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Abstract

Digital painting is a popular approach to creating visual art. Much like in traditional
media, digital painting programs equip artists with a multitude of tools and brushes so
they can produce diverse paintings. It is often the case that artists want to make their
own assets and textures to produce specific results. Unfortunately, creating custom assets
can be cumbersome and time-consuming as artists often need to go through the process
of scanning, importing, and adjusting before they can use their own textures for painting.

We present CaTS, a painting system that synthesizes textures from live video in real-time.
The system interfaces with a simple capture rig which facilitates bimanual manipulation,
allowing users to manipulate the exemplar object with one hand while painting with the
other. Through the close integration of the capture device and painting method, CaTS
builds upon the concept of texture synthesis-based painting and augments it with more
artistic freedom. This allows digital artists to easily create custom brushes which they can
use to produce texture-rich paintings. Furthermore, CaTS fosters an exploratory approach
to painting that is not easily achievable through purely digital or traditional means. We
demonstrate the expressiveness of our system through paintings produced by artists with
varying artistic styles and evaluate its effectiveness through user feedback.
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Chapter 1

Introduction

(a) (b) (c) (d)

Figure 1-1: A comparison of a painting made with (b) and without (a) the use of texture.
Closeups of the textureless and textured results are shown in (c) and (d) respectively.

A popular approach to creating visual art is digital painting. Digital painting interfaces

have arguably evolved significantly since their inception in the 1970s from programs like

MacPaint [2] and Kid Pix [11]. Much like in traditional media, digital painting programs

now equip artists with a diverse set of tools and brushes so they can produce expressive

paintings. The most used tool in a digital painting program is, of course, the paintbrush

– which is designed to be highly customizable to allow artists to create a variety of

effects. Textured brushes in particular can be used to give digital paintings more life and

expressiveness (Fig. 1-1), and there exists multiple ways to customize a brush’s texture.

One common method is to change the brush shape, which affects the appearance of stroke

boundaries (Fig.1-2). Another way is to use “pattern stamping”, which uses a pattern as

the brush’s color (Fig. 1-3).
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Figure 1-2: Some examples of brush shapes and the strokes produced by them.

1.1 Motivations

While there exists a wealth of built-in brush presets and online assets, artists often want

to make their own brushes to produce specific results. With traditional media, artists

have the freedom to easily incorporate almost any material they can find into their work.

But with digital media, artists must undergo the multi-step process of scanning, cropping,

and importing before they can use their own textures to paint. Applications like Adobe

Capture [1] attempt to simplify this workflow by allowing users to use their phone camera

to quickly make assets.

Additionally existing painting systems use a “stamping” approach to painting, which

stamps the image of the brush along the path the user painted. Stamping has the

Figure 1-3: Some examples of pattern stamps and the strokes produced by them.
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advantage of producing easily controllable and predictable results. At the same time,

unpredictability has the potential to produce desirable outcomes users might not have

thought of themselves. This characteristic is evident in traditional painting, where control

is given in exchange for the possibility of “happy accidents”.

At the same time, the amount of control artists have over the progression of their paintings

gives digital painting a significant advantage. For example, if a traditional painter were

to commit a stroke to the canvas it cannot easily be undone. In digital painting, strokes

can easily be modified or undone without destructively affecting the other parts of the

painting. Furthermore the multilayer system in digital media allows artists to develop their

work in a nonlinear fashion.

1.2 Contributions

With CaTS, we aim to create a texture-based painting system that combines the strengths

of digital and traditional approaches. Our contributions are as follows:

1. We integrate live capture into our painting system to cut down the texture-creation

workflow.

2. We synthesize texture from live video in real-time, allowing artists to use their

custom brushes immediately after they are created. The texture synthesis method

makes use of randomization to encourage “happy accidents”. Strokes also have the

property of content-awareness, meaning that new strokes have an awareness of the

surrounding textures. This ensures cohesiveness between new and existing strokes.

3. We design the system to support bimanual manipulation, enabling users to manip-

ulate the texture exemplar while painting.

4. We incorporate a paint-drying mechanism in which strokes are ‘live’ for a short

period of time, giving users a small window to make adjustments to the stroke

texture after it is painted.

Chapter 4 describes how these solutions are achieved in more detail.
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Chapter 2

Related Work

Our work spans research in painting interfaces, texture synthesis, and capture. This

chapter discusses related work in these fields.

2.1 Painting with Capture

There are various examples of interface research that try to incorporate captured objects

in digital painting. Adobe Capture [1] is a mobile app that allows users to convert pictures

into various assets such as palettes, patterns, and brush shapes, which they can later use

in their creative applications on their desktop. This greatly simplifies the asset creation

workflow because it enables artists to produce custom assets on-the-go. With CaTS we

wish to simplify the workflow even further by allowing artists to immediately paint with

the textures they select.

I/O Brush is a tangible user interface that allows users to use objects as ink using a

paintbrush-like device [18]. FingerDraw is a mobile application that allows users to paint

using colors and textures picked from a finger-worn device [10]. UnicrePaint is another

tangible user interface that enables users to physically use objects as a paintbrush [12].

These applications demonstrate the power of using real world objects to make the painting

experience more engaging. We wish to expand on these ideas by incorporating texture

synthesis to allow users to produce richer paintings.
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2.2 Painting with Texture

Texture synthesis has long been explored in graphics research. There is a variety of work

that applies texture synthesis to simulate natural media in digital painting. Simulation-

based approaches such as those used by MoXi [8] and Lei et al. [15] use physics simulations

to model the interactions between the paint media and paint surface, which can produce

realistic and convincing results. Data-driven approaches like IMPaSTo [6], the Markov

Pen [13], and RealBrush [16] use samples of textures to synthesize natural media – with

the latter being a pure data-driven approach that does not rely on a physical model or

procedural rules.

2.3 Efficient Texture Synthesis

To provide feedback to users as quickly as possible, it is important to optimize the per-

formance of synthesis tasks. Computing correspondences between two images is one

approach to texture synthesis. PatchMatch [4] is a patch-based, randomized image cor-

respondence algorithm that works at interactive speeds. A generalized version of Patch-

Match [5] was later developed to support finding k nearest neighbors across multiple

scales and rotations. As PatchMatch is able to quickly produce high quality results it has

been the basis of various computer vision and image processing applications, including

Content-Aware Fill in Adobe Photoshop CS5 [3].

Lefebvre et al. [14] presents an efficient parallel texture synthesis solution that allows

for intuitive user control over texture variability. To achieve this they use the notion of

coordinate jitter, which perturbs exemplar coordinates at each level of synthesis to attain

variation. Our texture synthesis solution aims to produce high-quality results efficiently

by leveraging the framework of Lefebvre et al. approach, with refinements made in the

style of PatchMatch.
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Chapter 3

User Interface

In this chapter we review the CaTS interface and setup. Section 3.1 shows the available

functions in the program. Section 3.2 presents hardware setup for CaTS and the different

capture modalities supported by the system.

3.1 User Controls

The user has control over the following parameters:

(a) (b) (c) (d)

Figure 3-1: Demonstration of the effect of brush size on texture. The exemplar is shown in (a).
(b), (c), and (d) show strokes painted using a small, medium, and large brush size.

Brush size Providing variability for brush size is an important feature in painting

applications. The size of the paint strokes can be adjusted using either the buttons on

the tablet or through pen pressure.
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(a) (b) (c) (d)

Figure 3-2: Demonstration of cropping. (a) and (b) show the exemplar and stroke before
cropping; (c) and (d) show the exemplar and stroke after cropping to the desired region of
interest.

Region of interest There may be situations where the user wants to paint with a

specific region of an exemplar. One way to do this would be to manually zoom the

camera in to that region, but sometimes the user wants to preserve the form factor. Thus

we give the user the ability to crop the video to a desired region of interest.

(a) (b) (c) (d)

Figure 3-3: Demonstration of the progression of paint drying. The bright pink color is an
indicator of the wetness of the stroke. The stroke starts off as completely wet (a), and gradually
becomes completely dry (d).

Stroke wetness Strokes have a ‘wetness’ parameter that determines how quickly the

stroke is committed to the canvas. As a stroke is ‘drying’ it continues to re-synthesize

the texture from the video, allowing the user to make changes to the texture using the

exemplar. Once a stroke is completely dry, it is committed to canvas. Thus a brush with

a wetness value of 0 is immediately committed to the canvas.

24



(a) (b) (c) (d)

Figure 3-4: Demonstration of jitter: the exemplar (a) and the synthesized strokes made with
jitter value 0 (b), jitter value 1.5 (c), and jitter value 3 (d).

Stroke jitter Strokes also have a jitter parameter that affects the variability of the

texture. Jitter can also be thought of as the controllability of the texture synthesis, with

higher levels producing more irregular results.

Erase/Undo These essential painting functions are particularly advantageous for our

system due to the randomized nature of our texture synthesis method. They give users the

ability to correct themselves when the texture synthesis does not produce desired results.

Loading/Saving Users can save their paintings as an image file or load an image file

to use as a painting base (Fig. 6-2).

3.2 Hardware Setup

Figure 3-5: The main components for CaTS

25



(a) (b) (c) (d) (e)

Figure 3-6: The mounting (a) and handheld (c) modalities with some example use cases:
applying a filter (b), pointing at a texture from far away (d), and capturing the user’s face (e)

The capture rig is a USB-connected Logitech webcam mounted on a mini tripod. The

mini tripod has flexible legs which can be securely wrapped around other objects. The

camera feed is displayed on the upper left corner of the interface so users can see what

is being captured as they paint. Painting is facilitated by a Wacom drawing tablet and

stylus. Since the capture rig operates independently from the tablet input users can paint

while manipulating (e.g. moving, rotating) the capture exemplar.

CaTS supports 2 different capture modalities:

1. Mounting modality

In the mounting modality the camera is fixed on a tripod (Fig. 3-6a). The tripod

legs can be bent to latch the camera onto an object while the mounting bracket can

be rotated to reorient the camera. The user can then either place the exemplar in

front of the camera or hold the exemplar in their hands. This modality is appropriate

for capturing smaller exemplars or painting techniques that do not involve a lot of

camera movements. This modality also makes it easy for the user to put filters over

the camera (Fig. 3-6b).

2. Handheld modality

In the handheld modality the camera is unmounted from the tripod, allowing the user

to hold it (Fig. 3-6c). This modality is appropriate for capturing larger exemplars

(Fig. 3-6d) or painting techniques that involve a lot of camera movements. Users

may also use this modality to capture their faces (Fig. 3-6e).
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Chapter 4

Method

When the user paints a stroke they are creating a hole in the canvas. A hole is any portion

of the canvas that has less than 100% opacity. We call the process of filling the hole with

synthesized texture from the exemplar hole filling. At a high level, the objective of hole

filling is to make the inside of the hole look like the exemplar (webcam feed) and the out-

side of the hole look like the canvas. The hole is always eventually filled to 100% opacity,

but the speed at which the hole is filled is affected by the wetness of the paint. Holes

created using wetter paint are filled more slowly, which is similar to how wet paint takes

a longer time to dry in natural media. We call this process paint-drying. So long as there

is paint that is drying on the canvas, the program continues to resynthesize the texture

from the webcam feed. This mechanism is what enables users to make adjustments to

the stroke texture after strokes are painted.

Section 4.1 describes the details of the hole-filling1 procedure for CaTS. Section 4.2

then discusses the mechanism for paint-drying.

1Hole filling is synonymous to texture synthesis
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�nest level middle levels coarsest level

Figure 4-1: Overview of the hole filling procedure. The parameters to the hole filing function are
the inputs to the finest level. The ANN of the coarsest level is initialized with some tiling offsets.
Downsampling is used to provide canvas and exemplar inputs to the coarse levels from the fine
levels, while upsampling is used to initialize the fine levels’ ANN from the coarse levels’. The
coarsest level’s ANN gets some tiling coordinates to start with. Figure 4-3 shows a zoomed-in
view of the process flow for an individual level.

4.1 Hole Filling

Hole filling is performed in real time using a combination of parallel controllable texture

synthesis [14] and PatchMatch [4] approaches. Our method also adapts the hole-filling

procedure described in [19] and [9]. Because PatchMatch is used in the refinement phase

each painted stroke has awareness of the area around it. This allows for more visual

coherence between new and existing strokes, which is not achievable through stamping-

based approaches (Fig. 4-2).

A patch is defined to be a small square region of pixels of a fixed size. For a texture to ‘look

like’ another texture, it must be the case that any patch inside one texture can be found

in the other. Thus to synthesize a target texture that looks like the exemplar inside the

hole, it is necessary to build a data structure that keeps track of how exemplar patches are

(a) (b) (c) (d) (e) (f)

Figure 4-2: A demonstration of the texture synthesis and matching behavior. An exemplar (a)
is chosen to fill in a target region (b) and the resulting stroke (c) is produced. Stroke boundary
effects arise naturally because the edges of the exemplar match with the white canvas. A second
exemplar (d) is chosen to fill in target regions (e) of the texture in (c), producing a new texture
(f). The melded effect is a result of the underlying image correspondence algorithm used for
texture synthesis.

28



C E

ANN

ST T RP

UP

DN

DN
C = canvas
E = exemplar
T = target
ANN = ann

DN = downsample
UP = upsample
ST = set target
RP = random search, propagate

Figure 4-3: Illustration of the hole filling procedure for a given level. Objects are represented by
rectangles while functions are represented by circles. Arrows show the direction of data flow.

arranged in the target. This data structure is called the approximate nearest neighbor field

(ANN). An approximate nearest neighbor is the closest matching patch in the exemplar

for a given patch in the target. An approximate nearest neighbor field is simply a structure

that stores pointers to approximate nearest neighbors. The hole filling process synthesizes

the target texture through building and refining the approximate nearest neighbor field.

Algorithm 1 and Figure 4-1 present an overview of the hole filling process. We split hole

filling into 2 phases: initialization followed by improvement. Sections 4.1.1 and 4.1.2

describe the initialization and improvement phases, respectively.

4.1.1 Initialization

The initialization phase prepares the data for the improvement phase. The canvas and

exemplar are first downsampled using a box filter and passed as inputs to a smaller instance

of the hole-filling method, if it exists. Once the solution to the smaller instance is obtained,

the method initializes the current instance’s ANN to the upsampled ANN of the smaller

instance. Jitter is applied at each upsampling step to produce more variability in the

target texture. The ANN of the smallest instance is initialized with random tiling offsets

to have some variety to start with.
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Algorithm 1: Fill Hole

Input : The canvas, exemplar, jitter amount, and the current depth
Output: Fills the hole in the canvas texture using the exemplar texture and returns

the ANN
/* initialization phase */

1 patchsize = 5 · 5;
2 if canvas.size, exemplar.size > 4 · patchsize then
3 coarseCanvas = downsample(canvas);
4 coarseExemplar = downsample(exemplar);
5 coarseANN = fillHole(coarseCanvas, coarseExemplar, jitter, depth + 1);
6 ANN = upsample(coarseANN, jitter);

7 end
8 else
9 ANN = setTiledAnn();

10 end
11 bestDists = initDists();

/* improvement phase */

12 iters← depth < 2 ? 1 : 5;
13 for k ∈ [0, iters] do
14 targetTex ← setTarget(canvas.texture, exemplar.texture, ANN);
15 ANN′ ← randomSearch(targetTex, exemplar.texture, ANN, bestDists);
16 ANN′′ ← propagate(targetTex, exemplar.texture, ANN’, bestDists);

17 end
18 return ANN′′;

Algorithm 2: Upsample

Input : The coarse ANN to upsample, jitter amount
Output: Creates fine ANN from coarse ANN, plus some jitter

1 for (x, y) ∈ fine do
2 src← min(0.5 · (x, y), coarse.size) ; /* location in coarse level */

3 ann← 2 · coarseANN[src] ; /* get nearest neighbor and upsample */

4 ann← ann + (x, y)− 2 · src;
5 ann← ann + jitter;
6 ann← max(0,min(ann.size− 1, ann));
7 fineANN[x, y]← ann;

8 end
9 return fineANN;
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Algorithm 3: Downsample

Input : The image to downsample
Output: Scales down the input image by half and applies a box filter

1 for (x, y) ∈ img′ do

2 src←
⌊
(x,y)
2

⌋
; /* location in fine level */

3 img′[x, y]← 1
4
·(img[src]+ img[src+(1, 0)]+ img[src+(0, 1)]+ img[src+(1, 1)]);

4 end
5 return img′;

4.1.2 Improvement

In the improvement phase our method tries to improve the ANN by gradually synthesizing

the texture from the coarsest to the finest level. For levels in coarse to fine order set

target, random search ANN, and propagate ANN are performed for 5 iterations. To save

computation time the number of iterations are reduced at the finer levels.

31



1 2

3 4
1

2

3

4*

canvas
exemplar

3*

1*
2*

5

target

canvas
target

Figure 4-4: Illustration of set target, assuming a patch size of 2×2. The current pixel is marked
by square 4 in the canvas. Squares 1, 2, 3, and 4 mark the locations of patches overlapping 4.
The nearest neighbors for the overlaps are labeled accordingly in the exemplar, and the squares
contributing to the target color are marked with *. The color of target square 5 is computed as

the alpha blend between the canvas color and the averages: 1
4( 1

∗ + 2∗ + 3∗ + 4∗ ) · (1 −
4 A) + 4 RGB · 4 A.

Set Target. The level’s target texture is set by blending exemplar patches from the

current ANN field (Fig. 4-4). For each pixel p in the canvas, the set of overlapping

patches O is obtained. The ANN is used to retrieve the set of nearest neighbors N for

all patches in O. The RGB average is computed for the pixels in N overlapping t. This

value is then alpha blended with p to produce the final result.

Algorithm 4: Set Target

Input : The canvas texture, exemplar texture, and ANN
Output: Set level’s target texture by blending exemplar patches from current ANN

field
1 for (x, y) ∈ canvas do
2 sum ← 0;

/* offsets for all patches overlapping (x,y) */

3 offsets ← getOverlapOffsets(x, y);
4 for (x′, y′) ∈ offsets do

/* nearest neighbor for patch overlapping (x,y) */

5 overlapann ← ANN[x− x′, y − y′];
6 sum← sum + exemplar[overlapann + (x′, y′)].rgb;

7 end
8 overlapAvg ← sum/size(offsets(x, y));
9 target[x, y]← overlapAvg · (1− (x, y).a) + (x, y).rgb · (x, y).a;

10 end
11 return target
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ANN exemplar

Figure 4-5: Illustration of random search. For each pixel in the target, the random search step
randomly samples from successively larger boxes around the current nearest neighbor. In the
diagram we see that the search space, shown in blue, expands at each step. The darker colored
regions in the exemplar indicate a higher probability of selecting within that region.

Random Search ANN. The method tries to improve ANN(x, y) by randomly sampling

successively larger regions around ANN(x, y). If the RGB distance between the randomly

chosen patch and the target patch is less than the current best distance, that means a

better match was found and the ANN and best distance are updated accordingly.

Algorithm 5: Random Search ANN

Input : The target, exemplar, ANN, best distances
Output: Improves the ANN using several iterations of Random Search

1 for (x, y) ∈ target do
2 ann ← ANN[x, y];
3 r ← 1;
4 for i ∈ [1, 7] do

/* get random patch from exemplar located within radius r of

ann */

5 rpatch ← randomSample(exemplar, ann, r);
/* grab portion of target from x to x+5 and y to y+5 */

6 patch← target[x : x + 5, y : y + 5];
7 if dist(patch, rpatch) < bestDistances[x, y] then
8 ANN[x, y]← rpatch.xy;
9 bestDistances[x, y]← dist(patch, rpatch);

10 end
11 r ← r · 2;

12 end

13 end
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j = 1 j = 2 j = 4 j = 1

Figure 4-6: Illustration of how jump-flooding is used in content propagation. The content being
propagated is the nearest neighbor location. Content is propagated horizontally and vertically
from red squares at varying step sizes, j. Propagation is only successful when the nearest
neighbor of the propagator is better than that of the propagatee. Red squares represent pixels
that had content propagated to them while squares marked with an ‘X’ represent pixels that
ignored content propagation.

Propagate ANN. Our method uses the jump-flooding procedure described in [14] for

content propagation (Fig. 4-6). The method tries to improve ANN(x, y) using the known

values of ANN(x+ step, y), ANN(x− step, y), ANN(x, y + step), and ANN(x, y− step),

where step follows some sequence of integers. The method looks at the exemplar patch

at ANN(x+a, y+b)−(a, b) and checks whether the RGB distance is less than the current

best distance, updating the ANN and best distance when appropriate.

Algorithm 6: Propagate ANN

Input : The target, exemplar, ANN, best distances
Output: Improves the ANN using jump-flooding based propagation

1 steps = {1, 2, 4, 1}; /* steps for jump flooding */

2 for step ∈ steps do
3 for (x, y) ∈ target do

/* left, right, up, down */

4 offsets = { (−step, 0), (step, 0), (0, step), (0,−step)};
5 for offset in offsets do
6 (xe, ye)← ANN[x + offset.x, y + offset.y]− (offset.x, offset.y);
7 epatch← exemplar[xe : xe + 5, ye : ye + 5];
8 patch← target[x : x + 5, y : y + 5];
9 if dist(patch, epatch) < bestDistances[x, y] then

10 ANN[x, y]← (xe, ye);
11 bestDistances[x, y]← dist(patch, epatch);

12 end

13 end

14 end

15 end
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P, w C P, w’ C’

Figure 4-7: Illustration of paint drying. The user initially sees paint with color P and wetness w
on canvas C. As the paint dries the wetness of the stroke changes from w to w′. C ′ represents
the new state of the canvas as the drying paint is being gradually committed.

4.2 Paint-drying

Paint-drying is a mechanism in CaTS that shows the uncommitted synthesized strokes

on the canvas for a short period of time. Uncommitted strokes possess liveness, which

means that their texture is continually resynthesized from the exemplar. This allows users

to adjust brush texture after strokes are painted. Let C be the canvas color, P be the

color of the paint, and w be the wetness of the paint. Then the paint-drying program

applies function f to C, P , and w such that

C ′ = f(C,P,w,w′) (4.1)

where C ′ is the new canvas color and w′ = w −∆w. In paint-drying we wish to ensure

that the color of the paint does not change as it is being dried. This can be expressed as

w · P + (1− w) · C = w′ · P + (1− w′) · C ′ (4.2)

To determine the function f it suffices to solve for C ′ in Equation 4.2:
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w · P + (1− w) · C = w′ · P + (1− w′) · C ′

(1− w′) · C ′ = w · P + (1− w) · C − w′ · P

C ′ =
w · P + (1− w) · C − w′ · P

1− w′

C ′ =
(w − w′) · P + (1− w) · C

1− w′

∴ f(C,P,w,w′) =
(w − w′) · P + (1− w) · C

1− w′
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Chapter 5

System Evaluation

This chapter presents an evaluation of the performance and quality of the CaTS system.

Section 5.1 describes the time complexity of the hole-filling procedure used in texture

synthesis. Section 5.2 discusses the performance of CaTS and provides timings for the

texture synthesis calls. Finally, the quality of the texture synthesis is evaluated in Section

5.3, which presents statistics about the ANN distances.
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5.1 Time Complexity of Hole Filling

The hole filling procedure scales down the exemplar and canvas width by a factor of 2 at

each level, with the lowest level having a width and height of at least 2·patch width. Let

C be the number of pixels in the canvas, E be the number of pixels in the exemplar, and

P be the number of pixels in a patch. The computational cost of operators for a given

level of hole filling is O((C + E) · P ). For all levels the cost can be expressed as

O

(
k∑

`=0

1

4`

(
C + E

)
· P

)
(5.1)

The value of k depends on the sizes of the canvas and exemplar. Let c be the canvas

width, e be the exemplar width, and p be the patch width. If s = min(c, e) then

s

2k+1
≥ 2p

2k+1 ≤ s

2p

k + 1 ≤ log2

( s

2p

)
k ≤ log2

( s

2p

)
− 1

Since Equation 5.1 is the sum of a geometric sequence, the overall work of hole-filling is

O((C + E) · P ).
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5.2 Texture Synthesis Performance

As the performance of texture synthesis is largely dependent on the performance of Patch-

Match, we initially tried different methods to optimize the speed of PatchMatch functions.

One approach was to take advantage of SSE intrinsic functions in compute-heavy tasks.

The distance function, in particular, greatly benefited from the use of SSE intrinsics be-

cause of the highly parallel nature of the distance comparisons. In the end we found that

migrating the system to the GPU performed texture synthesis at a fraction of the time it

took using the original method. To confirm our complexity analysis we ran the hole filling

procedure on empty canvases of varying sizes and timed the results over 100 iterations.

Figure 5-1 plots the canvas area (or number of pixels in the canvas) against the minimum

synthesis time. The linear trend confirms the linear relationship between canvas area and

synthesis time in the complexity analysis.
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Figure 5-1: A plot correlating canvas area in millions of pixels against minimum synthesis time
in milliseconds. The minimum synthesis times were calculated over 100 iterations.
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5.3 Texture Synthesis Quality

The RGB distance between the target patches and their approximate nearest neighbors

is directly related to the quality of matches: the shorter the distance, the better the

match. To evaluate the quality of matches we ran the hole filling procedure on an empty

1 megapixel canvas and computed the average distance over the nearest neighbor field

for 200 trials. Figure 5-2 shows a histogram of the results. A distance value of 0 denotes

a perfect match, while values closer to 1 are indications of poor matches. The average

distance value over all the averages is 0.00577, which indicates that the method produces

high quality matches.
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Figure 5-2: A histogram showing the distribution of the average nearest neighbor distances over
200 trials. The CDF is represented by the orange line.
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Chapter 6

User Evaluation

This chapter evaluates the effectiveness of the CaTS system from a user perspective.

Section 6.1 presents user paintings and feedback from an earlier version of the CaTS

system and discusses how their comments informed the design decisions for the new

version. Section 6.2 presents the user paintings and feedback from the current version of

the CaTS system. Finally, Section 6.3 reviews different painting techniques that can be

used with the system.

6.1 Pilot Testing

An earlier version of the system was tested with three artists in an informal user study.

In that version of the system, texture synthesis was not working in real-time – instead,

intermediate synthesis results were shown as strokes were being synthesized. The undo,

cropping, and paint-drying functions were also not present in that version of the system. In

that study artists were simply instructed to experiment with the system through freeform

paintings and provide feedback on their experience. Through this preliminary user study

we were able to identify the weak points of the interface and get a better sense of how

typical users would use the system.
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Comments from Artist 1
The system blends out the texture too much
The system makes a lot of assumptions about
what color the stroke should be
The smoothing of the texture feels somewhat lim-
iting
Likes the artifacts produced by the texture syn-
thesis
The system works well with high contrast textures

Comments from Artist 2
The system takes some time to get used to
Likes the randomness
Really compatible with their workflow, which in-
volves allowing the image to organically take
shape
Wishes there was a way to meld strokes
Wants control over blending
Wants some sort of save/autosave feature
Wishes there was a way to adjust the matching
area
Wishes there was a soft brush
Texture synthesis could be faster

Comments from Artist 3
Takes a while to get used to
Fun to play around with
Super portable
Likes the artifacts produced by the texture syn-
thesis
Maybe a high level description of the algorithm
would be super motivating for people to see how
they can utilize it
Should be a faster way to change the brush
size like a slider on screen–so they can quickly
paint the whole background in a few strokes then
quickly decrease the size to work out the details
A motivating story of how it can be useful would
be cool, like someone who’s traveling all around
the world and creates a drawing for each place
using the textures of that place

Table 6.1: Painting results and comments from pilot testing.

42



6.1.1 Summary of Feedback from Pilot Testing

Table 6.1 shows some of the paintings and comments made by three artists who partic-

ipated in the pilot study. In general, the feedback received from the early version of the

program was promising; while there was a consensus that it takes some time to get used to

the system, artists found the painting tool enjoyable to use and liked the random artifacts

that would result from the texture synthesis. The main critical comments were directed

towards the texture synthesis being too unpredictable. Artists also expressed wanting the

ability to specify which region of the video they would like to use for texture synthesis.

They also wanted to have erase and undo functions to correct their mistakes – especially

given how they had limited control over the synthesis results. Finally some artists wanted

to see faster texture synthesis speeds.

Much of the user feedback was integrated into the revised version of the system. The

additions made in response to feedback were the erasing, cropping and undoing functions.

Back-end changes included porting the implementation to the GPU to support faster

synthesis calls and using tiling to add more predictability in the synthesis results.

6.2 Beta Testing

A second pilot study was conducted with the revised version of the system. Testing was

conducted with two artists – one who previously participated in the pilot testing phase

and one who is less familiar with the system. Similar to the pilot study, we asked the

artists to make freeform paintings and comment on the experience. In general, the results

and feedback were encouraging.

6.2.1 Summary of Feedback from Beta Testing

Table 6.2 shows the paintings and comments made by the beta testers. Based on the

artists’ feedback we were able to identify some limitations to our new system. The
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Comments from Artist 1
Easier to use than the previous version
Paint drying effect is interesting
Would like to have some way to zoom into the
image as otherwise it is difficult to do detailed
work
Would like to have a layering system so that more
complex paintings can be made

Comments from Artist 2
Enjoyable to use
Feels different from normal painting
Easy to make shading by putting hand over the
exemplar
Can achieve lots of effects that are difficult to get
with traditional/digital means
Once you have the focus of the camera properly
set it isn’t too hard to control
Sometimes boundary matching can do things you
weren’t expecting
Would be nice to have a color correction system
Would be nice to have a simple color picker so
that users can lay down rough colors as a guide
before applying textures
Would like to see a layer clipping system

Table 6.2: Painting results and comments from beta testing.
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learning curve for the system still exists, but is reported to be less steep than the previous

version due to the improved texture synthesis. The artist who participated in pilot testing

said that the new version of the system is an noticeable improvement from the previous

version, and found the undo function to be very useful. They felt that the system was

less unpredictable, though they thought the tiling of the texture gave the strokes too

much regularity. They also thought it would be nice if the program could maintain a

‘texture history’, because having to constantly switch between different textures can be

cumbersome. A texture history would allow users to quickly select from a palette of

familiar textures – though in this case, instead of sampling from a dynamic webcam feed

the system would be using a static exemplar.

The second artist greatly enjoyed making paintings with the system. They liked how

some of the results produced by CaTS are not easily achievable through purely digital or

traditional methods. They commented on how the design of CaTS encourages them to

use unexpected textures, simply because they wanted to see what the texture synthesis

would do – for example the hair in the third image of Table 6.2 was made using a picture

of a skunk. They also appreciated how the program makes it easy to paint textures that

are normally difficult to paint, such as skin.

One feature that both artists would like to see is a layering system. Currently, CaTS only

allows users to paint on one layer, making the workflow similar to painting traditionally.

With a multi-layered system artists can modify specific parts of the painting without

affecting the others and develop their painting in a non-linear fashion. This system would

be particularly useful if the artist wished to separate lineart from color.

6.3 Painting Techniques and Strategies

After continued use of the system and through observation of the testers we compiled a

list of some painting techniques and strategies that can be used with the system.

Filters and distortions Rather than select from a menu of effects, the user can put

physical filters, such as colored film, over the camera to achieve the desired outcome.
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(a) (b) (c) (d) (e)

Figure 6-1: Using natural media exemplars (a,b) to produce result (c). Closeups (d) and (e)
show the fidelity of the texture synthesis results.

(a) (b) (c) (d)

Figure 6-2: Examples of paintings made using an image as the canvas base. Both paintings
were painted using oil pastel exemplars.

Lighting and shading Darker versions of textures can be made by casting a shadow

over the exemplar, and conversely lighter versions can be made by shining a spotlight onto

the exemplar. Gradients can also be created using this method.

Paint-overs By importing an existing image into the canvas users can have a base for

their painting without having to start from scratch. This technique is often used to make

stylized versions of photographs (Fig. 6-2).

Overlays A texture overlay effect can be achieved by taking advantage of the paint

drying mechanism. As a wet stroke is drying on the canvas, the user can quickly switch

the camera to a different texture. The second texture will appear as a transparent overlay

atop the first texture.
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Chapter 7

Conclusion and Future Work

We have presented CaTS, a novel digital painting system that synthesizes texture from

live video in real time. By capturing textures from live video, CaTS cuts down the

texture creation workflow and encourages an exploratory approach to painting. Informal

user testing shows that CaTS can enable artists to create paintings that are not easily

achieved through purely digital or traditional means. While the results from the informal

user evaluation are promising, future efforts will include evaluating the effectiveness of

CaTS through a formal user study (see Appendix B).

An interesting direction to take for the future would be to consider how to support real-

time texture-preserving blending. One potential approach would be to incorporate an

image melding [9] solution to blend brush strokes. Another interesting future effort would

be to generate brush shapes. Currently the system only uses a circular brush which may

not be effective for certain textures. It would be interesting to consider how to generate

different brush shapes from textures and produce convincing boundary effects, as explored

by Ritter et al. [17]. Additionally, CaTS is not a fully featured digital painting tool; adding

functions like panning and zooming, a layer hierarchy, and clipping masks would provide

users with more flexibility in their painting process. Finally, while we have only explored

this system in the context of 2D painting, there is potential for it to be integrated into

a 3D modeling workflow. Possible applications include painting textures onto models or

quickly creating bump maps.
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Appendix A

Painting Gallery

Below is a gallery of more paintings made with CaTS. All paintings were created by the

author unless otherwise stated. Images are used with permission from the artists.
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Figure A-1: “Catfly” Figure A-2: “Gone Fishing”

Figure A-3: “Wean” by Anonymous Figure A-4: “Mountain Range”

Figure A-5: “Reclining Lady” Figure A-6: “Untitled”
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Figure A-7: “Ghost” Figure A-8: “Nature”

Figure A-9: “Face Horror” Figure A-10: “Charcoal Lion”
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Appendix B

User Study Design

We will conduct a qualitative user study that aims to evaluate the effectiveness of our

digital painting system. The study is directed towards users between 18-60 years old with

at least 1 year of digital or traditional painting experience. Two different studies will be

conducted: a single-user study and a group user study. The set of participants will be

different for each study. In both studies users will create paintings with the system based

on a set of guided and freeform tasks.

B.0.1 Single User Study

In the directed single user study participants will create paintings using our interface and

we will observe them as they paint. Participants will complete a set of guided and freeform

painting tasks and will be asked to think aloud as they are painting. Notes and screen

recordings will be taken. After the painting tasks are complete participants will fill out

the Creativity Support Index [7] survey to reflect on their experience.

B.0.2 Group User Study

In the group user study we will do the same process as above with a group of participants.

The motivation for the group user study is to observe group behaviors and see whether

the system fosters collaboration.
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