
Learning Player Behavior Models
to Enable Cooperative Planning

for Non-Player Characters

Stephen Chen

CMU-CS-17-130
December 2017

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Maxim Likhachev, Chair

Nathan Beckmann

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

Copyright c© 2017 Stephen Chen

https://www.cs.cmu.edu/
https://www.csd.cs.cmu.edu/
https://www.cmu.edu/

ii

Keywords: Non-player Characters; Player modeling; Behavior learning;

Online classification; Cooperative planning

iii

Abstract

In video games, non-player characters (NPCs) tend to have trouble initiating cooper-
ative tactics because players usually have an unspoken preference for how to solve a
challenge. For example, in a “Capture the Flag” game where players have to reach an
objective, it is usually difficult to program an NPC to accommodate both players that
want to stealthily reach the goal and players that want to aggressively charge toward
the goal. To enable NPCs to take a more active role in supporting players, we advocate
learning a human-player model from in-game demonstrations to aid NPC planners in
finding cooperative plans. To realize this, we first developed a classification algorithm
which could learn player behaviors unsupervised, and then integrated it in our NPC AI
planning framework for the game The Elder Scrolls: Skyrim. Specifically, we applied con-
cepts of activity analysis from pervasive computing to identify and cluster similar se-
quences of game events which captured distinctive player behaviors in demonstrations.
We generalized these clusters as player models which could predict player trajectories
for the behavior pattern. We evaluated our player behavior classification system in a
toy version of Skyrim to illustrate its performance. We also combined the classifier with
our Skyrim NPC AI planner to demonstrate the classifier’s practical application. The
classifier associated each player behavior with supporting NPC demonstrations, which
were used to learn search heuristics like Training Graphs for the situation. With our
classifier’s player model and the learned heuristics, our planner was able to use multi-
heuristic A* to find cooperative plans that solved “Capture the Flag” scenarios in Skyrim
which would have otherwise required manual engineering to solve.

v

Dedicated to my parents.

vii

Acknowledgements

First and foremost, I would like to thank my thesis advisor Dr. Maxim Likhachev. He

was the one who provided me the initial opportunity to work on an AI research project

in the context of video games. He expressed interest in every stage of my research and

supplied valuable insights and advice that helped guide this work.

I would also like to thank John Drake, a fellow graduate student and lab member,

who was responsible for leading the NPC planning work which motivated my thesis.

His existing work with The Elder Scrolls V: Skyrim provided me a huge tool set which

streamlined the implementation and testing stages of my work. It has been a great

pleasure working with him to bring advancements in AI techniques to a video game we

both enjoyed.

I would like to extend this thanks to Eric Wong, another graduate peer in our Ma-

chine Learning department. On top of being an amazing teaching assistant for the ma-

chine learning course I took during my ungraduate program, he answered many of my

learning related questions and provided many suggestions that bettered my methodol-

ogy.

In addition, I would like to thank Dr. Nathan Beckmann for being my second thesis

committee member. I am grateful for his interest in my work and taking the time to

review my thesis.

Finally, I would like to thank Tracy Farbacher and Peter Steenkiste for running and

managing the School of Computer Science’s Fifth Year Masters Program. I would like

to thank Bethesda Game Studios for developing the awesome game Skyrim and for pro-

viding the Creation Kit which allowed us fans to apply our own work to the game. And

thanks to all of my friends and family who have supported and encouraged me along

the way.

ix

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

2 Player Behavior Classifier 5

2.1 Using Playstyles as Behaviors Classes . 5

2.2 Problem Statement . 6

2.3 Representing Demonstrations as Activities 7

2.4 Activities as n-Gram Histograms . 8

2.5 Clustering Activities . 9

2.5.1 Similarity Metric . 9

2.5.2 Clustering by Finding Dominant Sets in an Edge-Weighted Graph 10

2.5.3 Computing Dominant Sets with Replicator Equations 12

2.6 Activity Classification . 14

2.7 Improvements to the Similarity Metric . 15

2.8 A New System for Robust Online Classification 16

2.8.1 Overall System Description . 17

2.8.2 Adjusting for Confidence in the Activity Classifier 17

2.8.3 Computing the Classification at the Next Time Step 19

2.9 Using Discounted Histograms to Cull Old Events 21

2.10 Summary . 23

x

3 Classifier Experiments and Results 25

3.1 Simple Skyrim . 25

3.1.1 Game Description . 25

3.1.2 Events in Simple Skyrim . 27

3.1.3 Map Layouts . 28

3.2 Playstyle Demonstrations . 29

3.3 Clustering Demonstrations into Playstyle Classes 29

3.4 Metrics . 32

3.4.1 Total Entropy of a Clustering . 32

3.4.2 Adjusted Rand Index . 33

3.5 Hyper-Parameters . 34

3.5.1 Normal κs vs Weighted κs . 34

3.5.2 Using Union vs Concatenation . 35

3.5.3 Deleting Duplicate Demonstrations 35

3.5.4 Changing n in the Activity Histogram 35

3.6 Validation Results . 36

3.7 Resulting Clustering . 38

3.8 Evaluating Classification Ability . 38

3.9 Responding to Switching Playstyles . 40

3.10 Shortcomings . 41

3.11 Summary . 42

4 Cooperative Planning for Non-Player Characters 45

4.1 Heuristic Graph Search . 45

4.1.1 Training Graph Heuristic . 47

4.1.2 Multi-Heuristic A* . 47

4.2 Toward Cooperative Planning . 48

4.3 A Cooperative Skyrim Scenario . 49

4.4 Implementation and Integration . 51

4.4.1 Skyrim NPC Planning Framework 51

xi

4.4.2 Integrated Design . 52

4.4.3 Running the Behavior Classifier . 52

4.5 Results . 54

4.5.1 Feasibility of New Cooperative Plans 54

4.5.2 Speeding Up Search with Supporting NPC Demonstration 57

4.6 Summary . 59

5 Related Works 61

5.1 Plan Recognition . 61

5.2 Learning Approaches . 63

6 Conclusion 65

Bibliography 67

xiii

List of Figures

2.1 Example Activity Sequence . 8

2.2 Example Activity Histogram . 8

2.3 Bayesian Network for Classification Xt+1 18

3.1 Simple Skyrim . 26

3.2 Simple Skyrim Maps . 30

3.3 Demonstration of Switching Playstyles . 40

3.4 Impact of Discount Factor on Class Belief 42

4.1 Skyrim Scenario Map Layout . 50

4.2 Skyrim Scenario with Labeled Points . 51

4.3 Updates to the Planning Pipeline . 52

4.4 Examples of COMBAT and SNEAK in Skyrim Scenario 53

4.5 NPC Plan without a Player Model . 55

4.6 NPC Plan with a Player Model . 56

4.7 NPC Plan with SNEAK Player, Weighted A* with Shortest Path Heuristic 57

4.8 NPC Plan with SNEAK Player, Weighted A* with T-Graph Heuristic . . . 59

4.9 NPC Plan with SNEAK Player, Multi-Heuristic A* with T-Graph Heuristic 60

xv

List of Tables

3.1 Damage dealt by the player’s weapons . 27

3.2 Enemy Statistics in Simple Skyrim . 27

3.3 Playstyle guidelines for Simple Skyrim . 31

3.4 Example Demonstration Event Sequences 32

3.5 Clustering performance of various hyper-parameters when n = {1, 2, 3}. . 36

3.6 Clustering performance of different n in the activity histogram, using nor-

mal κs and list concatenation. 37

3.7 Clustering performance of different n in the activity histogram, using

weighted κs and set union. 37

3.8 Clustering of Demonstrations from Maps 1-4 38

3.9 Classifcation of Map 5 Demonstrations . 39

3.10 Delay (in number of events) until classification switch 41

4.1 NPC planning results for when Player follows COMBAT playstyle 56

4.2 NPC planning results for different search algorithms when player is fol-

lowing the SNEAK playstyle . 58

1

Chapter 1

Introduction

Modern video games are becoming increasingly complex. With advancements in pro-

cessing power, game developers can boost the entertainment value and immersion of

their virtual world by packing more sophisticated gameplay mechanisms into their

game. For certain genres like action adventure, the rising complexity has caused de-

veloping smart AI for non-player characters (NPCs) to become increasingly difficult,

particularly because of two prominent trends. Games now tend to give players many

different options to tackle a single challenge, and NPCs are now expected to cooperate

with players in solving challenges.

Giving players multiple options or tactics to solve a problem is not a new pattern

in video gaming, but recent titles have consistently expanded the boundaries of player

choice. In particular, action adventure role-playing games now usually feature an avatar

with highly customizable abilities to fit the preferences of the player. For instance, The

Elder Scrolls V: Skyrim (Skyrim) includes a diverse selection of weaponry, abilities, and

special traits that allow players to heavily customize their avatar. This customization

allows players to approach challenges in their own preferred playstyle, instead of one

predetermined by the developers. For example, there are many dungeons in Skyrim

that feature a “Capture the Flag” game scenario: there is a treasure chest at the end

of the dungeon with many enemies guarding it, and the player must retrieve the trea-

sure without dying. Players can customize their character to be knight-like or thief-like,

giving them a choice between aggressively fighting through the enemies or stealthily

slipping past them. Some players might choose a middle ground between these two

2 Chapter 1. Introduction

strategies, or event invent something entirely different.

Now, the increasing customizability is not necessarily an issue for all NPC AI, partic-

ularly those NPCs that operate outside of the player’s playstyle preference like enemy

NPCs. However, newer games tend to feature ally NPCs that are expected to cooper-

ate with players in tackling certain challenges. Skyrim and Borderlands 2 both feature

companion NPCs which accompany the player on their adventure and aid in combat.

Similarly, multiplayer team games like Left for Dead and Rocket League sometimes sub-

stitute in NPC characters when there are not enough human players to fill out the team.

In both cases, the computer controlled NPC needs to operate not only intelligently, but

also cooperatively with the human players. The cooperative aspects in these games re-

quire that NPCs be able to see beyond maximizing their own individual objectives, and

actually participate in coordinated team strategies with human players.

Coordinating these strategies becomes increasingly difficult when the number of

playstyles or tactics available to the player is large. First, if there is a large number of

interacting gameplay mechanisms, it can be difficult for developers to foresee all pos-

sible approaches to a challenge. Second, it is hard to program an all-purpose NPC that

accommodate all players, especially those with novel playstyles or tactics. In the Skyrim

example, an aggressive NPC that can help a knight player fight a hoard of enemies

is likely useless to a thief player that wants to remain undetected. To complicate the

matter, a knight-like player may have self-imposed rules that make an aggressive NPC

unattractive to their playstyle. Perhaps the player only wants to fight easy enemies and

not hard ones, or maybe the player wants to be stealthy if there are too many enemies

in one area. In these cases, an NPC programmed for the prototypical knight player will

quickly ruin the strategy of these cautious players.

We thus propose that NPCs learn these player strategies directly from human demon-

strations, rather than requiring developers to anticipate these cases and hard coding the

NPC response. These demonstrations can be recorded during the development of the

game, perhaps during playtesting, or they can be recorded after the game’s release,

Chapter 1. Introduction 3

when players are actively playing the game. These demonstrations will be used to cre-

ate models for the players’ different playstyles and tactics, and it should be easy to create

new models as new demonstrations of new playstyles appear. To realize this, we will

draw upon activity analysis techniques used in pervasive computing to identify high-

level human activities. We will identify similar behavior patterns in the demonstrations

in order to differentiate distinct playstyles. We can then use the relevant demonstrations

to construct player models that can predict the player’s next move. During active game-

play, we classify the player’s current behavior as one of our discovered playstyle and

then pass the relevant model to an NPC planner. This planner will allow the NPC to ac-

commodate the player, even if the game environment differs from the demonstrations.

Furthermore, once we learn the players’ playstyles, we can provide demonstrations of

supporting NPC behavior for each of the playstyles and use these supporting demon-

strations to help guide the NPCs planning process.

Our goal is to reduce the developers’ work in trying to hard-code appropriate be-

haviors for NPCs. We simplify the process of recognizing human playstyles by learn-

ing them directly from player demonstrations which are easily attainable. As we will

discuss in Chapter 4, we can associate these playstyles with supporting NPC demon-

strations, which can be used to guide NPC planning. This will cut out the work of

hard-coding NPC support behaviors, and again rely on easily attainable demonstra-

tions of good support behavior. Our system will also allow NPCs to be flexible to new

playstyles and tactics, as this learning process can continue even after the game ships.

At a high level, this thesis contributes the following:

• The Player Behavior Classifier, a complete pipeline for learning and classifying

player behaviors in video games, based on existing activity analysis techniques

[13, 21].

• Modifications to the existing learning algorithm to enable better performance for

our domain.

• A novel method to handle online behavior classification during active gameplay

4 Chapter 1. Introduction

through the use of Bayesian Belief Networks [22] and our newly proposed Dis-

counted Histograms.

• A novel method to integrate the Player Behavior Classifier into an NPC plan-

ning system, which involves the use of Training Graph Heuristic [6] and Multi-

Heuristic A* [1] for fast planning times.

• Results which demonstrate how the combined system can enable an NPC planner

to find cooperative solutions to a task.

5

Chapter 2

Player Behavior Classifier

In this chapter, we present the Player Behavior Classifier, our solution to modeling

player behavior. We begin by explain how player behaviors are typically divided into

distinct classes known as playstyles. We then formalize the problem of learning player

behavior patterns from demonstrations as an offline unsupervised learning problem

and an online classification problem. After that, we explain how to apply an existing

activity analysis technique to our domain, which involves clustering activities via Dom-

inant Sets [13, 21]. Next, we build upon the existing technique by presenting our own

modifications to similarity function. Finally, we introduce a new Bayesian Belief Net-

work [22] that will allow robust online classification, as well as a new concept called

the Discounted Histogram, which will allow our classifier to adapt to changing player

behaviors.

2.1 Using Playstyles as Behaviors Classes

Our ultimate goal is to aid an NPC planner in finding plans which factor in the current

human-player behaviors. To this end, the planner must be able to generate a model

for the current player’s behavior so that it can extrapolate their next moves during

planning. Luckily, we can expect players to behave consistently to according to some

playstyle, a self-imposed set of rules or guidelines for playing the game. We can thus

expect the player’s plans or tactics devised under a particular playstyle to look rela-

tively the same. For example, in Skyrim, a player that is playing a “thief” playstyle is

6 Chapter 2. Player Behavior Classifier

likely to devise plans or employ tactics that let them sneak past any enemy guards in

a dungeon. So long as the player adheres to the “thief” playstyle, we can expect that

in future dungeons, the player will continue creating similar plans that let them sneak

past the enemies. In other words, the combat choices the player makes on-the-fly are

closely related to the overarching playstyle. Thus, if we can recognize the player’s cur-

rent playstyle, then we are likely able to accurately predict their next move.

However, players are not tied down to one particular playstyle when playing a

game. A thief avatar in Skyrim can just as easily become a knight if the player decides to

equip a sword and shield. The plans and tactics employed by a knight will likely be dis-

tinct from the plans of a thief. As a result, there could potentially be multiple playstyles

for which we need models. The fact that players can easily switch between playstyles

also means we need to be able to choose between our different models on the fly.

With this in mind, we examine two problems. One, how do we build the possible

classes of the player playstyles? And second, how do we recognize which playstyle the

player is currently following?

2.2 Problem Statement

Let us formalize the exact problem statement of behavior modeling for playstyles in

video games. We first start in an offline context. We are given a set of complete in-

game replays or demonstrations (whose representation will be discussed soon). We

need to build models of human playstyles from these demonstrations. Then, once we

have models, we move to an online setting where we are given a live stream of data

(a live replay) from a player currently playing the game. We must then classify which

model the player is following and then output that model to an NPC planner. In this

formulation, the offline problem of learning playstyle models can be solved before or

after a video game ships. This means developers can create an initial batch of playstyle

models during game development and then continue collecting playstyle data for new

models even after the game’s release.

2.3. Representing Demonstrations as Activities 7

In the next sections, we present a solution to this problem based on the algorithms

provided by Hamid et al. [13], which were originally used for classifying human activ-

ities in a bookstore loading dock. This system, known as the Player Behavior Classifier,

will treat demonstrations as high-level activities, which we can cluster into disjunctive

activity classes. These activity classes will represent playstyles. Once we have these

playstyle classes, we can identify new live replays as members of one of these classes

and produce an appropriate model of that class.

2.3 Representing Demonstrations as Activities

To model player behaviors, we begin by establishing a groundwork for how to describe

actions and behaviors. We define an event to be a representation of some interaction

of agents or objects in the game setting. In a the Skyrim context, these events can be

as specific as swinging a sword to something as abstract as “initiating combat.” An

activity is an ordered sequence of events, or in other words, a discrete time series that

describes everything that transpires in terms of events. We refer to this representation

of activities as an activity sequence or event sequence.

Depending on the granularity of the events, an activity could describe a the move-

ment of a character–where events are the characters’ world coordinates–or an activity

could describe a high-level plan, tactic, or strategy–where the events are more abstract

like “flank the enemy” then “engage in melee combat.” Given more abstract events,

activities can better capture what occurs at a high level. It is thus favorable to define

events which describe critical points in the activities we want to analyze. In our context,

we want our activities to describe playstyles or playstyle specific tactics, which means

our events have to be as abstract as “initiating combat” and “sneaking past an enemy.”

As example activity sequence is given in figure 2.1.

We assume that the demonstrations given to us in the offline phase are in the form of

event sequences, instead of raw state logs. The ability to extract abstract high level fea-

tures from state data is highly domain dependent and would require either careful hand

engineering or another learning algorithm. Furthermore, games generally already have

8 Chapter 2. Player Behavior Classifier

Combat Magic Retreat Combat Combat Combat Combat Magic

A B C A A A A B

Time

Event Sequence: A-B-C-A-A-A-A-B

FIGURE 2.1: An example activity sequence from Skyrim. The player ini-
tially engages a wolf, uses magic, and then retreats. The player then later
engages four wolves, and uses magic. These events can be thought of as

types A, B, C, creating the string ABCAAAAB.

A B C AB BC CA AA ABC BCA CAA AAA AAB
5 2 1 2 1 1 3 1 1 1 2 1

FIGURE 2.2: An example activity histogram with n = {1, 2, 3} for the
sequence ABCAAAAB (given in figure 2.1).

a notion of important high level events in their code base. For example, state machines,

which are common in game AI, encode high-level information about the character’s cur-

rent behavior. It is easier to log the high-level events occuring in these state machines

than it is to analyze raw game state and infer the corresponding events. We thus leave

the potential problem of extracting event sequences from raw data to other works.

2.4 Activities as n-Gram Histograms

Once we have demonstrations in the form of activity sequences, we further break them

down into an activity histograms. An activity histogram is simply an n-Gram, or a

frequency count of the substrings in the activity sequence. We simply count the number

of instances of each unique substring of length n in the event sequence, and the resulting

histogram is a feature vector that represents the activity. The activity histogram is a good

feature vector for the activity sequence, because temporal structure in long sequences

can often be captured by its smaller local relationships. An example activity histogram

can be found in figure 2.2.

Hamid et al. provide further analysis of the representational power of n-Grams and

2.5. Clustering Activities 9

show that they provide features that are as informative as a Vector Space Model (word-

count model) and Hidden Markov Models when it comes to discriminating classes of

activities [13]. Note that in the case n = 1, an n-Gram is equivalent to a naive Vector

Space Model. We can also use multiple values of n in the n-Gram, e.g. keeping fre-

quency counts of substrings of length 1, 2, and 3. We use the notation n = {1, 2, 3} to

indicate that our n-Gram keeps frequency counts of substrings of more than one length.

As n increases, we capture the structure of an activity more rigidly. Of course, larger

n suffers from higher dimensionality and requires more space to represent. In addition,

it has been shown that, in the context of capturing player behaviors, n-Grams tend to

perform worse after n = 5, as the natural randomness in human actions make it rare to

see a long event string twice [20].

The correct choice of n is highly domain dependent, and we investigate the choice

in our experiments. It is generally accepted that n = 3 provides a good representation

of human behaviors.

2.5 Clustering Activities

2.5.1 Similarity Metric

We now define a similarity metric between activities that will help us cluster them into

classes.

Let A and B be activity sequences, and let their corresponding activity histograms

be HA and HB. Let SA and SB represent the set of the unique substrings with non-

zero count in HA and HB respectively. Let f (s | HA) be the frequency of substring s in

histogram HA. Then the similarity metric is defined as follows:

sim(A, B) = 1− ∑
s∈SA,SB

κs
| f (s | HA)− f (s | HB)|
f (s | HA) + f (s | HB)

(2.1)

where κs ∈ [0, 1] is the importance of substring s, and ∑s∈SA,SB
κs = 1. In the original

formulation by Hamid et. al. [13], κs =
1

|SA|+|SB| for all s, where | · | is the set cardinality

operator. We will discuss our proposed improvements on this metric in section 2.7.

10 Chapter 2. Player Behavior Classifier

The similarity metric is a function that always returns a value in [0, 1]. Activities

which are exactly the same will have similarity 1, and activities with mutually exclusive

substrings will have similarity 0. Note that the total number of unique substrings that

are mutually exclusive across the two activities will directly impact the similarity metric.

For substrings which are present in both activities, it is the difference in their frequency

counts that affects the metric. This metric has the property that it is commutative.

There are other formulations for similarity between discrete time series, such as min-

edit distance [17] or dynamic time warping [3]. These are not well suited for activity

analysis since they are sensitive to input size and assumes that sequences need to have

the same global ordering of events to be similar, which may be too strict for human

activities which have strong local structure but weak global structure. Dynamic time

warping also requires a metric of distance between the discrete events, which is not eas-

ily definable between game events. It is not intuitively clear what the distance between

“initiating combat” and “sneaking past a guard” is.

2.5.2 Clustering by Finding Dominant Sets in an Edge-Weighted Graph

We now present the method to group activities into disjunctive classes. In our con-

text, this will separate demonstration activities into clusters which represent distinctive

playstyles.

Suppose we are given K demonstration activities. We represent the activities and

their similarities to each other as a complete edge-weighted graph of size K. Each vertex

represents an activity histogram, and each edges has weight equal to the similarity of

the two activities they connect.

We equate the problem of discovering activities classes to finding the “maximal

cliques” of this edge-weighted graph. Normally, a maximal clique is defined as the

largest subset of vertices which are all adjacent to each other. However, since our graph

is complete, our notion of “maximal clique” refers to finding a subset of vertices that

are all connected to each other by high weight edges. We call such a subset a dominant

2.5. Clustering Activities 11

set, which is described more thoroughly in [21]. The clustering algorithm involves find-

ing the dominant set, removing those vertices from the graph, and then repeating the

process until no more dominant sets can be found. Each set thus becomes a class, and

anything remaining is assigned into the found classes.

We will now formalize the notion of a dominant set. We represent our demonstration

activities as an undirected edge-weighted complete graph with no self loops. Our K

activities form the vertex set V and are labeled by 1, . . . , K. The edge set is E ⊆ V × V.

The weights are given by sim(i, j).

The weighted adjacency matrix, or similarity matrix, of our graph is a K× K square

matrix whose elements are given by:

aij =


sim(i, j) i 6= j

0 otherwise
(2.2)

where sim is our defined similarity metric (equation 2.1).

Next, we introduce “average weighted degree,” which is the average weight of the

set of edges touching a vertex. This measure of how similar a vertex i is to a set of other

vertices S. Let i ∈ V and S ⊆ V.

awdegS(i) =
1
|S| ∑j∈S

aij (2.3)

In addition, we introduce a notion of the similarity of i and j with respect to how

similar i is to a set S of vertices. For i, j ∈ V, S ⊆ V and j 6∈ S:

φS(i, j) = aij − awdegS(i) (2.4)

Note that φ can produces values in [−1, 1]. To understand this function, consider a

cluster of vertices S where i is very close (similar) to that cluster and j is very far away

(dissimilar). φS(i, j) would thus be a very negative value. Intuitively this makes sense

because i and j are far away from each other, especially when we consider how close i

is to the cluster S. Conversely, suppose S is a very scattered cluster, but i and j are very

12 Chapter 2. Player Behavior Classifier

close to each other. φS(i, j) would this be very positive, because i and j are very similar

when we consider how dissimilar i is from the set S.

This brings us to a final definition, which evaluates how similar a vertex i is to a set

of vertices S with respect to the overall similarities of the other vertices in the set. In

other words, if we consider the other vertices in S as a cluster, how well does i sit with

that cluster? Let S ⊆ V, and i ∈ S. We make the following recursive definition:

wS(i) =


1 if |S| = 1

∑
j∈S\{i}

φS\{i}(j, i)wS\{i}(j) otherwise
(2.5)

Informally, the recursive case expresses the following: how well vertex i sits with the

cluster S depends on how similar i is to each other vertex j in S, weighted by how well

each j sits with S.

We can now say that a set of vertices S ⊆ V is dominant, if wS(i) > 0 for all i ∈ S,

and wS∪{i}(i) < 0 for all i 6∈ S. The first condition represents internal homogeneity: all

vertices in the dominant set are very similar to all the other vertices in the dominant

set. The second condition represents external inhomogeneity: all vertices outside the

dominant set should be dissimilar to the entire dominant set.

2.5.3 Computing Dominant Sets with Replicator Equations

Solving for the subset S that satisifies Equation 2.5 is combinatorially hard. As such, we

instead rely on solving a related quadratic program using a continuous optimization

technique. The solution to this quadratic program will tell us exactly which vertices are

in the dominant set.

The quadratic program can be formulated as such:

maximize 1
2 xT Ax

subject to x ∈ ∆
(2.6)

2.5. Clustering Activities 13

Here, A is the similarity matrix as given by equation 2.2. ∆ is the standard simplex of

RK, i.e. the set of vectors x ∈ RK such that each element xi ≥ 0 and ∑k
i=1 xi = 1. Pavan

and Pelillo provide a proof for why the solution to this quadratic program corresponds

to the dominant set of an edge-weighted graph [21].

To solve this quadratic program, we use a continuous optimization technique known

as replicator equations. This is essentially Newton’s Method of optimization which finds

a stationary point. The optimzation starts with a guess of what x should be, and then

proceed to step in the direction that will cause the optimization function to have a first

derivative of zero. x is repeated stepped until convergence, indicating we have reached

an optima. As proved in [21], the optima of this quadratic program is a global maxi-

mum.

Let xi(t) represent the ith element of a vector x at time step t. We set x(0) to be the

barycenter of the feasible region ∆, i.e. xi(0) = 1
K for each i. Then, the optimization step

is:

xi(t + 1) = xi(t)
(Ax(t))i

x(t)T Ax(t)
(2.7)

where (Ax(t))i represents the ith element of the vector resulting from the matrix multi-

plication. The equation is stepped until x(t + 1) ≈ x(t), at which point we have reached

an optimal solution x∗.

The optimal solution x∗ represents:

x∗i =


wD(i)
W(D)

if i ∈ D

0 otherwise
(2.8)

where D is the dominant vertex set of the graph, wD(i) is as defined in equation 2.5, and

W(D) = ∑i∈D wD(i).

We see that if the ith element of of x∗ is non-zero, then vertex i is in the graph’s

dominant set. This allows us to extract the dominant set D from x∗. Furthermore,

since ∑i xi = 1, each non-zero xi term actually represents the participation, or weight,

of vertex i in the dominant set D. This fact will become useful in the next section. Let

14 Chapter 2. Player Behavior Classifier

the participation of a vertex i in dominant set D be defined as:

pD(i) = x∗i (2.9)

Finally, we group together the demonstrations represented by the vertices in D and

treat the group a unique activity class. We remove those vertices in D from the graph,

and then repeat the process of finding the next dominant set in the new graph. The

process repeats until no new dominant sets can be found.

2.6 Activity Classification

So far, we have described how to represent our demonstrations as activities and how

to cluster these activities into disjunctive activity classes that represent playstyles. This

concludes the offline learning phase of the Player Behavior Classifier. We now move

onto the classification problem: how do we determine which playstyle the player is

pursuing?

Suppose we let a player play the game for a bit, and we record the sequence of

events that are triggered. These events form an activity sequence which we can express

as an activity histogram. Let τ represent this new activity. Let C be the set of classes

that we discovered in the offline analysis. Each activity class c ∈ C is computed via

the replicator equations discussed in the previous section. Each activity j ∈ c has some

participation pc(j) in the class. We can compute a similarity score of the new activity

sequence τ to each existing classes c ∈ C with the following function:

Ac(τ) = ∑
j∈c

sim(τ, j)pc(j) (2.10)

This function is simply the weighted average of similarities between τ and the activities

in class c. Note that Ac takes on values in [0, 1].

2.7. Improvements to the Similarity Metric 15

From here, we can classify the activity as a member of class c∗ by just taking the

highest similarity.

c∗ = arg max
c∈C

Ac(τ) (2.11)

Alternatively, we can normalize the similarities and produce a probability distribu-

tion over the possible classes. Let the normalizing factor be α = ∑c∈C Ac(τ). If c∗ is a

random variable indicating the classification, then for any class c ∈ C:

Pr[c∗ = c] =
Ac(τ)

α
(2.12)

This formulation fails if α = 0, which can happen if the new activity τ matches none of

the of the existing activity classes. In our system, we circumvented this issue by creating

a special exception for this case, returning the uniform distribution instead. In a more

robust system, this special case should be handled more carefully, as the activity τ is

likely part of an activity class that was not seen during training.

This concludes this system for classifying activities, or playstyles in our context. We

henceforth refer to this system as the activity classifier.

2.7 Improvements to the Similarity Metric

The activity classifier we have discussed thus far has been an application of Hamid et.

al.’s work [13], using video game events and activities. We now propose some modifi-

cations to the existing similarity metric to improve the clustering performance.

First recall the similarity metric:

sim(A, B) = 1− ∑
s∈SA,SB

κs
| f (s | HA)− f (s | HB)|
f (s | HA) + f (s | HB)

(2.1 revisited)

where A, B are activities, HA, HB are their activity histograms, and SA, SB are the unique

substrings in HA and HB.

16 Chapter 2. Player Behavior Classifier

In the original formulation, the notation s ∈ SA, SB means once for every element in

SA and once again for every element in SB. In other words, s ∈ SA, SB is interpreted as

iterating through the concatenation of two lists (SA + SB). The main takeaway is that

SA + SB is different from the set union SA ∪ SB, which deletes repeat substrings. As a

result, the original formulation gives more weight to subtrings which are found in both

activities than substrings which are found only in one. We thus propose a modification

to the similarity metric: to use set union instead of list concatenation. The choice of

SA ∪ SB (set union) over SA + SB (list concatenation) will affect the values produced

by the similarity metric and will thus affect the clustering produced by the dominant

sets algorithm. We explore the empirical impact of choosing SA + SB vs SA ∪ SB in our

experiments in chapter 3.

The original work also set κs = 1
|SA|+|SB| for all s, where | · | is the set cardinality

operator. κs was originally a single constant κ, which was intended to be a normaliz-

ing factor. It gave each substring equal weight in contributing to the similarity metric.

We propose instead to use κs, a constant parameterized by substring s, so that we can

potentially weight certain substrings more heavily than others. For example, we might

choose to weigh substrings of length 3 as more important than substrings of length 1,

since being able to match longer substrings is more important when measuring similar-

ity. We explore the empirical impact of changing the value of κs for different s in our

experiments in chapter 3.

2.8 A New System for Robust Online Classification

We now move onto addressing other issues in online classification. The activity classifier

presented requires that an ongoing event sequence be built in order for classification to

occur. However, in some cases, events might not be triggered frequently enough to

allow our system to constantly update its guess of the current playstyle. In addition,

when the an online gameplay run first begins, there is very little event data for the

activity classifier system to use. Previous works only employed the activity classifier in

an offline setting, meaning they only classified completed activity sequences rather than

2.8. A New System for Robust Online Classification 17

partial sequences. Ideally, we desire a system that can account for the lack of data in an

online setting, and remain flexible in its classifications as the player moves around in

the game world. We now present a new Bayesian Belief Network [22] that will mediate

our classifications when there is little event data.

2.8.1 Overall System Description

Suppose our activity classifier has discovered activity classes C during offline training.

Let τt represent the online event sequence that we witness by game time t. Let ACt ∈ C

be a random variable that describes the activity classifier’s classification of τt.

We introduce a new random variable Xt ∈ C, which will describes our actual online

classification at time t. We initialize Pr[X0] according to some prior. This can be based on

the percentage of activity examples per activity-class, or it can be a uniform distribution.

We are interested in the distribution of Xt+1, the classification at the next time step.

To compute the distribution, we need a few additional random variables:

• Qt is a boolean that is true if ACt is an accurate classification.

• X′t is an adjusted classification at time t that arbitrates Xt and ACt by factoring the

confidence in the activity-classifier (Pr[Qt]).

• OBSt is the set of in-game observations at time t. The exact nature of these obser-

vations are discussed in 2.8.3.

• Zt is an boolean that is true if the player shows tendencies of switching between

activity classes at time t.

Figure 2.3 is a Bayesian network that illustrates dependencies of these variables.

The problem at hand is to compute Pr[Xt+1 | OBSt]. To this end, we examine how the

distributions X′t and Xt+1 are computed.

2.8.2 Adjusting for Confidence in the Activity Classifier

X′t is an intermittent value and is used to arbitrate the a potential lack of data in the

active activity sequence τt. If our system has not seen many game events yet, then

18 Chapter 2. Player Behavior Classifier

Xt

X′t

ACt

OBSt

Xt+1

Zt

Qt

FIGURE 2.3: Bayesian Network for Classification Xt+1

the chance that activity-classifier’s result (ACt) is correct is probably low. This is what

Pr[Qt] aims to capture.

Suppose that the ongoing activity sequence is τt. Pr[Qt] should be our confidence

in the activity-classifier. We want this probability to reflect the fact that the activity-

classifier is more accurate as the number of events in τ increases. In other words

Pr[Qt = 0] ∝
1
|τt|

(2.13)

i.e. the chance ACt is wrong decreases with more events.

In our system, we opted for the following equation:

Pr[Qt = 1] = k− k
r|τt|+ 1

(2.14)

where k is a value in [0, 1] which describes the maximum probability that the activity

classifier is correct, and r is a positive real which describe how fast the classifier becomes

correct as we see more events.

2.8. A New System for Robust Online Classification 19

This gives us, for some i, j ∈ C:

Pr[X′t = c | ACt = i, Xt = j, Qt = 1] =


1 if c = i

0 otherwise
(2.15)

and

Pr[X′t = c | ACt = i, Xt = j, Qt = 0] =


1 if c = j

0 otherwise
(2.16)

The distribution of X′t then is simply:

Pr[X′t = c] = Pr[ACt = c]Pr[Qt = 1] + Pr[Xt = c]Pr[Qt = 0] (2.17)

Intuitively, if Qt is true, then we use the activity classification ACt. Otherwise, if Qt

is false, then we go with the classification given at the previous timestep Xt.

2.8.3 Computing the Classification at the Next Time Step

With the distribution of X′t, we can now move on to computing the classification at the

next time step Xt+1. Here we assume we are given the set of observations OBSt.

OBSt is a vector containing the following: Consider all of the game events E that

could possibly be achieved at time t. We assume that, given the current game state, we

can compute a distance to each available game event. For example, a player might be 2

meters away from a “combat start” event. OBSt will be a vector of how these distances

have changed between time steps. Formally, for game event e ∈ E, the element OBSt(e)

is the difference in distance to event e from the game state at time t to the game state at

time t + 1. Intuitively, these are the delta distances to each of the game events. Negative

values mean the player is approaching a game event, whereas positive values mean the

player is moving away.

Xt+1 also depends on another variable Zt. Zt is true if the player has a tendency to

switch playstyles or activity classes. For our work, we simply assume that Pr[Z] = 0.5,

but this probability could also be the result of a more involved computation.

20 Chapter 2. Player Behavior Classifier

With this variable, we can say that given Zt is false:

Pr[Xt+1 | OBSt, Zt = 0] = Pr[X′t] (2.18)

i.e. the classification should be the same as the previous classification if we are given

that the player does not have any tendency to switch playstyles.

The question remains how to compute Pr[Xt+1 | OBSt, Zt = 1]. We propose the

following. Look at all the game events which have a negative delta distance in OBSt. For

each of these events e, run the activity classifier on a new activity sequence τe
t = τt + [e],

which is the current activity τt with e appended. Let τ∗t be a random variable which

takes on one of these speculated activity sequence (e.g. τ∗t could be τe
t). Let Yt ∈ C be

the random variable for the speculative activity classification of τ∗t . Then, we define:

Pr[Xt+1 | OBSt, Zt = 1] = Pr[Yt | OBSt] (2.19)

meaning the distribution of the next classification is equivalent to trying to classify all

possible future activity sequences.

Furthermore:

Pr[Xt+1 | OBSt, Zt = 1] = ∑
τe

t

Pr[Yt | OBSt, τ∗t = τe
t]Pr[τ∗t = τe

t | OBSt] (2.20)

where Pr[Yt | OBSt, τ∗t = τe
t] is the distribution produced by running the activity classi-

fier on activity sequence τe
t .

And finally, we define

Pr[τ∗t = τe
t | OBSt] ∝ −OBSt(e) (2.21)

In other words, the likelihood of τe
t being the next activity sequence is based on the ob-

servation of how big of a step we took toward game event e. In our implementation, we

simply took all of the negative delta distances, and normalized them into a probability

distribution.

2.9. Using Discounted Histograms to Cull Old Events 21

Intuitively, we have considered all possible next events and run our activity classifier

on a speculation of what the next activity sequence could be. These speculated activity

sequences are weighted according to the probability that they occur, which is computed

based on whether the player is moving towards those events.

This finally brings us to:

Pr[Xt+1 | OBSt] = Pr[Zt = 0]Pr[X′t] + Pr[Z = 1]Pr[Yt | OBSt] (2.22)

This complete formulation does the following:

• It factors in confidence in the activity classifier, weighing the activity classifier

lower when there are few activities in the online activity sequence.

• It provides a classification at the resolution of the game time step, rather than at

the resolution of triggered game events. This is important when game events are

not triggered frequently.

• It factors in the motion of the player and how fast they are approaching new game

events in addition to the results of the current activity classification.

• Following the previous point, it provides a classification distribution even when

there are zero or few events in the online activity sequence. At zero events, the

classification is dependent on just the motions of the player. As more events are

seen, this formulation provides a smooth transition to relying more on the activity

classifier.

2.9 Using Discounted Histograms to Cull Old Events

We now address a problem that arises from the histogram representation of activities:

a histogram can become polluted with old event substrings if an activity sequence runs

on for too long. Suppose in an online activity sequence, a player follows the playstyle

of a knight for 50 events, and then follows the playstyle of a thief for 50 events. The

activity classifier would probably not be able to change between its classification from

22 Chapter 2. Player Behavior Classifier

“knight” to “thief” until all 50 thief events are seen, because the 50 initial knight events

dominate the activity histogram. In a practical game application, we can potentially

reset the online activity sequence between loading screens, but what if a player spends

a long time in one environment without triggering a load screen? The activity sequence

would run on for very long, and events seen very early in the sequence would continue

to play a factor in the activity’s classification by the end.

A potential solution is to window the activity sequence: once the online activity

sequence sees some number of events, we start deleting the oldest events. One issue

with this approach is that we may not necessarily know a correct window size. It is not

clear how many events will be required in the online activity sequence for our activity

classifier to produce a reasonable classification. Furthermore, in the worst case, if we fix

window size w and have w events belonging to activity class A in the activity histogram,

we may need to see at least w
2 events of activity class B before our activity classifier

considers B as a possible classification.

We thus propose a new concept called the discounted histograms. Instead of a nor-

mal n-Gram, we will use the discounted histogram representation as our activity his-

tograms. A discounted histogram works much like a regular n-Gram histogram, except

that it lowers the importance of older event substrings by a discount factor. Instead of

a frequency count of each unique event substring, we have sum of contributions from

each instance of a unique substring.

First, let us formalize how a regular n-Gram is constructed. Suppose we are given an

activity sequence τ. Let S be the set of unique event substrings up to length n that occur

in τ. For non-empty substrings s ∈ S, we define an indicator function c(s, i) that returns

1 if the |s| length substring that is i events away from the end is s, and 0 otherwise.

For example, suppose we have events A, B, C, and an activity sequence τ = [A, B, C, B].

Then:

• c([C, B], 0) = 1

• c([B, C], 1) = 1

• c([A], 3) = 1

2.10. Summary 23

• c([A], 0) = 0

In the regular histogram Hτ constructed from τ, the frequency of substring s ∈ S in is:

f (s | Hτ) =
|τ|−|s|

∑
i=0

c(s, i) (2.23)

This simple counts the number of instances of s in τ.

To construct a discounted histogram, we present a simple modification of equation

2.23 to discount older activities. Fix a discounter factor γ ∈ (0, 1]. We define f to instead

be:

f (s | Hτ) =
|τ|−|s|

∑
i=0

c(s, i) · γi (2.24)

Event substrings that occur at the end of the activity sequence have contribution 1. The

event substring that is one event away from the end now has a contribution of γ. The

event substring two events away from the end has a contribution of γ2, and so forth. As

an activity sequence grows large, substrings that occur early in τ effectively contribute

nothing to the discounted histogram.

Note that our original definition of the similarity metric sim (equation 2.1) can still

remain the same and will preserve its original properties. Between two activities, for

mutually exclusive substrings, it is the number of these substrings that directly impact

the similarity. For substrings that occur in both activities, it is now the difference in the

substring’s contribution scores.

We demonstrate in our experiments in chapter 3 that the use of discounted his-

tograms allows the activity classifier to better react to changes in playstyle during online

classification.

2.10 Summary

All of the algorithms described above come together to form a complete system that we

call the Player Behavior Classifier. To recap, in-game demonstrations are first provided

in the form of event sequences which we call activities. We construct activity histograms

24 Chapter 2. Player Behavior Classifier

out of these sequences, and then use our similarity metric to cluster similar activities via

a technique called dominant sets. Once we have activity classes of similar activities, we

can classify new activities according to the learned classes.

For our domain, we also modify the existing similarity metric to use set union and a

string parameterized importance factor. We include a Bayesian Belief Network to enable

online classification even when the activity classifier has not seen many game events.

We further use discounted histograms to prevent old game events from polluting the

activity histogram. In the next chapter, we will examine the performance of the Player

Behavior Classifier in both an offline and online setting.

25

Chapter 3

Classifier Experiments and Results

In this chapter, we describe our implementation of the Player Behavior Classifier out-

lined in chapter 2 in the context of a simpler version of Skyrim. We then outline a series

of experiments that test the performance our classifier with various algorithm hyper-

parameters, such as the similarity metric changes mentioned in section 2.7. Finally, we

present the empirical results and discuss the implications on how the system would

perform in the full fledged Skyrim game.

3.1 Simple Skyrim

We implemented a simpler version of the Skyrim game in the Unity Game Engine. This

3D top-down game contains a subset of the features found in Skyrim.

3.1.1 Game Description

The game environment is a simple 2D map composed of hallways and enemies, viewed

from a birds-eye perspective. The goal is for the player to navigate through the hallways

to the goal, killing enemies along the way as necessary. The player moves using WASD

controls and uses the mouse to aim and fire their weapon. A screenshot of the game is

provided in figure 3.1.

The player is given two weapons: a sword and a bow. The sword is a melee weapon,

and when swung can deal damage to nearby enemies. The bow is a ranged weapon, and

when fired will launch an arrow from the player, dealing damage to all enemies in the

26 Chapter 3. Classifier Experiments and Results

FIGURE 3.1: A screenshot of Simple Skyrim. 4 point of interested have
been marked. A: the player character. B: a spider enemy. C: a bear enemy.

D: the mouse cursor

line to the mouse cursor. The bow can be fired an unlimited number of times, as there is

no ammunition system. The sword deals more damage than the bow. The player equips

only one weapon at a time, and has the option to instantly switch between the two at

any time. Any damage dealt to an enemy is subtracted from the enemy’s health point

total. The player can also enter a “sneak” gait. While sneaking, the player moves at

half speed, but the enemies’ detection radii are massively decreased (enemy properties

will be discussed next). If an enemy is not currently in its combat state and the player

is sneaking, then the player can launch a “sneak attack” on an enemy with either the

sword or the bow. A “sneak attack” with a sword deals three times the normal sword

damage, whereas a “sneak attack” with the bow deals only two times the normal bow

damage. A damage table is provided in table 3.1. Note that a sneak attack will cause the

enemy to enter its combat state, so a player cannot attain two consecutive sneak attacks.

Player have a set amount of health points, but for our experiments, we ignore player

health and assume the player cannot die.

3.1. Simple Skyrim 27

Normal Sneak Attack

Sword 10 30
Bow 5 10

TABLE 3.1: Damage dealt by the player’s weapons

Enemy Difficulty Health

Spider EASY 10
Wolf MEDIUM 20
Bear HARD 50

TABLE 3.2: Enemy Statistics in Simple Skyrim

There are three kinds of enemies: spiders, wolves, and bears. Each has its own

difficulty rating and a set number of health points. The statistics for each are outlined

in table 3.2. Every enemy is either in an idle state or in a combat state. While in an idle

state, enemies stand still at a predefined home location or move towards their home

location if they have left it. Each enemies has a set detection radius around them. If the

player enters this radius, the enemy will enter its combat state. The player can decrease

this detection radius by entering sneak mode. An enemy will also enter combat state if

they take damage from the player. In combat state, an enemy will continuously pursue

the player so long as they are within the detection radius. The enemy will also attack the

player once close enough. Since we assume the player cannot die, this attack does not

actually deal any damage. If the player manages to move outside the enemy’s detection

radius and remain outside the radius for 5 seconds, then the enemy will return to its

idle state. If the enemy reaches 0 health points due to the player dealing damage, then

the enemy dies and is removed from the map.

3.1.2 Events in Simple Skyrim

In the follow section, we use the variable d to denote a difficulty rating, which could

be EASY, MEDIUM, or HARD. The variable r is a boolean variable taking on TRUE or

FALSE.

We define the following events for our game:

28 Chapter 3. Classifier Experiments and Results

• CombatStart(d, r): A monster of d difficulty entered its combat state from idle

state. r is TRUE if the player is wielding a ranged weapon, and is FALSE if the

player is wielding a melee weapon.

• EnemyDeath(d): A monster of d difficulty has died.

• SneakInEnemyRange(d): the player is currently in sneak mode and has entered

the normal detection radius of an enemy of difficulty d without triggering the

enemy’s combat state. Recall that an enemy has massively decreased detection

radius while the player is in sneak mode. This means that a sneaking player can

enter and exit the original detection radius of an enemy without triggering the

combat state.

• Retreat(d): There are two possible triggers for this event. One, a monster of diffi-

culty d has transitioned from combat state to idle state. Two, the player is sneaking

and has left the enemy’s original detection radius. (This second trigger can only

happen folowing in SneakInEnemyRange event.)

• SneakAttack(d, r): The player landed a sneak attack on an enemy of difficulty d. r

is TRUE if the sneak attack was performed with a ranged weapon and FALSE if it

was performed with a melee weapon.

Two events are equal if they share the same identifier and arguments. This brings us

to a total of 21 unique events. Note that in this formulation, if we have multiple spider

enemies of EASY difficulty, we cannot differentiate EnemyDeath events between either

of them. This abstraction allows us to focus on the type of enemy instead of a specific

instance of an enemy.

Our game automatically registers these game events when the trigger occurs.

3.1.3 Map Layouts

We constructed 5 different game maps in Simple Skyrim. Their layouts are given in

figures 3.2. The circular P represents the player’s starting location. The squares S, W, B

3.2. Playstyle Demonstrations 29

represent the home locations of spiders, wolves, and bears respectively. And the odd

shaped G represents the goal.

3.2 Playstyle Demonstrations

We outlined 6 possible playstyles in Simple Skyrim with informal directives (see table

3.3). These playstyles are representative of the types of playstyles we might encounter in

the actual Skyrim game. We assume that the training demonstrations follow only one of

these outlined playstyles, and that the demonstrating player does not switch playstyles

during the demonstration.

We collected demonstration data in the following way: For maps 1-4, we performed

two human demonstrations of each playstyle on the map for a total of 48 demonstra-

tions. For map 5, we performed one demonstration of each playstyle for an additional

6 demonstrations. We used the demonstrations collected from maps 1-4 as our training

dataset for offline playstyle learning, and we reserved the data from map 5 to be a test

set of online event sequences.

These demonstrations are of human players generally following the guidelines set

forth by our informal descriptions. As a result, demonstrations of the same playstyle on

the same map may not necessarily be identical. We provide examples of the recorded

event sequences in table 3.4. The provided examples also demonstrate how the same

playstyle can vary on the same map.

3.3 Clustering Demonstrations into Playstyle Classes

We ran our algorithm to cluster activities (as described in section 2.5) on the 48 demon-

strations obtained from maps 1-4 in order to learn playstles from demonstration. We

evaluated the results of the clustering using the metrics total entropy of a clustering and

Adjusted Rand Index (ARI). We use these metrics to determine the following hyper-

parameters in our clustering algorithm: the n in the activity histogram (mentioned in

section 2.4), the κs in the similarity metric sim (mentioned in section 2.5.1), whether

30 Chapter 3. Classifier Experiments and Results

FIGURE 3.2: Simple Skyrim Maps. Top-Left: Map 1, Top-Right: Map 2,
Middle-Left: Map 3, Middle-Right: Map 4, Bottom: Map 5

3.3. Clustering Demonstrations into Playstyle Classes 31

Playstyle Name Description

MELEE Defeat all enemies in any order with a melee weapon, even if
the enemy is not on the shortest length path to the goal. Once
all enemies are defeated, move toward the goal. Do not use
sneak mode.

ARCHER Move toward the goal according to the shortest length path.
Defeat any enemies obstructing the path with a ranged
weapon. Initiate all combat from outside of the enemy’s de-
tection radius. Prioritize low difficulty enemies before higher
difficulty enemies. Do not use sneak mode.

SNEAK Move toward the goal according to the shortest length path.
Use sneak mode to avoid detection whenever possible. If
combat is unavoidable (i.e. the enemy’s detection radius com-
pletely obstructs the path), initiate combat with a melee sneak
attack. Use only melee weapons during combat.

MMO Move toward the goal according to the shortest length path.
If an enemy is near the path, initiate combat by launching a
ranged attack. Wait for the enemy to enter melee range, and
then defeat the enemy with melee attacks. If there are multi-
ple enemies in a group, only engage one enemy at a time in
this manner. Also if there are multiple enemies in a group,
prioritize the lowest difficulty enemies before the harder en-
emies. If the weakest enemy cannot be easily targeted with
a ranged attack, use sneak mode to move into a more advan-
tageous position to launch the initial ranged attack. Other-
wise, do not use sneak mode. The playstyle name is a reference
to a common tactic in Massively-Multiplayer Online Role-Playing
Games (MMORPGs): players lure away a single enemy from a
group of enemies, so they can focus on only one enemy at a time.

BOSS Defeat all enemies on the map with a melee weapon before
moving towards the goal. If there is a HARD difficulty en-
emy, use sneak mode to initiate combat with it, starting with
a sneak attack. Exit sneak mode immediately after landing
the sneak attack.

SPEED Move toward the goal according to the shortest length path.
Do not use sneak mode. Ignore all combat, even if enemies
give chase. (Enemies will initiate combat when the player
moves past them, but the player should ignore them.)

TABLE 3.3: Playstyle guidelines for Simple Skyrim

32 Chapter 3. Classifier Experiments and Results

Index Map 1, MELEE, Demo 1 Map 1, MELEE, Demo 2

0 CombatStart(MEDIUM, FALSE) CombatStart(EASY, FALSE)
1 CombatStart(MEDIUM, FALSE) CombatStart(EASY, FALSE)
2 EnemyDeath(MEDIUM) EnemyDeath(EASY)
3 EnemyDeath(MEDIUM) CombatStart(EASY, FALSE)
.

TABLE 3.4: Examples of demonstration event sequences. The left demon-
stration is the first demonstration of playstyle MELEE on map 1. The
right demonstration is the second of playstyle MELEE on map 2. Note
that, despite being the same playstyle on the same map, they are not
identical due to multiple existence of paths to the goal in map 1. The
human demonstrator opted to go down different paths between the two

demonstrations.

union or concatenation is used in the formula (also mentioned in section 2.5.1), and

whether or not we deleted duplicate demonstrations.

Section 3.4 reviews how our metrics are calculated. Section 3.5 describe the hyper-

parameters we tuned for our clustering. Section 3.6 examines how well the each set of

selected hyper-parameters performs in terms of clustering. Section 3.7 presents the final

clustering that we obtained after validation. Section 3.8 discusses how well our learned

clusters accurately classify the online test data from map 5.

3.4 Metrics

3.4.1 Total Entropy of a Clustering

Let N be the number of demonstrations. Let the true classes (or clusters) be given by C.

In our case, C = {MELEE, ARCHER, SNEAK, MMO, BOSS, SPEED}, and we have 8

demonstrations per class.

Let our learned classes be the set Ω. Let Nω be the number of demonstrations in

class ω ∈ Ω. The total entropy of a clustering is thus define as:

H(Ω) = ∑
ω∈Ω

H(ω)
Nω

N
(3.1)

3.4. Metrics 33

where H(ω) is the entropy of cluster ω, which is given by:

H(ω) = −∑
c∈C

ωc

Nω
log2

ωc

Nω
(3.2)

where ωc is the number of demonstrations in ω that have a true labeling of class c.

A perfect clustering will have an entropy of 0, and a cluster of demonstrations which

do not belong together will have a positive value. Entropy effectively measures how

many mistakes there are in a cluster.

3.4.2 Adjusted Rand Index

The Adjusted Rand Index is a metric for evaluating clustering which rewards putting

pairs of items that belong together in the same cluster and putting items that don’t

belong together in separate clusters. It also punishes putting items that belong together

in separate clusters, and putting items that don’t belong together in the same cluster.

ARI takes values from [−1, 1], where negative values are worse than random label-

ings, and positive values are better than random labeling.

Suppose we have n data points and are given two different clustering (or partitions)

of the points (e.g. one being ground truth, the other produced by our algorithm). Specif-

ically, let clustering X = {X1, X2, . . . , Xr} and clustering Y = {Y1, Y2, . . . Ys}. We define

a contingency table [nij] where entries are given by:

nij = |Xi ∩Yj| (3.3)

Then, the sum of the rows are given by ai and the sum of the columns are given by bj as

such:

ai =
s

∑
j=1

nij (3.4)

bj =
r

∑
i=1

nij (3.5)

34 Chapter 3. Classifier Experiments and Results

ARI is given by:

∑r
i=1 ∑s

j=1 (
nij
2)−

1
(n

2)
∑r

i=1 (
ai
2)∑s

j=1 (
bj
2)

1
2

(
∑r

i=1 (
ai
2) + ∑s

j=1 (
bj
2)
)
− 1

(n
2)

∑r
i=1 (

ai
2)∑s

j=1 (
bj
2)

(3.6)

We use ARI as a metric in addition to entropy because entropy goes towards 0 (a

good evaluation) if we create a class for every demonstration. However, this defeats the

purpose of clustering, so we cannot rely on only entropy as an evaluation metric. ARI

is negatively impacted if our algorithm needlessly creates too many clusters. ARI will

thus put the entropy score in perspective.

3.5 Hyper-Parameters

3.5.1 Normal κs vs Weighted κs

Recall the similarity metric (equation 2.1) described in section 2.2.

sim(A, B) = 1− ∑
s∈SA,SB

κs
| f (s | HA)− f (s | HB)|
f (s | HA) + f (s | HB)

(2.1 revisited)

The equation has normalizing factor κs for each term of summation.

Suppose S is the set of unique substrings with non-zero counts in the two activities

being compared. The normal κs term is:

κs =
1
|S| (3.7)

This is a normalizing factor which gives equal weight to every substring.

We proposed a weighted κs factor instead, which gives more weight to longer sub-

strings. For substring s, we set κs to be:

κs =
|s|

∑s∈S |s|
(3.8)

3.5. Hyper-Parameters 35

where |s|means the length of the substring s. This will intuitively increase the similarity

of two activities that share long substrings.

The empirical effect of the two different κs is presented in table 3.5.

3.5.2 Using Union vs Concatenation

Again recall the similarity metric:

sim(A, B) = 1− ∑
s∈SA,SB

κs
| f (s | HA)− f (s | HB)|
f (s | HA) + f (s | HB)

(2.1 revisited)

The originally intended summation is over all elements of SA and all elements of SB.

Effectively, if SA and SB are lists, then the summation is over SA + SB, the concatenation

of the two lists. However, this will give double the weight to substrings which appear

in both SA and SB.

We propose instead the use of SA ∪ SB, which will cause each substring to only have

one term in the summation instead of a potential 2.

We show the empirical effect of changing between list concatenation (Concat) and

set union (Union) in table 3.5.

3.5.3 Deleting Duplicate Demonstrations

Of the 48 demonstrations from maps 1-4, there are 7 which are exact duplicates of an-

other in the set. Intuitively, including duplicate demonstrations will cause the discov-

ered clusters to capture more focused or rigid patterns in the activities. Since we are

trying to capture playstyles which are full of human-error and variation, it makes sense

to remove duplicate demonstrations to encourage more scattered clusters.

The empirical impact of removing duplicate demonstrations is given in table 3.5.

3.5.4 Changing n in the Activity Histogram

In section 2.4, we discussed that the value of n in the activity histogram tends to be

domain dependent. Higher values of n capture more temporal relations between events,

36 Chapter 3. Classifier Experiments and Results

Duplicate Demos Removed Duplicate Demos Kept

Hyper-Parameters
Classes
Found

Total
Entropy ARI

Classes
Found

Total
Entropy ARI

Normal κs, Concat 10 0.403 0.502 13 0.393 0.412
Normal κs, Union 13 0.341 0.396 15 0.365 0.332
Weighted κs, Concat 12 0.283 0.479 15 0.240 0.400
Weighted κs, Union 12 0.222 0.495 14 0.354 0.365

TABLE 3.5: Clustering performance of various hyper-parameters when
n = {1, 2, 3}.

whereas low n focuses more on the frequency of particular events. Recall that we used

the notation n = {1, 2, 3} to describe an event histogram that keeps track of substrings

of multiple lengths (in this example, lengths 1, 2, and 3).

We show an example of how the value of n can affect clustering performance in table

3.6.

3.6 Validation Results

We first fixed n = {1, 2, 3} for our activity grams and varied the hyper-parameters de-

scribed above: κs, set union vs list concatenation, and duplicate deletion. The results are

summarized in table 3.5. We are primarily interested in the lowest entropy clustering,

using ARI and number of classes found to help put the entropy metric in context.

Keeping duplicate demonstrations tends to have varying effects on the total entropy,

but generally increases the number of clusters found. We would prefer to keep the

number of clusters lower so that we can generalize the demonstrations better, so we opt

for always removing duplicate demonstrations.

Also seen in the table is that the normal κs formulation tends to have higher entropy

when comapred to the weighted κs. One trade off is that we get more clusters with

weighted κs, but the large reduction in entropy seems to be worthwhile.

Similarly, using set union over list concatenation seems to increase the number of

clusters found when using normal κs, but decreases the number of clusters when using

weighed κs.

3.6. Validation Results 37

n Choice
Classes
Found

Total
Entropy ARI

n = 1 7 0.329 0.734
n = {1, 2, 3} 10 0.403 0.502

TABLE 3.6: Clustering performance of different n in the activity his-
togram, using normal κs and list concatenation.

n Choice
Classes
Found

Total
Entropy ARI

n = 1 8 0.408 0.589
n = {1, 2} 11 0.399 0.476
n = {1, 2, 3} 12 0.222 0.495

TABLE 3.7: Clustering performance of different n in the activity his-
togram, using weighted κs and set union.

We then looked at the impact of varying the n in the activity histogram. These re-

sults are summarized in tables 3.6 and 3.7. Table 3.6 uses the original formulation with

normal κs and list concatenation, whereas table 3.7 uses the weighted κs and set union

which we found to be best.

The results show that n = 1, or a naive vector space model, actually does fairly well

with the normal κs and list concatenation. It discovers 7 different activity classes, which

is fairly close to the true value of 6 classes. This suggests that the playstyles we outlined

are well characterized just by how many types of one game event are triggered.

However, this set of hyper-parameters did produce a clustering with higher entropy

than when we used n = {1, 2, 3} with weighted κs and set union. This is likely because

more clusters were produced in the latter setup, but also because n = 1 fails to capture

any temporal structure of the game events. We also see that n = 1 is not as good with

weighted κs and set union, so the performance of n = 1 seems to be rather variable.

Depending on how much we value generalization of the demonstration data, this

clustering may be more appealing as it minimizes the number of clusters discovered.

For our purposes though, we opted to minimize entropy.

38 Chapter 3. Classifier Experiments and Results

Class Label Demonstrations

0 map1_BOSS_01, map1_BOSS_02, map2_MELEE_01, map2_BOSS_01,
map3_BOSS_01

1 map2_ARCHER_01, map2_ARCHER_02, map3_ARCHER_01,
map4_ARCHER_01

2 map4_SNEAK_01, map4_SNEAK_02, map4_BOSS_02

3 map1_MMO_01, map1_MMO_02, map2_MMO_01, map2_MMO_02,
map3_MMO_01

4 map1_MELEE_01, map4_MELEE_01, map4_MELEE_02

5 map1_SPEED_02, map4_SPEED_01, map4_SPEED_02

6 map2_SNEAK_01, map2_SNEAK_02, map3_SNEAK_01

7 map1_ARCHER_01, map1_ARCHER_02, map4_ARCHER_02

8 map4_MMO_01, map4_MMO_02

9 map1_MELEE_02, map3_MELEE_01, map3_MELEE_02

10 map1_SPEED_01, map2_SPEED_01, map3_SPEED_01

11 map1_SNEAK_01, map1_SNEAK_02, map4_BOSS_01

TABLE 3.8: Clustering of Demonstrations from Maps 1-4

3.7 Resulting Clustering

Based on the results above, we decided to use n = {1, 2, 3} for our activity histogram,

weighted κs, the set union instead of list concatenation, and deleting all duplicate demon-

strations. This combination of hyper-parameters minimized the total entropy.

With these hyper-paramters, the clustering produces 12 classes. We show how the

41 demonstrations were partitioned in table 3.8. The demonstration names are given

by the map they were performed on, the playstyle they demonstrate, and an identifier

number.

3.8 Evaluating Classification Ability

We now use our learned playstyle classes to perform activity classification on the demon-

strations from map 5. For each event sequence τ, we compute its classification with

3.8. Evaluating Classification Ability 39

Replay Name
True

Playstyle
Predicted

Class Label
Support
Density

map5_MELEE MELEE 4 1.0
map5_ARCHER ARCHER 1 1.0
map5_SNEAK SNEAK 6 1.0
map5_MMO MMO 3 1.0
map5_BOSS BOSS 0 0.8
map5_SPEED SPEED 5 1.0

TABLE 3.9: Classifcation of Map 5 Demonstrations

equation 2.6. We can then evaluate our labeling of the new demonstrations according to

ground truth.

We present the results of the classification in table 3.9. Our metric of ARI is no longer

useful in this scenario because we have six test demonstrations and each one is different

classes. ARI requires there to be more than one demonstration per class to produce a

score.

The entropy of this assignment is 0, meaning that we have correctly put all of the

demonstrations into their own class. But placing each demonstration into its own class

is not particularly informative. We are interested in whether each new demonstration

was placed into a class containing demonstrations of the same playstyle.

We thus rely on the support density of correct labels in the cluster each demonstration

was placed. For a activity instance with true label c and predicted label ω, support density

is the fraction of instances in cluster ω which have true label c. For example, if a new

demonstration τ has a correct playstyle labeling of SNEAK and was classified as class

label 2, we would compute the fraction of SNEAK demonstrations in class 2 (which

turns out to be 0.667). We summarize the results in table 3.9.

With the exception of map5_BOSS, all demonstrations fell into a class with a sup-

port density of 1.0, meaning they were all grouped with demonstrations of the same

playstyle. Even map5_BOSS had a support density of 0.8, where 4 out of the 5 demon-

strations in the class had the same BOSS playstyle.

40 Chapter 3. Classifier Experiments and Results

FIGURE 3.3: A demonstration of a player switching playstyles while go-
ing through Map 5. The solid gray line represents the player following
the SNEAK playstyle, whereas the dotted gray line represents the player

following the MELEE playstyle.

3.9 Responding to Switching Playstyles

We now present one more demonstration that we had used as a test online activity

sequence. This demonstration took place on map 5, and the path taken by the player is

illustrated in figure 3.3. Initially, the player started the demonstration by following the

playstyle guidelines for SNEAK. This is shown in the figure as a solid gray line. When

the player reached the star icon, he switched to following the guidelines for a MELEE

playstyle. The path of the MELEE playstyle behavior is illustrated in the figure as a

dotted gray line.

For this particular test, we investigated if discounting older activity substrings with

discounted histograms (described in section 2.9) impacted how quickly the activity clas-

sifier can react to changes in playstyle.

The demonstration was 24 game events long. The switch from SNEAK to MELEE

playstyle occurred after the 12th game event. We summarize in table 3.10 the total delay

in measured in number of events until the classifier was able to make a new classifica-

tion. Below γ = 0.7, the classifier actually misclassified the sequence into a class that

has 0 support density in either MELEE or SNEAK.

3.10. Shortcomings 41

Discount γ

Delay in
Class Switch

1.0 11
0.9 7
0.8 5
0.7 5

TABLE 3.10: Delay (in number of events) until classification switch

To better understand this, we present a graphical representation of the classifier’s

belief in figure 3.4. Instead of a single classification, we asked the classifier for a prob-

ability distribution of its classification (equation 2.12). We then looked at the support

density of MELEE and SNEAK for each class, and computed a weighted sum of sup-

port densities according to the class probabilities. We then computed the ratio of the

MELEE probability as compared to the SNEAK probability, giving us the likelihood of

a MELEE playstyle as opposed to SNEAK. A ratio of 1.0 means the classifier highly be-

lieves MELEE over sneak. A ratio of 0.0 means it believes SNEAK over MELEE. A ratio

of 0.5 means the classifier equally believes that the playstyle could MELEE or SNEAK.

A perfect classifier should see a perfect step from 0.0 to 1.0 at the 13th event, when the

playstyle switches from SNEAK to MELEE.

We can see that without discounting, the classifier fails to firmly change its classi-

fication even by the end of the demonstration, sitting at a ratio of 0.557. Meanwhile,

γ = 0.8 allows the classifier to cross the 0.5 ratio threshold by 17th event.

3.10 Shortcomings

One benefit and shortcoming with our approach is that clustering via dominant sets

produces variable number of clusters. The benefit of this is that, unlike a clustering

algorithm like k-means [19], we do not need to guess how many clusters we could pos-

sibly need. The downside is that our algorithm can create a needless number of clusters.

In fact, in the worst case it could create a cluster for each demonstration. Such a clus-

tering has an entropy of 0, but is practically useless because it does not identify any

similar structure between activities. Our result clustering had 12 classes, which is twice

42 Chapter 3. Classifier Experiments and Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23

R
at

io
 o

f
M

EL
EE

 t
o

 S
N

EA
K

 B
el

ie
f

Events Seen

Belief of MELEE over SNEAK

γ = 1.0

γ = 0.9

γ = 0.8

γ = 0.7

FIGURE 3.4: The likelihood of a MELEE playstyle compared to a SNEAK
playstyle as the classifier saw more events. The playstyle switch occurred
after the 12th event. A perfect classifier should see a step from 0.0 to 1.0

at the 13th event.

the number of ground truth classes. This left us with 3 demonstrations per class on

average, which may not be sufficient to properly generalize the playstyle.

3.11 Summary

In the context of Simple Skyrim, our learning system demonstrates exemplary perfor-

mance in identifying playstyle classes and classifying new gameplay instances. We in-

troduced the concepts of a weighted normalizing factor κs and using union instead of

concatenation as potential hyper-parameters to our unsupervised learning algorithm.

We showed that they are effective in reducing the overall entropy of the produced clus-

tering. We also showed how removing duplicate demonstrations in the training data

can help loosen the resulting clusters, which helps in the context of human playstyles

which are prone to high variations. We determined that an activity histogram with

n = 1 (a naive vector space model) could work well as a hyper-parameter value since

3.11. Summary 43

it empirically created the smallest number of clusters out of all our hyper-parameter

configurations, but we ultimately opted for n = {1, 2, 3} since it had lower entropy.

Our evaluation of the learned clusters on test demonstrations from Map 5 showed near

perfect classification rates, as evidenced by high support densities of true labels. And

finally, we showed how the inclusion of a discount factor in an online setting can encour-

age the classifier to quickly change its classification in response to a significant playstyle

switch.

45

Chapter 4

Cooperative Planning for

Non-Player Characters

In this chapter, we provide an example of how the Player Behavior Classifier can be

incorporated in an NPC planner to help with cooperative planning, particularly in the

context of the full game of Skyrim. Our work builds upon the Skyrim NPC planning

framework presented in John Drake’s thesis [5] (in preparation). We start by reviewing

NPC planning, which typically consists of heuristic graph search. Then, we present

the problem of planning for cooperative tasks and discuss some of the complications

involved. We next explain how we integrated our Player Behavior Classifier with an

NPC planner to enable cooperative planning, particularly in the context of a cooperative

Skyrim scenario. We also discuss how we incorporated search techniques like Training

Graph Heuristic [6] and Multi-Heuristic A* [1] to reduce planning times. Finally, we

present the results of planning with our integrated system and analyze the cooperative

plans that are produced.

4.1 Heuristic Graph Search

Let us first consider an NPC AI being presented with a challenge that can be solved just

by the AI. For example, in the context of Skyrim, suppose there is a hallway of spider

monsters and an AI player must arrive at the other end of the hallway without dying.

46 Chapter 4. Cooperative Planning for Non-Player Characters

Such a task is formulated as a graph search problem. Game states are represented

as nodes in a graph, and the NPC must find a plan of actions leading through the game

states that will allow it to arrive at a desired goal state which solves the problem. These

actions are inputs like “move forward” or “swing sword.” Each action is assigned a cost,

such as the time taken to perform the action. Actions that get the NPC killed would cost

infinite time. By searching the graph for the least cost path to the goal, the NPC finds a

sequence of actions that avoid death while also reaching the other side of the hallway

in the shortest amount of time. The Dijkstra search algorithm would find the least cost

path [4].

A single node in the graph is a game state, which could be a dump of many game

variables, such as: the NPC’s health, the NPC’s x-, y-, z-positions, the NPC’s gait (walk-

ing, running, sneaking), enemy healths, and enemy positions. The high dimensionality

of the state creates a very large graph to search, making it very difficult to find an opti-

mal solution in a short planning time. We thus introduce the idea of a heuristic, which

approximates how close each game state is to the goal, i.e. the cost-to-goal. A reasonable

heuristics must be admissible, meaning it must underestimate the true cost to the goal.

With an admissible heuristic, an NPC can prune the search space by focusing on states

which bring it closer to the goal, all while guaranteeing that the resulting solution is

optimal. An example of a simple admissible heuristic is the shortest path distance from

the NPC agent to the goal location, ignoring all other state variables. This will lead the

planner to favor actions that physically move the NPC toward the goal. A* search is the

basic search algorithm that puts heuristics into practice [14].

A planner can further prune the space by inflating the heuristic value by some ε > 1.

In doing so, the planner sacrifices optimality, but typically only up to a known subopti-

mality bound. In return, the planning times are dramatically reduced since a larger por-

tion of the search graph becomes unfavorable when evaluated by the inflated heuristic.

Weighted A* search is general name for basic inflated heuristic search algorithm.

In some cases, a heuristic can guide a search into a portion of the state space that is a

dead end. This pocket of state space is often referred to as a local minima, and requires the

4.1. Heuristic Graph Search 47

search to expend a large amount of effort exploring the local region before it backtracks

enough to find a way around the dead end. Consider for example a hallway with a

very strong bear enemy, and the NPC’s goal is to reach the other side of the bear. A

shortest path heuristic would pull the NPC’s search right into the bear, whereupon the

bear would kill the NPC, preventing the search from advancing any further. Due to the

heuristic, the search will keep trying to explore alternatives in the nearby region around

the bear to try and circumvent the dead end. This could be a waste of effort, especially

if the true solution might be to turn back and find another path around the bear. With

regards to heuristics then, we are thus interested in informative heuristics that can avoid

local minima.

4.1.1 Training Graph Heuristic

One heuristic of interest is the Training Graph Heuristic (T-Graph) [6], which is based

on the Experience Graph (E-Graph) Heuristic [23, 24]. The E-Graph heuristic takes a

prior demonstration of a plan through the search space and produces a heuristic value

which attempts to drive the search along the same trajectory. The T-Graph Heuristic

builds on this by providing a smooth gradient of heuristic values along the demon-

strated path. The T-Graph Heuristic was incorporated in NPC planning for Skyrim in

[6] and produced favorable results in pulling an NPC agent around an unkillable bear

enemy.

4.1.2 Multi-Heuristic A*

To make the search faster, we can also leverage the use of several heuristics at once.

Multi-heuristic A* is a search algorithm which takes advantage of multiple heuristics

to escape local minima when one heuristic fails [1]. The algorithm advances the search

by doing a round-robin across the different heuristics. If one heuristic happens to lead

the search into a local minima, another heuristic can focus the search towards a different

direction out of the local minima. These heuristics are allowed to be inadmissible, mean-

ing that they can overestimate the cost-to-goal and consequently drive the search in a

48 Chapter 4. Cooperative Planning for Non-Player Characters

wrong direction. For example, an inadmissible heuristic can always push the NPC to

move backwards, even if moving backwards pulls the NPC away from the goal. How-

ever, such a heuristic could be useful in the hallway with a bear scenario, because it

will cause the search to explore options other than running into the bear. Normally,

inadmissible heuristics can result in an incomplete search, but Multi-Heuristic A* still

guarantees completeness and bounded suboptimality by using an admissible anchor

heuristic to control the inadmissible heuristics.

The benefits of using Multi-Heuristic A* with NPC planning was investigated in [7].

4.2 Toward Cooperative Planning

Thus far, we have only considered planing for NPCs in a vacuum. In other words, the

NPC is solving problems that rely only on the NPCs abilities. We now want to consider

how an NPC can plan to perform cooperative tasks with human players. These are tasks

which require the NPC and a human player to execute actions which could depend on

each other. We cannot just rely on the NPC optimizing its own rewards or costs, but

rather, it needs to know what the player is doing in order to complete the task.

To motivate cooperative planning, consider the following “capture the flag” scenario

in Skyrim: there is a chest of treasure which the player or NPC must obtain, but there are

multiple bandits guarding the chest. If the NPC or player approaches for frontal combat,

they would be overwhelmed by the bandits’ strength. One cooperative strategy would

be for one of two players to lead the bandits away, while the other steals the treasure.

This kind of coordinated effort goes beyond what an NPC can plan in isolation. In fact,

in an solo planner’s state space, this plan is not even feasible solution because there

is nothing in the planner that says the treasure will obtained after the NPC leads the

bandits away. This type of plan only becomes feasible when the planner is capable of

knowing that the other player will steal the treasure in the meantime.

We are thus interested in providing a model of the human player that can predict

the player’s trajectory during search. This is where our classification and modeling

4.3. A Cooperative Skyrim Scenario 49

system come in: we analyze the player’s behaviors and create models of them, so that

the planner can predict player actions during the search.

One issue that arises from adding a player model is that the player’s state is now

added to the search space, thereby making the NPC’s search extremely difficult. This is

where T-Graph heuristic and Multi-Heuristic A* will help maintain reasonable planning

times.

4.3 A Cooperative Skyrim Scenario

We now present the Skyrim game scenario which we aimed to solve. This scenario will

both illustrate the benefit of cooperative planning and motivate why the Player Behavior

Classifier is needed.

First, in terms of gameplay features, the Skyrim game operates much like the Simple

Skyrim game outlined in section 3.1. The main game features we are concerned about

are melee attacks and the sneak mode. The scenario map we are interested is a modified

dungeon from the official game. The dungeon map is illustrated in figure 4.1, and the

specific scenario we crafted for map is given in figure 4.2. The enemies, the start (S) of

the player and NPC, and the goal position (G) are marked in the figure. The goal of the

scenario is for the NPC to reach the goal location in the shortest time possible (i.e. the

cost for the planning problem is time).

The enemies present in this scenario are a bear (B), basic wolfs (W), and super wolfs

(W*). The bear requires both the NPC and player working together to defeat it. If either

the player or NPC approaches alone, the bear will win in a fight. Sneaking has no effect

on the bear. The bear will engage a character in combat regardless if they are in sneak

mode.

The basic wolves (W) are simple enemies which can be defeated by the player or

NPC in one attack. The super wolves (W*) cannot be defeated, and will instead defeat

the player or NPC in one attack. The super wolves, however, cannot see any character

that is in sneak mode. They effectively have a detection radius of zero against a character

that is sneaking.

50 Chapter 4. Cooperative Planning for Non-Player Characters

FIGURE 4.1: Skyrim scenario map. Left, the raw NavMesh. Right, a clari-
fied version of the map, where obstacles are colored black.

At a high level, the scenario can be summarized as follows. There are two paths to

goal: one through the hallway with the bear and one through the hallway with super

wolves. The bear path can only be traversed if the player and NPC cooperate in fighting

it. The super wolves path can only be traversed via sneak mode. When sneaking, a

character moves very slowly, and so the wolves path will take a much longer time to

traverse if taken. Thus the shortest time path is actually through the bear, if the bear can

be defeated.

To know if the bear can be defeated, the NPC must be able to predict the player’s

intention. If the player wants to fight the bear, then the NPC can assist to unlock the

shorter path. If the player would rather avoid the bear, then the NPC must also plan

accordingly. Note that it is not sufficient to randomly guess what the player is going

to do (fight the bear or sneak around). Suppose the NPC wrongly assumes the player

will avoid the bear when in actuality the player will fight the bear, then the NPC will

plan for the path away from the bear, and the human player will die fighting alone

(likely expecting help from the NPC). Suppose instead the NPC wrongly assumes that

the player will fight the bear. Then the NPC will plan into fighting the bear and die

alone because the player is actually avoiding the bear. As a result, knowing what kind

of the playstyle the player is following is critical to this scenario.

4.4. Implementation and Integration 51

FIGURE 4.2: Skyrim scenario map with markers. Circle S is the start posi-
tion for both the player and NPC. Square W is a basic wolf enemy. Square
W* is a super wolf enemy. Square B is a bear enemy. Star G is the goal

position.

4.4 Implementation and Integration

4.4.1 Skyrim NPC Planning Framework

The details of the Skyrim NPC planning framework are more thoroughly described in

John Drake’s thesis [5]. Here, we provide a brief explanation of the planning framework

so that we can better explain how our Player Behavior Classifier integrates with it.

The existing planning framework includes a simple model of the Skyrim game coded

in C++, which focused primarily on the features of melee attacks and the sneak mode.

Planning algorithms can interface with the game model to perform forward simulation

of the world for graph search. Each step of the simulation is deterministic, but enemies

are coded to respond accordingly to different NPC actions.

The state representation includes game state variables for the player, the NPC, and

all the enemies in a map. The actions available are for NPC movement, sneaking, and

attacking. Prior to our work, the game model did not include any model for the player,

so the player’s state data would never change during forward simulation.

52 Chapter 4. Cooperative Planning for Non-Player Characters

Skyrim
NPC

Planner

Planning

Query

Plan

Skyrim
NPC

Planner

Planning

Query

Plan

Player

Behavior

Classifier

Player State,
Event Sequences

Player Model

FIGURE 4.3: The addition of the Player Behavior Classifier. Whenever a
planning query is sent to the NPC Planner, the Player Behavior Classifier

will also send its most likely player model to the NPC Planner.

The framework also uses Bethesda’s Creation Kit and Skyrim Script Extender to con-

structed a pipeline between NPCs in the Skyrim game and the active planner. This

pipeline allows the planner to receive planning queries from the game and to send solu-

tion plans back to the to the NPCs in game. In most cases, the performance of planning

could be evaluated outside of Skyrim. Skyrim was often only used as a final visualization

platform for plans.

4.4.2 Integrated Design

Our goal in integrating our behavior classifier was to provide the NPC planner a player

model during its planning stage. The changes we made in the planning pipeline are

shown in figure 4.3.

Now, Skyrim would continuously send player state and event data to the Player

Behavior Classifier. Whenever a planning query was sent to the NPC planner, our Player

Behavior Classifier would also send a model of the currently predicted playstyle class

to the NPC planner. The planner could then use this during its search.

4.4.3 Running the Behavior Classifier

We defined the same game events as we did in Simple Skyrim and configured the Skyrim

game to record these events using the Creation Kit and Skyrim Script Extender. We created

the described scenario in the game, but with a few minor tweaks. We made the bear

and the super wolves weaker, so that a single human player can defeat them. We made

4.4. Implementation and Integration 53

FIGURE 4.4: Example replays of COMBAT and SNEAK in the Skyrim
scenario. Left is COMBAT and right is SNEAK. The nodes here are not
events, but the player’s position. The striped nodes indicate the player is

sneaking. The black stars indicate an enemy was defeated.

this tweak so that we could focus on recording playstyle demonstrations for the player

without an NPC ally.

We recorded demonstrations for two distinctive playstyles: COMBAT and SNEAK.

In the COMBAT playstyle, the player defeats all the enemies on his way to the goal. In

the SNEAK playstyle, the player uses sneak mode to avoid all combat to reach the goal.

The recorded demonstrations included both the event sequence and the full state log.

Example demonstrations of COMBAT and SNEAK are given in figure 4.4.

Next, we learned the playstyle from the given demonstrations through activity clus-

tering. This prepared the activity classifier for the next stage, to classify player behav-

iors in an online setting. From here, whenever we played the Skyrim game, the classifier

could report which playstyle we were most likely following.

To actual model the playstyles, we chose an exemplar demonstration from the playstyle

class and then created a player model which reproduced the demonstration. This be-

came the model we send the planner whenever an NPC planning query was sent. Note

that for our scenario, we assumed that the dungeon layout remained the same, so a

simple replay of a previous demonstration would suffice. However, in a real setting,

the player model would have to be something more sophisticated, such as an n-Gram

Predictor trained off all demonstrations in a cluster and a local planner that could figure

out how to achieve predicted game events.

54 Chapter 4. Cooperative Planning for Non-Player Characters

After learning and modeling the playstyles, we updated the dungeon to match the

exact scenario: the bear was made stronger, the super wolves were now deadly, and the

NPC ally was added. We played the Skyrim game up according to one of the playstyles

(fight everything, or sneak) up to the point after the basic wolves, but before the split

between the two paths. This prepped our activity classifier with a few events so that it

could make an accurate playstyle prediction.

Finally, we sent the planning query to the NPC Planner. At the same time, the Player

Behavior Classifier sent a player model of the predicted playstyle to the NPC Planner.

This completed the setup, and now our NPC Planner could attempt its cooperative plan-

ning.

4.5 Results

All of our planning results in the following sections were generated on a machine with

2.59 GHz Intel i7-6500U CPU, 8.00 GB of RAM, and 64-bit Windows 10 Professional

OS. Our code was compiled with Microsoft Visual Studio 2013 and was run on a single

thread.

4.5.1 Feasibility of New Cooperative Plans

We first report the results for when the player is following the COMBAT playstyle, be-

cause this will illustrate the feasibility of new cooperative plans. In this case, we took

control of the player and defeated the first pack of normal wolves at the start. Then we

sent the planning query to the NPC planner. Our Player Behavior Classifier recognized

this initial set of player actions as the COMBAT playstyle, and sent the corresponding

player model.

First, if the player model is not used in the planner (like how a solitary NPC planner

might work), then the resulting plan resembles the one in figure 4.5. The plan in the

figure is generated with weighted A* using shortest path heuristic to the goal, where the

heuristic weight is ε = 100. Note how the NPC initially approaches the bear hallway

(because it is the shortest distance path) but then must skirt around through the wolves

4.5. Results 55

FIGURE 4.5: A plan produced by simple A* with shortest path heuristic
when no player model is used. The black points indicate the player is
sneaking. Note how the NPC must detour around the area with the bear

enemy because it cannot defeat the bear by itself.

because the NPC cannot defeat the bear alone. The path length (cost) of this plan is 133.2

seconds.

Compare this to figure 4.6, which is a plan generated using the same search algo-

rithm but this time factoring in the player model. Note how the plan can actually

progress through the bear, because the player model predicts that the player will aid

in fighting the bear when the NPC approaches. The path length of this plan is only 24.2

seconds.

In table 4.1, we report metrics such as the number of states expanded, planning time,

and path cost between these two planning instances. Note that the path length of the

cooperative plan shows a significant reduction in path cost as expected.

Something else worth noting though is that the planning time increased. This was

because the search space became harder due to the addition of the player model. In this

particular planning query, the increase in search space size did not pose a problem since

there were no extreme local minima. However, that is not necessarily true of all queries,

as we will see in the next section.

56 Chapter 4. Cooperative Planning for Non-Player Characters

FIGURE 4.6: A plan produced by A* with shortest path heuristic when a
player model has been provided by the classifier. Now that the planner
can forward simulate the player, the planner can find a path through the
Bear enemy, as the combined abilities of the player and NPC can defeat

the Bear.

States Expanded Planning Time Path Cost

No Player Model 487 0.135 sec 133.2 sec
With Player Model 1797 0.497 sec 24.3 sec

TABLE 4.1: NPC planning results for when Player follows COMBAT
playstyle

4.5. Results 57

FIGURE 4.7: NPC Plan with SNEAK player, using weighted A* with
shortest path heuristic and ε = 100. The darker dots indicate the player

is sneaking.

4.5.2 Speeding Up Search with Supporting NPC Demonstration

In this section we report the planning results for when the player is following the

SNEAK playstyle. In this case, we controlled the human-player to sneak pack the initial

set of wolves. After sneaking past them, we sent the planning query to the NPC. Our

Player Behavior Classifier recognized this as the SNEAK playstyle and sent the accord-

ing model.

We expect in this case that the NPC plan should resemble the plan in figure 4.5. The

NPC should give up on the bear path and take the super wolf path. This is indeed the

case as shown in figure 4.7. However, using weighted A* with shortest path heuristic,

the planning time was over 5 minutes long (see table 4.2) due to the player state increas-

ing the dimensionality of the search space. The local minima at the bear is exasperated

as a result.

Our solution to this is to provide a supporting NPC demonstration to the planner

so that it can be used as a T-Graph heuristic [6]. This supporting demonstration can

be associated with a particular playstyle class in the Player Behavior Classifier. When a

planning query is sent to the NPC planner, the Player Behavior Classifier not only sends

a player model, but also an NPC demonstration with it. For the SNEAK playstyle,

58 Chapter 4. Cooperative Planning for Non-Player Characters

Algorithm (and Heuristic) States Expanded Planning Time Path Cost

Weighted A*
Shortest Path

898,008 306.003 sec 140.1 sec

Weighted A*
T-Graph (ε = 10, εT = 10)

578,781 185.249 sec 137.1 sec

Multi-Heuristic A*
T-Graph (ε = 10, εT = 10)

345,208 117.892 sec 197.3 sec

Weighted A*
T-Graph (ε = 20, εT = 5)

17,261 4.985 sec 137.1 sec

Multi-Heuristic A*
T-Graph (ε = 20, εT = 5)

9,356 2.047 sec 166.7 sec

TABLE 4.2: NPC planning results for different search algorithms when
player is following the SNEAK playstyle

we decided the most appropriate supporting NPC demonstration would actually the

SNEAK demonstration itself. To be precise, the demonstration used is the one shown in

figure 4.4. The NPC should imitate the player in sneaking past the super wolves.

For the T-Graph heuristic, we tried various combination of T-Graph inflation factors

εT and overall inflation factors ε which had a combined product εεT = 100. We report

results in particular for εT = 10 and ε = 10 and also εT = 5 and ε = 20. Figure

4.8 shows one of resulting plans when using T-Graphs. It resembles the plan without

T-Graphs, but it differs in that the T-Graph does not approach the left hallway. The T-

Graph Heuristic dramatically reduced the planning time by up to 98% depending on

the epsilon parameters (see table 4.2).

We also tried using Multi-Heuristic A* [1] instead of just weighted A* to see if we

could further reduce planning times when using a player model. We used shorted path

distance as our anchor heuristic, the T-Graph as one of the inadmissible heuristics, and

an extra inadmissible heuristic which favored states where the NPC was in sneak mode.

This extra heuristic was computed by taking the shortest path distance and adding a

constant penalty if the NPC was not sneaking. We used a inadmissible heuristic infla-

tion factor of w1 = 100, which was approximately equivalent to how our weighted A*

searches were using inflation factors of 100. We also used an anchor heuristic inflation

factor of w2 = 100, meaning the anchor search was rarely expanded. (See [1] for how

4.6. Summary 59

FIGURE 4.8: NPC Plan with SNEAK player, using weighted A* with T-
Graph heuristic and εT = 10 ε = 10. The darker dots indicate the player

is sneaking.

details on inflation factors are used.) For the T-Graph heuristic, we again also tried dif-

ferent T-Graph inflation factors so that εεT = w1. The inflation factors used are the same

as our weighted A* search with T-Graph, so that the results are comparable.

An example of the plan produced by Multi-Heuristic A* is shown in figure 4.9.

Again it is comparable to the weighted A* searches, except there are more spots where

the NPC sneaks due to the extra heuristic. The complete performance metrics for our

Multi-Heuristic A* searches are summarized in table 4.2. In both cases, Multi-Heuristic

A* outperformed weighted A* with T-Graphs in planning time at the expense of a less

optimal path.

4.6 Summary

In this chapter, we showed how the Player Behavior Classifier algorithm outlined in

chapter 2 could be applied in the context of cooperative planning for NPCs in Skyrim.

We described how the classifier fits within a Skyrim NPC planing framework: it pro-

vided the NPC planner a player model and a supporting NPC demonstration for the

current predicted playstyle. We presented results which illustrated how the planner

60 Chapter 4. Cooperative Planning for Non-Player Characters

FIGURE 4.9: NPC Plan with SNEAK player, using Multi-Heuristic A*
with inflation factors w1 = 100 and w2 = 100. T-Graph heuristic used
εT = 10 and ε = 10 so that εεT = w1. The darker dots indicate the player

is sneaking.

could find cooperative solutions with the addition of the player model. We further pre-

sented how Multi-Heuristic A* and T-Graph heuristic could help speed up the search,

since adding a player to the search state made the search more difficult.

61

Chapter 5

Related Works

In this chapter, we discuss how others have approached the problem of learning human

behaviors in the context cooperative AI agents.

5.1 Plan Recognition

The problem of identifying the intention of a human is often referred to as “Plan Recog-

nition” in the literature. The main problem setup is that an AI agent is presented with

observations of the actions of another agent (usually human) and must hypothesize the

intended goal and plan.

Kautz et. al. demonstrated how to express particular plan recognition problem with

first-order logic [2, 16]. Their technique involves representing the problem domain as

an action hierarchy, showing how abstract tasks are specialized to specific tasks and

how large actions are broken down into smaller steps. This is formalized as an action

taxonomy, a set of inference axioms, which allow an initial set of observations to be

reduced to the task (plan) they are contributing to. The formalization depends heavily

on a closed-world assumption: all actions and high level plans are well defined, and

every action must be a part of one of these plans. The rigidity of this technique makes

it difficult to apply to the context of human playstyles in video games, as our plans

are not necessarily well defined and we have no guarantees that all player actions are

purposeful. Furthermore, this technique does not allow us to address our first problem:

62 Chapter 5. Related Works

we do not know the playstyles to begin with, so we cannot define an action taxonomy

with a closed-world assumption.

Another approach to plan recognition is through the use of functional grammars.

Geib et. al. presented such a grammar to build an AI agent that would help with setting

a table [11, 9, 10]. Their technique defined an action lexicon which is a set of substitution

rules that associate each observable action with its possible goals and the preconditions

and postconditions actions. By performing all possible parses of an observed set of

actions, they could compute a probability distribution of hypothesized plans. Included

in this computation were the set of subgoals that still needed to be performed in order

to realize the hypothesized plan. This allowed their agent to aid humans by working

on subgoals that would realize the overarching goal. Much like the first-order logic

variant of plan recognition, an action lexicon requires that plans and their subgoals be

defined up front. This is too strict of a requirement, as our goal is avoid having to define

playstyles and instead learn from demonstrations. In addition, the benefit of identifying

unsatisfied subgoals is limited, as the subgoals presented in the paper are independent

pieces of work that only require one worker. The cooperation here is that a human can

work in parallel with an AI agent on separate tasks. However, in cooperative games, we

generally need the ally NPC to work together with the human-player on a single task.

Intille and Bobick presented a different approach using Bayesian Belief Networks

to recognize multiperson actions [15]. In their paper, they attempted to classify videos

of different plays in American Football. They used a pipeline of feeding visual belief

networks into temporal analysis networks into a final play recognition network. Over-

all, the algorithm attempts to identify individual player actions and the temporal re-

lationships among them to determine the likelihoods of the multiperson plan is being

executed. This technique however requires detailed descriptions of the temporal rela-

tionships in a high level plays, which are even less readily available for video game

playstyles.

5.2. Learning Approaches 63

5.2 Learning Approaches

In the pervasive computing domiain, Gu et. al. presented a solution to recognizing

human activities through the use of a concept called Emerging Patterns [12, 18]. An

Emerging Pattern is set of observations that serves as a good discriminators between

different classes of data. By using these discriminators, they were able to score new

instances of observations on what household activity they represented. This approach

requires that a dataset of observations for known activities are given in advance. Fur-

thermore, the observations must be labeled, so that Emerging Patterns can be mined by

comparing the observations in one activity class to another. In otherwords, this solution

is a supervised learning algorithm. In our domain, we are not necessarily given labels

for the playstyles. We hope to discover playstyles through demonstrations, and thus we

need an unsupervised learning method.

65

Chapter 6

Conclusion

In many modern video games, NPCs are still unable to work with human players on

cooperative tasks in a sophisticated matter. The key missing component in NPC planers

is that they do not have a way to recognize player intentions and are unable to predict

player actions during planning. Specifically, they are missing an accurate player model

that can predict trajectories.

To address this, we introduced the Player Behavior Classifier, which can learn playstyles

from demonstrations via unsupervised learning. We explained how playstyles are classes

of activity sequences which have similar patterns of events. We showed how we can

learn these classes via an existing activity clustering technique, which is implemented

by finding dominant sets in a weighted similarity graph [13, 21]. We built on top of ex-

isting work by proposing new modifications to the similarity metric, a Bayesian Belief

Network formulation that can account for uncertainty during online classification, and

a new concept called discounted histograms which prevents old events from polluting

activity histograms. We presented our process of tuning various hyper-parameters, and

showed how our modifications to the similarity metric and other choices created the

best clusterings for demonstration activities from Simple Skyrim. We presented results

which showed how effective this clustering algorithm was and how well the system

performed in online classification.

We then motivated the use of the Player Behavior Classifier in the context of coop-

erative planning for NPCs and described how we integrated the classifier with a Skyrim

NPC planning framework [5]. We demonstrated that an NPC planner could now find

66 Chapter 6. Conclusion

new cooperative solutions, thanks to our provided player model. To balance the in-

creased search difficulty due to the addition of the player model, we applied search

techniques like T-Graphs [6] and Multi-Heuristic A* [1] and showed that these were

effective in reducing planning times with the player model.

We will close by describing some avenues of future work. Our work here has for-

malized the problem of learning playstyles as an unsupervised learning problem. We

presented activity histograms and discounted histograms as way to extract a feature

vector from an event sequence. We also provided a similarity metric as a measure be-

tween two vectors, which can easily be turned into a distance or loss function. By for-

malizing these concepts, we foresee that others could potentially apply other clustering

algorithms, such as k-means [19] or message passing techniques [8], and evaluate their

effectiveness in learning playstyles.

We also noted that the are likely more sophisticated ways of creating a concrete

model out of the demonstrations in a playstyle class, such as using an n-gram predictor

and local event planner. We hope to see how more sophisticated models perform, espe-

cially when the game environment is significantly different from the demonstrations.

67

Bibliography

[1] Sandip Aine et al. “Multi-Heuristic A*”. In: International Journal of Robotics Research

(IJRR) (2015).

[2] James Allen et al. “A Formal Theory of Plan Recognition and its Implementation”.

In: Reasoning about plans. Morgan Kaufmann, 1991. Chap. 2, pp. 69–126.

[3] Donald J Berndt and James Clifford. “Using dynamic time warping to find pat-

terns in time series.” In: KDD workshop. Vol. 10. 16. Seattle, WA. 1994, pp. 359–

370.

[4] E.W. Dijkstra. “A note on two problems in connexion with graphs”. English. In:

Numerische Mathematik 1.1 (1959), pp. 269–271. ISSN: 0029-599X. DOI: 10.1007/

BF01386390. URL: http://dx.doi.org/10.1007/BF01386390.

[5] John Drake. “Planning For Non-Player Characters by Learning From Demonstra-

tion”. PhD thesis. 2018.

[6] John Drake, Alla Safonova, and Maxim Likhachev. “Demonstration-Based Train-

ing of Non-Player Character Tactical Behaviors”. In: Proceedings of the Twelfth Con-

ference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE). 2016.

[7] John Drake, Alla Safonova, and Maxim Likhachev. Towards Adaptability of Demonstration-

Based Training of NPC Behavior. 2017. URL: https://aaai.org/ocs/index.php/

AIIDE/AIIDE17/paper/view/15858.

[8] Brendan J Frey and Delbert Dueck. “Clustering by passing messages between data

points”. In: science 315.5814 (2007), pp. 972–976.

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15858
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15858

68 BIBLIOGRAPHY

[9] Christopher Geib et al. “Building Helpful Virtual Agents Using Plan Recognition

and Planning”. In: Twelfth Artificial Intelligence and Interactive Digital Entertainment

Conference. 2016.

[10] Christopher W Geib. “Delaying Commitment in Plan Recognition Using Combi-

natory Categorial Grammars.” In: IJCAI. 2009, pp. 1702–1707.

[11] Christopher W Geib and Robert P Goldman. “Recognizing Plans with Loops Rep-

resented in a Lexicalized Grammar.” In: AAAI. 2011.

[12] Tao Gu et al. “epsicar: An emerging patterns based approach to sequential, inter-

leaved and concurrent activity recognition”. In: Pervasive Computing and Commu-

nications, 2009. PerCom 2009. IEEE International Conference on. IEEE. 2009, pp. 1–

9.

[13] Raffay Hamid et al. “A novel sequence representation for unsupervised analysis

of human activities”. In: Artificial Intelligence 173.14 (2009), pp. 1221–1244.

[14] P.E. Hart, N.J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Determi-

nation of Minimum Cost Paths”. In: Systems Science and Cybernetics, IEEE Transac-

tions on 4.2 (1968), pp. 100–107. ISSN: 0536-1567. DOI: 10.1109/TSSC.1968.300136.

[15] Stephen S Intille and Aaron F Bobick. “Recognizing planned, multiperson action”.

In: Computer Vision and Image Understanding 81.3 (2001), pp. 414–445.

[16] Henry A Kautz and James F Allen. “Generalized Plan Recognition.” In: AAAI.

Vol. 86. 3237. 1986, p. 5.

[17] V. I. Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions and

Reversals”. In: Soviet Physics Doklady 10 (Feb. 1966), p. 707.

[18] Jinyan Li, Guimei Liu, and Limsoon Wong. “Mining statistically important equiv-

alence classes and delta-discriminative emerging patterns”. In: Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM. 2007, pp. 430–439.

[19] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE transactions on infor-

mation theory 28.2 (1982), pp. 129–137.

http://dx.doi.org/10.1109/TSSC.1968.300136

BIBLIOGRAPHY 69

[20] Ian Millington and John Funge. Artificial Intelligence for Games, Second Edition. 2nd.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009. ISBN: 0123747317,

9780123747310.

[21] Massimiliano Pavan and Marcello Pelillo. “A new graph-theoretic approach to

clustering and segmentation”. In: Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on. Vol. 1. IEEE. 2003, pp. I–I.

[22] Judea Pearl. “Bayesian networks: A model of self-activated memory for evidential

reasoning”. In: Proceedings of the 7th Conference of the Cognitive Science Society, 1985.

1985, pp. 329–334.

[23] Mike Phillips et al. “E-Graphs: Bootstrapping Planning with Experience Graphs”.

In: Proceedings of Robotics: Science and Systems. Sydney, Australia, 2012.

[24] Mike Phillips et al. “Learning to Plan for Constrained Manipulation from Demon-

strations”. In: Proceedings of Robotics: Science and Systems. Berlin, Germany, 2013.

	Abstract
	Acknowledgements
	Introduction
	Player Behavior Classifier
	Using Playstyles as Behaviors Classes
	Problem Statement
	Representing Demonstrations as Activities
	Activities as n-Gram Histograms
	Clustering Activities
	Similarity Metric
	Clustering by Finding Dominant Sets in an Edge-Weighted Graph
	Computing Dominant Sets with Replicator Equations

	Activity Classification
	Improvements to the Similarity Metric
	A New System for Robust Online Classification
	Overall System Description
	Adjusting for Confidence in the Activity Classifier
	Computing the Classification at the Next Time Step

	Using Discounted Histograms to Cull Old Events
	Summary

	Classifier Experiments and Results
	Simple Skyrim
	Game Description
	Events in Simple Skyrim
	Map Layouts

	Playstyle Demonstrations
	Clustering Demonstrations into Playstyle Classes
	Metrics
	Total Entropy of a Clustering
	Adjusted Rand Index

	Hyper-Parameters
	Normal s vs Weighted s
	Using Union vs Concatenation
	Deleting Duplicate Demonstrations
	Changing n in the Activity Histogram

	Validation Results
	Resulting Clustering
	Evaluating Classification Ability
	Responding to Switching Playstyles
	Shortcomings
	Summary

	Cooperative Planning for Non-Player Characters
	Heuristic Graph Search
	Training Graph Heuristic
	Multi-Heuristic A*

	Toward Cooperative Planning
	A Cooperative Skyrim Scenario
	Implementation and Integration
	Skyrim NPC Planning Framework
	Integrated Design
	Running the Behavior Classifier

	Results
	Feasibility of New Cooperative Plans
	Speeding Up Search with Supporting NPC Demonstration

	Summary

	Related Works
	Plan Recognition
	Learning Approaches

	Conclusion
	Bibliography

