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Creating Human-like Fighting Game AI through Planning

by Roger LIU

Games are a major testing ground for Artificial Intelligence. Though AI has be-

come proficient at playing games such as Space Invaders, it behaves in a way that is

distinctly artificial, lacking the human-like qualities of a real player. This human ele-

ment is important in competitive multiplayer games, as a large part of the enjoyment

comes from outwitting other human strategies. To address this issue, we investigate

a novel AI technique that leverages planning and human demonstrations to create

an opponent that exhibits desirable qualities of human play in the context of a fight-

ing game. We introduce the idea of action-δs, which relate the action performed

with the change in the game state. These action-δs are learned from human demon-

strations and are used to help the AI plan out strategies to hit the opponent. We

implement a simple fighting game called FG for the AI to compete in and provide

it a human demonstration to learn from. The AI utilizes action-δs with other search

techniques to emulate human behavior. Lastly, we evaluate the effectiveness of our

AI by comparing its similarity score against other algorithms and other demonstra-

tions by the same human player.
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Chapter 1

Introduction

Fighting games are unique among competitive multiplayer games in that they are

real-time, 1-on-1 contests where small mistakes lead to huge consequences. The best

way to get better at these kinds of games is to practice against other humans, but that

is not always possible. While the option to play online exists, it is not ideal due to the

lag introduced by network latency. In addition, the AI in these games are generally

considered a poor substitute for real players. They often exploit natural advantages

such as perfect reaction time and perfect game state information, but even disregard-

ing that they still only have fixed spectrum of behavior patterns which players can

learn to exploit and consistently defeat. Worse still is that these behavior patterns

might not even be representative of the human opponents that players encounter in

competition.

That said, there are avenues to improve the AI in fighting games to make them

useful for players. One approach is to make an optimal AI which is able to adapt

its strategy based on its performance. This would provide players a challenge by

removing the ability to exploit the AI, but it still doesn’t necessarily capture the

strategies and techniques used by other human players. Another approach is to

make a human-like AI, one that plays like another specific human opponent. This

task seems feasible, as long-time fighting game players can identify the differences

between the playstyles of different players, meaning that there is some quality that

differentiates one behavior from another.

In this research, we investigate planning-based approaches to creating human-

like AI. To do this, we first explore previous approaches taken to create human-like
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AI and discuss their merits and limitations. We also describe other attempts at cre-

ating AI for fighting games to contextualize our efforts compared to theirs. We then

introduce the environment we created to test our approach and define concepts and

terminology used by our algorithm. Then, we describe our algorithm, where we

plan on the actions provided by human demonstrations to reach a desired outcome.

Lastly, we test our algorithm and compare its performance to other existing imple-

mentations.
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Chapter 2

Related Work

2.1 Racing and Imitation

One of the few documented instances of Imitation AI came from the racing game

Forza Motorsport. In this game, players could train "drivatars" to race just like them-

selves. This was implemented by having the AI learn how the player behaves on

different segments of track and try to replicate that behavior when it encounters

those sections. However, this imposed a restriction on the types of tracks that could

be present in the game, as they had to be formed from the basic segment building

blocks.

Researchers then expanded on this approach through the use of genetic algo-

rithms (Julian Togelius and Lucas, 2007). In these kinds of algorithms, candidate

solutions are continually evolved toward better solutions. These candidates have a

set of parameters which are altered between each iteration of the process, and are

then evaluated according to a fitness function. For the particular case of creating

robust human-imitating racers, a fitness function made up of three different com-

ponents was used. One focused on matching the player’s progress on the track.

Another focused on it matching the player’s steering and a final one had it match

the player’s speed. The resulting AI did an alright job of mimicking some aspects

of the respective players, as the AI imitating a slow, careful driver behaved in a sig-

nificantly different way compared to the one that imitated a faster, reckless driver.

However, closer inspection of the driving AI showed that the resulting behavior was

not conceivably human. A later attempt which incorporated a focus on driving op-

timally into the fitness function also did not obtain convincing results. However,
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the study showed a clear trade-off between driving optimally and improving driver

similarity. (Van Hoorn et al., 2009)

2.2 Super Mario Bros.

Researchers also developed several methods to mimic human behavior is in the

space of 2D platformers, specifically a modified version of Super Mario Bros. (Or-

tega et al., 2013). Novel methods tested in this space were Inverse Reinforcement

Learning and Neuroevolution.

The results of the Inverse Reinforcement Learning approach were discouraging,

as the agent wasn’t able to consistently handle situations that weren’t often seen in

the demonstration and was unable to match a human’s ability to predict things that

were not in the immediate detection area. In addition, the optimal policy obtained

by IRL is deterministic, further reducing the human-like appearance of the AI (Lee

et al., 2014).

Neuroevolution produced much better results. In this method, a neural network

was first trained to play Super Mario Bros. The state of the game was encoded into

various genre specific variables that denoted the state of Mario and the distance of

Mario to various obstacles. This was handed as input to the neural network, which

was then expected to output the buttons that should be pressed in that situation.

The resulting weights were then evolved and evaluated using a fitness function.

The fitness function in this case was the distance between the AI and player’s traces

through the level. A key improvement made to suit this genre was to reset the AI’s

position if the distance between traces exceeded some threshold and apply a flat

penalty. This is because an AI can easily get stuck in a 2D platformer, leading to

a very bad final fitness score. The result was that the AI did the best job of mim-

icking human playstyles compared to many other algorithms. However, the agent

achieved a lower score in the game compared to human players, showing that the

agent had not really achieved a truly human-level of performance in the game.
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2.3 Fighting Games and Neural Nets

Neuroevolutionary techniques have also been applied to fighting games. On a sim-

ple fighting game with 1 axis of movement, researchers found that evolutionary

neural networks were able to quickly converge to an optimal playstyle (Cho, Park,

and Yang, 2007). Additionally, Deep Reinforcement Learning has been able to create

AI agents that can compete with top players in the popular commercial game Super

Smash Bros. (Firoiu, Whitney, and Tenenbaum, 2017). However, the optimal AI were

not ideal substitutes for playing against human opponents. For example, the Super

Smash Bros. AI was specifically trained against only one kind of opponent, meaning

that it was limited in the kinds of matchups it could perform well in. In addition, it

exhibits obviously artificial traits such as impossible to perform rapid back and forth

movements.

2.4 Ghost AI

With regards to creating AI that was specifically human-like, the most notable and

widespread technique is Ghost AI. Researchers implemented a version of this algo-

rithm on the commercial game Street Fighter. This AI initializes a histogram with the

frequencies that target player performs actions in different situations uses those ac-

tions at the same frequency (Thunputtarakul and Kotrajaras, 2007). In the adaptive

version, the actions also have an associated weight that updates based on the re-

ward gained from performing them (Lueangrueangroj and Kotrajaras, 2009). These

weights are then used to adjust the frequency that actions are selected.

To evaluate this AI, they recorded sessions of the player and their corresponding

Ghost AI. The players were then asked to watch these both their own and the AI’s

recorded sessions and perform "phantom" inputs as if they were in the same situ-

ation. The recordings were then scored by the similarity of the recording inputs to

the subject’s "phantom" inputs. This method showed promising results, as the Ghost

AI’s similarity was able match around 75% of the real recordings similarity. Players

also expressed high qualitative satisfaction with their recordings, and the adaptive
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component allowed the AI to adjust itself to the strategies of the opponent. This ap-

proach has some notable pitfalls, as it does not account for specific player strategies

that include varying timing. It also doesn’t account for the opponent’s state, such

as how they are blocking, which factors into the decision making process for a real

human player.

2.5 Data-driven Finite State Machines

One final approach utilizes Data-Driven Finite State Machines. In this method, a

multi-layered finite state machine is formed from the a log of a human demonstra-

tion. Specifically, the moves performed during the demonstration are annotated and

used to designate the states of Finite State Machine. The transitions between these

states are learned from the demonstrations. The state machine is then used to govern

the AI’s behavior during gameplay.

This approach has some clear limitations. For one, the annotation of moves is

cumbersome and not well suited for a general purpose algorithm. Furthermore, the

strategy that a player uses could be determined by an arbitrary number of in-game

and out of game variables, which makes reducing player behavior to an FSM an

daunting task. Lastly, this method was implemented on a 1D fighting game, which

puts a huge limitation on the types of techniques that can be expressed by players.

2.6 High Level Overview

In this section we discussed several different existing methods for creating AI that

mimic human-behavior. In domains where players progress on a path to an objec-

tive, such as racing games and 2D platformers, neuroevolution proves to be a strong

strategy. However, there is a clear tradeoff between improving similarity and im-

proving performance in these games, and even then these AI’s have a hard time

recovering from getting stuck.

When looking specifically at fighting games, there is currently a lack of new

developments. Though neural methods have proven effective at creating optimal

agents in certain environments, they exhibit traits that prevent them from being
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suitable substitutes for human players. Other techniques such as Ghost AI have

demonstrated an ability to express traits of human play, but are unable to capture

things like a player’s sense of timing.
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Chapter 3

Planning-based Approach

Overview

A commonality of all of the previous algorithms is that they all use some degree of

learning to try to determine the best actions to take at any given situation. However,

this approach has some issues. For one, learning requires a large amount of training

in order to generalize across the large state space. This is problematic, as the player

data gathered over multiple sessions is relatively small. Additionally, because the

agent only learns the best actions to take at the current time step, it lacks the ability

to plan for a sequence of actions that form a cohesive strategy. This part is important,

as individual playstyles are categorized by the strategies that a player tends to use.

Lastly, there is a natural tradeoff between optimality and employing a degree of

randomness when these agents decide on the next action to take. If an AI always

does the same action in response to a situation, it loses the unpredictability of human

play. However, once an AI does a random action that is unreasonable for the current

situation, players will instantly recognize it as non-human.

(A) Always doing the same action is
too predictable

(B) Some actions don’t make sense in
the given context
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3.1 Why Use Search?

Because human-play is heavily predicated on the usage of different kinds of strate-

gies, dynamically creating and executing the same strategies as the target player

should mimic their playstyle quite well. Since strategies are essentially a sequence

of actions that a player takes in order to arrive at a desired goal, the formulation of

strategies can naturally be represented as a search problem over the state space. The

target player’s demonstrations can be used to inform the AI of the goals to target

and the actions to use, and custom cost functions and heuristics can bias the search

towards actions that closely mimic the player. In addition, the demonstrations can

be used to create a model of the game state’s dynamics, which would allow the AI

to form cohesive plans even in unfamiliar starting states.

To understand how an AI might effectively use search, consider the following

kind of player behavior:

FIGURE 3.2: Player Strategy Example

During the game, player 1 tends to try to stay within a certain range of the op-

ponent and try to hit them with a low attack. If the opponent blocks the low attack,

it sometimes then tries to jump in while the opponent can’t move out of the way

and hit them with a air attack. Essentially, player 1’s behavior is composed of two

strategies, one where they try to hit the opponent with a low attack and another

where they force the opponent to try to block the air attack. We can easily identify

the strategy that the player is currently executing by looking at the ultimate result

that they are aiming for.
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When the AI plans, it first determines what goal state to target. It then uses the

actions pulled from the target player’s demonstration and uses them to search the

state space to reach the goal. For example, to reach the goal where the opponent

is hit with a low attack, the search would return a plan where it walks forward to

get close to the opponent, crouches, and then uses the low attack. If the opponent

moves during that time, the AI replans picks a walking action that would put it in

the correct range for hitting the opponent. With a single demonstration, search is

able to formulate a plan that approximately resembles the strategy executed by the

target player.

3.2 Agent Framework Overview

FIGURE 3.3: AI Framework

The agent will work as follows. After taking in the game state, the agent forms

a plan to reach a predefined goal state. The goal states are generated from the

demonstration data, and the plan that the agent forms uses actions found in from the

demonstration data. After producing the best available plan in the allotted amount
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of time, the agent then tries to execute that plan. After executing an action, it eval-

uates the game state. If the action brought the agent to the expected game state, it

then will try to execute the next action in the plan. However, if the agent finds itself

in an unexpected game state, it forms another plan to try to get to the goal. Once a

plan is successfully executed or after enough time has passed, the agent picks a new

goal state to target and repeats the process.
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Chapter 4

Planning-based Approach in

Details

4.1 Action-δs

First, we explain the concept of action-δs, which our work relies on. When a player

takes action a from state s and arrives at state s′, the game state changes because of

a. For example, the action of walking to the right causes the player’s x-position to

increase. We refer to this change in the game state as an action-δ, which represents

how the game state changes as a result of taking action a. Figure 4.1 shows that

jumping to the right has an action-δ that puts the player up and to the right

FIGURE 4.1: Example Action-δ
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These action-δs are used to understand and build a model of the game’s dynam-

ics. If we know how an action affects the game state in one situation, we can predict

how the action will affect the game state in similar situation.

4.2 Demonstration δ-Search

The task of emulating a player’s behavior is represented as a graph search problem.

Specifically, the objective is to form a plan to hit the opponent using the actions

demonstrated by the target player. The plan should be feasible and resemble a plan

executed by the target player as much possible.

The search space is represented as graph G = (V, E). The vertices V of the graph

are the various states of the game. The edges E represent the possible transitions

between game states.

The transitions that we search on are generated from the training data and fall

into two classes. The first class, known-transitions, are tuples (s, a, s′) which are

identical to ones captured from the demonstration. The other class of transitions

are referred to as δ-transitions. These transitions are of the form (s, a, φ(s, a)), where

φ(s, a) is a predictor function that takes in the current state s and an action a per-

formed by the target player. This predictor function generates the predictions by

learning from the action-δs of action a that were obtained from the training data.

Since we want to form a plan that hits the opponent, a valid goal state is one

where the opponent has the "FirstHit" status. During a run of the search, the goal

is defined to be a state that has the same characteristics as a goal state selected from

the demonstration. The goal state is selected according to a weighted distribution.

This ensures that the planner’s ultimate objective matches that of the target player.

When searching for a feasible plan to get to the goal, we use a modified version of

heuristic graph search. We maintain two priority queues throughout the search, one

called KNOWN and another called UNKNOWN. When deciding to expand a state,

we prioritize expanding states in KNOWN. These states are states which have been

seen in the demonstration, which allows us to use the known-transitions to generate

the successor states. If there are no states in KNOWN, then we expand states from

UNKNOWN using the δ-transitions. After expanding a state, all successors states
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FIGURE 4.2: Overview of δ-search

which have not been expanded by δ-transitions are added to the UNKNOWN pri-

ority queue. If a state has been seen in the demonstration and it has not yet been

expanded by known-transitions, it is added to the KNOWN priority queue. Once

we find a state that is a goal state, we return the plan to that state.

Prioritizing known-transitions makes it so that the plan we form tries to use ac-

tions shown in the demonstration as much as possible. This is a desirable quality

as replicating the demonstrated actions in the proper situations precisely replicates

that human’s behavior in those instances. It also has the effect of reducing the num-

ber successors we add to our priority queues, which is important as the number of

δ-transitions increases with the number of unique actions in our demonstration data

set.

Pseudo-code for this algorithm can be found in Section 4.8.

4.3 Environment Description

The environment used to test this approach is a fighting game we created called FG.

This gave us complete control over the dynamics of the game. It also gave us access
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to internal game data which would have been considerably more difficult to access

had we instead opted to modify an existing fighting game.

The game is structured as a traditional fighting game. Players move back and

forth on in a 2D space, trying to land blows on one another to reduce the opponent’s

health to zero. There are a total of 21 types of actions that the player can perform, and

each of these actions can be done for a duration that corresponds to some number of

frames. The specific types of actions that players can take are described in Table 5.3.

The state of the game is represented by a combination of the states of the player

and opponent. A player’s state includes its world position in discretized space, an

indicator of its velocity, and its current status. Details are described in Table 5.1 and

Table 5.2

4.4 Extracting Data from Demonstrations

In order for the AI to generate plans, we need a human demonstration to build a

model of the game dynamics. Throughout this section, we will refer to a simple

human demonstration where the player moves forward, hits the opponent with a

low attack, and then jumps to hit the player with a jumping attack.

FIGURE 4.3: Example of a Human Demonstration

As the demonstration plays out, the target player performs actions to transition

between different game states. A transition (s, a, s′) is recorded in each of the follow-

ing cases

1. When the player starts performing a new action
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2. When the player is hit during the current action, ending it early.

3. When the game state changes during the current action.

(A) case 1 (B) case 2 (C) case 3

The last case is particularly important for the algorithm, as it breaks down the

single player’s action of walking forward into multiple smaller component actions

that the AI can use.

These transitions are saved as both known-transitions and δ-transitions. All

known transitions are stored in a table K where K[s] contains a list of all outgoing

transitions (a, s′). All δ-transitions are also saved into a table D where D[a] contains

all action-δs encountered.

An action-δ is calculated as follows given an observed transition (s, a, s′). p rep-

resents the target player’s state information an q represents the opponent’s state in-

formation

TABLE 4.1: How Action-δ is Calculated

s s′ action-δ
x Position px p′x p′x − px
y Position py p′y p′y − py

x Velocity pxVel p′xVel p′xVel − pxVel
y Velocity pyVel p′yVel p′yVel − pyVel

opponents x Position qx q′x q′x − qx
opponents y Position qy q′y q′y − qy

opponents x Velocity qxVel qxVel’ q′xVel − qxVel
opponents y Velocity qyVel q′yVel q′yVel − qyVel

grounded pgrounded p′grounded p′grounded
opponent grounded qgrounded q′grounded q′grounded

status pstatus p′status p′status
opponents status qstatus q′status q′status

In the case of the simple demonstration, some of the known-transitions that are

extracted are found in Table 4.2
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s a s’
[-6,0,0,0,1,0,0,0,true,true,Stand,Stand] WalkRight 1 [-6,0,1,0,1,0,0,0,true,true,Moving,Stand]
[-6,0,0,0,1,0,0,0,true,true,Stand,Stand] WalkRight 10 [-4,0,1,0,1,0,0,0,true,true,Moving,Stand]
[-6,0,0,0,1,0,0,0,true,true,Stand,Stand] WalkRight 30 [0,0,1,0,1,0,0,0,true,true,Moving,Stand]

[0,0,1,0,1,0,0,0,true,true,Moving,Stand] Crouch 1 [0,0,0,0,1,0,0,0,true,true,Crouch,Stand]
[0,0,1,0,1,0,0,0,true,true,Crouch,Stand] JumpNeutral 1 [0,0,0,1,1,0,0,0,false,true,Air,Stand]
[0,0,1,0,1,0,0,0,true,true,Crouch,Stand] JumpNeutral 45 [0,0,0,-1,1,0,0,0,false,true,Air,Stand]

[0,0,0,-1,1,0,0,0,false,true,Air,Stand] AirAttack 3 [0,0,0,-1,1,0,0,0,false,true,AirAttack,FresHit]

TABLE 4.2: Demonstration Known-Transitions

The corresponding action-δs are then described in Table 4.3

a action-δ
WalkRight 1 [0,0,1,0,0,0,0,0,true,true,Moving,Stand]
WalkRight 10 [2,0,1,0,0,0,0,0,true,true,Moving,Stand]
WalkRight 30 [6,0,1,0,0,0,0,0,true,true,Moving,Stand]

Crouch 1 [0,0,0,0,0,0,0,0,true,true,Crouch,Stand]
JumpNeutral 1 [0,0,0,1,0,0,0,0,true,false,Air,Stand]
JumpNeutral 45 [0,0,0,-1,0,0,0,0,false,true,Air,Stand]

Attack 3 [0,0,0,-1,1,0,0,0,false,true,AirAttack,Freshit]

TABLE 4.3: Demonstration Action-δs

Lastly, we extract goal-states from the demonstration. These are simply states s′

found from the transitions where the opponent’s status is FreshHit. The set of goal

states obtained from the demonstration are seen in Table 4.4

px py pxVel pyVel qx qy qxVel qyVel pgrounded qgrounded pstatus qstatus

0 0 0 0 0 0 0 0 true true LowAttack FreshHit
0 0 0 -1 1 0 0 0 false true AirAttack FreshHit

TABLE 4.4: Demonstration Goal States

4.5 Generating Successors

When trying to figure out the successor of a state-action pair (s, a), we have either

seen that tuple in the demonstration or we haven’t. If we have, we can generate

the successor using a known-transition. The resulting successor is the same s′ as the

one observed in the demonstration transition (s, a, s′). By traveling along known-

successors, the plan generated by the search closely follows the exact actions taken

by the player during demonstration
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If (s, a) has not been seen in the demonstration data, then we have to use a δ-

transition. When generating a successor using δ-transitions, we rely on a predictor

function φ(s, a). The predictor works as follows.

To determine the effect of taking action a, we look at all action-δs associated with

action a. We will refer to these action-δs as δ. Each δ has a prior called sδ, which

indicates the starting state of that particular recorded transition. We can assign a

similarity score between the s and sδ, which we use as a rough approximation of our

confidence in the truth of that action.

sim(s, sδ) = 1− ∑i dist(s[i], sδ[i])
∑i maxi

dist(s[i], sδ[i]) =


sδ[i]− s[i] if i represents the x position of either player

sδ[i] == s[i] otherwise

s[i] represents the value of field i in state s and max[i] represents the maximum

value of dist(s[i], sδ[i]).

We then create a predicted action-δ by taking a weighted average over the action-

δs and the similarity score and then rounding the result.

δ∗[i] ≈


argmaxδ

sim(s,sδ)
∑δ sim(s,sδ)

[i] if s[i] is a categorical variable

∑δ
sim(s,sδ)δ[i]
∑δ sim(s,sδ)

otherwise

To get the final prediction, we apply δ∗ to the current state s to get s′. For cate-

gorical variables, s′[i] = δ ∗ [i] and for everything else, s′[i] = s[i] + δ ∗ [i]

The confidence value c that is returned with this prediction is calculated as fol-

lows.

c = sim(s, sδ) where δ = argmaxδ
sim(s, sδ)

∑δ sim(s, sδ)

This represents our belief in the predicted result and it also gives an indication

of likelihood that the player would take this action.



20 Chapter 4. Planning-based Approach in Details

4.6 Costs

In order to differentiate the qualities of plans, we need a suitable cost function. The

cost of taking a known-transition is 1.0, as there is no qualitative way to evaluate one

demonstrated action as being more "human-like" than another. For a δ-transitions,

we apply an additional penalty that is inversely proportional to the confidence re-

turned by the predictor.

(s′, c) = φ(s, a)

Cost(s, s′) = λ/c

Where λ is a hypervariable. This makes it so that shorter plans which use higher

confidence transitions are favored.

4.7 The Goal and Heuristics

Before beginning the search, we select a random goal state from the demonstration

to target. This the goal states selected are weighted by their similarity to the initial

starting state. Goals are selected randomly because it simulates how a player might

vary its objective during gameplay. This goal state has certain qualities that are

important to target. Namely, we care about the distance between the player and the

opponent and the statuses of the player and opponent. The search tries form a plan

that results in a state which matches these qualities, shown in Table 4.5.

TABLE 4.5: Qualities Extracted from State s

Field Name Value
x Distance |px − qx|
y Distance |py − qy|
grounded pgrounded

opponent grounded qgrounded
status pstatus

opponents status qstatus

In order to efficiently guide the search towards such a state, we reduce the cur-

rent state to these qualities. The heuristic we use is then a measure the total distance
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between the current state’s qualities and the goal state’s qualities. The quality of a

state is shown in the below table.
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4.8 Pseudo-Code

Algorithm 1 Full Pseudo-Code of δ-search
1: function δ-SEARCH(sstart, demonstrations)
2: OBS = {}
3: OBSδ = {}
4: KNOWN = {}
5: UNKNOWN = {}
6: sgoal = GetGoal(demonstrations)
7: KNOWN ∪ {sstart}, UNKNOWN ∪ {sstart}
8: while |KNOWN| 6= 0 OR |UNKNOWN| 6= 0 do:
9: if |KNOWN| 6= 0 then

10: Remove the smallest [ f (s) = g(s) + h(s)] from KNOWN
11: OBS ∪ {s}
12: if isGoal(s) then return plan(s)
13: Expand s with (s, a, s′) ∈ demonstrations s′ 6∈ OBS OR s′ 6∈ OBSδ

14: if (s′, _, _) ∈ demonstrations then
15: KNOWN ∪ {s′}
16: UNKNOWN ∪ {s′}
17: else if |UNKNOWN| 6= 0 then
18: Remove the smallest [ f (s) = g(s) + h(s)] from UNKNOWN
19: if isGoal(s) then return plan(s)
20: OBSδ ∪ {s}
21: Expand s with s′ = φ(s, a) s′ 6∈ OBS OR s′ 6∈ OBSδ

22: if (s′, _, _) ∈ demonstrations then
23: KNOWN ∪ {s′}
24: UNKNOWN ∪ {s′}

4.9 Additional Considerations

4.9.1 Dealing with Long Search Times: Real-time Search

Because of fast-paced nature of fighting games, players need to be able to reliably

make split second decisions. This constraint then extends to our AI, as it can’t afford

to plan seconds at a time, as the game state might change drastically within that time

period. In our implementation, the AI is required to come up with a plan within 50

milliseconds. If it cannot reach a goal state, it instead formulates a plan to get to an

explored state which is the most similar to the current goal state. The idea is that

by reaching this intermediate state, it can then resume planning from the position

that is closer to the goal, giving the impression of one seamless plan, when it in fact

generated that plan during execution.
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4.9.2 Dealing with a Changing Game State: Replanning

Because the opponent is allowed to move during plan execution, the plan we formu-

late is likely to encounter states which do not match the planned transitions. Because

of the short time to plan we enforced, we can seamlessly replan whenever we hit an

unexpected state and have the AI adjust accordingly. An example of this is when the

opponent moves back while the AI is approaching them. Due to replanning, the AI

will then know to continue to move towards the opponent, rather than stopping at

its original location and attacking like initially planned.

4.9.3 Dealing with Bad Predictions, Updating the Predictor

One final thing that we do to ensure that our AI is robust is update the predictor. As

the game progresses, the AI logs the transitions that don’t match up with its predic-

tions and adds it back to the training set. This helps the AI make better predictions

in the future and helps avoid local minima plans. This is crucially important as

otherwise the AI is likely to get stuck performing the same action repeatedly.
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Chapter 5

Additional Details

TABLE 5.1: AI Situation Description

Field Name Description
x Position x position of the target player. Descrtized by 0.5 unit increments
y Position y position of the target player. Descrtized by 1.0 unit increments
x Velocity The sign of the x velocity of the target player.
y Velocity The sign of the y velocity of the target player.

opponents x Position x position of the opponent. Descrtized by 0.5 unit increments
opponents y Position y position of the opponent. Descrtized by 1.0 unit increments
opponents x Velocity The sign of the x velocity of the opponent player
opponents y Velocity The sign of the x velocity of the opponent player

grounded Whether or not the target player is on the ground
opponent grounded Whether or not the opponent is on the ground

status The target player’s current status
opponents status The opponent’s current status
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TABLE 5.2: Player Status Descriptions

Status Description
Stand When the player stands still

Crouch When the player is crouching
Air When the player is airborne

Highblock When the player is blocking high
Lowblock When the player is blocking low
FirstHit When the player was initially hit by an attack

Hit When the player is in hitstun after being hit
KnockdownHit When the player has been knocked down after being hit multiple times

Tech When the player is getting up after being knocked down
Moving When the player is walking on the ground
Dashing When the player is performing a dash on the ground

AirDashing When the player is performing a dash in the air
StandAttack When the player has the stand hitbox out
LowAttack When the player has the low hitbox out

OverheadAttack When the player has the overhead hitbox out
AirAttack When the player has the AirAttack hitbox out

DP When the player has the Dp hitbox out
Recovery The recovery period after an attack

TABLE 5.3: Player Action Descriptions

Action Description
Stand The player is standing still

Crouch The player is crouching
WalkLeft The player is walking left

WalkRight The player is walking right
JumpNeutral The player jumped in place

JumpLeft The player jumped to the left
JumpRight The player jumped to the right

Attack The player did a standing attack. Can be blocked high or low
Overhead The player does a standing overhead attack. Can only be blocked high

LowAttack The player does a crouching low attack. Can only be blocked low
AirAttack The player does an attack in the air. Can only be blocked high

StandBlock The player is actively blocking high.
CrouchBlock The player is actively blocking high.

DashLeft The player does a single quick dash to the left
DashRight The player does a single quick dash to the right

AirdashLeft The player does a single quick dash to the left in the air
AirdashRight The player does a single quick dash to the right

DP The player does a quick invulnerable strike. Has long recovery
TechNeutral The player gets up from being knocked down

TechLeft The player rolls to the left and gets up from being knocked down.
TechRight The player rolls to the right and gets up from being knocked down.
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Results and Discussion

6.1 Results

To test the AI’s performance, we set up the following experiment. First, the subject

was given time to familiarize and acclimate themselves to the controls and dynam-

ics of the game. Afterwards, the subject played five 20 second long matches against

a computer opponent that follows a set defensive behavior pattern. A random set

of matches from this pool was selected to be the demonstration sessions, while the

rest were grouped into a set of holdout sessions. We then used the data from the

demonstration session to create three kinds of agents. One of the agents used our

novel search technique. We refer to this agent as Search AI. The other agents imple-

mented an simple N-gram AI and the adaptive Ghost AI and served as a point of

comparison. An N-gram AI is essentially a vanilla GhostAI that is not aware of the

current game state. We then recorded several sessions where each of these agents

was pitted against the same computer opponent that the subject faced.

We performed several kinds of experiments. In one, one session was selected to

be the demonstration session. In another, half of the available sessions were selected

as the demonstration session. In the last one, the opponent used for the demonstra-

tions and during the demonstration was a human opponent. Half of the available

sessions were selected as the demonstration session and the human opponent was

kept consistent through all of sessions.

The recorded sessions were evaluated along three criteria: Similarity, Effective-

ness, and Qualitative Analysis.

The data on the tables are interpreted as follows. The mean refers to the mean
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of all of the similarity scores. The Avg. Standard Deviation refers to the average of

the standard deviation within each player’s mimicking agent. So Player A’s N-gram

AI may have a similarity standard deviation of 1, Player B’s may have a similarity

standard deviation of 2, so the Avg Standard Deviation of the N-gram AI would be

1.5

6.1.1 Similarity

To measure similarity, we used a metric based on the work by Hamid et al., 2009. The

metric works as follows. Given event sequences A and B, let HA and HB represent

the underlying histogram of all n-Grams where 1 ≤ n ≤ 3. Then let SA and SB be

the number of unique substrings in HA and HB respectively, and let f (s|H) be the

number of times substring s appears in histogram H. The similarity metric is then

defined as follows:

PlayerSim(A, B) = ∑
s∈SA∪SB

| f (s|HA)− f (s|HB)|
f (s|HA) + f (s|HB)

We recorded the similarity between and each AI’s test sessions and the holdout

sessions and report them below. We also include the similarity between the demon-

stration and holdout sessions as a point of comparison.

TABLE 6.1: Similarity Measurements: One Demonstration

Holdout Session N-gram GhostAI Search AI
Mean 0.447 0.191 0.242 0.237

Avg. Standard Deviation 0.078 0.057 0.033 0.040

TABLE 6.2: Similarity Measurements: Half of the Demonstrations

Holdout Session N-gram GhostAI Search AI
Mean 0.436 0.210 0.221 0.181

Avg. Standard Deviation 0.085 0.047 0.035 0.028

TABLE 6.3: Similarity Measurements: Human Play

Holdout Session N-gram GhostAI Search AI
Mean 0.301 0.136 0.168 0.165

Avg. Standard Deviation 0.054 0.033 0.048 0.017
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From a similarity point of view the algorithm does decently. When given a sin-

gle sessions worth of demonstration, the Search AI compares favorably to GhostAI

and surpasses the N-gram AI. However, once more data is added to the demonstra-

tion data set, Search AI’s performance begins to fall off while N-gram improves and

overtakes it. This is likely because of the increased number of demonstrated actions

increases the number of state successors when taking δ-transitions, slowing down

the search. The Search AI’s low standard deviation is expected, as its planning-based

behavior should have less of the chaotic randomness shown by the other AI.

Taking a closer look at the data points where the AI’s have more demonstrations,

the instances where Search AI did dramatically better than the N-gram AI and the

instances where it did dramatically worse were split fairly evenly. In the instances

where we saw worse performance, the Search AI would repeatedly attack in place

until the predictor could update and have create a more feasible plan. This shows

the Search AI may be able to achieve high similarity with larger data sets if it can

learn to overcome these planning local minima.

Lastly, the similarity measurements for human-play are mostly in-line with the

similarity when pit against an computer opponent. Despite having more demonstra-

tion data, the Search AI is able to keep pace with the GhostAI and outperform the

N-gram AI. This likely happens because the human-opponent rarely lets the Search

AI form poor local minima plans, as they will hit and interrupt it before it can get

stuck for an extended period.

6.1.2 Effectiveness

To measure Effectiveness, we compared the number of hits that were landed in the

training session to the average number of hits recorded for each other category. We

also compared the average number of actions that needed to be performed to land a

hit. We rec

TABLE 6.4: Hits Landed Per Session: : One Demonstration

Original Player N-gram GhostAI Search AI
Mean 6.75 2.6 2.35 4

Avg. Standard Deviation 1.55 1.162 0.683 1.368
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TABLE 6.5: Actions required per Hit: One Demonstration

Original Player N-gram GhostAI Search AI
Mean 10.54 22.49 36.83 11.45

Avg. Standard Deviation 3.77 11.54 19.39 2.66

From an effectiveness point of view, the search AI is definitely more effective

compared to the other 2. Not only does it on average land more hits per session, it

also uses fewer actions to achieve those hits. This makes sense because the Search

AI tries to create plans that let it reach a goal state relatively efficiently, whereas N-

gram and GhostAI are constantly performing actions. It is also good to see that the

Search AI’s requires roughly the same number of actions to land a hit as the original

players. It shows that the AI is not just taking an optimal path to the goal, but is in

some way matching the success-rate of the player it is emulating.

One thing that is odd is that the Ghost AI seems to perform worse than the N-

gram AI in this category. This is probably because the Ghost AI does not receive a

penalty if an opponent blocks an attack, meaning that in one instance it could hit the

opponent and then be tricked into thinking that action is always the best one to take

to maximize reward.

TABLE 6.6: Hits Landed Per Session: Half of the Demonstrations

Original Player N-gram GhostAI Search AI
Mean 6.75 3.15 2.4 2.7

Avg. Standard Deviation 1.546 2.041 1 1.186

TABLE 6.7: Actions required per Hit: Half of the Demonstrations

Original Player N-gram GhostAI Search AI
Mean 10.541 20.079 37.835 16.259

Avg. Standard Deviation 3.776 7.200 10.670 2.610

When we increase the amount of demonstration data, the Search AI’s perfor-

mance worsens by a significant margin. This is likely due to the fact that we are able

to expand less states in the limited amount of time given due to the increase number

of δ-transitions.

Against a human player it’s surprising to see that the Search AI is actually more

effective than even the original player. This is probably because the Search AI is po-

tentially able to stitch together the original players actions to create more effective
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TABLE 6.8: Hits Landed Per Session: : Human Player

Original Player N-gram GhostAI Search AI
Mean 6.8 4.4 3.8 9.4

Avg. Standard Deviation 5.418 5.953 2.482 4.224

TABLE 6.9: Actions required per Hit: Human Player

Original Player N-gram GhostAI Search AI
Mean 9.588 17.727 12.684 5.809

Avg. Standard Deviation 0.540 2.197885296 6.929140424 0.384684368

strategies that the original player might not even have considered. Additionally, the

Search AI is able to pick the best parts of all of the mimicked players demonstra-

tions and use them to greater effect against the opponent. Lastly, the human-player

takes offensive actions unlike the defensive AI, which make them more vulnerable

to attacks in general.

The scores for the N-gram and GhostAI are expectedly low. This is because nei-

ther the N-gram or GhostAI have the proper means for taking actions after being

hit. The N-gram AI may try to take actions that are no longer available to it while it

is knocked down, and though the GhostAI has some awareness of game context, if

the world state is not the same as something encountered in the demonstration it is

forced to pick from a uniform random distribution.

6.1.3 Qualitative Analysis

For our qualitative analysis we also visually inspected heatmaps of the demonstra-

tions like follows. We also analyzed the video footage of the different AI’s

Lastly from a qualitative standpoint, it is hard to infer much from the heatmaps.

They clearly show that Search AI and GhostAI are a step above the N-gram AI,

but beyond that there is no clear delineation. Search AI seems to more accurately

represent the grounded actions of the original player compared to GhostAI, but it is

hard to tell the difference. However, in the video analysis, the Search AI’s movement

was the smoothest. This is because plannning allows it to take broad motions before

deciding to take a different action. That said, both the Ghost AI and Search AI were

prone to getting stuck into certain repeated patterns, a trait which to most people

signifies a non-human player. This is likely because both GhostAI and Search AI try
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(A) Original Player Heatmap (B) N-gram AI Heatmap

(C) GhostAI Heatmap (D) Search AI Heatmap

to reach the goal of hitting the opponent in an efficient manner. This adherence to

an "optimal" kind of play can result in situations where the agent behaves greedily

to a fault and comes off as non-human-like.
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Chapter 7

Conclusion

Among competitive multiplayer games, fighting games are among the most expres-

sive of the player’s playstyle. The tight dynamics of the game combined with the

fast-paced close-quarters combat means that it’s vital for a player to understand the

opponent’s behavior in order to secure an advantage. Replicating human behavior

is a difficult task for AI, as it has to generalize the actions of a player across uncount-

ably many different game states. Any illogical movement can break the player’s sus-

pension of disbelief, and if it plays it too safe it’s behavior patterns will be quickly

figured out and exploited by human opponents.

In this paper we explored a new technique to create human-like behavior for

fighting games. By using search, we have enabled the AI to plan and execute long

strategies to reach its goal. By using action-δs, we enable the AI to learn the results of

actions and to understand how to use them in any context. These tools helped give

our AI the capability of expressing the attributes of a human fighting-game player.

We then compared our approach to repeat human demonstrations and other

common implementations of fighting game AI in this field. The technique showed

to be effective at emulating certain aspects of human behavior. Specifically, it did

a good job in replicating the qualitative feel of a human player and was the best at

replicating the effectiveness of a human player. However, it was not able to truly

capture the player’s behavior, recording a similarity score that was comparable to

the other kinds of AI.

Moving forward, there are a few additional avenues that this work could go

down. One is augmenting it with a better predictor function φ(s, a), as this would al-

low it to better understand how actions affect the state around it. This sort of project
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would be an entire undertaking in of itself, as it would require more advanced Ma-

chine Learning techniques to be successful. In addition, improving the adaptability

of the predictor would improve the human-likeness of the AI, as it would capture a

player’s ability to alter their strategy in response to different circumstances.

Another problem that should be tackled is the collection and usage of useful

player data. As is, data collection is time-consuming and expensive because of the

time that subjects would have to spend testing. In addition, the AI is not able to use

large data-sets well due to looking through the action-δs of all of the demonstrated

actions. Devising some way to compactly obtain more useful information from small

data sets could drastically improve the AI’s expressive capabilities.
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