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Abstract
Recent advances in artificial intelligence, especially in the fields of computer

vision and reinforcement learning, have made it possible to train visual navigation
agents with great performance in a wide variety of navigation tasks. For example,
in computer photo-realistic simulation of real-world apartments, the trained agent
can reliably navigate to a specified coordinate, or a room of a specified type such
as kitchen and bathroom. When asked to explore as much area as possible under a
fixed time budget, the trained agent exhibit great memory of where it has been to
and strategic planning. All these tasks require the agent to process raw first-person
images to construct a meaningful understanding and representation of the room such
as where the walls and obstacles are located, and conduct structural and semantic
reasoning to determine its path, the room type, or the floor plan.

However, for most learning-based navigation agents, the training and testing are
done in the same simulation environment. In order for these methods to be practical
in the real world, they need to be transferable to unseen environments and non-
simulated environments.

We propose an unsupervised domain adaptation method for visual navigation,
which trains an image translation model that translates the images of the evaluation
environment that the agent is never trained on, into images of the training environ-
ment where the agent learns to perform the task, so that the agent can recognize the
translated images and achieve good performance in the evaluation environment. The
image translation model is trained given an already trained agent, so that it could
take advantage of the task-relevant representations learned by the agent to ensure
those representations are preserved during translation.

We conduct both simulation-to-simulation and simulation-to-real-world experi-
ments to demonstrate the effectiveness of our method in helping the trained agents
adapt to unseen environments. In the simulation-to-simulation environment, the pro-
posed method outperforms several baselines including direct transfer and popular
generic image translation methods such as CycleGAN, across two different visual
navigation tasks. In the simulation-to-real-world experiment, the agent enhanced
by our method achieves significantly better performance than those without the en-
hancement.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Recent advancements in the field of deep reinforcement learning have enabled training of intel-
ligent agents in complex environments to perform tasks requiring understanding and reasoning
of visual input, such as the traditional board game Go, RTS (Real-Time-Strategy) video games
like Dota and StarCraft, and visual navigation tasks given target GPS coordinate or even lan-
guage descriptions like kitchen or bathroom. Many of these agents can achieve very impressive
performance. For example, Alpha Zero [37] mastered Go and defeated top human professional
players. OpenAI Five [31] and AlphaStar [42] managed to reach the performance level of top
professional human teams and players in Dota and StarCraft, and demonstrated deep understand-
ing and complex reasoning of the game mechanics.

However, all these experiments are carried out in games and computer simulations, because
training these agents require a large amount of data and simulation, which is impossible in the
real world. According to OpenAI [31] and DeepMind [42], the training of OpenAI Five and
AlphaStar would require tens of thousands of years if the training were to take place in the real
world instead of in the computer simulations. Even for visual navigation tasks that are simple
to humans, like walking to a specific location in an apartment, it would take the state-of-the-
art reinforcement learning method DD-PPO [45] hundreds of years to achieve near-human-level
performance if directly trained in the real world.

Beyond sample efficiency, there are more obstacles to make real-world training of these
agents feasible. Reinforcement learning essentially trains the agent by placing it in an envi-
ronment where the agent can freely explore and learn from experiences. However, we cannot
allow a reinforcement learning agent to freely explore the real world. For example, if we want
to train an autonomous driving car in the real world through learning-based methods, we need
humans to supervise the entire training process and restrict the agents’ behaviours when neces-
sary, to prevent them from crashing or running over people. Moreover, humans have to provide
proper feedback to make the agents learn from their experiences. In the autonomous driving car
example, humans need to explicitly tell the agents that they are wrong whenever the agents run
the red light. All these requirements of a lot of human intervention, supervision and domain
knowledge are really costly to implement in the real world.
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Since it is very challenging to train reinforcement learning agents in the real world, then
how can we make reinforcement learning adaptable to the real world settings? How can we take
advantage of the agents with potentially super-human performance trained in the simulation, and
apply them to the real world?

This thesis aims to explore methods transferring reinforcement learning agents that are trained
in a computer simulation to be used in the real world and other simulations. We focus on vi-
sual navigation tasks for experiments, because Facebook recently released a high-quality photo-
realistic simulation environment called Habitat [33] for indoor visual exploration tasks. Habitat
supports multiple simulators which is ideal for experiments on transfer between different simu-
lations. We also have access to real-world robots equipped with similar sensors to those used in
Habitat, which can be deployed in buildings to conduct simulation-to-real-world experiments.

We call the environment where reinforcement learning agents are trained (a computer sim-
ulation) as the source environment or source domain, and we call the environment where the
agents are adapted to, tested and evaluated (the real world or a different simulation) as the tar-
get environment or target domain. The most significant technical challenge is that we want to
make the transfer process require only limited knowledge and access to the target environment,
and as little human supervision, intervention and domain knowledge as possible. Theoretically,
the more information and domain knowledge we have about the target environment, the better
performance we should expect from the transferred policy, but at the same time, it would require
more human intervention and supervision, making the method less general, less practically use-
ful, and applicable to less environments and tasks. It remains debatable what might be the best
trade-off.

In this work, we focus on the extreme setting that requires no human intervention or super-
vision, and as little knowledge about the target environment as possible. Moreover, to make our
approach more general, we want to separate the “policy component” and the “adaptation compo-
nent”. The “policy component” denotes the trained agent in the source environment (the training
can be done through reinforcement learning or other learning-based methods), while the “adap-
tation component” denotes some model that helps the “policy component” to perform well in the
target environment. Ideally, the “adaptation component” should have no or little assumption and
knowledge about the “policy component”, and our approach only trains an “adaptation compo-
nent” without modifying the “policy component”. To realize this goal, we explore the potential
of unsupervised learning that learns a task-specific mapping between the source environment
visual input and the target environment visual input.

More specifically, as we focus on visual navigation tasks, our ideal is to be able to train
autonomous driving cars in realistic computer simulations of the read world (the popular open-
world video game Grand Theft Auto is an example of a relatively realistic simulation of the
real world environment), and adapt them to the real world through random real world images,
which we believe to be readily available. For example, we may use the countless Google Street
View photos. To take the zero-to-one step toward this idea, the problem setup in this project
uses only random observations in the target environment as the “minimal” knowledge about the
target environment. We use photo-realistic 3D simulations and real world robots to demonstrate
the possibility of such transfer, where the tasks concerned are visual navigation and exploration,
which is the foundation for effective autonomous driving agents.
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1.2 Problem Statement
In the past few years, a lot of progress has been made in learning to navigate from first-person
RGB images. Reinforcement learning have been applied to train navigation policies to navi-
gate to goals according to coordinates [7, 17, 46], images [56], object labels [17, 52], room
labels [48, 49] and language instructions [3, 5, 8, 14, 19, 44]. However, such navigation policies
are predominantly trained and tested in simulation environments. Our goal is to have such navi-
gation capabilities in the real-world. While some progress has been made towards moving from
game-like simulation environments to more realistic simulation environments based on recon-
structions [4, 38, 51] or 3D modeling [25], there is still a significant visual domain gap between
simulation environments and real-world.

Training navigation policies (machine learning models of navigation agents) in the real-world
has not been possible as current reinforcement learning methods typically require tens of millions
of samples for training. Even if we parallelize the training across multiple robots, it will still
require multiple weeks on training with constant human supervision due to safety concerns and
battery limitations. This makes real-world training practically infeasible and leaves us with the
other option of transferring models trained in simulation to the real-world, which highlights the
importance of domain adaptation methods.

Among domain adaptation techniques, unsupervised methods are most favourable because it
is extremely expensive to collect parallel data for the purpose of visual navigation: It essentially
requires reconstructing real-world scenes in the simulator separately for all possible scenarios
one might deploy the navigation model in such as different lightning conditions, time of day,
indoor vs outdoor, weather conditions and so on. Undoubtedly, reconstructing real-world scenes
from aligned simulation-reality scene pairs is a tedious job requiring specialized cameras and sig-
nificant human effort. Unsupervised learning method has the potential to overcome this difficulty
since it considers only a few real-world images taken by regular cameras.

One possible solution involves using unsupervised image translation techniques to translate
visual perception from simulation to reality and adapt the navigation policy learned in simulation
to the real-world. Although there already exists a rich amount of prior works in unsupervised
image translation techniques that transfers images from one domain to another [21, 28, 54], prior
techniques are not well suited for navigation since the image translations are agnostic of the
navigation policy and instead focus on photo-realisticity and clarity.

In this thesis, we propose a unique unsupervised domain adaptation method for transferring
navigation policies from simulation to the real-world, by unsupervised image translation subject
to the constraint that the image translation respects agent’s policy. In order to learn policy-based
image translation (PBIT) in an unsupervised fashion, we devise a disentanglement of content
and style in images such that the representations learnt by the navigation policy are consistent
for images with the same content with different styles. Our experiments show that the proposed
method outperforms the baselines in transferring navigation policies for different tasks between
two simulation domains and from simulation to the real-world.

See Figure 1.1 for the illustration of PBIT. We model the observation (image) of a particular
domain as generated from a content code and a style code. The content code should contain
all the information required to perform the task (i.e. construct the policy), which should be the
embedding space shared by different domains and makes the transfer between the two domains
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Figure 1.1: PBIT. The proposed policy-based image translation for unsupervised visual navigation adap-
tation.

possible. The style code is domain-specific, and should be irrelevant to the task. In visual
navigation tasks, for example, the content code should encode information about where the walls
and obstacles are located, whereas the style code should be about the particular colors, textures,
shades and lighting of the walls and the obstacles.

1.3 Contributions
• We propose a general framework and setting for adapting reinforcement learning agents

trained in one environment to other environments where knowledge and access are very
limited. The framework involves the separation of “navigation component” and “adapta-
tion component”.

• Under the framework, we propose an unsupervised domain adaptation method for visual
navigation. Our method translates the images in the target domain to the source domain
such that the translation is consistent with the representations learned by the navigation
policy.

• We conduct both simulation-to-simulation and simulation-to-real-world experiments to in-
vestigate the intrinsic adaptation capabilities of learning-based visual navigation methods,
and demonstrate the effectiveness of our domain adaptation method. The proposed method
outperforms several baselines (including Direct Transfer, CycleGAN, and ablation study
of our method) across two different navigation tasks (PointGoal and Exploration).

• We conduct both quantitative and qualitative analysis of the experiment results. We explore
different implementations of our method and present the best solutions we find.
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• We build a open-source platform packaging code, data, simulators and environment, for
future researches on the topic of domain adaptation for visual navigation.

1.4 Thesis Organization
In Chapter 2, we a survey of prior works on visual navigation and visual domain adaptation.
Chapter 3 describes our proposed unsupervised domain adaptation method for translating target
environment observations to source environment observations. Chapter 4 presents our experi-
ments procedures and results. Chapter 5 reflects on our findings and discusses limitations of our
methods as well as future directions.
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Chapter 2

Related Work

Simulation to Reality (Sim2Real) visual navigation requires the adaptation from simulation to
reality for both visual perception and agent’s policy. Among its wide range of relevant literature,
we focus on discussing related work on visual navigation and visual domain adaptation.

Visual Navigation. Prior work on learning-based visual navigation can broadly be catego-
rized into two classes based on whether the location of the goal is known or unknown. Navi-
gation scenarios where the location of the goal is known includes the most common pointgoal
task where the coordinate to the goal is given [17, 32]. Another example of a task in this cat-
egory is vision and language navigation [3] where the path to the goal is described in natural
language. Navigation scenarios where the location of the goal is not known include a wide vari-
ety of tasks. These include navigating to a fixed set of objects [12, 17, 26, 29, 50], navigating to
an object specified by language [5, 19] or by an image [56], and navigating to a set of objects in
order to answer a question [11, 16]. Tasks in this category essentially involve efficiently and ex-
haustively exploring the environment to search the desired object. Some recent works explicitly
tackle the problem of exploration by training end-to-end RL policies maximizing the explored
area [7, 10, 13]. In this project, we tackle one task in each category, PointGoal and Exploration.

Most of the above works train navigation policies using reinforcement or imitation learning
and test in simulation and test on different scenes in the same domain in the simulator. Some
prior works which tackle sim2real transfer for navigation policies directly transfer the policy
trained in simulation to the real-world without any domain adaptation technique [7, 17]. We
show that the proposed domain adaptation method can lead to large improvements over direct
policy transfer.

Visual Domain Adaptation. Simulation and reality can be viewed as two distinct visual
domains, and adapting their visual perceptions can be regarded as an image-to-image translation
task. Thanks to the success of Generative Adversarial Networks (GANs) [15] for matching cross-
domain distribution, we are able to adapt an image across domains without changing its context.
For example, pix2pix [22] changes only the style of an image (e.g., photograph→ portrait) while
preserving its context (e.g., the same face of a person). We note that, for Sim2Real navigation,
some amount of context should be preserved across domains, such as the barriers and the walls,
to prevent collisions of our agent.

If we have access to the paired cross-domain images, then pix2pix [22] and BicycleGAN [55]
serve as good candidates to model the context-preserving adaptation. However, the paired data
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between simulation and reality is notoriously hard to collect [40] or even do not exist (e.g., we
cannot always build simulators for new environments). To tackle this challenge, numerous visual
domain adaptation approaches [23, 28, 36, 39, 53, 54] have been proposed to relax the constraint
of requiring paired data during training time. Nevertheless, the above methods still assume one-
to-one correspondence across domains (i.e. there exists a deterministic mapping between images
of the two domains). As an example, these models can only generate the same target-domain
image given a source-domain image. We argue that it is more realistic to assume many-to-many
mappings between simulation and reality.

To achieve both multimodal mappings and training without paired data, MUNIT [21] and
DRIT [27] propose to disentangle the context and style of an image. Precisely, they assume the
context is shared across domains and the styles are specific to each domain. Note that these mod-
els focus on realistic image generation, and hence it remains unclear on how image translation
benefits cross-domain visual navigation. To further bridge the gap between navigation and image
translation, our key idea is to ensure the agent’s navigation policy be consistent under domain
translation. As a consequence, we propose to enforce constraints such that the agent’s policy is
only inferred from the shared context across simulation and reality.

8



Chapter 3

An Unsupervised Domain Adaptation
Method for Visual Navigation

Denote the source domain as (Ss,A, P s) and the target domain as (St,A, P t). S is the state
space, A is the set of actions, and P : S × A × S → R is the transition probability distribu-
tion. Note that we assume action spaces A are shared across domains. Let πs : Ss → A be a
navigation policy in the source domain s (the navigation policy is given). For our task setup, we
have access to some target-domain images I t ∈ St during training, but we cannot perform target-
domain policy (πt) training. Our objective is to learn a many-to-many mapping F : St → Ss
such that the navigation policy under the source-to-target mapping, πt(I t) = πs(F (I t)), is ef-
fective in the target domain t. Under Sim2Real setting, the source domain refers to simulator
and the target domain refers to reality. Unless specified, we abbreviate πs as π for the rest of
the paper. The remaining part of this section shall describe our proposed ’Policy-Based Image
Translation’ (PBIT).

3.1 Policy Decomposition
As our objective is to transfer the task-specific navigation policy across domains, we assume
that the task itself is domain-invariant. As a consequence, given a policy π (for the navigation
task in the source domain), we assume that some intermediate task-specific representation in-
ferred by the policy is invariant from the source to the target domain. For example, a simple
obstacle avoidance navigation policy would extract task-specific and domain-invariant features

Figure 3.1: Policy Decomposition. The Task-specific Navigation Policy (π) can be sequentially decom-
posed into a Visual Policy Encoder (Eπ) and a Action Policy (Aπ) such that Eπ extracts all task-specific
features (rI ) and throws away all domain-specific features from the input image (I) and Aπ learns an
action distribution function over the task-specific features.
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Figure 3.2: Policy-based Consistency Loss. Since the task is domain-invariant, task-specific represen-
tations obtained from different domain-specific styles but the same domain-invariant content should be
similar.

such as distance to obstacles at various angles and then learn a policy over these features. Let
π be sequentially decomposed into a Visual Policy Encoder (Eπ) and a Action Policy (Aπ). Eπ
extracts all task-specific features (rI with I indicating the input image) and throws away all
domain-specific features in the input image. Aπ learns an action distribution function over the
task-specific features. We illustrate the policy decomposition in Figure 3.1.

3.2 Policy-based Consistency Loss
Recall that our objective is to learn an image translation model F : St → Ss, such that πt(I t) =
πs(F (I t)). By policy decomposition, given a target-domain image, different translated images
to the source domain would have similar task-specific features. Precisely, if Is1 and Is2 are the
translated images to the source domain from the same target-domain image I t. In other words, if
Is1 , I

s
2 ∼ F (I t), then Eπ(Is1) ≈ Eπ(I

s
2).

To achieve the above policy consistency in an unsupervised fashion, we take inspiration
from style and content-based unsupervised methods designed for image translation [21]. We
assume that each image can be decomposed into a domain-invariant content representation (c)
and a domain-specific style representation (s). Let Es

I be an Image Encoder for domain s
which encodes an image (I) to domain-invariant content (c) and domain-specific style (ss):
Es
I (I) = (cI , s

s
I). On the contrary, let Ds

I be an Image Decoder which is the inverse of the
Image Encoder: Ds

I(cI , s
s
I) = I .

Since we assume the navigation task is domain-invariant, all the the task-specific features are
a subset of content representation rI ∈ cI . Therefore, images generated from different styles
but same content should lead to the same task-specific features as shown in Figure 3.2. We
operationalize this idea using the following policy-based consistency loss:

Lpol = EcIt :(cIt , )∈EtI(It),It∼St,s
s
1∼p(ss),ss2∼p(ss)[||Eπ(D

s
I(cIt , s

s
1))− Eπ(Ds

I(cIt , s
s
2))||1] (3.1)

with ss1 and ss2 being two distinct styles sampled from the the prior distribution p(ss) := N (0, I)
being a multivariate Gaussian with zero mean and diagonal unit covariance.

Note that in the above equation, Eπ(·) is part of the given navigation policy. We assume the
navigation policy is only trained before deciding the target domain; hence, Eπ(·) is fixed during
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the domain adaptation phase. This adoption ensures that PBIT can be used for transferring a
policy across domains (potentially not anticipated during policy training) without re-training the
the navigation policy.

3.3 Reconstruction and Adversarial Loss
Using just policy-based consistency loss would make decoder DI ignore the style and decode
based only on the content. Inspired by prior work [21, 54], to encourage the content to be
domain-invariant and style representations to be domain-specific, we adopt the following image
and latent representation reconstruction losses, and use N (0, I) for the prior distributions of
styles p(ss) and p(st):

Lim rec =EIt∼St [||Dt
I(E

t
I(I

t))− It||1] + EIs∼Ss [||Ds
I(E

s
I (I

s))− Is||1],
Llat rec =EcIt :(cIt , )∈EtI(It),It∼St,ss∼p(ss)[||E

s
I (D

s
I(cIt , s

s))− (cIt , s
s)||1]

+ EcIs :(cIs , )∈EsI (Is),Is∼Ss,st∼p(st)[||E
t
I(D

t
I(cIs , s

t))− (cIs , s
t)||1].

(3.2)

We also use adversarial losses to match the distribution of images to their respective domains.
Let Dist be the discriminator for the target domain t and Diss be the discriminator for the source
domain s:

Ladv =EcIt :(cIt , )∈EtI(It),It∼St,ss∼p(ss)[log Dis
s(Ds

I(cIt , s
s))]

+ EcIs :(cIs , )∈EsI (Is),Is∼Ss,st∼p(st)[log Dis
t(Dt

I(cIs , s
t))]

+ EIs∼Ss [log(1−Diss(Is))] + EIt∼St [log(1−Dist(I t))].

(3.3)

Putting everything together, our overall objective is

Lfull := λpolLpol + λim recLim rec + λlat recLlat rec + λadvLadv, (3.4)

where λ·s are hyper-parameters controlling the weight of each loss during training. The cross-
domain image translation model consists of Dt

I , E
t
I , D

s
I , E

s
I , and the optimization admits a mix-

max objective:
Dt
I , E

t
I , D

s
I , E

s
I = arg min

DtI ,E
t
I ,D

s
I ,E

s
I

max
Dist,Diss

Lfull. (3.5)
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Chapter 4

Experiments

4.1 Experimental Setup
We conduct experiments in both the simulator and the real world. For the simulator setting, we
use the Habitat simulator [33] with the Gibson [51] and Replica [38] datasets, and consider two
visual navigation tasks for domain adaptation: PointGoal and Exploration. We firstly train an
RL policy on Gibson for each task, and create a dataset with unlabeled and unpaired images
from Gibson and Replica scenes to train PBIT and a CycleGAN baseline. We then benchmark
PBIT against direct transfer policy, CycleGAN transfer, and PBIT without policy consistency
constraint on both tasks in the Replica dataset.

For the real world, we use LoCoBot [1] as our real-world agent, train PBIT model with 1125
random real-world images from 3 different indoor scenes and 7200 random Gibson images. We
then benchmark PBIT against the direct transfer policy baseline.

4.1.1 Navigation Tasks Definitions

PointGoal Task.

The PointGoal Task is natively implemented in the Habitat simulator [33]. An agent is positioned
at a random starting location and orientation in each episode, and is supposed to navigate to a
target location. The agent has two sensors: RGB camera and GPS+Compass. The observation
space consists of RGB images of shape 3× 256× 256 and GPS+Compass input of shape 2× 1.
The action space consists of four actions: STOP (indicating the agent has reached the target
location), MOVE-FORWARD (0.25m), TURN-LEFT (10◦), TURN-RIGHT (10◦). The episode
ends immediately after the agent takes the STOP action. Otherwise, the episode automatically
ends after 500 steps. As [2] suggested, we used two evaluation metrics: Success and Success
weighted by Path Length (SPL). The episode is considered successful if the agent is within 0.2m
of the target location when the episode ends. SPL measures also measures the efficiency of the
policy in addition to the success, i.e. shorter trajectories lead to higher SPL: SPL = l

max(l,p)
S

where l is the length of the shortest path possible between the starting location and the target
location, p is the length of the agent’s path and S denotes success. The reward for training RL
policies on this task is the decrease in geodesic distance to the point goal.
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Exploration Task.

We follow the Exploartion task setup used in [9] and [6], where an agent is positioned at a random
starting location and orientation in each episode, and is supposed to maximize coverage given a
fixed time budget of 500 steps. Coverage is defined to be the total area of explored traversable
points from the agent’s starting location. A traversable point is explored by the agent if it is in
the field-of-view of the agent and less than 3m away from the agent. The agent is equipped with
two sensors: RGB camera and base odometry sensor. The spec of the RGB camera is the same
as in PointGoal task. The base odometry sensor provides the agent with readings that denote
the change in the agent’s x-y coordinates and orientation. Thus the observation space consists
of RGB images of shape 3 × 256 × 256 and base odometry sensor input of shape 3 × 1. The
action space consists of three actions: MOVE-FORWARD (0.25m), TURN-LEFT (10◦), TURN-
RIGHT (10◦). Each episode ends after 500 steps. As [6] suggested, we use two evaluation
metrics, the absolute coverage area in m2 (Explored Area) and proportion of area explored in
the scene (Explored Ratio). Explored Ratio is defined as ratio of coverage to maximum possible
coverage in the corresponding scene. During training, the reward received by the agent at each
step is equal to the amount of new area explored by that step.

4.1.2 RL Training Details
Agent Architecture.

Our agent architecture consists of two neural networks: a visual encoderEπ and a policy encoder
Aπ. The visual encoder Eπ is based on the 18-layer ResNet [18], as illustrated in Figure 4.1.
Eπ outputs 128-dimensional policy-related representations rI given RGB images of shape 3 ×
256 × 256. The policy encoder Aπ is based on a 2-layer GRU, which takes rI together with
readings from either the GPS+Compass sensor in PointGoal task or the base odometry sensor in
Exploration task.

Figure 4.1: An illustration of the network architecture of the Visual Policy Encoder.

Training.

We train three RL agents in Gibson using PPO [35] with Generalized Advantage Estimation
[34]. The first agent is for PointGoal task with 1.25m camera height, which is tested to transfer
to Replica. The second is for PointGoal task with 60cm camera height, which is tested to transfer
to Real World. The last agent is for Exploration task, which is tested to transfer to Replica. All
three agents are trained on the train split of the pointnav gibson v1 dataset provided by [33]. The
dataset contains episode definitions for all 72 scenes in Gibson. The two PointGoal agents are
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trained with 8 concurrent workers for around 30 million frames, and achieve SPL=0.80 on the
val split of the dataset. The Exploration agent is trained with 24 concurrent workers for around 3
million frames. At each update, each work collects 128 steps of experience and perform 2 PPO
epocks with minibatch size 128 × 2 and clipping parameter 0.2. We use discount factor 0.99,
GAE parameter 0.95, and the Adam optimizer [24] with learning rate 2.5× 10−4.

4.1.3 Baselines

We transfer the trained RL policies to the target domain using the proposed model, Policy-Based
Image Translation (PBIT) against 3 baselines:

1. Direct Transfer: This is the most common method of transferring navigation policies
across domains, which involves directly testing the policy in the target domain without any
fine-tuning.

2. CycleGAN: CycleGAN is a competitive and popular unsupervised image translation method.
This method is designed for static image translation and is agnostic to the navigation pol-
icy.

3. Policy-Based Image Translation w.o. Policy Loss: This is an ablation of the proposed
method without the policy-based consistency loss.

4.1.4 PBIT & Baselines Training/Testing Details

Domain Translation Dataset.

For Gibson to Replica experiment, we build a dataset of unlabeled and unpaired images from
Gibson and Replica scenes. Gibson environment contains 72 scenes and Replica environment
contains 18 scenes. For each scene in Gibson, using the function provided by the Habitat simula-
tor [33], we sample 100 random navigable location × orientation pairs and save the first-person
view RGB images obtained from those locations and orientations. Similarly, we sample 400 for
each scene in Replica. Thus, our Gibson-Replica dataset contains 7200 images from Gibson and
7200 images from Replica. For Gibson to Real World experiment, we use the robot to create a
similar unpaired image dataset of 7200 images from Gibson and 1125 images from Real World.
Details about how the real-world images are collected is described in Section 4.1.5.

Model Architecture.

For PBIT, we follow the setup suggested by [21]. We use several convolutional layers and
residual blocks to construct the image encoders Es

I , E
t
I and image decoders Ds

I , D
t
I . We use

Instance Normalization [41] in Es
I , E

t
I and Adaptive Instance Normalization [20] in Ds

I , D
t
I .

For the discriminators Diss,Disst, we adopt the multi-scale discriminator architecture proposed
by [43]. Detailed descriptions of the architecture are given in Figure 4.2. For the CycleGAN
baseline, we use the architecture proposed in the CycleGAN paper [54].
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Figure 4.2: An illustration of the network architecture of the Visual Policy Encoder.

Hyperparameters for PBIT.

PBIT is trained using the full objective defined in Equation (3.4) and Equation (3.5). For each
task (PointGoal/Exploration) and scenario (Replica/Real-World), we use the same set of hyper-
parameters λim rec = 10, λlat rec = 1, λadv = 1. λpol is policy-dependent, because the scale of
the loss Lpol defined in Equation (3.1) depends on the scale of task-specific features rI outputted
by Eπ. In our case rI is a 128-dimensional vector after ReLU activation layer. For different tasks
and scenarios, we use the same formula to calculate the proper λpol = 1.0

EIs∼Ss [||Eπ(Is)||1]
, where

EIs∼Ss [||Eπ(Is)||1] is estimated using the Gibson images from the domain translation dataset.

Training.

For PBIT, PBIT without Policy Loss, and CycleGAN, we use the Adam optimizer [24] with
0.0001 initial learning rate, β1 = 0.5 and β2 = 0.999. The learning rate is halved every 100k
iterations. We train all the models for 500k iterations with batch size 1, on the domain translation
dataset for each task (PointGoal/Exploration) and scenario (Replica/Real-World).

Testing.

When the RL agent trained in Gibson is tested in Replica or Real-World, the Direct Transfer
baseline directly performs on the raw input images from Replica or Real-World. For our proposed
model, at each step, PBIT translates the input Replica/Real-World image to Gibson image, and
then the Gibson RL agent takes in the translated image as input and output the action for the task.
The testing procedure for the CycleGAN baseline is the same as PBIT.
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4.1.5 Real World Experiment
Robot configuration.

We present results of unsupervised zero-shot simulation to real-world indoor navigation on a
LoCoBot [1]. The robot has an RGB camera 60cm from the ground, and is programmed to take
action space: [stop, forward 0.25m, left 10◦, right 10◦].

Data collection and training.

By taking pictures at random locations with the robot, we collect a total of 1125 images from
three indoor locations: 1) 397 images from a meeting room with chairs and tables. 2) 728 images
from the corridor of a building. 3) 151 images from a large study place chairs and tables.

We train an agent of camera height 60cm in Gibson with the same architecture as in section
4.1.2, and a policy based transfer model from 7500 random Gibson images and the 1125 real-
world images.
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4.2 Result

We transfer the trained RL policies to the target domain using the proposed model, Policy-Based
Image Translation (PBIT) against 3 baselines defined in Section 4.1.3. We first present domain
adaptation results from Gibson to Replica domains within the Habitat simulator and then present
results of sim-to-real transfer from Gibson to real-world office scenes.

Table 4.1: PointGoal Results. The performance of the proposed method Policy-Based Image Transla-
tion (PBIT) as compared to the baselines on the PointGoal task when transferred from Gibson domain to
the Replica domain.

SPL Success Rate Collisions

Direct Transfer 0.505 0.688 38.7
CycleGAN 0.605 0.803 50.6
PBIT w.o. Policy Loss 0.669 0.852 40.6

PBIT 0.712 0.881 39.5

Table 4.2: Exploration Results. The performance of the proposed method Policy-Based Image Transla-
tion (PBIT) as compared to the baselines on the Exploration task when transferred from Gibson domain
to the Replica domain.

Explored Ratio Explored Area (m2) Collisions

Direct Transfer 0.832 22.9 59.4
CycleGAN 0.885 24.7 84.2
PBIT w.o. Policy Loss 0.879 24.6 70.1

PBIT 0.897 25.3 73.6

4.2.1 Gibson to Replica

We use the script provided by Habitat [33] to generate 50 test episodes for each of the 18 scenes
in Replica (900 episodes in total). The script makes sure that the each test episode is reasonably
difficult (an episode is trivial if there is a obstacle-free straight line between the starting and
target locations). We use the same 900 episodes across 18 scenes to evaluate the performance of
each model in Replica.

For the PointGoal navigation task, we compare all the methods across Success Weighted
by Path Length (SPL), Success Rate and number of collisions, which are the standard metrics
for evaluation of navigation models used in most prior works. For the Exploration task, we
compare all the methods using Explored Area in m2, ratio of the environment explored and
number of collisions. The performances of our method and all the baselines for the PointGoal
task are presented in Table 4.1 and for the Exploration task are presented in Table 4.2.
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Figure 4.3: Replica Images Translated to Gibson. The first and fifth columns are the input images
from Replica during test time. The other columns are images translated to Gibson domain by PBIT. The
Gibson RL agent relies on the translated images (which preserve the policy-relevant features) to perform
well in Replica.

Figure 4.4: Trajectory Comparison between PBIT and Baseline (Direct Transfer) on PointGoal
Task in Replica. The upper half of the figure is the trajectory of PBIT: the agent successfully navigates
from a corner of the apartment to the fridge in 46 steps, by seeing the translated images by PBIT. The
agent takes almost the shortest path possible, as shown in the Top-Down Map (not visible to the agent).
The lower half of the figure is the trajectory of the Direct Transfer baseline on the same test episode. The
Direct Transfer agent fails to navigate to the target location and gets lost, even after 460 steps.
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PBIT outperforms all the baselines on both the tasks. It improves the SPL from 0.605 to 0.712 for
PointGoal and Explored Ratio from 0.885 to 0.897 for Exploration as compared to the CycleGAN
baseline. Note that the number of collisions for the Direct Transfer baseline are low because in
many episodes this baseline does not move and just turns around on the spot. This highlights the
visual domain gap between the two domains. Lower performance of ‘PBIT w.o. Policy Loss’
ablation highlights the importance of policy-based consistency loss. The exploration ratios of
all the methods in Table 4.2 are high on a absolute level because the Replica scenes are small
usually having one or two rooms. Just turning on the spot leads to an exploration ratio of 0.75.

In Figure 4.3, we visualize some examples of images in the target Replica domain trans-
lated to the source Gibson domain using PBIT using different styles. The examples indicate that
policy-relevant characteristics of the image such as corners of obstacles, walls and free space are
preserved during the translation. In Figure 4.4, we visualize an example trajectory for the Point-
Goal task using the proposed method PBIT (Fig 4.4 above) and the Direct Transfer baseline
(Fig 4.4 below). The figure shows the images observed by the agent in the target domain, the
translated images and a top-down map (not visible to the agent) showing the point goal coordi-
nates and the agent’s path.

Additional Gibson to Replica Trajectory Visualizations
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4.2.2 Gibson to Real-world
We now transfer the PointGoal navigation policy to the real-world using the proposed method PBIT and
compare it to the Direct Transfer baseline. We transfer the navigation policy to a LoCoBot [1]
using the PyRobot API [30] for both the methods. We conduct 20 trials across 3 different scenes
in the real-world. For each trial, we set the target point for the robot through PointGoal, and
update the PointGoal each step according to the relative position calculated through the internal
odometry sensors, and stop the trial either when the robot have reached the goal (distance less
than 20cm) or after 99 steps. Each trial specification and the corresponding results are presented
in Table 4.3. PBIT achieves an overall 55% improvement in success rate over the Direct Trans-
fer baseline across all the trials. PBIT also has a much lower collision rate as compared to the
baseline.

Figure 4.5: Real World Images Translated to Gibson. The first and fifth columns are the input images
from Real World during test time. The other columns are images translated to Gibson domain by PBIT.
Although the agent has never been trained to navigate with Real World images, it can recognize the
translated images (which preserve the policy-relevant features) and perform well on PointGoal in Real
World.

In Figure 4.5, we visualize some examples of images seen by the agent in the real-world and
their translation to the source Gibson domain using our PBITmodel. The examples indicate that
the model generates good translations similar to images in the Gibson domain. For example,
the dark grey carpet floors in the office space scenes in the real-world are successfully translated
to brown floors, representative of wooden floors of apartment scenes in the Gibson domain. At
the same time, navigation relevant details such as the boundary between the floor and walls
and free space area, are preserved during translation. In Figure 4.6, we show an example of a
successful trajectory in the real-world using PBIT. It shows some of the images seen by the agent
during the trajectory, the corresponding translations and a third-person view of the robot. The
trajectory shows the PBIT is able to successfully navigate around the blue chair obstacle to reach
the pointgoal.
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Table 4.3: Real-world results. Table comparing the performance of baseline and our method under 20
goals within 3 scenes. We the average the collision rate, the success rate, the final stopping distance from
the PointGoal in meters, and the average number of steps the robot takes to finish a trial excluding trials
with collisions. Although both agent fail in first unseen scene where there is high ground reflection, our
agent demonstrates better performance in terms of completion rate and average steps taken in the second
unseen location. Our PBIT agent achieves overwhelmingly better performance in all metrics in the third
scene since 151 sample images have been included in the transfer training set.

Episode Specification Baseline: Direct Transfer PBIT

Ep No Dist Angle
Obstacle
in way Steps Collision

Stopping
Distance Success Steps Collision

Stopping
Distance Success

Scene 1: Wooden corridor with intense ground reflection (Not in training set of PBIT)
1 4.00 0.00 FALSE 99 FALSE 5.62 FALSE 99 FALSE 3.48 FALSE
2 2.83 45.00 FALSE 68 TRUE 4.12 FALSE 99 FALSE 1.80 FALSE
SCENE AVG - - - 99 50% 4.87 0% 99 0% 2.64 0%

Scene 2: Public kitchen area with high traffic (Not in training set of PBIT)
3 2.00 0.00 FALSE 32 TRUE 0.50 FALSE 36 FALSE 0.18 TRUE
4 2.00 0.00 FALSE 35 TRUE 0.56 FALSE 10 FALSE 0.04 TRUE
5 2.24 333.43 FALSE 31 FALSE 0.02 TRUE 16 FALSE 0.07 TRUE
6 2.24 153.43 FALSE 38 FALSE 0.08 TRUE 43 FALSE 0.09 TRUE
7 4.12 345.96 TRUE 80 TRUE 4.10 FALSE 44 TRUE 1.96 FALSE
8 4.47 26.57 TRUE 99 FALSE 4.01 FALSE 99 FALSE 2.85 FALSE
9 4.47 26.57 TRUE 99 FALSE 4.49 FALSE 70 FALSE 0.14 TRUE
10 5.39 21.80 TRUE 99 FALSE 5.50 FALSE 99 FALSE 2.73 FALSE
11 2.83 45.00 TRUE 99 FALSE 3.57 FALSE 99 FALSE 2.84 FALSE
SCENE AVG - - - 77.5 33.3% 2.54 22.2% 59 11.1% 1.21 55.6%

Scene 3: Large common area with few traffic (151 randomly-sampled images in training set of PBIT)
12 2.83 45.00 FALSE 99 FALSE 3.41 FALSE 21 FALSE 0.15 TRUE
13 4.47 333.43 TRUE 99 FALSE 4.68 FALSE 41 FALSE 0.02 TRUE
14 4.00 0.00 TRUE 99 FALSE 4.43 FALSE 41 FALSE 0.13 TRUE
15 5.39 21.80 TRUE 10 TRUE 4.60 FALSE 32 FALSE 0.13 TRUE
16 4.24 315.00 FALSE 99 FALSE 6.20 FALSE 73 FALSE 0.14 TRUE
17 4.00 0.00 FALSE 36 TRUE 3.88 FALSE 63 FALSE 0.09 TRUE
18 1.41 45.00 FALSE 99 FALSE 1.95 FALSE 9 FALSE 0.19 TRUE
19 1.41 135.00 FALSE 50 FALSE 0.15 TRUE 29 FALSE 0.07 TRUE
20 4.47 26.57 TRUE 99 FALSE 4.73 FALSE 27 FALSE 0.19 TRUE
SCENE AVG - - - 92 22.2% 3.78 11.1% 37.3 0% 0.13 100%

AVG - - - 86.29 30% 3.33 15% 52.9 5% 0.87 70%
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Figure 4.6: Sample Real World Trajectory on PointGoal Task. Figure contains raw inputs from Real
World (row one), translated Gibson images by PBIT (row 2), and a third-person perspective from the back.
The PBIT agent successfully reached it’s destination (a trash can) by avoiding an obstacle (a chair) in its
way.

Additional Gibson to Real-world Trajectory Visualizations
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4.2.3 Visualization of Policy Representations
We analyze the policy representation before and after translation by reducing the dimensionality
of the policy representations using Principle Component Analysis (PCA) [47]. In Figures 4.7
and 4.8, we visualize the policy representations reduced to 2 dimensions using PCA in Replica
and Real-World respectively. Both figures show that PBIT brings the representations of target
domain Replica/Real-World images closer to the distribution of representations of Gibson im-
ages.

Figure 4.7: We use PCA to visualize and compare the 128-dimensional task-specific feature
vectors produced by PointGoal agent trained in Gibson, when given Gibson images, Replica
images, or Replica images translated to Gibson by PBIT as input. The figure shows the translated
images by PBIT bridge the policy domain gap between Gibson and Replica.

Figure 4.8: We use PCA to visualize and compare the 128-dimensional task-specific feature
vectors produced by PointGoal agent trained in Gibson, when given Gibson images, Real-World
images, or Real-World images translated to Gibson by PBIT as input. The figure shows the
translated images by PBIT bridge the policy domain gap between Gibson and Real-World.
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Chapter 5

Conclusion

In this thesis, we proposed domain adaptation method for transferring navigation policies from
simulation to the real-world. Given a navigation policy in the source domain, our method trans-
lates images from the target domain to the source domain such that the translations are consistent
with the task-specific and domain-invariant representations learnt by the given policy. Our ex-
periments across two different tasks for domain transfer in simulation show that the proposed
method can improve the performance on the transferred navigation policies over baselines. We
also show strong performance of navigation policies transferred from simulation to the real-world
using our method.

In fact, beyond the field of visual navigation, our proposed method is applicable to any
learning-based policy parameterized by neural networks, since it does not take advantage of
any knowledge specific to visual navigation tasks. Through our method, reinforcement learning
agents in general can be adapted to new environments that they have never been trained on, given
only a pool of unlabeled observations in those new environments.

5.1 Limitations and Future Directions

Our adaptation method relies on random observations in the target environment, which might be
hard to gather in certain scenarios, and the quality of this dataset of random images greatly affects
the quality of learned image translation. We need to assure that this dataset is not very biased.
For example, in visual navigation tasks, we want this dataset to be a combination of images
taken at different angles, rooms, distances to obstacles, etc. Otherwise the learned translation
can only used in those scenarios that are similar to those in the dataset, and cannot to generalize
well to other scenarios that the agent has to deal with when tested in the target environment.
A high-quality balanced dataset might be difficult to obtain for certain tasks in the real world.
Future experiments can be done to evaluate the performance of our method under different dataset
scenarios (different sizes, distribution, bias, etc.).

Also, due to the intrinsic instability of current reinforcement learning algorithms, unsuper-
vised learning, and generative adversarial networks, we simplifies our training process, where we
train the reinforcement learning policy first in the source environment, and then fix the learned
policy and use it to train the image translation model. However, the most ideal setting would be
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to train the whole thing end-to-end, which is worth experimenting with in the future.
Besides, there is more information that the image translation model can further take advan-

tage of, but we haven’t incorporated it due to the complexity of the project. For example, though
the images observed in the target environment are random, we still have the full access to the
source environment (the simulation), which contains valuable information like consecutive im-
ages in the same trajectory, metadata about scenes and floor-plans, etc. When training the image
translation model, our method uses only random images in the source environment as well. It is
interesting to see in the future how these extra information can be exploited without making our
proposed method less general.

We also tried experimenting our method with adaptation between multimodal sensors. In
visual navigation tasks, we consider depth camera agents as the source environment, and the
RGB camera agents as the target environment. In general, depth camera agents perform and
generalize to new environments much better than RGB camera agents, and thus we want to
transfer a policy taking depth images as input to a policy taking RGB images as input. However,
our unsupervised adaptation method fails in this setting, because the domain gap between depth
and RGB is too large. Moreover, RGB images contain much more noisy and diverse information
than depth images. We believe huge unbalance between the entropy of the source domain and the
entropy of the target domain is very technically challenging to unsupervised image translation
methods.

Finally, the performance achieved by our adaptation method still has a lot of room for im-
provement. Perhaps the problem setting we are considering is too restrictive, since in practice
perhaps it is not very hard to incorporate a small amount of additional human supervision. For
example, if our translation model can have access to some paired images between the source and
the target environments, the performance might be boosted by a lot. Our proposed method works
in a more model agnostic fashion, but it would be interesting to see how our proposed method
can be combined with some paired data and domain knowledge.
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