
Packet Fair Queueing Algorithms for Wireless Networks with

Location-Dependent Errors

T.S. Eugene Ng Ion Stoica Hui Zhang

Feburary 2000

CMU-CS-00-112

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

An earlier version of this paper appeared inProceedings of IEEE INFOCOM’98.

This research was sponsored by DARPA under contract numbers N66001-96-C-8528 and N00174-96-K-0002,

and by a NSF Career Award under grant number NCR-9624979. Additional support was provided by Intel Corp.,

MCI, and Sun Microsystems.
Views and conclusions contained in this document are those of the authors and should no be interpreted as rep-

resenting the official policies, either expressed or implied, of DARPA, NSF, Intel, MCI, Sun, or the U.S. government.

Keywords: Wireless network, channel error, resource management, scheduling, delay guaran-

tee, fairness.

Abstract

While Packet Fair Queueing (PFQ) algorithms provide both bounded delay and fairness in wired

networks, they cannot be applied directly to wireless networks. The key difficulty is that in

wireless networks sessions can experiencelocation-dependent channel errors. This may lead

to situations in which a session receives significantly less service than it is supposed to, while

another receives more. This results in large discrepancies between the sessions’ virtual times,

making it difficult to provide both delay-guarantees and fairness simultaneously.

Our contribution is twofold. First, we identify a set of properties, calledChannel-condition Inde-

pendent Fair(CIF), that a Packet Fair Queueing algorithm should have in a wireless environment:

(1) delay and throughput guarantees for error-free sessions, (2) long term fairness for error ses-

sions, (3) short term fairness for error-free sessions, and (4) graceful degradation for sessions that

have received excess service. Second, we present a methodology for adapting PFQ algorithms

for wireless networks and we apply this methodology to derive a novel algorithm based on Start-

time Fair Queueing, calledChannel-condition Independent packet Fair Queueing(CIF-Q), that

achieves all the above properties. To evaluate the algorithm we provide both theoretical analysis

and simulation results.

1 Introduction

As the Internet becomes a global communication infrastructure, new Quality of Service (QoS)

service models and algorithms are developed to evolve the Internet into a true integrated services

network. At the same time, wireless data networks are becoming an integral part of the Internet,

especially as an access networking technology. An important research issue is then to extend the

QoS service models and algorithms developed for wired networks to wireless networks. In this

paper, we study how to implement Packet Fair Queueing (PFQ) algorithms in wireless networks.

PFQ algorithms are first proposed in the context of wired networks to approximate the ide-

alized Generalized Processor Sharing (GPS) policy [2, 7]. GPS has been proven to have two

important properties: (a) it can provide an end-to-end bounded-delay service to a leaky-bucket

constrained session; (b) it can ensure fair allocation of bandwidth among all backlogged sessions

regardless of whether or not their traffic is constrained. The former property is the basis for sup-

porting guaranteed services while the later property is important for supporting best-effort and

link-sharing services. While GPS is a fluid model that cannot be implemented, various packet

approximation algorithms are designed to provide services that are almost identical to that of

GPS.

Unfortunately, the GPS model and existing PFQ algorithms are not directly applicable to a

wireless network environment. The key difficulty is that there arelocation-dependent channel

errors in a wireless environment. In GPS, at any given time, all backlogged sessions send data at

their fair rates. However, in a wireless environment, some mobile hosts may not be able to trans-

mit data due to channel errors, while other hosts may have error-free channels and can transmit

data. To be work-conserving, it is impossible to achieve the instantaneous fairness property de-

fined by the GPS model because only a subset of backlogged sessions are eligible for scheduling.

That is, a session with an error-free channel may receive more normalized amount of service than

that by a session with an error channel. However, it is conceivable to achieve long term fairness

by giving more service to a previously error session so that it can be compensated. Of course this

compensation can only be achieved by degrading the services of other sessions, which may affect

the QoS guarantees and fairness property for these sessions. It is unclear what is the right model

and algorithm to provide QoS guarantee and ensure fairness in a wireless network.

In this paper, we identify a set of properties, calledChannel-condition Independent Fair

1

(CIF), desirable for any PFQ algorithm in a wireless network: (1) delay and throughput guar-

antees for error-free sessions, (2) long term fairness guarantee among error sessions, (3) short

term fairness guarantee among error-free sessions, and (4) graceful degradation in quality of ser-

vice for sessions that have received excess service. We then present a methodology for adapting

PFQ algorithms for wireless networks and we apply this methodology to derive a new scheduling

algorithm called theChannel-condition Independent packet Fair Queueing(CIF-Q) algorithm

that achieves the CIF properties. New algorithmic techniques are introduced in the CIF-Q al-

gorithm. We prove that CIF-Q achieves all the properties of the CIF and show that it has low

implementation complexity. Finally, we use simulation to evaluate the performance of our algo-

rithm.

The rest of this paper is organized as follows. In Section 2 we describe the network model

that we are assuming and in Section 3, we discuss in detail the problems involved in applying

existing PFQ algorithms in wireless networks. We present the CIF properties in Section 4 and the

CIF-Q algorithm in Section 5. We then show that the CIF-Q algorithm achieves all the properties

of CIF in Section 6. Finally, we present simulation results in Section 7 and conclude the paper in

Section 8.

2 Network Model

In this paper, we consider a simplified shared-channel wireless cellular network (e.g. Wave-

LAN [9]) model in which each cell is served by a base station. Centralized scheduling of packet

transmissions for a cell is performed at the base station, and media access control is integrated

with packet scheduling. Mobile hosts may experience location-dependent channel errors in the

sense that they cannot receive or transmit data error-free. Error periods are assumed to be short

and sporadic relative to the lifetimes of the sessions so long term fairness is possible. Instanta-

neous knowledge of channel conditions (error or error-free) and packet queue status of all sessions

is assumed at the base station. Under these assumptions, the difference between a PFQ algorithm

in a wired and wireless environment is that in the latter a backlogged session may not be able to

receive service due to location independent errors. Lu et al have given this broad problem a good

initial formulation in [6], and have effectively addressed many practical issues. Therefore, in this

paper, we focus on the algorithmic aspects of the problem.

2

3 GPS and PFQ

In wired networks, Packet Fair Queueing (PFQ) is based on the GPS model [7]. In a GPS each

sessioni is characterized by its allocated rate,ri. During any time interval when there are exactly

M non-empty queues, the server serves theM packets at the head of the queues simultaneously,

in proportion to their rates.

Each PFQ algorithm maintains a system virtual timeV (�). In addition, it associates to each

sessioni a virtual start timeSi(�), and a virtual finish timeFi(�). Intuitively, V (t) represents

the normalized fair amount of service that each session should have received by timet, Si(t)

represents the normalized amount of service that sessioni has received by timet, andFi(t)

represents the sum betweenSi(t) and the normalized service that sessioni should receive for

serving the packet at the head of its queue. SinceSi(t) keeps track of the normalized service

received by sessioni by timet, Si(t) is also called the virtual time of sessioni, and alternatively

denotedVi(t). The goal of all PFQ algorithms is then to minimize the discrepancies among

Vi(t)’s andV (t). This is usually achieved by selecting for service the packet with the smallest

Si(t) orFi(t). Notice that the role of the system virtual time is to resetSi(�) (or Vi(�)) whenever

an unbacklogged sessioni becomes backlogged again. More precisely,

Si(t) =

8><>: max(V (t); Si(t�)) i becomes active

Si(t�) +
lk
i

ri
pki finishes

(1)

Fi(t) = Si(t) +
lk+1i

ri
(2)

wherepki represents thek-th packet of sessioni, andlki represents its length.

While GPS and PFQ algorithms provide both guaranteed and fairness services in a wired

network, they cannot achieve both properties in a wireless network. The key difference is that

there arelocation-dependent channel errorsin a wireless environment. That is, some mobile

hosts may not be able to transmit data due to channel errors even when there are backlogged

sessions on those hosts while others may have error-free channels and can transmit data in that

time. Since GPS is work-conserving, during such a period with location-dependent channel

errors, error-free sessions will receive more service than their fair share, while a session with

errors will receive no service. Since the virtual time of a session increases only when it receives

service, this may result in a large difference between the virtual time of an error sessioni and

3

that of an error-free session. There are two problems with this large discrepancy between session

virtual times:

1. If sessioni exits from errors, and is allowed to retain its virtual time, then it will have the

smallest virtual time among all sessions. The server will select sessioni exclusivelyfor

service until its virtual time catches up with those of other sessions. In the meantime, all

other sessions will receivenoservice. Since a session can be in error indefinitely, the length

of such zero-service period for the error-free sessions can be arbitrarily long.

2. If sessioni exits from errors, and its virtual time is updated to the system virtual time

V (�), then the error-free sessions will not be penalized. However, sessioni’s history of lost

service is now completely erased and sessioniwill never be able to regain the service. This

results in unfair behaviors.

To address these problems, in [6], Lu et al augmented the GPS model and proposed the

Wireless Fluid Fair Queueing (WFFQ) service model and the Idealized Wireless Fair Queueing

(IWFQ) algorithm for packet systems. Their observation is that, to ensure fairness, it is desirable

to let sessions that fall behind to “catch-up” with the other sessions. However, allowing an un-

bounded amount of “catch-up” can result in denial of service to error-free sessions. Therefore,

in WFFQ, only bounded amount of “catch-up”B is allowed. As a result, delay and throughput

guarantees to error-free sessions become possible.

The WFFQ model and the IWFQ algorithm, while provide limited fairness and bounded

throughput and delay guarantees for error-free sessions, has several limitations. First, there is

a coupling between the delay and fairness properties. To achieve long term fairness, a lagging

session should be allowed to catch-up as much as possible, which requires a largeB. However,

a largeB also means that an error-free session can face a large “denial of service” period and

experience a large delay. Thus, one cannot have perfect fairness while at the same time achieve

a low delay bound for an error-free session using the WFFQ model. In this paper, we will show

that these two properties are in fact orthogonal and both can be achieved.

In addition, the service selection policy used in WFFQ and IWFQ gives absolute priority to

the session with the minimum virtual time. Consequently, as long as there exists a lagging session

in the system, all other leading or non-leading sessions in the system cannot receive service.

Under this selection policy, compensation for all lagging sessions will take the same amount of

4

time regardless of their guaranteed rate, contradicting the semantics that a larger guaranteed rate

implies better quality of service.

We believe the root of the problems lies in the fact that the virtual time parameter in GPS

is not adequate for performing both scheduling functions and fairness enforcement in a wireless

environment. In the next section we present the desirable properties of a PFQ algorithm for

wireless networks.

4 The CIF Properties

To implement PFQ algorithm in an environment with location-dependent errors, we need to ad-

dress two main questions: (1) How is the service of an error session distributed among the error-

free sessions? (2) How does a session that was in error and becomes error-free receive back the

“lost” service? Although the answers to the above questions may depend on the specifics of a

particular algorithm, in this section we give four generic properties, collectively callChannel-

condition Independent Fair(CIF), that we believe any such algorithm should have. The first two

are:

1 Delay bound and throughput guarantees.Delay bound and throughput for error-free ses-

sions are guaranteed, and are not affected by other sessions being in error.

2 Long term fairness.During a large enough busy period, if a session becomes error-free,

then, as long as it has enough service demand, it should get back all the service “lost” while

it was in error.

Thus, a session which becomes error-free will eventually get back its entire “lost” service.

However, as implied by the first property, this compensation shouldnot affect the service guar-

antees for error-free sessions.

Next, we classify sessions asleading, lagging, andsatisfied. A session is leading when it has

received more service than it would have received in an ideal error-free system, lagging if it has

received less, and satisfied if it has received exactly the same amount of service. Then, the last

two properties are:

5

3 Short term fairness.The difference between the normalized services received by any two

error-free sessions that are continuously backlogged and are in the same state (i.e., leading,

lagging, or satisfied) during a time interval should be bounded.

4 Graceful degradation.During any time interval while it is error-free, a leading backlogged

session should be guaranteed to receive at least a minimum fraction of its service in an

error-free system.

The third property is a generalization of the well-knownfairnessproperty in classical PFQ al-

gorithms. The requirement that sessions in the same state receive the same amount of normalized

service implies that (1) leading sessions should be penalized by the same normalized amount dur-

ing compensation, (2) compensation services should be distributed in proportion to the lagging

sessions’ rates, and (3) when services from error sessions are available, lagging sessions receive

these services at the same normalized rate, so do leading sessions and satisfied sessions. Finally,

the last property says that in the worst case a leading session gives up only a percentage of its

service. This way, an adaptive application may continue to run.

5 The CIF-Q Algorithm

In this section we present ourChannel-condition Independent Packet Fair Queueing(CIF-Q)

algorithm for systems with location-dependent channel errors.

In order to account for the service lost or gained by a session due to errors, we associate to

each systemS a reference error-free systemSr. Then, a session is classified asleading, lagging,

or satisfiedwith respect toSr, i.e., a session is leading if it has received more service inS than it

would have received inSr, lagging if it has received less, and satisfied if it has received the same

amount. The precise definition ofSr depends on the corresponding PFQ algorithm we choose

to extend for the error system. Although theoretically we can choose any of the well-known

algorithms, such as WFQ [2, 7], SCFQ [4], WF2Q+ [1], EEVDF [8], for simplicity, in this paper

we use Start-time Fair Queueing (SFQ) [5]. The reason for this choice is that in a system with

location-dependent channel errors, it is harder to do scheduling based on the finishing times than

on the starting times. This is because finishing times are computed based on the length of the

packets at the head of sessions’ queues, and finishing times scheduling assumes implicitly that

6

once a session is selected, that packet can be sent. Unfortunately, this is not true in an error

system; a session can enter in error just before the packet is transmitted. In this case the service

should be given to another session, whose packet may have a different length. Since, as we shall

see, in our algorithm this service is charged to the session which is selected in the first place, this

might create service inversions. More precisely, if the packet that is actually transmitted is longer

than the packet that is supposed to be sent, the resulting finishing time can be larger than the

finishing time of another error-free session that has packets to send. Since SFQ does not make

use of finishing times in scheduling decisions, it does not exhibit this problem.

Thus, to every error systemS we associate an error-free reference systemSr
SFQ with the

following properties:

1. Sr
SFQ employs an SFQ algorithm, i.e., packets are served in the increasing order of their

virtual starting times,

2. The same session is selected at the same time in both systems.

3. Whenever a session is selected inSr
SFQ, the packet at the head of its queue is transmitted.

In contrast, whenever a session is selected inS, it is possible that the packet of another

session is transmitted. This happens when the selected session is in error, or when it is

leading and has to give back its lead.

4. A session is active during the same time intervals in both systems. InS a session is said to

be active if it is backlogged, or as long as it is leading. InSr
SFQ a session is active only as

long as it is backlogged.

There are two things worth noting. First, the scheduling decisions are made inSr
SFQ, and

not inS. More precisely, the session that has the smallest virtual time inSr
SFQ is selected to be

served inS. Second, no matter what session is actually served1 in S, in Sr
SFQ the transmitted

packet is assumed to be belonging to theselectedsession, and therefore its virtual time is updated

accordingly.

Below we give some of the key techniques introduced by our CIF-Q algorithm.

1As implied by 3, the selected session may not be served if it is in error or has to give up some of its lead.

7

� Unlike other PFQ algorithms, in CIF-Q, a session’s virtual time doesnot keep track of

the normalized service received by that session in the real systemS, but in thereference

error-free systemSr
SFQ.

� To provide fairness, we use an additional parameter (calledlag) that keeps track of the

difference between the service that the session should receive inSr
SFQ and the service it

has received inS. Then, to achieve perfect fairness, the lag of every session should be zero.

� A leading session is not allowed to leave until it has given up its lead. Otherwise, as we

will show later, this translates into an aggregate loss for the other active sessions.

� To deal with the case when all active sessions are in error, we introduce the concept of

forced compensation. We force a session to receive service and we charge it for this service,

even if it cannot send any packet. This makes it possible to ensure delay and throughput

guarantees for error-free sessions.

Finally, we note that our algorithm is self-clocking in the sense that there is no need for emulating

a fluid flow system for scheduling or keeping track of lead and lag. As a result, our algorithm has

lower implementation complexity than IWFQ [6] which requires the emulation of a fluid system.

For clarity, we first describe a simple version of CIF-Q that achieves the two most important

properties of CIF: (1) delay and throughput guarantees for error-free sessions, and (2) long term

fairness for error sessions. Definitions of some key terms appearing in this section are shown in

Table 1.

5.1 CIF-Q: Simple Version

Besides a virtual timevi, each sessioni in CIF-Q is associated with an additional parameterlagi

that represents the difference between the service that sessioni should receive in a reference

error-free packet system and the service it has received in the real system. An active sessioni is

said to belagging if its lagi is positive,leadingif its lagi is negative, andsatisfiedotherwise. In

the absence of errors,lagi of all active sessions are zero. Since the system is work-conserving,

the algorithm maintains at all time the following invariant:

X
i2A

lagi = 0; (3)

8

Term Definition

Leading session A sessioni that has a negativelagi

Lagging session A sessioni that has a positivelagi

Satisfied session A sessioni that has a zerolagi

Lead The absolute value of a negativelagi

Lag The value oflagi

Backlogged session A session that has a queue length> 0

Active session A session that is either backlogged

or unbacklogged with a negative lag

Can send A session can send if it is backlogged

and experiences no error at the moment

Excess service Service made available due to errors

Compensation service Service made available due to a

leading session giving up its lead

Additional service Excess or compensation service

Lost service Service lost due to errors that is

received by another session

Forgone service Service lost due to errors that is

not received by another session

Table 1:Definitions of terms used in the description of the CIF-Q algorithm.

whereA is the set of active sessions. The simple version of CIF-Q is shown in Figure 1.

When a sessioni becomes backlogged and active, its lag is initialized to zero. Its virtual time

is initialized to the maximum of its virtual time and the minimum virtual time among other active

sessions to ensure the virtual times of all active sessions are bounded. The algorithm selects the

active sessioni with the minimum virtual time for service. If that session is not leading and can

send, then the packet at the head of its queue is transmitted; this ensures error-free non-leading

sessions get their fair share. Its virtual time is advanced as follows to record the amount of

normalized work:

vi = vi +
lki
ri

(4)

9

on sessioni receiving packetp:
enqueue(queuei; p)
if (i 62 A)

vi = max(vi;mink2Afvkg);
lagi = 0;
A = A[fig; =� mark session active�=

on sendingcurrent packet:=� get next packet to send�=
i = minvifi 2 Ag; =� select session with min. virtual time�=
if (lagi � 0 and (i can send))=� session i non-leading, can send�=

p =dequeue(queuei);
vi = vi + p:length=ri;

else
j = maxlagk=rkfk 2 A j k can sendg;
if (j exists)

p =dequeue(queuej);
vi = vi + p:length=ri; =� charge session i�=
lagi = lagi + p:length;
lagj = lagj � p:length;
if (i 6= j and empty(queuej) and lagj � 0)

leave(j);
else=� there is no active session ready to send�=

vi = vi + �=ri;
if (lagi < 0 and empty(queuei)) =� i is leading, unbacklogged�=

j = maxlagk=rkfk 2 Ag;
lagi = lagi + �;
lagj = lagj � �; =� forced compensation�=
set time out(on sending, �=R);

if (empty(queuei) and lagi � 0)
leave(i);

leave(i) =� session i leaves�=
A = A n fig;
for (j 2 A) =� update lags of all active sessions�=

lagj = lagj + lagi � rj=(
P

k2A rk);
if (9j 2 A s:t: empty(queuej) ^ lagj � 0)

leave(j);

Figure 1:Simple version of the CIF-Q algorithm.

10

wherelki is the length of thekth packet of sessioni andri is the rate of sessioni. However, if

the session is leading or cannot send, we search for the sessionj with the largest normalized

lag that can send a packet. If there is such a sessionj, the packet at the head of its queue is

transmitted. That is, when additional service is available, we first try to compensate the session

that is normalized lagging the most. Note that sessioni’s virtual time (not sessionsj’s virtual

time) is advanced andlagi and lagj are adjusted. The key is that by doing so we charge the

packet transmission to sessioni (notj), and we keep track of this by adjusting the lags of the two

sessions accordingly. The lags adjustments indicate that sessioni has now given uplkj amount of

service, while sessionj has now receivedlkj amount of additional service. This selection policy

reduces to SFQ in an error-free system.

To achieve long term fairness, in addition to compensating lagging sessions, we need to ad-

dress the following question: What should happen if a sessioni with a non-zero lag becomes

unbacklogged and wants to leave the active set? Clearly, if sessioni is allowed to leave, we need

to modify the lag of at least one other active session in order to maintain the invariant (3) of the

algorithm. Our solution is that when a lagging sessioni wants to leave, its positivelagi is pro-

portionally distributed among all the remaining active sessionsj such that eachlagj is updated

according to the following equation:

lagj = lagj + lagi
rjP

k2A rk
; (5)

whereA represents the set of the remaining active sessions. In contrast, a leading session isnot

allowed to leave the active set until it has given up all its lead.

Intuitively, when a lagging session becomes unbacklogged and wants to leave, its positive lag

is “unjustified” because it does not have enough service demand to attain such lag. In addition,

the leaving of a lagging session translates into gains in services for the remaining active sessions.

By updating their lags according to equation (5), we practically distribute this gain in proportion

to their rates. Therefore, such lag can be safely redistributed back into the system. In contrast, if a

leading session is allowed to leave, and its lead (negative lag) is redistributed back into the system,

then the remaining active sessions are penalized. If the leading session’s lead is not redistributed

back into the system and its lead history is erased (reset to zero), the aggregate sum over the

lags of the remaining sessions becomes negative. Consequently, even if none of the remaining

sessions experiences any errors in the future, they cannot get back their lost services unless the

11

leading session that left the system becomes active again and gives back its lead. On the other

hand, if the lead history is retained, then the leading session may be unnecessarily penalized in

the future when it becomes active again. Therefore, a leading session is not allowed to leave.

With the mechanisms discussed so far, as long as there exists an active session that can send,

lost services by a session are always reflected as leads in other active sending sessions. Therefore,

if all the error sessions exit from error and remain error-free for a long enough period of time,

the normalized lag of all active sessions approaches zero and the long term fairness property of

CIF is achieved. There is however a special case where no active sending sessions are left in the

system to receive the excess service from an error session. Such service is said to beforgoneand

active error sessions are not allowed to reclaim such forgone services. In this case, the algorithm

advances the active error session’s virtual time using a dummy packet of length� so that all active

sessions can be chosen by the server2 in the correct order even when none of them can send.

A similar special case exists for distributing compensation service. Recall that a leading

unbacklogged sessioni is not allowed to leave until it has given up all its lead. However, if

all other active sessions are in error and cannot receive compensation service from this leading

session, this leading session may be stuck in the active set indefinitely. Using the dummy packet,

we allow a leading unbacklogged sessioni to gradually give up its lead byforcingan active error

lagging sessionj to “receive”� amount of compensation service. In effect, we force sessionj

to forgo � amount of service. If the leading unbacklogged session is not allowed to give up its

lead by forcing the compensation, the allocated share of this leading session can be violated at

a later time. Thus, the algorithm ensures that, given enough service demand from an error-free

session, it always receives no less than its guaranteed share of service. As a result, the algorithm

is capable of providing a delay bound to an error-free session whose source is constrained by a

leaky-bucket regardless of the behavior of other sessions in the system.

In summary, in this simple version of the CIF-Q algorithm, we have achieved two properties

of CIF. First, long term fairness is ensured. Second, an error-free session is always guaranteed

its fair share, thus there is a delay bound for an error-free session whose source is constrained

by a leaky-bucket that is independent of the behavior of any other sessions in the system. As a

result, real-time guarantee and long term fairness are decoupled. These properties are shown in

Section 6.

2Recall the server always chooses the session with the minimum virtual time.

12

Parameter Definition

� Minimal fraction of service retained by

any leading session

si Normalized amount of service actually received by

a leading sessioni through virtual time (vi) selection

since it became leading

ci Normalized amount of additional service received by

a lagging sessioni

fi Normalized amount of additional service received by

a non-lagging sessioni

Table 2:Definitions of new parameters used in the full version of CIF-Q.

5.2 CIF-Q: Full version

The simple version of the CIF-Q algorithm has two major drawbacks. First, the service

received by a leading session does not degrade gracefully when it is necessary for it to give up

its lead. In fact, a leading session receivesno service at all until it has given up all its lead.

The second drawback is that only the session with the largest normalized lag receives additional

services. That is, short term fairness is not ensured. Consequently, during certain periods of time,

a session with a smaller guaranteed rate can actually receive better normalized service than a

session with a larger guaranteed rate. This contradicts the semantics that a larger guaranteed rate

implies better quality of service.

The full version of the CIF-Q algorithm which addresses both of these problems is shown

in Figure 2 and 3. Several new parameters are introduced and their definitions can be found

in Table 2. For clarity, we have separated out some groups of operations into new functions.

Functionsend pkt (j,i) now contains the operations performed when the server serves a packet

from sessionj but charge the service to sessioni. Because of the changes in lags resulting from

the charging technique, sessions’ states may change. Therefore, several cases are listed to check

for state changes to update each parameter accordingly. Operations related to sending a dummy

packet, which are identical to those in the simple version, are now in thesend dummy pkt (i)

function. In addition, parameters are also updated when a session exits from error state as shown

in the processing of theon exiting from error-mode event, and when a session leaves the active

set as shown in theleave(i) function.

13

on sessioni receiving packetp:
enqueue(queuei; p)
if (i 62 A)

vi = max(vi;mink2Afvkg);
lagi = 0;
fi = max(fi;mink2Affk j lagk � 0 ^ k can sendg);
A = A[fig; =� mark session active�=

on sendingcurrent packet:=� get next packet to send�=
i = minvifi 2 Ag;
if ((i can send)and (lagi � 0 or (lagi < 0 and si � �vi)))

sendpkt (i; i); =� session i served throughvi selection�=
else=� i cannot send or i is leading and not allowed to send�=

=� select lagging sessionj to compensate�=
j = minckfk 2 A j lagk > 0 ^ k can sendg;
if (i can send)

if (j exists)
send pkt (j; i); =� serve session j but charge to i�=

else=� there is no lagging session that can send�=
send pkt (i; i); =� service given back to session i�=

else=� i cannot send�=
if (8k 2 A k cannot send)

send dummy packet(i);
else=� there is at least one session that can send�=

if (j exists)
send pkt (j; i); =� serve session j but charge to i�=

else=� no active lagging session, and i cannot send�=
=� select session j to receive excess service�=
j = minfkfk 2 A j sessionk can sendg;
send pkt (j; i); =� serve session j but charge to i�=

if (i 6= j and empty(queuej) and lagj � 0)
leave(j); =� j becomes inactive�=

if (empty(queuei) and lagi � 0)
leave(i); =� i becomes inactive�=

Figure 2: The full version of the CIF-Q algorithm (Part I).

14

send pkt (j, i) =� serve session j but charge to i�=
p =dequeue(queuej);
vi = vi + p:length=ri; =� charge session i�=
if (i == j and lagi < 0 and si � �vi)

=� session i is leading and served throughvi selection�=
si = si + p:length=ri;

if (i 6= j)
lagj = lagj � p:length; =� session j has gain extra service�=
if (lagj > 0)

=� case 1: j continues to be lagging�=
cj = cj + p:length=rj;

if (lagj + p:length � 0 and lagj � 0)
=� case 2: j continues to be non-lagging�=
fj = fj + p:length=rj;

if (lagj + p:length > 0 and lagj � 0)
=� case 3: j just becomes non-lagging�=
fj = max(fj ;mink2Affk j lagk � 0 ^ k can sendg);

if (lagj + p:length � 0 and lagj < 0)
sj = �vj; =� case 4: j just becomes leading�=

lagi = lagi + p:length; =� session i has lost service�=
if (lagi � p:length � 0 and lagi > 0)

=� case 5: i just becomes lagging�=
ci = max(ci;mink2Afck j lagk > 0 ^ k can sendg);

send dummy pkt (i) =� i was selected, but no session can send�=
vi = vi + �=ri; =� send an infinitesimally small dummy packet�=
if (lagi < 0 and empty(queuei))

j = maxlagk=rkfk 2 Ag;
lagi = lagi + �;
lagj = lagj � �; =� forced compensation�=
set time out(on sendingpacket,�=R);

on sessioni exiting from error-mode:
if (lagi > 0)

ci = max(ci;mink2Afck j lagk > 0 ^ k can sendg);
else

fi = max(fi;mink2Affk j lagk � 0 ^ k can sendg);
if (lagi < 0)

si = �vi;

leave(i) =� session i leaves�=
A = A n fig;
for (j 2 A) =� update lags of all active sessions�=

lag0j = lagj ;
lagj = lagj + lagi � rj=(

P
k2A rk);

if (lag0j � 0 and lagj > 0 and j can send)
=� j just becomes lagging�=
cj = max(cj ;mink2Afck j lagk > 0 ^ k can sendg);

if (9j 2 A s:t: empty(queuej) ^ lagj � 0)
leave(j);

Figure 3: The full version of the CIF-Q algorithm (Part II).

15

To achieve graceful degradation in service for leading sessions, we use a system parameter

� (0 � � � 1) to control the minimal fraction of service retained by a leading session. That is,

a leading session has to give up at most(1 � �) amount of its service share to compensate for

lagging sessions. To implement this policy, we associate to each leading sessioni a parametersi,

which keeps track of the normalized service actually received by such leading session through

virtual time (vi) selection. When a sessioni becomes leading,si is initialized to�vi (see case

4 in send pkt andon exiting from error-mode). Thereafter,si is updated whenever a leading

session is served through virtual time selection (seesendpkt). When selected based onvi, a

leading session is assured service only if the normalized service it has received through virtual

time selection since it became leading is no larger than� of the normalized service it should

have received based on its share. That is, a leading session is assured service only ifsi � �vi.

Intuitively, the larger the value of�, the more graceful the degradation experienced by leading

sessions. At the limit, when� is set to one, no compensation is given to lagging sessions.

To provide short term fairness, we distinguish the two types of additional service in the al-

gorithm: excess serviceandcompensation service. Excess service is made available due to a

session’s error, while compensation service is made available due to a leading session giving up

its lead.

First of all, lagging sessions have higher priority to receive additional services to expedite

their compensation. But we now distribute these additional services among lagging sessions in

proportion to the lagging sessions’ rates, instead of giving all of it to the session with the largest

normalized lag. This way a lagging session is guaranteed to catch up, no matter what the lags

of the other sessions are, and the short term fairness property is ensured among lagging sessions

during compensation. This policy is implemented by keeping a new virtual timeci that keeps

track of the normalized amount of additional services received by sessioni while it is lagging.

When a sessioni becomes both lagging and can send,ci is initialized according to (see case 5 in

send pkt , on exiting from error-mode andleave):

ci = max(ci;min
k2A

fck j lagk > 0 ^ k can sendg): (6)

When additional service is available, the lagging sessionj with the minimumcj that can

send is chosen to receive it. Sessionj’s cj is then updated accordingly (see case 1 insend pkt).

However, if such sessionj does not exist, then there are two scenarios. First, if the additional

16

service is a compensation service, then this service is given back to the original chosen sessioni.

Otherwise, it must be an excess service. If none of the active sessions can send at the moment,

thensend dummy packet(i) is called to advance the virtual timevi and perform any applicable

forced compensation. But if there are active sessions that can send left in the system, then this

excess service is distributed among all non-lagging sending sessions in proportion to their rates.

This way, short term fairness is ensured among non-lagging sessions when excess services are

available. This policy is implemented by keeping a virtual timefi that keeps track of the normal-

ized amount of excess services received by sessioni while it is non-lagging. When a sessioni

becomes non-lagging and sending,fi is initialized according to (seeon receivingpacket, case 3

in send pkt andon exiting from error-mode):

fi = max(fi;min
k2A

ffk j lagk � 0 ^ k can sendg): (7)

To distribute the excess service, the non-lagging sessionj with the minimumfj that can send is

chosen to receive it. Sessionj’s fj is then updated accordingly (see case 2 insend pkt).

In summary, using the four new parameters (�, si, ci, andfi) and the associated mechanisms

presented above, the full version of the CIF-Q algorithm now achieves (a) graceful degradation

in service for leading sessions and (b) short term fairness guarantee (these properties are shown

in Section 6) in addition to (c) long term fairness guarantee and (d) error-free sessions delay

bound/throughput guarantee that are achieved by the simple version of the algorithm. Thus, all

the properties of CIF are satisfied.

5.3 Algorithm Complexity

In this section we discuss the algorithm complexity. We are interested in the complexity of each

of the following five operations: (1) a session becoming active, (2) a session becoming inactive,

(3) a session being selected to receive service, (4) an active session entering error mode, and

(5) an active session becoming error-free. It can be deduced from Figure 2 that these operations

ultimately reduce to the following basic set operations: adding, deleting, and querying the ele-

ment with the minimum key from the set. Since these operations can be efficiently implemented

in O(log n) by using a heap data structure, a straightforward implementation of our algorithm

would be to maintain three heaps based onvi, fi, andci, respectively. More precisely, the first

heap will maintain allactivesessions based onvi, the second one will maintain allnon-lagging

17

error-freesessions based onfi, and the last one will maintain alllagging error-freesessions based

onci. Since with the exception of the leaving operation, all the other four operations involve only

a constant number of heap operations, it follows that they can be implemented inO(log n), where

n represents the number of active sessions.

Regarding the leaving operation, when the lag is non-zero, this operation requires updating

of the lags of all other active sessions. However, when a session’s lag changes, that session might

change its state from leading to lagging, which eventually requires moving it from one heap to

another. Thus, in the worst case the leaving operation takesO(n log n).

Although the leaving operation takes significantly longer than that in an error-free Packet Fair

Queueing algorithm, we note that in wireless networks, algorithm efficiency is not as critical as

in wired networks. The main reason for this is that wireless networks are mainly used as access

technology, they have significantly lower bandwidth, and support a significantly lower number of

hosts compared to wired networks. As an example, the current WaveLAN technology provides 2

Mbps theoretical throughput and supports on the order of 100 hosts [9]. These figures are several

orders of magnitude smaller than the ones for a high speed communication switch.

6 Fairness and Delay Results

In this section we show that our algorithm meets the properties presented in Section 4. Specifi-

cally, Theorem 1 says that the difference between the normalized services received by two error-

free active sessions during any time interval in which they are in the same state (i.e., leading,

satisfied, or lagging) is bounded (Property 3), Theorem 2 says that the time it takes a lagging

session that no longer experiences errors to catch up is bounded (Property 2), and finally, The-

orem 3 gives the delay bound for an error-free session (Property 1). Note that Property 4 is

explicitly enforced by the algorithm via the parameter�. The complete proofs can be found in

the Appendix.

Theorem 1 The difference between the normalized service received by any two sessionsi and

j during an interval[t1; t2) in which both sessions are continuously backlogged, error-free, and

their status does not change is bounded as follows:�����Wi(t1; t2)

ri
�
Wj(t1; t2)

rj

����� � �

Lmax

ri
+
Lmax

rj

!
; (8)

18

whereWi(t1; t2) represents the service received by sessioni during [t1; t2), Lmax is the maximum

packet length, and� = 3 if both sessions are non-leading,� = 3 + � otherwise.

Theorem 2 Consider an active lagging sessioni that becomes error-free after timet. If session

i is continuously backlogged after timet, then it is guaranteed to catch up after at most� units

of time,

� =
bR2

rirmin(1� �)R
lagi(t) + (9) bR(bR=ri + n+ 2)

rmin(1 � �)
+ n+ 1 +

bR
rmin

!
Lmax

R
;

wheren is the number of sessions that are active at any time in[t; t0), R is the channel capacity,

Lmax is the maximum length of a packet,bR is the aggregate rate of all sessions in the system, and

rmin is the minimum rate of any session.

Theorem 3 The delay experienced by a packet of an error-free sessioni with rateri in an error

systemS is bounded by

(n� 1)
Lmax

R
+
lki
R

+
Lmax

ri
; (10)

wheren is the number of active sessions,lki is the length of thekth packet of sessioni, andR is

the channel capacity.

7 Simulation Experiments

In this section, we present results from simulation experiments to demonstrate the delay

bound guarantees and the fairness properties of CIF-Q. All the simulations last for 200 sec-

onds and there are seven sessions: a real-time audio session, a real-time video session, four FTP

sessions, and a cross traffic session to model the rest of the traffic in the system. The proper-

ties of each session are shown in Table 3. The audio and video sessions are constant-bit-rate

(CBR) sources such that their packets are evenly spaced at 50ms apart3 and their throughputs

3To be more realistic and to avoid the worst case behavior of SFQ, the packet spacing has a small probability of

drifting slightly

19

Pkt size Guaranteed rate Src model Error

Audio 1 KB 160 Kbps CBR None

Video 8 KB 1.25 Mbps CBR None

FTP-1 3 KB 2 Mbps Greedy None

FTP-2 3 KB 2 Mbps Greedy Pattern 1

FTP-3 8 KB 2 Mbps Greedy Pattern 2

FTP-4 8 KB 2 Mbps Greedy Pattern 1

Cross 4 KB 10 Mbps Poisson None

Table 3:Properties of the 7 sessions used in the simulations.

Max Min Mean Std Dev

Audio 46 ms 0.40 ms 4.1 ms 4.4 ms

Video 49 ms 3.2 ms 6.9 ms 4.3 ms

Table 4:Packet delay statistics for the audio and video sessions when� is 0.9.

are 160 Kbps and 1.25 Mbps respectively. The four 2 Mbps FTP sessions are all continuously

backlogged. Finally, the cross traffic session is a Poisson source with an average rate of 10 Mbps.

For clarity in showing the effects of channel errors and for ease of interpretation, we choose to

model errors as simple periodic error bursts rather than using a more realistic model [3]. During

the 200 second periods of our simulation experiments, channel errors occur only during the first

45 seconds, leaving enough error-free time to demonstrate the long term fairness property of our

algorithm. Error pattern 1 represents a periodic error burst of 1.6 second with 3.2 seconds of

intermediate error-free time. Error pattern 2, a less severe error pattern, represents a periodic

error burst of 0.5 seconds with 5.5 seconds of intermediate error-free time. Notice session FTP-2

and session FTP-4 experience identical error pattern but have different packet sizes, while session

FTP-1 experiences no error at all. In the following, we present two sets of simulation results using

different values as the the system parameter�.

7.1 � = 0:9

An � value of 0.9 intuitively means that leading sessions will give up up-to 10 percents of

their service rates to compensate for lagging sessions. Table 4 shows the packet delays statistics

20

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 140 160 180 200

S
er

vi
ce

 R
ec

ei
ve

d
(K

B
)

Time (s)

FTP-1
FTP-2
FTP-3
FTP-4

(a)

-3000

-2000

-1000

0

1000

2000

3000

4000

0 20 40 60 80 100 120 140 160 180 200

A
ct

ua
l S

er
vi

ce
 -

 E
xp

ec
te

d
S

er
vi

ce
 (

K
B

)

Time (s)

FTP-1 (Delta)
FTP-2 (Delta)
FTP-3 (Delta)
FTP-4 (Delta)

(b)

Figure 4:Behavior of the FTP sessions when� is 0.9. (a) Service received by each FTP session.

Note that FTP-2,4 are the bottom two lines that virtually overlap each other. (b) Difference

between the actual service received by the FTP sessions and the corresponding expected amount

of service. Note this is not the same as the lead defined in the CIF-Q algorithm

for the two real-time sessions under this compensation policy. For comparison purpose, if the

audio and video sessions were served by an error-free fluid GPS system, their packets would

have a delay bound of 50ms. Clearly, the delays experienced by the audio and video packets

under our algorithm compare favorably against the GPS delay bound and are well below the worst

case delay bound of our algorithm. The worst case delay bound is much larger than 50ms due

to the SFQ discipline used. However, a packet experiences the worst case delay only when the

starting virtual time of all sessions are perfectly synchronized. This is avoided in the simulation

by introducing small infrequent drifts into the packet spacing to portrait a more realistic situation.

In addition to providing delay bound guarantees, an equally important aspect of our algo-

rithm is on fairness. To demonstrate the fairness properties, consider the behavior of the four

FTP sessions as shown in Figure 4. Figure 4(a) shows the amount of service received by each

FTP session over the period of the simulation. Recall that sessions FTP-2,3,4 experience errors

during the first 45 seconds of the simulation as evidenced by the flat periods in their service pro-

gressions. Sessions FTP-2,4 experience identical errors and session FTP-3 experiences slighter

errors. Session FTP-1 is error-free during the simulation.

The most notable feature in Figure 4(a) is the fact that the service received by all four FTP

sessions, regardless of the amount of errors they have experienced, converges gradually when

the system becomes error-free. This demonstrates the perfect long term fairness guarantee over

21

Max Min Mean Std Dev

Audio 43 ms 0.40 ms 4.1 ms 4.4 ms

Video 51 ms 3.2 ms 7.0 ms 4.5 ms

Table 5:Packet delay statistics for the audio and video sessions when� is 0.0.

a busy period provided by our algorithm. To see the changes in leads and lags more easily, we

show in Figure 4(b) the difference between the actual service received by the FTP sessions and

the corresponding expected amount of service. The expected amount of service is computed

as the product of the overall throughput and time. A leading session gives up its lead to lagging

sessions at a rate of1�� that of its actual service rate. Notice the give-up rates and compensation

rates varies slightly since the Poisson traffic of the cross traffic session affects the actual service

rates.

Finally, notice in both Figure 4(a) and (b), the lines for sessions FTP-2 and FTP-4 almost

overlap each other and the lines for sessions FTP-1 and FTP-3 parallel each other while they

are both leading. This shows the short term fairness guarantee provided by our algorithm which

states that the difference in normalized services received by two sessions during a period in which

they are in the same state (leading or lagging, error or error-free) is bounded. This ensures that all

leading sessions in the same error state give up their leads at approximately the same normalized

speed and that all lagging sessions in the same error state get compensated at about the same

normalized speed. One might incorrectly assume that the lines for sessions FTP-2 and FTP-4

should completely overlap each other since they experience the same errors. The reason they do

not is that the difference in the amount of normalized services received may drift apart when the

sessions change states as can be seen in Figure 4(b). Nonetheless, it is important to note that the

two lines are parallel during periods where the two sessions do not change state.

7.2 � = 0:0

In this experiment, the value of� is zero. This means that a leading sessioni will receive no

service as long as there exists a lagging error-free session in the system. This absolute priority

compensation behavior is similar to the behavior of the algorithm proposed in [6], except that

we have not put an artificial upper bound on this zero-service period and that real-time require-

22

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 140 160 180 200

S
er

vi
ce

 R
ec

ei
ve

d
(K

B
)

Time (s)

FTP-1
FTP-2
FTP-3
FTP-4

(a)

-3000

-2000

-1000

0

1000

2000

3000

4000

0 20 40 60 80 100 120 140 160 180 200

A
ct

ua
l S

er
vi

ce
 -

 E
xp

ec
te

d
S

er
vi

ce
 (

K
B

)

Time (s)

FTP-1 (Delta)
FTP-2 (Delta)
FTP-3 (Delta)
FTP-4 (Delta)

(b)

Figure 5:Behavior of the FTP sessions when� is 0.0. (a) Service received by each FTP session.

(b) Difference between the actual service received by the FTP sessions and the corresponding

expected amount of service.

ments are still guaranteed. Although we believe such aggressive compensation is not desirable,

it is worthwhile to demonstrate the behavior of our algorithm under this policy. Even though

such an aggressive compensation policy is used, the delays experienced by real-time packets are

unaffected under our algorithm (See Table 5). Thus, delay bounds for real-time sessions are guar-

anteed independent of the value of� or whether compensation is bounded. The value of� only

affects the fairness properties of the system. That is, real-time delay bound guarantee and fairness

guarantees are decoupled under our algorithm.

In Figure 5, we show the behavior of the four FTP sessions Clearly, the services received by

the four FTP sessions converge very rapidly after each error period. However, the price to pay for

such absolute priority compensation is the abrupt changes in the available bandwidth experienced

even by error-free sessions (e.g. FTP-1). Despite the abruptness, it is clear from Figure 5 that

the long term and short term fairness guarantees provided by our algorithm still hold. One thing

worth explaining is that in Figure 5(b), the lines converge to a value above zero and then slowly

drop to zero together. This is due to the changing actual service rates caused by the Poisson

traffic of the cross traffic session in the system. Nevertheless, the convergence of the services

sufficiently shows the fairness properties of our algorithm.

23

8 Conclusion

In this paper, we make two main contributions. First, we identified four key properties (CIF) that

any PFQ algorithm should have in order to work well in a wireless network where channel errors

are location-dependent. Specifically, the properties are (1) delay guarantees and throughput guar-

antees for error-free sessions, (2) long term fairness guarantee for error sessions, (3) short term

fairness guarantee for error-free sessions, and (4) graceful degradation in quality of service for

sessions that have received excess service. As a second contribution, we present a methodology

for adapting PFQ algorithms for wireless networks and we apply this methodology to derive a

new scheduling algorithm called CIF-Q that provably achieves all the properties of CIF. Four

novel algorithmic techniques are introduced in CIF-Q to make achieving the CIF properties pos-

sible. We demonstrate the performance of CIF-Q in simulation and show how compensation

rate can be tuned to suit specific needs. As possible further work, the CIF-Q algorithm may be

extended to support hierarchical link-sharing service.

References

[1] J.C.R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. InProceedings

of the ACM-SIGCOMM 96, pages 143–156, Palo Alto, CA, August 1996.

[2] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.

In Journal of Internetworking Research and Experience, pages 3–26, October 1990. Also in

Proceedings of ACM SIGCOMM’89, pp 3-12.

[3] D. Eckhardt and P. Steenkiste. Measurement and analysis of the error characteristics of an

in-building wireless network. InProceedings of ACM SIGCOMM’96, Standford University,

CA, August 1996.

[4] S.J. Golestani. A self-clocked fair queueing scheme for broadband applications. InProceed-

ings of IEEE INFOCOM’94, pages 636–646, Toronto, CA, April 1994.

[5] P. Goyal, H.M. Vin, and H. Chen. Start-time Fair Queuing: A scheduling algorithm for

integrated services. InProceedings of the ACM-SIGCOMM 96, pages 157–168, Palo Alto,

CA, August 1996.

24

[6] S. Lu, V. Bharghavan, and R. Srikant. Fair scheduling in wireless packet networks. In

Proceedings of ACM SIGCOMM’97, Cannes, France, September 1997.

[7] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control - the

single node case.ACM/IEEE Transactions on Networking, 1(3):344–357, June 1993.

[8] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and G. Plaxton. A proportional

share resource allocation algorithm for real-time, time-shared systems. InProceedings of the

IEEE RTSS 96, pages 288 – 289, December 1996.

[9] B. Tuch. Development of WaveLAN, an ISM band wireless LAN.AT&T Technical Journal,

72(4):27–37, July 1993.

25

Appendix

In this section we prove the main fairness and delay properties of our algorithm. First, we start

with several preliminary results. Lemma 1 gives a upper bound for the lag of an error-free session,

while the next three lemmas give bounds for the difference between the virtual times (vi’s), the

virtual compensation times (ci’s), and the virtual excess times (fi’s) between any two active

sessions.

Lemma 1 The lag of an error free session is never greater thanLmax, whereLmax represents

the maximum size of a message.

Proof. The proof is by induction. From the algorithm in Figures 2 and 3, the lag of anerror-free

sessioni changes in one of the following three cases: (a) sessioni becomes active, (b) sessioni

is selected based on its virtual time but since it is leading another sessionj is selected to receive

service, and (c) sessioni receives service from another sessionj.

Basic step.When an error-free sessioni becomes active, its lag is set to zero, and therefore the

lemma is trivially true.

Induction step. Assumelagi � Lmax. We consider two cases: (1)lagi < 0, and (2)0 � lagi �

Lmax. Since in case (1) sessioni is leading, its lag can increase only when its service is given to

another sessionj (see case (b) above). In this case, we have

lagi = lagi + lkj � lkj � Lmax; (11)

wherelkj represents the length of the packet at the head of the queue of sessionj. In case (2),

sessioni is non-leading, and so its lag can only decrease (case (c) above). Thus, the bound holds.

Lemma 2 The difference between the virtual times of any two active sessionsi andj is bounded

as follows:

�
Lmax

rj
� vi � vj �

Lmax

ri
: (12)

26

Proof. The virtual time of a session is updated in one of the following cases: (1) the session

becomes active, (2) the session is selected. Again, the proof is by induction.

Basic step.When there is only one active session, the lemma is trivially true.

Induction step. Consider a sessioni that becomes active at timet, and assume that the lemma is

true at any time beforet. Then the virtual time of sessioni is either initialized to the minimum

virtual time among all active sessions, or remains the same if it is larger than this minimum. Since

virtual times are non-decreasing, it is easy to see that the difference betweenvi and the virtual

time of any other active session remains in the same bounds. This concludes the argument for

case (1).

For case (2), assume again that before sessioni is selected, the lemma holds. When selected,

the virtual time of sessioni changes as follows

vi = vi +
lk

ri
; (13)

wherelk represents the length of the packet that is served (not necessary a packet of sessioni)

when sessioni is selected, if any. (If there is no such packet, we assume a dummy packet of

length� � Lmax is served, the proof proceeds identically.) Sincevi represents theminimum

virtual time among all currently active sessions, we have

vi � vj; 8j 2 A: (14)

Sincevi is the only virtual time that changes at timet, it is enough to show that the difference

betweenvi and any othervj is bounded. Recall that by hypothesis we have

�
Lmax

rj
� vi � vj �

Lmax

ri
; 8j 2 A: (15)

From this and from Eq. (13) and Ineq. (14) it follows that

vi +
lk

ri
� vj �

lk

ri
�

Lmax

ri
; 8j 2 A; (16)

Similarly, if we assume thatj is selected (instead ofi), we have

vi � vj �
lk

rj
� �

lk

rj
� �

Lmax

rj
; 8i 2 A; (17)

27

which concludes the proof.

Since the proofs of the next two lemmas are similar to that of Lemma 2, we give the results

without the proofs.

Lemma 3 The difference between the virtual compensation times of any two active error-free

sessionsi andj that are both lagging is bounded as follows:

�
Lmax

rj
� ci � cj �

Lmax

ri
(18)

Lemma 4 The difference between the virtual excess times of any two active error-free sessionsi

andj that are both non-lagging is bounded as follows:

�
Lmax

rj
� fi � fj �

Lmax

ri
(19)

The next lemma gives bounds on the difference between the normalized service received by

a leading sessioni (si) and the amount it should have received (�vi).

Lemma 5 For any leading error-free sessioni,

(�� 1)
Lmax

ri
� �vi � si � �

Lmax

ri
: (20)

Proof. The proof is by induction.

Basic step. Initially, when sessioni becomes leadingsi is initialized to�vi, and therefore the

bounds hold.

Induction step. Assume the bounds hold beforevi and/orsi are updated. Sincevi and/orsi

change only when sessioni is selected, we consider two cases: (1) sessioni is actually served,

and (2) another sessionj is served. According to the algorithm, the first case occurs only when

si � �vi. Therefore, we have,

�(vi +
lki
ri
)� si �

lki
ri

= (�� 1)
lki
ri

+ �vi � si � (�� 1)
Lmax

ri
; (21)

wherelki represents the length of the packet being transmitted.

In the second case (si > �vi), the service is allocated to another sessionj, if any,vi is updated

butsi is not. Thus, we have

28

�(vi +
lkj
ri
)� si < �

lkj
ri
� �

Lmax

ri
; (22)

wherelkj represents the length of the transmiteed packet of sessionj.

Theorem 1 The difference between the normalized service received by any two sessionsi and

j during an interval[t1; t2) in which both sessions are continuously backlogged, error-free, and

their status does not change is bounded as follows:�����Wi(t1; t2)

ri
�
Wj(t1; t2)

rj

����� � �

Lmax

ri
+
Lmax

rj

!
; (23)

whereWi(t1; t2) represents the service received by sessioni during [t1; t2), Lmax is the maximum

packet length, and� = 3 if both sessions are non-leading,� = 3 + � otherwise.

Proof. We consider three cases: both sessions are (1) lagging, (2) satisfied, or (3) leading during

the entire interval[t1; t2).

(1) (both sessions are lagging) In this case both sessions receives service each time they are

selected, or when they receive compensation from a leading session. Since both the virtual time

vi and the compensation virtual timeci are updatedbeforea packet is send, it follows that the

total service received by an error-free lagging session during[t1; t2) is bounded by

vi(t2)� vi(t1) + ci(t2)� ci(t1)�
Lmax

ri
�

Wi(t1; t2)

ri
(24)

� vi(t2) � vi(t1) + ci(t2)� ci(t1) +
Lmax

ri
:

In the left-hand inequality, the term�Lmax

ri
accounts for the worst case in whicht2 occurs exactly

after a packet is selected, while in the right-hand inequality the termLmax

ri
accounts for the worst

case whent1 occurs exactly after a virtual time is updated but before the corresponding packet is

transmitted. Thus, from the above inequality and by using Lemmas 2 and 3, it is easy to see that�����Wi(t1; t2)

ri
�
Wj(t1; t2)

rj

����� � 3

Lmax

ri
+
Lmax

rj

!
: (25)

(2) (both sessions are satisfied) In this case both sessions are served each time they are selected

based on their virtual times, or when they receive excess service. Then, similar to the previous

case we have

29

vi(t2)� vi(t1) + fi(t2)� fi(t1)�
Lmax

ri
�

Wi(t1; t2)

ri
(26)

� vi(t2) � vi(t1) + fi(t2)� fi(t1) +
Lmax

ri
;

and consequently, similarly to the previous case, by using Lemmas 2 and 4, we obtain

�����Wi(t1; t2)

ri
�
Wj(t1; t2)

rj

����� � 3

Lmax

ri
+
Lmax

rj

!
: (27)

(3) (both sessions are leading) Similar to the previous case, the service received by a leading

sessioni during[t1; t2) is bounded by

si(t2)� si(t1) + fi(t2)� fi(t1)�
Lmax

ri
�

Wi(t1; t2)

ri
(28)

� si(t2)� si(t1) + fi(t2)� fi(t1) +
Lmax

ri
:

Further, according to Lemma 5, for any leading error-free sessioni and any timet, while it is

active, we have

�vi(t)� (�� 1)
Lmax

ri
� si(t) � �vi(t)� �

Lmax

ri
; (29)

Consequently, for any two leading error-free sessions that are active at timet, we have

�(vi(t)� vj(t)) + �(
Lmax

rj
�
Lmax

ri
)�

Lmax

rj
� si(t)� sj(t) (30)

� �(vi(t)� vj(t)) + �(
Lmax

rj
�
Lmax

ri
) +

Lmax

ri
:

From the above inequality and Lemma 2, we obtain

��
Lmax

ri
�
Lmax

rj
� si(t)� sj(t) � �

Lmax

rj
+
Lmax

ri
: (31)

Finally, from this inequality and Ineq. (28), we have

�����Wi(t1; t2)

ri
�
Wj(t1; t2)

rj

����� � (3 + �)

Lmax

ri
+
Lmax

rj

!
; (32)

which concludes the proof of the theorem.

30

Theorem 2 Consider an active lagging sessioni that becomes error-free after timet. If session

i is continuously backlogged after timet, then it is guaranteed to catch up after at most� units

of time,

� =
bR2

rirmin(1� �)R
lagi(t) +

 bR(bR=ri + n+ 2)

rmin(1� �)
+ n+ 1 +

bR
rmin

!
Lmax

R
; (33)

wheren is the number of sessions that are active at any time in[t; t0), R is the channel capacity,

Lmax is the maximum length of a packet,bR is the aggregate rate of all sessions in the system, and

rmin is the minimum rate of any session.

Proof. After time t, as long as sessioni is lagging, its lag decreases each time it receives

compensation. Since the total compensation received by sessioni during the interval[t; t0) is

ri(ci(t0)� ci(t)), we have

lagi(t
0) = lagi(t)� ri(ci(t

0)� ci(t)): (34)

Let C(t; t0) be the total compensation received by all sessions during the interval[t; t0), and let

L(t; t0) denote the set of all lagging session that have received compensation at some point in the

interval [t; t0). It is easy to see that during[t; t0) the compensation isalwaysgiven to a lagging

session. This is because there is at least one continuously lagging session, namely sessioni, that

is error-free during this interval. Clearly, in the worst case, all sessions inL(t; t0) are continuously

lagging and error-free (so therefore they canaccept compensation at any time) during the interval

[t; t0). Thus, in this case, we have

C(t; t0) �
X

j2L(t;t0)

rj(cj(t
0)� cj(t)) + Lmax: (35)

By using Lemma 3 for any two lagging error-free sessionsi and j that are active during the

interval[t; t0) we have

cj(t
0)� cj(t) � ci(t

0)� ci(t) +
Lmax

ri
+
Lmax

rj
; (36)

and therefore

31

C(t; t0) �
X

j2L(t;t0)

rj(ci(t
0)� ci(t) +

Lmax

rj
+
Lmax

ri
) + Lmax (37)

= (ci(t
0)� ci(t))

X
j2L(t;t0)

rj + LmaxjL(t; t
0)j+

Lmax

ri

X
j2L(t;t0)

rj + Lmax

< (ci(t
0)� ci(t)) bR+ (n+

bR
ri
)Lmax;

wheren represents the total number of sessions that are active at any time in[t; t0), which is at

leastjL(t; t0)j + 1. This is because as long as there is at least a lagging session, there is also at

least a leading session. We denote this set of active sessions as A.

Further, note that since the compensationC(t; t0) represents a fraction� of the work received

by leading sessions, and since this work is proportional to the sessions’ rates, it follows that the

worst case occurs when there is only one leading sessionk and this session has raterk = rmin.

Thus, in general, we have

C(t; t0) � rk(vk(t
0)� vk(t))� rk(sk(t

0)� sk(t))� Lmax; (38)

Similar to Ineq. (37) we obtain

R(t0 � t) �
X
j2A

rj(vj(t
0)� vj(t)) + Lmax (39)

�
X
j2A

rj(vk(t
0)� vk(t) +

Lmax

rj
+
Lmax

rk
) + Lmax

< (vk(t
0)� vk(t)) bR+ (n+ 1 +

bR
rk
)Lmax:

By combining the above two inequalities, and by using Lemma 5 we get

C(t; t0) � rk(vk(t
0)� vk(t))� rk(sk(t

0)� sk(t))� Lmax (40)

� rk(vk(t
0)� vk(t))� rk(�vk(t

0)� �vk(t) +
Lmax

rk
)� Lmax

= rk(1� �)(vk(t
0)� vk(t))� 2Lmax

> rk(1� �)
R(t0 � t)� (n + 1 + bR=rk)LmaxbR � 2Lmax:

Now, from Ineqs. (37) and (40) we obtain

32

ci(t
0) � ci(t) >

C(t; t0)� (n+ bR=ri)LmaxbR (41)

> rk(1 � �)
R(t0 � t)� (n+ 1 + bR=rk)LmaxbR2

�
(n+ 2 + bR=ri)LmaxbR :

Finally, sincelagi(t0) is assumed to be no larger than zero, from the above inequality, Ineq. (34),

and by taking� = t0 � t the proof follows.

Since during any busy period of a server there is no forced compensation, from the above

theorem we have the following result:

Corollary 1 Consider two sessionsi andj backlogged during a service busy period[t1; t2), and

assume that at timet1 both sessions have the same normalized lag, i.e.,lagi(t1)=ri = lagj(t1)=rj .

Then, irrespective of the errors experienced by these sessions during the interval[t1; t2), if both

sessions become error-free aftert2 and they have enough demand, then there exists a timet3 > t2

such that the difference between the normalized service received by the two sessions during the

interval [t1; t3) is bounded.

In the following, we determine the delay bound for an error-free session. In the next two

lemmas we give two preliminary results used in proving Theorem 3.

Lemma 6 Let Wi(t1; t2) be the service received by an error-free session during the interval

[t1; t2) (t1 andt2 are packet transmission finish times) while it is continuously active inS, and let

W r
i (t1; t2) be the service received by the same session inSr

SFQ. Then, we have

W r
i (t1; t2) = Wi(t1; t2) + lagi(t2)� lagi(t1): (42)

Proof. The lag and/or the work received by sessioni in S during [t1; t2) change when one of

the following events occur: (1) sessioni is selected and the packet at the head of its queue is

transmitted, (2) sessioni receives service from another session, and (3) sessioni is leading and

its service is given to another session. On the other hand, the service received by sessioni in

Sr
SFQ changes only when it is selected and the packet at the head of its queue is transmitted.

In the following, we use induction on the events that change the lag and the work received by

sessioni in S.

33

Basic step.At t1, Eq. (42) reduces toW r
i (t1; t1) =Wi(t1; t1), which is obviously true.

Induction step. Assume that at timet 2 [t1; t2) one of the above three events occurs, and that

for any time smaller thant Eq. (42) holds.

In case (1), when sessioni is selected and the packet at the head of its queue is served we

have

Wi(t1; t+) = Wi(t1; t) + lki ; and (43)

W r
i (t1; t+) = W r

i (t1; t) + lki ;

wheret+ represents the time immediately after the packet has been transmitted. Since according

to our algorithm,lagi does not change in this case, it follows that if Eq. (42) holds at timet, then

it will also hold at timet+.

In case (2), when sessioni receives service from another session inS, its lag and work change

as follows

lagi(t+) = lagi(t)� lki ; and (44)

Wi(t1; t+) = Wi(t1; t) + lki : (45)

where againlki represents the packet at the head of sessioni’s queue. However, note that in this

caseW r
i is notupdated (because sessioni is not selected). Thus, we have

W r
i (t1; t+) = W r

i (t1; t) = Wi(t1; t) + lagi(t)� lagi(t1) (46)

= Wi(t1; t) + lki + lagi(t)� lki � lagi(t1) = Wi(t1; t+) + lagi(t+)� lagi(t1):

Finally, in case (3), sessioni is selected but its service is given to another sessionj. If there

is no such sessionj that can send, then we simply assume a packet of a sessionj of length� is

served (forced compensation), and the proof proceeds identically. If there is such session, then

let lkj be the length of the packet at the head of sessionj’s queue. Then, we have

lagi(t+) = lagi(t) + lkj ; and (47)

W r
i (t1; t+) = W r

i (t1; t) + lkj ; (48)

whileWi does not change. From this, it follows that

34

W r
i (t1; t+) = W r

i (t1; t) + lkj =Wi(t1; t) + lagi(t) + lkj � lagi(t1) (49)

= Wi(t1; t) + lagi(t+)� lagi(t1) = Wi(t1; t+) + lagi(t+)� lagi(t1);

which completes the proof of the lemma.

From Lemmas 1 and 6 it follows that the difference between the service received by an error-

free session in the reference system and the service the session receive in the error system is

bounded.

Lemma 7 Assume an error-free sessioni becomes active at timet in an error systemS. Then,

the difference between the service received byi during any time interval[t; t0) (t0 is a packet

transmission finish time) while it remains active inS and the service the session would receive in

the reference systemSr
SFQ is bounded as follows:

W r
i (t; t

0)�Wi(t; t
0) � Lmax: (50)

Proof. Since when sessioni becomes active at timet, lagi(t) = 0, according to Lemma 6, we

have

W r
i (t; t

0) =Wi(t; t
0) + lagi(t

0); (51)

Further, since sessioni is assumed to be error-freeduring the interval[t; t0), according to Lemma 1,

we havelagi(t0) � Lmax, which concludes the proof.

Since in our caseSr
SFQ represents an error-free system where sessions are served by the SFQ

policy, the above result suggests that we can use SFQ delay guarantees to bound the packet delay

in S. In particular, it has been proved in [5] that the delay of any packetk of a sessioni under

SFQ is bounded by

dki � eki + (n� 1)
Lmax

R
+
lki
R
; (52)

whereR is the channel capacity,n represents the total number of active sessions,dki represents

thek-th packet of sessioni’s departure time, andeki represents the expected arrival time of the

k-th packet of sessioni, and is computed as follows

35

eki = maxfaki ; e
k�1
i +

lk�1i

ri
g; k > 1; (53)

whereaki represents the actual arrival time, ande1i = �1.

Theorem 3 The delay experienced by thek-th packet of an error-free sessioni in an error system

S is bounded as follows:

dki � eki + (n� 1)
Lmax

R
+
lki
R

+
Lmax

ri
: (54)

Proof. Since by timedki thek-th packet of sessioni has been transmitted, we have

Wi(a
1
i ; d

k
i) =

kX
j=1

lji ; (55)

But according to Lemma 7, in the reference error-free systemSr
SFQ, we have

W r
i (a

1
i ; d

k
i) � Lmax +

kX
j=1

lji : (56)

Thus, in the worst case the work that sessioni need to receive in the error-free reference

systemSr
SFQ until thek-th packet of sessioni in the error system is transmitted is at mostLmax+Pk

j=1 l
j
i . Consequently, according to Eq. (53) the expected arrival time of thek-th packet of

sessioni in Sr
SFQ, denotedek;ri is bounded by:

ek;ri � eki +
Lmax

ri
: (57)

From the above equation and Eq. (52) the proof follows.

Finally, the next result gives the delay bound for an error-free sessioni, whose traffic con-

forms to the leaky-bucket constraints (�i; ri) where�i is the bucket depth andri is the token rate.

Since in this case, for any packetk of sessioni we haveeki � aki +�i=ri, from the above theorem

the corollary below follows.

Corollary 2 Consider an error-free sessioni with a reserved rateri and its traffic conforms to a

leaky-bucket(�; ri). Then the deadline experienced by thek-th packet of session i is bounded as

follows:

36

dki � aki + (n� 1)
Lmax

R
+
lki
R

+
Lmax

ri
+
�i
ri
; (58)

whereaki represents the arrival time of that packet,Lmax represents the maximum size of a packet,

R represents the server’s rate, andn represents the number of active sessions.

37

