (4)
a
Yu

The MAP labeling of the unlabeled data can be inferred from
y AP = argfgaxp(yilYLyXa omar),Yi € Yu (5)
which is in fact a by-product of estimating oarap, as shown later.

This model should find the optimal parameter, and allow labels to propagate
through high density regions as defined by unlabeled data.

2.2 Learning by Gradient Ascent

We use gradient ascent to find the oy, 4p. The gradient consists of two parts:
9 1og P(o]X, Y1) = 2 log P(V2|X,0) + - log P(0) (©)
9o BN IL) = 5 08 UL, 0) T 0B SR

First we consider the gradient on the log likelihood of labeled data. It can be
shown that

% log P(Y;|X, 0) (7
- 7P(YLTX,0) %P(YHX,U) (8)
= P(YLTX,U)YZU%P (¥2,YulX, 0) ©)
= m%}:P(YL,YU|X,U)£logP(YL,YU|X,a) (10)
= YZP(YU|YL,X,U)(;%logP(YL,YU|X,a) (11)
v
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d;;
= ZP YulYr, X, o —[ZZ(S Yi,Y;) exp(— ) log Z)

(12)

(14)

=1 j<i
I+u d o
= S POV, X, o) (3 3 (i) exp(— 5 )] — o log 2 (13)
Yu i=1 j<i
I+u d P
= <—[ZZ<5 yiUj) exp(= 5 5)] >e —5-log Z
=1 j<1i

where <>, stands for the expectation under the clamped phase where Yy, is

fixed and only Yy can change. The last term

0

% log Z

19

Z 0o

I+u

= ZZ(? eXp[ZZ(Sylayj exp(— 2d )]

i=1 j<i

I4+u

(15)

(16)

(17)

_ ZeXp[E Z]<z éylay])exp [ZZ& y“yj exp _%IH

Y i=1 j<i
I+u d
= D_P(V|X,0) [226 i, ) exp(—5 5]
Y =1 j<1i
I4+u

= ZZfSyz,y, exp(— ;)]

=1 j<i

(19)

(20)

(21)

where <>, is the expectation under the unclamped phase where all labels of Y

are allowed to change freely. Put it back and we get

glogP(YﬂX, o)

IHu IH+u

d d..
= <225y,,y1 exp(— 5.5) 53 —<225y,,y] exp(— 2’

=1 j<1i i=1 j<i

d )
= < ZlogP(Y|X e — < —log P(Y|X,0) >,
< 3508 P(Y|X,0) >c — < 5~ log P(Y|X, 0) >

(22)
&,
)—5 (23)

(24)

That is, the gradient for the log likelihood is the difference of the expected
gradient of negative energy function, between clamped and unclamped phases.

This is a standard Boltzmann machine learning problem.

For the time being we assume a flat prior which contributes nothing to the

gradient. Later we will discuss the use of different priors.



3 Computing the clamped and unclamped ex-
pectations

3.1 Enumeration

Clearly the expectations <>, and <>, are impossible to compute exactly for
nontrivial datasets. However as a first step, we implemented the Boltzmann
machine with an enumeration algorithm. That is, we enumerate all possible Y
and compute the probability for each and every one of them. The advantage is
that nothing is approximation, and we can have a precise understanding of the
proposed framework. Obviously the computation is exponential to the number
of data points, so we can only work with very small datasets. In particular, on
a 1Ghz Linux machine, it takes 6 seconds to perform one step of hill climbing
with a dataset of 16 points. We change the hill climbing step size dynamically:
if several previous hill climbing steps were successful, we increase the step size;
if overshoot happens, we return to the last good parameters and reduce step
size. Hill climbing stops when the step size is reduced below a small threshold.

3.2 Gibbs sampling

Instead of enumerating every possible Y, we can use Markov Chain Monte
Carlo (MCMC) methods to sample Y’s [Nea93]. MCMC methods allow us to
handle larger problems, at the cost of approximation. Note asymptotically we
are still guaranteed to get the correct solution, which is different than other
approximations like mean field [PA87] [JGJS99].

We start from Gibbs sampler for its simplicity. We need to sample from the
clamped distribution P(Yy|Yz, X, o) and the unclamped distribution P(Y'|X, o)
respectively. To sample from P(Yy|Yz, X, o), we note

JFi
P(y; = c|(Yu)—i, Y1, X,0) ~exp | D Ay (25)

Yij=c¢

fori=({+1)---(l+u),c=1---C. We need to clamp Y. We start from an
arbitrary Yy, hold all but y; 1 fixed, sample y;1 1 from P(y;41|Y_(141), X, 0), and
loop through y; 12, - - -, y1++ and repeat. We need appropriate burn-in time, and
set an appropriate interval to take out a sample Y out of the chain. Similarly, to
sample from the unclamped distribution P(Y|X, ), we use the same scheme,
except that the labeled points are not fixed now and also participate in the

sampling.
Given samples Y}, ---, YN from the clamped distribution and Y}, ---, YV«
from the unclamped distribution, the gradients (24) can be approximated by
189 1 49
N Z:jl 5o 108 PTIX,0) = 5~ 2:‘1 55 g P(V1 X, 0) (26)



The log likelihood of the observed labels can be estimated from unclamped
samples:

N.
1 M
L =~ log N E PYX,0)0((Y)L,YL) (27)

n=1

This estimated log likelihood is very crude and should only be trusted on small
datasets.

3.3 Gibbs sampling with global Metropolis step

The Gibbs sampler has a hard time producing global changes. One kind of
global change that is prominent in our model is the global permutation of labels.
For example if the dataset consists of two tight clusters, one with class 1 and
the other class 2, then the opposite labeling is usually about equally likely.
But Gibbs sampler can take a very long time to swap the two classes. We
can perform a global Metropolis step after several Gibbs steps. The proposal
distribution is as follows: pick a permutation 7 of labels uniformly from all
permutations, then propose to jump to the new state 7(Y) = 7(y1) - - - T(Y14)-
This proposal distribution is symmetric. We accept the proposed new state with
the Boltzmann acceptance function, i.e. we accept it with probability

Pr(Y))
P(Y) + P(r(Y))

otherwise we stay at state Y. We take out a sample from the chains after every
big step, which consists of several Gibbs steps and the Metropolis step defined
above.

3.4 Swendsen-Wang sampling

The above scheme is not sufficient either: it cannot allow clusters to change
labels independent of other clusters. As a result, the statistics we obtain tend to
have large variance. The generalized Swendsen-Wang algorithm [SW87] allows
large label changes at the level of clusters. We derive the algorithm for our
model below.

Assume A;; <1 (true in our model). First we look at the unclamped phase.
Let us slightly modify the representation of our model so that each factor is
within [0, 1]. This of course does not change the model:

I+u
PYIX,0) = Zexp | 3 30,545 — 1) (28)

i=1 j<i



Following the notation in [Nea93], we write it as

1
P(Y|X,0) = — H Wi; (V) (29)
i,
where 4 )it
exp(Aj; — 1) ify; =y;
Wi (V) = J . J 30
u¥) { exp(—1) if yi # y; (30)
Next we introduce auxiliary variables z;; € [0, 1], with the joint distribution
1 -
P(Y,z|X,0) = - H EWi(Y) — 2i5) (31)
l’]
Z 11| E(exp(-1) — 2i5) if yi # yj

2,7

where Z(w) is the ’hard sigmoid’ function, i.e. 1if w > 0, 0 if w < 0. We can
now look at yet another binary random variable D;;, which is determined by
the value of z;;

_J 1 if z; € (exp(—1),exp(A4i; — 1))

Dij = { 0 otherwise (33)
The reason we introduce this extra level of sophistication is because we can do
Gibbs sampling iteratively by first fixing ¥ and sample D;;, and then fixing
D;; and sample Y. Both conditional distributions have nice forms, and the ¥
samples conform to P(Y|X,o). In particular, sampling D;; given Y can be
thought of as putting bonds between the nodes with the following probabilities:

o _ ) T—exp(—Ay) ify; =y,
P; =11 ={ 4 s e

Intuitively, a bond is possible only between nodes with the same labels; and the
closer the nodes, the more likely a bond there is. On the other hand, to sample
Y given the bonds D;;, the conditional distribution is

- 1 ify;=y;orD;; =0
P(Y|D1J) X H { 0 if Yi # Yj and Dij =1 (35)
2]

Intuitively, the bonds divide Y into several connected components. And all we
have to do is to uniformly randomly assign a label to each component as a
whole.

To run a MCMC chain for the clamped distribution with Swendsen-Wang
algorithm, all remain the same except when there are labeled data in a connected
component, the component must be assigned the label of the labeled data.



4 Model extension: allowing label noise

4.1 The extended model

In the basic model (section 2.1), labels are assumed to be noiseless. In this
section we will extend the model to allow for label noise. Specifically we treat
the labels of labeled data as noisy observations of their true (hidden) labels. Let
(z1,01),...,(z1,01) be labeled data where Or, = o1, ...,0; are observed labels.
Let (zi41,0141),- -, (Titu,011+) be unlabeled data where Oy = 011, ..., 0144
are unobserved. Let yi1, ...,y be the true labels.

We construct a Markov random field in which the nodes are o1, . .., 0144, Y1, - - - » Yitu-
There are two sets of edges: The first set fully connects all y nodes and models
data point proximity; The second set connects o; to y; for ¢ = 1...(l + u) and
models label noise.

We define a new Boltzmann machine p(O,Y|X, ©) as follows:

IH+u I+u C +u C C
—eXp ZZ‘S Yi, Yj Azj+zz(5yza /Bc‘i‘zzzfsoz; (yi,c )e’ch'
i=1 j<i i=1 c=1 i=1c=1c¢'=1

(36)
A;j is parameterized by some hyper-parameter «. 3. defines class priors. 7.
defines a cost matrix for mislabeling a class ¢’ as ¢. The parameters of the
Boltzmann machine are © = {a, 8,v}. As before we learn the MAP parameters

o* =argmgxp(®|OL,X) (37)

The gradient of the log likelihood is

0
<36 log P(0,YX,0) > (38)

As an example, define A;; so it decreases exponentially with the distance in
each dimension, but at different speed:

0
log P(O,Y|X
< 55108 P(0,Y|X,0) >

D(d d)2

Aij = exp{ao — Z ZeT]} (39)
d=1
a = {ayg,...,ap} are similar to the length scales in Gaussian process. We also

assume all classes have the same confusion probability of being mislabeled as a
different class. Under these assumptions, p(O,Y|X, ©) can be written as

I+u (.’L‘ —IL‘ I+u C l+u
_eXP D0 iy eXP{ao—Z p— }+ZZ5 yirc ﬂc+26 0i Yi)e
i=1 j<i d=1 p d i=1 c=1
(40)



Note we use the parameterization e®¢ and e” instead of a4 and 7 to implicitly
force them to be positive, reflecting our belief that (a) closer distance means
stronger interaction; (b) label noise are not so strong as to invert majority of
the true labels. Simple calculation shows

6 I+u

%IOgP(O’YlX’@) = ZZé(yz,yJ)A” (41)
i=1 j<i

o I+u ( @)2

— 1ogP(0,Y|X,0) = 8(yi,y;) A 42

Fa; 08 P(0:Y X, 0) ;; Wiy i = o (42)

9 I+u

93 log P(0,Y|X,0) = > (yic),c=1,...,C (43)

¢ i=1

o I+u

57 0B P(0,YIX,0) = 3 (o, yi)e” (44)
i=1

4.2 Speed Up

We doubled the size of the Markov random field by introducing O. It seems
computation will be much slower. But we show that in fact we only need to
work with Y during computation, so the speed is close to the basic model. First
let us define some shorthand notation:

I+u I+u C
FY|X,0) = Y > 6(yi,u)Ay+ > 6y )b (45)
i=1 j<i i=1 c=1
l
G(OL,Y|X,0) = F(Y|X,0) +ZZZ§ 01,)0(yi, )e (46)
=1 c=1¢'=1
+u C C
H(O,Y|X,0) = G(OL,Y|X,0)+ Y > 8(0i,c)d(yi, c)e=" (47)
i=l4+1 c=1c'=

In the unclamped phase, note

p(Y|X,0) = Y P(0,Y|X,0) (48)
0
I+u
= Z exp[F (V] X, ©)] ] expld(oi, y:)e™] (49)
i=1
1 I4+u C
= —exp[F Y|X,0)] Hzexp 0, yi)e"] (50)
i=10;=1



where

IH+u

_ % explF(Y1X,0) [[(C — 1+¢) (51)
= ZLF exp[F(Y|X,0)] (52)
(53)

Zp = Zexp (Y|X,0)] (54)

P(Y|X,©) has the same function form of p(0,Y X, 0©), except without the last
term in the exponent. This is not surprising given that O and Y only interact
through the last term. P(Y|X,©) is sufficient to compute the expectations
of gradient of @ and 3 under the unclamped distribution. If we can do the
same for v, we would only need to sample from P(Y|X,©) and not the joint
probability P(O,Y|X,©). Let’s look at the expectation of gradient of v under
the unclamped distribution:

There

0
< 5, H(0.YIX,0) >, (55)
= Y w0.YIX,0) 2 H(0.¥IX,0) (56)
oy
O Y
I4+u
= > p(Y|X,0) Zp OlY) > b0, yi)e (57)
Y i=1

I+u

expy_, 0(0i,yi)e”
:E:YXGE 560,,, 58
> | 20 expY_; 0(0, yi)e” Y (58)

are
CL (C — 1)UHu=k) (59)

different O’s that have exactly k states the same as any given Y, for k =

0,

l+u and Clk+u S (e ) LG | S

Rt u—Fk)!
(58) (60)
I+u
Zp Y|X, 0) ch 1)) exp(keY)ke? (51\
+’u Zl-‘ru Clk_;_u( _ ]_)(l+u k') eXp(k
l+u Cl+u(c _ 1)(l+u—k) (ee“/ )kke'y (62)
’+“ I CH (€ = 1)Eu—k) (e )
(y+e™) _ e\ (l+u—1)
(I +u)e (C—1+e%) (63)
(C -1+ ee'V)(H-u)
(v+e")
I+ uwe (64)

(C—1+e)



which is a function of v only. Therefore everything we need during the un-
clamped phase can be obtained from P(Y|X,©).

In the clamped phase, the value of O = o01,...,0; is fixed. It is easy to
verify that

I+u
P(Y,00]01, X, 0) = Zl, xp{G(OL, YIX,0)+ 3 d(ony)e’}  (6)
i=l+1

By similar argument, we have the marginal distribution
1
P(Y|Or,X,0) = Z—exp[G(OL,Y|X, 0)] (66)
G

from which we can compute the expectations of gradient of a and 8 under the
clamped distribution. As for +:

0
< aH(O,Y|X,®) >

= ZZPYOUloLaX 6) (03Y|Xa®)
Y Ovu
+u

- Zp(YlOL,X, 0) Zp(OUlY) Z 6(0i, yi)e
Y Ou i=1

l I4+u

(69)

= ZP(Y|OL,X,@)Z eXpEz—l+1 (Oi,yi)e’y [Z Oz;yz Z 501;3/107@
Y

I+
Oy Eo' exp ) ;- 7+1 80, yi)e? i i=l+1

Similarly, there are C¥(C — 1)(»=*) different Oy’s that have exactly k states the

same as any given Yy, for k = 0,---,u. Continue, we get
ke)
(Y01, X,0) 3 ck(C - 1)=» il
Zp | L, Z ZZ’:O C{j’ (C — 1)(u—k’) eXp(k’e")
. [Z 0(0i,y:) + kle¥ (71)
i=1
! u —
Sy CE(C = 1)@P expke)
= YO X 6 6 1y I v u — ’ !
Zp O Z ol S CE (C = 1)) exp(ke)
Ek! Ck ( 1)(u k ) exp(k'e”’)
! (v+e™)
ue
- Y0z, X oy +
;p( 0L, ,@)[25(0 vile' t oo (73)

which can be obtained from P(Y|Opr, X, ©) too.

10



The log-likelihood L of the observed labels can be monitored, if desirable,
by

L = log) Y P(Or,00,Y|X,0) (74)
Y Oy
+u
= 1053 Y 2 (@Y, 00)ep( Y Slopue”)  (75)
Y Oy i=l+1
= log 2 Y exp(G(Y,00))(C ~ 1+ )" (76)
Y
= log %(C —1+4e ) (77)

where the partition function

Z = ) > expH(0,Y|X,0) (78)
Y o
= > D epFEQX)+ lf 8(0i, yi)e") (79)
= i ezp(F ()(C - ller et (80)
= ZYF(C —1+4¢)Hw) (81)
therefore .
£ (82)

—1
B Zo(C—1+e)

5 Experiments with a flat prior over ©

5.1 Boltzmann machines with fixed parameters

Before we present parameter learning, it is useful to show the behavior of Boltz-
mann machines with fixed parameters. The parameters used in this section
are not arbitrary: they are selected from results of the best parameter learning
trials. All computation in this section is done with enumeration, so they are
exact. We present 4 synthetic datasets.

Synthetic Dataset 1: Double Arcs

This dataset has 16 points which form two arcs, as in Figure 1(a). On different
ends of the arcs, 21 and z1¢ are labeled as class ‘0’ and ‘+’ respectively. We hope
the class of x; will propagate all the way to xg through the upper arc, and simi-
larly for z1¢ in the lower arc. The parameters are ag = 1.1, a3 = 0.8, aa = —1.9,

11



B1 = P2 =1, v = 1.6. The labels and posterior probabilities P(y;|Or, X, ©*)
are shown in Figure 1(b) and Table 1. As expected, the Boltzmann machine
thinks zg is more likely to be in class ‘0’ even though it is closer to 215 ‘+’ by
the original Euclidean distance. This result shows the ability of the Boltzmann
machine to exploit high density regions defined by unlabeled data.

6 6
4 1 4
. o o
2 ! *g 2 x o © o x
o b o
0 0
+ +

-2 20 X T L T Xy

X

9 16
-4 -4
-6 -6
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

(a) Observed Labels o; (b) Computed Labels y;

Figure 1: Double Arcs Dataset. Labels travel through high density regions. In
the input data, z; and z16 are labeled with the 2 classes ’0o’/’+’ respectively,
and 14 points are unlabeled. Under the parameters, the Boltzmann machine
assigns the labels in (b). The probabilities of these labels are listed in Table 1.

Table 1: P(y; =’0’|0Or, X, ©*) for the Double Arcs dataset.

Y1 Y2 Ys Y4 Ys Ye Yr Ys
0.995 | 0.591 | 0.537 | 0.525 | 0.519 | 0.513 | 0.505 | 0.501
Yo Y10 Y11 Y12 Y13 Y14 Y15 Yie
0.499 | 0.495 | 0.487 | 0.481 | 0.475 | 0.463 | 0.409 | 0.005

Synthetic Dataset 2: Connected Arcs

We add another unlabeled data point x17 in the middle of z; and zg, as in
Figure 2(a). x17 serves as a bridge that connects the two arcs. We predict that
01’s influence will then reach the lower arc through z;7. We use parameters
ag =95, a1 = —2.0, a2 = 0.3, 81 = 0.1, B3 = —0.03, v = 1.9, and the results
are shown in Figure 2(b) and Table 2.

12



4 4
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2 ! 8 2 X o © o 5 8
O O O
X 17
O 0 o
2 N 2 © O + *
X, SR X6 X © o o T 16
-4 -4
-6 -6
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
(a) Observed Labels o; (b) Computed Labels y;

Figure 2: Connected Arcs Dataset. x17 connects the two arcs so the influence
of o7 is propagated to the lower arc. The probabilities of these labels are listed
in Table 2.

Table 2: P(y; =’0’|0Or, X, 0*) for the Connected Arcs dataset.

Y1 Y2 Ys Ya Ys Ye Yr Ys
0.999 | 0.930 | 0.745 | 0.621 | 0.578 | 0.558 | 0.584 | 0.582
Y17
0.923

Yo Y10 Y11 Y12 Y13 Y14 Y15 Yie
0.913 | 0.923 | 0.765 | 0.615 | 0.525 | 0.369 | 0.116 | 0.002

Synthetic Dataset 3: Cube with Irrelevant Dimensions

To demonstrate a Boltzmann machine’s ability to ignore irrelevant dimensions,
we create a synthetic dataset by uniformly sampling 20 points from the unit cube
[0,1]3. We label 16 of them with class ‘0’ if the first dimension z! < 0.5, and class
‘+’ otherwise. So by design the z? and z* dimensions are irrelevant. Figure 3
shows the projected data. We fix parameters at ag = 0.9, a3 = —4.8, as = 1.3,
ag = 1.0, 8y = 1.0, o = 1.0, v = 2.2. (the parameters are automatically
learned. Note a; is much smaller than as and ag, which means that the machine
pays much more attention to distinctions along the z' dimension). Table 3 gives
the results under these parameters.

Synthetic Dataset 4: Noisy Labels

Yet another property of the extended Boltzmann machine is its ability to handle
label noise. Figure 4(a) shows such a dataset. There are two clusters of data
points, with x; and z, intentionally mislabeled. There is no unlabeled data.

13



Figure 3: Cube with Irrelevant Dimensions.
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0 0.2
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3

Only the first dimension z

1

is

Table 3: Results of the Cube dataset. P(y;) stands for P(y; = ‘0'|0L, X, 0).

:1:,1 0.065 | 0.097 | 0.189 | 0.280 | 0.355 | 0.397 | 0.405 | 0.425 | 0.468 | 0.546
0; 0o 0 0o 0o . 0o . 0o 0o +
Yi 0 o] 0 (o) 0 0 o o o +
P(y;) | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 0.999 | 1.000 | 1.000 | 0.001
:c} 0.670 | 0.729 | 0.733 | 0.736 | 0.802 | 0.817 | 0.916 | 0.956 | 0.961 | 0.970
0; + + + + + + + . . +
Yi + + + + + + + + + +
P(y;) 0 0 0 0 0 0 0 | 0.002 | 0.002 0

We show the result with parameters ag = 1.8, oy = —6.9, as = 1.1, p; = 1.0,
B2 = 1.0, and v = 1.0. The Boltzmann machine believes that z; is mislabeled,
and corrects it with high confidence as expected (see Figure 4(b) and Table 4).
However it thinks x5’s observed label 0; = ‘0’ is probably correct. This behavior
is somewhat counter-intuitive, but can be explained by the fact that there is
no a priori notion of decision boundary or margin encoded in the Boltzmann
machine. That is, although z» ‘looks’ like having a large margin to the imaginary
vertical decision boundary between the two clusters, the machine has no such
knowledge. What is important here is that the density of x2’s neighbors is lower
than that of z1’s, and this allows x5 to keep its label.

Table 4: The Noisy Labels dataset. P(y;) stands for P(y; = ‘0'|Or, X, ©).

left cluster right cluster
x1 | other zy | other
0; + o 0o +
Yi 0 o o] +
P(y;) | 0.999 | > 0.998 | 0.808 | < 0.001
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Figure 4: The Noisy Labels Dataset. z; and z»2 are intentionally mislabeled in
(a). The trained Boltzmann machine (b) corrects x;’s, but not z2’s, label. The
label probabilities are given in Table 4.

5.2 Sensitivity to initial parameters during learning

In this section we show that our parameter learning is sensitive to initial param-
eters. The Boltzmann machine training algorithm is a hill climbing procedure,
and the likelihood function has multiple local maxima in general. To see how
sensitive the training is to initial parameters, we randomly generate random
initial parameters as follows. Consider the true labels of two overlapping points
Yi, yj- Very roughly, the likelihood ratio of such overlapping points having
the same label versus having different labels is P(y; = y;)/P(y; # y;) = e*™°
We arbitrarily specify the range of the likelihood ratio to be [1.01,1000], which
translates to uniformly sample from

ag € [-4.61,1.93]

For the scaling factors, we specify the range e*¢ € [min; j(zf—x4)/5, max; ; (zf—
:c;?)2 x 5], for d = 1--- D, ranging from very sensitive to very flat in that dimen-

sion. That is, we uniformly sample from

aq € [log(min(af — «§)?/5),log(max(zf — z§)* * 5)]
1,J 2y

For class priors, we let them be between 0.1 and 0.9. In binary classification,
we have roughly P(y = ¢;)/P(y = c) = e®1=82)_ We can fix 3; and sample Ss:

B1 =0,082 € [—2.20,2.20]

For noisy labeling, roughly P(y; = 0;)/P(y; # 0;) = e . Let P(y; = o;) range
from [0.6,0.999] so we sample from

~ € [-0.90,1.93]
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We randomly generate 10 sets of initial parameters for each synthetic dataset
above, and perform parameter learning starting from each set. Hill climbing
stops when the log likelihood converges (or increases very slowly). The re-
sults are listed in Table 5 — 8. Each table lists the random initial parameters,
the learned parameters, the log likelihood of Of, and the ‘y’ column indicates
whether the resulting labels Y are the same as the examples in the previous
section.

Table 5: Hill climbing starting from 10 random initial parameter sets for the
Double Arcs dataset. oy € [—4.56,6.21] and ay € [—5.20,4.81].

Trial | o o Qs B B2 Y L y

#1 starts | -4.008 | -3.401 | -3.105 0 -0.096 | 0.692
ends | -4.008 | -3.401 | -3.105 | -0.048 | -0.048 | 0.691 | -1.386

#2 starts | 0.876 | -4.083 | -1.549 0 -1.338 | -0.285
ends | 0.876 | -4.083 | -1.549 | -0.669 | -0.669 | -0.796 | -1.386

#3 starts | -1.986 | 4.661 | -0.934 0 -1.202 | 0.774
ends | -2.043 | 4.646 | -0.975 | -0.601 | -0.601 | 0.514 | -1.386 | yes

#4 starts | -3.417 | 2.636 | -2.509 0 -1.067 | 1.214
ends | -3.418 | 2.636 | -2.510 | -0.534 | -0.534 | 1.130 | -1.386 | yes

#5 starts | 1.692 | 5.323 | -2.202 0 -0.932 | 1.035
ends | 1.468 | 5.289 | -2.668 | -0.466 | -0.466 | 0.487 | -1.386 | yes

#6 starts | -0.982 | -1.416 | -5.026 0 1.128 | 1.209
ends | -0.982 | -1.416 | -5.026 | 0.564 | 0.564 | 1.112 | -1.386

#7 starts | -3.474 | 2.334 | -4.476 0 -0.072 | 0.563
ends | -3.474 | 2.334 | -4.476 | -0.036 | -0.036 | 0.562 | -1.386

#8 starts | 0.308 | 4.575 | -3.976 0 -1.172 | -0.235
ends | 0.227 | 4.520 | -3.976 | -0.586 | -0.586 | -0.653 | -1.386

#9 starts | 0.057 | -0.663 | -2.147 0 0.845 | -0.604
ends | 0.056 | -0.666 | -2.150 | 0.422 | 0.422 | -0.794 | -1.386

#10 starts | -4.248 | -2.203 | 0.746 0 1.438 | 1.785
ends | -4.248 | -2.203 | 0.746 | 0.719 | 0.719 | 1.764 | -1.386

6 The need for a non-flat prior

The experiments in the previous section not only shows that learning is sensitive
to initial parameters, but also reveals problems with the optimization criterion.
We learn © to maximize the log likelihood log P(O|X,©) (under a flat prior
over ©). However log likelihood sometimes is not powerful enough to distinguish
sensible vs. non-sensible parameters. Consider the Double Arcs dataset 1. A
good O should propagate labels along the arcs. However, the © that maximizes
the log likelihood of the two observed labels is the one that drives 4;; — 0,
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Table 6: Hill climbing starting from 10 random initial parameter sets for the
Connected Arcs dataset. oy € [—6.52,6.21] and a» € [—5.20,4.81].

Trial Qo o a2 B B2 Y £ Y

#1 starts | 1.089 | -4.198 | 0.699 0 -0.713 | 1.115
ends | 1.089 | -4.198 | 0.699 | -0.357 | -0.357 | 1.073 | -1.386

#2 starts | -0.617 | 2.034 | 1.219 0 -0.071 | -0.682
ends | 9.549 | -1.978 | 0.273 | 0.046 | -0.117 | 1.897 | -1.287 | yes

#3 starts | 0.201 | -4.729 | 3.720 0 0.066 | 0.025
ends | 0.201 | -4.729 | 3.720 | 0.033 | 0.033 | 0.024 | -1.386

#4 starts | -2.371 | -4.165 | 4.164 0 2.186 | -0.469
ends | -2.371 | -4.170 | 4.164 | 1.093 | 1.093 | -2.254 | -1.386

#5 starts | 1.898 | -0.646 | -0.562 0 0.101 | 0.048
ends | 9.546 | -1.978 | 0.274 | 0.132 | -0.032 | 1.895 | -1.287 | yes

#6 starts | 0.831 | -6.289 | 2.494 0 1.587 | 1.623
ends | 0.831 | -6.289 | 2.494 | 0.794 | 0.794 | 1.565 | -1.386

#7 starts | -1.222 | -4.000 | 1.570 0 1.454 | -0.338
ends | -1.222 | -4.001 | 1.569 | 0.727 | 0.727 | -0.963 | -1.386

#8 starts | -4.012 | -1.445 | -2.363 0 -1.254 | 1.358
ends | -4.012 | -1.445 | -2.363 | -0.627 | -0.627 | 1.274 | -1.386

#9 starts | -0.678 | -6.137 | -3.228 0 1.846 | 0.808
ends | -0.678 | -6.137 | -3.228 | 0.923 | 0.923 | 0.031 | -1.386

#10 starts | 0.654 | 0.601 | -3.600 0 -1.375 | -0.790
ends | 0.654 | 0.601 | -3.601 | -0.687 | -0.687 | -1.354 | -1.386 | yes

because this would ’disconnect’ any connection between points. By doing so
each point is independent of all other points, and somewhat counter-intuitively
the log likelihood is maximized, since the two labeled points are from different
classes. In general, imagine a dataset consists of C' well separated classes, each
being a tight cluster. We observe only one labeled point (and many unlabeled
points) in each cluster. It is reasonable to expect the best © to be large enough
to connect points within clusters, but small enough to not do so between clusters,
so that labels can spread within clusters. But it is easy to prove that the ©
which maximizes log likelihood of labeled data is the one that disconnects all
points, and results in no propagation.

The problem is more clearly demonstrated with the basic model Eq.(2). The
only parameter is ¢ which controls propagation in all dimensions. When ¢ — 0
all points are disconnected and independent of each other. We create several
synthetic datasets with different structures, as shown in Figure 5. For each
dataset, we plot its log likelihood vs. ¢ curve in Figure 6. These are computed
with Swendsen-Wang sampling, with burn-in period of 100 samples, and 10000
clamped / 10000 unclamped samples.

Several datasets have a log likelihood plateau when o is small. This is
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Table 7: Hill climbing starting from 10 random initial parameter sets for the
Cube dataset. a; € [—13.70,1.41], ay € [—13.16,1.38], and a3 € [—14.38,1.52].

Trial | ap o Qs a3 b1 B2 Y £ y
#1 starts | -3.904 | -11.605 | -7.516 | -4.240 0 -0.222 | -0.779

ends | -3.904 | -11.605 | -7.516 | -4.240 | -0.598 | 0.376 | -0.565 | -10.965
#2 starts | -1.945 | -3.772 -9.076 | -7.442 0 -1.522 | -0.377

ends | -1.945 | -3.772 -9.076 | -7.442 | -1.364 | -0.158 | -0.751 | -10.965
#3 starts | -0.261 | -7.915 -0.784 | -0.358 0 -0.110 | -0.707

ends | 1.267 | -4.960 1.765 | -0.434 | -0.068 | -0.042 | 2.381 | -4.089 | yes
#4 starts | 1.071 -3.417 0.363 | -6.062 0 -1.689 | -0.397

ends | 5.041 -4.560 0.605 | -4.572 | -0.883 | -0.806 | 2.274 | -4.156
#5 starts | -4.606 | -9.825 -3.696 | -9.302 0 2.012 | -0.792

ends | -4.606 | -9.825 | -3.696 | -9.302 | 0.081 | 1.931 | -1.059 | -10.965
#6 starts | -0.217 | -8.207 -2.767 | -5.150 0 2.005 | 0.992

ends | 4.083 -5.665 1.461 -2.654 | 0.990 | 1.015 | 2.378 -4.074 | yes
#7 starts | -0.954 | -5.746 | -10.055 | -0.059 0 1.071 1.644

ends | -0.953 | -5.735 | -10.061 | -0.059 | 0.408 | 0.663 | 1.625 | -10.965
#8 starts | 1.248 | -8.199 | -12.415 | -9.598 0 -1.704 | 1.097

ends | 1.248 | -8.199 | -12.415 | -9.598 | -1.016 | -0.688 | 0.711 | -10.965
#9 starts | 0.300 | -7.179 | -1.424 | -0.591 0 -1.062 | 0.539

ends | 1.294 | -4.969 1.781 -0.503 | -0.544 | -0.518 | 2.391 | -4.089 | yes

#10 starts | -0.903 | -12.067 | -5.349 | -0.430 0 -2.006 | 0.741
ends | 1.248 -4.952 1.315 -0.362 | -1.016 | -0.990 | 2.417 | -4.100 | yes

precisely the problem: for these datasets, as long as label points of different
classes are not connected, the log likelihood is roughly flat (actually the left end
is slightly higher). Gradient ascent will not work. We solve it by applying a prior
on ¢ to encourage large o values. We first limit the range of ¢ in [0, max;;(d;;)],
since a larger o (larger than the diameter of the dataset) is not useful. Within
this interval we define a prior as

p(o) o e

,0 € [0, max(dy;)] (83)
ij

where A is a small positive number. The change to gradient Eq. (6) is straight

forward:

2 105 (o) = A (34)

This prior effective tilts the log likelihood curve counter-clockwise a little, so
there will be a maximum and the right end of the original plateau. A is empiri-
cally set for each dataset.

The vertical lines in Figure 6 shows the o learned with gradient ascent after
adding the above prior. The prior helps o to settle in the large end of the
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Table 8: Hill climbing starting from 10 random initial parameter sets for the
Noisy Labels dataset. oy € [—12.37,—0.06] and as € [—13.28, —1.57].

Trial o o a2 B B2 Y L Y

#1 starts | -2.295 | -11.775 | -13.150 0 1.746 | 1.357
ends | -2.295 | -11.775 | -13.150 | 0.873 | 0.873 | 1.144 | -12.477

#2 starts | -3.220 | -3.803 | -4.835 0 2.191 | -0.302
ends | 0.109 | -6.087 1.231 1.095 | 1.095 | 2.665 | -7.857

#3 starts | -1.883 | -11.808 | -12.846 0 0.895 | -0.647
ends | -1.883 | -11.808 | -12.846 | 0.448 | 0.448 | -0.863 | -12.477

##4 starts | -4.297 | -0.709 | -7.336 0 -1.243 | 0.801
ends | 0.227 | 0.945 -8.139 | -0.448 | -0.794 | -1.948 | -12.455

#5 starts | -1.701 | -9.829 | -11.242 0 1.576 | 0.674
ends | -1.701 | -9.829 | -11.242 | 0.788 | 0.788 | 0.124 | -12.477

#6 starts | 1.428 | -9.611 | -4.180 0 0.905 | 1.676
ends | 5.608 | -10.658 | -1.016 | 0.452 | 0.452 | 2.484 | -8.323

#7 starts | 1.438 | -5.166 | -9.656 0 -0.202 | 0.222
ends | 9.213 | -6.687 | -12.601 | -0.101 | -0.101 | 2.510 | -11.785

#8 starts | 1.147 | -11.931 | -3.355 0 -1.224 | 0.168
ends | 5.653 | -10.668 | -1.001 | -0.612 | -0.612 | 2.487 | -8.323

#9 starts | -2.826 | -12.141 | -10.182 0 -1.612 | 0.537
ends | -2.826 | -12.141 | -10.182 | -0.806 | -0.806 | -0.105 | -12.477

#10 starts | -1.300 | -2.661 | -1.934 0 -1.306 | -0.005
ends | 1.770 | -6.885 0.205 | -0.641 | -0.665 | 0.972 | -6.906 | yes

(original) plateau. Figure 7 shows the label posterior under the learned o for
each dataset. In the figure, different symbols represent different classes. Each
symbol is color coded to represent its class probabilities (confidence): vivid color
means high confidence, and gray means low confidence (close to uniform class
probabilities).

For the extended model, we will need more sophisticated prior over param-
eters. For instance, the parameters might ‘conspire’ by putting no penalty on
noisy labels (y = —o0), so that the model can explain any observed Oy, with
a Y in which all points have the same label. The model can then use large a’s
to maximize the likelihood of seeing the same labels. We will investigate this
problem in the future.

7 Related work

The graph mincut algorithm [BC01] works on binary classification problems. It
finds a minimum cut through the labeled/unlabeled data graph that separates
the two classes. Since a cut removes an edge connecting two nodes y; and y; with
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different labels, a mincut is equivalent to the lowest energy state configuration,
which is in turn the most likely state configuration of the Boltzmann machine
argmaxy P(Y|X,w;;). Our algorithm finds the MAP state configuration (Eq.
5) instead, which is a weighted average of all configurations. Of course we can
also find the approximate most likely configuration during sampling.

8 Summary

We formulated the problem of semi-supervised learning as Boltzmann machine
learning. We parameterized feature weighting and label noise in the Boltzmann
machines, learned parameters by gradient ascent on the likelihood of observed
labels. We also presented several MCMC sampling schemes to facilitate learning.

The results on some small synthetic datasets are promising. However, two
problems must be solved for this method to be useful. Firstly we need a better
way to regularize parameters (e.g. priors) to avoid undesirable maxima in data
likelihood. Secondly the computation is very heavy. The enumeration method
is exponential in the number of data points. Even Swendsen-Wang and other
MCMC methods are not practical on very large datasets. Besides, we might
need techniques like coupling from the past [HNOO] to ensure the convergence
of the Markov chain.

We are investigating a related but different way to learn from both labeled
and unlabeled data, by means of label propagation [ZG02]. We think it is a
more promising direction.
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add the prior Eq. (83).
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