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" Always hate what is wrong, but don’t hate the one who errors. Hate sin with all your heart, but forgive
and have mercy on the sinner. Criticize speech, but respect the speaker. Our job is to wipe out disease,
not the patient.”
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Abstract

As we become more reliant on resilient networks, it is increasingly imperative for cybersecurity
researchers and professionals to refine their techniques against malicious attacks. Within the
realm of network security, cyber deception emerges as a promising defensive technique to
leverage the asymmetry between attackers and defenders. However, the lack of a standardized
evaluation method makes evaluating the efficacy of deception techniques an arduous task. In
this master’s thesis, we present PERRY: a realistic, extensible, and automated platform that aims
to evaluate the efficacy of various deception techniques via emulation and allows the user fine-
grained control over all aspects of the platform.

We demonstrate the effectiveness of PERRY by using it to evaluate several defender profiles
against an emulated attacker, running hundreds of trials and comparing the results. We found
that allowing a defender to deploy deception techniques in addition to equipping it with
telemetry prevents an attacker from completely succeeding in its goals over 80% of the time.
Furthermore, employing smarter defender strategies that dynamically adapt to the attacker’s
actions allows the defender to prevent the attacker from completely succeeding in its goals
nearly 95% of the time. Taking advantage of our platform’s foundation, future researchers
can build upon PErRrY and extend it to realistically evaluate other deception techniques against
various attackers and in a broad range of scenarios.
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Chapter 1

Introduction

In cybersecurity, there exists a large asymmetry between attackers and defenders; defenders
must be perfect in protecting their assets against countless forms of threats ranging in sophis-
tication (insiders, government agencies, hacker groups, script-kiddies, etc.), while the attacker
only needs to find a miniscule gap in the defender’s security with which it can gain access to
the defender’s resources and cause significant damage.

This asymmetry, however, is reversed in the real world. In traditional forms of warfare (namely
not cyber warfare), defenders typically have a significant advantage over their attackers: the
defenders have far better knowledge of their land than the attacker, they have mighty structures
they can retreat to (castles, fortresses, towers, etc.), and the burden of advancing is largely on
the attacker.

With the advent of cyber warfare, an interesting idea emerged: what if we could reverse
the asymmetry in cybersecurity by leveraging real world military tactics? One such tactic is
deception, as described by Sun Tzu in The Art of War [1].

“All warfare is based on deception. Hence, when we are able to attack, we must seem unable;
when using our forces, we must appear inactive; when we are near, we must make the enemy
believe we are far away; when far away, we must make him believe we are near.”

Sun Tzu, The Art of War

In the context of cybersecurity, deception is the set of deliberate actions taken to mislead
attackers, thus causing them to take (or not take) specific actions that will benefit computer-
security defenses. While deception has been discussed in the context of cybersecurity for several
years, it has recently gained traction as a promising technique for defending against cyber
attacks.

However, it is still unclear how effective deception really is at protecting networks from
attackers. As such, in this thesis, we propose PERRY: a realistic, extensible, and automated
platform that aims to evaluate the efficacy of various deception techniques via emulation and
allows the user fine-grained control over the specific details of the platform.
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1.1 Paper Outline

The rest of this paper is organized as follows: In Chapter 2, we present an overview of deception
in the context of network security and several associated challenges. After that, in Chapter 3, we
discuss the current state of research into the evaluation of deception techniques. In Chapter 4,
we describe the abstract design of PERRY, which we then build upon in Chapter 5 by presenting
the implementation details of PERRY. Following that, in Chapter 6 we test our system by
conducting several experiments and discuss the results. We then discuss some limitations in
Chapter 7 and future work in Chapter 8. Finally, we conclude our work in Chapter 9.



Chapter 2

Background

In this section, we present an overview of deception in the context of network security that
is sufficient for the reader to understand the majority of this thesis. We will define cyber
deception, discuss some use cases and applications, and explore some challenges associated
with deception.

2.1 Cyber Deception

For the sake of brevity, we use the terms “cyber deception” and “deception” interchangeably.

2.1.1 What is Deception?

Deception is the act of deliberately misleading someone by concealing or presenting false
information, typically in order to gain personal advantage. In the context of network security,
deception is the set of deliberate actions taken to mislead attackers, thus causing them to take (or
not take) specific actions that will benefit computer-security defenses [2]. A common example
of a deception technique is the honeypot, which is a decoy system that is designed to appear
identical to a real system [3], and attracts malicious actors to the valuable data it appears to
contain. The purpose of honey-objects (decoy objects) is to give the attackers a false benefit and
lure them away from legitimate targets while the defender observes the attacker’s actions and
gathers information on their behavior. Example deception techniques within the honey-object
family include the following;:

* Honeypots: Decoy systems that are designed to appear identical to a real system [3].

* Honeyservices: Fake services that appear to be running on a system (e.g. fake SSH server,
webserver, file server, etc.)

* Honeytokens: Fake access credentials that appear to be legitimate but should trigger an
alert if used, since no real user should be using them, thus their use would indicate or
imply malicious activity [4].

* Honeyfiles: Bait files that appear to be valuable and intended for an attacker to open them,
setting off an alarm [5].
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* Honeyusers: Fake users on a system that are intended to be used or interacted with by an
attacker, triggering an alert upon such an event.

2.1.2 Use Cases and Applications

Deception techniques do not solve a particular problem; they are highly versatile tools that have
many broad applications to security and come in many forms. Deception techniques all share a
common feature: they all have no production value and, thus, should see no activity in a normal
setting [6]. Any activity on them likely implies malicious intent. As such, deception techniques
can be used to achieve a variety of goals, including the following;:

¢ Intelligence Collection: Deception techniques, such as honeypots, allow organizations
to gather valuable information about attackers including their techniques, tactics, and
procedures. This information can be used to understand the attacker’s motives and
methods, and develop more effective defense strategies to protect the organizations from
future attacks. For example, an organization can deploy a honeypot which, once the
attacker infects, can be used to collect about the attacker’s actions. This data can then
be used to create a profile of the attacker’s tactics and behavior, allowing the organization
to switch to a more offensive strategy [7].

¢ Enhancing Intrusion Detection Systems: Deception techniques are used to enhance the
capabilities of intrusion detection systems (IDS) by focusing on the attacker’s perception
of the system and anticipate an attack before it takes place [8].

* Wasting Attacker Resources: Deception techniques, such as honeyservices, are used to
waste an attacker’s time and resources by luring them away from legitimate targets, giving
defenders additional time to locate and respond to the attack. When responding to an
attack, every second of additional time is precious to the incident response team; every
second the attacker is wasting on a decoy is a second that it is not attacking the real system.

¢ Deterrence: If an attacker knows that a network or a system is using deception techniques
to protect its resources, they may become more wary about attacking it since they are not
certain if the information they are gathering is legitimate or not. If done strategically,
this may deter some opportunistic attackers from attacking the system, thus reducing the
number of attacks that the defender must respond to [9].

2.1.3 Limitations

Using deception techniques is not without its drawbacks; deception techniques are not a silver
bullet and are not guaranteed to be effective in all situations.

Attackers Must Interact with Deceptive Objects

For all deception techniques within the honey-object family, the attacker must interact with
the deceptive object in order for them to be useful and for the defender to gather intelligence
about the attacker. Attackers and malware are become increasingly sophisticated and are able
to detect and avoid honeypots [10].
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Attackers May Exploit Deceptive Objects

Naturally, this risk does not apply to all deception techniques, as simpler deception techniques
(such as honeytokens) are not considered exploitable. However, more complex methods, such
as honeypots, carry more risk. An attacker is meant to interact with a honeypot in a way that
a defender can learn more about their objectives and behaviors. However, with honeypots,
there is a risk that the attacker may be able to exploit the system and use it as a vector to other
systems in the network. With correct separation and DMZ'’s, this risk can be mitigated [10], but
the benefits of the tool must be weighed against the risks.

2.1.4 Is Deception Relying on Security Through Obscurity?

Security through obscurity refers to the practice of protecting information by making it difficult
to understand or access, such as using different daemon ports (like SSH on port 2222 instead of
22), hiding software versions, or obfuscating code by making it difficult to read and, thus, hack.
The idea is that if an attacker cannot easily figure out how something works, they will be less
likely to exploit it. However, this is generally considered a bad practice particularly if used as
the sole security system, as it is not a substitute for proper protection measures, and can give a
false sense of security.

Deception techniques such as honey-objects do share some similarities with security through
obscurity, as both involve hiding or misleading information. However, there are several key
differences between the two. While security through obscurity typically aims to conceal the
true nature of security mechanisms, deception invites interaction with false targets to collect
intelligence and learn about attackers” behavior. Additionally, deception does not rely on hiding
the real security mechanisms; it adds a layer of complexity without necessarily concealing the
true nature of the system. Furthermore, deception involves active engagement with attacker,
monitoring their activities, and learning from them whereas security through obscurity simply
aims to hide information. Finally, deception is not meant to replace standard security measures,
rather it serves as a valuable supplement and complement to them [10].

2.1.5 How Effective is Deception?

Although promising, the efficacy and effectiveness of deception in real environment is unclear.
Evaluating the efficacy of deception is a notoriously difficult task due to the scale of the scenario
space and other factors that are difficult to measure. Specifically, deception efficacy can vary
greatly due to a number of factors, including (but not limited to) the network topology, the
type and combinations of deception techniques used, the attacker threat model, the defender
capabilities and resources, and the network vulnerabilities. Additionally, some features such as
the believability, indistinguishability and secrecy of deception techniques are difficult to measure
or formalize [11].

Currently, no deception evaluation platform effectively and meaningfully evaluates deception
techniques because they either are not flexible enough to evaluate a wide variety of scenarios, or
rely on human subjects as the adversary, making experiments expensive and time-consuming
in addition to being difficult to reproduce [12]. We elaborate further in Chapter 3.






Chapter 3

Related Work

Research in deception is still in its infancy, and there is still much to be explored [13]. One of
the main challenges in deception is the lack of a comprehensive framework for evaluating the
efficacy of deception techniques. As a result, many researchers have already begun exploring
different approaches to evaluating deception effectiveness. In this section, we discuss the
current state of cyber deception research, and the limitations of existing deception evaluation
methods and platforms.

3.1 The Human Approach

One approach to evaluating deception is to use experienced human subjects as the attacker
against a system that uses deception techniques to protect its resources. In the Moonraker
paper, Shade et al. [12] conducted one of the first series of rigorous, controlled experiments using
human subjects to examine the effectiveness of deception for cyber defenses. They hypothesized
that adding deceptive actions would impede the progress of an attacker and create a more time-
consuming and frustrating experience for them. In their experiments, they used human subjects
with varying levels of experience in cyber security who were all told to execute six tasks that
the researchers would observe.

While this approach was indeed effective at evaluating the effectiveness of deception techniques,
it was limited by the population from which the participants were drawn and the skill of
each individual. Additionally, using humans in the evaluation process is expensive and time-
consuming, and is difficult to reproduce. Furthermore, it is difficult to evaluate specialized
scenarios since it is challenging to find individuals with the necessary technical skill and
proficiency to perform attacks in such scenarios. Despite this, [12] was one of the first papers
to rigorously explore the human approach to deception evaluation.

Other researchers have also explored the human approach to deception evaluation, including
Ben Salem and Stolfo [14], Voris et al. [15], Aggarwal et al. [16], Aggarwal et al. [17], and Ferguson-
Walter et al. [18]. However, all of their papers suffer from similar limitations as [12], with [14]
and [15] using computer science students as the test subjects, who typically have less experience
than cybersecurity professionals.
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3.2 Game Theory and Model Approaches

Another approach to evaluating deception techniques is through deception modeling, which
refers to the set of rules and strategies that govern the defender’s integrating of deception within
the architecture of a target system [11]. While searching for novel evaluation methods, we
found different approaches to modeling deception. In the study by Carroll and Grosu [19], the
researchers proposed a method that utilized game theory models to describe various interaction
sequences between the attacker and the target system, and to apply deception whilst optimizing
the defender’s gain.

Additionally, the study by Cohen and Koike [20], the researchers proposed a different approach
which leveraged the use of attack graphs to provide a concise representation of known attack
scenarios and the attack vectors that can be used by malicious parties. The researchers wove
deception techniques into the graph to lure attackers towards fake targets and evaluate their
effectiveness.

Finally, the study by Anwar and Kamhoua [21] introduced a novel approach centered around
attack graphs intertwined with game theory principles, seamlessly embedding deception mech-
anisms within the attack graph structure. This integration not only provides a comprehensive
representation of potential attack pathways but also strategically misdirects adversaries by
guiding them away from genuine assets and towards deceptive nodes.

Modeling approaches to deception evaluation present a set of challenges that researchers and
practitioners must grapple with. Naturally, models are limited by the assumptions made by the
researchers, and the accuracy of the model is dependent on the accuracy of those assumptions.
Accurately representing the intricacies of real-world deceptive tactics within a model can be
quite complex, often leading to an explosion in the size and complexity of the model in addition
to oversimplifications that may not effectively capture a real attacker’s behavior. Furthermore,
the dynamic nature of cyber threats and the ever-changing nature of the cyber landscape means
that static models can quickly become outdated, requiring constant updates to remain relevant.

3.3 Deception Evaluation Platforms

While exploring the literature around deception evaluation, we did not find platforms that
specifically emulate attackers and defenders for the sake of evaluating deception techniques.
However, we did find several platforms that allow users to create and manage emulated agents
and environments [22], [23], in addition to a platform that evaluates deception techniques with
a network attack simulation [24]. Simulation replicates the behavior of a system using abstract
models, while emulation mimics the exact functionalities of one system using another system.

CyGIL, the platform proposed by Li, Fayad, and Taylor [23], is an experimental, emulated
testbed designed for reinforcement learning (RL) in the domain of cyber operations. CyGIL
employs a stateless environment architecture and integrates the MITRE ATT&CK framework
to create a high-fidelity training environment. The platform allows a user to add their own
functionality, such as deception capabilities and evaluation methods, but it is not purpose-built
for deception evaluation.
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Similarly, CybORG, the platform proposed by Baillie et al. [22], is a research gym tailored for
Autonomous Cyber Operations (ACO) focusing on the autonomous decision-making and action
in cyber defense, encompassing both the attacker and defender dynamics. CybORG is designed
to support the application of RL and offers both simulation and emulation modes. While it is
also flexible enough to allow a user to add deception capabilities that may enable the user to
evaluate defensive method, it is not purpose-built for deception evaluation either.

Finally, the platform proposed by Reti et al. [24] is a deception evaluation platform that uses a
network attack simulation to quantitatively measure the effectiveness of deception techniques,
providing insights on the optimal honeypot deployment and the ideal intervals for mutating
network addresses to maximize the disruption of potential attacks. While this platform is
indeed purpose-built and does offer extensibility for the user to add their own deception
techniques, it is limited by the fact that simulation-based approaches may not capture the full
complexity of real-world attacks as accurately as emulation-based approaches.

PERRY aims to address the limitations of existing deception evaluation platforms by providing a
flexible, extensible, and easy-to-use platform that allows users to evaluate deception techniques
in a realistic and automatically instantiated environment. We describe the system design in
Chapter 4 and the implementation Chapter 5.
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Chapter 4

System Design

In this section, we will detail the design of our system by outlining the desired properties,
exploring the components involved, and navigating the overall layout and interaction of the
system from a high level, which we will then expand upon by describing the implementation
in Chapter 5.

4.1 PEeRRrY’s Properties

We wanted PERRY to be able to help security researchers and practitioners quickly test out and
evaluate the efficacy of their deception techniques against several types of attacks. In order to
achieve this, we came up with the following properties that PERRY should have:

¢ Realistic: PERRY should be able to create an environment that emulates a real network, in
addition to being able to emulate a realistic attacker.

¢ Extensible + Flexible: PErrY should be able to support a variety of different attacks,
exploits, vulnerabilities, deception techniques, network topologies, and goals, and make
it easy to extend the system by adding new features and properties to any of the
components. Additionally PERrRY should be flexible enough to allow the user to easily
configure the system to suit their needs and applications.

¢ Automated Instantiation: PERRY should be able to quickly and automatically instantiate
the environment and scenario with minimal user input, allowing us to quickly evaluate
many different types of defenders without having to manually execute each scenario.

4.2 System Abstraction

In this section, we explore the high-level design of PERRY, describing each primary component,
their purpose, and their interactions with each other.

As is common in cybersecurity, we designed our system similar to game theoretic models of
security games, in which two players, typically an attacker and a defender, interact strategically
in order to achieve their goals. While we don’t formally model our system as a game, we do use
similar concepts and abstractions as they relate specifically to network security [25].
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Figure 4.1: High-level system abstraction of PERRY, depicting the main components in a

scenario, their subcomponents, and their interactions with each other. The solid arrows

represent the flow of information, and the dashed arrows represent the execution of
actions.

As shown in Figure 4.1, an instance of a PERRY scenario contains the following components:

¢ Deployment Instance: The deployment instance is the “battlefield” upon which the
attacker and defender will be fighting.

¢ Attacker: The attacker is the adversary that is trying to gain access to the network.

* Defender: The defender is the entity that is trying to protect the network from the attacker.

4.2.1 Deployment Instance Abstraction

The deployment instance is defined by a Network Topology, which specifies the arrangement
of hosts on a network, a Network Configuration, which specifies the network security groups
and rules, and a set of Vulnerabilities, which specifies the vulnerabilities that will be deployed
onto certain hosts in the network (represented by the red bugs in Figure 4.1). The deployment
instance is the environment that contains all the valuable resources that the attacker is attempt-
ing to gain access to, and the defender is trying to protect by deploying deception techniques
on.
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4.2.2 Attacker and Defender Abstraction

The attacker and the defender of a scenario are abstracted identically and are represented by
the following components:

* Monitor: The monitor is the component that monitors the deployment instance network
and reports its observations.

* Goals: The goals are the set of objectives that the attacker/defender is trying to achieve.

¢ Capabilities: The capabilities are the set of actions that the attacker /defender can perform
or apply on the network.

¢ Strategy: The strategy is the process that determines what next action should be taken.
Given the current state of the network (received as input from the monitor), the at-
tacker/defender strategy will determine which capabilities to use in order to achieve its
goals and outputs the set of actions to be performed.

* Actuator: The actuator is the component that executes the given set of actions on the
deployment instance.

While the attacker and defender have identical abstractions, their implementations are quite
different.

Evaluation Criteria and Metrics of Success

To properly understand the effectiveness of deception techniques, our attacker and defender’s
goals incorporate a notion of 'score” which they each keep track of and try to optimize. Both
the attacker and the defender have a “goalkeeper” (not explicit in Figure 4.1 but implied by the
goals component) that keeps track of the score and determines whether they have achieved their
goals. The way the score is calculated and the way the goals are achieved are not predetermined
and can be defined by the user. For example, the attacker’s goal could be to gain access to
a certain host in the network, and the defender’s goal could be to prevent the attacker from
achieving its goal.
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Chapter 5

System Implementation

In this section, we build upon the system abstraction described in Chapter 4 and describe
the implementation details of PERRY. For each component, we give a brief introduction of
its purpose and significance. We then detail the technical foundations and the tools used to
implement each component, after which we describe the integration mechanics and how the
various tools synergize to realize the component’s implementation. Finally, we take a deep dive
into the implementation details of each component. Note that for the sake of brevity, we will
discuss the most important aspects of the implementation, and will omit the less significant
details. Additionally, it may be useful for the reader to refer to the system abstraction in
Figure 4.1 while reading this section.

5.1 Scenario Specification

In PERRY, a scenario represents a specific configuration encompassing three primary entities:
an attacker, a defender, and a deployment instance. In order to facilitate the creation and
management of these scenarios, we utilize a scenario specification file, which serves as a
comprehensive blueprint, detailing every facet of the scenario. It specifies the exact deployment
instance to be employed and the exact profiles of both the attacker and the defender. These
profiles are crucial as they define the capabilities, strategies, and goals each entity possesses,
such as the types of attacks an attacker can launch or the defensive measures a defender can
deploy. By providing a clear blueprint of the environment and the behaviors of the involved
entities, the scenario specification file ensures that each emulation conducted is performed in a
controlled, replicable, and well-defined manner.
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Figure 5.1: Scenario specification files define everything about the scenario (attacker,
deployment instance, and defender).

5.2 Deployment Instance

The deployment instance serves as the foundational environment upon which our scenarios
are built and executed. It represents a meticulously crafted digital landscape, encompassing
network topologies, host configurations, and vulnerabilities. This landscape is the environment
in which the attacker and defender will interact, and as such, it is crucial that it is realistic and
representative of a real-world network. In order to achieve this, we need a tool to define the
landscape, and a tool to instantiate and manage it.

5.2.1 Technological Foundations

For the deployment instance, we utilize a combination of TERRAFORM and OPENSTACK to
define and provision the network resources, and ANSIBLE to configure the hosts and install
vulnerabilities.

Configuration File

To ensure flexible and rapid deployment, network resources and topologies are created as
a human-readable configuration file, which can easily be altered to adapt to different de-
ployments and requirements. The configuration file defines the network topology, resources,
configuration, policies, and security groups.

Vulnerabilities

The vulnerabilities are defined simply as a mapping from a host to a vulnerability. The host is
specified by its IP address, and the vulnerability by its name.

Terraform

TERRAFORM is an open-source tool created by HashiCorp that allows us to define and provision
infrastructure as code [26]. It interprets the configuration file to automatically provision
network resources on the tool that will instantiate and manage them [27]. We chose TERRAFORM
because it facilitates rapid and flexible deployment, allowing us to easily define various network
topologies and configurations.
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Openstack

OPENSTACK is our tool of choice for the instantiation and management of the network landscape
and environment. It is an open-source, cloud-computing platform that allows us to create
and manage virtual machines, networks, and other cloud resources [28]. We chose OPENSTACK
because it is open-source, which allows us to easily deploy it on our own hardware and because
it is frequently used in research and in industry. OPENsTACK also has both a command-line
and web interface, allowing us to easily interact with it using Python scripts and from a web
browser respectively. It also has a great Python SDK and ample documentation, which we
use to create and manage the network resources that we defined in our configuration file.
Futhermore, OPENSTACK satisfies our needs for realism and flexibility in addition to immediately
and automatically instantiating the network resources, allowing us to quickly deploy and
update hosts and network components.

Ansible

ANSIBLE is a tool that offers powerful task and deployment automation [29]. Tasks are scripted
in ANsIBLE playbooks, which are then executed on remote hosts. We chose ANsIBLE for its
capability to quickly and efficiently run numerous commands on remote hosts, thus meeting
our requirements for flexibility, extensibility, and automation.

5.2.2 Integration Mechanics

All the tools are synergistically integrated to implement the deployment instance. The config-
uration file is interpreted by TERRAFORM to provision the network resources on the OPENSTACK
server. The OPENsTAck Python SDK is then used to retrieve the IP addresses of the hosts, which
are then used to connect to and setup each of the hosts and install the vulnerabilities using
ANSIBLE scripts.

5.2.3 Implementation Details

The core of the deployment instance is the DeploymentInstance class, which serves as the
blueprint for each instance. The class integrates the OPENSTACK connection details, the con-
figuration file, the vulnerability map, and the ANSIBLE scripts, culminating to form what we
define as the deployment instance profile. For each deployment instance profile we want to
use, we create a new Python class based on the DeploymentInstance parent class, inheriting all
of its functions and variables.

First, the configuration file is interpreted by TERRAFORM to provision the network resources
on the OPENSTACK server. Following this, the OpENnsTaCK Python SDK is used to retrieve the
IP addresses of the hosts. These IP addresses are crucial as they are pivotal for establishing
connections, initiating the installation of base packages, orchestrating the attacker’s goal
implementation, and embedding vulnerabilities on the hosts via ANSIBLE scripts. Finally, a
convenient setup function is provided to streamline the setup of the deployment instance.
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The specific deployment instance used is determined by the scenario specification file. This
modularity enables easy interchangeability of network topologies, configurations, and vulnera-
bilities, facilitating the rapid evaluation of deception techniques across a broad range of network
environments.

5.3 Attacker

The attacker in PERRY is an adversary that is designed to emulate realistic cyber threats.
The implementation is geared towards flexibility and extensibility, allowing us to easily add
new capabilities and strategies to the attacker. Additionally, we emphasize realism in our
implementation, as we want the attacker to behave as closely as possible to a real human
attacker. In order to do so, we need a tool that will manage the attacker’s components, including
its strategies, capabilities, and goals. Additionally, we need a system that will realistically
emulate the attacker’s behavior.

5.3.1 Technological Foundations

In order to implement the attacker, we use CALDERA, which handles the management of the
attacker’s components in addition to providing us with a convenient interface to interact with
them. We also implement the attacker’s goals as flags on several hosts in the deployment
instance.

Caldera

CALDERA is an open-source cybersecurity platform that specializes in automating adversary
emulation [30]. The attacker in PERRY is rooted in CALDERA, which has been extended with
a custom plugin to incorporate unique abilities and planners for our attacker. CALDERA’s
management of the attacker’s monitor and actuator coupled with its convenient interface and
SDK to interact with them allows us to easily create a realistic attacker using our own goals,
capabilities, and strategies. We chose CALDERA because it is open-source, and emulates a real
attacker as closely as possible, which is crucial for the realism of our platform. Additionally,
CALDERA is highly flexible and extensible, allowing us to easily add new features and capabilities
to it. Finally, CALDERA automatically instantiates the attacker, allowing us to quickly deploy and
update the attacker as needed.

Flags

For the sake of simplicity, we implemented the attacker’s goals as flags. A flag is a text string
that is discreetly hidden on intentionally vulnerable targets that the attacker is trying to find,
most commonly used in Capture the Flag (CTF) exercises. We plant flags on hosts within the
deployment instance, and the attacker captures a flag simply by reading the flag file. Since we
do not strictly define the attacker’s goal as anything specific, we are not limited to using flags,
and can redefine the objective to something else as needed, such as the attacker trying to gain
access to a specific user, or to obtain database root credentials, and so on.
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5.3.2 Integration Mechanics

All the tools are integrated to implement the attacker. CALDERA is used to automatically and
realistically emulate the attacker using our strategies, which interact with the attacker’s monitor
and actuator using our capabilities. The attacker’s goals are implemented as flags on hosts
within the deployment instance, which it will attempt to capture as per its strategy.

5.3.3 Implementation Details

The CALDERA framework consists of two primary components: the core system consisting of
an asynchronous command-and-control (C2) server with a REST API and web interface, and
the plugins that define the attacker’s capabilities and strategies [31]. We extend CALDERA by
creating our own plugin with custom abilities and planners for our attacker. The attacker’s
capabilities are implemented as CALDERA abilities with custom parsers, and the attacker’s
strategy is implemented as a CALDERA planner. For each desired attacker profile, a new CALDERA
planner Python script is crafted, outlining the attacker’s goals and strategies. Additionally,
a configuration file is created, listing all of the attacker’s available capabilities. Finally, for
each attacker, we create a Python class that links the attacker’s planner script to the capability
configuration file and points to the CALDERA server, culminating to form what we define as the
attacker profile. This class is then used to instantiate the attacker. The flexibility of this setup
enables swift and easy modifications by simply changing the attacker profile in the scenario
specification file, thus allowing us to quickly test out different attacker profiles and assessing
their impact on the defender’s strategies.

The infection process for our attacker is as follows. Once the attacker is installed on a host and
the operation is started, the attacker will scan the network for vulnerable hosts and select a host
at random for its attack. The host is then scanned, leading to a selection of open ports, which
the attacker exploits based on the active service on the port and the capabilities available to
the attacker. Upon gaining access to a host, the attacker attempts to read the host’s flag before
laterally moving to infect another host. The infection mechanism involves the installation of a
CALDERA agent on the host, essentially creating another instance of the attacker within the same
CALDERA operation. This requires the attacker to be able to communicate with the CALDERA
server, which we allow in our network configuration.

5.4 Defender

The defender in PERRY serves as a crucial component, designed to maintain knowledge of the
network and respond to potential threats. Similar to the attacker, we emphasize automation,
realism, and flexibility in our implementation such that we can easily add new capabilities and
strategies to the defender. In order to do so, we need a tool that will collect telemetry from the
deployment instance, a tool that will manage the defender’s knowledge base, and a tool that
will manage the defender’s strategies and capabilities. Finally, we need a tool that will allow us
to apply the defender’s actions onto the deployment instance.



20 Chapter 5. System Implementation

5.4.1 Technological Foundations

In order to implement the defender, we use SysrLow and ELASTICSEARCH to collect telemetry from
the deployment instance and to maintain the defender’s knowledge base. We also use ANSIBLE
and the OpeNsTack Python SDK to apply the defender’s actions onto the deployment instance.
Finally, we create a Python module to manage the defender’s strategies and capabilities.

SysFlow

SysFLOW is an open-source telemetry framework for monitoring cloud workloads and facilitating
the creation of performance and security analytics [32]. One of its key features is that it can
collect system call and event information from hosts and export them in a specific format to a
desired endpoint. We chose SysrLow because it is open-source, which allows us to easily deploy
it on our own hardware, and because it is frequently used in research [33]. Finally, SysrLow
gives us the ability to collect telemetry from the deployment instance, which is essential for
monitoring the network.

Elasticsearch

ELASTICSEARCH is an open-source, distributed search engine that allows us to store, search, and
analyze large amounts of data quickly and in near real-time [34]. We chose ELASTICSEARCH
because it is open-source, which allows us to easily deploy it on our own hardware and because
itis frequently used in research and in industry. Additionally, it is highly flexible and extensible,
featuring a huge library of plugins and integrations. Finally, ELAsTICSEARCH automatically
indexes the telemetry events, allowing us to quickly search and analyze them, which is why
we use it to maintain the defender’s knowledge base.

Ansible

ANSIBLE is a tool that offers powerful task and deployment automation. We have already
discussed ANsIBLE in Section 5.2.1. For the defender, we use ANSIBLE playbooks to quickly and
easily apply the defender’s actions onto the deployment instance.

Openstack

OPENSTACK is an open-source, cloud-computing platform that allows us to create and manage
virtual machines, networks, and other cloud resources. We have already discussed OPENSTACK
in Section 5.2.1. For the defender, OPENSTACK serves as the interface to the deployment instance,
allowing us to easily retrieve information about the network and hosts, and also to apply the
defender’s actions onto the deployment instance.

Defender Python Class

The core of the defender is rooted in the PERRY Defender class, which serves as the blueprint for
each defender. This class manages the strategy, capabilities, and goals of the defender.
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5.4.2 Integration Mechanics

SysrLow and ELASTICSEARCH operate in synergy, with SysrLow collecting telemetry data and
exporting it to ELASTICSEARCH for storage and analysis. The defender, implemented in Python,
leverages this data to make strategic, informed decisions and execute actions. The defender’s
strategy within the Python class dictates the appropriate response to telemetry events based on
the defender’s available capabilities. Finally, the defender’s actuators leverage ANsIBLE and the
Orenstack Python SDK to apply the actions onto the deployment instance.

5.4.3 Implementation Details

The core of the defender’s implementation is encapsulated within a series of meticulously
designed Python classes, each tailored to serve a specific purpose within the defender’s overall
architecture.

Defender Profile Class

Central to the defender’s operation is the Defender class which serves as a blueprint for each
defender. The class integrates connections to the ELASTICSEARCH server, the OPENSTACK server,
and the ANSIBLE scripts, culminating to form what we define as the defender profile. For each
desired defender profile, a new Python class is crafted based off the Defender parent class,
inheriting all of its functions and variables. The class describes the defender’s overarching
strategy in addition to housing the telemetry analysis processor, which is pivotal in processing
telemetry events that subsequently dictate the defender’s actions. Within this class, the
defender’s goals are also defined, which are used to determine the defender’s overall success.

Capability Modules

The defender’s capabilities, which are the actions and responses that the defender can take,
are implemented as distinct Python modules. Each module defines the parameters required by
the actuator to execute the associated action. This modular approach ensures that adding new
capabilities or modifying existing ones is a simple and streamlined process.

Actuator Modules

Complementing the capability modules are the actuator modules. These are the refined,
specialized workers of the defender, translating the strategies and capabilities into tangible
actions performed on the deployment instance. Each capability has an associated actuator
module responsible for executing the action it defines. The implementation of the actuator
is flexible enough to allow us to use a variety of different methods to apply the action, such
as using the OpENsTACK Python SDK in conjunction with ANSIBLE scripts to download a git
repository and execute a Python script on a host. For instance, the actuator associated with
the DeployHoneyservice capability would use the OpENsTAaCK Python SDK to interface with the
OPENSTACK server to connect to a host and execute an ANsIBLE script to download a git repository
containing the honeyservice program, which it then executes on the host. The design of these
actuators is inherently flexible and extensible, allowing for a diverse range of methods to apply
actions.
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Telemetry Analysis Processor

The telemetry processor seamlessly integrates with the ELasTicSEARCH and OPENSTACK servers,
which is facilitated through dedicated classes that handle communication and data retrieval.
The telemetry processor queries the ELASTICSEARCH server for telemetry events that are relevant
to the defender and parses them into a format that is easily digestible by the defender. The
telemetry processor also queries the OPENSTACK server for information about the deployment
instance, such as the IP addresses of the hosts, which is used to determine which hosts to apply
actions on. The telemetry processor is the core of the defender, as it is responsible for processing
telemetry events and determining the defender’s next action. The telemetry processor is also
responsible for determining the defender’s success, which is based on whether or not the
defender has achieved its goals.

In essence, the implementation of the defender is a harmonious blend of extensible and flexible
Python classes, each serving a distinct and specialized role, yet collectively ensuring that the
defender operates efficiently and robustly. This implementation emphasizes the importance of
modularity and extensibility, as it allows us to easily add new capabilities and strategies to the
defender, and to quickly test out several different defender profiles.

5.5 Emulator

The emulator serves as an integral component, orchestrating the interactions between the
attacker and defender in the deployment instance. Designed as a python program, the emulator
offers a command-line interface facilitating the loading of a scenario that will be loaded and
executed. As such, the emulator requires a parser to interpret a configuration file, a controller
to manage the emulation process, and an orchestrator to instantiate the scenario.

Emulator
s
6 ~
== J
S
— | — — -
7
experiment results/
configuration parser controller orchestrator metrics
\- J

Figure 5.2: Emulator Process Diagram. Solid arrows represent the flow of information,
and dashed arrows represent invocation of entities.

5.5.1 Technological Foundations

We first introduce an experiment configuration file that specifies a list of scenarios to emulate.
We then need a parser to interpret the experiment configuration file, a controller to manage the
emulation of a scenario, and an orchestrator to instantiate the scenario.
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Experiment Configuration File

This file specifies a list of experiments to run. Each experiment defines the scenario specification
file to use in addition to a number of other critical properties. This allows us to easily run
many experiments with different scenarios and parameters without having to manually execute
each one. This file is distinct from the scenario specification file, which defines the scenario to
emulate, as described in Section 5.1.

Parser

The parser is the component of the emulator that interprets the experiment configuration file
and creates a list of all the experiments to run and their details, including the number of trials for
each experiment, which scenario specification file to use, the output directory to save the results
to, how to handle errors in a trial, and which OPENSTACK, ELASTICSEARCH, and CALDERA servers
to use. This allows us to easily run many experiments with different scenarios and parameters
without having to manually execute each one.

Controller

The controller is the component of the emulator that manages the emulation of a scenario. It
is responsible for loading the scenario specification file, invoking the orchestrator, running the
scenario, saving the results, and repeating the process for the specified number of trials for each
experiment.

Orchestrator

The orchestrator is the component of the emulator that instantiates the scenario. Itis responsible
for importing the required classes and setting up the deployment instance, attacker, and
defender.

5.5.2 Integration Mechanics

The parser parses the experiment configuration file to create a list of experiments to run, which
is then passed to the controller. The controller then invokes the orchestrator with the experiment
information, which then uses that information to instantiate the scenario. The orchestrator then
returns the scenario to the controller, which then runs the scenario. The controller then saves
the results and repeats the process for the specified number of trials for each experiment.

5.5.3 Implementation Details

The emulator provides a command-line interface that can be used to load an experiment
configuration file, load a particular scenario specification file as an experiment, begin emu-
lation, and view all results. The implementation of the emulator centers around flexibility,
extensibility, and automation; it can easily be extended to add new commands and features,
and emphasizes automation by attempting to minimize as much manual work as possible when
running experiments and emulating scenarios.
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The controller is the core of the emulator. Once a list of experiments is received from the
parser, it will iterate through each experiment and invoke the orchestrator with the details of
the experiment. The orchestrator will import the specified profiles for the deployment instance,
attacker, and defender, and instantiate each of them, thus defining a scenario for the controller.
The controller will then run the scenario, which will involve the attacker attempting to achieve
its goals and the defender attempting to prevent the attacker from achieving its goals. Once the
scenario is complete, the controller will save the results and repeat the process for the specified
number of trials for each experiment.

Additionally, since the process of setting up the deployment instance is a lengthy one, the
controller can be used to save some time between trials. We give the controller the ability to
save a snapshot image of each host after it has been set up the first time. Therefore, between
trials, the controller can restore all the hosts to a clean state by rebuilding them from their saved
images, then performing minimal setup such as installing the attacker agent and planting fresh
flags. This allows to easily run hundreds of trials of an experiment without having to wait for
the network to be deployed and the hosts to be set up each time.
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Chapter 6

Experiments and Results

6.1 Experimental Setup

In this section, we describe the experimental setup that we used to evaluate the efficacy of
several deception techniques against several types of attacks. Additionally, we describe the
network topology that we used, the vulnerabilities that we deployed, and the attacker’s strategy.
We also describe the defender’s strategy, which we will vary between experiments.

To come up with the experiments, we used deception techniques that we found in literature and
adapted them into defender strategies that we thought would be interesting to test out.
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Figure 6.1: Experimental setup of the network topology, showing the hosts, subnets
(colored square backgrounds), flags (magenta flags on hosts), vulnerabilities (red bugs
on hosts), and the attacker’s initial position (red-colored host).
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6.1.1 Hardware and Software Information

We ran our experiments on a single Ubuntu machine with 128 GB of RAM, Intel(R) Xeon(R)
W-2295 processor with 18 cores and a base frequency of 3.00 GHz. Additionally we used TEr-
RAFORM v1.3.7, a forked version of CALDERA v4.1.0 (due to some bugs in the original CALDERA
project), OPENSTACK Zed (released 05 October 2022), ANSIBLE core v2.15.0, ELASTICSEARCH
v8.6.2, and SysFLow v0.5.1.

6.1.2 Deployment Instance Setup

For our setup, we created a network topology as shown in Figure 6.1 that contains two subnets:
the company subnet and the datacenter subnet. On the company subnet, we added five hosts:
ceo, hr, finance, activedir, and intern. On the data center subnet, we added a single host:
database. The two subnets are connected to each other via a gateway router, which connects to
the outside world.

For the sake of simplicity, we allowed full communication between the two subnets; we setup
security rules such that all hosts on the company subnet can communicate with all hosts on the
same subnet and the datacenter subnet, and vice versa via, TCP on ports 1-65535. These rules
also apply to any new hosts that may join the network. Additionally, we allowed the attacker to
communicate with our CALDERA server.

Furthermore, we planted three flags on each of ceo, finance, and database, as depicted by
the magenta flags on the hosts in Figure 6.1, which the attacker will attempt to capture. These
flags are the implementation of the attacker’s goals, as described in Section 5.3. Finally, we
installed several vulnerabilities, detailed in Table 6.1 and depicted by the red bugs on the hosts
in Figure 6.1, which the attacker will attempt to exploit in order to gain access to the host.

Table 6.1: Vulnerability Configuration for Our Deployment Instance

Host Vulnerabilities

activedir netcat Bind Shell Listener on Port 4444
ceo SSH Login with Password

finance netcat Bind Shell Listener on Port 4444

vsftpd Backdoor [35]

hr None
intern None (Initial Attacker Access)
database netcat Bind Shell Listener on Port 4444

6.1.3 Attacker Setup

We kept the attacker constant for all of our experiments in addition to keeping the scoring
value of each flag identical. Furthermore, the attacker has no prior knowledge of where the
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flags are, and will attempt to search for them on every host it infects. Importantly, the attacker
will not change its behavior based on the defender’s strategy nor will it value one flag or host
over another. We also assume that the attacker cannot distinguish between real and fake hosts,
or between real and fake services, thus the attacker will interact any with honey-objects the
defender deploys if it encounters them. We discuss the ramifications of this in Section 7.1.2 and
leave the task of creating an improved attacker for future work.

The attacker begins on intern by scanning both the company and datacenter subnets to gather
all the online hosts on each of them. After that, the attacker randomly scans each online host
for open ports, and if it finds any, will attempt to run an exploit based on the type of service
running on that port. If the attacker successfully exploits a vulnerability, it will “infect” the host
by installing an instance of itself on it (CALDERA attacker agent) effectively gaining full control
of the host. If the attacker is unable to exploit any vulnerabilities on the host, it will move on
to the next host. The attacker will continue this process until it is able to capture all three flags,
or until it is unable to find any more vulnerabilities to exploit. The attacker “captures” a flag
by reading the contents of the flag file. For the sake of our experiments, once the file has been
read, we consider the flag to be captured even if the attacker does not exfiltrate the flag string.

The attacker’s goal is to capture all three flags as quickly as possible. Thus, the attacker’s metrics
of success are the number of flags captured and the execution time (namely the time taken to
capture all flags that the attacker is able to capture).

6.1.4 Defender Setup

In our experiments, we wanted to test out several types of defender techniques. To achieve this,
we created four different defender profiles, generally defined as follows:

0. No Defender (Baseline): This defender does nothing, effectively acting as a baseline for
the attacker’s performance.

1. Passive Defender: This defender has several deception capabilities that it deploys at the
start of the experiment. The purpose of this defender is to create more noise that the
attacker will be forced to sift through in order to find the flags.

2. Active Defender: This defender has the same deception capabilities as the passive
defender, but with an added alert system. Specifically, if the attacker interacts with and
of the deployed deception capabilities, the defender will be alerted and will restore the
alerting host to a clean state, effectively removing the attacker from that particular host.
The previous defenders do not receive alerts from the monitor, nor do they have the
capability to perform any restorative actions.

3. Dynamic Defender: This defender has the same capabilities as the active defender, with
the added ability to deploy decoy hosts upon detection of an attacker. The purpose of this
defender is to create fake hosts that the attacker will waste time on, thus increasing the
time it takes for the attacker to achieve its goals, and giving the defender more time to
locate and remove the attacker from the network.
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6.2 Evaluation Metrics and Criteria

In order to evaluate the effectiveness of the defender’s strategy, we used the following as the
metrics of success as per the goals of the attacker and the different defender profiles:

* Number of Flags Captured: The attacker wants to maximize the number of flags it
captures, while the defender wants to minimize how many flags the attacker gains access
to.

* Execution Time: The attacker wants to minimize the amount of time it takes for it to
capture the flags, while the defender wants the attacker to spend as much time as possible.

¢ Number of Restores: (Active and Dynamic Defenders) The defender tries to minimize the
number of times it restores hosts on the network, since fewer restores means less downtime
for the host.

¢ Number of Honeypots Deployed: (Dynamic Defender) The defender tries to minimize the
number of honeypots it deploys, since fewer honeypots means less resources used.

6.3 Experimental Procedure

For each experiment, we ran hundreds of trials and saved the metrics after each run. These
metrics included the number of flags captured and the time that the attacker took to capture
the flags. Once all the trials were completed, for each number of flags captured, we calculated
the average time it took to capture that number of flags. We then compared the results of
each experiment with the previous experiments to determine the effectiveness of the defender’s
strategy.
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6.4 Experiment 0: Baseline (No Defender)
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Figure 6.2: Experiment 0 Setup. The red arrows in the network represent a possible path
that the attacker can take, not necessarily the one that it will take.

In this experiment, we want to establish a baseline for the attacker’s performance, which we
can use to compare the effectiveness of the defender’s strategies in following experiments. This
experiment has no defender; the attacker is free to attack the network without any limitations
or restrictions other than its own capabilities.

Hypothesis 0 The attacker will capture all three flags 100% of the time, and will do so in a relatively
short amount of time.

Experiment Outcome

As per the results shown in Tables 6.2 and 6.3 and Figure 6.6, the attacker captures all three
flags in 100% of the trials, and did so in an average of 873.3 seconds. This is unsurprising, since
the attacker has no defender to battle against, and thus should be able to capture all three flags

with relative ease. Hence, our hypothesis was correct.

The attacker captured all three flags 100% of the time, and did so in an average of 873.3
seconds.
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6.5 Experiment 1: Passive Defender

Company Subnet

Active Directory
Host

..... S Datacenter Subnet
f -...* D b
——— () — &aad —P & et
) ___\
.'*".
Attacker

Figure 6.3: Experiment 1 Setup. The blue shields represent a deception capability that
the defender has deployed, which, in this case, is a honeyservice.

In this experiment, we introduce a passive defender: a defender that can deploy deception
capabilities, which in our case is a honeyservice, and nothing more. This defender does
not receive any alerts from the monitor, and thus it cannot respond to any attacker activity.
Importantly, we assume that the attacker will interact with any honeyservice that it encounters,
meaning that the attacker’s process should take longer than baseline.

The purpose of this experiment is to determine the effectiveness of deception techniques against
the attacker without anything else involved. This allows us to determine the effectiveness of
strategies that build upon deception techniques in later experiments.

Hypothesis 1 The attacker will still capture all three flags 100% of the time, but will take longer on
average to do so than the baseline.

Experiment Outcome

As per the results shown in Tables 6.2 and 6.3 and Figure 6.6, the attacker captured all three
flags in 100% of the trials, but did so in an average of 864.59 seconds, which is nearly a 30 second
increase from the baseline, equating to a 3.3% increase. This is unsurprising, since the attacker
has to sift through the deception capabilities that the defender has deployed, which takes time,
however we did hope that the increase would be more significant. Nonetheless, our hypothesis
was correct.
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Using deception techniques slowed down the attacker, but did not prevent it from achieving
its goals; the attacker still captured all three flags 100% of the time.

6.6 Experiment 2: Active Defender
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Figure 6.4: Experiment 2 Setup. The solid blue arrow represents an alert being sent to
the defender. The dashed blue arrow represents the defender’s response by restoring
the host interacting with the honeyservice.

In this experiment, we use the same deception techniques as the previous, passive defender,
but equipped with telemetry and the added ability to respond to alerts. Specifically, if the
attacker interacts with any of the deployed honeyservices, the defender will be alerted of the
host interacting with the honeyservice and will restore the host by rebuilding it from a clean
image. We assume that a restore removes all traces of an attacker from a host, but we do not
assume that the attacker will not be able to infect it again.

Importantly, if the defender restores all machines that attacker infects, the attacker will not be
able to regain access to the network. More specifically, in the case that the attacker did not infect
any hosts other than the intern, and the defender restores the intern host, the attacker loses its
foothold and will not regain access to the intern host. However, if the attacker infects another
host before the defender restores it, the attacker will still have access to the network and can
continue infecting and reinfecting hosts.

Hypothesis 2 The attacker will have a significantly harder time capturing all three flags and will take
significantly longer on average to do so than against the passive defender.
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Experiment Outcome

Indeed, as per the results shown in Tables 6.2 and 6.3 and Figure 6.6, the attacker captured
all three flags only 18.9% of the time, a significant decrease from the passive defender in
Experiment 1. Additionally, the attacker took an average of 881.87 seconds to capture all three
flags, which is nearly 40 seconds longer than the passive defender, equating to a 5.3% increase,
which, similarly to Experiment 1, we expected to be more significant.

Furthermore, the defender prevented the attacker from capturing even a single flag in 42.4% of
trials, shutting the attacker down in an average of 224.6 seconds, which is a much better outcome
than expected. In the cases that the attacker still captured a flag, we believe that between the
time the defender received the alert and the time it performed the restore, the attacker infected
another host. This is supported by the fact that the intern host is restored more than once per
trial on average, as shown in Table 6.4, meaning that, in some cases, the defender found the
attacker on the intern host multiple times in the same trial.

Since the defender managed to put up a fight, we can conclude that the defender’s strategy was
effective, and thus our hypothesis was correct.

Experiment 2 Takeaway

Equipping a defender with telemetry and the ability to respond to alerts significantly
improved the efficacy of deception techniques, increased the attacker’s execution time, and
in some cases, prevented the attacker from achieving its goals entirely.
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6.7 Experiment 3: Dynamic Defender
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Figure 6.5: Experiment 3 Setup. The dotted blue arrow represents the defender

responding to an alert by deploying a honeypot, represented by the blue host. Note

that the defender will still restore the host interacting with the honeyservice to a clean
state.

In this experiment, we build upon Experiment 2 by giving the defender the ability to deploy
honeypots on the subnet from which it receives an alert of an attacker. Specifically, if the attacker
receives an alert from a host on the company subnet, the defender will deploy a honeypot on
that subnet, which the attacker will interact with and try to infect. Additionally, the defender
also deploys honeyservices on the honeypot, meaning that if the attacker attempts to infect the
honeypot by interacting with the honeyservice, the defender will be alerted and will restore
the host that the attacker used for the attack. Importantly, we assume that the attacker will
eventually interact with all honeypots that it can reach.

Hypothesis 3 The attacker may capture all three flags, but will take significantly longer on average to do
so than against the active defender. Additionally, we expect that, in most cases, the defender will prevent
the attacker from capturing even a single flag.

Experiment Outcome

Once again, as per the results shown in Tables 6.2 and 6.3 and Figure 6.6, the attacker captured
all three flags only 5.6% of the time, which is a significant decrease from the active defender
in Experiment 2. Additionally, the attacker took an average of 1258.9 seconds, which is nearly
400 seconds longer than any of the previous experiments, equating to a 45.1% increase over the
active defender.
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Furthermore, the defender prevented the attacker from capturing even a single flag in over 55%
of the experiments, shutting the attacker down in an average of 284.45 seconds. We interpret this
as an improvement over the average of 244.6 seconds with the active defender, since the attacker
took longer to walk away with nothing, effectively wasting more of its resources. Additionally,
the defender overall restored fewer real hosts than the active defender, as shown in Table 6.4,
meaning that the defender detected the attacker earlier on in the attack chain, and thus deployed
more honeypots to waste more of the attacker’s time.

Finally, as shown in Table 6.5, the defender deployed two honeypots on average on the company
subnet compared to the 0.12 average honeypots on the datacenter subnet, which meant that
the defender narrowed down where the attacker was and attempted to waste more of its time
by keeping it on the same subnet.

Since the attacker did not capture all three flags in most cases, and took significantly longer to
do so than in the active defender, we can conclude that the defender’s strategy was significantly
more effective, and thus our hypothesis was correct.

Smarter defensive strategies that changed and adapted with the attacker’s actions further
improved the efficacy of deception techniques, significantly increased the attacker’s execu-
tion time, and in the vast majority of cases, prevented the attacker from achieving its goals
entirely.

6.8 Experiment Results

Table 6.2: Overview of General Metrics for All Experiments

Metric Experiment 0 Experiment 1 Experiment 2 Experiment 3
Total Trials 107 225 217 215
Average Setup 75.88 seconds 142.06 seconds | 172.66 seconds | 202.81 seconds
Time

Average 837.3 seconds 864.59 seconds | 525.98 seconds | 523.55 seconds
Execution Time

Table 6.2 shows an overview of the general metrics for all experiments, showing the total
number of trials performed for each experiment in addition to the average setup time, the
time it took to setup the experiment, and the average execution time, the time it took for the
attacker to either finish capturing all three flags or for the defender to remove the attacker
from the network. The average execution time does not seem to change significantly between
experiments Experiment 2 and Experiment 3 due to the extremes in the execution time per
total flags captured, as shown in Figure 6.6 and Table 6.3. Furthermore, the average setup time
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increases between each experiment because we are performing additional setup steps for each
experiment.

Table 6.3: Average Execution Time per Number of Flags Captured for All Experiments

Flags Captured Experiment 0 Experiment 1 Experiment 2 Experiment 3
3 837.3 seconds 864.59 seconds | 881.87 seconds | 1258.9 seconds
2 - - 774.23 seconds | 927.24 seconds
1 - 455.62 seconds | 594.58 seconds
0 - 244.6 seconds 284.45 seconds

Table 6.3 breaks down the average execution time per flag captured for each experiment. Note
that the total flags captured is exclusive, meaning that, for example, if the attacker captured

exactly three flags in a trial, it is not considered as having captured two flags.

Execution Time
vs. Number of Flags Captured
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Figure 6.6: Results of All Experiments. Shows the time taken to capture a number of
flags (left), and the percentage of trials that resulted in a number of flags captured (right)
for each experiment and for each number of flags captured.
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The graphs in Figure 6.6 show the results of all experiments. The graph on the left shows
the time taken to capture a number of flags, indicating the median and interquartile range.
The higher the execution time, and the lower the number of flags captured, the better it is
for the defender. In other words, the defender wants the attacker to take as long as possible
to capture as few flags as possible. Evidently, the dynamic defender (Experiment 3) is the
most effective, taking significantly longer than all other experiments, followed by the active
defender (Experiment 2), then the passive defender (Experiment 1), and finally the baseline
(Experiment 0).

The graph on the right shows the percentage of trials that resulted in a certain number of flags
captured. The higher the percentage of trials that resulted in a lower number of flags captured,
the better it is for the defender, and the higher the percentage of trials that resulted in more flags
captured, the worse it is. Specifically, the defender prefers that the percentage of trials resulting
in three flags being captured is as low as possible while the percentage of trials resulting in
zero flags being captured is as high as possible. Once again, the dynamic defender is the most
effective, followed by the active defender, then the passive defender and the baseline.

Table 6.4: Average Restores Per Host for Experiments 2 and 3

Host Experiment 2 Experiment 3
activedir 0.5 restores 0.31 restores
intern 1.19 restores 1.18 restores
finance 0.48 restores 0.31 restores
database 0.06 restores 0.12 restores
ceo 0.33 restores 0.24 restores

Table 6.4 shows the average number of times that the defenders of Experiments 2 and 3 restored
a particular host. As we can see, both defenders restored the intern host the most, meaning it
narrowed down where the attack was originating from. Additionally, on average, the dynamic
defender in Experiment 3 performed less restores than the active defender in Experiment 2,
meaning that the dynamic defender detected the attacker earlier on in the attack chain, and
thus used other deception techniques (honeypots) to reduce the number of restores it had to
perform.

Table 6.5: Average Honeypot Deployments Per Subnet for Experiment 3

Subnet Experiment 3

company 2.04 honeypots

datacenter 0.12 honeypots
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Table 6.5 shows the average number of honeypots deployed on each subnet. As we can see,
the defender deployed two honeypots on average on the company subnet, which allowed the
defender to narrow down where the attacker was and attempt to waste more of its time by
keeping within the same subnet.
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Chapter 7

Discussion

7.1 Limitations

In this section we briefly discuss some limitations of PERRY that may not be of concern to the
majority of use cases but we felt was important to mention. We believe that these limitations do
not affect the validity of our findings nor the usefulness of the system in any significant way.

7.1.1 Emulated Attackers

In our experiments, we used emulated attackers to evaluate the effectiveness of our deception
techniques. A natural limitation to emulation in general, and not specifically to PErRy, is that
the emulated attackers are not perfect representations of human attackers since they are not
affected by the same things that humans are, nor are they as tenacious as human attackers
can potentially be. However, we designed PErRry in a way that allows us to easily extend the
attacker to make it as complex as we need it to be with more sophisticated attacker patterns,
thus emulating a human attacker as closely as possible. Despite this limitation, we believe that
our findings are still valid since our attacker does indeed use real vulnerabilities and exploits
to achieve its goals.

7.1.2 Simple Attacker

In our experiments, we used an attacker that was relatively simple and straightforward, and did
not use any particularly advanced techniques to achieve its goals. This was done intentionally to
demonstrate the effectiveness of our deception techniques, and to show that a simple attacker
can indeed be thwarted by a well-designed deception strategy. However, more sophisticated
attackers may be able to detect honeypots and avoid them altogether or even exploit them to gain
access to the network. Furthermore, some malware can even detect if they are in a honeypot,
and change their behavior accordingly [10], thus tainting any intelligence or data gathered from
the honeypots they are on. We believe that this is an interesting avenue for future work, and
that PERRY can be used to explore this idea and to evaluate the efficacy of deception techniques
against improved attackers.
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7.1.3 Virtual Networks

This limitation is also not specific to PERRY, but rather to the use of virtual networks in general.
Since we are using virtual networks residing on a cloud computing platform (OPENSTACK), we
cannot faithfully emulate the network conditions that would be present in a physical network.
For most use cases, this can be ignored or simply worked around by adding noise or latency
to the virtual network, which PErrY does indeed accommodate. However, for some specific
situations, such as for Iol and embedded devices, that require real-time communication and
near-zero latency, this may be a significant limitation, but we are not certain of this. We leave
the task of evaluating this limitation for future work.
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Chapter 8

Future Work

Throughout the development of PERRY, we came up with several intriguing ideas that were not
in the scope of this thesis. In this section we will discuss some of those ideas and how they can
be used to improve and build upon PERRY.

8.1 Red Patching

One of the challenges we faced during the development of the attacker capabilities in PERRY was
finding realistic vulnerabilities and implementing or finding reliable exploits for the attacker to
use. During the later development phase of this project, we established communication with
the researchers at IBM responsible for SysrLow, who introduced the idea of HoneyPatches [33],
in addition to a novel system they are working on that would allow us to bypass the need
to write Proof of Exploits for the attacker, which are evidences that a vulnerability can be
exploited, typically done through demonstration of exploit without causing harm. This would
also eliminate requirement of having real vulnerabilities on the hosts in the deployment instance
and works by creating process instrumented with a backdoor to allow us to storyboard events
rather than rely on inconsistent exploits throughout the attacker’s infection process.

For example, instead of placing a real vulnerability on a real FTP service, we would instead have
a real FTP service instrumented with their system that allows the attacker to achieve the same
effect as if they had exploited the real vulnerability with a real exploit.

While this is potentially a very useful and interesting idea, it is unclear how this would affect the
realism of the attacker or the efficacy of deception strategies. We suspect that, if done correctly
with careful consideration for the types of services being instrumented, this would not have
significant impact, but that is something that is not within the scope of this thesis, and would
be a potential avenue for future work.

8.2 Game Theory and Machine Learning

As mentioned in Section 4.2, we designed PERRY similar to game theoretic models of security
games, in which two players, typically an attacker and a defender, interact strategically in order
to achieve their goals [25]. In this thesis, we did not explore the game theoretic aspect of PERRY,
but we believe that it would be a strong potential avenue for future work. In particular, we
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believe that it would be particularly useful to explore the Nash Equilibria of the system, and
how the defender can use this information to determine the optimal strategy to use in order to
maximize their payoff. Additionally, we believe that it would be compelling to explore the use
of machine learning in PERRY to allow the defender to learn the attacker’s behavior and adapt
to it accordingly, and to create even more realistic attackers.

8.3 Refining PERRY

We designed PErRrY to be flexible and extensible, however due to time constraints we were
not able to take full advantage of this, and only implemented the capabilities and strategies
necessary for our experiments. However it would be highly beneficial to explore the full extent
of PERRY’s features by implementing more deception abilities, such as honeyfiles, honeyusers,
and honeytokens. Additionally, it would be useful to test the efficacy of deception strategies
against more sophisticated attackers, such as those that can detect and avoid honeypots, or
even exploit them.

Futhermore, it would be interesting to see the goal of the defender and attacker be implemented
in different ways, such as the defender gathering intelligence instead of trying to remove the
attacker from the network, or the attacker trying to actively destroy the network instead of
gathering flags. Finally, it would also be interesting to explore the use of different network
topologies and see how that affects the efficacy of the defender’s strategies. We believe that
there is a lot of potential for future work in this area and that PERRY can be used as a platform
to explore these ideas.



43

Chapter 9

Conclusion

Deception is a powerful tool that is effective at preventing attackers from achieving their goals
of infiltrating a network and gaining access to its resources. We have taken inspiration from
real-world military tactics and applied them to the network security domain, and we have
seen promising results that indicate that deception may be pivotal in reversing the asymmetry
between attackers and defenders within the space of cybersecurity.

There is a growing interest in deception as a defensive technique, yet we have noticed that there
was a lack of a comprehensive framework or platform for evaluating their effectiveness. In this
master’s thesis, we proposed PERRy, a flexible, extensible, realistic, and automated platform that
can be used to evaluate the efficacy of deception techniques against various attackers across a
range of different scenarios. We described the high-level system abstraction before delving deep
into the implementation details of our platform, showing that the system is sound and that it
works. We then demonstrated the effectiveness of PERRY by using it to evaluate the efficacy
of several deception techniques from prior work against an attacker using real exploits and
vulnerabilities. We ran several experiments, each with a different defender that used different
strategies and capabilities to determine how effective each one was at preventing attacks. We
observed that a combination of deception techniques, telemetry, and intelligent strategies is
effective at significantly slowing down attackers and preventing them from achieving their
goals. Finally, we discussed the limitations of PERRY and the potential avenues for future work.
Taking advantage of PERRY’s foundation, future researchers can build upon our platform and
extend it to realistically evaluate current and future deception techniques against improved,
sophisticated attackers and in more complex scenarios.
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