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Abstract

It has been a long endeavour to augment human cognition with machine intelli-

gence. Recently, a new genre of applications, named Wearable Cognitive Assistance,

has advanced the boundaries of augmented cognition. These applications continu-

ously process data from body-worn sensors and provide just-in-time guidance to

help a user complete a specific task. While previous research has demonstrated the

technical feasibility of wearable cognitive assistants, this dissertation addresses the

problem of scalability. We identify two critical challenges to the widespread de-

ployment of these applications to be 1) the need to operate cloudlets and wireless

network at low utilization to achieve acceptable end-to-end latency 2) the level of

specialized skills and the long development time needed to create new applications.

To address these challenges, we first design and evaluate adaptation-centric opti-

mizations that reduce resource consumption and improve resource management in

contentious systems while maintaining acceptable end-to-end latency. We then pro-

pose and implement a new prototyping methodology and a suite of development

tools to lower the barrier of application development.
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Chapter 1

Introduction

It has been a long endeavour to augment human cognition with machine intelligence. As early

as in 1945, Vannevar Bush envisioned a machine Memex that provides "enlarged intimate sup-

plement to one’s memory" and can be "consulted with exceeding speed and flexibility" in the

seminal article As We May Think [14]. This vision has been brought closer to reality by years of

research in computing hardware, artificial intelligence, and human-computer interaction. In late

90s to early 2000s, Smailagic et al. [102, 103, 104] created prototypes of wearable computers

to assist cognitive tasks. For example, they displayed inspection manuals in a head-up screen to

facilitate aircraft maintenance. Around the same time, Loomis et al. [63, 64] explored using com-

puters carried in a backpack to provide auditory cues in order to help the blind navigate. Davis et

al. [18, 23] developed a context-sensitive intelligent visitor guide leveraging hand-portable mul-

timedia systems. While these research works pioneered cognitive assistance and its related fields,

their robustness and functionality were limited by the supporting technologies of their time.

More recently, as the underlying technologies experience significant advancement, a new

genre of applications, Wearable Cognitive Assistance (WCA) [16, 35], has emerged that pushes

the boundaries of augmented cognition. WCA applications continuously process data from body-

worn sensors and provide just-in-time guidance to help a user complete a specific task. For ex-

ample, an IKEA Lamp assistant [16] has been built to assist the assembly of a table lamp. To use

the application, a user wears a head-mounted smart glass that continuously captures her actions

and surroundings from a first-person viewpoint. In real-time, the camera stream is analyzed to

identify the state of the assembly. Audiovisual instructions are generated based on the detected

state. The instructions either demonstrate a subsequent procedure or alert and correct a mistake.

Since its conceptualization in 2004 [92], WCA has attracted much research interest from both

academia and industry. The building blocks for its vision came into place by 2014, enabling the

first implementation of this concept in Gabriel [35]. In 2017, Chen et al [17] described a number

of applications of this genre, quantified their latency requirements, and profiled the end-to-end

latencies of their implementations. In late 2017, SEMATECH and DARPA jointly funded $27.5

million of research on such applications [77, 108]. At the Mobile World Congress in February

2018, wearable cognitive assistance was the focus of an entire session [84]. For AI-based military

use cases, this class of applications is the centerpiece of “Battlefield 2.0” [26]. By 2019, WCA
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was being viewed as a prime source of “killer apps” for edge computing [93, 98].

Different from previous research efforts, the design goals of WCA advance the frontier of

mobile computing in multiple aspects. First, wearable devices, particularly head-mounted smart

glasses, are used to reduce the discomfort caused by carrying a bulky computation device. Users

are freed from holding a smartphone and therefore able to interact with the physical world us-

ing both hands. The convenience of this interaction model comes at the cost of constrained

computation resources. The small form-factor of smart glasses significantly limits their onboard

computation capability due to size, cooling, and battery life reasons. Second, placed at the cen-

ter of computation is the unstructured high-dimensional image and video data. Only these data

types can satisfy the need to extract rich semantic information to identify the progress and mis-

takes a user makes. Furthermore, state-of-art computer vision algorithms used to analyze image

data are both compute-intensive and challenging to develop. Third, many cognitive assistants

give real-time feedback to users and have stringent end-to-end latency requirements. An instruc-

tion that arrives too late often provides no value and may even confuse or annoy users. This

latency-sensitivity further increases their high demands of system resource and optimizations.

To meet the latency and the compute requirements, previous research leverages edge com-

puting and offloads computation to a cloudlet. A cloudlet [96] is a small data-center located at

the edge of the Internet, one wireless hop away from users. Researchers have developed an ap-

plication framework for wearable cognitive assistance, named Gabriel, that leverages cloudlets,

optimizes for end-to-end latency, and eases application development [16, 17, 35]. On top of

Gabriel, several prototype applications have been built, such as PINGPONG Assistance, LEGO

Assistance, COOKING Assistance, and IKEA LAMP Assembly Assistance. Using these appli-

cations as benchmarks, Chen et al. [17] presented empirical measurements detailing the latency

contributions of individual system components. Furthermore, a multi-algorithm approach was

proposed to reduce the latency of computer vision computation by executing multiple algorithms

in parallel and conditionally selecting a fast and accurate algorithm for the near future.

While previous research has demonstrated the technical feasibility of wearable cognitive as-

sistants and meeting latency requirements, many practical concerns have not been addressed.

First, previous work operates the wireless networks and cloudlets at low utilization in order to

meet application latency. The economics of practical deployment precludes operation at such

low utilization. In contrast, resources are often highly utilized and congested when serving many

users. How to efficiently scale Gabriel applications to a large number of users remains to be

answered. Second, previous work on the Gabriel framework reduces application development

efforts by managing client-server communication, network flow control, and cognitive engine

discovery. However, the framework does not address the most time-consuming parts of creating

a wearable cognitive assistance application. Experience has shown that developing computer vi-

sion modules that analyze video feeds is a time-consuming and painstaking process that requires

special expertise and involves rounds of trials and errors. Development tools that alleviate the

time and the expertise needed can greatly facilitate the creation of these applications.
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1.1 Thesis Statement

In this dissertation, we address the problem of scaling wearable cognitive assistance. Scalability

here has a two-fold meaning. First, a scalable system supports a large number of associated

clients with fixed amount of infrastructure, and is able to serve more clients as resources increase.

Second, we want to enable a small software team to quickly create, deploy, and manage these

applications. We claim that:

Two critical challenges to the widespread adoption of wearable cognitive assistance are
1) the need to operate cloudlets and wireless network at low utilization to achieve acceptable
end-to-end latency 2) the level of specialized skills and the long development time needed
to create new applications. These challenges can be effectively addressed through system
optimizations, functional extensions, and the addition of new software development tools to
the Gabriel platform.

We validate this thesis in this dissertation. The main contributions of the dissertation are as

follows:

1. We propose application-agnostic and application-aware techniques to reduce bandwidth

consumption and offered load when the cloudlet is oversubscribed.

2. We provide a profiling-based cloudlet resource allocation mechanism that takes account of

diverse application adaptation characteristics.

3. We propose a new prototyping methodology and create a suite of development tools to

reduce the time and lower the barrier of entry for WCA creation.

1.2 Thesis Overview

The remainder of this dissertation is organized as follows.

• In Chapter 2, we introduce prior work in wearable cognitive assistance.

• In Chapter 3, we describe and evaluate application-agnostic techniques to reduce band-

width consumption when offloading computation.

• In Chapter 4, we propose and evaluate application-specific techniques to reduce offered

load. We demonstrate their effectiveness with minimal impact on result latency.

• In Chapter 5, we present a resource management mechanisms that takes application adap-

tation characteristics into account to optimize system-wide metrics.

• In Chapter 6, we introduce a methodology and development tools for quick prototyping.

• In Chapter 7, we conclude this dissertation and discuss future directions.
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Chapter 2

Background

2.1 Edge Computing

Edge computing is a nascent computing paradigm that has gained considerable traction over

the past few years. It champions the idea of placing substantial compute and storage resources

at the edge of the Internet, in close proximity to mobile devices or sensors. Terms such as

“cloudlets” [95], “micro data centers (MDCs)” [7], “fog” [11], and “mobile edge computing

(MEC)” [13] are used to refer to these small, edge-located computing nodes. We use these terms

interchangably in the rest of this dissertation. Edge computing is motivated by its potential to

improve latency, bandwidth, and scalability over a cloud-only model. More practically, some

efforts stem from the drive towards software-defined networking (SDN) and network function

virtualization (NFV), and the fact that the same hardware can provide SDN, NFV, and edge

computing services. This suggests that infrastructure providing edge computing services may

soon become ubiquitous, and may be deployed at greater densities than content delivery network

(CDN) nodes today.

Satya et al. [97] best describes the modern computing landscape with edge computing using

a tiered model, shown in Figure 2.1. Tiers are separated by distinct yet stable sets of design

constraints. From left to right, this tiered model represents a hierarchy of increasing physi-

cal size, compute power, energy usage, and elasticity. Tier-1 represents today’s large-scale and

heavily consolidated data-centers. Compute elasticity and storage permanence are two domi-

nating themes here. Tier-3 represents IoT and mobile devices, which are constrained by their

physical size, weight, and heat dissipation. Sensing is the key functionality of Tier-3 devices.

For example, today’s smartphones are already rich in sensors, including camera, microphone,

accelerometers, gyroscopes and GPS. In addition, an increasing amount of IoT devices with spe-

cific sensing modalities are getting adopted, e.g. smart speakers, security cameras, and smart

thermostats.

With the large-scale deployment of Tier-3 devices, there exists a tension between the gi-

gantic amount of data collected and generated by them and their limited capabilities to process

these data on-board. For example, most surveillance cameras are limited in computation to run
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Figure 2.1: Tiered Model of Computing

state-of-art computer vision algorithms to analyze the videos they capture. To overcome this ten-

sion, a Tier-3 device could offload computation over network to Tier-1. This capability was first

demonstrated in 1997 by Noble et al. [75], who used it to implement speech recognition with

acceptable performance on a resource-limited mobile device. In 1999, Flinn et al. [30] extended

this approach to improve battery life. These concepts were generalized in a 2001 paper that

introduced the term cyber foraging for the amplification of a mobile device’s data or compute

capabilities by leveraging nearby infrastructure [91]. Thanks to these research efforts, computa-

tion offloading is widely used by IoT devices today. For example, when a user asks an Amazon

Echo smart speaker “Alexa, what is the weather today?”, the user’s audio stream is captured by

the smart speaker and transmitted to the cloud for speech recognition, text understanding, and

question answering.

However, offloading computation to the cloud has its own downside. Because of the consoli-

dation needed to achieve the economy of scale, today’s data centers are “far” from Tier-3 devices.

The latency, throughput, and cost of wide-area network (WAN) significantly limit the amount of

applications that can benefit from computation offloading. Even worse, it is the logical distance

in the network that matters rather than the physical distance. Routing decisions in today’s In-

ternet are made locally and are based on business agreements, resulting in suboptimal solutions.

For example, using traceroute, we determine that a LTE packet originating from a smartphone

on the campus of Carnegie Mellon University (CMU) in Pittsburgh to a nearby server actually

traverses to Philedelphia, a city several hundreds miles away. This is because Philidephia has the

nearest peering point of the particular commercial LTE network in use to the public Internet. In

2010, Li et al. [59] report that the average round trip time (RTT) from 260 global vantage points

to their optimal Amazon EC2 instances is 74 ms. In addition to long network delay, the high

network fan-in of data centers means its aggregation network needs to carry significant amount

of traffic. As the number of Tier-3 devices is expected to grow exponentially, these network links
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(Source: Hu et al [44])

Figure 2.2: CDF of pinging RTTs (Source: Hu et al [44])

Figure 2.3: FACE Response Time over LTE

face significant challenges to handle the ever-increasing volume of ingress traffic.

To counter these problems, edge computing, shown as the Tier-2 in Figure 2.1, is proposed.

Cloudlets at Tier-2 creates the illusion of bringing Tier-1 “closer”. They are featured by their

network proximity to Tier-3 devices and their significantly larger compute and storage compared

to Tier-3 devices. While Tier-3 devices typically run on battery and are optimized for low energy

consumption, saving energy is not a major concern for Tier-2 as they are either plugged into

the electric grid or powered by other sources of energy (e.g. fuels in a vehicle). Cloudlets

serve two purposes in the tiered model. First, they provide infrastructure for compute-intensive

and latency-sensitive applications for Tier-3. Wearable cognitive assistance is an examplar of

these applications. Second, by processing data closer to the source of the content, it reduces the

excessive traffic going into Tier-1 data centers. Figure 2.2 shows the RTT comparison of PING

to the cloud and the cloudlet over WiFi and LTE. Cloudlet’s RTT is on average 80 to 100ms

shorter than its counterpart to the cloud. Figure 2.3 shows the impact of network latency on an

application that recognizes faces. Three offloading scenarios are considered: offloading to the

cloud, offloading to the cloudlet, and no offloading. The data transmitted are images captured

by a smartphone. As we can see, the limited bandwidth of the cellular network further worsen

the response time when offloading to the cloud. In fact, for this particular application, even

local execution outperforms offloading to the nearest cloud due to network delay. The optimal

computational offload location is cloudlet, whose median response time is more than 200ms

faster than local execution and about 250 ms faster than the nearest cloud.

The low-latency and high-bandwidth compute infrastructure provided by cloudlets is an

indispensible foundation for latency-sensitive and compute-intensive wearable cognitive assis-

tance. Cloudlets also pose unique challenges for scalability as resources are a lot more limited

compared to data centers. How to scale WCAs to many users using cloudlets is a key question

we set out to investigate in this dissertation.
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Figure 2.4: Gabriel Platform

2.2 Gabriel Platform

The Gabriel platform [17, 35], shown in Figure 2.4, is the first application framework for wear-

able cognitive assistance. It consists of a front-end running on wearable devices and a back-end

running on cloudlets. The Gabriel front-end performs preprocessing of sensor data (e.g., com-

pression and encoding), which it then streams over a wireless network to a cloudlet. The Gabriel

back-end on the cloudlet has a modular structure. The control module is the focal point for all

interactions with the wearable device and can be thought as an agent for a particular client on the

cloudlet. A publish-subscribe (PubSub) mechanism distributes the incoming sensor streams to

multiple cognitive modules (e.g., task-specific computer vision algorithms) for concurrent pro-

cessing. Cognitive module outputs are integrated by a task-specific user guidance module that

performs higher-level cognitive processing such as inferring task state, detecting errors, and gen-

erating guidance in one or more modalities (e.g., audio, video, text, etc.). The Gabriel platform

automatically discovers cognitive engines on the local network via a universal plug-and-play

(UPnP) protocol. The platform is designed to run on a small cluster of machines with each mod-

ule capable of being separated or co-located with other modules via process, container, or virtual

machine virtualization.

The original Gabriel platform was built with a single user in mind, and did not have mech-

anisms to share cloudlet resources in a controlled manner. It did, however, have a token-based

transmission mechanism. This limited a client to only a small number of outstanding opera-

tions, thereby offering a simple form of rate adaptation to processing or network bottlenecks.

We have retained this token mechanism in our system, described in the rest of this dissertation.
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Figure 2.5: RibLoc Kit

In addition, we have extended Gabriel with new mechanisms to handle multi-tenancy, perform

resource allocation, and support application-aware adaptation. We refer to the two versions of

the platform as “Original Gabriel” and “Scalable Gabriel.”

2.3 Example Gabriel Applications

Many applications have been built on top of the Gabriel platform. Table 2.1 provides a summary

of applications built by Chen et al [16]. These applications run on multiple wearable devices such

as Google Glass, Microsoft HoloLens, Vuzix Glass, and ODG R7. The cloudlet processing of

these applications consists of two major phases. The first phase uses computer vision to extract a

symbolic, idealized representation of the state of the task, accounting for real-world variations in

lighting, viewpoint, etc. The second phase operates on the symbolic representation, implements

the logic of the task at hand, and occasionally generates guidance for the user. In most WCA

applications, the first phase is far more compute intensive than the second phase. While visual

data is the focus of the analysis, other types of sensor data, e.g. audio, are also used to help infer

user states.

Building on lessons learned by Chen et al [16], we create and implement several real-life

WCA applications whose tasks are more complex. They also pose more challenges to the com-

puter vision processing as the parts are not designed for machine recognition. In particular, we

focus on assembly tasks. Many assembly tasks, including manufacturing assembly and med-

ical procedures, are tedious and error-prone. WCAs can help reduce errors, provide training,

and assist human operators by continuously monitoring their actions and offering feedback. We

describe two of these applications below in detail.
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App

Name

Example Input

Video Frame

Description Symbolic

Representation

Example

Guidance

Pool
Helps a novice pool player aim correctly. Gives continuous visual feed-

back (left arrow, right arrow, or thumbs up) as the user turns his cue

stick. Correct shot angle is calculated based on fractional aiming system.

Color, line, contour, and shape detection are used. The symbolic repre-

sentation describes the positions of the balls, target pocket, and the top

and bottom of cue stick.

<Pocket, object

ball, cue ball,

cue top, cue

bottom>

Ping-
pong

Tells novice to hit ball to the left or right, depending on which is more

likely to beat opponent. Uses color, line and optical-flow based motion

detection to detect ball, table, and opponent. The symbolic representa-

tion is a 3-tuple: in rally or not, opponent position, ball position. Whis-

pers “left” or “right” or offers spatial audio guidance using.

Video URL: https://youtu.be/_lp32sowyUA

<InRally, ball

position, oppo-

nent position>

Whispers

“Left!”

Work-
out

Guides correct user form in exercise actions like sit-ups and push-ups,

and counts out repetitions. Uses Volumetric Template Matching on a 10-

15 frame video segment to classify the exercise. Uses smart phone on

the floor for third-person viewpoint.

<Action,

count>
Says “8 ”

Face
Jogs your memory on a familiar face whose name you cannot recall. De-

tects and extracts a tightly-cropped image of each face, and then applies

a state-of-art face recognizer using deep residual network. Whispers the

name of a person. Can be used in combination with Expression to offer

conversational hints.

ASCII text of

name

Whispers

“Barack

Obama”

Lego
Guides a user in assembling 2D Lego models. Each video frame is ana-

lyzed in three steps: (i) finding the board using its distinctive color and

black dot pattern; (ii) locating the Lego bricks on the board using edge

and color detection; (iii) assigning brick color using weighted majority

voting within each block. Color normalization is needed. The symbolic

representation is a matrix representing color for each brick.

Video URL: https://youtu.be/7L9U-n29abg

[[0, 2, 1, 1],

[0, 2, 1, 6],

[2, 2, 2, 2]]
Says “Put a

1x3 green

piece on top”

Draw
Helps a user to sketch better. Builds on third-party app that was originally

designed to take input sketches from pen-tablets and to output feedback

on a desktop screen. Our implementation preserves the back-end logic.

A new Glass-based front-end allows a user to use any drawing surface

and instrument. Displays the error alignment in sketch on Glass.

Video URL: https://youtu.be/nuQpPtVJC6o

Sand-
wich

Helps a cooking novice prepare sandwiches according to a recipe. Since

real food is perishable, we use a food toy with plastic ingredients. Object

detection follows the state-of-art faster-RCNN deep neural net approach.

Implementation is on top of Caffe and Dlib. Transfer learning helped us

save time in labeling data and in training.

Video URL: https://youtu.be/USakPP45WvM

Object:

“E.g. Lettuce

on top of ham

and bread” Says “Put a

piece of bread

on the lettuce”

Table 2.1: Prototype Wearable Cognitive Assistance Applications

(Adapted from Chen et al [16])
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Bone exists

Gauge and 
Bone exist

Target 
Guide 
and 
Green 
RibPlate
exist

Assembled

User reads 
out “Green”

Assembled Piece 
is at over the top 
edge of the Bone

Drill with
green drill 
driver

Four Green 
Screws exist

Four green screws 
are placed inside 
the RibPlate on the 
bone

Finish

Gauge is at correct 
position wrt Bone

“Now find the gauge and 
put it on the table.”

“Put the bone on 
the table.”

Start

“Good job. Now 
measure the bone 
thickness.”

“Great. Please read 
the color on the 
gauge”

Error 
State

Gauge is 
placed at 
wrong 
position

“Please place 
the gauge near 
the fracture”

“Put the green 
RibPlate and two 
target guides on 
the table.”

Error 
State

Colors 
except 
“Green”

“The color is wrong. 
Please measure again 
and tell me the reading”

Error 
State

“You are using the 
wrong RibPlate. Please 
find the green one.”

RibPlate
is not 
Green

“Great. Now 
assemble the target 
guides onto the 
RibPlate.”

“Good. Put the 
RibPlate onto 
the fracture. 
Show me the 
sideview.”

Error 
State

Put upside
down

“ Please put it on the 
top edge.”

“Put the green drill 
driver onto the 
power drill.”

Error 
State

Drill driver is 
not green

"Please use the 
green drill driver."

“Drill through the 
target guides and 
find four green 
screws when done.”

“Insert screws 
through the targeting 
guide and remove the 
targeting guide when 
done."

“Congratulations! 
You have finished.”

Figure 2.6: RibLoc Assistant Workflow
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Figure 2.7: Assembled DiskTray

2.3.1 RibLoc Application

RibLoc Fracture Plating System [3], shown in Figure 2.5 is used by surgeons to stabilize broken

ribs for fracture repair. The surgery consists of five major steps: measure ribs thickness, pre-

pare the plate, drill bone for screw insertion, insert screws, and tighten screws. To train doctors

how to use this kit, Acute Innovations, the manufacturer of RibLoc, currently send sales per-

sonnel to doctors’ office, often for extended period of time. To reduce the cost of training, we

develop a WCA for RibLoc that guides a surgeon to learn RibLoc step-by-step on fake bones.

Figure 2.6 shows the task steps of the application as a finite state machine (FSM). Conditions of

state transitions are shown above the transition arrows and instructions given to users are quoted

in italics. Most of user state recognition is achieved by verifying the existence and locations of

key objects. One exception is rib thickness measurement. The application asks the user to read

out some text from the gauge. Automatic speech recognition (ASR) is used to detect the user’s

read-out. ASR is used because the text on the gauge has a low contrast with the background that

they are too hard to optical character recognition (OCR). A demo video of RibLoc WCA is at

https://youtu.be/YRTXUty2P1U.

2.3.2 DiskTray Application

In collaboration with InWin [2], a computer hardware manufacturer, we created a cognitive as-

sistant to train operators how to assemble their disk tray product. Figure 2.7 shows the assembled

tray, which is used to host hard drives that go into a server chassis. As with all the other WCAs,

we do not modify the original parts.

We face two challenges when building this application. First, some parts are tiny. In one step,

the application needs to check if a pin is placed correctly into a slot. As shown in Figure 2.8, both

the slot and the pin are tiny and hard to see. To facilitate the detection of these two parts, we ask

the user to bring the parts close to the camera in addition to zooming the camera and turning on
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Figure 2.8: Small Parts in DiskTray WCA

POOL WORK OUT PING PONG FACE
Assembly Tasks

(e.g. RibLoc)

Bound Range (tight-loose) 95-105 300-500 150-230 370-1000 600-2700

Table 2.2: Application Latency Bounds (in milliseconds)

(Adapted from Chen et al [17])

the camera flashlight. Second, there is a plastic strip that is translucent. Transparent objects are

extremely challenging to detect using 2D RGB cameras, because their appearance depends on

the background and lighting [68]. Instead of detecting the placement of the transparent strip by

computer vision, we leverage the human operator to signal to the system when the operation is

completed. InWin showcased this application at 2018 Computex Technology Show [1]. A demo

video of the Computex Demo can be viewed at https://www.youtube.com/watch?v=
AwWZcL9XGI0.

2.4 Application Latency Bounds

Not only are the accuracy of the instructions important to WCAs, but the speed at which these

instructions are delivered is also critical. With a human in the loop, the latency requirements of

WCAs are closely related to the task-specific human speed. For example, for assembly tasks, an

instruction delivered tens of seconds after a user has finished a step can cause user annoyance

and frustration. For PING PONG assistant, a task that is even more fast-paced, an instruction on

where to hit the ball becomes useless if it is delivered after the user has hit the ball.

Previous work [17] quantifies task-dependent application latency bounds by answering the

question How fast does an instruction need to be delivered? Three different approaches are

used. For tasks that have published human speed, numbers from the literature are used as the

upper bound of the end-to-end system response time. For example, it takes about 1000 ms for a

13



human to recognize the identity of a face. Therefore, a face recognition assistant should deliver a

person’s name faster than 1000ms to exceed human speed. For tasks in which users interact with

physical systems, the latency bounds can be derived directly from first principles of physics.

For instance, the latency bounds for PINGPONG assistant are calculated by subtracting audio

perception time, motion initiation time, and swinging time from the average time between oppo-

nents hitting the ball. In addition, an user study of LEGO assembly assistant is also conducted

to deduct latency bounds for assembly tasks.

Table 2.2 shows a summary of latency bounds calculated from the previous work [17]. Each

application is assigned both a tight and a loose bound from the application perspective. The tight

bound represents an ideal target, below which the user is insensitive to improvements. Above

the loose bound, the user becomes aware of slowness, and user experience and performance is

significantly impacted. Latency improvements between the two limits may be useful in reducing

user fatigue.

These application latency bounds can be considered as application quality of service (QoS)

metrics. Similar to bitrate and startup time in video streaming, these metrics serve as measurable

proxies to user experience. When the system delay increases, we can compare the delay with

these latency bounds to estimate how much a user is suffering. In this dissertation, we use these

bounds to formulate application utility functions, which quantify user experience when a system

response is delayed due to contention. These application utility functions are the foundation for

our adaptation-centered approach to scalability.
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Chapter 3

Application-Agnostic Techniques to
Reduce Network Transmission

WCAs continuously stream sensor data to a cloudlet. The richer a sensing modality is, the more

information can be extracted. The core sensing modality of WCAs is visual data, e.g. egocentric

images and videos from wearable cameras. Compared to other sensors, e.g. microphones and

inertial measurement units (IMUs), cameras capture visual information with rich semantics. As

commercial camera hardware become more affordable, they have become increasingly perva-

sive. In 2013, it is estimated that there is one security camera for every eleven citizens in the

UK [10]. In the meantime, deep neural networks (DNNs) have driven significant advancement

in computer vision and have achieved human-level accuracy in several previously intractable

perception problems (e.g. face recognition, image classification) [57, 99]. The richness and the

open-endness of visual data makes camera the ideal sensor for WCAs.

However, continuous video transmission from many Tier-3 devices places severe stress on

the wireless spectrum. Hulu estimates that its video streams require 13 Mbps for 4K resolution

and 6 Mbps for HD resolution using highly optimized offline encoding [46]. Live streaming is

less bandwidth-efficient, as confirmed by our measured bandwidth of 10 Mbps for HD feed at

25 FPS. Just 50 users transmitting HD video streams continuously can saturate the theoretical

uplink capacity of 500 Mbps in a 4G LTE cell that covers a large rural area [67]. This is clearly

not scalable.

In this chapter, we show how per-user bandwidth demand in WCA-like live video analytics

can be significantly reduced using an application-agnostic approach. We aim to reduce band-

width demand without compromising the timeliness or accuracy of results. In contrast to previous

works [116, 117, 123], we leverage state-of-the-art deep neural networks (DNNs) to selectively

transmit interesting data from a video stream and explore environment-specific optimizations.

The accuracy of the data selection is important, as fewer false positives result in lower network

bandwidth and cloudlet computing cycle consumption.

This chapter is organized as follows. We first discuss the challenges of running DNNs for

visual perception solely on Tier-3 devices in Section 3.1. Next, we propose and compare two
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application-agnostic techniques to reduce network transmission. We present our results first in

the context of live video analytics for small autonomous drones. Both as emerging Tier-3 devices,

drones and wearable devices face similar challenges in live video analysis. Finally, we showcase

how these techniques can be applied to WCAs in Section 3.5.

3.1 Video Processing on Mobile Devices

In the context of real-time video analytics, Tier-3 devices represent fundamental mobile comput-

ing challenges that were identified two decades ago [90]. Two challenges have specific relevance

here. First, mobile elements are resource-poor relative to static elements. Second, mobile con-

nectivity is highly variable in performance and reliability. We discuss their implications below.

3.1.1 Computation Power on Tier-3 Devices

Unfortunately, the hardware needed for deep video stream processing in real time is larger and

heavier than what can fit on a typical Tier-3 device. State-of-art techniques in image processing

use DNNs that are compute- and memory-intensive. Table 3.1 presents experimental results on

two fundamental computer vision tasks, image classification and object detection, on four dif-

ferent devices. In the figure, MobileNet V1 and ResNet101 V1 are image classification DNNs.

Others are object detection DNNs. We use publicly available pretrained DNN models for mea-

surements [109]. We carefully choose hardware platforms to represent a range of computation

capabilities of Tier-3 devices. To anticipate future improvements in smartphone technology, our

experiments also consider more powerful devices such as the Intel R© Joule [37] and the NVIDIA

Jetson [76] that are physically compact and light enough to be credible as wearable device plat-

forms in the future.

Note that the absolute speed of DNN inference depends on a wide range of factors, including

the optimizations used in DNN model implementation, the choice of linear algebra libraries, the

presence of vectorized instructions and hardware accelerators. In Table 3.1, we present the best

results we could obtain on each platform. This is not intended to directly compare frameworks

and platforms (as others have been doing [124]), but rather to illustrate the differences between

wearable platforms and fixed infrastructure servers.

Image classification is a computer vision task that maps an image into categories, with each

category indicating whether one or many particular objects (e.g., a human survivor, a specific

animal, or a car) exist in the image. Two widely used multiclass classification DNNs are tested.

Their prediction speed are shown in column “Image Classification”. One of the DNNs, Mo-

bileNet V1 [41], is designed for mobile devices from the ground-up by reducing the number of

parameters and simplifying the layer computation using depth-wise separable convolution. On

the other hand, ResNet101 V1 [39] is a more accurate but also more resource-hungry DNN that

won the highly recognized ImageNet classification challenge in 2015 [88].

Also shown is another harder computer vision task, object detection. Object detection is a
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M: MobileNet V1; R: ResNet101 V1; S-M: SSD MobileNet V1; S-I: SSD Inception V2;

F-I: Faster R-CNN Inception V2; F-R: Faster R-CNN ResNet101 V1

Image

Classification

Object Detection

Weight

(g)

CPU GPU M

(ms)

R

(ms)

S-M

(ms)

S-I

(ms)

F-I

(ms)

F-R

(ms)
Nexus 6 184 4-core 2.7 GHZ

Krait 450, 3GB

Mem

Adreno

420

353 (67) 983 (141) 441 (60) 794 (44) ENOMEM ENOMEM

Intel R©

Joule

570x

25 4-core 1.7 GHz

Intel Atom R©

T5700, 4GB

Mem

Intel R© HD

Graphics

(gen 9)

37 (1)‡ 183 (2)†‡ 73 (2)‡ 442 (29) 5125 (750) 9810 (1100)

NVIDIA

Jetson

TX2

85 2-Core 2.0 GHz

Denver2 + 4-Core

2.0 GHz Cortex-

A57, 8GB Mem

256 cuda

core 1.3

GHz

NVIDIA

Pascal

13 (0)† 92 (2)† 192 (18) 285 (7)† ENOMEM ENOMEM

Rack-

mounted

Server

2x 36-core 2.3

GHz Intel R©

Xeon R© E5-

2699v3 Proces-

sors, 128GB

Mem

2880

cuda core

875MHz

NVIDIA

Tesla

K40,

12GB

GPU

Mem

4 (0)‡ 33 (0)† 12 (2)‡ 70 (6) 229 (4)† 438 (5)†

Figures above are means of 3 runs across 100 random images. The time shown includes only

the forward pass time using batch size of 1. ENOMEM indicates failure due to insufficient

memory. Figures in parentheses are standard deviations. The weight figures for Joule and Jetson

include only the modules without breakout boards. Weight for Nexus 6 includes the complete

phone with battery and screen. Numbers are obtained with TensorFlow (TensorFlow Lite for

Nexus 6) unless indicated otherwise.

† indicates GPU is used. ‡ indicates Intel R© Computer Vision SDK beta 3 is used.

Table 3.1: Deep Neural Network Inference Speed on Tier-3 Devices

17



more difficult perception problem, because it not only requires categorization, but also prediction

of bounding boxes around the specific areas of an image that contains a object. Object detection

DNNs are built on top of image classification DNNs by using image classification DNNs as low-

level feature extractors. Since feature extractors in object detection DNNs can be changed, the

DNN structures excluding feature detectors are referred as object detection meta-architectures.

We benchmarked two object detection DNN meta-architectures: Single Shot Multibox Detec-

tor (SSD) [62] and Faster R-CNN [85]. We used multiple feature extractors for each meta-

architecture. The meta-architecture SSD uses simpler methods to identify potential regions for

objects and therefore requires less computation and runs faster. On the other hand, Faster R-

CNN [85] uses a separate region proposal neural network to predict regions of interest and has

been shown to achieve higher accuracy [45] for difficult tasks. Table 3.1 presents results in four

columns: SSD combined with MobileNet V1 or Inception V2, and Faster R-CNN combined with

Inception V2 or ResNet101 V1 [39]. The combination of Faster R-CNN and ResNet101 V1 is

one of the most accurate object detectors available today [88]. The entries marked “ENOMEM”

correspond to experiments that were aborted because of insufficient memory.

These results demonstrates the computation gap between mobile and static elements. While

the most accurate object detection model Faster R-CNN Resnet101 V1 can achieve more than

two FPS on a server GPU, it either takes several seconds on Tier-3 devices or fails to execute due

to insufficient memory. In addition, the figure also confirms that sustaining open-ended real-time

video analytics on smartphone form factor computing devices is well beyond the state of the

art today and may remain so in the near future. This constrains what is achievable with Tier-3

devices alone.

3.1.2 Result Latency, Offloading and Scalability

Result latency is the delay between first capture of a video frame in which a particular result is

present, and report of its discovery or feedback based on the discovery after video processing.

Operating totally disconnected, a Tier-3 device can capture and store video, but defer its pro-

cessing until the mission is complete. At that point, the data can be uploaded from the device

to the cloud and processed there. This approach completely eliminates the need for real-time

video processing, obviating the challenges of Tier-3 computation power mentioned previously.

Unfortunately, this approach delays the discovery and use of knowledge in the captured data by

a substantial amount (e.g., many tens of minutes to a few hours). Such delay may be unaccept-

able in use cases such as search-and-rescue using drones, or real-time step-by-step instruction

feedback in WCAs. In this chapter, we focus on approaches that aim for much smaller, real-time

result latency.

A different approach is to offload video processing in real-time over a wireless link to an

edge computing node. With this approach, even a weak Tier-3 device can leverage the substan-

tial processing capability of a cloudlet, without concern for its weight, size, heat dissipation or

energy usage. Much lower result latency is now possible. However even if cloudlet resources are

viewed as “free” from the viewpoint of mobile computing, the Tier-3 device consumes wireless

bandwidth in transmitting video.
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Today, 4G LTE offers the most plausible wide-area connectivity from a Tier-3 device to its

associated cloudlet. The much higher bandwidths of 5G are still several years away, especially

at global scale. More specialized wireless technologies, such as Lightbridge 2 [25], could also

be used. Regardless of specific wireless technology, the principles and techniques described in

this chapter apply.

When offloading, scalability in terms of maximum number of concurrently operating Tier-3

devices within a 4G LTE cell becomes an important metric. In this chapter, we explore how the

limited processing capability on a Tier-3 device can be used to greatly decrease the volume of

data transmitted, thus improving scalability while minimally impacting result accuracy and result

latency.

Note that the uplink capacity of 500 Mbps per 4G LTE cell assumes standard cellular in-

frastructure that is undamaged. In natural disasters and military combat, this infrastructure may

be destroyed. Emergency substitute infrastructure, such as Google and AT&T’s partnership on

balloon-based 4G LTE infrastructure for Puerto Rico after hurricane Maria [70], can only sustain

much lower uplink bandwidth per cell, e.g. 10Mbps for the balloon-based LTE [89]. Conserving

wireless bandwidth from Tier-3 video transmission then becomes even more important, and the

techniques described here will be even more valuable.

3.2 Baseline Strategy

3.2.1 Description

We first establish and evaluate the baseline case of no image processing performed at the Tier-3

device. Instead, all captured video is immediately transmitted to the cloudlet. Result latency is

very low, merely the sum of transmission delay and cloudlet processing delay. We use drones as

the example of Tier-3 devices and drone video search as the scenario of video analytics first. We

later demonstrate how to apply the techniques developed to WCAs.

3.2.2 Experimental Setup

To ensure experimental reproducibility, our evaluation is based on replay of a benchmark suite

of pre-captured videos rather than on measurements from live drone flights. In practice, live

results may diverge slightly from trace replay because of non-reproducible phenomena. These

can arise, for example, from wireless propagation effects caused by varying weather conditions,

or by seasonal changes in the environment such as the presence or absence of leaves on trees. In

addition, variability can arise in a drone’s pre-programmed flight path due to collision avoidance

with moving obstacles such as birds, other drones, or aircraft.

All of the pre-captured videos in the benchmark suite are publicly accessible, and have been

captured from aerial viewpoints. They characterize drone-relevant scenarios such as surveillance,

search-and-rescue, and wildlife conservation. Table 3.2 presents this benchmark suite of videos,
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Detection Data Data Training Testing

Task Goal Source Attributes Subset Subset

T1 People in scenes

of daily life

Okutama Ac-

tion Dataset [9]

33 videos

59842 fr

4K@30 fps

9 videos

17763 fr

6 videos

20751 fr

T2 Moving cars Stanford Drone

Dataset [87]

60 videos

522497 fr

1080p@30 fps

16 videos

179992 fr

14 videos

92378 fr

Combination

of test

videos

from

each

dataset.

T3 Raft in flooding

scene

YouTube

collection [4]

11 videos

54395 fr

720p@25 fps

8 videos

43017 fr

T4 Elephants in

natural habitat

YouTube

collection [5]

11 videos

54203 fr

720p@25 fps

8 videos

39466 fr

fr = “frames”

fps = “frames per second”

No overlap between training and testing subsets of data

Table 3.2: Benchmark Suite of Drone Video Traces

Total Avg

Bytes BW

Task (MB) (Mbps) Recall Precision

T1 924 10.7 74% 92%

T2 2704 7.0 66% 90%

Peak bandwidth demand is same as average since video is transmitted continuously. Precision

and recall are at the maximum F1 score.

Table 3.3: Baseline Object Detection Metrics
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Example Early Discard Filters

MobileNet DNN

Color Histogram
AlexNet DNN

DNN+SVM Cascade

Camera Encode & 
Stream

to 
cloudlet

Figure 3.1: Early Discard on Tier-3 Devices

organized into four tasks. All the tasks involve detection of tiny objects on individual frames.

Although T2 is also nominally about action detection (moving cars), it is implemented using

object detection on individual frames and then comparing the pixel coordinates of vehicles in

successive frames.

3.2.3 Evaluation

Table 3.3 presents the key performance indicators on the object detection tasks T1 and T2. We

use the well-labeled dataset to train and evaluate Faster-RCNN with ResNet 101. We report the

precision and recall at maximum F1 score. Peak bandwidth is not shown since it is identical to

average bandwidth demand for continuous video transmission. As shown earlier in Table 3.1,

the accuracy of this algorithm comes at the price of very high resource demand. This can only

be met today by server-class hardware that is available in a cloudlet. Even on a cloudlet, the

figure of 438 milliseconds of processing time per frame indicates that only a rate of two frames

per second is achievable. Sustaining a higher frame rate will require striping the frames across

cloudlet resources, thereby increasing resource demand considerably. Note that the results in

Table 3.1 were based on 1080p frames, while tasks T1 uses the higher resolution of 4K. This will

further increase demand on cloudlet resources.

Clearly, the strategy of blindly shipping all video to the cloudlet and processing every frame

is resource-intensive to the point of being impractical today. It may be acceptable as an offline

processing approach in the cloud, but is unrealistic for real-time processing on cloudlets. We

therefore explore an approach in which a modest amount of computation on the Tier-3 is able,

with high confidence, to avoid transmitting many video frames and thereby saving wireless band-

width as well as cloudlet processing resources. This leads us to the EarlyDiscard strategy of the

next section.
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3.3 EarlyDiscard Strategy

3.3.1 Description

EarlyDiscard is based on the idea of using on-board processing to filter and transmit only inter-

esting frames in order to save bandwidth when offloading computation. Frames are considered

to be interesting if they capture objects or events valuable for processing, for instance, survivors

for a search task. Previous work [43, 71] leveraged pixel-level features and multiple sensing

modalities to select interesting frames from hand-held or body-worn cameras. In this section, we

explore the use of DNNs to filter frames from aerial views. The benefits of using DNNs are as

follows. First, DNNs, even shallow ones, are capable of understanding some semantically mean-

ingful visual information. Their decisions of what to send are based on the reasoning of image

content in addition to pixel-level characteristics. Next, DNNs are trained and specialized for each

task, resulting in their high accuracy and robustness for that particular task. Finally, compared to

a sensor fusing approach that requires other sensing modalities to be present on Tier-3 devices,

no additional hardware is added to the existing platforms.

Although smartphone-class hardware is incapable of supporting the most accurate object

detection algorithms at full frame rate today, it is typically powerful enough to support less

accurate algorithms. These weak detectors, for instance, MobileNet in Table 3.1, are typically

designed for mobile platforms or were the state of the art just a few years ago. In addition, they

can be biased towards high recall with only modest loss of precision. In other words, many

clearly irrelevant frames can be discarded by a weak detector, without unacceptably increasing

the number of relevant frames that are erroneously discarded. This asymmetry is the basis of the

early discard strategy.

As shown in Figure 3.1, we envision a choice of weak detectors being available as early

discard filters on Tier-3 devices with the specific choice of filter being task-specific. Based on

the measurements presented in Table 3.1, we choose cheap DNNs that can run in real-time as

EarlyDiscard filters on Tier-3 devices. Note that both object detection and image classification

algorithms can yield meaningful early discard results, as it is not necessary to know exactly

where in the frame relevant objects occur — just an estimate of key object presence is good

enough. This suggests that MobileNet would be a good choice as a weak detector. For a given

image or partial of an image, it can predict whether the input contains objects of interests. More

importantly, MobileNet’s speed of 13 ms per frame on the Tier-3 platform Jetson yields more

than 75 fps. We therefore use MobileNet for early discard in our experiments.

Pre-trained classifiers for MobileNet are available today for generic objects such as cars,

animals, human faces, human bodies, watercraft, and so on. However, these DNN classifiers

have typically been trained on images that were captured from a human perspective — often by

a camera held or worn by a person. These images typically have the objects at the center of

the image and occupy the majority of the image. Many Tier-3 devices, however, capture images

from different viewpoints (e.g. aerial views) and need to recognize rare task-specific objects

different from generic categories. To improve the classification accuracy for custom objects

from different viewpoints, we used transfer learning [120] to finetune the pre-trained classifiers
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Figure 3.2: Tiling and DNN Fine Tuning

on small training sets of images that were captured from correct viewpoint. The process of fine-

tuning involves initial re-training of the last DNN layer, followed by re-training of the entire

network until convergence. Transfer learning enables accuracy to be improved significantly for

custom objects without incurring the full cost of creating a large training set.

For live drone video analytics, images are typically captured from a significant height, and

hence objects in such an image are small. This interacts negatively with the design of many

DNNs, which first transform an input image to a fixed low resolution — for example, 224x224

pixels in MobileNet. Many important but small objects in the original image become less recog-

nizable. It has been shown that small object size correlates with poor accuracy in DNNs [45]. To

address this problem, we tile high resolution frames into multiple sub-frames and then perform

recognition on the sub-frames as a batch. This is done offline for training, as shown in Figure 3.2,

and also for online inference on the drone and on the cloudlet. The lowering of resolution of a

sub-frame by a DNN is less harmful, since the scaling factor is smaller. Objects are represented

by many more pixels in a transformed sub-frame than if the entire frame had been transformed.

The price paid for tiling is increased computational demand. For example, tiling a frame into

four sub-frames results in four times the classification workload. Note that this increase in work-

load typically does not translates into the same increase in inference time, as workloads can be

batched together to leverage hardware parallelism for a reduced total inference time.
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Figure 3.3: Speed-Accuracy Trade-off of Tiling

3.3.2 Experimental Setup

Our experiments on the EarlyDiscard strategy used the same benchmark suite described in Sec-

tion 3.2.2. We used Jetson TX2 as the Tier-3 device platform. We run MobileNet filters to get

predictions on whether sub-frames contain objects of interests. We compare the predictions with

ground truths (e.g. whether a sub-frame is indeed interesting) to evaluate the effectiveness of

EarlyDiscard. Both frame-based and event-based metrics are used in the evaluation.

3.3.3 Evaluation

EarlyDiscard is able to significantly reduce the bandwidth consumed while maintaining high

result accuracy and low average delay. For three out of four tasks, the average bandwidth is

reduced by a factor of ten. Below we present our results in detail.

Effects of Tiling

Tiling is used to improve the accuracy for high resolution aerial images. We used the Okutama

Action Dataset, whose attributes are shown in row T1 of Table 3.2, to explore the effects of

tiling. For this dataset, Figure 3.3 shows how speed and accuracy change with tile size. Accuracy

improves as tiles become smaller, but the sustainable frame rate drops. We group all tiles from the

same frame in a single batch to leverage parallelism, so the processing does not change linearly

with the number of tiles. The choice of an operating point will need to strike a balance between

the speed and accuracy. In the rest of the chapter, we use two tiles per frame by default.
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(a) T1 (b) T2

(c) T3 (c) T4

Figure 3.4: Bandwidth Breakdown
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Task Total Events Detected Events Avg Delay Total Data Avg B/W Peak B/W

(s) (MB) (Mbps) (Mbps)

T1 62 100 % 0.1 441 5.10 10.7

T2 11 73 % 4.9 13 0.03 7.0

T3 31 90 % 12.7 93 0.24 7.0

T4 25 100 % 0.3 167 0.43 7.0

Table 3.4: Recall, Event Latency and Bandwidth at Cutoff Threshold 0.5

EarlyDiscard Filter Accuracy

The output of a Tier-3 filter is the probability of the current tile being “interesting.” A tunable

cutoff threshold parameter specifies the threshold for transmission to the cloudlet. All tiles,

whether deemed interesting or not, are still stored in the Tier-3 storage for offline processing.

Since objects have temporal locality in videos, we define an event (of an object) in a video

to be consecutive frames containing the same object of interests. For example, the appearance of

the same red raft in T3 in consecutive 45 frames constitutes a single event. A correct detection

of an event is defined as at least one of the consecutive frames being transmitted to the cloudlet.

Figure 3.4 shows our results on all four tasks. Blue lines show how the event recalls of

EarlyDiscard filters for different tasks change as a function of cutoff threshold. The MobileNet

DNN filter we used is able to detect all the events for T1 and T4 even at a high cutoff threshold.

For T2 and T3, the majority of the events are detected. Achieving high recall on T2 and T3 (on

the order of 0.95 or better) requires setting a low cutoff threshold. This leads to the possibility

that many of the transmitted frames are actually uninteresting (i.e., false positives).

False negatives

As discussed earlier, false negatives are a source of concern with early discard. Once the Tier-3

device drops a frame containing an important event, improved cloudlet processing cannot help.

The results in the third column of Table 3.4 confirm that there are no false negatives for T1 and

T4 at a cutoff threshold of 0.5. For T2 and T3, lower cutoff thresholds are needed to achieve

perfect recalls.

Result latency

The contribution of early discard processing to total result latency is calculated as the average

time difference between the first frame in which an object occurs (i.e., first occurrence in ground

truth) and the first frame containing the object that is transmitted to the backend (i.e., first detec-

tion). The results in the fourth column of Table 3.4 confirm that early discard contributes little to

result latency. The amounts range from 0.1 s for T1 to 12.7 s for T3.
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Figure 3.5: Event Recall at Different Sampling Intervals

Bandwidth

Columns 5–7 of Table 3.4 pertain to wireless bandwidth demand for the benchmark suite with

early discard. The figures shown are based on H.264 encoding of each individual frames in the

video transmission. Average bandwidth is calculated as the total data transmitted divided by

mission duration. Comparing column 5 of Table 3.4 with column 2 of Table 3.3, we see that all

videos in the benchmark suite are benefited by early discard (Note T3 and T4 have the same test

dataset as T2). For T2, T3, and T4, the bandwidth is reduced by more than 10x. The amount of

benefit is greatest for rare events (T2 and T3). When events are rare, the Tier-3 device can drop

many frames.

Figure 3.4 provides deeper insight into the effectiveness of cutoff-threshold on event recall.

It also shows how many true positives (violet) and false positives (aqua) are transmitted. Ideally,

the aqua section should be zero. However for T2, most frames transmitted are false positives,

indicating the early discard filter has low precision. The other tasks exhibit far fewer false pos-

itives. This suggests that the opportunity exists for significant bandwidth savings if precision

could be further improved, without hurting recall.

3.3.4 Use of Sampling

Given the relatively low precision of the weak detectors, a significant number of false positives

are transmitted. Furthermore, the occurrence of an object will likely last through many frames,

so true positives are also often redundant for simple detection tasks. Both of these result in

excessive consumption of precious bandwidth. This suggests that simply restricting the number

of transmitted frames by sampling may help reduce bandwidth consumption.

Figure 3.5 shows the effects of sending a sample of frames from Tier-3, without any content-
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Figure 3.6: Sample with Early Discard. Note the log scale on y-axis.

JPEG Frame Sequence H264 High Quality H264 Medium Quality H264 Low Quality

(MB) (MB) (MB) (MB)

5823 3549 1833 147

H264 high quality uses Constant Rate Factor (CRF) 23. Medium uses CRF 28 and low uses

CRF 40 [69].

Table 3.5: Test Dataset Size With Different Encoding Settings
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based filtering. Based on these results, we can reduce the frames sent as little as one per second

and still get adequate recall at the cloudlet. Note that this result is very sensitive to the actual

duration of the events in the videos. For the detection tasks outlined here, most of the events

(e.g., presences of a particular elephant) last for many seconds (100’s of frames), so such sparse

sampling does not hurt recall. However, if the events were of short duration, e.g., just a few

frames long, then this method would be less effective, as sampling may lead to many missed

events (false negatives).

Can we use content-based filtering along with sampling to further reduce bandwidth con-

sumption? Figure 3.6 shows results when running early discard on a sample of the frames. This

shows that for the same recall, we can reduce the bandwidth consumed by another factor of 5

on average over sampling alone. This effective combination can reduce the average bandwidth

consumed for our test videos to just a few hundred kilobits per second. Furthermore, more

processing time is available per processed frame, allowing more sophisticated algorithms to be

employed, or to allow smaller tiles to be used, improving accuracy of early discard.

One case where sampling is not an effective solution is when all frames containing an object

need to be sent to the cloudlet for some form of activity or behavior analysis from a complete

video sequence. In this case, bandwidth will not reduce much, as all frames in the event sequence

must be sent. However, the processing time benefits of sampling may still be exploited, provided

all frames in a sample interval are transmitted on a match.

3.3.5 Effects of Video Encoding

One advantage of the Dumb strategy is that since all frames are transmitted, one can use a modern

video encoding to reduce transmission bandwidth. With early discard, only a subset of disparate

frames are sent. These will likely need to be individually compressed images, rather than a video

stream. How much does the switch from video to individual frames affect bandwidth?

In theory, this can be a significant impact. Video encoders leverage the similarity between

consecutive frames, and model motion to efficiently encode the information across a set of

frames. Image compression can only exploit similarity within a frame, and cannot efficiently

reduce number of bits needed to encode redundant content across frames. To evaluate this dif-

ference, we start with extracted JPEG frame sequences of our video data set. We encode the

frame sequence with different H.264 settings. Table 3.5 compares the size of frame sequences

in JPEG and the encoded video file sizes. We see only about 3x difference in the data size for

the medium quality. We can increase the compression (at the expense of quality) very easily,

and are able to reduce the video data rate by another order of magnitude before quality degrades

catastrophically.

However, this compression does affect analytics. Even at medium quality level, visible com-

pression artifacts, blurring, and motion distortions begin to appear. Initial experiments analyzing

compressed videos show that these distortions do have a negative impact on accuracy of analyt-

ics. Using average precision analysis, a standard method to evaluate accuracy, we estimate that

the most accurate model (Faster-RCNN ResNet101) on low quality videos performs similarly to

29



Figure 3.7: JITL Pipeline

the less accurate model (Faster-RCNN InceptionV2) on high quality JPEG images. This negates

the benefits of using the state-of-art models.

In our EarlyDiscard design, we pay a penalty of sending frames instead of a compressed low

quality video stream. This overhead (approximately 30x) is compensated by the 100x reduc-

tion in frames transmitted due to sampling with early discard. In addition, the selective frame

transmission preserves the accuracy of the state-of-art detection techniques.

Finally, one other option is to treat the set of disparate frames as a sequence and employ

video encoding at high quality. This can ultimately eliminate the per frame overhead while

maintaining accuracy. However, this will require a complex setup with both low-latency encoders

and decoders, which can generate output data corresponding to a frame as soon as input data is

ingested, with no buffering, and can wait arbitrarily long for additional frame data to arrive.

For the experiments in the rest of this chapter, we only account for the fraction of frames

transmitted, rather than the choice of specific encoding methods used for those frames.

3.4 Just-In-Time-Learning (JITL) Strategy To Improve Early
Discard

While EarlyDiscard filters are customized and optimized for specific tasks (e.g. detecting a hu-

man with red life jacket), we observe that EarlyDiscard filters do not leverage context information
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Figure 3.8: JITL Fraction of Frames under Different Event Recall
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within a specific video stream. Opportunities exist if we could further specialize the computer

vision processing to the characteristics of video streams.

We propose Just-in-time-learning (JITL), which tunes the Tier-3 processing pipeline to the

characteristics of the current task in order to reduce transmitted false positives from the Tier-3

device, and thereby reducing wasted bandwidth. Intuitively, JITL leverages temporal locality in

video streams to quickly adapt processing outcomes based on recent feedback.

It is inspired by the ideas of cascade architecture from the computer vision community [114],

but is different in construction. A JITL filter is a cheap cascade filter that distinguishes between

the EarlyDiscard DNN’s true positives (frames that are actually interesting) and false positives
(frames that are wrongly considered interesting). Specifically, when a frame is reported as pos-

itive by EarlyDiscard, it is then passed through a JITL filter. If the JITL filter reports negative,

the frame is regarded as a false positive and will not be sent. Ideally, all true positives from

EarlyDiscard are marked positive by the JITL filter, and all false positives from EarlyDiscard are

marked negative. Frames dropped by EarlyDiscard are not processed by the JITL filter, so this

approach can only serve to improve precision, but not recall.

As shown in Figure 3.7 during task execution, a JITL filter is trained on the cloudlet using

the frames transmitted from the Tier-3 device. The frames received on the cloudlet are predicted

positive by the EarlyDiscard filter. The cloudlet, with more processing power, is able to run more

accurate DNNs to identify true positives and false positives. Using this information as a feedback

on how well current Tier-3 processing pipeline is doing, a small and lightweight JITL filter is

trained to distinguish true positives and false positives of EarlyDiscard filters. These JITL filters

are then pushed to the Tier-3 device to run as a cascade filter after the EarlyDiscard DNN.

True or false positive frames have high temporal locality throughout a task. The JITL filter

is expected to pick up the features that confused the EarlyDiscard DNN in the immediate past

and improve the pipeline’s accuracy in the near future. These features are usually specific to

the current task execution, and may be affected by terrain, shades, object colors, and particular

shapes or background textures.

JITL can be used with EarlyDiscard DNNs of different cutoff probabilities to strike different

trade-offs. In a bandwidth-favored setting, JITL can work with an aggressively selective Early-

Discard DNN to further reduce wasted bandwidth. In a recall-favored setting, JITL can be used

with a lower-cutoff DNN to preserve recall.

In our implementation, we use a linear support vector machine (SVM) [31] as the JITL

filter. Linear SVM has several advantages: 1) short training time in the order of seconds; 2)

fast inference; 3) only requires a few training examples; 3) small in size to transmit, usually on

the order of 50KB in our experiments. The input features to the JITL SVM filter are the image

features extracted by the EarlyDiscard DNN filter. In our case, since we are using MobileNet as

our EarlyDiscard filter, they are the 1024-dimensional vector elements from the second last layer

of MobileNet. This vector, also called “bottleneck values” or “transfer values” captures high-

level features that represents the content of an image. Note that the availability of such image

feature vector is not tied to a particular image classification DNN nor unique to MobileNet. Most

image classification DNNs can be used as a feature extractor in this way.
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3.4.1 JITL Experimental Setup

We used Jetson TX2 as our Tier-3 device platform and evaluated the JITL strategy on four tasks,

T1 to T4. For the test videos in each task, we began with the EarlyDiscard filter alone and gradu-

ally trained and deployed JITL filters. Specifically, every ten seconds, we trained an SVM using

the frames transmitted from the Tier-3 device and the ground-truth labels for these frames. In a

real deployment, the frames would be marked as true positives or false positives by an accurate

DNN running on the cloudlet since ground-truth labels are not available. In our experiments,

we used ground-truth labels to control variables and remove the effect of imperfect prediction of

DNN models running on the cloudlet.

In addition, we used the true and false positives from all previous intervals, not just the last ten

seconds when training the SVM. The SVM, once trained, is used as a cascade filter running after

the EarlyDiscard filter on the Tier-3 device to predict whether the output of the EarlyDiscard filter

is correct or not. For a frame, if the EarlyDiscard filter predicts it to be interesting, but the JITL

filter predicts the EarlyDiscard filter is wrong, it would not be transmitted to the cloudlet. In other

words, following two criteria need to be satisfied for a frame to be transmitted to the cloudlet:

1) EarlyDiscard filter predicts it to be interesting 2) JITL filter predicts the EarlyDiscard filter is

correct on this frame.

3.4.2 Evaluation

From our experiments, JITL is able to filter out more than 15% of remaining frames after Ear-

lyDiscard without loss of event recall for three of four tasks. Figure 3.8 details the fraction of

frames saved by JITL. The X-axis presents event recall. Y-axis represents the fraction of total

frames. The blue region presents the achievable fraction of frames by EarlyDiscard. The orange

region shows the additional savings using JITL. For T1, T3, and T4, at the highest event recall,

JITL filters out more than 15% of remaining frames. This shows that JITL is effective at re-

ducing the false positives thus improving the precision of the pipeline. However, occasionally,

JITL predicts wrongly and removes true positives. For example, for T2, JITL does not achieve a

perfect event recall. This is due to shorter event duration in T2, which results in fewer positive

training examples to learn from. Depending on tasks, getting enough positive training examples

for JITL could be difficult, especially when events are short or occurrences are few. To overcome

this problem in practice, techniques such as synthetic data generation [27] could be explored to

synthesize true positives from the background of the current task.

3.5 Applying EarlyDiscard and JITL to Wearable Cognitive
Assistants

While the experiments in previous sections ( 3.3 3.4) are performed in a drone video analytics

context, EarlyDiscard and JITL approaches can be applied more generally to live video analytics
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(a) Searching for Lego Blocks (b) Assembling Lego Pieces

Figure 3.9: Example Images from a Lego Assembly Video

Figure 3.10: Example Images from LEGO Dataset

offloading from Tier-3 devices to Tier-2 edge data-centers. In this section, we use the LEGO

application [16] to showcase how to apply these bandwidth saving approaches to WCAs.

The LEGO wearable cognitive assistant helps a user put together a specific Lego pattern by

providing step-by-step audiovisual instructions. The application works as follows. The assistant

first prompts a user an animated image showing the Lego block to use and asks the user to put it

on the Lego board or assemble it with previous pieces. Following the guidance, the user searches

for the particular Lego block, assemble it, and put the assembled piece on the Lego board for

the next instruction. Figure 3.9 shows the first-person view images captured from the wearable

device during this process. The assistant analyzes the assembled Lego piece on the Lego board

by identifying its shape and color using computer vision and provides the suitable instruction.

Intuitively, to the assistant, frames capturing the assembled piece on the Lego board, (for

example Figure 3.9 (b)) are the crucial frames to process, as they reflect the user’s working

progress. Figure 3.9 (a), on the other hand, is less interesting as it does not contain information

on user progress. If some cheap processing on the wearable device could distinguish (a) from (b),

bandwidth consumption can be reduced as we can discard Figure 3.9 (a) early on the wearable

device without transmitting the frame to the cloudlet for processing. This provides opportunities

to apply EarlyDiscard and JITL.

We collect a LEGO dataset of twelve videos, in which users assemble Lego pieces in three

environments with different background, lighting, and viewpoints. Figure 3.10 shows example

images from the dataset. We run the LEGO WCA on these videos to get pseudo ground truth

labels. Specifically, for each frame, based on the outputs of the LEGO WCA vision processing,

we categorize the frame to be either “interesting” or “not interesting”. A frame is considered to
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Figure 3.11: EarlyDiscard Filter Confusion Matrix

be interesting if a LEGO board is found in the frame, otherwise considered not interesting.

We use this dataset to finetune a MobileNet DNN in order to automatically distinguish in-

teresting frames from the boring ones for EarlyDiscard. For each of the three environments, we

randomly select two videos for training, one video for validation, and one video for testing. We

randomly sample 2000 interesting images and 2000 boring images from the six training videos

as the training data. Similarly, we random sample 200 interesting images and 200 boring images

from the three validation videos as the validation data. We implement MobileNet transfer learn-

ing using the PyTorch framework [80]. We train the model for 20 epochs and select the model

weights that give the highest accuracy on the validation set as the model for inference.

Our test sets have in total 14725 frames. Figure 3.11 shows the confusion matrix of our

trained EarlyDiscard classifier. X-axis represents the predicted results: “Transmit” means the

frame is predicted to be interesting and should be transmitted to cloudlet for processing while

“Discard” means the frame is predicted to be boring and should not be transmitted. Similarly,

Y-axis represents the ground truth results. As we can see, the classifier correctly predicts 2260

out of 14725 frames to be interesting and correctly suppresses 11971 frames. With EarlyDiscard

in place, only 19% of all the frames are transmitted. Meanwhile, the false negative is 0 frame,

meaning no “interesting” frame is wrongly discarded. This is the result of biasing the classifier

towards recall instead of precision.

Among all the frames that are transmitted, 18% of them are false positives. These 494 false

positives suggest that there are room to improve using JITL. For each of the test videos, we

use the first half of the video as training examples for JITL to train a SVM that produces a

confidence score for EarlyDiscard prediction. Figure 3.12 compares the confusion matrix of

using EarlyDiscard alone with EarlyDiscard + JITL. As we can see, JITL reduces 13% of the

false positives at the cost of 2 false negatives. Note that these 2 false negative frames do not

result in missing instructions as adjacent interesting frames are still transmitted.
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(a) EarlyDiscard (b) EarlyDiscard + JITL

Figure 3.12: JITL Confusion Matrix

3.6 Related Work

In the context of drone video analytics, Wang et al. [117] shares our concern for wireless band-

width, but focuses on coordinating a network of drones to capture and broadcast live sport event.

In addition, Wang et al [116] explored adaptive video streaming with drones using content-based

compression and video rate adaptation. While we share their inspiration, our work leverages

characteristics of DNNs to enable mission-specific optimization strategies.

Much previous work on static camera networks explored efficient use of compute and net-

work resources at scale. Zhang et al. [122] studied resource-quality trade-off under result latency

constraints in video analytics systems. Kang et al. [51] worked on optimizing DNN queries over

videos at scale. While they focus on supporting a large number of computer vision workload,

our work optimizes for the first hop wireless bandwidth. In addition, Zhang et al. [123] designed

a wireless distributed surveillance system that supports a large geographical area through frame

selection and content-aware traffic scheduling. In contrast, our work does not assume static cam-

eras. We explore techniques that tolerate changing scenes in video feeds and strategies that work

for moving cameras.

Some previous work on computer vision in mobile settings has relevance to aspects of our

system design. Chen et al. [15] explore how continuous real-time object recognition can be

done on mobile devices. They meet their design goals by combining expensive object detec-

tion with computationally cheap object tracking. Although we do not use object tracking in

our work, we share the resource concerns that motivate that work. Naderiparizi et al. [72] de-

scribe a programmable early-discard camera architecture for continuous mobile vision. Our

work shares their emphasis on early discard, but differs in all other aspects. In fact, our work

can be viewed as complementing that work: their programmable early-discard camera would be

an excellent choice for Tier-3 devices. Lastly, Hu et al [43] have investigated the approach of

using lightweight computation on a mobile device to improve the overall bandwidth efficiency

of a computer vision pipeline that offloads computation to the edge. We share their concern for
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wireless bandwidth, and their use of early discard using inexpensive algorithms on the mobile

device.

3.7 Chapter Summary and Discussion

In this chapter, we address the bandwidth challenge of running many WCAs at scale. We propose

two application-agnostic methods to reduce bandwidth consumption when offloading computa-

tion to edge servers.

The EarlyDiscard technique employs on-board filters to select interesting frames and sup-

press the transmission of mundane frames to save bandwidth. In particular, cheap yet effective

DNN filters are trained offline to fully leverage the large quantity of training data and the high

learning capacities of DNNs. Building on top of EarlyDiscard, JITL adapts an EarlyDiscard

filter to a specific environment online. While a WCA is running, JITL continuously evaluates

the EarlyDiscard filter and reduces the number of false positives by predicting whether an Eary-

Discard decision is made correctly. These two techniques together reduce the total number of

unnecessary frames transmitted.

We evaluate these two strategies first in the drone live video analytics context for search

tasks in domains such as search-and-rescue, surveillance, and wildlife conservation, and then

for WCAs. Our experimental results show that this judicious combination of Tier-3 processing

and edge-based processing can save substantial wireless bandwidth and thus improve scalability,

without compromising result accuracy or result latency.
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Chapter 4

Application-Aware Techniques to Reduce
Offered Load

Elasticity is a key attribute of cloud computing. When load rises, new servers can be rapidly

spun up. When load subsides, idle servers can be quiesced to save energy. Elasticity is vital

to scalability, because it ensures acceptable response times under a wide range of operating

conditions. To benefit, cloud services need to be architected to easily scale out to more servers.

Such a design is said to be “cloud-native.”

In contrast, edge computing has limited elasticity. As its name implies, a cloudlet is designed

for much smaller physical space and electrical power than a cloud data center. Hence, the sudden

arrival of an unexpected flash crowd can overwhelm a cloudlet. Since low end-to-end latency is

a prime reason for edge computing, shifting load elsewhere (e.g., the cloud) is not an attractive

solution. How do we build multi-user edge computing systems that preserve low latency even as
load increases? That is the focus of the next two chapters.

Our approach to scalability is driven by the following observation. Since compute resources

at the edge cannot be increased on demand, the only paths to scalability are (a) to reduce offered

load, as discussed in this chapter, or (b) to reduce queueing delays through improved end-to-end

scheduling, as discussed in Chapter 5. Otherwise, the mismatch between resource availability

and offered load will lead to increased queueing delays and hence increased end-to-end latency.

Both paths require the average burden placed by each user on the cloudlet to fall as the number of

users increases. This, in turn, implies adaptive application behavior based on guidance received

from the cloudlet or inferred by the user’s mobile device. In the context of Figure 2.1, scalability

at the left is achieved very differently from scalability at the right. The relationship between Tier-

3 and Tier-2 is non-workload-conserving, while that between Tier-1 and other tiers is workload-

conserving.

While we demonstrated application-agnostic techniques to reduce network transmission be-

tween Tier-3 and Tier-2 in Chapter 3, offered load can be further reduced with application assis-

tance. We claim that scalability at the edge can be better achieved for applications that have been

designed with this goal in mind. We refer to applications that are specifically written to lever-
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age edge infrastructure as edge-native applications. These applications are deeply dependent

on the services that are only available at the edge (such as low-latency offloading of compute,

or real-time access to video streams from edge-located cameras), and are written to adapt to

scalability-relevant guidance. For example, an application at Tier-3 may be written to offload

object recognition in a video frame to Tier-2, but it may also be prepared for the return code to

indicate that a less accurate (and hence less compute-intensive) algorithm than normal was used

because Tier-2 is heavily loaded. Alternatively, Tier-2 or Tier-3 may determine that the wireless

channel is congested; based on this guidance, Tier-3 may reduce offered load by preprocessing a

video frame and using the result to decide whether it is worthwhile to offload further processing

of that frame to the cloudlet. Several earlier works [19, 43] have shown that even modest compu-

tation, such as color filtering and shallow DNN processing, at Tier-3 can make surprisingly good

predictions about whether a specific use of Tier-2 is likely to be worthwhile.

Edge-native applications may also use cross-layer adaptation strategies, by which knowledge

from Tier-3 or Tier-2 is used in the management of the wireless channel between them. For

example, an assistive augmented reality (AR) application that verbally guides a visually-impaired

person may be competing for the wireless channel and cloudlet resources with a group of AR

gamers. In an overload situation, one may wish to favor the assistive application over the gamers.

This knowledge can be used by the cloudlet operating system to preferentially schedule the

more important workload. It can also be used for prioritizing network traffic by using fine-grain
network slicing, as envisioned in 5G [20].

Wearable cognitive assistance, perceived to be “killer apps” for edge computing, are perfect

exemplars of edge-native applications. In the rest of this chapter, we showcase how we can

leverage unique application characteristics of WCAs to adapt application behavior and reduce

offered load. Our work is built on the Gabriel platform [17, 35], shown in Figure 2.4. The

Gabriel front-end on a wearable device performs preprocessing of sensor data (e.g., compression

and encoding), which it streams over a wireless network to a cloudlet. We refer to the Gabriel

platform with new mechanisms that handle multitenancy, perform resource allocation, and sup-

port application-aware adaptation as “Scalable Gabriel” and the single-user baseline platform as

“Original Gabriel”.

4.1 Adaptation Architecture and Strategy

The original Gabriel platform has been validated in meeting the latency bounds of WCA ap-

plications in single-user settings [17]. Scalable Gabriel aims to meet these latency bounds in

multi-user settings, and to ensure performant multitenancy even in the face of overload. We take

two complementary approaches to scalability. The first is for applications to reduce their offered

load to the wireless network and the cloudlet through adaptation. The second uses end-to-end

scheduling of cloudlet resources to minimize queueing and impacts of overload (See Chapter 5

for more details). We both approaches, and combine them using the system architecture shown

in Figure 4.1. We assume benevolent and collaborative clients in the system.
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Figure 4.1: Adaptation Architecture

4.2 System Architecture

Computer vision processing is at the core of wearable cognitive assistance. We consider sce-

narios in which multiple Tier-3 devices concurrently offload their vision processing to a single

cloudlet over a shared wireless network. The devices and cloudlet work together to adapt work-

loads to ensure good performance across all of the applications vying for the limited Tier-2 re-

sources and wireless bandwidth. This is reflected in the system architecture shown in Figure 4.1.

Monitoring of resources is done at both Tier-3 and Tier-2. Certain resources, such as battery

level, are device-specific and can only be monitored at Tier-3. Other shared resources can only

be monitored at Tier-2: these include processing cores, memory, and GPU. Wireless bandwidth

and latency are measured independently at Tier-3 and Tier-2, and aggregated to achieve better

estimates of network conditions.

This information is combined with additional high-level predictive knowledge and factored

into scheduling and adaptation decisions. The predictive knowledge could arise at the cloudlet

(e.g., arrival of a new device, or imminent change in resource allocations), or at the Tier-3 device
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(e.g., application-specific, short-term prediction of resource demand). All of this information

is fed to a policy module running on the cloudlet. This module is guided by an external policy

specification and determines how cloudlet resources should be allocated across competing Tier-3

applications. Such policies can factor in latency needs and fairness, or simple priorities (e.g., a

blind person navigation assistant may get priority over an AR game).

A planner module on the Tier-3 device uses current resource utilization and predicted short-

term processing demand to determine which workload reduction techniques (described in Sec-

tion 4.4) should be applied to achieve best performance for the particular application given the

resource allocations.

4.3 Adaptation Goals

For WCAs, the dominant class of offloaded computations are computer vision operations, e.g.,

object detection with deep neural networks (DNNs), or activity recognition on video segments.

The interactive nature of these applications precludes the use of deep pipelining that is commonly

used to improve the efficiency of streaming analytics. Here, end-to-end latency of an individual

operation is more important than throughput. Further, it is not just the mean or median of latency,

but also the tail of the distribution that matters. There is also significant evidence that user

experience is negatively affected by unpredictable variability in response times. Hence, a small

mean with short tail is the desired ideal. Finally, different applications have varying degrees

of benefit or utility at different levels of latency. Thus, our adaptation strategy incorporates

application-specific utility as a function of latency as well as policies maximizing the total utility

of the system.

4.4 Leveraging Application Characteristics

WCA applications exhibit certain properties that distinguish them from other video analytics ap-

plications studied in the past. Adaptation based on these attributes provides a unique opportunity

to improve scalability.

Human-Centric Timing: The frequency and speed with which guidance must be provided

in a WCA application often depends on the speed at which the human performs a task step.

Generally, additional guidance is not needed until the instructed action has been completed. For

example, in the RibLoc assistant (Chapter 2), drilling a hole in bone can take several minutes

to complete. During the drilling, no further guidance is provided after the initial instruction to

drill. Inherently, these applications contain active phases, during which an application needs

to sample and process video frames as fast as possible to provide timely guidance, and passive
phases, during which the human user is busy performing the instructed step. During a passive

phase, the application can be limited to sampling video frames at a low rate to determine when

the user has completed or nearly completed the step, and may need guidance soon. Although

durations of human operations need to be considered random variables, many have empirical
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Question Example Load-reduction Technique

1 How often are instructions

given, compared to task du-

ration?

Instructions for each step in IKEA

lamp assembly are rare compared

to the total task time, e.g., 6 in-

structions over a 10 minute task.

Enable adaptive sampling

based on active and passive

phases.

2 Is intermittent processing of

input frames sufficient for

giving instructions?

Recognizing a face in any one

frame is sufficient for whispering

the person’s name.

Select and process key

frames.

3 Will a user wait for sys-

tem responses before pro-

ceeding?

A first-time user of a medical de-

vice will pause until an instruc-

tion is received.

Select and process key

frames.

4 Does the user have a pre-

defined workspace in the

scene?

Lego pieces are assembled on the

lego board. Information outside

the board can be safely ignored.

Focus processing attention

on the region of interest.

5 Does the vision processing

involve identifying and lo-

cating objects?

Identifying a toy lettuce for a toy

sandwich.

Use tracking as cheap ap-

proximation for detection.

6 Are the vision processing

algorithms insensitive to

image resolution?

Many image classification DNNs

limit resolutions to the size of

their input layers.

Downscale sampled frames

on device before transmis-

sion.

7 Can the vision processing

algorithm trade off accuracy

and computation?

Image classification DNN Mo-

bileNet is computationally

cheaper than ResNet, but less

accurate.

Change computation fi-

delity based on resource

utilization.

8 Can IMUs be used to iden-

tify the start and end of user

activities?

User’s head movement is signifi-

cantly larger when searching for a

Lego block.

Enable IMU-based frame

suppression.

9 Is the Tier-3 device power-

ful enough to run parts of

the processing pipeline?

A Jetson TX2 can run MobileNet-

based image recognition in real-

time.

Partition the vision pipeline

between Tier-3 and Tier-2.

Table 4.1: Application characteristics and corresponding applicable techniques to reduce load
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lower bounds. Adapting sampling and processing rates to match these active and passive phases

can greatly reduce offered load. Further, the offered load across users is likely to be uncorrelated

because they are working on different tasks or different steps of the same task. If inadvertent

synchronization occurs, it can be broken by introducing small randomized delays in the task

guidance to different users. These observations suggest that proper end-to-end scheduling can

enable effective use of cloudlet resources even with multiple concurrent applications.

Event-Centric Redundancy: In many WCA applications, guidance is given when a user

event causes visible state change. For example, placing a lamp base on a table triggers the IKEA

Lamp application to deliver the next assembly instruction. Typically, the application needs to

process video at high frame rate to ensure that such state change is detected promptly, leading

to further guidance. However, all subsequent frames will continue to reflect this change, and are

essentially redundant, wasting wireless and computing resources. Early detection of redundant

frames through careful semantic deduplication and frame selection at Tier-3 can reduce the use

of wireless bandwidth and cloudlet cycles on frames that show no task-relevant change.

Inherent Multi-Fidelity: Many vision processing algorithms can tradeoff fidelity and com-

putation. For example, frame resolution can be lowered, or a less sophisticated DNN used for

inference, in order to reduce processing at the cost of lower accuracy. In many applications, a

lower frame rate can be used, saving computation and bandwidth at the expense of response la-

tency. Thus, when a cloudlet is burdened with multiple concurrent applications, there is scope to

select operating parameters to keep computational load manageable. Exactly how to do so may

be application-dependent. In some cases, user experience benefits from a trade-off that preserves

fast response times even with occasional glitches in functionality. For others, e.g., safety-critical

applications, it may not be possible to sacrifice latency or accuracy. This in turn, translates to

lowered scalability of the latter class of application, and hence the need for a more powerful

cloudlet and possibly different wireless technology to service multiple users.

4.4.1 Adaptation-Relevant Taxonomy

The characteristics described in the previous section largely hold for a broad range of WCA

applications. However, the degree to which particular aspects are appropriate to use for effective

adaptation is very application dependent, and requires a more detailed characterization of each

application. To this end, our system requests a manifest describing an application from the

developers. This manifest is a set of yes/no or short numerical responses to the questions in

Table 4.1. Using these, we construct a taxonomy of WCA applications (shown in Figure 4.2),

based on clusters of applications along dimensions induced from the checklist of questions. In

this case, we consider two dimensions – the fraction of time spent in "active" phase, and the

significance of the provided guidance (from merely advisory, to critical instructions). Our system

varies the adaptation techniques employed to the different clusters of applications. We note that

as more applications and more adaptation techniques are created, the list of questions can be

extended, and the taxonomy can be expanded.
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Figure 4.2: Design Space of WCA Applications

4.5 Adaptive Sampling

The processing demands and latency bounds of a WCA application can vary considerably during

task execution because of human speed limitations. When the user is awaiting guidance, it is

desirable to sample input at the highest rate to rapidly determine task state and thus minimize

guidance latency. However, while the user is performing a task step, the application can stay in a

passive state and sample at a lower rate. For a short period of time immediately after guidance is

given, the sampling rate can be very low because it is not humanly possible to be done with the

step. As more time elapses, the sampling rate has to increase because the user may be nearing

completion of the step. Although this active-passive phase distinction is most characteristic of

WCA applications that provide step-by-step task guidance (the blue cluster in the lower right of

Figure 4.2), most WCA applications exhibit this behavior to some degree. As shown in the rest

of this section, adaptive sampling rates can reduce processing load without impacting application

latency or accuracy.

We use task-specific heuristics to define application active and passive phases. In an ac-

tive application phase, a user is likely to be waiting for instructions or comes close to needing

instructions, therefore application needs to be “active“ by sampling and processing at high fre-

quencies. On the other hand, applications can run at low frequency during passive phases when

an instruction is unlikely to occur.
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We use the LEGO application from Section 2.3 to show the effectiveness of adaptive sam-

pling. By default, the LEGO application runs at active phase. The application enters passive

phases immediately following the delivery of an instruction, since the user is going to take a

few seconds searching and assembling LEGO blocks. The length and sampling rate of a passive

phase is provided by the application to the framework. We provide the following system model

as an example of what can be provided. We collect five LEGO traces with 13739 frames as our

evaluation dataset.

Length of a Passive Phase: We model the time it takes to finish each step as a Gaussian

distribution. We use maximum likelihood estimation to calculate the parameters of the Guassian

model.

Lowest Sampling Rate in Passive Phase: The lowest sampling rate in passive phase still

needs to meet application’s latency requirement. Figure 4.3 shows the system model to calculate

the largest sampling period S that still meets the latency bound. In particular,

(k − 1)S + processing_delay ≤ latency_bound

k represents the cumulative number of frames an event needs to be detected in order to be certain

an event actually occurred. The LEGO application empirically sets this value to be 5.

Adaptation Algorithm: At the start of a passive phase, we set the sampling rate to the

minimum calculated above. As time progresses, we gradually increase the sampling rate. The

idea behind this is that the initial low sampling rates do not provide good latency, but this is ac-

ceptable, as the likelihood of an event is low. As the likelihood increases (based on the Gaussian

distribution described earlier), we increase sampling rate to decrease latency when events are

likely. Figure 4.4(a) shows the sampling rate adaptation our system employs during a passive

phase. The sampling rate is calculated as

sr = min_sr + α ∗ (max_sr −min_sr) ∗ cdf_Gaussian(t)
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Figure 4.4: Adaptive Sampling Rate

sr is the sampling rate. t is the time after an instruction has been given. α is a recovery factor

which determines how quickly the sampling rate rebounds to active phase rate.

Figure 4.4(b) shows the sampling rate for a trace as the application runs. The video captures

a user doing 7 steps of a LEGO assembly task. Each drop in sampling rate happens after an

instruction has been delivered to the user. Table 4.2 shows the percentage of frames sampled

and guidance latency comparing adaptive sampling with naive sampling at half frequency. Our

adaptive sampling scheme requires processing fewer frames while achieving a lower guidance

latency.

4.6 IMU-based Approaches: Passive Phase Suppression

In many applications, passive phases can often be associated with the user’s head movement.

We illustrate with two applications here. In LEGO, during the passive phase, which begins after

the user receives the next instruction, a user typically turns away from the LEGO board and

starts searching for the next brick to use in a parts box. During this period, the computer vision

algorithm would detect no meaningful task states if the frames are transmitted. In PING PONG

application (Section 2.3), an active phase lasts throughout a rally. Passive phases are in between

actual game play, when the user takes a drink, switches sides, or, most commonly, tracks down

and picks up a wayward ball from the floor. These are associated with much large range of

head movements than during a rally when the player generally looks toward the opposing player.

Again, the frames can be suppressed on the client to reduce wireless transmission and load on
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Trace
Sample

Half Freq

Adaptive

Sampling

1 50% 25%

2 50% 28%

3 50% 30%

4 50% 30%

5 50% 43%

(a) Percentage of Frames Sampled

Guidance Delay

(frames±stddev)

Sample Half Freq 7.6 ± 6.9

Adaptive Sampling 5.9 ± 8.2

(b) Guidance Latency

Table 4.2: Adaptive Sampling Results

the cloudlet. In both scenarios, significant body movement can be detected through Inertial

Measurement Unit (IMU) readings on the wearable device, and used to predict those passive

phases.

For each frame, we get a six-dimensional reading from the IMU: rotation in three axes, and

acceleration in three axes. We train an application-specific SVM to predict active/passive phases

based on IMU readings, and suppress predicted passive frames on the client. Figure 4.5(a) and

(b) show an example trace from LEGO and PING PONG, respectively. Human-labeled ground

truth indicating passive and active phases is shown in blue. The red dots indicate predictions

of passive phase frames based on the IMU readings; these frames are suppressed at the client

and not transmitted. Note that in both traces, the suppressed frames also form streaks. In other

words, a number of frames in a row can be suppressed. As a result, the saving we gain from IMU

is orthogonal to that from adaptive sampling.

Although the IMU approach does not capture all of the passive frames (e.g., in LEGO, the

user may hold his head steady while looking for the next part), when a passive frame is predicted,

this is likely correct (i.e., high precision, moderate recall). Thus, we expect little impact on event

detection accuracy or latency, as few if any active phase frames are affected. This is confirmed

in Table 4.3, which summarizes results for five traces from each application. We are able to

suppress up to 49.9% of passive frames for LEGO and up to 38.4% of passive frames in case of

PING PONG on the client, while having minimal impact on application quality — incurring no

delay in state change detection in LEGO, and less than 2% loss of active frames in PING PONG.

48



0 500 1000 1500 2000

Frame Sequence

Passive

Active

Ground Truth Suppressed frames by IMU

(a) LEGO

0 500 1000 1500 2000

Frame Sequence

Passive

Active

Ground Truth Suppressed frames by IMU

(b) PING PONG

Figure 4.5: Accuracy of IMU-based Frame Suppression

4.7 Related Work

Although edge computing is new, the techniques for reducing offered load to adapt application

behaviors examined in this chapter bear some resemblance to work that was done in the early

days of mobile computing.

Several different approaches to adapting application fidelity have been studied. Dynamic

sampling rate with various heuristics for adaptation have been tried primarily in the context of

individual mobile devices for energy efficiency [56, 65, 66, 112]. Semantic deduplication to

reduce redundant processing of frames have been suggested by [42, 43, 51, 123]. Similarly,

previous works have looked at suppression based on motion either from video content [58, 72]

or IMUs [49]. Others have investigated exploiting multiple deep models with accuracy and re-

source tradeoffs [36, 50]. In addition, using tracking as approximate result of detection and

recognition has been explored to leverage the temporal locality of video data and reduce compu-

tational demand [15, 115, 121]. While most of these efforts were in mobile-only, cloud-only, or

mobile-cloud context, we explore similar techniques in an edge-native context.

Partitioning workloads between mobile devices and the cloud have been studied in sensor

networks [74], throughput-oriented systems [21, 119], for interactive applications [15, 82], and
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Suppressed Max Delay of

Passive Frames (%) State Change Detection

Trace 1 17.9% 0

Trace 2 49.9% 0

Trace 3 27.1% 0

Trace 4 37.0% 0

Trace 5 34.1% 0

(a) LEGO

Suppressed Loss of

Passive Frames (%) Active Frames (%)

Trace 1 21.5% 0.8%

Trace 2 30.0% 1.5%

Trace 3 26.2% 1.9%

Trace 4 29.8% 1.0%

Trace 5 38.4% 0.2%

(b) PING PONG

Table 4.3: Effectiveness of IMU-based Frame Suppression

from programming model perspectives [8]. We believe that these approaches will become im-

portant techniques to scale applications on heavily loaded cloudlets.

4.8 Chapter Summary and Discussion

In this chapter, we demonstrate that scalability can be increased by leveraging application char-

acteristics to reduce offered load. Our approach to increased scalability is through adaptation.

Specifically, we first present an adaptation-centric architecture that monitors and coordinates

Tier-3 devices and the edge server. When contention arises, enabled are application-specific

optimizations to reduce offered load to the edge server. In addition, we highlight two of adapta-

tion techniques, selective sampling and IMU-based suppression. Our experiment show that they

can significantly reduce the offered load. Finally, we provide a taxonomy to help developers

reason about characteristics of their applications, and identify and specify reduction techniques

applicable to their needs.
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Chapter 5

Cloudlet Resource Management for
Graceful Degradation of Service

In addition to workload reduction at the client as discussed in Chapter 4, another key aspect of

adaptation lies in the resource management of cloudlet resources. We argue that naive resource

management schemes using statistical multiplexing cannot satisfy the needs of edge-native appli-

cations in oversubscribed edge scenarios. Needed are intelligent mechanisms that take account of

application degradation behaviors. In this chapter, we introduce and evaluate such an adaptation-

centric cloudlet resource management mechanism.

In Original Gabriel which relies on operating system level statistical multiplexing for re-

source sharing, an increasing number of clients means less resources for each client. This results

in all clients and all applications suffering from long response time. For wearable cognitive assis-

tance, long response time results in feedback delivered too late, which has significantly decreased

value. In a data-center setting, a cloud-native application, can quickly scale-up or scale-out by

acquiring additional resources (e.g. instantiating more virtual machines). However, at the edge,

since the total amount of hardware resources is constrained, acquiring more resources in face of a

flash crowd is not possible. Instead, we make the observation that applications behave differently

when the amount of resources allocated to them changes. We can leverage application adaptation

characteristics to create a judicious and intelligent resource allocation plan that prioritizes some

applications. In particular, we focus on mechanisms rather than policies. Our mechanism in

this chapter enables external allocation policies to divide cloudlet resources by taking account of

adaptation characteristics, so that quality of service can be maintained for some clients.

5.1 System Model and Application Profiles

Resource allocation has been well explored in many contexts of computer systems, including

operating system, networks, real-time systems, and cloud data centers. While these prior efforts

can provide design blueprints for cloudlet resource allocation, the characteristics of edge-native

applications emphasize unique design challenges.
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Figure 5.1: LEGO Processing DAG

The ultra-low application latency requirements of edge-native applications are at odds with

large queues often used to maintain high resource utilization of scarce resources. Even buffering

a small number of requests may result in end-to-end latencies that are several multiples of pro-

cessing delays, hence exceeding acceptable latency thresholds. On the other hand, when using

short queues, accurate estimations of throughput, processing, and networking delay are vital to

enable efficient use of cloudlet resources. However, sophisticated computer vision processing

represents a highly variable computational workload, even on a single stream. For example,

as shown in Figure 5.1, the processing pipeline for LEGO has many exits, resulting in highly

variable execution times.

To adequately provision resources for an application, one approach is to leave the burden to

developers, asking them to specify and reserve a static amount of cores and memories needed

for the service. However, this method is known to be highly inaccurate and typically leads

to over-reservation in data-centers. For cloudlets, which are more resource constrained, such

over-reservation will lead to even worse under-utilization or inequitable sharing of the available

resources. Instead, we seek to create an automated resource allocation system that leverages

knowledge of the application requirements and minimizes developer effort. To this end, we ask

developers to provide target Quality of Service (QoS) metrics or a utility function that relates

a single, easily-quantified metric (such as latency) to the quality of user experience. Building

on this information, we construct offline application profiles that map multidimensional resource

allocations to application QoS metrics. At runtime, we calculate a resource allocation plan to

maximize a system-wide metric (e.g., total utility, fairness) specified by cloudlet owner. We

choose to consider the allocation problem per application rather than per client in order to lever-

age statistical multiplexing among clients and multi-user optimizations (e.g., cache sharing) in

an application.

5.1.1 System Model

Figure 5.2 shows the system model we consider. Each application is given a separate input

queue. Each queue can feed one or more application instances, which are the units of application

logic that can be replicated (e.g. a single process or several collaborative processes). Each

application instance is encapsulated in a container with controlled resources. In this model, with
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Figure 5.2: Resource Allocation System Model

adequate computational resources, clients of different applications have minimal sharing and

mainly contend for the wireless network.

We use a utility-based approach to measure and compare system-wide performance under

different allocation schemes. For WCA, the utility of a cloudlet response depends on both the

quality of response and its QoS characteristics (e.g., end-to-end latency). The total utility of a

system is the sum of all individual utilities. A common limitation of a utility-based approach

is the difficulty of creating these functions. One way to ease such burden is to position an

application in the taxonomy described in Section 4.4.1 and borrow from similar applications.

Another way is to calculate or measure application latency bounds, such as through literature

review or physics-based calculation as done in [17].

The system-wide performance is a function of the following independent variables.

(a) the number of applications and the number of clients of each application;

(b) the number of instances of each application;

(c) the resource allocation for each instance;

Although (a) is not under our control, Gabriel is free to adapt (b) and (c). Furthermore, to

optimize system performance, it may sacrifice the performance of certain applications in favor

of others. Alternatively, it may choose not to run certain applications.

5.1.2 Application Utility and Profiles

We build application profiles offline in order to estimate latency and throughput at runtime. First,

we ask developers to provide a utility function that maps QoS metrics to application experience.

Figure 5.3(a) and Figure 5.4(a) show utility functions for two applications based on latency

bounds identified by [17] for each request. Next, we profile an application instance by running

it under a discrete set of cpu and memory limitations, with a large number of input requests. We

record the processing latency and throughput, and calculate the system-wide utility per unit time.

We interpolate between acquired data points of (system utility, resources) to produce continuous
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Figure 5.3: FACE Application Utility and Profile
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Figure 5.4: POOL Application Utility and Profile
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functions. Hence, we effectively generate a multidimensional resource to utility profile for each

application.

We make a few simplifying assumptions to ensure profile generation and allocation of re-

sources by utility are tractable. First, we assume utility values across different applications are

comparable. Furthermore, we assume utility is received on a per-frame basis, with values that are

normalized between 0 and 1. Each frame that is sent, accurately processed, and replied within

its latency bound receives 1, so a client running at 30 FPS under ideal conditions can receive

a maximum utility of 30 per second. This clearly ignores variable utility of processing partic-

ular frames (e.g., differences between active and passive phases), but simplifies construction of

profiles and modeling for resource allocation; we leave the complexities of variable utility to

future work. Figure 5.3(b) and Figure 5.4(b) show the generated application profiles for FACE

and POOL. We see that POOL is more efficient than FACE in using per unit resource to produce

utility. If an application needs to deliver higher utility than a single instance can, our framework

will automatically launch more instances of it on the cloudlet.

5.2 Profiling-based Resource Allocation

Given a workload of concurrent applications running on a cloudlet, and the number of clients

requesting service from each application, our resource allocator determines how many instances

to launch and how much resource (CPU cores, memory, etc.) to allocate for each application

instance. We assume queueing delays are limited by the token mechanism used in Original

Gabriel, which limits the number of outstanding requests on a per-client basis.

5.2.1 Maximizing Overall System Utility

As described earlier, for each application a ∈ {FACE, LEGO, PING PONG, POOL, . . . }, we

construct a resource to utility mapping ua : r → R for one instance of the application on

cloudlet, where r is a resource vector of allocated CPU, memory, etc. We formulate the fol-

lowing optimization problem which maximizes the system-wide total utility, subject to a tunable

maximum per-client limit:

max
{ka,ra}

∑

a

ka · ua(ra)

s.t.
∑

a

ka · ra � r̂

0 � ra ∀a
ka · ua(ra) ≤ γ · ca ∀a
ka ∈ Z

(5.1)

In above, ca is the number of mobile clients requesting service from application a. The total
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Profile applications under varying resources;

ua(r): resource r to utility mapping for application a;

for each application do
find the highest utility-to-resource ratio

ua(r)
|r| ;

end
while leftover system resource do

Find the application with the largest utility-to-resource ua(r∗a)
|r∗a| , which has not been

allocated resources;

Allocate ka application instances, each with resource r∗a, such that ka is the largest

integer with ka · ua(r
∗
a) ≤ γ · ca;

end

Figure 5.5: Iterative Allocation Algorithm to Maximize Overall System Utility

resource vector of the cloudlet is r̂. For each application a, we determine how many instances

to launch — ka, and allocate resource vector ra to each of them. A tunable knob γ regulates

the maximum utility allotted per application, and serves to enforce a form of partial fairness

(no application can be given excessive utility, though some may still receive none). The larger

γ is, the more aggressive our scheduling algorithm will be in maximizing global utility and

suppressing low-utility applications. By default, we set γ = 10, which, based on our definition

of utility, roughly means resources will be allocated so no more than one third of frames (from a

30FPS source) will be processed within satisfactory latency bounds for a given client.

Solving the above optimization problem is computationally difficult. We thus use an itera-

tive greedy allocation algorithm as shown in Figure 5.5. In our implementation, we exploit the

cpu-shares and memory-reservation control options of Linux Docker containers. It

puts a soft limit on containers’ resource utilization only when they are in contention, but allows

them to use as much left-over resource as needed.

5.3 Evaluation

We use five WCA applications, including FACE, PING PONG, LEGO, POOL, and IKEA for

evaluation [16, 17]. These applications are selected based on their distinct requirements and

characteristics to represent the variety of WCA apps. IKEA and LEGO assist users step by step

to assemble an IKEA lamp or a LEGO model. While their 2.7-second loose latency bound is

less stringent than other apps, the significance of their instructions is high, as a user could not

proceed without the instruction. On the other hand, users could still continue their tasks without

the instructions from FACE, POOL, and PING PONG assistants. For POOL and PING PONG,

the speed of an instruction is paramount to its usefulness. For example, any instruction that

comes 105ms after a user action for POOL is no longer of value, because it is too late to guide

the next action.
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Figure 5.6: Effects of Workload Reduction

5.3.1 Effectiveness of Workload Reduction

We first evaluate the effectiveness of all of the workload reduction techniques explored in Chap-

ter 4. For this set of experiments, we do not use multiple concurrent applications. Adaptation-

centric cloudlet resource allocation is not enabled for a controlled setup. We use four Nexus

6 mobile phones as clients. They offload computation to a cloudlet over Wi-Fi links. We run

PING PONG, LEGO, and POOL applications one at a time with 2, 4, 6, and 8 cores on the edge

server. We constrain the number of cores available using Linux cgroup. Figure 5.6 shows the

total number of frames processed with and without workload reduction. The yellow lines for

Original Gabriel do not have workload reduction while the blue lines for Scalable Gabriel do.

The solid lines represent the total number of frames offloaded. The dashed lines represent the

number of active frames, those frames that actually contain user state information. Note that

although the offered work is greatly reduced, the processed frames for active phases of the appli-

cation have not been affected. Thus, we confirm that we can significantly reduce cloudlet load

without affecting the critical processing needed by these applications.

5.3.2 Effectiveness of Resource Allocation

We next evaluate our adaptation-centric resource allocation mechanism on a server machine

with 2 Intel R© Xeon R© E5-2699 v3 processors, totaling 36 physical cores running at 2.3 Ghz

(turbo boost disabled) and 128 GB memory. We dedicate 8 physical cores (16 Intel R© hyper

threads) and 16 GB memory as cloudlet resources using cgroup. We run 8 experiments with
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Exp Number of Clients

# Total FACE LEGO POOL PING IKEA

PONG

1 15 3 3 3 3 3

2 20 4 4 4 4 4

3 23 5 5 4 4 5

4 25 5 5 5 5 5

5 27 5 6 6 5 5

6 30 5 7 6 6 6

7 32 5 7 7 7 6

8 40 8 8 8 8 8

Table 5.1: Resource Allocation Experiment Setup

increasing numbers of clients across four concurrent applications. The total number of clients

gradually increases from 15 to 40. Table 5.1 shows the breakdown of the number of clients used

for each experiment. Note that these clients are running simultaneously, resulting in heavier

and heavier contention. We generate application adapation profiles offline using the method

discussed in Section 5.2. We leverage these profiles to optimize for maximizing the total system

utility. Figure 5.7 shows how the total system utility changes as we add more clients and hence

more workload. The yellow line represents the Original Gabriel which relies on the operating

system alone to divide system resources. The blue line shows our Scalable Gabriel approach. In

the beginning, while the system is under-utilized, we see that the Original Gabriel yields slightly

higher total utility. However, as contention increases, Original Gabriel’s total utility quickly

drops, eventually more than 40%, since every client contends for resources in an uncontrolled

fashion. All applications suffer, but the effects of increasing latencies are vastly different among

different applications. In contrast, scalable Gabriel maintains a high level of system-wide utility

by differentially allocating resources to different applications based on their sensitivity captured

in the adaptation profiles.

Figure 5.8 and Figure 5.9 provide insights into how scalable Gabriel strikes the balance. We

present both application throughput in terms of average frames per second and latency in terms of

90%-tile response delay. Latencies are better controlled as resources are dedicated to applications

with high utility, and more clients are kept within their latency bounds. Of course, with higher

contention, fewer frames per second can be processed for each client. Original Gabriel degrades

applications in an undifferentiated fashion. Scalable Gabriel, in contrast, tries to maintain higher

throughput for some applications at the expense of the others, e.g. LEGO up to 27 clients. The

accuracies of application profiles influence how well Scalable Gabriel can manage latency. Run-

time resource demand could deviate from profiles due to the differences in the request content

(e.g. image content). Profile inaccuracies result in the overshoot of POOL and IKEA 90%-tile

latencies in Figure 5.8, as the profiles underestimate their resource demand and overestimate

LEGO resource demand when the number of clients is low. When the system becomes more

crowded, the throttling of LEGO throughput reduces such an effect.
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5.3.3 Effects on Guidance Latency

We next evaluate the combined effects of workload reduction and resource allocation in our

system. We emulate many users running multiple applications simultaneously. All users share

the same cloudlet with 8 physical cores and 16 GB memory. We conduct three experiments, with

20 (4 clients per app), 30 (6 clients per app), and 40 (8 clients per app) clients. Each client loops

through pre-recorded video traces with random starting points. Figure 5.10 and Fig 5.11 show

per client frame latency and FPS achieved. The first thing to notice is that concurrently utilizing

both sets of techniques does not cause conflicts. In fact, they appear to be complementary and

latencies remain in better control than using resource allocation alone.

The previous plots consider per request latencies. The ultimate goal of our work is to main-

tain user experience as much as possible and degrade it gracefully when overloaded. For WCA

applications, the key measure of user experience is guidance latency, the time between the oc-

currence of an event and the delivery of corresponding guidance. Note that guidance latency is

different than per request latency, as a guidance may need not one but several frames to recognize

a user state. Figure 5.13 shows boxplots of per-application guidance latency for the concurrent

application experiments above. The red dotted line denotes the application-required loose bound.

It is clear that our methods control latency significantly better than the baseline. Scalable Gabriel

is able to serve at least 3x number of clients when moderately loaded while continuing to serve

more than half of the clients when severely loaded. In these experiments, the utility is maximized

at the expense of the FACE application, which provides the least utility per resource consumed.
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The normalization is by per-application tight and loose bounds [17].

The allocation policy is to maximize the overall system utility.

Figure 5.8: Normalized 90%-tile Response Latency
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Figure 5.9: Average Processed Frames Per Second Per Client
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The normalization is by per-application tight and loose bounds [17].

Figure 5.10: Normalized 90%-tile Response Latency
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Figure 5.11: Processed Frames Per Second Per Application
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At the highest number of clients, scalable Gabriel sacrifices the LEGO application to maintain

the quality of service for PINGPONG and POOL. This differentiated allocation is reflected in

Figure 5.12. In contrast, with original Gabriel, none of the applications are able to regularly

meet deadlines.

5.4 Related Work

Deadline-based scheduling algorithms and mechanisms have been studied extensively in the lit-

erature. Many work [52, 106, 107, 111] exist in the context of real-time systems. Some use

utility functions for scheduling tasks with soft deadlines [60, 83]. While we draw inspiration

from these systems, our resource allocation focuses on application adaptation characteristics in

addition to meeting latency requirements. Many mobile systems leverage application adaptation.

Notably, Odyssey [75] and extensions [30] proposed upcall-based collaboration between a mo-

bile’s operating system and its applications to adapt to variable wireless connectivity and limited

battery. Such adaption was purely reactive by the mobile device; in our context, adaptation for a

collection of devices can be centrally managed by their cloudlet, with failover to reactive meth-

ods as needed. Exploration of tradeoffs between application fidelity and resource demand led

to the concept of multi-fidelity applications [94]; such concepts are relevant to our work, but the

critical computing resources in our setting are those of the cloudlet rather than the mobile device.

More recently, [12, 24, 79, 100, 113, 118] study cluster scheduling in data-center context. These

systems target a diverse range of workload, take resource reservation demands, and focus on the

scalability of scheduling. In contrast, our resource allocation scheme focuses on edge-native ap-

plications, in particular, wearable cognitive assistance, and profile their characteristics for better

outcomes in oversubscribed edge scenarios. Closely related, dynamic resource management in

the cloud for video analytics have been explored by [32, 53, 101]. Some also leverage profile-

based adaptation for more efficient video analytics resource management [47, 50, 122]. However,

most of these systems focus on throughput-oriented analytics application on large clusters. In

contrast, we target interactive performance on relatively small edge deployments.

5.5 Chapter Summary and Discussion

More than a decade ago, the emergence of cloud computing led to the realization that applications

had to be written in a certain way to take full advantage of elasticity of the cloud. This led to

the concept of “cloud-native applications” whose scale-out capabilities are well matched to the

cloud. The emergence of edge computing leads to another inflection point in application design.

As last two chapters have shown, edge-native applications have to be written in a way that is very

different from cloud-native applications if they are to be scalable. We explore client workload

reduction and server resource allocation to manage application quality of service in the face

of contention for cloudlet resources. We demonstrate that our system is able to ensure that in

overloaded situations, a subset of users are still served with good quality of service rather than

equally sharing resources and missing latency requirements for all.
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Chapter 6

Wearable Cognitive Assistance
Development Tools

While previous chapters address the system challenges of scaling wearable cognitive assistance

at the edge, another key obstacle to the widespread adoption of WCAs is the level of special-

ized skills and the long development time needed to create new applications. Such expertise

includes task domain knowledge, networked application development skills, and computer vi-

sion insights. Researchers [16] report that it typically takes multiple person-months of effort to

create a single application. The majority of development time is spent on learning new computer

vision techniques, selecting robust algorithms to use through trial and error, and implementing

the application. The high barrier to entry significantly limits the number of wearable cognitive

assistants available today. Clearly, this is not scalable.

In this chapter, we reflect on the existing ad hoc WCA development process, propose a new

development methodology centered around DNN-based object detection, and present develop-

ment tools that we have built to lower the barrier of WCA development. Our goal is to simplify

the process so that a small team (1-2 people) of a task expert and a developer, without computer

vision expertise, can create an initial version of a Gabriel application within a few days. This is

a productivity improvement of at least one order of magnitude. Refinement and tuning may take

longer, but can be guided by the early use of the application.

Simplification is difficult. The application needs a precise definition of the end-point state

of each step (e.g., a particular screw mounted into a workpiece), yet needs to be tolerant of al-

ternative paths to reaching that end point (e.g., hand-tightening versus using a screwdriver). We

assume the small development team has knowledge of the task specifics and general program-

ming skills, but not necessarily experience with wearable devices or computer vision.
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Figure 6.1: Ad Hoc Development Workflow

6.1 Ad Hoc WCA Development Process

The existing ad hoc development process of WCAs can be described as figure 6.1. Developers

first work with the task expert to identify and pinpoint a specific use case. With the use case

in mind, the development team needs to identify critical visual features and states that can be

reliably recognized with machine vision. In the meantime, the use case is broken down into

individual steps. For each step, feedback messages to users are created based on detected visual

states. Potential errors are also enumerated and included as additional steps. We refer to the

complete set of the steps annotated with visual states and feedback as the Task Model. For

example, for the LEGO wearable cognitive assistance [17], the task model contains the sequence

of blocks to build up the final assembled Lego piece, together with potentially misused blocks.

The visual states to recognize are the pieces currently on the lego board: the shape and the color

of individual lego block, and their composed shape and color.

Notably, a task model is not only determined by the task itself, but also influenced heavily

by visual states that can be reliably detected. In fact, it is common to alter the sequence of steps

or introduce additional steps to reduce the difficulties and improve the reliability of computer

vision recognition. Since there is a human in the loop (the user), relying on humans to do

what they are good at is the main reason that wearable cognitive assistance can be implemented

without solving the generic perception and planning problems intrinsic to robotics. For example,

a frequently used technique is to ask the user to hold the object of interests at a fixed viewpoint

shown in the image guidance. Narrowing the viewing angle makes the recognition problem more

tractable.

The application task model serves as a blueprint for implementation. For each step in the

task model, developers select and implement computer vision algorithms. Custom logic is also

written to handle step transitions and interface with the Gabriel platform. After initial imple-

mentation, test runs are conducted to evaluate the robustness of computer vision and measure the

end-to-end application latency. The implementation process is typically iterative to allow trials
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and errors when choosing computer vision algorithms.

The ad hoc development process has unnecessary high requirements and burden for WCA

creators in the following aspects.

1. Developers need to be familiar with various computer vision algorithms to determine what

visual states can be recognized reliably. The knowledge of selecting algorithms for specific

objects, environments, and setups requires years of experience. This high bar of entry

hinders the creation of WCAs.

2. It takes a significant amount of time to implement computer vision algorithms in a trial

and error fashion. Several months of coding time could turn into a fruitless outcome when

the algorithm turns out to be a bad fit. For sophisticated WCAs with tens or hundreds of

visual states, such a trial and error methodology is not scalable. Needed are unified and

automated methods to create visual state recognizers.

3. The tight coupling of task model design and visual state recognition calls for deep under-

standing in both task domain and computer vision. When visual states in the task model

end up being too difficult for even the state-of-art algorithms, the development team needs

to adjust the task model to either use alternative visual states or employ user assistance. For

instance, in the RibLoc application, during development, a task step was changed to asking

the user to read out a word on the gauge instead of performing optical character recognition

on the lightly-colored characters. Close collaborations among task experts and develop-

ers are needed due to this tight intertwinement between task model design and computer

vision algorithm exploration. Methodologies and tools that shorten the turn-around time

when a task model changes can significantly reduce the overall development time.

6.2 A Fast Prototyping Methodology

To streamline the development process and lower the barrier of entry, we propose a new prototype

methodology which focuses on the following two aspects.

1. Use deep neural network (DNN) based object detection as the universal building block for

visual state recognition.

2. Use finite state machine to represent and implement application task model.

We first introduce the concepts of this methodology and describe its benefits in this section and

then introduce tools we have built to automate the development process in subsequent sections.

6.2.1 Objects as the Universal Building Blocks

To replace manual selection of computer vision algorithms through trial and error, we propose to

use DNN-based object detection as the fundamental building block to detect user states. Using

object detection as the universal building block means that each visual state should be decom-

posed and described as a collection of individual objects along with their attributes and rela-
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Figure 6.2: A Frame Seen by the PING PONG Assistant

tionships. We argue that objects as fundamental building blocks provide expressive and flexible

constructions capable of describing a wide range of visual user states important to WCAs. In-

tuitively, the addition and removal of objects from a scene is straightforward to express. Spatial

relationships among objects (e.g. close to, on the left of, overlap significantly) capture semantic

visual features that can be used to infer user states. For example, the detection of two Ikea furni-

ture pieces close to each other could indicate that they have been assembled together. Moreover,

temporal relationships can add confidence to the inference made from spatial relationship. The

detection of two pieces of furniture closely connected to each other in the last 30 frames implies

strongly that they have been assembled together. Of course, there are limitations on how reliable

the inference could be. Nonetheless, objects together with their spatial and temporal relation-

ships with one another, provide a flexible reasoning framework to decompose user states into

visual states.

To illustrate the effectiveness of this object centered approach, we showcase how existing

applications built without this methodology in mind can be easily expressed. Figure 6.2 shows

an image that will trigger the PING PONG assistance to provide an instruction to hit the ball to

the left. We can express this visual state with a collection of objects, namely the Ping-Pong table,

the ball, and the opponent. These objects should satisfy the following spatial relationship for the

instruction “hit to the LEFT” to be generated. To improve the accuracy of our instruction, we

can require the spatial relationship of these objects to be held true for at least two consecutive

frames before an instruction is produced.

• The Ping-Pong ball is above the Ping-Pong table for an active rally.

• The opponent is on the right side of the Ping-Pong table.

• The ball is also on the right side of the Ping-Pong table.
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Figure 6.3: A Frame Seen by the LEGO Assistant

Similarly, we can express the user states using objects for another application LEGO. Fig-

ure 6.3 shows a visual state for the assembled pieces. Here the collection of objects needs to be

present are two blue Lego blocks, two black blocks, one white block, and one yellow block. The

spatial relationships among these block include:

• The yellow block should be at the bottom and longer than all other blocks.

• The white block should be in the middle of a blue block and the yellow block. It should

have the same width as the blue block.

• Two black blocks should be on the left of a blue block and the white block. It should also

be on the bottom of a blue block.

• One blue bock should be at the top of all other pieces.

One challenge with object detection is to obtain the absolute scale. In this example, it would

be difficult to get the exact width of the lego block (e.g. whether it is a 1x4 or 1x3 lego piece) with

object detection alone. However, once the location of object is detected, additional processing

can be used to identify object attributes. For example, we can leverage the dots on the lego board

to calculate the absolute size of lego pieces.

The key benefit of using object detection as the universal unit to recognize visual states is

the possibility of automation. In recent years, deep neural networks have dramatically increased

the accuracy of object detection [125]. In 2008, the best object detector, based on deformable

part model [29], achieved a mean average precision (mAP) of 21% on the Pascal Visual Ob-

ject Classes dataset [28]. In less than ten years, deep neural networks [38, 39, 61, 85] have

quadrupled the accuracy to 84% on the same dataset. For a wide range of real-world objects,

DNNs have shown to be effective in both accurate identification of classes and localization of
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object bounding boxes. They can even differentiate subtly different classes, such as breeds of

dogs. Many commercial products now offer features using DNN object detection. For example,

Google Photos [33] and Pinterest Visual Search [48] allow users to search for images containing

object of interest using text.

In addition to significant improvement in accuracy, DNNs also provide a unified method to

create object detectors. Modern DNN-based object detection employs an end-to-end learning

approach, in which one or multiple deep neural networks are trained to predict the object classes

and locations directly from RGB images. Gone is the need to hand craft features. Instead, DNNs,

on their own, find distinguishable features during the training process as they are presented with

labeled examples of different objects. The substitution of custom CV with machine-learned

models makes automation possible. A typical DNN training process consists of the following

steps.

1. Collect images of object of interests from diverse background, perspectives, and lighting

conditions.

2. Annotate these images with bounding boxes and class names to create a dataset of training

data, evaluation data, and test data.

3. Implement a DNN-based object detection network, typically using machine learning frame-

works, such as Tensorflow [6] and PyTorch [80].

4. Continuously train and evaluate a DNN model using the labeled dataset.

5. Test the accuracy of the trained DNN model on the test data.

While a unified training method eliminates manual feature engineering, creating a DNN-

based object detector is still both time-consuming and painstaking for the following reasons.

First, DNNs often have millions of model parameters and therefore requires millions of labeled

examples to train from scratch. Collecting and labeling such large amount of training data takes

significant manual labor. Second, implementing a DNN correctly for object detection is not

trivial and still requires significant amount of knowledge of machine learning. For example,

state-of-art object detectors uses custom layers different from the standard convolutional layer

for better performance. Data augmentation, batch normalization, and drop out are needed at

training time for better results through optimization, but should be disabled during inference

time. To streamline the process of creating DNN-based object detectors, we provide a web

application OpenTPOD (Section 6.3) that hides the implementation details from the developers

and allow them to train a DNN object detector from a web browser without writing a single line

of code.

6.2.2 Finite State Machine (FSM) as Application Representation

While the Gabriel platform handles data acquisition and transmission from mobile wearable

devices to a cloudlet, application developers still need to write custom business logic for their

own use cases. Since the task model can change frequently during development, a fast turn-

around time to implement changes can reduce the overall development time. Therefore, we
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Figure 6.4: Example WCA FSM

propose a finite state machine representation of application logic and a GUI tool to enable fast

turn-around.

Our choice of finite state machine representation is based on the observation that WCAs,

in their nature, consist of states. A FSM State corresponds to a user state at a particular time

instance. At a given state, the WCA runs computer vision processing specific to the state to

analyze the current scene. We refer to the computer vision algorithms as Processors for the state.

The outputs of Processors are symbolic states of current scene. For example, a symbolic state

can be a vector of objects. Transitions to other states happen when the symbolic states meet some

criteria, for example, the presence of a new object. We refer to these criteria as Predicates for

transitions. A State can have multiple transitions into different adjacent States. Each Transition

has its own Predicate. Transitions also have the concept of precedence. The first Transition whose

Predicate is satisfied is triggered for a state change. In addition to predicates, Transitions also

have guidance instructions. When a Transition is taken, the corresponding guidance instruction

is delivered to the user.

Figure 6.4 shows an example of a simple WCA represented as a finite state machine. This

example WCA checks whether a piece of bread is present. If so, it congratulates the user. On the

other hand, if it detects a piece of ham is present, a corrective guidance is sent to the user. There

are four states in total. The application starts from the “Start” state and immediately transitions

to the “Check Bread” state as the predicate is “Always”. At the “Check Bread” state, for each

frame, a DNN to detect bread and ham is run to extract the symbolic state. Then, every transition

is checked to see if its predicate is satisfied. If a “Bread” is detected, the transition predicate to the

“Finish” state is satisfied and hence the transition taken. The corresponding instruction “Good

Job” is delivered to the user. Similarly, when in “Check Bread” state, if a “Ham” is detected, the

transition to the “Error: Ham” state is satisfied and taken. The instruction “Replace Ham with
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Figure 6.5: OpenTPOD Training Images Examples

Bread” would be delivered as the corrective guidance to the user.

With an FSM representing custom application logic, we impose structure on the the WCA

application. We provide OpenWorkflow (Section 6.4), which consists of a python API and a web

GUI, to enable developers to quickly create a FSM-based cognitive assistant.

6.3 OpenTPOD: Open Toolkit for Painless Object Detection

Training a DNN for object detection is not trivial. In particular, it involves constructing a

correctly-labeled training data set with millions of positive and negative examples. The train-

ing process itself may take days to complete, and requires a set of arcane procedures to ensure

both convergence and efficacy of the model. Fortunately, one does not typically need to train a

DNN from scratch. Rather, pretrained models based on public image data sets such as ImageNet

are publicly available. Developers can adapt these pretrained models to detect custom classes

for new applications, through a process called transfer learning. The key assumption of transfer

learning is that much of the training that teaches the model to discover low-level features, such as

edges, textures, shapes, and patterns that are useful in distinguishing objects can be reused. Thus,

adapting a pretrained model for new object classes requires only thousands or tens of thousands

of examples and hours of training time.

However, even with transfer learning, collecting a labeled training set of several thousand

examples per object class can be a daunting and painful task. In addition, implementing object

detection DNNs itself requires expertise and takes time. OpenTPOD is a web-based tool we

developed to streamline the process of creating DNN-based object detectors for fast prototyp-

ing. It provides a tracking-assisted labeling interface for speedy annotation and a DNN training

and evaluation portal that leverages transfer learning to hide the nuances of DNN creation. It

greatly reduces the labeling effort while constructing a dataset, and automates training an object

detection DNN model.

6.3.1 Creating a Object Detector with OpenTPOD

Using OpenTPOD to create object detectors is straight-forward. A developer first captures videos

of objects from various viewing angles and diverse backgrounds. For example, these videos can

be acquired on a mobile phone. At 30 frames per second, ten minutes of video footage contain
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Figure 6.6: OpenTPOD Video Management GUI

18000 frames, which is already a reasonable amount of training data for transfer learning. Larger

amounts of training data typically help increase the accuracy, although diminishing returns ap-

ply. Moreover, it is preferred to collect training examples in environment similar to the test

environment to make the training examples exhibit similar distribution as test data. Figure 6.5

shows three example training images for a toy cooking set. Note that the image background is

randomly cropped to be used as negative examples. These background examples illustrate to the

neural network what an object of interest does not look like. Therefore, it is recommended that

the background contains common objects in the test environment that may cause confusion.

Next, developers upload the collected training videos to OpenTPOD either directly from

the phone or from a computer. As shown in Figure 6.6, OpenTPOD helps user to store and

organize training videos. In addition, OpenTPOD assists users to annotate the training videos by

integrating an external labeling tool into the GUI. Uers can annotate objects by draw bounding

boxes on the uploaded video frames. To facilitate the annotation process, OpenTPOD leverages

the fact that the individual frames come from a continuous video shoot. It automatically generates
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Figure 6.7: OpenTPOD Integration of an External Labeling Tool

bounding box in subsequent frames either using a correlation tracking algorithm [22] or linear

interpolation. As a result, users only need to label a few key frames in a video with the rest of

frames auto-populated with generated labels. Of course, tracking is not perfect, and the bounding

box may drift off over time. In this case, the user can forward or rewind the video to adjust

the bounding box. The adjustment of bounding boxes re-initializes the tracking for subsequent

frames. From our experience usage, this approach of labeling followed by tracking can reduce

the number of frames that the user needs to manually label by a factor of 10-20x.

With videos annotated, users can move on to create a training dataset on the webpage by

selecting videos to use. OpenTPOD performs a data cleaning and augmentation pass to prepare

a high quality training set. Due to inter-frame correlation, adjacent frames within a video may

appear to be substantially similar or identical. These highly correlated frames violate the inde-

pendent and identically distributed assumption of training data for DNNs. OpenTPOD eliminates

these near duplicate examples. Optionally, data augmentation can be employed. It adds synthetic

images, created by cutting and pasting the object of interests on varying backgrounds, at different

scales and rotations. Such augmentation helps produce more robust object detectors [27].

Then, by submitting a form on the web GUI, users can launch the DNN training process

without writing a single line of code. Under the hood, OpenTPOD automates the transfer learn-

ing process. OpenTPOD supports several state-of-the-art object detection networks, including

FasterRCNN-ResNet [39, 85] and SSD-MobileNet [41, 62]. These different networks exhibit

varying accuracy versus speed trade-offs. While FasterRCNN-ResNet achieves higher accu-

racies on standard datasets, its training and inference time are significantly longer than SSD-

MobileNet. Application developers should choose the appropriate DNN network based on their
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accuracy and latency constraints. Negative examples are mined from the video background; these

are parts of the frames not included in the object bounding boxes. The training process generates

downloadable Tensorflow models in the end. The OpenTPOD web GUI provides training mon-

itoring through Tensorflow visualization library Tensorboard [110]. OpenTPOD also provides a

container image that can serve the downloaded model files for inference.

Overall, OpenTPOD can greatly reduce both the labeling effort and in-depth machine learn-

ing knowledge required to train and deploy a DNN-based detector. The OpenTPOD demo video

can be found at https://youtu.be/UHnNLrD6jTo. OpenTPOD has been used by tens of

researchers and students to build wearable cognitive assistance. For example, a group of master

students in CMU mobile and pervasive computing class successfully used OpenTPOD to build

an assistant for using Automated External Defibrillator (AED) machines.

6.3.2 OpenTPOD Case Study With the COOKING Application

To quantify how much OpenTPOD can help reduce labeling efforts, we conducted a case study

to train detectors for the COOKING cognitive assistant [16]. We trained object detectors for 9

components of a toy sandwich, including bread, ham, lettuce, cucumber, cheese, half sandwich,

wrong ham, tomato, and full sandwich. We collected 53 short training videos, annotated all of

them, and trained object detectors with OpenTPOD.

In total, we collected 21218 video frames. In contrast, we only manually labeled 91 frames

on OpenTPOD annotation interface. The rest of frames are automatically labeled by tracking.

The entire labeling session took 80 minutes. The total number of frames used for training is

21013 due to training set optimization by OpenTPOD. We fine-tuned from a FasterRCNN-VGG

network. The transfer learning process took 54 minutes to finish on a NVIDIA K40c GPU.

6.3.3 OpenTPOD Architecture

OpenTPOD adopts a Model-View-Controller (MVC) design [55]. Figure 6.8 shows the OpenT-

POD architecture. The OpenTPOD frontend handles UI logic and is built using React, a declar-

ative, efficient, and flexible JavaScript library for creating user interfaces [105]. React enables

OpenTPOD frontend code to be modular and reusable. The frontend has three major compo-

nents: video management, detector management, and an external labeling tool. OpenTPOD in-

tegrates the labeling tool CVAT [78] into its frontend UI through HTML iframe embedding. The

integration of an labeling tool into the OpenTPOD GUI unifies the workflow. Users no longer

need to install and set up another piece of software. The OpenTPOD frontend communicates

with the backend through a set of RESTful APIs [86].

OpenTPOD backend is developed using the Django web framework [40] and served with the

Nginx web server [73] and the Gunicorn gateway [34]. The backend implements RESTful apis to

create, read, update, and delete Video and Detector resources. It also interfaces with the backend

of the external labeling tool to read and write annotations. Long running background jobs, such

as DNN model training and video extraction, are processed asynchronously using a task queue
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Figure 6.8: OpenTPOD Architecture

and worker processes. Metadata about videos and DNN models are stored in a relational database

while large binary files, such as video files and trained DNN model weights, are stored in the file

system. An in-memory caching layer on top of the file system and database is created using the

Redis key-value store. The entire application is containerized and can be deployed easily onto

bare-metal or virtualized environments.

One key design choice of OpenTPOD is to be extensible for new DNN architectures. OpenT-

POD provides a standard interface, shown in Figure 6.9, in order to easily add new DNNs im-

plementation for transfer learning. OpenTPOD refers to these DNN implementations as DNN

Providers. Without modifying other components, providers can be added and integrated by im-

plement this interface. The built-in Provider is the Tensorflow Object Detection API [109],

which supports transfer learning for a wide set of object detectors.

property training_configurations: user customizable hyperparameters;

init(dnn_type, training_set, output_directory): initialization;

train(training_configurations): launch training;

export(): export trained models;

visualization(): monitor training process;

Figure 6.9: OpenTPOD Provider Interface
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Figure 6.10: OpenWorkflow Web GUI

6.4 OpenWorkflow: FSM Workflow Authoring Tools

In addition to creating DNN-based object detectors, developers need to write custom logic to

implement the WCA task model running on the cloudlet. In this section, we introduce Open-

Workflow, an FSM authoring tool that provides a Python library and a GUI to enable fast imple-

mentation to allow for quick development iteration.

As discussed in Section 6.2.2, the WCA cloudlet logic can be represented as a finite state

machine. The FSM representation allows us to impose structure and provide tools for task model

implementation. OpenWorkflow consists of a web GUI that allows users to visualize and edit a

WCA FSM within a browser, a python library that supports the creation and execution of a FSM,

and a binary file format that efficiently stores the FSM. The OpenWorkflow video demo can be

found at https://youtu.be/L9ugONLpnwc.

6.4.1 OpenWorkflow Web GUI

Figure 6.10 shows the OpenWorkflow web GUI. Users can create a WCA FSM from the GUI

by editing states and transitions. State processors, e.g. the computer vision processing logic to

run in a given state, can be specified by a container url. User guidance can be added through

adding text, video urls or by uploading images. The Web GUI also supports import and export

functionalities to interface with other WCA tools. The exported FSM is in a custom binary

format and can be executed by the OpenWorkflow Python library.

The GUI is implemented as a pure browser-based user interface, using React [105]. No web
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backend is needed. This makes the GUI easy to set up and deploy. The user only needs to open

an HTML file in a browser to use the tool.

6.4.2 OpenWorkflow Python Library

Another way to programmatically create a FSM is through the OpenWorkflow Python library.

The library provides python APIs to create and modify FSMs. The python APIs provides ad-

ditional interfaces to add custom computer vision processing as functions and ad hoc transition

predicates for customization.

In addition, the Python library provides a state machine executor that takes a WCA FSM (e.g.

made with the Web GUI) and launches a WCA program using the Gabriel platform. The program

is then ready to be connected by Gabriel Android Client. The WCA program follows the logic

defined in the state machine. A Jupyter Notebook [54] is also provided to make it possible to

launch the program from a browser. This library has been made available on The Python Package

Index for easy installation.

6.4.3 OpenWorkflow Binary Format

We define a custom FSM binary format for WCAs that can be read and wrote using multiple

programming languages. We use the serialization library Protocol Buffers to generate language-

specific stub code. Figure 6.11 shows a summary of the serialization format.

6.5 Lessons for Practitioners

While the methodology and the suite of tools provided in this Chapter offer a recipe to follow

when creating new wearable cognitive assistants, there are several valuable lessons we consider

worth noting. In this section, we summarize and distill essential knowledge learned from our

prototyping experience for practitioners.

Define Objects By Appearance

With object detection at the core of the prototyping methodology, carefully defining the objects

to detect is crucial to the accuracy and the robustness of an assistant. Contrary to conventional

definition of objects in computer vision, it is also often beneficial to define objects by strict

appearance when building cognitive assistants. Many objects, when looking from various per-

spectives, appear significantly different. Defining objects by appearance means considering only

similar views of an object to be the same class. Views that appear noticeably different from other

views should be labeled as different classes when training the object detectors. Of course, the

application logic can still maintain the knowledge that these different views, in fact, are associ-

ated with the same item. Considering different views as different classes makes many detection
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/ / r e p r e s e n t s t h e t r i g g e r c o n d i t i o n

message T r a n s i t i o n P r e d i c a t e {

s t r i n g name = 1 ;

s t r i n g c a l l a b l e _ n a m e = 2 ;

map< s t r i n g , b y t e s > c a l l a b l e _ k w a r g s = 3 ; / / a rgumen t s

s t r i n g c a l l a b l e _ a r g s = 4 ; / / a rgumen t s

}

message I n s t r u c t i o n {

s t r i n g name = 1 ;

s t r i n g a u d i o = 2 ; / / a u d i o i n t e x t f o r m a t .

b y t e s image = 3 ;

b y t e s v i d e o = 4 ;

}

message T r a n s i t i o n {

s t r i n g name = 1 ;

/ / f u n c t i o n name of t h e t r i g g e r c o n d i t i o n

r e p e a t e d T r a n s i t i o n P r e d i c a t e p r e d i c a t e s = 2 ;

I n s t r u c t i o n i n s t r u c t i o n = 3 ;

s t r i n g n e x t _ s t a t e = 4 ;

}

/ / r e p r e s e n t f e a t u r e e x t r a c t i o n modules

message P r o c e s s o r {

/ / i n p u t a r e images

/ / o u t p u t s a r e key / v a l u e p a i r s t h a t r e p r e s e n t s a p p l i c a t i o n s t a t e

s t r i n g name = 1 ;

s t r i n g c a l l a b l e _ n a m e = 2 ;

map< s t r i n g , b y t e s > c a l l a b l e _ k w a r g s = 3 ; / / a rgumen t s

s t r i n g c a l l a b l e _ a r g s = 4 ; / / a rgumen t s

}

message S t a t e {

s t r i n g name = 1 ;

r e p e a t e d P r o c e s s o r p r o c e s s o r s = 2 ; / / e x t r a c t f e a t u r e s

r e p e a t e d T r a n s i t i o n t r a n s i t i o n s = 3 ;

}

message S t a t e M a c h i n e {

s t r i n g name = 1 ;

r e p e a t e d S t a t e s t a t e s = 2 ; / / a l l s t a t e s

map< s t r i n g , b y t e s > a s s e t s = 3 ; / / s h a r e d a s s e t s

s t r i n g s t a r t _ s t a t e = 4 ;

}

Figure 6.11: OpenWorkflow FSM Binary Format
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tasks inherently easier and often results in higher recognition accuracy. The fundamental reason

that allows for this view-based detection for a higher accuracy is that we can leverage the human

in the loop to create good conditions for machine intelligence. A commonly used technique in

the implementation of several existing prototypes is to ask users to show a specific view of the

objects. A few examples exist in the workflow of RibLoc application, as shown in Figure 2.6.

Consider Partial Objects

When building cognitive assistants for step-by-step assembly tasks, a pragmatic technique is

to consider detecting small parts of objects and reason about their spatial relationship to verify

assembly. Treating a small portion of an object to be a standalone item makes many computer

vision checks tractable. For example, in Figure 2.8, although the slot is a small portion of the

larger cap. It would be very difficult to verify that the pin has been put into the slot with only the

detected bounding boxes of the larger cap. Treating the slot, in addition to the cap, as an object

of itself and building an object detector for it makes the check possible. In fact, following the

rule of defining objects by appearance, we trained two separate object detectors for both the slot

with a pin and the slot without a properly placed pin.

Leverage the Human in the Loop

Compared to fully automated robotic systems, cognitive assistance systems have a unique advan-

tage — the user in the loop. The availability of a collaborative human able and willing to follow

instructions enables many out-of-band techniques to reduce the difficulty of the visual perception

problem. For example, in RibLoc application (Figure 2.6), the imprinted words on the gauge has

too low contrast to be recognized. Instead, since imprinted are simple words of colors, we rely

on the user to read them out and perform speech recognition of a few keywords, which is much

simpler and reliable. In general, developers should consider using carefully designed unambigu-

ous instructions to ask users to create favorable conditions for the assistant in order to solve hard

or intractable recognition and perception problems.

6.6 Chapter Summary and Discussion

Wearable cognitive assistants are difficult to develop due to the high barrier of entry and the

lack of development methodology and tools. In this chapter, we present a unifying development

methodology, centered around object detection and finite state machine representation to system-

atize the development process. Based on this methodology, we build a suite of development tools

that helps object detector creation and speeds up task model implementation.
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Chapter 7

Conclusion and Future Work

This dissertation addresses the problem of scaling wearable cognitive assistance for widespread

deployment. We propose system optimizations that reduce network transmission, leverage ap-

plication characteristics to adapt client behaviors, and provide an adaptation-centric resource

management mechanism. In addition, we design and develop a suite of development tools that

lower the barrier of entry and improve developer productivity. This chapter concludes the disser-

tation with a summary of contributions, and discusses future research directions and challenges

in this area.

7.1 Contributions

As stated in Chapter 1, the thesis validated by this dissertation is as follows:

Two critical challenges to the widespread adoption of wearable cognitive assistance are 1)
the need to operate cloudlets and wireless network at low utilization to achieve acceptable
end-to-end latency 2) the level of specialized skills and the long development time needed
to create new applications. These challenges can be effectively addressed through system
optimizations, functional extensions, and the addition of new software development tools to
the Gabriel platform.

To validate this thesis, we first introduce two example wearable cognitive assistants and

present measurement studies on how they would saturate existing wireless network bandwidth.

We propose two application agnostic techniques to reduce network transmission. Then, lever-

aging WCA application characteristics, we provide an adaptation taxonomy and demonstrate

techniques to reduce offered load on the client device. With these adaptation mechanisms, we

design and evaluate a adaptation-centric resource allocation mechanism at the cloudlet that takes

advantages of application degradation profiles. We then offer a new application development

methodology and provide a suite of tools to reduce development difficulty and speed up applica-

tion development process.
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7.2 Future Work

7.2.1 Advanced Computer Vision For Wearable Cognitive Assistance

Most WCAs developed and discussed in this dissertation are frame-based. Namely, they as-

sume that complete user states can be captured within a single frame. While symbolic states

can be aggregated, computer vision advancement in video analysis (e.g. activity recognition),

can significantly broaden the horizon and improve the robustness of WCAs. For instance, in

many assembly tasks, screws become occluded when placed correctly. Current solutions, as a

workaround, often consider the screw in-place as a separate object. This is not robust to wrong

user actions (e.g. clockwise tightening vs counter-clockwise tightening). Activity recognition

that remembers a history of objects and human actions can help solve the problem and thus

enable many new WCA domains.

7.2.2 Fine-grained Online Resource Management

This dissertation opens up many potential directions to explore in practical resource management

for edge-native applications. We have alluded to some of these topics earlier.

One example we briefly mentioned is the dynamic partitioning of work between Tier-3 and

Tier-2 to further reduce offered load on cloudlets. In addition, other resource allocation policies,

especially fairness-centered policies, such as max-min fairness and static priority can be explored

when optimizing overall system performance. These fairness-focused policies could also be used

to address aggressive users, which are not considered in this dissertation. While we have shown

offline profiling is effective for predicting demand and utility for WCA applications, for a broader

range of edge-native applications, with ever more aggressive and variable offload management,

online estimation may prove to be necessary.

Another area worth exploring is the particular set of control and coordination mechanisms to

allow cloudlets to manage client-offered load directly. Finally, the implementation to date only

controls allocation of resources but allows the cloudlet operating system to arbitrarily schedule

application processes. Whether fine-grained control of application scheduling on cloudlets can

help scale services remains an open question.

7.2.3 WCA Synthesis from Example Videos

The authoring tools presented in this dissertation can be considered as a first step towards an am-

bitious goal of synthesizing cognitive assistants automatically from crowd-sourced expert videos.

The critical missing piece is the ability to analyze and summarize a consistent task model from

multiple videos. Some work [81] has started to study this challenge, although there is still a

long road ahead. Much needed is signficant improvement of domain-specific video understand-

ing. Nonetheless, many techniques discussed in this dissertation could still apply and serve as

stepping stones toward fully automated creation of WCAs.
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