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Abstract

While Packet Fair Queueing (PFQ) algorithms provide both bounded delay and fairness in wired
networks, they cannot be applied directly to wireless networks. The key difficulty is that in
wireless networks sessions can experielocation-dependent channel errorsThis may lead

to situations in which a session receives significantly less service than it is supposed to, while
another receives more. This results in large discrepancies between the sessions’ virtual times,
making it difficult to provide both delay-guarantees and fairness simultaneously.

Our contribution is twofold. First, we identify a set of properties, calldthnnel-condition Inde-
pendent Fai(CIF), that a Packet Fair Queueing algorithm should have in a wireless environment:
(1) delay and throughput guarantees for error-free sessions, (2) long term fairness for error ses-
sions, (3) short term fairness for error-free sessions, and &g&ul degradation for sessions that
have received excess service. Second, we present a methodology for adapting PFQ algorithms
for wireless networks and we apply this methodology to derive a novel algorithm based on Start-
time Fair Queueing, calle@hannel-condition Independent packet Fair Queudi@g--Q), that
achieves all the above properties. To evaluate the algorithm we provide both theoretical analysis

and simulation results.



1 Introduction

As the Internet becomes a global communication infrastructure, new Quality of Service (Qo0S)
service models and algorithms are developed to evolve the Internet into a true integrated services
network. At the same time, wireless data networks are becoming an integral part of the Internet,
especially as an access networking technology. An important research issue is then to extend the
QoS service models and algorithms developed for wired networks to wireless networks. In this
paper, we study how to implement Packet Fair Queueing (PFQ) algorithms in wireless networks.

PFQ algorithms are first proposed in the context of wired networks to approximate the ide-
alized Generalized Processor Sharing (GPS) policy [2, 7]. GPS has been proven to have two
important properties: (a) it can provide an end-to-end bounded-delay service to a leaky-bucket
constrained session; (b) it can ensure fair allocation of bandwidth among all backlogged sessions
regardless of whether or not their traffic is constrained. The former property is the basis for sup-
porting guaranteed services while the later property is important for supporting best-effort and
link-sharing services. While GPS is a fluid model that cannot be implemented, various packet
approximation algorithms are designed to provide services that are almost identical to that of
GPS.

Unfortunately, the GPS model and existing PFQ algorithms are not directly applicable to a
wireless network environment. The key difficulty is that therelaoation-dependent channel
errorsin a wireless environment. In GPS, at any given time, all backlogged sessions send data at
their fair rates. However, in a wireless environment, some mobile hosts may not be able to trans-
mit data due to channel errors, while other hosts may have error-free channels and can transmit
data. To be work-conserving, it is impossible to achieve the instantaneous fairness property de-
fined by the GPS model because only a subset of backlogged sessions are eligible for scheduling.
That is, a session with an error-free channel neggeive more normalized amount of service than
that by a session with an error channel. However, it is conceivable to achieve long term fairness
by giving more service to a previously error session so that it can be compensated. Of course this
compensation can only be achieved by degrading the services of other sessions, which may affect
the QoS guarantees and fairness property for these sessions. Itis unclear what is the right model
and algorithm to provide QoS guarantee and ensure fairness in a wireless network.

In this paper, we identify a set of properties, callédannel-condition Independent Fair



(CIF), desirable for any PFQ algorithm in a wireless network: (1) delay and throughput guar-
antees for error-free sessions, (2) long term fairness guarantee among error sessions, (3) short
term fairness guarantee among error-free sessions, ancda@Bfgrdegradation in quality of ser-

vice for sessions that have received excess service. We then present a methodology for adapting
PFQ algorithms for wireless networks and we apply this methodology to derive a new scheduling
algorithm called theChannel-condition Independent packet Fair Queudi@¢f--Q) algorithm

that achieves the CIF properties. New algorithmic techniques are introduced in the CIF-Q al-
gorithm. We prove that CIF-Q achieves all the properties of the CIF and show that it has low
implementation complexity. Finally, we use simulation to evaluate the performance of our algo-
rithm.

The rest of this paper is organized as follows. In Section 2 we describe the network model
that we are assuming and in Section 3, we discuss in detail the problems involved in applying
existing PFQ algorithms in wireless networks. We present the CIF properties in Section 4 and the
CIF-Q algorithm in Section 5. We then show that the CIF-Q algorithm achieves all the properties
of CIF in Section 6. Finally, we present simulation results in Section 7 and conclude the paper in
Section 8.

2 Network Model

In this paper, we consider a simplified shared-channel wireless cellular network (e.g. Wave-
LAN [9]) model in which each cell is served by a base station. Centralized scheduling of packet
transmissions for a cell is performed at the base station, and media access control is integrated
with packet scheduling. Mobile hosts may experience location-dependent channel errors in the
sense that they cannot receive or transmit data-@reer Error periods are assumed to be short

and sporadic relative to the lifetimes of the sessions so long term fairness is possible. Instanta-
neous knowledge of channel conditions (error or error-free) and packet queue status of all sessions
is assumed at the base station. Under these assumptions, the difference between a PFQ algorithm
in a wired and wireless environment is that in the latter a backlogged session may not be able to
receive service due to location independent errors. Lu et al have given this broad problem a good
initial formulation in [6], and have effectively addressed many practical issues. Therefore, in this
paper, we focus on the algorithmic aspects of the problem.



3 GPSand PFQ

In wired networks, Packet Fair Queueing (PFQ) is based on the GPS model [7]. In a GPS each
session is characterized by its allocated rate,During any time interval when there are exactly
M non-empty queues, the server servesithpackets at the head of the queues simultaneously,
in proportion to their rates.

Each PFQ algorithm maintains a system virtual tie). In addition, it associates to each
session: a virtual start timeS;(-), and a virtual finish timef;(-). Intuitively, V(¢) represents
the normalized fair amount of service that each session should have received hy fiftte
represents the normalized amount of service that sessi@s received by time, and F;(¢)
represents the sum betwegri¢) and the normalized service that sessicghould receive for
serving the packet at the head of its queue. S €8 keeps track of the normalized service
received by sessionby timet, S;(¢) is also called the virtual time of sessigrand alternatively
denotedV;(¢). The goal of all PFQ algorithms is then to minimize the discrepancies among
Vi(t)'sandV/(t). This is usually achieved by selecting for service the packet with the smallest
Si(t) or Fi(t). Notice that the role of the system virtual time is to re$gt) (or Vi(-)) whenever
an unbacklogged sessiothecomes backlogged again. More precisely,

max(V(t),S;(t—)) i becomes active 0
Sit—)+ % p finishes

k+1
li

Fi(t) = Si(t)+ (2)

T
wherep® represents the-th packet of sessioi and/* represents its length.

While GPS and PFQ algorithms provide both guaranteed and fairness services in a wired
network, they cannot achieve both properties in a wireless network. The key difference is that
there ardocation-dependent channel errons a wireless environment. That is, some mobile
hosts may not be able to transmit data due to channel errors even when there are backlogged
sessions on those hosts while others may have error-free channels and can transmit data in that
time. Since GPS is work-conserving, during such a period with location-dependent channel
errors, error-free sessions wikeeive more service than their fair share, while a session with
errors will receive no service. Since the virtual time of a session increases only when it receives

service, this may result in a large difference between the virtual time of an error sessidn



that of an error-free session. There are two problems with this large discrepancy between session

virtual times:

1. If session exits from errors, and is allowed to retain its virtual time, then it will have the
smallest virtual time among all sessions. The server will select ses&rclusivelyfor
service until its virtual time catches up with those of other sessions. In the meantime, all
other sessions will receive service. Since a session can be in error indefinitely, the length
of such zero-service period for the error-free sessions can be arbitrarily long.

2. If session: exits from errors, and its virtual time is updated to the system virtual time
V(-), then the error-free sessions will not be penalized. However, sessiuistory of lost
service is now completely erased and sessiwitl never be able to regain the service. This

results in unfair behaviors.

To address these problems, in [6], Lu et al augmented the GPS model and proposed the
Wireless Fluid Fair Queueing (WFFQ) service model and the Idealized Wireless Fair Queueing
(IWFQ) algorithm for packet systems. Their observation is that, to ensure fairness, it is desirable
to let sessions that fall behind to “catch-up” with the other sessions. However, allowing an un-
bounded amount of “catch-up” can result in denial of service to dres sessions. Therefore,
in WFFQ, only bounded amount of “catch-up’is allowed. As a result, delay and throughput
guarantees to error-free sessions become possible.

The WFFQ model and the IWFQ algorithm, while provide limited fairness and bounded
throughput and delay guarantees for error-free sessions, has several limitations. First, there is
a coupling between the delay and fairness properties. To achieve long term fairness, a lagging
session should be allowed to catch-up as much as possible, which requires &.l&igeever,

a largeB also means that an error-free session can face a large “denial of service” period and
experience a large delay. Thus, one cannot have perfect fairness while at the same time achieve
a low delay bound for an error-free session using the WFFQ model. In this paper, we will show
that these two properties are in fact orthogonal and both can be achieved.

In addition, the service selection policy used in WFFQ and IWFQ gives absolute priority to
the session with the minimum virtual time. Consequently, as long as there exists a lagging session
in the system, all other leading or non-leading sessions in the system cannot receive service.
Under this selection policy, compensation for all lagging sessions will take the same amount of
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time regardless of their guaranteed rate, contradicting the semantics that a larger guaranteed rate
implies better quality of service.

We believe the root of the problems lies in the fact that the virtual time parameter in GPS
is not adequate for performing both scheduling functions and fairness enforcement in a wireless
environment. In the next section we present the desirable properties of a PFQ algorithm for
wireless networks.

4 The CIF Properties

To implement PFQ algorithm in an environment with location-dependent errors, we need to ad-
dress two main questions: (1) How is the service of an error session distributed among the error-
free sessions? (2) How does a session that was in error and becomes errecdnezlvack the

“lost” service? Although the answers to the above questions may depend on the specifics of a
particular algorithm, in this section we give four generic properties, collectivelyGladinnel-
condition Independent Fa(iCIF), that we believe any such algorithm should have. The first two
are:

1 Delay bound and throughput guaranted3elay bound and throughput for error-free ses-
sions are guaranteed, and are not affected by other sessions being in error.

2 Long term fairnessDuring a large enough busy period, if a session becomes error-free,
then, as long as it has enough service demand, it should get back all the service “lost” while

it was in error.

Thus, a session which becomes error-free will eventually get back its entire “lost” service.
However, as implied by the first property, this compensation shool@ffect the service guar-
antees for error-free sessions.

Next, we classify sessions ksmding lagging andsatisfied A session is leading when it has
received more service than it would have received in an ideal-&eersystem, lagging if it has
received less, and satisfied if it has received exactly the same amount of service. Then, the last
two properties are:



3 Short term fairnessThe difference between the normalized services received by any two
error-free sessions that are continuously backlogged and are in the same state (i.e., leading,
lagging, or satisfied) during a time interval should be bounded.

4 Graceful degradationDuring any time interval while it is error-free, a leading backlogged
session should be guaranteed to receive at least a minimum fraction of its service in an

error-free system.

The third property is a generalization of the well-knokaimnessproperty in classical PFQ al-
gorithms. The requirement that sessions in the same state receive the same amount of normalized
service implies that (1) leading sessions should be penalized by the same normalized amount dur-
ing compensation, (2) compensation services should be distributed in proportion to the lagging
sessions’ rates, and (3) when services from error sessions are available, lagging sessions receive
these services at the same normalized rate, so do leading sessions and satisfied sessions. Finally,
the last property says that in the worst case a leading session gives up only a percentage of its
service. This way, an adaptive application may continue to run.

5 The CIF-Q Algorithm

In this section we present o@hannel-condition Independent Packet Fair QueugiGi--Q)
algorithm for systems with location-dependent channel errors.

In order to account for the service lost or gained by a session due to errors, we associate to
each systeny a reference error-free systeti. Then, a session is classifiedlaading lagging,
or satisfiedwith respect to>”, i.e., a session is leading if it has received more servicétiman it
would have received if”, lagging if it has received less, and satisfied if it has received the same
amount. The precise definition 6f depends on the corresponding PFQ algorithm we choose
to extend for the error system. Although theoretically we can choose any of the well-known
algorithms, such as WFQ [2, 7], SCFQ [4], W@ [1], EEVDF [8], for simplicity, in this paper
we use Start-time Fair Queueing (SFQ) [5]. The reason for this choice is that in a system with
location-dependent channel errors, it is harder to do scheduling based on the finishing times than
on the starting times. This is because finishing times are computed based on the length of the
packets at the head of sessions’ queues, and finishing times scheduling assumes implicitly that



once a session is selected, that packet can be sent. Unfortunately, this is not true in an error
system; a session can enter in error just before the packet is transmitted. In this case the service
should be given to another session, whose packet may have a different length. Since, as we shall
see, in our algorithm this service is charged to the session which is selected in the first place, this
might create service inversions. More precisely, if the packet that is actually transmitted is longer
than the packet that is supposed to be sent, the resulting finishing time can be larger than the
finishing time of another error-free session that has packets to send. Since SFQ does not make
use of finishing times in scheduling decisions, it does not exhibit this problem.

Thus, to every error systersi we associate an error-free reference systéim, with the
following properties:

1. Ssro employs an SFQ algorithm, i.e., packets are served in the increasing order of their

virtual starting times,
2. The same session is selected at the same time in both systems.

3. Whenever a session is selectedii.,, the packet at the head of its queue is transmitted.
In contrast, whenever a session is selected,iiit is possible that the packet of another
session is transmitted. This happens when the selected session is in error, or when it is
leading and has to give back its lead.

4. A session is active during the same time intervals in both systemsa lsession is said to
be active if it is backlogged, or as long as it is leadingSp., a session is active only as
long as it is backlogged.

There are two things worth noting. First, the scheduling decisions are matg-# and
not inS. More precisely, the session that has the smallest virtual tinsé ig is selected to be
served inS. Second, no matter what session is actually séried, in S, the transmitted
packet is assumed to be belonging tosk&ectedession, and therefore its virtual time is updated
accordingly.

Below we give some of the key techniques introduced by our CIF-Q algorithm.

! As implied by 3, the selected session may not be served if it is in error or has to give up some of its lead.



¢ Unlike other PFQ algorithms, in CIF-Q, a session’s virtual time doaskeep track of
the normalized service received by that session in the real systdmt in thereference
error-free systenys ., .

e To provide fairness, we use an additional parameter (cddlgdthat keeps track of the
difference between the service that the session should receivg-inand the service it
has received i¥. Then, to achieve perfect fairness, the lag of every session should be zero.

¢ A leading session is not allowed to leave until it has given up its lead. Otherwise, as we
will show later, this translates into an aggregate loss for the other active sessions.

e To deal with the case when all active sessions are in error, we introduce the concept of
forced compensation. We force a session to receive service and we charge it for this service,
even if it cannot send any packet. This makes it possible to ensure delay and throughput

guarantees for error-free sessions.

Finally, we note that our algorithm is self-clocking in the sense that there is no need for emulating
a fluid flow system for scheduling or keeping track of lead and lag. As a result, our algorithm has
lower implementation complexity than IWFQ [6] which requires the emulation of a fluid system.

For clarity, we first describe a simple version of CIF-Q that achieves the two most important
properties of CIF: (1) delay and throughput guarantees for error-free sessions, and (2) long term
fairness for error sessions. Definitions of some key terms appearing in this section are shown in
Table 1.

5.1 CIF-Q: Simple Version

Besides a virtual time;, each sessionin CIF-Q is associated with an additional parameder

that represents the difference between the service that sessimuld receive in a reference
error-free packet system and the service it lemeived in the real system. An active sessi

said to bdaggingif its lag; is positive leadingif its lag; is negative, andatisfiedotherwise. In

the absence of errorg;g; of all active sessions are zero. Since the system is work-conserving,

the algorithm maintains at all time the following invariant:

€A



Term Definition

Leading session A session that has a negativiey;
Lagging session A session that has a positivaug;
Satisfied session A session that has a zertug;
Lead The absolute value of a negatikey;
Lag The value of ay;

Backlogged session | A session that has a queue lengtl®
Active session A session that is either backlogged
or unbacklogged with a negative lag
Can send A session can send if it is backlogged

and experiences no error at the moment

Excess service Service made available due to errors
Compensation service Service made available due to a
leading session giving up its lead
Additional service Excess or compensation service
Lost service Service lost due to errors that is
received by another session
Forgone service Service lost due to errors that is

notreceived by another session

Table 1:Definitions of terms used in the description of the CIF-Q algorithm.

whereA is the set of active sessions. The simple version of CIF-Q is shown in Figure 1.

When a sessionbecomes backlogged and active, its lag is initialized to zero. Its virtual time
is initialized to the maximum of its virtual time and the minimum virtual time among other active
sessions to ensure the virtual times of all active sessions are bounded. The algorithm selects the
active session with the minimum virtual time for service. If that session is not leading and can
send, then the packet at the head of its queue is transmitted; this ensures error-free non-leading
sessions get their fair share. Its virtual time is advanced as follows to record the amount of
normalized work:

UZ':UZ'—I-i (4)

T



on session receiving packetp:
enqueudqueue;, p)
if (1 & A)
v; = max(v;, minge 4{vx });
lag; = 0;
A = AU {i}; /* mark session active/

on sendingcurrent packet/x get next packet to send
i = min,, {7 € A}; /* select session with min. virtual tire¢
if (lag; > 0 and (¢ can send)) x session i non-leading, can serd
p =dequeudqucue;);
v; = v; + plength/r;;

else
J =maxg, /r, 1k € A |k can send,
if (j existy

p =dequeudqueue;);
v; = v; + p.length/r;; [+ charge session4/
lag; = lag; + p.length;
lag; = lag; — plength;
if (4 # j and empty(queue;) andlag; > 0)
leave(;);
else/x there is no active session ready to send
vi = v +6/r;;
if (lag; < 0 and empty(queue;)) /« iis leading, unbacklogged/
J= maxlagk/rk{k € ./4},
lag; = lag; + 9;
lag; = lag; — J; /+ forced compensation/
settime_out(on sending §/ R);
if (empty(queue;) andlag; > 0)
leave);

leavei) /* session i leaves/
A=A\ {i};
for (j € A) /+ update lags of all active sessiors
lag; = lag; +lag; < vi/ (O pea )
if (3j € As.t. empty(queue;) Alag; > 0)
leave(;);

Figure 1:Simple version of the CIF-Q algorithm.
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wherel* is the length of the&'" packet of sessionandr; is the rate of session However, if

the session is leading or cannot send, we search for the sgseidh the largest normalized

lag that can send a packet. If there is such a sessitime packet at the head of its queue is
transmitted. That is, when additional service is available, we first try to compensate the session
that is normalized lagging the most. Note that sess®wirtual time (ot sessiong'’s virtual

time) is advanced anthg; andl/ag; are adjusted. The key is that by doing so we charge the
packet transmission to sessiofnot ;), and we keep track of this by adjusting the lags of the two
sessions accordingly. The lags adjustments indicate that sesssmow given uﬂ; amount of
service, while sessiof has now receivetf amount of additional service. This selection policy
reduces to SFQ in an error-free system.

To achieve long term fairness, in addition to compensating lagging sessions, we need to ad-
dress the following question: What should happen if a sessiwith a non-zero lag becomes
unbacklogged and wants to leave the active set? Clearly, if sessiatiowed to leave, we need
to modify the lag of at least one other active session in order to maintain the invariant (3) of the
algorithm. Our solution is that when a lagging sessiovants to leave, its positivkig; is pro-
portionally distributed among all the remaining active sessjosisch that eackug; is updated
according to the following equation:

lag; = lag; + lagi=—"—, (5)
keA Tk

where A represents the set of the remaining active sessions. In contrast, a leading session is
allowed to leave the active set until it has given up all its lead.

Intuitively, when a lagging session becomes unbacklogged and wants to leave, its positive lag
is “unjustified” because it does not have enough service demand to attain such lag. In addition,
the leaving of a lagging session translates into gains in services for the remaining active sessions.
By updating their lags according to equation ( 5), we practically distribute this gain in proportion
to their rates. Therefore, such lag can be safely redistributed back into the system. In contrast, if a
leading session is allowed to leave, and its lead (negative lag) is redistributed back into the system,
then the remaining active sessions are penalized. If the leading session’s lead is not redistributed
back into the system and its lead history is erased (reset to zero), the aggregate sum over the
lags of the remaining sessions becomes negative. Consequently, even if none of the remaining

sessions experiences any errors in the future, they cannot get back their lost services unless the
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leading session that left the system becomes active again and gives back its lead. On the other
hand, if the lead history is retained, then the leading session may be unnecessarily penalized in
the future when it becomes active again. Therefore, a leading session is not allowed to leave.

With the mechanisms discussed so far, as long as there exists an active session that can send,
lost services by a session are always reflected as leads in other active sending sessions. Therefore,
if all the error sessions exit from error and remain error-free for a long enough period of time,
the normalized lag of all active sessions approaches zero and the long term fairness property of
CIF is achieved. There is however a special case where no active sending sessions are left in the
system to receive the excess service from an error session. Such service is sémigoreand
active error sessions are not allowed to reclaim such forgone services. In this case, the algorithm
advances the active error session’s virtual time using a dummy packet of lesgthat all active
sessions can be chosen by the sérirethe correct order even when none of them can send.

A similar special case exists for distributing compensation service. Recall that a leading
unbacklogged sessianis not allowed to leave until it has given up all its lead. However, if
all other active sessions are in error and cannot receive compensation service from this leading
session, this leading session may be stuck in the active set indefinitely. Using the dummy packet,
we allow a leading unbacklogged sessida gradually give up its lead biprcing an active error
lagging session to “receive” amount of compensation service. In effect, we force sesgion
to forgo & amount of service. If the leading unbacklogged session is not allowed to give up its
lead by forcing the compensation, the allocated share of this leading session can be violated at
a later time. Thus, the algorithm ensures that, given enough service demand from an error-free
session, it always receives no less than its guaranteed share of service. As a result, the algorithm
is capable of providing a delay bound to an error-free session whose source is constrained by a
leaky-bucket regardless of the behavior of other sessions in the system.

In summary, in this simple version of the CIF-Q algorithm, we have achieved two properties
of CIF. First, long term fairness is ensured. Second, an error-free session is always guaranteed
its fair share, thus there is a delay bound for an error-free session whose source is constrained
by a leaky-bucket that is independent of the behavior of any other sessions in the system. As a
result, real-time guarantee and long term fairness are decoupled. These properties are shown in
Section 6.

?Recall the server alway$iooses the session with the minimum virtual time.
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Parameter| Definition

a Minimal fraction of service retained by

any leading session

S Normalized amount of service actuallgoeived by
a leading sessionthrough virtual time ¢;) selection
since it became leading

ci Normalized amount of additional serviceceived by
a lagging session

fi Normalized amount of additional serviceceived by

a non-lagging session

Table 2:Definitions of new parameters used in the full version of CIF-Q.

5.2 CIF-Q: Full version

The simple version of the CIF-Q algorithm has two major drawbacks. First, the service
received by a leading session does not degrade gracefully when it is necessary for it to give up
its lead. In fact, a leading session receivesservice at all until it has given up all its lead.

The second drawback is that only the session with the largest normalized lag receives additional
services. That is, short term fairness is not ensured. Consequently, during certain periods of time,
a session with a smaller guaranteed rate can actually receive better normalized service than a
session with a larger guaranteed rate. This contradicts the semantics that a larger guaranteed rate
implies better quality of service.

The full version of the CIF-Q algorithm which addresses both of these problems is shown
in Figure 2 and 3. Several new parameters are introduced and their definitions can be found
in Table 2. For clarity, we have separated out some groups of operations into new functions.
Functionsend pkt(;,) now contains the operations performed when the server serves a packet
from sessiory but charge the service to sessiorBecause of the changes in lags resulting from
the charging technique, sessions’ states may change. Therefore, several cases are listed to check
for state changes to update each parameter accordingly. Operations related to sending a dummy
packet, which are identical to those in the simple version, are now iseghd dummy _pkt (z)
function. In addition, parameters are also updated when a session exits from error state as shown
in the processing of then exiting from error-mode event, and when a session leaves the active

set as shown in thieavg:) function.
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on session receiving packetp:
enqueudqueue;, p)
if (1 & A)
v; = max(v;, minge 4{vx });
lag; = 0,
fi = max(f;, mingea{fx | lagry < 0 Ak can sendl);
A = AU {i}; /* mark session active/

on sendingcurrent packet/x get next packet to send
i = min,,{i € A};
if ((¢ can sendand (lag; > 0 or (lag; < 0 and s; < aw;)))
sendpkt(i, 7); /+ session i served through selection:/
else/x i cannot send or i is leading and not allowed to send
/+ select lagging sessighto compensate/
Jj = ming, {k € A|lagy > 0 Ak can seng;
if (¢ can send)
if (j existy
sendpkt(j, ©); /* serve session j but charge te [
else/x there is no lagging session that can seiyd
sendpkt (i, i); /+ service given back to sessior/i
else/x i cannot sendk/
if (Vk € A k cannot send)
send.dummy_packet(;);
else/x there is at least one session that can sepd
if (j existy
sendpkt(j, ©); /* serve session j but charge te [
else/x no active lagging session, and i cannot serid
/* select session j to receive excess servjce
J = miny, {k € A | sessiork can seng;
sendpkt(j, i); /* serve session j but charge te [
if (1 # 7 and empty(queue;) andlag; > 0)
leavej); /* j becomes inactive/
if (empty(queue;) andlag; > 0)
leavei); /+ i becomes inactive/

Figure 2: The full version of the CIF-Q algorithm (Part I).
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sendpkt(j, i) /+ serve session j but charge te
p =dequeudqucue;);
v; = v; + p.length/r;; /% charge session4i/
if (== jandlag; < 0ands; < av;)
/+ session i is leading and served througlselection:/
s; = s; + plength/r;;
it (i )
lag; = lag; — p.length; [+ session ] has gain extra servieg
if (lag; > 0)
/+ case 1: j continues to be laggirg
¢; = ¢; + plength/r;;
if (lag; + p.length < 0andlag; < 0)
/x case 2: j continues to be non-laggirg
i = f; + plength/r;;
if (lag; + p.length > 0 andlag; < 0)
/+ case 3: j just becomes non-lagging
i = max(f;, mingea{fx | lagr < 0 Ak can send);
if (lag; + p.length > 0 andlag; < 0)
s; = avj;; /x case 4: ] just becomes leading
lag; = lag; + p.length; /+ session i has lost servieg/
if lag; — p.length < 0andlag; > 0)
/+ case 5: i just becomes lagging
¢; = max(c;, mingea{ck | lagi > 0 A k can send);

senddummy_pkt () /+ i was selected, but no session can sejd
v; = v; + d/r;; /x send an infinitesimally small dummy packgt
if (lag; < 0 and empty(queue;))
J= maxlagk/rk{k € ./4},
lag; = lag; + 9;
lag; = lag; — J; /+ forced compensation/
settime_out(on sendingpacketd/R);

on session exiting from error-mode:

if (lag; > 0)

¢; = max(c;, mingea{cy | lagy > 0 A k can sengl);
else

fi = max(f;, mingea{fx | lagry < 0 Ak can sendl);
if (lag; < 0)

s = av;;

leavei) /* session i leaves/
A=A\ {i};
for (j € A) /+ update lags of all active sessiors
lag; = lagyj;
lag; = lag; +lagi X /(3 pcaTk):
if (lag; < 0 andlag; > 0 and j can send)
/x| just becomes lagging/
¢; = max(¢;, minge 4{ck | lagr > 0 A k can sengl);
if (3j € As.t. empty(queue;) Alag; > 0)
leave(;);

Figure 3: The full version of the CIF-Q algorithm (Part I1).
15



To achieve graceful degradation in service for leading sessions, we use a system parameter
a (0 < a < 1) to control the minimal fraction of service retained by a leading session. That is,

a leading session has to give up at mdst- «) amount of its service share to compensate for
lagging sessions. To implement this policy, we associate to each leading sesgarametes;,

which keeps track of the normalized service actually received by such leading session through
virtual time (v;) selection. When a sessierbecomes leading;,; is initialized toav; (see case

4 in send pkt andon exiting from error-mode). Thereafte¢; is updated whenever a leading
session is served through virtual time selection (seed pkt). When selected based on a
leading session is assured service only if the normalized service it has received through virtual
time selection since it became leading is no larger thaof the normalized service it should
have received based on its share. That is, a leading session is assured service; oAlwif;.
Intuitively, the larger the value af, the more graceful the degradation experienced by leading
sessions. At the limit, whem is set to one, no compensation is given to lagging sessions.

To provide short term fairness, we distinguish the two types of additional service in the al-
gorithm: excess servicand compensation serviceExcess service is made available due to a
session’s error, while compensation service is made available due to a leading session giving up
its lead.

First of all, lagging sessions have higher priority to receive additional services to expedite
their compensation. But we now distribute these additional services among lagging sessions in
proportion to the lagging sessions’ rates, instead of giving all of it to the session with the largest
normalized lag. This way a lagging session is guaranteed to catch up, no matter what the lags
of the other sessions are, and the short term fairness property is ensured among lagging sessions
during compensation. This policy is implemented by keeping a new virtual dirtteat keeps
track of the normalized amount of additional services received by sessibile it is lagging.

When a sessiohbecomes both lagging and can sends initialized according to (see case 5 in
sendpkt, on exiting from error-mode anteave:

¢; = max(¢;, %éiil{ck | lagr > 0 A k can sendl). (6)

When additional service is available, the lagging sesgiavith the minimume; that can
send is chosen to receive it. Sessj®c; is then updated accordingly (see case $andpkt).
However, if such sessiof does not exist, then there are two scenarios. First, if the additional
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service is a compensation service, then this service is given back to the original chosen:;session
Otherwise, it must be an excess service. If none of the active sessions can send at the moment,
thensenddummy_packet(:) is called to advance the virtual time and perform any applicable

forced compensation. But if there are active sessions that can send left in the system, then this
excess service is distributed among all non-lagging sending sessions in proportion to their rates.
This way, short term fairness is ensured among non-lagging sessions when excess services are
available. This policy is implemented by keeping a virtual tifnthat keeps track of the normal-

ized amount of excess services received by sessiamle it is non-lagging. When a session
becomes non-lagging and sendirigis initialized according to (seen receivingpacket, case 3

in send pkt andon exiting from error-mode):

fi = max(f;, Ikréljl{fk | lagr <0 Ak can sendl). (7)

To distribute the excess service, the non-lagging segswith the minimumy; that can send is
chosen to receive it. Sessigis f; is then updated accordingly (see case 8nd.pkt).

In summary, using the four new parametersg;, ¢;, andf;) and the associated mechanisms
presented above, the full version of the CIF-Q algorithm now achieves (a) graceful degradation
in service for leading sessions and (b) short term fairness guarantee (these properties are shown
in Section 6) in addition to (c) long term fairness guarantee and (d) error-free sessions delay
bound/throughput guarantee that are achieved by the simple version of the algorithm. Thus, all
the properties of CIF are satisfied.

5.3 Algorithm Complexity

In this section we discuss the algorithm complexity. We are interested in the complexity of each
of the following five operations: (1) a session becoming active, (2) a session becoming inactive,
(3) a session being selected to receive service, (4) an active session entering error mode, and
(5) an active session becoming error-free. It can be deduced from Figure 2 that these operations
ultimately reduce to the following basic set operations: adding, deleting, and querying the ele-
ment with the minimum key from the set. Since these operations can be efficiently implemented
in O(logn) by using a heap data structure, a straightforward implementation of our algorithm
would be to maintain three heaps basedvQry;, andc;, respectively. More precisely, the first

heap will maintain alkctivesessions based an, the second one will maintain alon-lagging
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error-freesessions based ¢ and the last one will maintain ddgging error-freesessions based
on¢;. Since with the exception of the leaving operation, all the other four operations involve only
a constant number of heap operations, it follows that they can be implemeriiéidén: ), where

n represents the number of active sessions.

Regarding the leaving operation, when the lag is non-zero, this operation requires updating
of the lags of all other active sessions. However, when a session’s lag changes, that session might
change its state from leading to lagging, which eventually requires moving it from one heap to
another. Thus, in the worst case the leaving operation t@kesog ).

Although the leaving operation takes significantly longer than that in an error-free Packet Fair
Queueing algorithm, we note that in wireless networks, algorithm efficiency is not as critical as
in wired networks. The main reason for this is that wireless networks are mainly used as access
technology, they have significantly lower bandwidth, and support a significantly lower number of
hosts compared to wired networks. As an example, the current WaveLAN technology provides 2
Mbps theoretical throughput and supports on the order of 100 hosts [9]. These figures are several
orders of magnitude smaller than the ones for a high speed communication switch.

6 Fairness and Delay Results

In this section we show that our algorithm meets the properties presented in Section 4. Specifi-
cally, Theorem 1 says that the difference between the normalized services received by two error-
free active sessions during any time interval in which they are in the same state (i.e., leading,
satisfied, or lagging) is bounded (Property 3), Theorem 2 says that the time it takes a lagging
session that no longer experiences errors to catch up is bounded (Property 2), and finally, The-
orem 3 gives the delay bound for an error-free session (Property 1). Note that Property 4 is
explicitly enforced by the algorithm via the parameterThe complete proofs can be found in

the Appendix.

Theorem 1 The difference between the normalized service received by any two sesaiahs
J during an interval[t,, t2) in which both sessions are continuously backlogged, error-free, and
their status does not change is bounded as follows:

S ﬁ (Lmax + Lmax) 7 (8)

T T]‘

I/Vi(tlv t?) N W](tlv t2)

T T]‘
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wherelV;(t1, 1) represents the service received by sessiuring [¢1,¢2), Lmq. IS the maximum
packet length, and = 3 if both sessions are non-leading= 3 + « otherwise.

Theorem 2 Consider an active lagging sessiothat becomes error-free after timeIf session
1 is continuously backlogged after timgthen it is guaranteed to catch up after at masunits

of time,
Eﬁ
A = lag;(t 9
(= ak agi(t) + 9)
E(E/Tz +n+ 2) E Lmaac
1
( rmzn(l —Oé) ol rmin) R 7

wheren is the number of sessions that are active at any tinje i), R is the channel capacity,
L ... is the maximum length of a packétjs the aggregate rate of all sessions in the system, and

rmin 1S the minimum rate of any session.

Theorem 3 The delay experienced by a packet of an error-free segsioth rate r; in an error
systems' is bounded by

K3

" R TR

(10)

wheren is the number of active sessiorsjs the length of thé:'* packet of session and 2 is
the channel capacity.

7 Simulation Experiments

In this section, we present results from simulation experiments to demonstrate the delay
bound guarantees and the fairness properties of CIF-Q. All the simulations last for 200 sec-
onds and there are seven sessions: a real-time audio session, a real-time video session, four FTP
sessions, and a cross traffic session to model the rest of the traffic in the system. The proper-
ties of each session are shown in Table 3. The audio and video sessions are constant-bit-rate
(CBR) sources such that their packets are evenly spacedat %part and their throughputs

3To be more realistic and to avoid the worst case behavior of SFQ, the packet spacing has a small probability of
drifting slightly
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Pkt size | Guaranteed rate Src model| Error
Audio | 1 KB 160 Kbps CBR None
Video | 8 KB 1.25 Mbps CBR None
FTP-1| 3KB 2 Mbps Greedy None
FTP-2| 3KB 2 Mbps Greedy Pattern 1
FTP-3| 8 KB 2 Mbps Greedy Pattern 2
FTP-4| 8 KB 2 Mbps Greedy Pattern 1
Cross | 4KB 10 Mbps Poisson | None

Table 3:Properties of the 7 sessions used in the simulations.

Max Min Mean | Std Dev
Audio | 46 ms| 0.40ms| 4.1 ms| 4.4 ms
Video | 49ms| 3.2ms | 6.9ms| 4.3 ms

Table 4:Packet delay statistics for the audio and video sessions whgd.9.

are 160 Kbps and 1.25 Mbps respectively. The four 2 Mbps FTP sessions are all continuously
backlogged. Finally, the cross traffic session is a Poisson source with an average rate of 10 Mbps.

For clarity in showing the effects of channel errors and for ease of interpretation, we choose to
model errors as simple periodic error bursts rather than using a more realistic model [3]. During
the 200 second periods of our simulation experiments, channel errors occur only during the first
45 seconds, leaving enough error-free time to demonstrate the long term fairness property of our
algorithm. Error pattern 1 represents a periodic error burst of 1.6 second with 3.2 seconds of
intermediate error-free time. Error pattern 2, a less severe error pattern, represents a periodic
error burst of 0.5 seconds with 5.5 seconds of intermediate error-free time. Notice session FTP-2
and session FTP-4 experience identical error pattern but have different packet sizes, while session
FTP-1 experiences no error at all. In the following, we present two sets of simulation results using
different values as the the system parameter

7.1 a=09

An « value of 0.9 intuitively means that leading sessions will give up up-to 10 percents of
their service rates to compensate for lagging sessions. Table 4 shows the packet delays statistics
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Figure 4:Behavior of the FTP sessions whets 0.9. (a) Service received by each FTP session.

Note that FTP-2,4 are the bottom two lines that virtually overlap each other. (b) Difference
between the actual service received by the FTP sessions and the corresponding expected amount
of service. Note this is not the same as the lead defined in the CIF-Q algorithm

for the two real-time sessions under this compensation policy. For comparison purpose, if the
audio and video sessions were served by an error-free fluid GPS system, their packets would
have a delay bound of 5&s. Clearly, the delays experienced by the audio and video packets
under our algorithm compare favorably against the GPS delay bound and are well below the worst
case delay bound of our algorithm. The worst case delay bound is much larger thanda@

to the SFQ discipline used. However, a packet experiences the worst case delay only when the
starting virtual time of all sessions are perfectly synchronized. This is avoided in the simulation
by introducing small infrequent drifts into the packet spacing to portrait a more realistic situation.

In addition to providing delay bound guarantees, an equally important aspect of our algo-
rithm is on fairness. To demonstrate the fairness properties, consider the behavior of the four
FTP sessions as shown in Figure 4. Figure 4(a) shows the amount of service received by each
FTP session over the period of the simulation. Recall that sessions FTP-2,3,4 experience errors
during the first 45 seconds of the simulation as evidenced by the flat periods in their service pro-
gressions. Sessions FTP-2,4 experience identical errors and session FTP-3 experiences slighter
errors. Session FTP-1 is error-free during the simulation.

The most notable feature in Figure 4(a) is the fact that the service received by all four FTP
sessions, regardless of the amount of errors they have experienced, converges gradually when
the system becomes error-free. This demonstrates the perfect long term fairness guarantee over

21



Max Min Mean | Std Dev
Audio | 43ms| 0.40ms| 4.1 ms| 4.4 ms
Video | 51 ms| 3.2ms | 70ms| 4.5 ms

Table 5:Packet delay statistics for the audio and video sessions whgd.0.

a busy period provided by our algorithm. To see the changes in leads and lags more easily, we
show in Figure 4(b) the difference between the actual service received by the FTP sessions and
the corresponding expected amount of service. The expected amount of service is computed
as the product of the overall throughput and time. A leading session gives up its lead to lagging
sessions at a rate bf- « that of its actual service rate. Notice the give-up rates and compensation
rates varies slightly since the Poisson traffic of the cross traffic session affects the actual service
rates.

Finally, notice in both Figure 4(a) and (b), the lines for sessions FTP-2 and FTP-4 almost
overlap each other and the lines for sessions FTP-1 and FTP-3 parallel each other while they
are both leading. This shows the short term fairness guarantee provided by our algorithm which
states that the difference in normalized services received by two sessions during a period in which
they are in the same state (leading or lagging, error or error-free) is bounded. This ensures that all
leading sessions in the same error state give up their leads at approximately the same normalized
speed and that all lagging sessions in the same error state get compensated at about the same
normalized speed. One might incorrectly assume that the lines for sessions FTP-2 and FTP-4
should completely overlap each other since they experience the same errors. The reason they do
not is that the difference in the amount of normalized services received may drift apart when the
sessions change states as can be seen in Figure 4(b). Nonetheless, it is important to note that the
two lines are parallel during periods where the two sessions do not change state.

7.2 a=00

In this experiment, the value @f is zero. This means that a leading sessiamill receive no

service as long as there exists a lagging error-free session in the system. This absolute priority
compensation behavior is similar to the behavior of the algorithm proposed in [6], except that
we have not put an artificial upper bound on this zero-service period and that real-time require-
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Figure 5:Behavior of the FTP sessions whets 0.0. (a) Service received by each FTP session.

(b) Difference between the actual service received by the FTP sessions and the corresponding

expected amount of service.

ments are still guaranteed. Although we believe such aggressive compensation is not desirable,
it is worthwhile to demonstrate the behavior of our algorithm under this policy. Even though
such an aggressive compensation policy is used, the delays experienced by real-time packets are
unaffected under our algorithm (See Table 5). Thus, delay bounds for real-time sessions are guar-
anteed independent of the valuecobr whether compensation is bounded. The value ohly

affects the fairness properties of the system. That is, real-time delay bound guarantee and fairness
guarantees are decoupled under our algorithm.

In Figure 5, we show the behavior of the four FTP sessions Clearly, the services received by
the four FTP sessions converge very rapidly after each error period. However, the price to pay for
such absolute priority compensation is the abrupt changes in the available bandwidth experienced
even by error-free sessions (e.g. FTP-1). Despite the abruptness, it is clear from Figure 5 that
the long term and short term fairness guarantees provided by our algorithm still hold. One thing
worth explaining is that in Figure 5(b), the lines converge to a value above zero and then slowly
drop to zero together. This is due to the changing actual service rates caused by the Poisson
traffic of the cross traffic session in the system. Nevertheless, the convergence of the services
sufficiently shows the fairness properties of our algorithm.
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8 Conclusion

In this paper, we make two main contributions. First, we identified four key properties (CIF) that
any PFQ algorithm should have in order to work well in a wireless network where channel errors
are location-dependent. Specifically, the properties are (1) delay guarantees and throughput guar-
antees for error-free sessions, (2) long term fairness guarantee for error sessions, (3) short term
fairness guarantee for error-free sessions, and @jejul degradation in quality of service for
sessions that have received excess service. As a second contribution, we present a methodology
for adapting PFQ algorithms for wireless networks and we apply this methodology to derive a
new scheduling algorithm called CIF-Q that provably achieves all the properties of CIF. Four
novel algorithmic techniques are introduced in CIF-Q to make achieving the CIF properties pos-
sible. We demonstrate the performance of CIF-Q in simulation and show how compensation
rate can be tuned to suit specific needs. As possible further work, the CIF-Q algorithm may be
extended to support hierarchical link-sharing service.
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Appendix

In this section we prove the main fairness and delay properties of our algorithm. First, we start
with several preliminary results. Lemma 1 gives a upper bound for the lag of an error-free session,
while the next three lemmas give bounds for the difference between the virtual tifig@sthe

virtual compensation times:(s), and the virtual excess timeg;6) between any two active
sessions.

Lemma 1 The lag of an error free session is never greater than.., whereL,,.. represents
the maximum size of a message.

Proof. The proof is by induction. From the algorithm in Figures 2 and 3, the lag efam-free
session changes in one of the following three cases: (a) sesstmtomes active, (b) session
is selected based on its virtual time but since it is leading another sessm@elected to receive

service, and (c) sessiomeceives service from another sessjon

Basic step.When an error-free sessiorbecomes active, its lag is set to zero, and therefore the
lemmais trivially true.

Induction step. Assumé&ag; < L,,.,.. We consider two cases: (L)g; < 0, and (2)0 < lag; <
L....- Since in case (1) sessioims leading, its lag can increase only when its service is given to
another sessiop (see case (b) above). In this case, we have

lagi = lagz + lf S lf S Lmax7 (11)

wherelf represents the length of the packet at the head of the queue of sgsdionase (2),
session is non-leading, and so its lag can only decrease (case (c) above). Thus, the bound holds.
O

Lemma 2 The difference between the virtual times of any two active sessants; is bounded
as follows:

(12)
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Proof. The virtual time of a session is updated in one of the following cases: (1) the session
becomes active, (2) the session is selected. Again, the proof is by induction.

Basic step.When there is only one active session, the lemma is trivially true.

Induction step. Consider a sessiaoithat becomes active at timeand assume that the lemma.is
true at any time before Then the virtual time of sessianis either initialized to the minimum
virtual time among all active sessions, or remains the same if itis larger than this minimum. Since
virtual times are non-decreasing, it is easy to see that the difference betwaet the virtual
time of any other active session remains in the same bounds. This concludes the argument for
case (1).
For case (2), assume again that before sesg®aelected, the lemma holds. When selected,
the virtual time of sessionchanges as follows
lk
v = vt —, (13)

T
wherel* represents the length of the packet that is served (not necessary a packet of:$ession
when session is selected, if any. (If there is no such packet, we assume a dummy packet of
lengthd < L,... IS served, the proof proceeds identically.) Simgceepresents theninimum

virtual time among all currently active sessions, we have

U; S Uy, \V/] € ./4 (14)

Sinceuw; is the only virtual time that changes at timeit is enough to show that the difference
betweerv; and any othep; is bounded. Recall that by hypothesis we have
Lmax Lmax .
— S v — vy S \V/] - ./4 (15)

9
T]‘ T

From this and from Eq. (13) and Ineq. (14) it follows that

[* ¥ Lo ,

K3 T.Z T.Z

Similarly, if we assume thatis selected (instead of, we have

lk lk Lmaac .
vi— v — 2 =2 ———, Vi€ A, (17)

Ty Ty Ty
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which concludes the proafi

Since the proofs of the next two lemmas are similar to that of Lemma 2, we give the results
without the proofs.

Lemma 3 The difference between the virtual compensation times of any two active error-free

sessiong and; that are both lagging is bounded as follows:

Lmax Lmax
<6 —¢ <
T]‘ T

(18)

Lemma 4 The difference between the virtual excess times of any two active error-free seéssions

andj that are both non-lagging is bounded as follows:

Lmal’ Lmal’
<fi—f; <

T]‘ T

(19)

The next lemma gives bounds on the difference between the normalized service received by
a leading session(s;) and the amount it should have received].

Lemma 5 For any leading error-free session

Lmax Lmax
<av; — s <« .
T T

(a—1) (20)

Proof. The proof is by induction.

Basic step. Initially, when session becomes leading; is initialized toav;, and therefore the
bounds hold.

Induction step. Assume the bounds hold beforeand/ors; are updated. Since and/ors;
change only when sessians selected, we consider two cases: (1) sessisractually served,
and (2) another sessignis served. According to the algorithm, the first case occurs only when
s; < av;. Therefore, we have,

k
A Lmal’
a(vi+lL)_5i_—:(a—l)i—l—avi—siz(Oé—l) R (21)

T T T T

I¥ I¥

wherel represents the length of the packet being transmitted.
In the second case;(> av;), the service is allocated to another sesgidhany, v; is updated
but s; is not. Thus, we have
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[* [* L
alvi+ L) — s < at < a2 (22)
T T T

wherel;? represents the length of the transmiteed packet of segsion
Theorem 1 The difference between the normalized service received by any two sesaiahs

J during an interval[t,, t2) in which both sessions are continuously backlogged, error-free, and
their status does not change is bounded as follows:

I/Vi(tlv t?) . W](tlv t2)

T T]

S 6 (Lmaac _I_ Lmal’) 7 (23)

T T]‘
wherelV;(t1, 1) represents the service received by sessiuring [¢1,¢2), Lnmq. IS the maximum
packet length, and = 3 if both sessions are non-leading= 3 + « otherwise.

Proof. We consider three cases: both sessions are (1) lagging, (2) satisfied, or (3) leading during
the entire intervalt,, ¢5).

(1) (both sessions are lagging) In this case both sessions receives service each time they are
selected, or when they receive compensation from a leading session. Since both the virtual time
v; and the compensation virtual time are updatedbeforea packet is send, it follows that the

total service received by an errbiee lagging session during, ¢2) is bounded by

vills) — i) + ci(ty) — ex(ty) — Lmez < Wiltta) (24)

T T
Lmax

< wvty) —v(ty) + ei(ta) — e(th) + -

In the left-hand inequality, the termL’;}% accounts for the worst case in whichoccurs exactly

after a packet is selected, while in the right-hand inequality the f?egﬁm accounts for the worst

case when,; occurs exactly after a virtual time is updated but before the corresponding packet is
transmitted. Thus, from the above inequality and by using Lemmas 2 and 3, it is easy to see that

I/Vi(tlv t?) N W](tlv t2)

T T]‘

Lmal’ Lmal’
<3 ( i —) | (25)

T T]‘
(2) (both sessions are satisfied) In this case both sessions are served each time they are selected
based on their virtual times, or when they receive excess service. Then, similar to the previous

case we have
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oilta) = vi(te) + filta) — fi(ty) — Lo < Willta) (26)

T T
Lmax

< wite) —wilty) + filte) — filt) + :

ri

and consequently, similarly to the previous case, by using Lemmas 2 and 4, we obtain

I/Vi(tlv t?) . W](tlv t2)

T T]‘

T T]‘
(3) (both sessions are leading) Similar to the previous case, the service received by a leading
session during|ty, t) is bounded by

silta) = si(t) + 1) = fioy) = Lrez < ittt @8)
Lmal’

ri

< silte) — silt) + filts) = filth) +

Further, according to Lemma 5, for any leading effree session and any timet, while it is
active, we have

Lima > s;(t) > avi(t) — oszw, (29)

T T

avi(t) — (a—1)
Consequently, for any two leading error-free sessions that are active &t iedave

Lmax Lmax

awi(1) = vj(1)) + = T S < (1) — (1) (30)
J ? J
Lmax Lmax Lmax
< (1) — vi(t —
S a(ui{t) = vi(t) + a( 22 - 22 4 2
From the above inequality and Lemma 2, we obtain
Lmax Lmax Lmax Lmax
— — <si(t) —s4(t) < . 1
QTR = T S si(t) — (1) S a4 2 (31)
Finally, from this inequality and Ineq. (28), we have
I/VZ' t ,t W t 7t Lmaac Lmaac
(1 2)_ ](1 2)§(3‘|‘05)( + )7 (32)
T T]‘ T T]‘

which concludes the proof of the theorem.
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Theorem 2 Consider an active lagging sessiothat becomes error-free after timelf session
1 is continuously backlogged after timethen it is guaranteed to catch up after at masunits
of time,
Eﬁ
A= lag;(1

Fitmin(l — o

E(E/Tz +n+ 2) E Lmaac

1 33
rmzn(l —Oé) L rmin) R 7 ( )

wheren is the number of sessions that are active at any tinje i), R is the channel capacity,

L ... is the maximum length of a packétjs the aggregate rate of all sessions in the system, and

rmin 1S the minimum rate of any session.

Proof. After time ¢, as long as sessionis lagging, its lag decreases each time it receives
compensation. Since the total compensation received by sesdiaing the intervalt, ¢') is
ri(ei(t') — ¢(t)), we have

lagi(t") = lagi(t) — ri(e(t') — ci(1)). (34)

Let C'(¢,t') be the total compensation received by all sessions during the infert/al and let

L(t,t") denote the set of all lagging session that have received compensation at some pointin the
interval[¢,?'). Itis easy to see that durirjg ¢') the compensation iglwaysgiven to a lagging
session. This is because there is at least one continuously lagging session, namely,déssion

is error-free during this interval. Clearly, in the worst case, all sessiofigin’) are continuously
lagging and error-free (so therefore they e@gept compensation at any time) during the interval
[t,%'). Thus, in this case, we have

Oty < 3 rile(t) = ¢i(1) + Linas. (35)
JEL(t,t)

By using Lemma 3 for any two lagging error-free sessiomsd ; that are active during the

interval[t, ') we have

) — ci(t) < cilt!) — ci(t) 4 ez . Tmar (36)

T T]‘

and therefore
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Lmax Lmax

Ct,t)y < > rila(t)—alt)+ + )+ Lonax (37)
JEL(t,) " T
Lmaac
= (a(t)—al(t)) D mi+ Lual L)+ = 3 75+ Linae
FEL(t,t) " FEL(t,t)

~

< (et~ R+ (1t )

K3

wheren represents the total number of sessions that are active at any timé inwhich is at
least|L(t,t')| + 1. This is because as long as there is at least a lagging session, there is also at
least a leading session. We denote this set of active sessions as A.

Further, note that since the compensatiti, t') represents a fractiom of the work received
by leading sessions, and since this work is proportional to the sessions’ rates, it follows that the
worst case occurs when there is only one leading se¢sand this session has ratge = r,,:,.
Thus, in general, we have

C(t, ') > rp(o(t') — vi(1)) — ri(se(t') = sx(t)) = Linaa, (38)

Similar to Ineq. (37) we obtain

Rt —t) < Y ri(v(t) = vi(t) + Lonae (39)
jEA
Lmax Lmax
S Z T]‘(Uk(t/) - Uk(t) + + ) + Lmaac
JEA Ty L

~

< () —vp(t)R+(n+1+ g)LW.

By combining the above two inequalities, and by using Lemma 5 we get

C(t,t") > re(vp(t’) —or(t)) — ri(se(t’) — sk(t)) — Linar (40)
> relont) = wl0) = riann(t) = an(0) + 1) ~ Ly,
= ra(1 = a)(@ult) = 0u(8) = 2L
> (1= a) Rt —1t)—(n Jil + B/ri)Las o

R

Now, from Inegs. (37) and (40) we obtain
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C(t,1') = (n + R/ri) Las
E o~ o~
Rt —t)—(n+ 14+ R/ri)Lmar  (n+2+ R/7i) Lias
R N R '

() —e(t) > (41)

> il —a)

Finally, sincelag;(#') is assumed to be no larger than zero, from the above inequality, Ineq. (34),
and by takingA = ¢’ — ¢ the proof followsQ

Since during any busy period of a server there is no forced compensation, from the above
theorem we have the following result:

Corollary 1 Consider two sessiorisand; backlogged during a service busy peried ¢,), and

assume that at timg both sessions have the same normalized lag/i.@(t1)/r; = lag;(t1)/r;.

Then, irrespective of the errors experienced by these sessions during the ifitersa if both
sessions become error-free aftgiand they have enough demand, then there exists atime,

such that the difference between the normalized service received by the two sessions during the
interval ¢y, ¢3) is bounded.

In the following, we determine the delay bound for an error-free session. In the next two

lemmas we give two preliminary results used in proving Theorem 3.

Lemma 6 Let W;(¢1,1,) be the service received by an error-free session during the interval
[t1,t2) (1 andt, are packet transmission finish times) while it is continuously activ& and let
W (t1,12) be the service received by the same sessidfijn,. Then, we have

Wit ta) = Wity ta) + lagi(ta) — lagi(ty). (42)

Proof. The lag and/or the work received by sessidn S during [¢1,¢2) change when one of

the following events occur: (1) sessions selected and the packet at the head of its queue is
transmitted, (2) sessianreceives service from another session, and (3) sesstoleading and

its service is given to another session. On the other hand, the service received by sassion
Ssro changes only when it is selected and the packet at the head of its queue is transmitted.
In the following, we use induction on the events that change the lag and the work received by

session in S.
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Basic step.At ¢,, EQ. (42) reduces t&/] (¢1,11) = W;(t1,t1), which is obviously true.

Induction step. Assume that at time € [¢,?2) one of the above three events occurs, and that
for any time smaller thanEq. (42) holds.
In case (1), when sessians selected and the packet at the head of its queue is served we

have

I/Vi(tlv t—l_) = I/Vi(tlv t) + lzk? and (43)
I/Vir(tlvt—l_) = I/Vir(tlvt) + lzkv
wheret+ represents the time immediately after the packet has been transmitted. Since according
to our algorithm/ag; does not change in this case, it follows that if Eq. (42) holds at tirtteen
it will also hold at timet+.

In case (2), when sessioneceives service from another sessiofy jnts lag and work change

as follows
lagi(t+) = lag(t) — I}, and (44)
I/Vi(tht‘l‘) = m(tlvt) —I_lzk (45)
where agairi® represents the packet at the head of sesssofueue. However, note that in this
caselV; is notupdated (because sessias not selected). Thus, we have
Wit i) = Wi, t) = Wity 1) + lagi(t) — lagi(th) (46)
= Wilte,t) +IF + lagi(t) = If = lagi(ty) = Wi(ty, t+) + lagi(t+) — lagi(t1).

Finally, in case (3), sessians selected but its service is given to another sesgidhthere
is no such sessionthat can send, then we simply assume a packet of a segsiolengths is
served (forced compensation), and the proof proceeds identically. If there is such session, then
let lf be the length of the packet at the head of sesg®gueue. Then, we have

lagi(t+) = lag(t)+ lf, and 47)
I/Vir(tlvt—l_) = I/Vir(tlvt) + lf? (48)
while W; does not change. From this, it follows that
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WI(t,t4) = Wit t)+ lf = Wi(ty,t) + lagi(t) + lf —lagi(ty) (49)
= Wi(ti,t) + lagi(t+) — lag;(t1) = Wi(t1, t+) + lagi(t+) — lagi(t1),

which completes the proof of the lemnta.

From Lemmas 1 and 6 it follows that the difference between the service received by an error-
free session in the reference system and the service the session receive in the error system is
bounded.

Lemma 7 Assume an error-free sessiofecomes active at timein an error systent’. Then,
the difference between the service received dyring any time intervalt,t') (¢’ is a packet
transmission finish time) while it remains activedrand the service the session would receive in

the reference systeft . is bounded as follows:

I/V;(t,t/) - I/Vi(t,t/) < Lmal" (50)

Proof. Since when sessionbecomes active at time lag;(¢) = 0, according to Lemma 6, we
have

Wi, 1) = Wi(t, ') + lagi(1'), (51)

Further, since sessioiis assumed to be error-free during the intefval ), according to Lemma 1,
we haveag;(t') < L., which concludes the proafl

Since in our case’s, represents an error-free system where sessions are served by the SFQ
policy, the above result suggests that we can use SFQ delay guarantees to bound the packet delay
in S. In particular, it has been proved in [5] that the delay of any paklkata session under
SFQ is bounded by
Lyaw  1F

< 52
7 TR (52)

df <ef+(n—1)

whereR is the channel capacity, represents the total number of active sessidhsgpresents
the k-th packet of sessiotis departure time, and' represents the expected arrival time of the
k-th packet of sessioi and is computed as follows
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lk
e = max{al, et 4+ = } E>1, (53)

wherea! represents the actual arrival time, and= —cc.

Theorem 3 The delay experienced by theh packet of an error-free sessiom an error system
S'is bounded as follows:

Lmax lk Lmax

df <ef 4 (n—1) 7 +]Z%+ - (54)
Proof. Since by time?* the k-th packet of sessionhas been transmitted, we have
Wi(al,d?) = Zl (55)
But according to Lemma 7, in the reference eifrele systent ., we have
W(al,d¥) < Lygs + Z . (56)

Thus, in the worst case the work that sessiareed to receive in the errdree reference
systems . until thek-th packet of sessionin the error system is transmitted is at most.,. +
Z] 1 lf. Consequently, according to Eq. (53) the expected arrival time oftmepacket of
session in S5z, denoted:!" is bounded by:

Lmal’
ef < e 4 T (57)

T
From the above equation and Eg. (52) the proof follaws.

Finally, the next result gives the delay bound for an error-free sesswhose traffic con-
forms to the leaky-bucket constraints ;) whereo; is the bucket depth and is the token rate.
Since in this case, for any packebf session we havec! < a + o;/r;, from the above theorem
the corollary below follows.

Corollary 2 Consider an error-free sessiarwith a reserved rate; and its traffic conforms to a
leaky-bucketo, ;). Then the deadline experienced by thth packet of session i is bounded as
follows:
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o;
& - + o (58)

wherea? represents the arrival time of that packét, ... represents the maximum size of a packet,
R represents the server’s rate, andepresents the number of active sessions.
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