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Abstract

In the present article, we derive a new multivariate distribution that belongs to an exponential
family through a limiting argument over the conditional inverse Gaussian-Poisson distribution
proposed by Hoshino (2001b). The derived distribution can be used as a model of random
partitioning of positive integers, which is relevant to applications in many fields such as statistical
ecology, linguistics and statistical disclosure control to name a few. We clarify some properties
of this distribution that are important in applications.
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1 Introduction

Population modeling is a classical theme in statistics. In regard to a population composed of
heterogeneous groups, a research often focuses upon the structure of frequencies of individuals.
Therefore statisticians have been developing a number of population models that can describe
frequency structures. For instance, Fisher et al. (1943) enumerated species in a population of
Malayan butterflies and summarized the information with the logarithmic series distribution.
This study is followed by many a scholar, and they constitute the field of statistical ecology or
stochastic abundance models; see Engen (1978) for more detail. We can find analogous examples
in various other fields: See Baayen (2001) for the context in linguistics and Hoshino (2001a) for
a succinct survey in statistical disclosure control.

Mixed Poisson distributions play a central role in population modeling. The quintessence of
these mixtures is gamma-Poisson, which equals negative binomial. Some other models relate to
a gamma-Poisson population model: We can derive the Dirichlet-multinomial model (Takemura
(1999)) from the gamma-Poisson model by conditioning the population size, and we can obtain
the logarithmic series model (Anscombe (1950)) from the gamma-Poisson model through a
limiting argument that resembles the law of small numbers. The Ewens distribution (see Chap.
41 of Johnson et al. (1997)) can be obtained from the logarithmic series model by conditioning the
population size or from the Dirichlet-multinomial model through a limiting argument that is the
same as one used to derive the logarithmic series model from the gamma-Poisson model. These
relationships are summarized in Figure 1 from Hoshino and Takemura (1998), who discussed
these facts in detail .

Recently Hoshino (2001b) proposed the Conditional Inverse Gaussian-Poisson (CIGP) distri-
bution, which was derived from an inverse Gaussian-Poisson population model by conditioning
the population size. A limit of the inverse Gaussian-Poisson mixture is the reciprocal gamma-
Poisson mixture. The CIGP distribution hence corresponds to the Dirichlet-multinomial model
in a sense; it is natural to investigate distributions that correspond to the Ewens distribution
and the logarithmic series model.

In the present article we derive limiting distributions of the inverse Gaussian-Poisson model
and the CIGP distribution with the law-of-small-numbers-like argument. In particular our dis-
cussion will concentrate upon the property of the limiting distribution of the CIGP distribution;
the derived distribution seems new and treatable. Models that are conditioned on the population
size are equivalent to the random partitioning of positive integers, which often involves compli-
cated combinatorics. In consequence only a few such models are known as easily tractable. It is
thus valuable to develop models that are conditioned on the population size, in order to handle
diverse populations.

The organization of the present article is as follows. In Section 2 we provide notation and
definitions of existing models. In Section 3 we derive the limiting distribution of the CIGP
distribution and clarify its properties. In Section 4 we discuss the parameter estimation of the
proposed distribution. In Section 5 we apply the proposed distribution to a typical data set for
exemplifying the usefulness of the distribution and conclude.
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2 Backgrounds

Consider a population of size N consisting of J cells (groups, species, words) with the size
(frequency) F;,5 =1,...,J, N = E}‘]:1 F;. Let S; denote the number of cells of size i. More
specifically,

Si=> I(F;=14), i=0,1,...,

J=1

where [(-) is the indicator function:

. 1, F, =1,
I(FJ:Z):{ 0. F #i.

In literatures, (Sg,S1,...) are called size indices (Sibuya (1993)), frequencies of frequencies
(Good (1965)) or equivalence class (Greenberg and Zayatz (1992)). A linguist may be interested
in the number of nonce words or hapax legomena in a text, which corresponds to Sy. A statistical
agency may also be interested in Sy, which is called “population uniques” and is a major risk-
index of disclosure; see Willenborg and de Waal (1996, 2000).
Obviously
> 8=,
=0

(o)

Zzs =N. (1)

Note that J is the total number of cells including the number of the empty cells So. Empty
cells may correspond to unseen or extinct species. In the following we denote the number of
non-empty cells by

U=> 5 =J-5. (2)
1=1

When N is given, we write in particular

N
UN = Z Siv
=1

since S; equals zero for « > N + 1. In the stochastic abundance model, Uy corresponds to the
total number of species within a population of size N; Bunge and Fitzpatrick (1993) surveyed
this problem of estimating the number of species.

In order to consider sampling distributions explicitly, we denote the sample size by n and
sample size indices by (so, s1, . ..), which are defined in the same way as those of the population.
The number of non-empty cells of samples is

o0
U= g s; = J — sp.
=1

When n is given, we use u, = > i~ ;.
Let us assume that random variables F};,7 = 1,...,J, are independently and identically
distributed as the Inverse Gaussian-Poisson (IGP) distribution, which is well reviewed in Chap.



7.1 of Seshadri (1999). In terms of the size indices, the IGP population model is then expressed,
for0< @< 1,a>0, as

P (S0, S1,...) = Jvﬂ{fexp (avVI—6 (0‘0/2) K )}Ssv’ (3)

where K;_;/5(+) is the modified Bessel function of the third kind of order ¢ — 1/2. The limiting
form of (3) as # — 1 is the reciprocal gamma-Poisson model.

. T _
K1pafa) =[50~ exp(-a),

K, 15(a) = \/%exp(—a)(z_: M@a)_i), y=1,2.. ., ()

— (y - 1—)l!

From

we obtain

using the fact that K_; /() = K;/;(a) and the following recurrence formula:

Ko1(0) = LKy (0) 4 Ko (), (5)

Consult Watson (1944) for the results on Bessel functions.
According to Hoshino (2001b), the population size N under (3) is distributed as

P(N) =14/ QJTQ exp(Jav'1 — 0)%[&'1\74/2({]&), (6)

and the Conditional Inverse Gaussian-Poisson (CIGP) distribution is obtained by dividing (3)
by (6). For o > 0, the CIGP distribution was thus defined as

200, J—1 JIN! K,_ 1/2 S
P(Sy, ..., 5v) = (— 7
(So,+--15%) = ()% Jrcgame s _H{ s )

In Hoshino (2001b) the CIGP distribution (7) was fitted to three data sets. The maximum
likelihood estimate of o and J for these data sets were (10.35,120), (0.645,1083) and (9.047 X
10719, 5.644 x 10'?), respectively. The last set concerns microdata disclosure risk assessment,
and J is usually very large in this field. Therefore it is realistic to consider the limiting case of
J — oo with Jo fixed.

3 Main Results

This section clarifies limiting properties of the CIGP distribution (7). All the proofs of theorems
in this section are provided in Appendix.

Theorem 1 Let Jao = A (> 0) be fized and let J — oo, a0 — 0. Then the limiting distribution
of the CIGP distribution (7) is

_[m Nlexp(-4) &,@i-3)! ¢ 1
P(Sl,...,SN) — ﬂAN_UNI{N_l/Q(A) H{ ’L' } 52'7 (8)

=1

where (-1)!!'=1,(2e - 3)!'=(2¢—-3)(2¢ = 5)---1.



It is worthy of note that S is no longer defined in (8) owing to J being infinity. In applications
we often have no information on groups of zero frequencies, which prevents us from applying
models that depend on Sy such as the CIGP distribution. We can apply (8) in this case and
may be able to regard (8) as a zero-truncated version of the CIGP distribution; the discussion
on zero-truncation will continue after Theorem 2.

We can construct (8) in another way. The relationships stated in Theorem 2 are analogous
to those among the gamma-Poisson-related models; compare Figure 2 with Figure 1.

Theorem 2 Let Jao = A (> 0) be fized and let J — oo, a0 — 0. Then the limiting distribution
of the IGP population model (3) is

> S < exp(—71;) %
P(S1,8, ) =exp(AWVT=0-1) [ o7 =TI 7‘)(5,,) : (9)
=1 L =1 L
where , " o
2 i! 2ym I'(i+1)

Namely, each S;,1= 1,2, ..., is independently distributed as Poisson with mean ;.
The conditional distribution of (9) given ils population size N is (8), and conversely the
mizture of (8) by the population size distribution (6) leads to (9).

As we have mentioned, Anscombe (1950)’s interpretation of Fisher et al. (1943) is as follows.
The same limiting argument that we employed in Theorem 1 and 2 over a gamma-Poisson
(negative binomial) population model leads to the logarithmic series model: For ¢ = 1,2,. ..
each 5; is independently distributed as Poisson with mean A;, where A; is proportional to CZ/l

On the other hand, Fisher et al. (1943) is widely recognized as having proposed the loga-
rithmic series distribution:

1 6*

PX=9= Si—n o

z=1,2,..., (10)
where 0 < # < 1. The logarithmic series distribution is a limit of the zero-truncated negative
binomial distribution (Sampford (1955)); see Chap. 7 of Johnson et al. (1993). Note that (10)
has the same power series structure of the logarithmic series model (i.e. A; i, i=1,2,.. ).

We can see an analogous relationship between 7;,7 = 1,2,..., of (9) and a limit of the
zero-truncated IGP distribution:

L 2« exp(a) (af/2)" B
P(X =2)= \/;exp(a(l— =) -1 K, i), z=1,2,..., (11)

which was used by Sichel (1975).

Theorem 3 The limiting distribution of the zero-truncated IGP distribution (11) as o — 0 is

1 6% (22 — 3)!!
C1-+v1-6 2x ! '

e=1,2,..., (12)

where 0 < 8 < 1.
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Figure 2: Relationships among inverse-Gaussian-Poisson-related models




Equation (12) is proportional to 7; in (9) by putting ¢« = z. The distribution (12) as well as
the logarithmic series distribution belongs to the class of the power series distribution (Noack
(1950)), whose properties are summarized in Johnson et al. (1993, p.70). Since equations (9) and
(12) are free from the modified Bessel function, these distributions are convenient to manipulate.

Using (4), we can rewrite (8) as

P(Slv"'sz)
N . N-1
20— o 1 141 _
= exp(UNlogA—l—log(H{%}Sly — log(AN > ﬁ—z))"(QA) ) +log N!),
=1 ' v 1=0 A

which shows the following fact.

Remark 1 The distribution (8) belongs to an exponential family, and its sufficient statistics is

Un.

A similar result to Remark 1 holds in the Ewens sampling formula; see Sibuya (1991). It
should be remembered that the sufficient statistics Uy is an important variate in applications.
For instance, we can propose a new method of the estimation of the total number of species,
based on the property of Up.

We now derive the distribution of Uy.

Theorem 4 Suppose that size indices are distributed as (8). Then

7 exp(-A) , 1 y_py, (@2N-Uy-1)!
PUN) =\ (5 N 13
(Uw) 24 KN—1/2(A)(2A) (Un = YN = Un)V (13)
From (5) we have the the following recurrence formula on the distribution of Up:

Kn_1-1/2(A)
Kpnti1-1/2(A)

I(N—I/Q(A) 2N - 1
I(N-}—I—I/Q(A) A

The Ewens sampling formula, as pointed out by Sibuya (1993), has the following urn model
implication:

P(UN_H:*U): P(UN:U + P(UN_lzv—Q).

PEwens(UN—}—l = 'U) = PEwens(UN+1 = U|UN = 'U)PEwens(UN = 'U)
+ PEwens(UN—}—l = U|UN =U— 1)PEwens(UN =v - 1)7

which provides profound understanding on the model; it is natural to seek an analogous impli-
cation of (8). However, the author has not found a good explanation.

Since Uy = Zf\;l S;, we can calculate the moments of Uy using the moments of S;. We hence
evaluate the joint factorial moments of size indices, which are useful also for other applications
than the estimation of the total number of species.

Theorem 5 Suppose that size indices are distributed as (8). Then the factorial moments are

N K (A)A—ENT D (24—
(r)y _ BN-R-1/2 i
E(H SZ ) o I(N—I/Q(A AIV R ' H (14)

where r = YN ri, R="N ir; and n® =n(n —1)---(n — R+ 1).



| A | E(Sy) | E(S2) [ E(Ss) | E(Sq) | BE(S5) |
0.10 0.05 0.01 0.01 0.00 0.00
1.00 0.50 0.13 0.06 0.04 0.03
10.00 5.01 1.25 0.63 0.39 0.28
100.00 49.95 | 12.47 6.23 3.89 2.72
300.00 | 146.98 | 85.93 | 17.64 | 10.80 7.41
500.00 | 236.37 | 55.87 | 26.41 | 15.60 | 10.32
700.00 | 315.59 | 71.13 | 32.05 | 18.05 | 11.39
900.00 | 384.13 | 81.95 | 34.96 | 18.64 | 11.12
10000.00 | 905.08 | 40.92 3.70 0.42 0.05

Table 1: Expectations of size indices under N = 1000 (Theorem 5)

In particular,

(S — Kn_i—172(A)ATT (20 — 3)IIN!
( Z) o I(N—I/Z(A)IL'(N - ’L)' ’

i=1,2,...,N. (15)

Table 1 summarizes values of E(S;)’s for ¢ = 1,2,...,5, with various parameter values given
N = 1000. By the fact that E(Uy) = Y, E(S;), the following proposition holds from (15).
Higher moments of Uy can be obtained in an analogous way.

Proposition 1 Suppose that a random variable Uy is subject to the distribution (13). Then its
expeclation s
N! N Ky i12(A)AH(2i — 3)1!

E(Un) = Ky_1/5(A) = AN =)

We now state the sampling distribution of (8), which is in fact the result of replacing N, Uy
of the population distribution by n,w,. This property is remarkably convenient in applications.

Theorem 6 Suppose that a population consists of N individuals that are distributed as (8). If
n individuals are drawn with simple random sampling without replacement from the population,
then the sampling distribution is

7 alexp(-A) {F,@2i-3)1 1
P(s1,...,8,) = ﬂA”—“nKn_l/Q(A) Zzl_[l{ A } s (16)

Suppose that IV objects are partitioned into classes according to a probability distribution
pn. A partition structure (Kingman (1978)) is a sequence py, pa, ... of distributions wherein,
assuming that an object is deleted uniformly at random from the N objects, the partition of the
N —1 remaining objects is distributed according to py_1. The following remark is an immediate
consequence of Theorem 6.

Remark 2 The model (8) has a partition structure.



4 Parameter Estimation

Now that the sampling distribution (16) is given, this section treats the parameter estimation of
the distribution (8). First we construct the Maximum Likelihood (ML) estimation, and second
we present an approximate moment estimator.

We denote the log likelihood of (16) by
L=-A—-(n—u,+ %) log A —log K,,_;5(A) + Const.

In the following we will use this notation:

(o) = T,

It is widely known, see Seshadri (1999, p.125) for instance, that

dlog Ky (a) Y
Jar = _RW(Q) + o
The derivative of L: oL 1

is hence easy to calculate. The ML estimator is the unique solution of dL/9dA = 0; Remark 1
validates the uniqueness, based on the property of the exponential family discussed by Lehmann
(1991, p.417) for example.

It requires a numerical method to solve the likelihood equation. We can utilize the second
derivative: 921 ) .
51 = Baisia(A) = TR (A) + (20— w) 5 — 1

for the Newton-Raphson method.

A moment estimator is useful also for the starting value of the Newton-Raphson procedure,
but an exact one is inconvenient to compute because of the modified Bessel function. Therefore
the author proposes to employ an approximate estimator. Under the distribution (9) in Theorem

2,
E(U)=A(1-V1-8),
and
4E(S2) P
B(Sy)
The solution of these equations is
E(U)

T 1-1-4E(S,)/E(5)

which leads to the following approximate moment estimator:

A=u,/(1—1/1—4s9/51). (17)

In real data sets, however, 4s5/s; can be larger than unity. We can simply use u,, itself as an
estimate of A in such a case; see an example in the next section.



23 July 1946 9 August 1946
Individ. | obs. | fit | LS | obs. | fit | LS
1 18 | 22.79 | 15.1 36 | 40.52 | 29.8
2 8| 5.67| 7.0 81 9.91 ] 13.1
3 4| 282 | 4.4 8| 484 | 7.6
4 3| 1.76 | 3.3 6 296| 5.1
5 0] 1.23 41 2.02
6 2| 091 2| 1.48
7 0] 0.72 1| 1.14
8 1] 0.58 1] 0.90
9 1] 0.48 0| 0.73
10+ 4| 5.04 41 5.50

Table 2: Frequencies of Lepidoptera at Rothamsted Experimental Station (Williams, 1964)

5 Application Results and Conclusion

Before conclusion, we demonstrate the applicability of (8) as a population model, adopting clas-
sical data from Williams (1964, p.32): two catches of Macro-Lepidoptera caught on single nights
in light trap “B” at Rothamsted Experimental Station. We estimate the value of the parameter
A, and calculate each E(s;) under the estimate of A as a fitted value. These applications do
not involve inference on a population such as the estimation of the total number of species in
a population. Nevertheless, we can employ basically the same method for population inference
with a slight change, i.e., the expectations of size indices are calculated given N instead of n.
The first set is on the night of 23-24 July 1946; there were 219 moths (n) belonging to 42
species (uy). The ML estimate A is 45.762 in this case. Because 4sy3/s1 > 1, an approximate
estimate A by (17) is taken to be u = 42.0. The second set is of 9-10 August; there were
242 moths of 70 species. The ML estimate A= 82.878, with an approximate estimate A =
105.0. Table 2 shows more detail of the fit; “Individ.” indicates the number of individuals (¢);

“ ”

obs.” indicates the observed number of species of ¢ individuals; “fit” indicates F(s;)’s given n
and estimated parameter value A; “LS” indicates fitted values of a logarithmic series curve by
Watson, for comparison.

The model (8) seems to provide reasonable fits of size indices. Needless to say, there is
no simple model that can describe all kinds of data. It is thus important to investigate various
models, each of which can describe different variations of populations. The proposed distribution
(8) broadens the scope of population modeling. We have seen some similarities between (8) and

the Ewens sampling formula; further similarity will be investigated in our subsequent works.

Appendix
Proof of Theorem 1 Let us rewrite the right hand side of (7) as

Cl XCQXC,?),

10



where

J!

Cy=—"
YT —Un) IO

N! ﬂ Kisipa(@) s, 1

T IN-UNTIREK (T a) il S,

2 S,

=1

Cs = <\/% eXp<—a>>J‘UN<\/?)"‘1 = (\/gq) ™" exp(=Ja + aly).

Because C'; — 1, it suffices to show that C'; x C'5 converges to the limit.
As stated by Jorgensen (1982, p.171), for v > 0

and

K, (o) = T(7)27 ta™ (18)

as o — 0. Using this result, we obtain

o N! N {F(i - 1/2)22’-3/2041/2—2'}51. 1
2 ; . . =
JN_LN—I—l/QI{N_l/Q(A) -1 ’L! SZ'
N .
S (N 71\ SV
J - N+1/2I§N_1/2(A) i1 Z! SZ'
N — .
_ N Ny T N! H{Ql \/E(Qz— 3)”}&L
JN_UN—l_l/QI(N_l/Q(A) -1 ’L! SZ'
v N! o2i-3) g 1
N e T H{( i _ ) ps L
2 J N I(N—I/Q(A) i1 1. S’L
The limit of C3 is obviously
(/5" exp(=A).
Hence we prove the theorem by multiplying these limits. Q.E.D.
Proof of Theorem 2 The following argument is analogous to that of Hoshino and Takemura

(1998), where the logarithmic series model was discussed in detail.
First we derive the probability generating function G(z1, zg,...) of (3). If J =1, then

Gi(z1,22,..) = E[[]#7]
=1

= i_o:(zZ - I)Eexp(a\/l — ) (0402.{2)21(2__1/2(04) + 1.

11



By the independence of F)’s, the joint probability generating function for general .J is expressed
as G(z1,29,...) = Gi(21,22,...)7. Now we consider the limiting process of J — oo where

Ja = A. Using (18),

[i(zz - I)Eexp(a\/l - a) (QG/Q) Ki_12(a) + 1]J

- 1 + ‘]Z \/%(QG/Q) (l B 1/2)2i—3/2a—i+1/2]J
5 exp(M(z - DA B — e Z (19)

=1

Equation (19) coincides with the joint probability generating function of independent Poisson
variables S;, ¢ =1,2,..., with mean E(S;) = ;.

We can obtain the distribution of the population size N under (9) through the limiting
argument over (6) of the IGP population model (3). Because equation (6) remains unchanged
when Ja is fixed, (6) is the population size distribution of (9). The conditional model given
N is thus the result of dividing (9) by (6), which equals (8) using (1) and (2). Conversely (8)
multiplied by (6) is (9). Q.E.D.

Proof of Theorem 3 We can obtain (12) as a result of applying (18) to (11):

1 aexp(a) 7' (z — 1/2)
2y/mexp(a(l—v1-6)) -1 z! ’
where
aexp(a) a(l+ a+0(a?)) . 1
exp(a(l —v1-16)) — 1 a(l-v1-6)+0(a?) 1-+v1-6
as o — 0. Since I'(z — 1/2)/(2/7) = (22 — 3)!!/2%, the theorem holds. Q.E.D.

Proof of Theorem 4 From the definition (8),

) m Nlexp(— 22—3 1
Kn_1/2(A)P(Uy =v) = Z V24~ AN-Ux H{ ;

Then using (4), we obtain

N 1 . N .

Un=v

2:0

Because N P(Uy = v) = 1,
N-1

(

N —1+41)!
N 1o ZZAN LN.H{ o

v=1Upn=v

1=0

12



By comparing the coefficient of A between the left hand side and the right hand side of the
equation above, we have

(N —1—|—N—v)

1
Z N'{ ) } - 2v—N
It then leads to (13). Q.E.D.
Proof of Theorem 5 Let us write
S(N)={S=(S5,...,5y |EzS_N}
We can show (14) by the fact that 2.Ses(v) P(S)=1:
N N .
i Nlexp(— 1 (2 —-3)1,.
EIIS™) = Vaa (s e
i:l_[l SEZS: 24 AN— UNKN 1/2 21_[1 (SZ — T’Z)' 7!
_ N'WATRKN_p_y5(A) E \/> (N — R)!exp(—A) y
o (AIV - R)'I{N—I/Q(A) 2A AN R UN r I(N—R—I/Q(A)
_ 1 (20 =3)1 .
S;—r; r
H{ } (S- - 7‘-)!{ 2! }
_ N'AT™ RKN R-1/2(A H{ 22—3
N (AIV R)'I{N—I/Q i=1
Z E N R 'exp( A) N{(Qi—S)!!}Si 1
B N'Af‘ RKN R-1/2(A IJ_V[{ 22—3
N (AIV R)'I{N—I/Q i=1
Q.E.D.

Proof of Theorem 6 This result is a direct consequence of Lemma 1 in Takemura (1999).

It assures that, if the prior distribution of the values of NV individuals is exchangeable with
respect to the individuals, the marginal distribution of the values of n individuals drawn with
simple random sampling without replacement coincides with the prior distribution of values of
n individuals directly drawn from the superpopulation. Since our model (8) does not depend on
labels of individuals, the theorem holds. Q.E.D.

13
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