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Abstract

Recent progress on a number of combinatorial and numerical problems bene-
fited from combining ideas and techniques from both fields to design faster and
more powerful algorithms. A prime example is the field of spectral graph theory,
which involves the interplay between combinatorial graph algorithms with numeri-
cal linear algebra. This led to the first nearly linear time solvers for graph Laplacians
as well as symmetric and diagonally dominant (SDD) linear systems.

In this thesis we present several combinatorial algorithms that allow us to tap
into spectral properties of graphs. In particular, we present
• An improved parallel algorithm for low diameter decomposition via exponen-

tial shifts.
• A parallel algorithm for graph spanners with near optimal stretch trade-offs

and its application to spectral graph sparsification.
• Improved low stretch tree embeddings that are suitable for fast graph Lapla-

cian solvers.
• Work efficient parallel algorithms for hopset and approximate shortest path.

A common goal we strive for in the design of these algorithms is to achieve complex-
ities that are nearly linear in the input size in order to be scalable to the ever-growing
amount of data and problem sizes in this day and age.
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Chapter 1

Introduction

The past few years have seen significant developments of fast algorithms in areas such as
symmetric and diagonally dominant (SDD) linear system solvers, numerical linear algebra,
combinatorial optimization, and linear programming. An important idea underpinning this
recent progress is to combine techniques developed in combinatorial and discrete algorithm
design with numerical approaches. A prime example is the field of spectral graph theory,
which involves the interplay between graph algorithms and linear algebra. For instance, the
recent developments on nearly linear time solvers for the class of SDD linear systems [ST14,
KMP14, KMP11, CKM+

14] use discrete graph algorithms to find good preconditioners, while
[KOSZ13], another nearly linear time solver, is entirely combinatorial. These solvers then lead
to breakthroughs in long standing graph optimization problems such as finding maximum
flows and shortest paths [CKM+

11, LRS13, Mad13, KLOS14, CMSV16]. The ideas and tech-
niques developed in the graph setting such as sampling and effective resistances/leverage
scores also partly inspired a number of results in numerical linear algebra [CKM+

11, LRS13,
Mad13, KLOS14, CMSV16], and linear programming [LS14].

This thesis will focus on some of the combinatorial building blocks used in algorithmic
spectral graph theory, as well as their applications. In Chapter 2 we describe a parallel low
diameter graph decomposition routine which forms the basis for the next few chapters. In
Chapter 3 we present parallel algorithms for finding graph spanners and its application to
combinatorial constructions of spectral sparsifiers. In Chapter 4 we give efficient algorithms
for a new type of low stretch tree embedding that plays an important role in solving graph
Laplacians. In Chapter 5 we describe another application of our graph decomposition routine
in parallel algorithms for approximating shortest paths.
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1.1 Preliminaries

In this section we quickly introduce some of the notation and concepts used throughout this
thesis.

1.1.1 Graphs and Their Laplacians

We use G = (V, E, w) to denote an undirected weighted graph with vertex set V, edge set E,
and non-negative edge weight function w : E→ R+. We will often use n to denote the number
of vertices and m to denote the number of edges when there is no ambiguity about which graph
we are referring to. It is also useful to define the reciprocal edge weight function as the edge
length function l : E → R+, l(e) = 1/w(e) for all e ∈ E. Notice that we can also fully specify
a graph using its length function as G = (V, E, l). We then use dist(·, ·) to denote the shortest
path distance metric on G with respect to its edge length function l. We further assume that
w(u, v) = 0 and l(u, v) = ∞ if u and v is not connected by an edge.

If V ′ ⊂ V, we use G[V ′] to denote the induced subgraph of G on V ′. In other words
G[V ′] is the graph with vertex set V ′ and edge set E′ = {{u, v} ∈ E | u ∈ V ′, v ∈ V ′}.
Similarly if E′ ∈ E, we use G[E′] to denote the induced subgraph with edge E′ and vertex
set V ′ = {v ∈ V | ∃u ∈ V, {u, v} ∈ E′}. Unless stated otherwise, we assume that induced
subgraphs share the same edge weights of the original graph.

Given any V ′ ⊆ V, we can define G \ V ′ to be the quotient graph of G obtained by con-
tracting the connected components of G[V ′]. In other words, for v ∈ V, if Comp(v) denotes the
connected component of v in G[V ′], then G \V ′ has vertex set {Comp(v) | v ∈ V} and edge set
{{Comp(u), Comp(v)} | {u, v} ∈ E}. We can similarly define quotient graphs G \ E′ and G \G′

where E′ ⊆ E and G′ is any subgraph of G. Again, the edge weights in these quotient graphs
are assumed to be the same as in G unless otherwise stated.

Given an undirected weighted graph G = (V, E, w), its weighted adjacency matrix AG is
defined to the symmetric matrix with rows and columns indexed by the vertex set V, with the
off-diagonal entries given by the edge weights:

(AG)u,v = w(u, v).

The diagonal degree matrix DG is defined as

(DG)u,u = ∑
v 6=u

w(u, v).

The graph Laplacian LG associated with G is then given by

LG = DG −AG.

2



An alternative way to characterize graph Laplacians is via the vertex-edge incidence matrix.
First, we arbitrarily orient the edges of G, i.e. we write each edge (u, v) ∈ E as an ordered
pair. We define BG to be the |V| × |E| matrix whose rows are indexed by vertices and whose
columns are indexed by edges:

(BG)v,e =


1 if e = (v, u) for some u ∈ V,
−1 if e = (u, v) for some u ∈ V,
0 otherwise.

We let CG be the |E| × |E| diagonal matrix of edge weights

(CG)e,e = w(e).

Then it is easy to verify that

LG = BGCGBT
G.

This characterization also shows that Laplacians are positive semi-definite matrices when the
corresponding graphs have non-negative edge weights.

If necessary, all the above notations will be augmented with superscripts or subscripts to
describe further restrictions or disambiguation, which we will make explicit when the occasion
arises.

1.1.2 Graphs as Electrical Networks

It is often useful to view graphs and Laplacians as a model of electrical circuits. Here we
highlight some concepts that will be useful to us (a detailed treatment of this topic can be
found in [DS84]).

Under this view of the world, given a graph G = (V, E, l), the vertex set V represents the
set of junctions in the circuit, and the edge set E are the resistors, whose resistances are given
by the length function l : E → R+ (and therefore the conductances are given by the edge
weight function w(e) = 1/l(e)). We will first choose an arbitrary orientation for each edge
just as before. The graph itself is still undirected, but since in our model an edge can carry
electric current in either direction, choosing an orientation allows us to describe the current
using a single real number: a positive current is in the same direction as the edge orientation,
a negative current goes in the opposite direction.

Then given x, b ∈ R|V|, we can interpret the system of linear equations Lx = b as follows.
We will view the entries of x as electric voltage values at each vertex. Then since LG = BGCGBT

G,

3



applying LG to x we can write

LGx = BGCGBT
Gx

= BGCGδ

= BG f

= b,

where δ, f ∈ R|E|. Using Ohm’s law and the definition of the vertex-edge incidence matrix
BG, we see that δ ∈ R|E| represents the voltage difference between the endpoints of each
edge, and f ∈ R|E| represents electric current on each edge (with the signs determined by the
edge orientation). Similarly, the vector b ∈ R|V| represents the net amount of electric current
entering/leaving at each node, if we set the voltages according to x.

An important concept is the effective resistances between two vertices. Informally, for any
u, v ∈ V, the effective resistance ER(u, v) between them can be measured by applying Ohm’s
law to u and v with the rest of the network viewed as a single resistor. That is, it is equal
to the potential difference between u and v when we inject one unit of electric current into u
and extract the same amount out of v. To formally define the effective resistances, let bu,v be
the vector with 1 in the entry corresponding to u, −1 in the entry corresponding to v and 0
everywhere else. Then using bu,v as the right hand side, the solution to LGx = bu,v then gives
the voltage values that would induce one unit of electric current from u to v, and therefore we
have

ER(u, v) = bT
u,vL−1

G bu,v.

As one would expect, the effective resistances can only increase when we increase the resis-
tances on the individual edges, and this is known as Rayleigh’s monotonicity principle.

Lemma 1.1.1 (Rayleigh’s Monotonicity Principle). If H = (V, EH, wH) is a subgraph of G =

(V, EG, wG) in the weighted sense, i.e. EH ⊆ EG and wH(e) ≤ wG(e) for all e ∈ EH, then for any
u, v ∈ V,

ERH(u, v) ≥ ERG(u, v).

1.1.3 Computational Goals

With the rise of the Internet and the age of big data, we saw an explosive growth in the
demand for information processing tasks such as data and network analysis. During this day
and age it is essential for our algorithms to be scalable to massive problem sizes. For example
an algorithm that runs in O(n2) time may no longer be suitable for solving today’s problem,
and will surely not scale up to the problems of the near future. Therefore we will focus on
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algorithms with complexities that are nearly linear in the input size. In other words, on a
problem of size n, we would like to design algorithms that runs in O(n logc n) time for some
constant c.

We will also be interested in the design of parallel algorithms. We will use two standard
quantities to measure the complexity of a parallel algorithm: depth and work. The depth (D) of
a parallel algorithm is the length of the longest sequential dependencies of the algorithm, i.e.
a sequence of computations in which latter ones depends on the result of earlier ones. Work
(W) on the other hand is defined the total number of operations performed by the algorithm.
In practice, the number of processors available (P) is often limited, therefore if W/P > D, the
actual running time of the algorithm no longer depends on the depth, but is rather bottlenecked
on the total work divided by the number of processors. Therefore in this thesis, we focus on
designing work efficient parallel algorithms. In other words, we want to parallel algorithms
whose work term match the sequential run time as closely as possible (up to a poly-logarithmic
factor), since these algorithms are able to achieve parallel speedup with only a modest number
of processors.

1.2 Overview and Related Works

1.2.1 Fast Graph Laplacian Solvers

Many recent developments in algorithmic spectral graph theory were started by a series of
ground breaking papers by Spielman and Teng [ST03, ST11, ST13, ST14] that resulted in the
first nearly linear time solver for linear systems in graph Laplacians (and as an extension, for
symmetric and diagonally dominant systems). On a graph with n vertices and m edges, the
running time1 for their algorithm was Õ(m logc n)2 for some fairly big constant c. Since then
this running time has been improved, first to Õ(m log2 n) [KMP14], then to Õ(m log n) [KMP11],
and finally to Õ(m

√
log n) [CKM+

14]. At the core of these solvers is an iterative and recursive
scheme for solving linear systems combined with combinatorial algorithms for finding good
preconditioners.

Iterative methods for solving linear systems are often used to solve linear systems that are
large and sparse (we refer readers to [Saa03] for an introduction on iterative methods). One
drawback of direct methods such as LU factorization (also known as Cholesky factorization
for symmetric and positive semi-definite matrices such as graph Laplacians) is that they can
produce large amounts of fill-in. That is, during factorization, many entries of the matrix that
were initially zero can become non-zero. For an n× n matrix with only O(n) non-zero entries,

1The solvers presented in this section all produce an approximate solution to the linear system, but for simplicity
we ignore the running time dependency on the error parameter ε, which it is typically an extra factor of O(log(1/ε)).

2We use Õ(·) to ignore O(poly log log n) factors in addition to constant factors in this section.
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computing its LU factors can easily produce Ω(n2) non-zero entries. On a large sparse matrix,
this not only means a super-linear running time, but it also requires what is often an impossibly
large amount of memory.

Iterative methods, on the other hand, produce a sequence of improving approximate so-
lutions with very little memory overhead. As an example let us consider one of the simplest
example of iterative solvers, the Richardson iteration. Given a linear system Ax = b and an
initial guess x(0), this method tries to improve the current solution using the following update
rule:

x(k+1) = x(k) + (b−Ax(k)).

Each iteration consists of a matrix-vector multiplication and vector additions, thus has a linear
running time with no memory overhead. However, the convergence of this iterative method (if
it converges at all) depends on the condition number of the matrix A, which is defined to be
the ratio between the largest and the smallest eigenvalues of A. If A is ill-conditioned, iterative
methods can be painfully slow.

One way to improve the convergence of iterative methods is via preconditioning. In place
of the original system, we introduce a preconditioner matrix P, chosen so that P−1A has a good
condition number, and try to solve the equivalent system P−1Ax = P−1b instead. It can be
shown that the condition number of P−1A is bounded by β/α if

αxTPx ≤ xTAx ≤ βxTPx, ∀x ∈ Rn. (1.1)

That is, we want the quadratic form of the preconditioner to approximate that of the original
matrix. The preconditioned Richardson iteration then becomes

x(k+1) = x(k) + (P−1b− P−1Ax(k))

= x(k) + P−1(b−Ax(k)).

Since each iteration now requires an application of P−1, in other words a solution to the linear
system in P, the preconditioner should also be under some notion easy to solve, either directly,
or in the framework of Spielman and Teng, recursively.

Although it is not known how to find provably good preconditioner for general matrices,
we do have algorithms for finding preconditioners of graph Laplacians that gives us nearly
linear time solvers. An important idea, which can be traced back to Vaidya [Vai91], is to use
another graph as the preconditioner and to leverage combinatorial graph algorithms to find it.
Given this, the goal is then to find this new graph such that it approximates the original graph
in the sense of (1.1). It can be shown that for graph Laplacians

xTLx = ∑
{u,v}∈E

w(u, v)(xu − xv)
2.

6



In other words, the quadratic form of graph Laplacians can be interpreted as the electric energy
dissipated under the voltage setting x when we view the graph a resistive network. Spielman
and Srivastava [SS11] showed that the effective resistances of the edges are crucial to con-
struct sparser graphs, also known as spectral sparsifiers, that approximate the quadratic form
of the original Laplacians. The series of work [KMP14, KMP11] that lead to the state of art
solver [CKM+

14] all construct their preconditioners by sampling edges using upper bounds
of effective resistances to form a spectral sparsifier that is at the same time also easier to re-
cursively solve. These upper bounds are obtained by first finding a low stretch spanning tree
of the graph, then applying Rayleigh’s monotonicity principle (Lemma 1.1.1) to the effective
resistances in the tree.

The first part of this thesis can be thought of as combinatorial algorithms used in obtaining
these relatively crude effective resistance upper bounds used in preconditioners (Chapter 4) as
well as tighter estimates of effective resistances suitable for more accurate spectral sparsification
(Chapter 3).

Aside from the recursive preconditioning framework pioneered by Spielman and Teng, a
different nearly linear time solver for graph Laplacians was given by Kelner et al. [KOSZ13].
Recall from Section 1.1.2 that solving the system Lx = b can be interpreted as finding a voltage
setting x on each vertex that will induce an electric current the satisfies the demand at each
vertex given by b. Instead of the correct voltage values, the solver by Kelner et al. tries to solve
the dual problem of directly computing the electric current induced by these voltages. The run
time of their algorithm is Õ(m log2 n) and this was further improved by Lee and Sidford [LS13]
to Õ(m log3/2 n).

1.2.2 Spectral Graph Sparsification by Effective Resistances

In the previous section we saw that in order to improve the convergence of an iterative method,
a preconditioner need to “spectrally” approximate the original system. In this section we
give an overview on graph sparsification, the problem of finding sparsest possible graphs that
spectrally approximate the original. Although being spectrally similar is a necessary but not
sufficient property for being a good preconditioner, graph sparsification is an interesting graph
problem in itself. Given a graph G = (V, E, w) and its Laplacian LG and any given error
parameter 0 < ε < 1, our goal is to find a sparse graph H such that

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x ∈ Rn.

We will call such a graph H a (1± ε)-spectral sparsifier of G.

Spectral sparsification of graphs was introduced by Spielman and Teng as a component in
the first nearly-linear time SDD linear system solver [ST11]. Their sparsification algorithm is
combinatorial in nature, it relies on intricate graph partitioning followed by uniform sampling
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in some of the partitions. However this produces a sparsifier of size O( n logc n
ε2 ) for a fairly large

constant c. Spielman and Srivastava [SS11] later introduced an elegant sparsification algorithm
based on sampling edges by effective resistances. More specifically, the sampling bias pe for an
edge e is formed by scaling its effective resistance by the edge weight:

pe = w(e)ER(e). (1.2)

This sampling scheme combined with Chernoff-type bounds for positive semi-definite matri-
ces [Tro12] gives (1± ε)-spectral sparsifiers with at most O( n log n

ε2 ) edges for any input graph.
The bound on the sparsifier size was further improved to O( n

ε2 ) by [BSS12, LS17] using different
techniques.

However these recent sparsification algorithms require multiple solutions to linear systems
in graph Laplacians or semi-definite programs. In particular, the algorithm from [SS11] requires
about O( log n

ε2 ) graph Laplacian solves to compute the effective resistances of all the edges
to sufficient accuracy. Recent efforts have been made in trying to design better combinatorial
algorithms for graph sparsification, which is more desirable from a practical standpoint.

Koutis, Miller and Peng [Kou14] showed that the sampling biases {pe}e∈E from [SS11] can
be replaced by any set of values {ue}e∈E as long as ue ≥ pe for all e ∈ E. Then if ∑e∈E ue = U,
the same sampling scheme yields a (1+ ε)-sparsifier with about O(U log U

ε2 ) edges (in particular,
the original result by Spielman and Srivastava uses a theorem by Foster [Fos49] which states
∑e∈E pe = n− 1). This allows us to use combinatorial means to estimate effective resistances
while trading off on the size of the resulting sparsifier. In [Kou14] Koutis showed how to
compute estimates of effective resistances by finding a bundle of disjoint graph spanners, and

gave a combinatorial and parallel algorithm for constructing sparsifiers of size O( n log2 n log2 ρ
ε2 +

m
ρ ) for any parameter ρ. In Chapter 3, we present improved parallel algorithms for spanners

and tighten the argument from [Kou14] to obtain sparsifiers with at most O( n log2 n
ε2 ) edges using

only combinatorial means.

1.2.3 Low Stretch Trees

Recall that a good preconditioner tries to strike a balance between being a good spectral ap-
proximation of the original system and being under some notion easier to solve. The graph
sparsifiers we saw in the previous section, while being very good spectral approximations and
sparse in edge count, are not necessarily easier to solve than dense graphs. It turns out that,
just like many other graph problems, the easiest Laplacians to solve using direct methods are
those corresponding to trees, as they generate zero fill-in during elimination. The first graph
preconditioning algorithm by Vaidya [Vai91] uses a maximum weight spanning tree augmented
with some off-tree edges. Boman and Hendrickson [BH01] later pointed out a different class
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of trees known as low stretch spanning trees that are more suitable for preconditioning graph
Laplacians. Recent works on nearly linear time solvers [KMP14, KMP11, CKM+

14] all employ
a low stretch tree augmented with some off-tree edges as their preconditioners.

Let G be a weighted graph and T a spanning tree of G. For each edge e = {u, v} in G, the
stretch of e with respect to T is defined as

strT(e)
def
=

distT(u, v)
l(e)

= w(e) · distT(u, v),

where distT(·, ·) is the shortest path distance in T and l(e) is the length of e. Since T is a
subgraph of G, by Rayleigh’s monotonicity law effective resistances in G are upper bounded
by those in T. Since T is a tree, effective resistances in T are nothing more than the shortest
path distances and are trivial to compute. Recall that under our definition edge weights and
edge lengths are reciprocals of each other, thus the stretch of an edge is in fact an upper bound
on the sampling bias of the edge in the Spielman-Srivastava approach to spectral sparsification
(see Equation (1.2)). It is then natural to ask for a tree that minimizes the sum of stretches of
all the edges.

Alon et al. [AKPW95] introduced the notion of the low stretch spanning tree and gave an al-
gorithm for constructing spanner trees with an average stretch per edge of exp(O(

√
log n log log n)).

This was subsequently improved by Elkin et al. [EEST08] to O(log2 n log log n), then by Abra-
ham et al. [ABN08] to O(log n log log n(log log log n)3). More recently Abraham and Neiman [AN12]
showed how to construct spanning trees with O(log n log log n) average stretch, approaching
the optimal and conjectured3 bound of O(log n). Their algorithm runs in O(m log n log log n)
time and is used in the O(m log n log log n) time solver 4 by Koutis et al. [KMP11].

Generally speaking, trees with lower average stretch will lead to faster solvers for the graph
Laplacians under the framework pioneered by Spielman and Teng [ST14] and subsequently
improved by [KMP14, KMP11, CKM+

14]. In order to obtain the Õ(m
√

log n) time Laplacian
solver in [CKM+

14], we introduce two relaxations to the low stretch spanning tree objective.

First we relax the requirement for the tree to be a spanning tree, and only ask the tree to be
embeddable into the original graph. In other words, we require a mapping from edges in T to
paths in G such that under this map T is a subgraph of G. This is closely related to the problem
approximating arbitrary metrics with tree metrics. For this problem Bartal [Bar98] first gave
an algorithm with O(log n log log n) expected stretch and Fakcharoenphol et al. [FRT04] subse-
quently improved this bound to the optimal O(log n) expected stretch. We further introduce

3By Alon et al. [AKPW95].
4All the solver runtimes in this section omit a O(log(1/ε)) factor.
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the notion of `p-stretch: for p < 1, we let

strp
T(e)

def
= (strT(e))p.

Compared to p = 1, this relaxation allows us to discount the cost of highly stretched edges,
giving an average `p stretch of O(( 1

1−p )
2 logp n), but is still suitable for the iterative methods

used in the solver.

The other bottleneck to a faster solver is the runtime of the tree finding algorithms, as state-
of-the-art algorithms for low stretch spanning trees runs in time around O(m log n). Here we
relax the restriction of only using spanning trees, and consider Steiner trees (trees with extra
vertices) as long as they can be embedded into the original graph. To this end we combine
the bottom-up algorithm of Alon et al. [AKPW95] (a linear time algorithm with relatively poor
stretch guarantee) with the top down approach of Bartal [Bar98] (an expensive algorithm with
good stretch guarantee) to obtain a O(m log log n) time algorithm. Combining these two re-
laxations we obtain an improved tree embedding for Laplacian solvers, which is described in
detail in Chapter 4.

1.2.4 Low Diameter Graph Decomposition

We just saw the important role of effective resistances in spectral graph algorithms. One can
show that effective resistances in graphs in fact form a metric on the set of vertices, and most
of the algorithms presented in this thesis can be viewed as combinatorially approximating this
metric. The basic building block we are going to employ is the familiar shortest path metric on
graphs and low diameter decomposition. Originally introduced by Awerbuch [Awe85], the low
diameter decomposition aims to partition a graph into pieces such that distances within each
piece are small and few edges span different pieces. In Chapter 2 we present a randomized
parallel algorithm for computing these decompositions with optimal parameters. This will
serve as an important building block for rest of this thesis.

1.2.5 Hopsets

In addition to finding low stretch trees and spanners for spectral sparsification, our low di-
ameter graph decomposition algorithm can also be applied to approximating shortest paths in
parallel. When the edge lengths are non-negative, the shortest path problem has a O(poly log n)
depth parallel algorithm based on repeated squaring of the adjacency matrix. This algo-
rithm however incurs O(n3) work, significantly more than the sequential algorithm by Dijk-
stra [Dij59]. Unfortunately work efficient parallel algorithms for exact shortest paths remained
elusive, thus researchers have turned to approximations instead. Most of these approximation
results use a construct known as hopset, a term coined by Cohen [Coh00] but the concept itself
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appeared in several earlier works [UY91, KS97]. A hopset is an extra set of edges which, when
added to the graph, guarantees that any shortest path can be approximated by a path few
edges.

The bottleneck that prevents work efficient algorithms such as breadth first search to become
parallel is the fact that an exact shortest paths can contain up to O(n) edges. To find such a
path, breadth first search needs to at least traverse that path, resulting in O(n) depth. Thus if
we are willing to settle with approximation, this bottleneck can be circumvented as we can first
compute a hopset and then apply breadth first search to the augmented graph. In Chapter 5 we
will give constructions of hopsets that lead to parallel algorithms for approximating shortest
paths. Compared to previous results [UY91, KS97, Coh00], our algorithm is the first to achieve
sub-linear depth and O(m poly log n) work.
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Chapter 2

Exponential Start Time Clustering

2.1 Low Diameter Graph Decomposition

Low diameter decomposition is the problem of partitioning a graph into clusters with small di-
ameter, such that few edges have their endpoints in two different clusters. We notice that these
are two conflicting objectives: At one extreme we can achieve minimal diameter by putting
each vertex into its own cluster but as a result each edge spans two clusters; On the other hand
we can leave the entire graph as a single cluster. This can result in a diameter of up to O(n),
but no edges are cut.

Low diameter decomposition is a fundamental algorithmic tool in spectral graph theory.
It forms the basis of algorithms for low stretch spanning trees [AKPW95, EEST08] and low
stretch tree embeddings [Bar98, FRT04, CMP+

14], which play a crucial role in fast graph Lapla-
cian solvers [ST14, KMP14, KMP11, CKM+

14]. It also has applications in distributed comput-
ing [Awe85, EN16], graph spanners [PS89, MPVX15], spectral sparsifiers [KP12, Kou14], and
various other graph optimization problems [CKR05, FHRT03, MPVX15].

Given a subset of vertices S ⊆ V, its diameter can be defined in two ways. The strong
diameter is the maximum distance between two vertices in the induced subgraph on S. The
weak diameter, on the other hand, is the maximum distance between two vertices in S, where
the distance is measured in the original graph (i.e. the shortest path go can outside of S). In
this thesis, we will work with the stronger notion of cluster diameter, as it is crucial for us
to certify distances using a spanning tree within a cluster. In particular, we use the following
probabilistic definition of low diameter graph decomposition.

Definition 2.1.1. Given a possibly weighted graph G = (V, E, l) with vertex set V, edge set E and
edge lengths l : E → R+, a (β, d)-decomposition of G is distribution over partitions of the V(G) into
clusters {C1, C2, . . . , Ck} such that
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1. The strong diameter of each Ci is at most d with high probability.

2. For each edge e ∈ E, the endpoints of e are in different clusters with probability at most βl(e).

Awerbuch [Awe85] first introduced the above low diameter decomposition problem and
gave a sequential and deterministic algorithm for decompositions with O( log n

β ) diameter cut-
ting at most a β fraction of the edges. The algorithm is very simple to describe on unweighted
graphs: clusters are sequentially formed by choosing an arbitrary starting vertex and per-
forming a breadth first search until the number of outgoing edges are at most a β fraction of
the intern edges. Bartal [Bar96, Bar98] later gave a randomized construction for (β, O( logn

β ))-
decompositions as defined above, where the radius of the BFS generated clusters is chosen
uniformly at random. Both of these algorithms can be thought of as repeated ball growing:
starting at an arbitrary vertex, a cluster is formed by including all vertices within a certain
distance, chosen in a way to balance the diameter and the number of edges cut. The cluster is
then removed and this procedure repeats until the graph is exhausted.

In their development of parallel SDD linear system solver, Blelloch et al. [BGK+
14] gave a

parallel ball growing construction, producing a (β, O( log2 n
β ))-decomposition. A main difficulty

in parallelizing the ball growing algorithm is in controlling work spent examining the same
parts of the graph as different clusters (growing in parallel) collide and overlap. Since the
number of pieces in the final decomposition maybe large (e.g. on the line graph), any parallel
algorithm must be at some point constructing a large number of pieces simultaneously. On
the other hand, for highly connected graph such as the expander graphs, growing too many
clusters in the same time can result in large amount of overlaps between clusters and total work
quadratic in the size of the graph. Additionally, how to resolve these overlaps in such way that
few edges are cut is also a non-trivial task. The method given in [BGK+

14] is to geometrically
increase the number of parallel ball growing and introduce random backoffs when two or more
clusters collide. In this chapter we present a simple and streamlined parallel and distributed
algorithm for finding (β, O( log n

β ))-decompositions, which will become an important building
block for the next few chapters. This algorithm is based on exponential shifts of start times in
the parallel graph search and first appeared in [MPX13, MPVX15].

2.1.1 The Exponential Shift

In order to obtain parallel ball growing algorithm with comparable guarantees as the sequential
counterpart, we need satisfactory answers to the following two questions: how many and
which clusters should we be growing at any given time, and what to do when different clusters
collide. To answer the first question, we introduce a random shift in the start time of each
individual ball. When the boundaries of two clusters collide, we will simply have them stop
expanding at that point, thus introducing zero overlaps. This random shift in the start time
will come from the exponential distribution.
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The exponential distribution is a continuous probability distribution parameterized by a rate
parameter λ. We use X ∼ Exp(λ) to denote that X is exponentially distribution with parameter
λ. Its probability density function is given by

fX(x; λ) =

{
λ exp(−λx) if x ≥ 0,
0 otherwise.

and its cumulative distribution function is given by

FX(x; λ) =

{
1− exp(−λx) if x ≥ 0,
0 otherwise.

The exponential distribution has an important property known as the memoryless property,
and the correctness of our algorithm relies on this fact.

Fact 2.1.2. If X is an exponential random variable, then we have that

Pr [X > s + t | X > s] = Pr [X > t] , ∀s, t ≥ 0.

2.2 The Clustering Algorithm

Our clustering algorithm is given in Algorithm 1. Figure 2.1 shows the result clustering of a
1000× 1000 square grid graph with different choices of β. As we expected, smaller β leads to
larger diameter pieces and fewer edges on the boundaries.

Algorithm 1 EST-Clustering(G, β)

Input: Weighted graph G = (V, E, l) and parameter β.
Output: A (β, O( log n

β ))-decomposition of G with high probability
1: draw independent random variables δv ∼ Exp(β) for each v ∈ V
2: c(v)← arg minu dist(u, v)− δu for each v ∈ V, breaking ties lexicographically
3: Cv ← {u ∈ V | c(u) = v} for each v ∈ V
4: return {Cv | Cv 6= ∅}

Formally, each vertex is assigned to the cluster whose center is the closest according to a
exponentially shifted distance. One can also think of this algorithm as parallel ball growing
where vertices are given a random “head start” drawn from an exponential distribution. This
interpretation will be used when we discuss the implementation of this algorithm in Section 2.3.
For now, we concern ourselves with the correctness of this algorithm. For the rest of this section
define this shifted distance

distδ(u, v) def
= dist(u, v)− δu.

Notice that distδ(·, ·) is not symmetric.
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(a) β = 0.002 (b) β = 0.005 (c) β = 0.01

(d) β = 0.02 (e) β = 0.05 (f) β = 0.1

Figure 2.1: Clustering generated by our algorithm on a 1000× 1000 grid using different choices
of βs. Different shades of gray represent different clusters

Lemma 2.2.1. If EST-Clustering assigns v to the cluster Cu centered at u, then the next vertex v′ on
the shortest path from v to u is also assigned to Cu.

Proof. We give a proof by contradiction. Suppose v′ ∈ Cu′ for some u′ 6= u. Notice that
distδ(u, v′) = distδ(u, v) + 1 and distδ(u′, v) ≤ distδ(u′, v′) + 1. Since EST-Clustering assigned
v′ to u′ instead of u, it must be one of the following two cases:

1. We have distδ(u′, v′) < distδ(u, v′). Combined with the above observations we have

distδ(u′, v) ≤ distδ(u′, v′) + 1

< distδ(u, v′) + 1

= distδ(u, v).

This is a contradiction since v is strictly closer to u′ in terms of the shifted distance and
should have been assigned to Cu′ .
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2. We have distδ(u′v′) = distδ(u, v′). A similar argument gives that distδ(u′, v) ≤ distδ(u, v).
Since we broke the ties lexicographically, it must be case that u is also assigned to v′.

�

Notice that the second case in the proof above is actually a zero probability event. However
this is useful for when we discuss the implementation of this algorithm where numbers will be
rounded to fixed precision.

Lemma 2.2.2. The strong diameter of each cluster is O( log n
β ) with high probability.

Proof. Using Lemma 2.2.1, it suffices to bound the distance from any vertex to its center (i.e.
the radius of each cluster around its center). If the vertex v is assigned to the center u, we must
have

distδ(u, v) ≤ distδ(v, v)

dist(u, v)− δu ≤ dist(v, v)− δv

= −δv

≤ 0.

The last inequality follows from the fact that exponential random variables are non-negative,
and this gives

dist(u, v) ≤ δu.

Therefore maxv∈V δv is an upper bound on the radius of each piece. Using the cumulative
distribution function of the exponential distribution, for any constant k > 0 we have

Pr
[

δv > (k + 1)
log n

β

]
= exp

(
−β(k + 1)

log n
β

)
= n−(k+1).

Applying union bound over all the n vertices then gives us an overall failure probability of n−k.

�

We now analyze the probability of EST-Clustering shattering a fixed subgraph into multi-
ple clusters. Define B(c, r) = {v ∈ V | dist(c, v) ≤ r} to be the ball of radius r centered around
c.

Lemma 2.2.3. For any fixed point c, radius r > 0 and k ≥ 1, the probability that B(c, r) intersects k or
more clusters in the output of EST-Clustering is at most (1− exp(−2rβ))k−1.
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Proof. The case where k = 1 is trivial. Suppose u and v are two of the centers whose clusters
intersect with B(c, r), and without loss of generality suppose distδ(u, c) ≤ distδ(v, c). Let

u′ = arg min
w∈B(c,r)

dist(u, w)

and

v′ = arg min
w∈B(c,r)

dist(v, w).

Notice that u′ ∈ Cu and v′ ∈ Cv respectively. Since c is of distance at most r away from any
vertex in B(c, r),

distδ(u, v′) = dist(u, v′)− δu

≤ dist(u, c) + dist(c, v′)− δu

≤ distδ(u, c) + r.

Similarly

distδ(v, v′) = dist(v, v′)− δv

≥ dist(v, c)− dist(c, v′)− δv

≥ distδ(v, c)− r.

Since v′ ∈ Cv, we must have distδ(v, v′) ≤ distδ(u, v′), therefore

distδ(v, c)− r ≤ distδ(u, c) + r

distδ(v, c)− distδ(v, c) ≤ 2r.

The same argument can be applied to more than two intersecting clusters. When B(c, r) inter-
sects k or more clusters, the k smallest shifted distance from all the vertices to c must fall in a
range of at most 2r. We now give an upper bound on the probability of this happening.

For each vertex v ∈ V, let Xv = −distδ(v, c) = δv−dist(v, c) be the negative shifted distance.
Notice that each Xv is nothing more than an exponentially distributed random variable with
some constant offset. Let S vary over subsets of V of size k − 1, let u ∈ V \ S and α ∈ R+.
Denote by ES,u,α the event that Yu = α, Yv ≥ α for all v ∈ S and Yv < α otherwise. In other
words, the set S contains the k− 1 nearest vertices in terms of the shifted distance, with u being
kth nearest at distance α away. The law of total probability gives that

Pr [B(c, r) intersects k or more clusters]

= ∑
S⊂V
|S|=k−1

∑
u∈V\S

∫
α

Pr [Yv ≤ α + 2r for all v ∈ S | ES,u,α]Pr [ES,u,α]
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Thus it suffices to show that

Pr [Yv ≤ α + 2r for all v ∈ S | ES,u,α] ≤ (1− exp(−2βr))k−1 (2.1)

for any fixed S, u and α. For each v ∈ S,

Pr [Yv ≤ α + 2r | Yv ≥ α] .

= Pr [δv ≤ α + 2r + dist(v, c) | δv ≥ α + dist(v, c)] .

There are two cases to consider. If α + dist(v, c) ≤ 0, then since the exponential distribution
has non-negative support,

Pr [δv ≤ α + 2r + dist(v, c) | δv ≥ α + dist(v, c)] .

≤ Pr [δv ≤ 2r]

= 1− exp(−2βr).

If α + dist(v, c) > 0, then by the memoryless property of the exponential distribution, we have

Pr [δv ≤ α + 2r + dist(v, c) | δv ≥ α + dist(v, c)] .

= Pr [δv ≤ 2r]

= 1− exp(−2βr).

Since the Yv’s are independent, we have

Pr [Yv ≤ α + 2r for all v ∈ S | ES,u,α] = ∏
v∈S

Pr [Yv ≤ α + 2r | Yv ≥ α]

= (1− exp(−2βr))k−1.

�

This lemma is more general then the bound on edge-cutting probability that we aimed for
in Definition 2.1.1, but is needed in our parallel construction of spanners in Chapter 3. Upper
bound on the probability of cutting an edge can be obtained by applying this lemma with the
midpoint of the edge as the center c and letting k = 2. Here the distances dist(c, ·) is defined
in the natural way (i.e. as if the edge is subdivided into two new edges with half the original
length).

Corollary 2.2.4. Any edge e with length l(e) is cut in the clustering produced by EST-Clustering

with probability at most 1− exp(−β · l(e)) < β · l(e).

Combining Lemma 2.2.2 and Corollary 2.2.4, we obtain the following theorem on the cor-
rectness of our algorithm.
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Theorem 2.2.5. For any graph G and parameter β, EST-Clustering produces a (β, O( log n
β ))-decomposition

of G with high probability.

We can also use Corollary 2.2.4 to prove another theorem on the number of clusters pro-
duced on unweighted graphs.

Theorem 2.2.6. Given any connected unweighted graph G on n vertices, EST-Clustering produces
at most O((1− exp(−β))n) clusters in expectation.

Proof. Let T be an arbitrary spanning tree of G. We consider the clustering produced by
running EST-Clustering on G, but focus our attention on the edges in T. In expectation,
(1− exp(−β))(n − 1) edges from T are cut by Corollary 2.2.4, thus breaking T into at most
O((1 − exp(−β))n) connected components in expectation. Any such connected component
must also be connected in G, as T is a subgraph. Thus we get that the clustering contains
O((1− exp(−β))n) clusters in G.

�

2.3 Parallel Implementation on Unweighted Graphs

In this section we discuss how to implement the EST-Clustering algorithm in O( log n
β ) parallel

depth and O(m) work on unweighted graphs. The formulation of Algorithm 1, while mathe-
matically clean, is not readily amenable for implementation. We give an alternative formulation
in Algorithm 2 which should shed more light on its parallel and distributed nature.

Algorithm 2 EST-Clustering-Impl(G, β)

Input: Weighted graph G = (V, E, w) and parameter β.
Output: A (β, O( log n

β ))-decomposition of G with high probability
1: sample independent random shifts δv ∼ Exp(β) for each v ∈ V
2: compute δmax = maxv∈V δv

3: add a super source s to G and edges from s to each vertex v with length dδmaxe − δv

4: compute the shortest path tree T from s using parallel BFS, breaking ties lexicographically
5: return the subtrees rooted at the children of s

Our first observation is that the shift in start time at each vertex v can be simulated by
adding a super source s with an edge to v with length equal to the shift. We then compute the
shortest path tree rooted at s and return the subtrees of s as the clusters. We can further add
dδmaxe to the edges incident to s to make the lengths non-negative.

However it is still unclear how to compute such a tree in only O(m) work when the graph
is sparse, as it seems this would effectively sort the n shift values. The crucial fact here is that
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the shift values are independent and exponentially distributed. The following is a well known
fact about the gap between consecutive order statistics for exponential random variables.

Fact 2.3.1. Let X1, X2, . . . , Xn be n independent and identically distributed exponential random variable
with rate parameter λ and let X(1) < X(2) < · · · < X(n) be the order statistics. Let Y1 = X(1) and
Yi = X(i) − X(i−1) for i = 2, 3, . . . , n. Then Yi is a random variable of the exponential distribution with
rate parameter (n− i + 1)λ.

Proof. Let FY1 be the cumulative distribution function of the smallest order statistic Y1 = X(1).
By the independence of the Xis, we have

1− FY1(y) = Pr [Y1 ≥ y]

= Pr [X1 ≥ y, X2 ≥ y, . . . , Xn ≥ y] .

Since the Xis are i.i.d. exponential random variables with rate parameter λ, this probability is
(exp(−λy))n = exp(−nλy). Therefore

FY1(y) = 1− exp(−nλy)

and Y1 is an exponential random variable with rate parameter nλ. Then applying the memory-
less property, we see that Y2 = X(2) − X(1) has the same distribution as the first order statistic
of n− 1 fresh i.i.d. exponential random variables. Therefore our claim for Y2, Y3, . . . , Yn can be
proved by repeating this argument inductively.

�

We are now ready to complete our analysis of the exponential start time clustering algo-
rithm.

Theorem 2.3.2. Given an unweighted graph G with n vertices and m edges, and any parameter β > 0,
EST-Clustering-Impl can be implemented in O( log n log∗ n

β ) depth with high probability and O(m)

work.

Proof. We first use Fact 2.3.1 to generate the gaps between order statistics of n exponential
random variables with rate parameter β. Then applying parallel algorithms for computing
prefix sums ([Rei93], Chapter 1), we can generate the shift values in sorted order in O(log n)
depth and O(n) work. We can then generate a random permutation of the vertices in parallel
in O(log n) depth and O(n) work (see [MR85, Rei85]), and assign the sorted shift values to this
random permutation.

In order to implement the single source shortest path search from s using parallel BFS,
notice that only the edges leaving s have non-integral lengths. Therefore the fractional part
of the distance from s to a vertex v only depends on the shift value of the next vertex on the
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shortest path from s to v. Since the only time we need to examine this fractional part during
the search is to break ties when the integer distances are equal, we can replace the fractional
parts in the shift values by breaking ties according a random permutation. This is once again
a consequence of exponential distribution’s memoryless property (applied to the fractional
parts).

At this point we reduced the problem to a graph with unit length edges except those leaving
the source s, which have integral lengths. We handle this by maintaining two queues: one
regular BFS queue and one queue with the sorted shift values. In each step of the BFS, the
smaller distance out of the two queues are chosen, and an edge from s to v with length l is only
processed the if BFS frontier has expanded to distance l and v has not been visited yet.

We now bound the cost of running parallel BFS on our augmented graph. Lemma 2.2.2
shows that the BFS only need to search out O( log n

β ) levels with high probability. Each level of
the search can be parallelized in O(log∗ n) overhead in the depth with the CRCW PRAM model
while the total work is O(m) [GMV91, KS97]. We remark that this factor of O(log∗ n) depends
on the particular model of parallelism, for example it is O(1) in the OR CRCW PRAM model,
but can be bounded by O(log n) in most models.

Since the cost of this algorithm is dominated by the BFS step, and the overall depth is
O( log n log∗ n

β ) with high probability and the total work is O(m).

�

2.3.1 Remarks

Since the clusters are generated from a BFS computation, we obtain for free a spanning tree
with small diameter on each cluster. These trees are crucial in the applications to finding graph
spanners and low stretch trees in subsequent chapters, thus we make this observation formal
in the following.

Corollary 2.3.3. In addition to the low diameter clustering, EST-Clustering-Impl also produces a
spanning tree on each of the output cluster. The diameter of each such tree is also O( log n

β ) with high
probability.

Laxman et al. [SDB14] gave an efficient parallel implementation of the exponential start time
clustering and applied it to parallel algorithms for graph connectivity. They also showed that
the lexicographical tie breaking from EST-Clustering-Impl can be replaced by arbitrary tie
breaking with only a constant effect on the probabilistic guarantee of the algorithm, further
simplifying the implementation and improving the performance in practice.

The readers might have noticed that we have only presented an implementation of our
clustering algorithm in unweighted graphs. This is because with general edge lengths, the
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frontier of the shortest path search no longer advances one edge at a time, but rather by an
increment that is related to the shortest edge length. Therefore in order to upper bound the
depth of the search, we usually resort to techniques such as grouping edges by length and apply
the unweighted algorithm on each group, or rounding edge lengths. The particular ways we
achieve this in different applications will be discussed in detail in the subsequent chapters.

We also point out that the exponential start time clustering is also inherently a distributed
algorithm. It has an obvious implementation in the CONGEST model, and we refer the readers
to [EN16] for a recent application in the distributed setting.
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Chapter 3

Parallel Graph Spanners and
Combinatorial Sparsifiers

3.1 Introduction

In this section we use the exponential start time clustering algorithm from Chapter 2 to give
work efficient parallel algorithms for constructing graph spanners and sparsifiers.

Spanners are sparse structures that approximately preserve the shortest path metric of the
original graph. Formally, we define a (multiplicative) spanner to be a sparse subgraph that
approximates all-pair distances of the original graph up to some stretch factor. Given a graph
G = (V, E, l) with positive edge lengths, a k-spanner H = (V, E′, l) where E′ ⊆ E, is a subgraph
of G such that for any u, v ∈ V, distG(u, v) ≤ k · distH(u, v). Here distG(·, ·) and distH(·, ·) refer
to the shortest path distances in G and H respectively.

Given a target stretch factor, the goal is then to find spanners with fewest possible number
of edges. Peleg and Schäffer [PS89] introduced this graph theoretic concept and gave a linear
time sequential algorithm for (2k − 1)-spanners in unweighted graphs with 1

2 n1+1/k edges,
for any parameter k. This result was later extended by Althöfer et al. [ADD+

93] to weighted
graphs. However, their algorithm requires the solution of an incremental dynamic shortest path
problem, and is much more is more expensive than the nearly linear work algorithms we are
going to present. This trade-off between the stretch factor and the spanner size is essentially
optimal up to a conjecture on graph girth by Erdős [Erd64]. Namely, it is conjectured that there
exists graphs with Ω(n1+1/k) edges and girth greater than 2k, and consequently these graphs
only admits themselves as (2k− 1)-spanners.

Spanners have numerous applications in distributed computing [Awe85, PU89], approxi-
mating shortest path distances [ABCP98, Coh98, TZ05], and also graph sparsification [Kou14,
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unweighted graphs
Stretch Size Work Depth Notes

O(2log∗ n log n) O(n) O(m log n) O(log n log∗ n) [Pet10], distributed
O(k) O(n1+1/k) O(m) O(k log∗ n) [MPVX15], distributed

weighted graphs
Stretch Size Work Depth Notes
2k− 1 O(kn1+1/k) O(km) O(k log∗ n) [BS07]
O(k) O(n1+1/k log k) O(m) O(k log∗ n log U) [MPVX15]

Figure 3.1: Known results on parallel algorithms for spanners, where U = maxe w(e)
mine w(e) .

KX16], which is discussed in more detail in Section 3.3.

Figure 3.1 gives a comparison between previous results and our algorithm. For any pa-
rameter k, our construction produces O(k)-spanners of size O(n1+1/k) on unweighted grpahs.
This improves upon previous works by a factor of O(k) on the spanner size, while losing a
constant factor in the stretch. For weighted graphs, the improvement on the size of the spanner
becomes a factor of O(k/ log k) and the depth depends on the ratio between the longest and the
shortest edge lengths. As we will see in Section 3.3, when we apply our spanners to spectral
sparsification, the constant factor loss in the stretch is outweighted by the improvement in the
spanner size. The results listed for unweighted graphs both happen to be also distributed, with
the number of rounds equal to the parallel depth.

A spectral sparsifier of graph G is a sparse subgraph graph H such that

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x ∈ Rn

for some error parameter ε. For convenience, we will also write this guarantee as

(1− ε)G ≤ H ≤ (1 + ε)G.

It follows that a spectral sparsifier shares most of the spectral properties of the original graph
despite having fewer edges, allowing it to substitute the original graph in many applications
in order to save computation (see for example [SWT16]).

Spectral sparsification of graphs was introduced by Spielman and Teng as a component in
the first nearly-linear time SDD linear system solver [ST13, ST11, ST14], and keeps to play a
crucial role in the subsequent solvers [KMP14, KMP11, CKM+

14]. Spielman and Teng’s spar-
sification algorithm is combinatorial in nature, it relies on intricate graph partitioning followed
by uniform sampling in some of the partitions. Unfortunately, this produces a sparsifier of size
O(n logc n/ε2) for a fairly large constant c. Spielman and Srivastava [SS11] later introduced an
elegant construction of spectral sparsifiers with only O(n log n/ε2) edges based on sampling
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edges with effective resistances. However, in order to estimate these effective resistances, their
algorithm requires O(log n) linear system solves in the graph Laplacian.

Recent efforts have been made in trying to design combinatorial algorithms for graph spar-
sification [KP12]. In [Kou14] Koutis showed how to compute estimates of effective resistances
by repeatedly finding spanners with O(log n) stretch, and gave a nearly-linear work parallel
combinatorial algorithm for constructing sparsifiers of size O(s log2 n log2 ρ/ε2 + m/ρ), where
s is the size of the spanners used and ρ is a parameter.

In Section 3.3 we apply our spanner algorithm and tighten the “resistances in parallel”
argument from [Kou14] to obtain the a parallel and combinatorial algorithm for spectrally
sparsifying a graph down to O(n log2 n/ε2) edges.

3.2 Spanners

3.2.1 The Unweighted Case

Our spanner construction for unweighted graphs is given in Algorithm 3. It has the same struc-
ture as the original sequential algorithm by Peleg and Schaffer [PS89]: after the low diameter
decomposition step, an edge is added between each pair of adjacent clusters.

Algorithm 3 Unweighted-Spanner(G, k)

Input: Unweighted graph G = (V, E) and parameter k ≥ 1
1: H ← ESTCluster(G, log n/2k) (Recall ESTCluster returns a spanning tree on each cluster)
2: for each pair of adjacent cluster do
3: add an (arbitrary) edge between them to H
4: end for
5: return H

The Peleg and Schaffer algorithm [PS89] relied on a bound by Awerbuch [Awe85], which
bounds the number of clusters interacting with the neighborhood of a single vertex. The same
bound can be obtained with our exponential start time clustering algorithm using Lemma 2.2.3.

Lemma 3.2.1. Given an unweighted graph G = (V, E) and parameter β = log n
2k , ESTCluster pro-

duces a clustering of G such that for any vertex v ∈ V, the neighborhood of v, B(v, 1) = {u ∈ V |
d(u, v) ≤ 1}, intersects O(n1/k) clusters in expectation.

Proof. By Lemma 2.2.3, B(v, 1) intersects k or more clusters with probability at most (1 −
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exp(2β))k−1. Let L be the number of clusters intersecting B(v, 1), we then have

E [L] =
∞

∑
l=1

Pr[L ≥ l]

≤
∞

∑
l=1

(1− exp(−2β))l−1

=
1

exp(−2β)

=
1

exp(− log n/k)

= n1/k.

�

Lemma 3.2.2. Given a connected unweighted graph and for any k ≥ 1, Unweighted-Spanner

constructs a O(k)-spanner with high probability with expected size O(n1+1/k). Furthermore this runs
in O(k log∗ n) depth with high probability and does O(m) work.

Proof. We first upper bound the size of the output graph. The algorithm starts by constructing
an exponential start time clustering with parameter β = log n

2k . Let H be the spanning forest
obtained from the decomposition, notice that H has at most n− 1 edges. In the second phase
where edges between adjacent clusters are added to H, the contribution to the total size can
be bounded on a per vertex basis. Consider a boundary vertex v, (i.e. v is incident to an inter-
cluster edge), we add at most one edge from v to each of the clusters adjacent to v. Applying
Lemma 3.2.1 to the neighborhood of each v ∈ V, we see that in expectation at most O(n1+1/k)

edges are added this way.

It remains to bound the stretch of edges that are not included in the spanner. For an edge
e /∈ H internal to a cluster, its stretch is certified by the spanning tree within the cluster. In
particular the tree path between the endpoints of e is at most the diameter of the cluster, which
bounded by O(k) with high probability according to Lemma 2.2.2. For an edge e /∈ H whose
endpoints are in two different clusters, our spanner must contain another edge e′ between these
two clusters. As with high probability both of these clusters has diameter O(k), the stretch of e
is again bounded by O(k) with high probability.

The depth and work bounds follow from Theorem 2.3.2.

�
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3.2.2 The Weighted Case

We first observe that our unweighted spanner construction can still produce good spanners
on weighted graphs when the edge lengths are bounded within a constant range. Given
G = (V, E, l) where U = (maxe l(e))/(mine l(e)) is the ratio between the maximum and the
minimum edge lengths, we group the edges as

Ei = {e ∈ E | l(e) ∈ [2i−1, 2i)},

an run the unweighted algorithm on each Ei separately. Then taking the union of the results on
each Ei will give as a spanner for G, but leads to an overhead of O(log U) in the spanner size.

We can reduce this overhead using a similar contraction scheme from Chapter 2 that allowed
us to speed up Bartal’s algorithm. We first reduce the problem to instances where edge can
be grouped into buckets in which lengths differs significantly. We then build spanners on
each of these buckets in order, but contract away the low-diameter components with smaller
edge lengths. Lemma 3.2.2 then allows us to bound the expected rate at which vertices are
contracted, and in turn the size of the spanner. This contraction scheme is significantly simpler
the one in Chapter 2 ones because we only need to ensure that edge lengths in different buckets
differ by factors of poly k, where k is the stretch factor.

Definition 3.2.3. We say a weighted graph G = (V, E, l) is δ-separated if we can partition the edge set
as E = E1 ∪ · · · ∪ Et such that for any i < j, ei ∈ Ei and ej ∈ Ej, we have l(ej) ≥ δ · l(ei).

We first break up the input graph into O(log k) graphs where edge lengths are O(k)-
separated. Let Gi to be the graph with vertex set V and edge set⋃

j≥0

Ei+i·c lg k.

By construction each Gi is a kc-separated graph under Definition 3.2.3 and the union of O(log k)
such Gis form the whole graph. The constant c here will be chosen to achieve the desired suc-
cess probability from Theorem 2.2.5, we will hide c inside big-O notations from now on. Thus if
we can find a O(n1+1/k)-sized spanner for each of the Gi, we will obtain a O(n1+1/k log k)-sized
spanner for G. Pseudocode of this algorithm is given in Algorithm 4 and Algorithm 5.

Lemma 3.2.4. Given a kc-separated graph G = (V, E, l), Well-Separated-Spanner constructs with
high probability a O(k)-spanner for G with expected size O(n1+1/k), in O(k log∗ n log U) depth and
O(m) work.

Proof. For simplicity, we write l(e) ∈ [li, li+1) for any e ∈ Ei. In the ith iteration, the unweighted
algorithm is run on the quotient graph Γi = G[Ai]/Hi−1. By Lemma 3.2.2 this produces an
unweighted spanner for edges from Ei that are not contracted away in Γi. Since the edge
weights differ by at least O(k) between levels, using Lemma 2.2.2 and induction on the loop
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Algorithm 4 Well-Separated-Spanner(G)

Input: O(k)-separated graph G = (V, E, l) with E = E1 ∪ · · · ∪ Es as in Definition 3.2.3
1: H0 ← ∅ . the His will guide the quotient graph contraction
2: S← ∅
3: for i = 1 to s do
4: Γi ← G[Ai]/Hi−1 with unit edge length
5: Fi ← ESTCluster(Γi,

log n
2k ) . recall Fi is a spanning forest of Γi’s clusters

6: Hi ← Hi−1 ∪ Fi

7: S← S ∪ Fi

8: augment S by adding one edge between each pair of adjacent clusters in Fi

9: end for
10: return S

Algorithm 5 Weighted-Spanner(G)

Input: A weighted graph G
1: partition E in the Ei = {e ∈ E | l(e) ∈ [2i, 2i+1)}
2: for i = 1 to O(log k), in parallel do
3: let Gi = (V,∪j≥0Ei+j·c lg k, l)
4: Si ←Well-Separated-Spanner(Gi)

5: end for
6: return ∪iSi

index one can show that that vertices in the quotient graph Γi corresponds to pieces of diameter
at most li in the spanner constructed so far, with high probability. Therefore the stretch bound
for edges from Ei in Γi gets worse by at most a factor of 2 when translated in G.

It remains now to bound the size of the spanner, which amounts to bounding the total
number of vertices with degree at least one in all of Γis, as singleton vertices do not contribute
to the size bound from Lemma 3.2.2. Recall that each vertex in Γi corresponds to a cluster
computed on Γi−1, it suffices to upper bound the overall number of clusters produced over
the lifetime of the algorithm. By Theorem 2.2.6, the number of clusters produced on Γi−1 (or
equivalent the number of vertices in Γi) is at most 1− exp(−β) times the number of vertices
in Γi in expectation. Since a singleton vertex in Γi−1 can become connected by edges that were
not previously considered in the ith round, it is easier to consider the contribution of each
individual vertex and them sum over all the vertices. Initially there are n vertices in total, and
the contribution from each of them starts out to be 1 and decrease geometrically. Therefore the
total number of vertices in all of the Γis can be bounded by an argument similar to the proof of
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Lemma 3.2.1:

∞

∑
i=0

(1− exp(−β))in =

(
1

exp(−β)

)
n

=

(
1

exp(− log n/2k)

)
n

= n1+1/2k.

By Lemma 3.2.1 each vertex contributes at most O(n1/k) inter-cluster edges to the spanner, thus
as stated Well-Separated-Spanner produces a spanner of size O(n1+3/2k), where the exponent
1 + 3/2k can be reduced to 1 + 1/k by slightly changing the value of β if we back down on the
stretch bound by a factor of 3/2.

For the depth and work bound, we will invoke Theorem 2.3.2. Notice that each iteration of
the loop performs an exponential start time decomposition on disjoint sets of edges, therefore
the overall work is O(m). As there are O(log U) iterations, the overall depth is O(k log∗ n log U)

with high probability.

�

Theorem 3.2.5. Given a weighted graph G with n vertices, m edges and for any k ≥ 1, Weighted-
Spanner produces with high probability a O(k)-spanner for G of expected size O(n1+1/k log k), in
O(k log∗ n log U) depth and O(m) work.

Proof. Weighted-Spanner partitions the input graph into O(log k) edge disjoint subgraphs Gis
which are individually processed by Well-Separated-Spanner. By Lemma 3.2.4, this produce
a O(k)-spanner of size O(n1+1/k) on each of the Gi, and it is easy to see the union of them is
also a O(k)-spanner of the original graph, with an overall size of O(n1+1/k log k). Since Well-
Separated-Spanner processes each Gi in parallel, the overall depth and work also follow from
Lemma 3.2.4.

�

3.3 Application to Combinatorial Sparsifiers

In this section we describe applications of our spanner algorithm to the problem of parallel and
combinatorial graph sparsification. In [Kou14], Koutis gave a method for estimating effective
resistances using graph spanners. Then combined with the method of oversampling by effective
resistances [SS11, KMP14], this gives the following result on combinatorial graph sparsification.

Theorem 3.3.1 ([Kou14]). Let G be a weighted graph with n vertices and m edges, and let Spanner be
an algorithm that can construct a O(log n)-spanner of size S using D depth and W work in the CRCW
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PRAM model. Then for any parameters ε and ρ, there exists an algorithm Sparsify that produces an
output graph G̃ such that:

1. With high probability,

(1− ε)G � G̃ � (1 + ε)G.

2. The expected number of edges in G̃ is

O

(
S log2 n log2 ρ

ε2 +
m
ρ

)
.

3. Sparsify can be implemented in the CRCW PRAM model with depth

O

(
D log2 n log3 ρ

ε2

)

and work

O

(
W log2 n log2 ρ

ε2

)
.

Our spanner algorithm from the previous section can be directly applied and improves
the sparsifier size by a factor of O(log n) for unweighted graphs and O(log n/ log log n) for
weighted graphs (see Figure 3.1). We further improve on this by making an observation that
tightens the analysis of [Kou14] for graph that are already sparse. First, we need to recall the
following from [Kou14].

Definition 3.3.2. Given a graph G and integer t ≥ 1, a t-bundle k-spanner is a subgraph H =

H1 ∪ · · · ∪ Ht such that Hi is a k-spanner of G \ ∪i−1
j=1Hi.

Given a graph G, by Rayleigh’s law of monotonicity, the effective resistance of an edge e can
be bounded by its effective resistance in any subgraph H of G. Let H be a t-bundle k-spanner of
G, by definition H contains t edge-disjoint paths of stretch at most k between the endpoints of e.
Let H′ be the subgraph consisting only of these edge disjoint paths, we can then upper bound
the effective resistance between e’s endpoints in H′ (and therefore in H and G) by viewing them
as resistors in parallel. This is summarized in the following lemma.

Lemma 3.3.3. Let G be a graph and let H be a 2t-bundle k-spanner of G. Then for every edge e in G
that is not in H,

w(e)ERG(e) ≤
k
t

.
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We are now ready describe our improvement. At the core of Koutis [Kou14] is a spar-
sification routine that halves the size of the input graph. Given an error parameter ε, one

first constructs and removes a O( log2 n
ε2 )-bundle O(log n)-spanner from the input graph. Using

Lemma 3.3.3, Koutis obtains good upper bounds on the effective resistances of the non-spanner
edges, which allow these edges to be sampled into the sparsifier. On the other hand, the ef-
fective resistances of spanner edges have not been analyzed, and these edges are always kept
in the sparsifier. We observe that these spanner edges in fact admit good upper bounds on
their effective resistances, which gets better as the size of the spanner bundle increases. We
formalize this observation in Algorithm 6

Algorithm 6 Further-Sparsify(G, ε, Spanner)

Input: Graph G, parameter ε > 0, and a subroutine Spanner for constructing O(log n)-
spanners.

1: G1 ← G
2: i← 1
3: u1 ← 1
4: while Gi is non-empty do
5: Hi ← Spanner(Gi)

6: if |Hi| < n then
7: add arbitrary edges from Gi to Hi until |Hi| = n
8: end if
9: Gi+1 ← Gi \ Hi

10: ui+1 ← log n
i

11: i← i + 1
12: end while
13: G̃ ← H1

14: over-sample G to produce G̃, using ui as the sampling bias for edges in Hi

15: return G̃

Lemma 3.3.4. Given a graph G = (V, E, w) with n vertices and m edges, and an error parameter
ε, assuming we have an algorithm Spanner that produces O(log n)-spanners of at most S edges,
Further-Sparsify produces a (1± ε)-spectral sparsifier G̃ such that:

1. With high probability,

(1− ε)G � G̃ � (1 + ε)G.

2. The expected number of edges in G̃ is

O

(
S log2 n log m

n
ε2

)
.
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Furthermore, if Spanner has depth D and work W, Further-Sparsify runs in O(m
n D) depth and

O(m
n W) work.

Proof. As in the pseudocode, let Hi be the set of spanner edges returned by the spanner algo-
rithm in the ith iteration of the loop. By Lemma 3.3.3, the w(e)ER(e) for any e ∈ Hi is at most
ui =

k
i−1 for i ≥ 2, while the trivial bound w(e)ER(e) ≤ 1 is used for e ∈ H1. Since the loop

runs for at most m/n iterations and n ≤ |Hi| ≤ S, we have

∑
e∈E

w(e)ER(e) = S + S
m/n

∑
i=2

O(log n)
i− 1

= O(S log n log
m
n
).

Then using the oversampling lemma from [KMP14], we can obtain a sparsifier graph G̃ using
these effective resistance upper bounds with at most O((S log2 n log m

n )/ε2) edges. The bound
on work and depth follows from the fact that Further-Sparsify runs for at most m

n iterations.

�

The Further-Sparsify routine repeatedly constructs and remove sparse spanners until the
graph is exhausted. While this gives progressively better effective resistance upper bounds, it
can also be expensive when the graph is originally dense. Therefore we combine it with the
Sparsify routine from [Kou14] to obtain our final sparsification algorithm.

Algorithm 7 Full-Sparsify(G, ε, Spanner)

Input: Graph G, error parameter ε, and O(log n)-spanner algorithm Spanner

Output: A (1± ε)-sparsifier G̃ of G
1: choose the largest ε′ such that (ε′)2 + 2ε′ = ε

2: G′ ← Sparsify(G, ε′, ρ = n)
3: G̃ ← Further-Sparsify(G′, ε′)

4: return G̃

Theorem 3.3.5. Given a graph G, an error parameter 0 < ε < 1, assuming an algorithm Spanner

that produces O(log n)-spanners of size S, Full-Sparsify produces a graph G̃ that:

1. With high probability,

(1− ε)G ≤ G̃ ≤ (1 + ε)G.

2. The expected number of edges in G̃ is

O

(
S log2 n

(
log log n + log 1

ε

)
ε2

)
.
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Furthermore, if Spanner has depth D and work W, Full-Sparsify runs in O(D log5 /ε2) depth and
O(W log4 /ε2) work.

Proof. We start by analyzing the quality of the output graph G̃ as spectral sparsifier of G. First
Full-Sparsify invokes Sparsify from Theorem 3.3.1 to obtain an intermediate graph G1, with

(1− ε′)G � G′ � (1 + ε′)G.

We then invoke Further-Sparsify on G′ to obtain G̃. By Lemma 3.3.4, we have

(1− ε′)G′ � G̃ � (1 + ε′)G′.

Since we have chosen ε′ to satisfy (ε′)2 + 2ε′ = ε, we also get via simple algebra that

(1− ε)G � G̃ � (1 + ε)G.

Next we upper bound the size of our sparsifier. First notice that since 0 < ε′ < ε < 1, we
have 1

ε′ = O( 1
ε ), thus we can ignore the difference in error parameters in our bounds. Since we

set ρ = n, applying Theorem 3.3.1 the expected number of edges in G′ is

O

(
S log4 n

ε2

)
.

By Lemma 3.3.4, the expected number of edges in G̃ can be bounded by

O

(
S log2 n

(
log log n + log 1

ε

)
ε2

)
.

Since both the work and depth of Full-Sparsify is are dominated by the first step where
we invoke Sparsify, the claimed bounds follows from Theorem 3.3.1.

�
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Chapter 4

Low Stretch Tree Embeddings

4.1 Introduction

Over the last few years substantial progress has been made on a large class of graph theo-
retic optimization problems. We saw improvements in the asymptotic sequential running time
and parallelizations for approximate undirected maximum flow and minimum cut [Mad10,
CKM+

11, LRS13, KLOS14, She13], bipartite matching [Mad13], minimum cost maximum flow [DS08],
minimum energy flows [ST14, KMP11, KOSZ13, CFM+

14], and graph partitioning [She09,
OSV12]. One common aspect of all these new algorithms is that they all explicitly or implicitly
use low-stretch spanning trees.

The fastest known algorithm for generating these trees, due to Abraham and Neiman, runs
in O(m log n log log n) time [AN12]. Among the problems listed above, this running time is
currently only the bottleneck for the minimum energy flow problem and its dual, solving
symmetric diagonally dominant linear systems. However, there is optimism that all of the
above problems can be solved in o(m log n) time, in which case finding these trees becomes a
bottleneck as well.

The main question we will address in this chapter is the construction even better trees in
only Õ(m) time. This will remove the tree construction obstacle from o(m log n) time algorithms
for solving SDD systems, as well as other graph optimization problems. We introduce two
relaxation on the dependency of low stretch spanning trees that can simplify and speed up
their construction. Firstly, we allow additional vertices in the tree, leading to a Steiner tree.
This avoids the need for the complex graph decomposition scheme of [AN12]. Secondly, we
discount the cost of high-stretch edges in ways that more accurately reflect how these trees are
used. This allows the algorithm to be more “forgetful,” and is crucial to our speedup.

Throughout this chapter we let G = (V, E, l) be a graph with vertex set V, edge set E and
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edge length function l : E → R+. We use T = (VT, ET, lT) to denote the tree that we are trying
to find. In previous works on low stretch spanning trees, T was required to be a subgraph of
G in the weighted sense. In other words, VT = V, ET ⊆ E, and lT(e) = l(e) for all e ∈ ET. We
relax this condition by only requiring edge lengths in T to be not too short with respect to G
through the notion of embeddability, which we formalize in Section 4.2.

For a tree T = (VT, ET, lT), the stretch of an edge e = uv with respect to T is

strT(e)
def
=

lT(u, v)
l(e)

,

where lT(u, v) is the length of the unique path between u and v in T. Previous tree embedding
algorithms aim to pick a T such that the total stretch of all edges e in G is small [AKPW95,
AN12]. A popular alternate goal is to show that the expected stretch of any edge is small, and
these two definitions are closely related [AKPW95, CCG+

98] . Our other crucial definition is
the discounting of high stretches by adopting the notion of `p-stretch:

strp
T(e)

def
= (strT(e))

p .

These two definitional changes greatly simplify the construction of low stretch embed-
dings. It also allows the combination of existing algorithms in a robust manner. Our algo-
rithm is based on the bottom-up clustering algorithm used to generate AKPW low-stretch
spanning trees [AKPW95], combined with the top-down decompositions common in recent
algorithms [Bar96, EEST08, ABN08, AN12]. Its guarantees can be stated as follows:

Theorem 4.1.1. Let G = (V, E, d) be a weighted graph with n vertices and m edges. For any parameter
p strictly between 0 and 1, we can construct a distribution over trees embeddable in G such that for any
edge e its expected `p-stretch in a tree picked from this distribution is O(( 1

1−p )
2 logp n). Furthermore, a

tree from this distribution can be picked in expected O( 1
1−p m log log n) time in the RAM model.

We will formally define embeddability, as well as other notations, in Section 4.2. An
overview of our algorithm for generating low `p-stretch embeddable trees is in Section 4.3. We
expand on it using existing low-stretch embedding algorithms in mostly black-box manners in
Section 4.4. Then in Section 4.5 we show a two-stage algorithm that combines bottom-up and
top-down routines that gives our main result.

Although our algorithm runs in O(m log log n) time, the running time is in the RAM model,
and our algorithm calls a sorting subroutine. As sorting is used to approximately bucket the
edge weights, this dependency is rather mild. If all edge lengths are between 1 and ∆, this pro-
cess can be done in O(m log(log ∆)) time in the pointer machine model, which is O(m log log m)

when ∆ ≤ mpoly(log m). We suspect that there are pointer machine algorithms without even
this mild dependence on ∆, and perhaps even algorithms that improve on the runtime of
O(m log log n). Less speculatively, we also believe that our two-stage approach of combining
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bottom-up and top-down schemes can be applied with the decomposition scheme of [AN12]
to generate actual spanning trees (as opposed to merely embeddable Steiner trees) with low
`p-stretch. However, we do not have a rigorous analysis of this approach, which would pre-
sumably require a careful interplay with the radius-bounding arguments in that paper.

4.1.1 Related Works

Alon et al. [AKPW95] first proposed the notion of low stretch embeddings and gave a routine
for constructing such trees. They showed that for any graph, there is a distribution over span-
ning trees such that the expected stretch of an edge is exp(O(

√
log n log log n)). Subsequently,

results with improved expected stretch were obtained by returning an arbitrary tree metric
instead of a spanning tree. The only requirement on requirement on these tree metrics is that
they don’t shorten distances from the original graph, and they may also include extra vertices.
However, in contrast to the objects constructed in this paper, they do not necessarily fulfill
the embeddability property. Bartal gave trees with expected stretch of O(log2 n) [Bar96], and
O(log n log log n) [Bar98]. Optimal trees with O(log n) stretches are given by Fakcharoenphol
et al. [FRT04], and are known as the FRT trees. This guarantee can be written formally as

E[strT(e)] ≤ O(log n).

Recent applications to SDD linear system solvers has led to renewed interest in finding
spanning trees with improved stretch over AKPW trees. The first low stretch spanning tree
with poly(log n) stretch was given by Elkin et al. [EEST08]. Their algorithm returns a tree such
that the expected stretch of any edge is O(log2 n log log n), which has subsequently been im-
proved to O(log n log log n(log log log n)3) by Abraham et al. [ABN08] and to O(log n log log n)
by Abraham and Neiman [AN12].

Syntactically our guarantee is almost identical to the expected stretch bound above when p
is a constant strictly less than 1:

E[strp
T(e)] ≤ O(logp n).

The power mean inequality implies that our embedding is weaker than those with `1-stretch
bounds. However, at present, O(log n) guarantees for `1-stretch are not known–the closest being
the result by Abraham and Neiman [AN12], which is off by a factor of log log n.

Structurally, the AKPW low-stretch spanning trees are constructed in a bottom-up manner
based on repeated clusterings [AKPW95]. Subsequent methods are based on top down decom-
positions starting with the entire graph [Bar96]. Although clusterings are used implicitly in
these algorithms, our result is the first that combines these bottom-up and top-down schemes.
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4.1.2 Applications

The `p-stretch embeddable trees constructed in this paper can be used in all existing frame-
works that reduce the size of graphs using low-stretch spanning trees. In Section 4.6, we show
that the larger graph with augmented with our low stretch Steiner tree can lead to linear op-
erators close to the graph Laplacian of the original graph. It allows us to use these trees in
algorithms for solving linear systems in graph Laplacians, and in turn SDD linear systems.
This analysis also generalizes to other convex norms, which means that our trees can be used
in approximate flow [LS13, She13] and minimum cut [Mad10] algorithms.

Combining our algorithm with the recursive preconditioning framework by Koutis et al. [KMP11]
leads to an algorithm that runs solves such a system to constant accuracy in O(m log n) time.
These tree embeddings are also crucial in the recent faster solver by Cohen et al. [CKM+

14],
which runs in about m log1/2 n time. Parallelizations of it can be used can also lead to work-
efficient parallel algorithms for solving SDD linear systems with depth of about m1/3 [BGK+

14],
and in turn for spectral sparsification [SS11, KLP15]. For these parallel applications, ignoring
a suitable fraction of the edges leads to a simpler algorithm with lower depth. This variant of
the algorithm is discussed in Section 4.5.3. On the other hand, these applications can be further
improved by incorporating the recent polylog depth, nearly-linear work parallel solver by Peng
and Spielman [PS14].

4.2 Embeddability

Before we describe our algorithm, we need to formally define the embeddability property that
our trees satisfy. The definition we use is the same as the congestion/dilation definition widely
used in routing [Lei92, LMR94]. It also appeared explicitly in earlier works on combinatorial
preconditioning [Vai91, Gre96] and is implicit in the more recent algorithms.

Informally, an embedding of H into G generalizes the notion of H being a subgraph of G
in the weighted sense. The vertex set of H is no longer required to be a subset of the vertex
set of G, as long as it can be mapped into the latter (i.e. a vertex embedding). Then each edge
e ∈ H is embedded into G as a path connecting the images of eH’s endpoints under the vertex
embedding.

Definition 4.2.1. Given graphs H = (VH, EH, lH) and a graph G = (VG, EG, lG), a path embedding of
H into G is characterized by the following three functions:

1. A function π : VH → VG that maps vertices of H to those in G.

2. A function P : EH → P(EG), where P(S) denotes the power set of a set S. This function maps
each edge eH ∈ EH to a path of G. If u and v are the endpoints of eH, then P(eH) is a path in G
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that goes from π(u) to π(v).

3. A function W : EH × EG → R+, where W(eH, eG) > 0 if and only if eG ∈ P(eH), in which case
W(eH, eG) represents the weight or the capacity of the edge eG used to support the path embedding
P(eH).

Since an edge in G can be used in the path embedding of multiple edges in H, we can think
of it as being allocated among the different paths. Intuitively, each allocation is less than the
original edge, thus is harder to traverse in the graph connectivity sense, therefore its length
should become longer. As a result, it is convenient to attribute an edge e both a length l(e) and
weight w(e), which is the reciprocal of its length:

w(e) def
=

1
l(e)

.

We can think a path embedding of H into G as a way to support the connectivity of H
using vertices and edges in G. If two vertices in H were connected by an edge eH, then the
length of the path P(eH) should not be too long compared to the original edge length lH(eH).
On the other hand, this is limited by the connectivity of G itself, since an edge eG in G has
its predetermined weight or capacity wG(eG), to be split between all the path embeddings that
uses eG. To formalize the notion of H can be well supported by G, we use congestion-dilation
definition of embeddability:

Definition 4.2.2. A graph H is path embeddable, or simply embeddable, into a graph G, if there
exists a path embedding (π, P, W) of H into G such that:

• For all edges eG ∈ EG,

∑
eH∈EH

W(eH, eG) ≤ wG(eG).

In other words, the congestion on eG is at most one.

• For all edges eH ∈ EH,

∑
eG∈P(eH)

1
W(eH, eG)

≤ lH(e) =
1

wH(e)
.

In other words, the dilation of eH is at most one.

The first condition states that we do note over-allocate the weight or capacity of any edge in
G. The second condition states that each edge from H doesn’t become longer when embedded
as a path in G (recall that length of an edge is the inverse of its weight). Note that since G has
no self-loops, the definition precludes mapping both endpoints of an edge in H to the same
point in G. Also if H is a subgraph of G and wH(e) ≤ wG(e) for all e ∈ EH ⊆ EG, setting π to
be the identity function, P(e) = {e}, and W(e, e) = wH(e) is one way to certify embeddability.
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4.3 Overview of the Algorithm

We now give a high level overview of our main results. Our algorithm follows the decom-
position scheme taken by Bartal for generating low stretch embeddings [Bar96]. This scheme
partitions the graph repeatedly to form a laminar decomposition, and then constructs a tree
from the laminar decomposition. However, our algorithm also makes use of the spanning
forests that were produced as a side product of the decomposition. Thus we start with the
following alternate definition of Bartal decompositions where these trees are made explicit.

Definition 4.3.1. Let G = (V, E, l) be a connected multigraph. We say that a sequence of forests B,
where

B = ((B0, lB0), (B1, lB1), . . . , (Bt, lBt)),

is a Bartal decomposition of G if all of the following conditions are satisfied:

1. Each Bi ⊆ E is a forest graph equipped with the length function lBi . Furthermore B0 is a spanning
tree of G and Bt is the empty graph.

2. For any i ≤ t, Bi is a subgraph of G in the weighted sense.

3. For any pair of vertices u, v and any i < t, if u and v are in the same connected component of
Bi+1, then they are in the same connected component of Bi.

If the length functions lBi s are the same as the length function of G, we will often omit them
and simply write B = (B0, . . . , Bt). Condition 2 implies that each of the Bis is embeddable into
G. A strengthening of this condition would require the union of all the Bis to be embeddable
into G. We will call such decompositions embeddable Bartal decompositions.

Bartal decompositions correspond to laminar decompositions of the graphs: if any two
vertices u and v are separated by the decomposition in level i, then they are also separated in
all levels j > i. Given a laminar decomposition, Bartal’s original algorithm [Bar96] then turns
each connected components in the decomposition into a vertex, and connect a vertex u in level
i with a vertex v in level i + 1 with an edge of length di if the corresponding component of v
is contained in the component of u. This produces a Steiner tree whose leaves are the original
vertices.

Given a sequence of non-negative real numbers d = (d0, . . . , dt), we say that the sequence
is geometrically decreasing if there exists some constant 0 < c < 1 such that di+1 ≤ cdi. Below
we formalize the condition when such sequences can be used as diameter bounds for a Bartal
decomposition.

Definition 4.3.2. A geometrically decreasing sequence d = (d0, . . . , dt) bounds the diameter of a Bartal
decomposition B if for all 0 ≤ i ≤ t,
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1. The diameter of any connected component of Bi is at most di (with respect to the length function
lBi ).

2. Any edge e ∈ Bi has length lBi(e) ≤
di

log n .

If u and v are in the same partition in some level i, but are separated in level i + 1, we say
that u and v are first cut at level i. Given such a geometrically decreasing diameter bounds, the
bound di for the level where an edge is first cut will dominate its final stretch under Bartal’s tree
construction. This motivates us to define the `p-stretch of an edge w.r.t. a Bartal decomposition
as follows:

Definition 4.3.3. Let B be a Bartal decomposition with diameter bounds d, and let p > 0 be a parameter.
Then the `p-stretch with respect to B and d of an edge e with length l(e) that is first cut at level i is
given by

strp
B,d(e)

def
=

(
di

l(e)

)p

.

In Section 4.4, we will show that it suffices to generate a (not necessarily embeddable) Bartal
decomposition for which edges are expected to have small `p-stretch, then apply a transforma-
tion to obtain an embeddable low stretch tree. We will give more details on this transformation
later in this section as well.

The decomposition itself will be generated by repeatedly applying a variant of the proba-
bilistic low-diameter decomposition from [Bar96], which we discussed in detail in Chapter 2.
We rephrase the result in the following lemma.

Lemma 4.3.4 (Probabilistic Low Diameter Decomposition). There is an algorithm Partition that
given a graph G = (V, E, l) with n vertices and m edges, and a diameter parameter d, returns a partition
of V into V1 ∪V2 ∪ · · · ∪Vk such that:

1. The diameter of the subgraph induced on each Vi is at most d with high probability, certified by a
shortest path tree on Vi with diameter d.

2. For any edge e = {u, v} with length l(e), the probability that u and v belong to different pieces is
at most O( l(e) log n

d ).

Furthermore, Partition can be implemented by computing a single source shortest path tree on the
same graph, from a super-source with edges to all other of length between 0 and d.

At a high level, our algorithm first fixes a geometrically decreasing sequence d, then recur-
sively decomposes the graph using Partition from Lemma 4.3.4 using d as diameter bounds.
With regular (`1) stretch, this scheme can be shown to give expected stretch of about O(log2 n)
per edge [Bar96], and most of the follow-up works focused on reducing this stretch factor. With
`p-stretch on the other hand, such a trade-off is already sufficient for the optimum bounds when
p is a constant bounded away from 1.

43



Lemma 4.3.5. Let B be a distribution over Bartal decompositions. If d is a geometrically decreasing
sequence that bounds the diameter of any B ∼ B, and the probability of an edge with length l(e) being
cut on level i of some B ∼ B is

O
((

l(e) log n
di

)q)
for some 0 < q ≤ 1. Then for any p such that 0 < p < q, we have

E
[
strp

B,d(e)
]
≤ O

(
1

q− p
logp n

)
.

The proof of this lemma relies on the following fact about geometric series, which plays a
crucial role in all of our analyses.

Fact 4.3.6. There is an absolute constant cgeo such that when given any c ∈ [e, e2] and ε > 0, we have

∞

∑
i=0

c−iε ≤
cgeo

ε
.

Proof. Since 0 < c−1 < 1, the sum converges, and equals to

1
1− c−ε

=
1

1− exp(−ε ln c)
.

Therefore it remains to lower bound the denominator. If ε ≥ 1/4, then the denominator
can be bounded by a constant. Otherwise, we have ε ln c ≤ 1/2, and using the fact that
exp(−t) ≤ 1− t/2 when t ≤ 1/2 we obtain

1− exp(−ε ln c) ≥ ε ln c.

Substituting in the bound on c and this lower bound into the denominator then gives the result.

�

Proof of Lemma 4.3.5. If an edge e is cut at a level with di ≤ l(e) log n, its stretch is at most log n,
giving an `p-stretch of at most logp n. Thus it suffices only to consider the event Ei where e is
first cut at levels where di ≥ l(e) log n. Substituting the stretch bounds of an edge cut on level
i and the probability of it being cut into the definition of `p-stretch gives:

E
[
strp

B,d(e) | Ei

]
≤ ∑
{i|di≥l(e) log n}

(
di

l(e)

)p

O
((

l(e) log n
di

)q)

= O

logp n ∑
{i|di≥l(e) log n}

(
l(e) log n

di

)q−p
 .
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Since di ≥ l(e) log n and the dis are geometrically increasing, this can be bounded by

E
[
strp

B,d(e) | Ei

]
≤ O

(
logp n ∑

i=0
c−i(q−p)

)

Using Fact 4.3.6 and the law of total probability we obtain

E
[
strp

B,d(e)
]
≤ O

(
1

q− p
logp n

)
.

�

This is our approach for showing that a Bartal decomposition has small `p-stretch, and it
remains to convert them into embeddable trees. This conversion is done in two steps: we
first show how to obtain a decomposition such that all of the Bis are embeddable into G, and
then we give an algorithm for converting such a decomposition into an embeddable Steiner
tree. To accomplish the former, we ensure that each Bi is embeddable by choosing them to be
subgraphs. Then we present pre-processing and post-processing procedures that converts such
a guarantee into embeddability of all the Bis simultaneously.

In order to obtain a tree from the decomposition, we treat each component in the laminar
decomposition as a Steiner vertex, and join them using parts of the Bis. This step is similar to
Bartal’s construction in that it identifies centers for each of the Bis, and connects these centers
between one level and the next. However, the need for our final tree to be embeddable means
that we cannot use the star-topology from [Bar96]. Instead, we must use part of the Bis between
the centers. As each Bi is a forest with up to n edges, a tree obtained as such may have a much
larger number of Steiner vertices. As a result, the final step involves reducing the size of this
tree by pruning and contracting the tree paths. This process is illustrated in Figure 4.1.

In Section 4.4, we give the details on these steps that converts Bartal decompositions to
embeddable trees. We will show that Bartal’s algorithm for generating these decompositions
meets the cutting probability requirements of Lemma 4.3.5. This then gives the following
intermediate result:

Lemma 4.3.7. Given a graph G with weights are between [1, ∆], for the diameter sequence d =

(d0, d1, . . . , dt) where di = 2−(i+1)n∆ and dt < 1, there is a distribution over Bartal decompositions
with diameters bounded by d such that for any edge e and any parameter 0 < p < 1,

E
[
strp

B,d(e)
]
≤ O

(
1

1− p
logp n

)
.

Furthermore, a random decomposition from this distribution can be sampled using Decompose-Simple

(Algorithm 8) with high probability in O(m log(n∆) log n) time in the RAM model.
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Figure 4.1: Bartal decomposition and the tree produced for a particular graph

This lemma combined with the embeddability transformations gives a simple algorithm for
constructing low `p-stretch embeddable trees with expected stretch matching the bound stated
in Theorem 4.1.1. However, the running time of O(m log(n∆) log n) is more than the current
best for finding low-stretch spanning trees [AN12], as well as the O(m log2 n) running time for
finding Bartal trees.

Our starting point towards a faster algorithm is the difference between our simplified rou-
tine and Bartal’s algorithm. Bartal’s algorithm, as well as subsequent algorithms [EEST08]
ensure that an edge participates in only O(log n) decompositions. At each step, they work on a
graph obtained by contracting all edges whose lengths are less than di/ poly(n). This coupled
with the upper bound of edge lengths from Definition 4.3.2 and the geometric decrease in di-
ameter bounds guarantees that each edge is involved in O(log(poly(n))) = O(log n) levels of
the decomposition.

As a path in the tree has at most n edges, the additive increase in stretch caused by these
shrunken edges is negligible. Furthermore, the fact that our diameter decreases means that
once we uncontract an edge, it remains uncontracted in all future steps. Therefore, these
algorithms can start from the initial contraction for d0, and maintain all contractions in work
proportional to their total sizes.
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When viewed by itself, this contraction scheme is almost identical to Kruskal’s algorithm for
building minimum spanning trees. This suggests that the contraction sequence can be viewed
as another tree underlying the top-down decomposition algorithm. This leads to the question of
whether other types of trees can be used in place of the minimum spanning tree. In Section 4.5,
we show that if the AKPW low-stretch spanning tree can be used instead, and each edge is
expected to participate in O(log log n) levels of the top-down decomposition. Combining this
with the O(m log log n) time algorithm in the RAM model for finding the AKPW low-stretch
spanning tree and a faster decomposition routine then leads to our faster algorithm.

Using these spanning trees to contract away parts of the graph leads to additional difficulties
in the post-processing steps where we return embeddable Steiner trees. A single vertex in the
contracted graph may correspond to a large cluster in the original graph. As a result, edges
incident to it in the decomposition may need to be connected by long paths. Furthermore, the
total size of these paths may be large, which means that they need to be treated implicitly. In
Section 4.5.5, we leverage the tree structure of the contraction to implicitly compute the reduced
tree. Combining it with the faster algorithm for generating Bartal decompositions leads to our
final result as stated in Theorem 4.1.1.

4.4 Embeddable Trees from Bartal Decompositions

In this section, we show that embeddable trees can be obtained from Bartal decompositions
using the process illustrated in Figure 4.1. We will achieve this in three steps: first present-
ing Bartal’s algorithm using our language in Section 4.4.1, then showing that a decomposition
routine that makes each Bi embeddable leads to a routine that generates embeddable decom-
positions in Section 4.4.2, and finally giving an algorithm for constructing a tree from the
decomposition in Section 4.4.3.

4.4.1 Bartal’s Algorithm

Bartal’s algorithm in its simplest form can be viewed as repeatedly decomposing the graph so
the pieces have the diameter guarantees specified by d. At each step, it performs a low-diameter
probabilistic decomposition from Lemma 4.3.4.

This routine was first introduced by Bartal to construct these decompositions. It and the
low diameter decompositions that it’s based on constructed each Vi in an iterative fashion.
Miller et al. [MPX13] showed that a similar procedure can be viewed globally, leading to the
implementation-independent view described above. A single invocation of Dijkstra’s algorithm
then allows one to obtain a running time of O((m + n) log n). This can be further sped up to
O(m + n log n) using Fibonacci heaps due to Fredman and Tarjan [FT87], and to O(m) in the
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RAM model using a result by Thorup [Tho00]. In our setting where approximate answers
suffice, a running time of O(m + n log log ∆) was also obtained by Koutis et al. [KMP11]. As
our faster algorithm only relies on the shortest paths algorithm in a more restricted setting, we
can use the most basic O(m log n) bound for simplicity.

We can then obtain Bartal decompositions by invoking this routine recursively. Pseudocode
of the algorithm is given in Algorithm 8. The output of this algorithm for a suitable diameter
sequence gives us the decomposition stated in Lemma 4.3.7.

Algorithm 8 Decompose-Simple(G)

Input: Weighted graph G = (V, E, l), 1 ≤ l(e) ≤ ∆ for all e ∈ E
1: B0 ← shortest path tree from an arbitrary vertex
2: generate a sequence d = (d0, . . . , dt) such that di = 2−(i+1)n∆ and dt < 1.
3: for i = 1, . . . , t do
4: Bi ← ∅
5: remove all edges e with l(e) ≥ di

log n from G
6: for each subgraph H of G induced by a connected component of Bi−1 do
7: G1, . . . , Gk ← Partition(H, di)

8: add the shortest path tree on each Gj to Bi

9: end for
10: end for
11: B← ((B0, l), (B1, l), . . . , (Bt, l)), i.e. the lengths in each Bi are the same as in G
12: return (B, d)

Proof of Lemma 4.3.7. Let B be the output of Decompose-Simple(G, d). Each tree in Bi is a
shortest path tree on a cluster of vertices returned by the Partition routine. Since these clusters
are disjoint, each Bi is a subgraph of G in the weighted sense. As the algorithm only refines
the partitions, once two vertices are separated, they will remain separated in any further levels.
Also B0 is a spanning tree by construction, and Bt cannot contain any edge since any we assume
edge lengths are at least 1 and dt < 1. Thus B is a Bartal decomposition of G.

We now show that the sequence d gives valid diameter bounds for any decomposition
produced with high probability. The diameter bounds on Bi for i > 0 follow from Lemma 4.3.4.
Since B0 is a shortest path tree on G, its diameter is also at most d0 = 2n∆. By construction, for
any i > 0 and e ∈ Bi, we have l(e) ≤ di

log n as edges violating this constraint are discarded before
each call to Partition. This constraint is also satisfied for i = 0 since d0 = 2n∆ and l(e) ≤ ∆.

The cost of each iteration of the loop is dominated by the shortest path computation that
implements Partition, since t ≤ O(log(n∆)) the running time of is algorithm can be bounded
by O(m log n log(n∆)).

It remains to bound the expected `p-stretch of an edge e with respect to the decomposition.
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When l(e) ≥ di
c log n , a suitable choice of constants allows us to bound the probability of e being

cut by 1. Otherwise, e will not be removed unless it is already cut. In case that it is present in
the graph passed onto Partition, the probability then follows from Lemma 4.3.4. Hence the
cutting probability of edges satisfies Lemma 4.3.5, which gives us the bound on stretch.

�

4.4.2 Embeddability by Switching Moments

We now describe how to construct embeddable Bartal decomposition by using the routine from
the previous section. This is done in three steps: first we pre-process the input graph G and
scale the edge lengths of G to form G′, then we run the decomposition routine on G′ using
a different parameter q, and finally we apply a post-processing step to convert the output
into an embeddable Bartal decomposition. Pseudocode of this conversation procedure is given
in Algorithm 9. Both the pre-processing and post-processing steps are deterministic, linear
mappings. As a result, we can focus on bounding the expected stretch of an edge in the
decomposition given by Decompose.

Algorithm 9 Embeddable-Decompose(G, p, q)

Input: Weighted graph G = (V, E, l), 0 < p < q < 1, and a decomposition routine
Decomposeq.

1: G′ ← (V, E, l′) where l′(e) = l(e)
q
p

2: B′, d′ ← Decomposeq(G′)
3: create B and d from B′ and d′ by scaling the edge lengths and diameter bounds in each

level i by

cgeo

q− p

(
d′i

log n

) q−p
p

where cgeo is the constant from Fact 4.3.6.
4: return B, d

We first verify that d is a geometrically decreasing sequence bounding the diameters of B.

Lemma 4.4.1. If B′ is a Bartal decomposition of G′ whose diameters are bounded by d′, then d is
geometrically decreasing sequence that bound the diameter of B.
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Proof. From the post-processing step we have

di

di+1
=

cgeo
q−p

(
d′i

log n

) q−p
p d′i

cgeo
q−p

(
d′i+1
log n

) q−p
p

d′i+1

=

(
d′i

d′i+1

) q
p

.

Since d′ is a geometrically decreasing sequence and q
p > 1, d is also a geometrically decreasing

sequence. As the lengths in each B′i and d′i are scaled by the same factor, di remains an upper
bound for the diameter of Bi for all i. For any edge e ∈ Bi, since d′i ≥ l′(e) log n, we have

di =
cgeo

q− p

(
d′i

log n

) q−p
p

d′i

≥
cgeo

q− p

(
d′i

log n

) q−p
p

l′(e) log n

= lBi(e) log n.

Therefore d upper bounds the diameters of B as well.

�

We now check that the union of each level in B is a subgraph of G in the weighted sense,
which makes it an embeddable Bartal decomposition.

Lemma 4.4.2. For any edge e we have

∑
i

wBi(e) ≤ w(e).

Proof. Combining the pre-processing and post-processing steps gives that the total weight of e
in all the layers is:

∑
i

wBi(e) = ∑
{i|e∈Bi}

1
lBi(e)

=
p− q
cgeo

∑
{i|e∈Bi}

(
log n

d′i

) q−p
p

w(e)
p
q .

Upper bounding the above by w(e) is equivalent to showing

p− q
cgeo

∑
{i|e∈Bi}

(
log n

d′iw(e)
p
q

) q−p
p

≤ 1.
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Recall that for each i such that e ∈ Bi, we have d′i ≥ l′(e) log n. Substituting l′(e) = w(e)−
p
q into

this bound on d′i gives:

log n

d′iw(e)
p
q
≤ 1.

As d′is are decreasing geometrically, the following sequence is also decreasing geometrically,
with the largest term being at most 1:( log n

d′iw(e)
p
q

) q−p
p

{i:e∈Bi}

.

Applying Fact 4.3.6 with ε = q−p
p we get

p− q
cgeo

∑
{i|e∈Bi}

(
log n

d′iw(e)
p
q

) q−p
p

≤ p− q
cgeo

·
cgeo p
q− p

≤ 1

as we desired.

�

We can also check that the stretch of an edge e with respect to (B, d) is comparable to its
stretch in (B′, d′).

Lemma 4.4.3. For parameters 0 < p < q < 1, the `p-stretch of an edge e in G with respect to (B, d)
and its `q-stretch in G′ with respect to (B′, d′) are related by

strp
B,d(e) = O

(
1

q− p
logp−q n · strq

B′,d′(e)
)

.

Proof. Recall that

di =
cgeo

q− p

(
d′i

log n

) q−p
p

d′i =
cgeo

q− p
· log

p−q
p n · d′i

q
p .

For an edge cut at level i, we have

strB,d(e) =
di

l(e)

=
cgeo

q− p
· log

p−q
p n ·

d′i
q
p

l′(e)
q
p

=
cgeo

q− p
· log

p−q
p n ·

(
strq

B′,d′(e)
) 1

p
.
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Taking both sides to the p-th power and using the fact that p < 1 gives the desired bound.

�

It is worth noting that when both p and q are bounded away from 1, this procedure is likely
optimal up to constants. This is because the best `p-stretch and `q-stretch that one could obtain
in these settings are O(logp n) and O(logq n) respectively.

4.4.3 From Decompositions to Trees

It remains to show that an embeddable decomposition can be converted into an embeddable
tree. Our conversion routine is based on the laminar-decomposition view of the decomposi-
tion. From the bottommost level upwards, we iteratively reduce the interaction of each cluster
with other clusters to a single vertex in it, which we term the centers. Centers can be picked
arbitrarily, but we require that if a vertex u is a center on level i, it is also a center on all levels
j > i. Once the centers are picked, we can connect the clusters starting at the bottom level, by
connecting all centers of level i + 1 to the center of the connected component they belong to at
level i. This is done by taking the part of Bi involving these centers. We first show that the tree
needed to connect them has size at most twice the number of centers.

Lemma 4.4.4. Given a tree T and a set of k vertices S, there is a tree TS on 2k− 1 vertices having the
set S as its leaves such that:

• The distances between vertices in S are the same in T and TS.

• TS is embeddable into T.

Proof. The proof is by induction on the number of vertices in T. If T has no more than 2k− 1
vertices, it suffices to set TS = T. For the inductive step suppose the result is true for all trees
with at most n vertices, and T has n + 1 vertices. We will show that there is a tree T′ on n
vertices that preserves all distances between vertices in S, and is embeddable into T.

If T has a leaf that is not in S, removing that leaf does not affect the distances between
the vertices in S and the resulting tree T′ is a subgraph and therefore embeddable into T.
Otherwise T contains at most k leaves, contributing k to its total degree. Since T contains n
edges, the total degree in T is 2n. Thus the contribution of the n + 1− k vertices outside S is at
most 2n− k, so the average degree of vertices outside S at most

2n− k
n + 1− k

=
2− k

n

1 + 1
n −

k
n

<
2− k−1

n

1− k−1
n

.

Since T does not fall into the base case it can be verified that k−1
n ≤

1
2 , thus the average degree

outside S is less than 3, and there must exists a vertex u /∈ S of degree 2. Let the two neighbors

52



of u be v1 and v2 respectively. We can then remove u and add an edge between v1 and v2 with
length l(u, v1) + l(u, v2) to preserve the distances within S. This new tree T′ is embeddable in
T by mapping the edge between v1 and v2 to the only path in T between v1 and v2.

Since T′ has n vertices, the inductive hypothesis gives the existence of a tree TS on 2k− 1
vertices preserving distances within S. As T′ is embeddable into T, it is easy to check that TS

is embeddable into T as well.

�

Applying this lemma on each cluster in a Bartal decomposition then leads to the overall
tree. Pseudocode of this tree construction is given in Algorithm 10.

Algorithm 10 Build-Tree(G, B)

Input: weighted graph G = (V, E, l) and a Bartal decomposition B of G
1: designate a center vertex for each tree in each level of B, such that if a vertex is a center in

level i, it is also a center in level i + 1
2: merge the copies of a same vertex marked as a center in all the Bis, this produces a single

tree T
3: identify the vertices from the last level Bt with the original vertex set V
4: identify the remaining vertices as Steiner vertices
5: apply Lemma 4.4.4 on T and V to produce TV

6: return TV

Lemma 4.4.5. Given a graph G = (V, E, l) and an embeddable Bartal decomposition B, Build-Tree

returns an embeddable tree TV with O(n) vertices such that for any geometrically decreasing sequence
d that bounds the diameters of B and any edge e we have

strTV (e) = O(strB,d(e)).

Proof. Since ∪iBi is embeddable into G, the T obtained from Line 2 of Build-Tree is also em-
beddable into G. Then in Line 5 we applied Lemma 4.4.4 on T and the vertex set V. Since
|V| = n, the resulting tree TV has at most 2n− 1 vertices and is embeddable into G.

It remains to bound the stretch of edges with respect to TV . Since an of edge only exists
between the non-Steiner vertices, we can bound its stretch in T instead. Consider an edge
e = {u, v} that is first cut at level i. The tree path between its endpoints goes from u through
cluster centers on levels t, t− 1, . . . , i, then back down to v, and the distance traversed on level
j is bounded by 2dj. As d is a geometrically decreasing sequence, the total length of this path
is bounded by O(di).

�
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Combining these pieces leads to an algorithm generating low `p-stretch embeddable trees.

Lemma 4.4.6. Let G = (V, E, l) be a weighted graph with n vertices, m edges, length function l :
E → [1, ∆], and parameter 0 < p < 1. We can construct a distribution over Bartal decompositions
such that for any edge e, its expected `p-stretch in a decomposition sampled from this distribution is
O(( 1

1−p )
2 logp n).

Proof. Consider running Embeddable-Decompose with q = 1+p
2 , and Decompose-Simple. By

Lemmas 4.3.7 and Lemma 4.4.3, the expected stretch of an edge e in the output decomposition
B with respect to diameter bounds d is:

O
(

1
q− p

logp−q n · 1
1− q

logq n
)
= O

((
1

1− p

)2

logp n

)
.

Running Build-Tree on this decomposition then gives a tree with the expected stretch on edges
are the same. The embeddability of this tree also follows from the embeddability of B given by
Lemma 4.4.2.

To bound the running time, note that as 0 ≤ p
q < 1, the lengths of edges in the pre-

processed graph G′ are also between 1 and ∆. Both the pre and post processing steps consist
of only rescaling edge weights, and therefore take linear time. The total running time then
follows from Lemma 4.3.7.

�

4.5 Two-Stage Tree Construction

In this section we give a faster two-stage algorithm for constructing Bartal decompositions.
We first quickly build a lower quality decomposition using the same scheme as the AKPW
low stretch spanning tree [AKPW95]. Then we proceed in the same way as Bartal’s original
algorithm and refine the decompositions in a top-down manner. However, with the first stage
decomposition, we are able to construct a Bartal decomposition much faster.

Both the AKPW decomposition and the way that our Bartal decomposition routine uses it
relies on repeated clustering of vertices. Of course, in an implementation, such clusterings will
be represented using various linked-list structures. However, for our analysis, it is helpful to
view them as quotient graphs. Given a graph G and a subset of edges A, we define the quotient
graph G/A be the graph formed by the connected components of A. Each of connected com-
ponents of the induced subgraph G[A] becomes a single vertex in G/A, and the edges outside
A remains but have their endpoints relabeled accordingly. For our algorithms, it is essential for
us to keep multi-edges as separate copies. As a result, all the graphs that we deal with in this
section are potentially multi-graphs.
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The main advantages offered by the AKPW decomposition are

• It is a bottom-up algorithm that can be performed in linear time.

• Each edge only participates in O(log log n) steps of the refinement process in expectation.

• All partition routines are done on graphs with diameter poly(log n).

The interaction between the bottom-up AKPW decomposition and the top-down Bartal
decomposition leads to some distortions. The rest of this section can be viewed as analyzing
this distortion, and the algorithmic gains from having it. We will show that for an appropriately
constructed AKPW decomposition, the probability of an edge being cut can be related to a
quantity in the `q norm for some p < q < 1. The difference between these two norms then
allows us to absorb distortions of size up to poly log n, and therefore not affecting the quality
of the resulting tree. Thus we will work mostly with a different exponent q in this section, and
only bring things back to an exponent in p at the very end.

Both the AKPW and the top-down routines will issue multiple calls to Partition. In
both cases the granularity of the edge weights will be poly(log n). As stated in Section 3,
Partition can be implemented in linear time in the RAM model, using the rather involved al-
gorithm presented in [Tho00]. In practice, it is also possible to use the low granularity of edge
weights and use Dial’s algorithm [Dia69], worsening the total running time of our algorithm to
O(m log log n + log ∆ poly(log n)) when all edge lengths are in the range [1, ∆]. Alternatively,
we can use the weight-sensitive shortest path algorithm from [KMP11], which works in the
pointer machine model, but would be slower by a factor of O(log log log n).

4.5.1 The AKPW Decomposition Routine

We first describe the AKPW algorithm for generating decomposition. The decomposition pro-
duced is similar to Bartal decompositions, although we will not impose the strict conditions on
diameters in our definition.

Definition 4.5.1. Let G = (V, E, l) be a connected multi-graph. We say that a sequence of forests A,
where

A = (A0, A1, . . . , As),

is an AKPW decomposition of G with parameter δ if:

1. As is a spanning tree of G.

2. For any i < s, Ai ⊆ Ai+1.

3. The diameter of each connected component in Ai is at most δi+1.
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Pseudocode for generating this decomposition is given in Algorithm 11. We first bound the
diameters of each piece, and the probability of an edge being cut in Ai.

Algorithm 11 AKPW(G, δ)

Input: Weighted multi-graph G = (V, W, l) and a parameter δ.
1: partition E by length such that Ei contains all edges with length within [δi, δi+1)

2: A0 ← ∅
3: s← 0
4: while As is not a spanning tree of G do
5: E′ ← E0 ∪ · · · ∪ Es

6: Gs ← (V, E′, 1)/As, where 1 is the constant function with value 1
7: T1, . . . , Tk ← Partition(Gs, δ/3)
8: As+1 ← As ∪ T1 ∪ · · · ∪ Tk

9: s← s + 1
10: end while
11: return A = (A0, . . . , As)

Lemma 4.5.2. AKPW(G, δ) generates with high probability an AKPW decomposition A such that for
an edge e = {u, v} with l(e) ∈ [δi, δi+1) and some j ≥ i, the probability that u and v are not connected
in Aj is at most (

cP log n
δ

)j−i

,

where cP is a constant associated with the Partition routine. Furthermore, if δ ≥ 2cP log n, this runs
in expected O(m log log1/2 n) time in the RAM model.

Proof. By construction that As is a spanning tree, and since Ai+1 is generated by adding edges
to Ai, we have Ai ⊆ Ai+1. The diameter bounds can be proven by induction on i.

The base case of i = 0 follows from the clusters being singletons, and as a result having
diameter 0. Now suppose the diameter bounds hold for some level i. Then with high prob-
ability each connected component in Ai+1 corresponds to a (quotient) tree with diameter δ/3
connecting the components in Ai. By definition edges in Ei have length at most δi+1, and by
the inductive hypothesis the diameter of each connected component in Ai is also at most δi+1.
This allows us to bound the diameter of Ai+1 by

δ

3
· δi+1 + (

δ

3
+ 1) · δi+1 ≤ δi+2.

The guarantees of the probabilistic decomposition routine from Lemma 4.3.4 gives us that
on any given level, an edge has its two endpoints separated with probability at most (cP log n)/δ
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for some constant cP. Since l(e) ∈ [δi, δi+1), we have e ∈ Ei. So by the time Aj is constructed,
e has gone through j− i rounds of Partition calls, and is present if and only if its endpoints
have been separated in each of these steps. Since these are independent events, taking the
product of the individual probabilities then gives the claimed bound.

We now analyze the complexity of this algorithm. Notice that time spent in each iteration
of the loop is linear in the size of the graph Gs processed in that iteration. If δ ≥ 2cP log n,
then the probability of an edge in Ei appearing in subsequent levels decrease geometrically.
This means that the total expected sizes of all the Gss is O(m). Combining this with the linear
running time of Partition gives the expected running time of O(m) once we have bucketed the
edges into E0, E1, . . . , etc. by length. Under the RAM model of computation, these buckets can
be formed in O(m log log1/2 n) time using the sorting algorithm by Han and Thorup [Han04],
which becomes the dominating term in the running time.

�

The expected `1-stretch bound of any edge can be derived by combining the diameter
bounds and cut probabilities of the edges. For an edge on the i-th level, the ratio between
its length and the diameter of the jth level can be bounded by δj−i+1. As j increases, the ex-
pected stretch of e then increases by factors of

δ ·O
(

log n
δ

)
= O (log n) ,

which leads to the super-logarithmic bound on the expected `1-stretch from [AKPW95] With
`p-stretch however, the pth power of the diameter-to-length ratio only increases by factors of δp.
This means that, as long as the probabilities of an edge being cut increases by factors of less
than δp, a better bound can be obtained.

4.5.2 Accelerate Bartal’s Algorithm using AKPW Decomposition

In this section, we describe how we combine the AKPW decomposition and Bartal’s original
algorithm into a two-pass algorithm. At a high level, Bartal’s algorithm repeatedly partitions
the graph in a top-down fashion, and the geometrically decreasing diameters translates to a
O(m log n) running time. The way we achieve a speedup is by contracting vertices that are
close to each other, in a way that does not affect the quality of the top-down partition scheme
too much. More specifically, we precompute an appropriate AKPW decomposition, and only
expose a limited number of layers while running the top-down partition. This way we ensure
that each edge only appears in O(log log n) calls to the partition routine.

Let A = (A0, A1, · · · , As) be an AKPW decomposition with parameter δ, so that G/Aj is
the quotient graph where each vertex corresponds to a cluster of diameter at most δj+1 in the
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original graph. In order to partition the graph G into pieces of diameter d, where under some
notion d is relatively large compared to δj+1, we observe that the partition can be done on the
quotient graph G/Aj instead. As the complexity of our partition routine is linear in the number
of edges, this might bring some potential gain. We use the term scope to denote the point at
which lower levels of the AKPW decomposition are handled at a coarser granularity. When
the top-down algorithm reaches diameter di in the diameter sequence d, this cutoff point in
the AKPW decomposition is denoted by scope(i), which will be defined later. This two-pass
decomposition is formalized in Algorithm 12.

Algorithm 12 Decompose-Two-Stage(G, d, A)

Input: Graph G, diameter sequence d = (d1, . . . , dt), and AKPW decomposition of G, A =

(A1, . . . , As)

1: B0 ← As

2: for i = 1, . . . , t do
3: if necessary, increase i until G′ = Bi−1/Ascope(i) is non-empty
4: Bi ← ∅
5: form the length function li by increasing all edge lengths in G′ to at least δscope(i)+1

6: remove all edges with length di/ log n or more from G′

7: for each connected component H of G′ do
8: G1, . . . , Gk ← Partition(H, di/3)
9: Bi ← Bi ∪ G1 ∪ · · · ∪ Gk

10: Bi ← Bi ∪ Ascope(i)

11: end for
12: end for
13: return B = ((B1, l1), . . . , (Bt, lt))

We first show that the increase in edge lengths to δscope(i)+1 still allows us to bound the
diameter of the connected components of Bi.

Lemma 4.5.3. The diameter of each connected component in Bi is bounded by di with high probability.

Proof. By the guarantee of the partition routine, the diameter of each Gi from Line 8 is at most
di
3 with high probability. However, since we are measuring diameter of the components in G,
we also need to account for the diameter of the components that were shrunken into vertices
when forming G′. These components correspond to connected pieces in Ascope(i), therefore the
diameters of the corresponding trees are bounded by δscope(i)+1 with high probability. Line 5 of
the algorithm ensures that the length of any edge is more than the diameter of its endpoints.
Hence the total increase in diameter from these pieces is at most twice the length of a path in
G′, and the diameter of these components in G can be bounded by di.

�
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Once we established that the diameters of our decomposition is indeed geometrically de-
creasing, it remains to bound the probability of an edge being cut at each level of the de-
composition. In the subsequent sections, we give two different analyses of the algorithm De-
composeTwoStage with different choices of scope. We first present a simple version of our
algorithm which ignores a 1/ poly(log n) fraction of the edges, but guarantees an expected `1-
stretch close to O(log n) for rest of the edges. Then we present a more involved analysis with
a careful choice of scope which leads to a tree with small `p-stretch.

4.5.3 Decompositions that Ignore 1/k of the Edges

In this section, we give a simplified algorithm that ignores some fraction of the edges, but
guarantees for other edges an expected `1-stretch of close to O(log n). We also discuss how
this relates to the problem of generating low-stretch subgraphs in parallel and its application
to parallel SDD linear system solvers. In this simplified algorithm, we use a naive choice of
scope, reaching a small power of k log n into the AKPW decomposition.

Let d = (d0, d1, . . . , dt) be a diameter sequence and let A = (A0, A1, . . . , As) be an AKPW
decomposition constructed with parameter δ = k log n. We let

scope(i) = max{j | δj+3 ≤ di}.

Note that δscope(i) is always between di/δ4 and di/δ3. We say an edge e ∈ Ei is AKPW-cut if e is
cut in Ai+1. Furthermore, we say an edge e is floating in level i if it exists in Bi−1/Ascope(i) and
has length less than δscope(i)+1. Note that the floating edges are precisely those edges whose
length is increased before running the Bartal decomposition. We say that an edge is floating-cut
if it is not AKPW-cut, but is cut by the Bartal decomposition at any level in which it is floating.

The simplified analysis in this section will only provide stretch guarantees for edges that
are not AKPW-cut or floating-cut. We start by bounding the expected number AKPW-cut edges
that are ignored in the analysis.

Lemma 4.5.4. Let A = AKPW(G, δ) where δ = k log n. The expected number of AKPW-cut edges in
A is at most O(m

k ).

Proof. For an edge e ∈ Ei, the probability that e is cut in Ai+1 is at most

cP log n
δ

=
cP

k

by Lemma 4.5.2, where cP is the constant associated with the partition routine. Linearity of
expectation then gives that the expected number of AKPW-cut edges is at most O(m

k ).

�
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We now bound the total number of floating-cut edges.

Lemma 4.5.5. The expected number of floating-cut edges is O(m
k ).

Proof. First, we note that only edges whose length is at least di
δ4 may be floating-cut at level i: any

edge of lesser length that is not AKPW-cut will not be contained in Bi−1/Ascope(i). Furthermore,
by the definition of being floating, only edges of lengths at most di

δ2 may be floating. Therefore,
an edge of length l(e) may only be floating-cut for levels with di ∈ [δ2l(e), δ4l(e)). Since the dis
increase geometrically, there are at most log(δ) such levels.

Furthermore, at any given level, the probability that a given edge is floating-cut at the level
is at most O( log n

δ2 ), since floating edges are passed to the decomposition with length di
δ2 . Taking

a union bound over all levels with di ∈ [δ2l(e), δ4l(e)), any edge has at most a O( log n log δ
δ2 )

probability of being cut. Since log δ
δ = O(1), this is equal to O( log n

δ ) = O( 1
k ).

Again, applying linearity of expectation implies that the expected number of floating-cut
edges is O(m

k ).

�

Combining these two lemmas, we see that the expected number of ignored edges so far
is bounded by O(m

k ). We can also check that conditioned on an edge being not ignored, its
probability of being cut on some level is the same as before.

Lemma 4.5.6. Let A = AKPW(G, δ). We may associate with the output of the algorithm a set of edges
S, with expected size O(m

k ), such that for any edge e with length l(e), conditioned on e /∈ S, is cut on
the ith level of the Bartal decomposition B with probability at most

O
(

l(e) log n
di

)
.

Proof. We let S be the union of the sets of AKPW-cut and floating-cut edges. Fix a level i of the
Bartal decomposition: if an edge e that is not AKPW-cut or floating-cut appears in Bi−1/Ascope(i),
then its length is unchanged. If e is removed from G′ due to l(e) ≥ di/ log n, the bound becomes
trivial. Otherwise, the guarantees of Partition then give the cut probability.

�

Lemma 4.5.7. The simplified algorithm produces with high probability an embeddable Bartal decompo-
sition with diameters bounded by d where all but (in expectation) O(m

k ) edges satisfy

E[strB,d(e)] ≤ O(log n(log(k log n))2).
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Proof. Let p = 1− 1/ log(k log n) and q = (1 + p)/2. Applying Lemma 4.5.6 and Lemma 4.3.5
we get that for edges not in S,

E[strq
B,d(e)] = O(logq n log(k log n)).

Then using EmbeddableDecompose as a black box we obtain an embeddable decomposition
with expected lp-stretches of O(logp n(log(k log n))2) for non-removed edges.

By repeatedly running this algorithm, in an expected constant number of iterations, we
obtain an embeddable decomposition B with diameters bounded by d such that for a set of
edges E′ ⊆ E and |E′| ≥ m−O(m

k ),

∑
e∈E′

E[strq
B,d(e)] = O(m logq n(log(k log n))2).

By Markov’s inequality, at most 1/k of the edges in E′ can have

strq
B,d(e) ≥ O(k logq n(log(k log n))2).

This gives another set of edges E′′ with size at least m − O(m
k ) such that any edge e ∈ E′′

satisfies

strq
B,d(e) ≤ O(k logq n(log(k log n))2) ≤ O((k log n)2).

But for each of these edges

strB,d(e) = (strq
B,d(e))

1/q

≤ (strq
B,d(e))

1+2/ log(k log n)

≤ strq
B,d(e) ·O

(
(k log n)4/ log(k log n)

)
= O(strq

B,d(e)).

Excluding these high-stretch edges, the `1 stretch is thus at most a constant factor worse than
the `q stretch, and can be bounded by O(log n(log(k log n))2).

�

The total running time of DecomposeTwoStage is dominated by the calls to Partition.
The total cost of these calls can be bounded by the expected number of calls that an edge
participates in.

Lemma 4.5.8. For any edge e, the expected number of iterations in which e appears is bounded by
O(log(k log n)).
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Proof. As pointed out in the proof of 4.5.5, an edge that is not AKPW-cut only appears in level
i of the Bartal decomposition if l(e) ∈ [ di

δ5 , di
log n ). Since the diameters decrease geometrically,

there are at most O(log(k log n)) such levels. AKPW-cut edges can appear sooner than other
edges from the same weight bucket, but using an argument similar to the proof of Lemma 4.5.4
we observe that the edge propagates up j levels in the AKPW decomposition with probability
at most ( 1

k )
j. Therefore the expected number of such appearances by an APKW-cut edge is at

most ∑i(
1
k )

i = O(1).

�

Combining all of the above we obtain the following result about our simplified algorithm.
The complete analysis of its running time is deferred to Section 4.5.5.

Lemma 4.5.9. For any k, given an AKPW decomposition A with δ = k log n, we can find in O(m log(k log n))
time an embeddable Bartal decomposition such that for all but expected O(m

k ) edges have expected total
`1-stretch of at most O(m log n(log(k log n))2).

Parallelization

If we relax the requirement of asking for a tree, the above analysis shows that we can obtain low
stretch subgraphs with an expected stretch of O(log n(log(k log n))2) for all but O(m

k ) edges.
As our algorithmic primitive Partition is parallel parallelization, we also obtain a parallel
algorithm for constructing low stretch subgraphs. These subgraphs are used in the parallel
SDD linear system solver by [BGK+

14]. By observing that Partition is run on graphs with
edge weights within δ of each other and hop diameter at most polynomial in δ = k log n, and
using the parallel tree-contraction routines [MR89] to extract the final tree, we can obtain the
following result.

Lemma 4.5.10. For any graph G with polynomially bounded edge weights and k = O(poly(log n)),
in O(k log2 n log log n) depth and O(m log n) work we can generate an embeddable tree of size O(n)
such that the total `1-stretch of all but O(m

k ) edges of G is O(m log n(log(k log n))2).

4.5.4 Bounding Expected `p-Stretch of Any Edge

In this section we present our full algorithm and bound the expected `p-stretch of all the edges.
Unlike in the previous section, we can no longer ignore edges whose lengths we increase while
performing the top-down partition, we need to choose the scope carefully in order to control
their probability of being cut during the second stage of the algorithm. We start off by choosing
a different δ when computing the AKPW decomposition.
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Lemma 4.5.11. If A is generated by a call to AKPW(G, δ) with

δ ≥ (cP log n)
1

1−q ,

then the probability of an edge e ∈ Ei being cut in level j is at most δ−q(j−i).

Proof. Manipulating the condition on δ gives that cP log n ≤ δ1−q, and therefore using Lemma 4.5.2
we can bound the probability by(

cP log n
δ

)j−i

≤
(

δ1−q

δ

)j−i

= δ−q(j−i).

�

Since δ is poly(log n), we can use this bound to show that expected `p-stretch of an edge in
an AKPW-decomposition can be bounded by poly(log n). The exponent here can be optimized
by taking into account the trade-offs given in Lemma 4.3.5.

This extra factor of δ can also be absorbed into the analysis of Bartal decompositions. When
the length l(e) of an edge e is significantly less than d, the partitioning diameter, the difference

between l(e) log n
d and

(
l(e) log n

d

)q
is more than δ. This means that for a floating edge that orig-

inated much lower in the AKPW decomposition, we can afford to increase its probability of
being cut by a factor of δ.

From the perspective of the low-diameter decomposition routine, this step corresponds to
increasing the length of an edge. This increase in length can then be used to bound the diameter
of a cluster in the Bartal decomposition, and also ensures that all edges that we consider have
lengths close to the diameter that we partition into. On the other hand, in order to control this
increase in lengths, and in turn to control the increase in the cut probabilities, we need to use
a different scope when performing the top-down decomposition.

Definition 4.5.12. For an exponent q and a parameter δ ≥ log n, we let the scope of a diameter sequence
d be

scope(i)
def
= max

i

{
δ

i+ 1
1−q+1 ≤ di

}
.

Note that for small d, scope(i) may be negative. As we will refer to Ascope(i), we assume that
Ai = ∅ for i < 0. Our full algorithm can then be viewed as only processing the edges within
the scope using Bartal’s top-down algorithm. Its pseudocode is given in Algorithm 12.

Note that it is not necessary to perform explicit contraction and expansion of the AKPW
clusters in every recursive call. In an effective implementation, they can be expanded gradually,
as scope(i) is monotonic in di.
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The increase in edge lengths leads to increases in the probabilities of edges being cut.
We next show that because the AKPW decomposition is computed using a higher norm, this
increase can be absorbed, giving a probability that is still closely related to the pth power of the
ratio between the current diameter and the length of the edge.

Lemma 4.5.13. Assume A = AKPW(G, δ) with parameter specified as above. For any edge e with
length l(e) and any level i, the probability that e is cut at level i of B = DecomposeTwoStage(G, d, A)

is

O
((

l(e) log n
di

)q)
.

Proof. There are two cases to consider based whether the length of the edge is more than
δscope(i)+1. If it is and it appears in G′, then its length is retained. The guarantees of Partition

then gives that it is cut with probability

O
(

l(e) log n
di

)
≤ O

((
l(e) log n

di

)q)
,

where the inequality follows from l(e) log n ≤ di.

Otherwise, since we contracted the connected components in Ascope(i), the edge is only cut at
level i if it is both cut in Ascope(i) and cut by the partition routine. By Lemma 4.5.11, if the edge
is from Ej, its probability of being cut in Ascope(i) can be bounded by δ−q(scope(i)−j). Combining
this with the fact that δj ≤ l(e) allows us to bound this probability by(

l(e)
δscope(i)

)q

.

Also, since the weight of the edge is set to δscope(i)+1 in G′, its probability of being cut by
Partition is

O

(
δscope(i)+1 log n

di

)
.

As the partition routine is independent of the AKPW decomposition routine, the overall
probability can be bounded by

O

(
δscope(i)+1 log n

di
·
(

l(e)
δscope(i)

)q
)

= O

( l(e) log n
di

)q

· δ log1−q n ·
(

δscope(i)

di

)1−q
 .

Recall from Definition 4.5.12 that scope(i) is chosen to satisfy δ
scope(i)+ 1

1−q+1 ≤ di. This along
with the assumption that δ ≥ log n gives

δ log1−q n ·
(

δscope(i)

di

)1−q

≤ δ2−q
(

δ
− 2−q

1−q

)1−q

≤ 1.
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Therefore, in this case the probability of e being cut can also be bounded by O
((

l(e) log n
di

)q)
.

�

Combining this bound with Lemma 4.3.5 and setting q = 1+p
2 gives the bound on `p-stretch.

Corollary 4.5.14. If q is set to 1+p
2 , we have for any edge e

E[strB,d(e)] ≤ O
(

1
1− p

logp n
)

.

Therefore, we can still obtain the properties of a good Bartal decomposition by only con-
sidering edges in the scope during the top-down partition process. On the other hand, this
shrinking drastically improves the performance of our algorithm.

Lemma 4.5.15. Assume A = AKPW(G, δ). For any edge e, the expected number of iterations of
DecomposeTwoStage in which e is included in the graph given to Partition can be bounded by
O( 1

1−p log log n).

Proof. Note that for any level i it holds that

δscope(i) ≥ diδ
− 1

1−q−2.

Since the diameters of the levels decrease geometrically, there are at most O( 1
1−q log log n) level

is with l(e) ∈ [diδ
− 1

1−q−2, di
log n ).

The expected number of occurrences of e in lower levels can be bounded using Lemma 4.5.11

in a way similar to the proof of the above Lemma. Summing over all the levels i where e is in a
lower level gives:

∑
i:l(e)<diδ

− 1
1−q−2

(
l(e)

δscope(i)

)q

.

Substituting in the bound on δscope(i) from above and rearranging terms we get the following
upper bound:

≤ ∑
i:l(e)≤diδ

− 1
1−q−2

(
l(e)
di

δ
1

1−q+2
)q

.

As the dis increase geometrically, this is a geometric sum with the first term being at most 1.
Therefore the expected number of times that e appears on some level i while being out of scope
is O(1).

�
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Recall that each call to Partition runs in time linear in the number of edges. This then
implies a total cost of O(m log log n) for all the partition steps. We can now proceed to extract
a tree from this decomposition, and analyze the overall running time.

4.5.5 Returning a Tree

We now give the overall algorithm and analyze its performance. Introducing the notion of
scope in the recursive algorithm limits each edge to appear in at most O(log log n) levels. Since
each of these calls to Partition runs in time linear in the input size, this should give a total
run time of O(m log log n). However, the goal of the algorithm as stated is to produce a Bartal
decomposition, which has a spanning tree at each level. Explicitly generating this gives a total
size of Ω(nt), where t is the number of recursive calls. As a result, we will circumvent this by
storing only an implicit representation of the Bartal decomposition to find the final tree.

This smaller implicit representation stems from the observation that large parts of the Bis
are trees from the AKPW decomposition. As a result, such succinct representations are possible
if we have pointers to the connected components of Ai. We first analyze the quality and size of
this implicit decomposition, and the running time for producing it.

Algorithm 13 Decompose(G, p)

Input: Graph G and stretch exponent parameter p.
1: q← (1 + p)/2

2: δ← (c log n)
1

q−p

3: A, d← AKPW(G, δ)

4: B← Decompose-Two-Stage(G, d, A)

5: return B, d

Lemma 4.5.16. There is a routine that for any graph G and parameter p < 1, produces in ex-
pected O( 1

1−p m log log n) time an implicit representation of a Bartal decomposition B with expected
size O( 1

1−p m log log n) and diameter bounds d such that with high probability:

1. B is embeddable into G.

2. For any edge e,

E[strp
B,d(e)] ≤ O

(
(

1
1− p

)2 logp n
)

.

3. B consist of edges and weighted connected components of an AKPW decomposition.
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Proof. Consider calling Embeddable-Decompose from Section 4.4.2 with the routine given in
Algorithm 13. The properties of B and the bounds on stretch follows from Lemma 4.4.3 and
Corollary 4.5.14.

Since the number of AKPW components implicitly referred to at each level of the recursive
call is bounded by the total number of vertices, and in turn the number of edges, the total
number of such references is bounded by the size of the G′s as well. This gives the bound on
the size of the implicit representation.

We now bound the running time. In the RAM model, bucketing the edges and comput-
ing the AKPW decomposition can be done in O(m log log n) time. The resulting tree can be
viewed as a laminar decomposition of the graph. This is crucial for making the adjustment in
DecomposeTwoStage in O(1) time to ensure that Ascope(i) is disconnected. As we set q to 1+p

2 ,
by Lemma 4.5.15, each edge is expected to participate in O( 1

1−p log log n) recursive calls, which
gives a bound on the expected total.

The transformation of the edge weights consists of a linear-time pre-processing, and scaling
each level by a fixed parameter in the post-post processing step. This process affects the implicit
decomposition by changing the weights of the AKPW pieces, which is can be done implicitly
in O(1) time by attaching extra ‘flags’ to the clusters.

�

It remains to show that an embeddable tree can be generated efficiently from this implicit
representation. We define the notion of a contracted tree with respect to a subset of vertices,
obtained by repeating the two combinatorial steps that preserve embeddability described in
Section 4.2.

Definition 4.5.17. We define the contraction of a tree T to a subset of its vertices S as the unique tree
arising from repeating the following operations while possible:

1. Removal of a degree 1 vertex not in S.

2. Contraction of a degree 2 vertex not in S.

We note that it is enough to find contractions of the trees from the AKPW decomposition
to the corresponding sets of connecting endpoints in the implicit representation. Here we use
the fact that the AKPW decomposition is in fact a single tree.

Fact 4.5.18. Let A = (A0, . . . , As) be an AKPW decomposition of G. Let S be a subset of vertices of G.
For any i ∈ {0, . . . , s}, if S is contained in a single connected component of Ai, then the contraction of
Ai to S is equal to the contraction of As to S.

This allows us to use data structures to find the contractions of the AKPW trees to the
respective vertex sets more efficiently.
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Lemma 4.5.19. Given a tree As on the vertex set V (with |V| = n) and subsets S1, . . . , Sk of V where
∑i|Si| = O(n), we can generate the contractions of As to each of the sets Si in time O(n) in the RAM
model and O(nα(n)) in the pointer machine model.

Proof. Root As arbitrarily. Note that the only explicit vertices required in the contraction of As

to a set S ⊆ V are

Γ(S) def
= S ∪ {LCA(u, v) | u, v ∈ S}

where LCA(u, v) denotes the lowest common ancestor of u and v in As. Moreover, it is easily
verified that if we sort the vertices v1, . . . , v|S| of S according to the depth first search pre-
ordering, then

Γ(S) = S ∪ {LCA(vi, vi+1) | 1 ≤ i < |S|}.

We can therefore find Γ(Si) for each i simultaneously in the following steps.

1. Sort the elements of each Si according to the pre-ordering, using a single depth-first
traversal of As.

2. Prepare a list of lowest common ancestor queries for each pair of vertices adjacent in the
sorted order in each set Si.

3. Answer all the queries simultaneously using an off-line lowest common ancestor finding
algorithm.

Since the total number of queries in the last step is O(n), its running time is O(nα(n)) in
the pointer machine model using disjoint union [Tar79], and O(n) in the RAM model [GT83].

Once we find the sets Γ(Si) for each i, we can reconstruct the contractions of As as follows.

1. Find the full traversal of the vertices in Γ(Si) for each i, using a single depth first search
traversal of As.

2. Use this information to reconstruct the trees [Vui80].

�

Applying this procedure to the implicit decomposition then leads to the final embeddable
tree.

Proof of Theorem 4.1.1. Consider the distribution over Bartal decompositions given by Lemma 4.5.16.
We will apply the construction given in Lemma 4.4.5, albeit in a highly efficient manner.

For the parts of the decomposition that are explicitly given, the routine runs in linear time.
The more intricate part is to extract the smaller contractions from the AKPW components
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that are referenced to implicitly. Since all levels of the AKPW decomposition are subtrees
of As, these are equivalent to finding contractions of As for several sets of vertices, as stated
in Fact 4.5.18. The algorithm given in Lemma 4.5.19 performs this operation in linear time.
Concatenating these trees with the one generated from the explicit part of the decomposition
gives the final result.

�

4.6 Sufficiency of Embeddability

In the construction of our trees, we made a crucial relaxation of only requiring our tree to be
embeddable, rather than restricting it to be a subgraph. In this section, we show that linear
operators on the resulting graph can be related to linear operators on the original graph. Our
analysis is applicable to `∞ flows as well.

The spectral approximation of two graphs can be defined in terms of their Laplacian ma-
trices. For matrices, we can define a partial ordering � where A � B if B − A is positive
semidefinite. That is, for any vector x we have

xTAx ≤ xTBx.

If we let H be the graph formed by adding the tree to G, then our goal is to bound LG and
LH with each other. Instead of doing this directly, it is easier to relate their pseudoinverses.
This will be done by interpreting xT L†x in terms of the energy of electrical flows. The energy
of an electrical flow is defined as the sum of squares of the flows on the edges multiplied by
their resistances, which in our case are equal to the lengths of the edges. Given a flow f ∈ RE,
we will denote its electrical energy using

EG( f ) def
= ∑

e
l(e) f 2

e .

The residue of a flow f is the net in/out flow at each vertex. This give a vector on all
vertices, and finding the minimum energy of flows that meet a given residue is equivalent
to computing xT L†x. The following fact plays a central role in the monograph by Doyle and
Snell [DS84]:

Fact 4.6.1. Let G be a connected graph. For any vector x orthogonal to the all-ones vector, xT L†
Gx equals

the minimum electrical energy of a flow with residue x.

Lemma 4.6.2. Let G = (VG, EG, wG) and H = (VH, EH, wH) be graphs such that G is a subgraph of H
in the weighted sense and H \ G is embeddable in G. Furthermore, let the graph Laplacians of G and H
be LG and LH respectively. Also, let Π be the |VG| × |VH | matrix with one 1 in each row at the position
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that vertex corresponds to in H and 0 everywhere else, and Π1 the orthogonal projection operator onto
the part of <VG that’s orthogonal to the all-ones vector. Then we have:

1
2

L†
G � Π1ΠL†

HΠTΠT
1 � L†

G.

Proof. Since ΠT
1 = Π1 projects out any part space spanned by the all-ones vector, and is this

precisely the null space of LG, it suffices to show the result for all vectors xG orthogonal to the
all-1s vector. These vectors are in turn valid demand vectors for electrical flows. Therefore, the
statement is equivalent to relating the minimum energies of electrical flows routing xG on G
and ΠTxG on H.

We first show that flows on H take less energy than the ones in G. Let xG be any vector
orthogonal to the all-ones vector, and f ∗G be the flow of minimum energy in G that meets
demand xG. Setting the same flow on the edges of E(G) in H and 0 on all other edges yields
a flow fH. The residue of this flow is the same residue in VG, and 0 everywhere else, and
therefore is equal to ΠTxG. Since G is a subgraph of H in the weighted sense, the lengths of
these edges can only be less. Therefore the energy of fH is at most the energy of fG and we
have

xT
GΠL†

HΠTxG ≤ EH( fH) ≤ EG( f ∗G) = xT
GL†

GxG.

For the reverse direction, we use the embedding of H \ G into G to transfer the flow from
H into G. Let xG be any vector orthogonal to the all-ones vector, and f ∗H the flow of minimum
energy in H that has residue ΠTxG. This flow can be transformed into one in G that has
residue xG using the embedding. Let vertex/edge mapping of this embedding be πV and πE

respectively.

If an edge e ∈ EH is also in EG, we keep its flow value in G. Otherwise, we route its flow
along the path that the edge is mapped to. Formally, if the edge is from u to v, fH(e) units of
flow is routed from πV(u) to πV(v) along path(e). We first check that the resulting flow, fG has
residue xG. The net amount of flow into a vertex u ∈ VG is

∑
uv∈EG

f ∗H(e) + ∑
u′v′∈EH\EG ,πV(u′)=u

f ∗H(e)

= ∑
uv∈EG

f ∗H(e) + ∑
u′∈VH ,πV(u′)=u

(
∑

u′v′∈EH\EG

f ∗H(e)

)
= ∑

u′∈VH ,πV(u′)=u
∑

u′v′∈EH

fH(e)

= ∑
u′∈VH ,πV(u′)=u

(
ΠTxG

)
(e)

= xG(u).
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Reordering the summations and noting that Π(u) = u gives the second equality. The last
equality follows from the fact that πV(u) = u, and all vertices not in VG having residue 0 in
ΠTxG.

To bound the energy of this flow, the property of the embedding gives that if split the edges
of G into the paths that form the embedding, each edge is used at most once. Therefore, if
we double the weights of G, we can use one copy to support G, and one copy to support the
embedding. The energy of this flow is then the same. Hence there is an electrical flow fG in
G such that EG( fG) ≤ 2EH( f ∗H). Fact 4.6.1 then gives that it is an upper bound for xT

GL†
GxG,

completing the proof.

�

71



72



Chapter 5

Parallel Shortest Paths and Hopsets

5.1 Introduction

In this Chapter we discuss another application of our low diameter decomposition algorithm:
approximating shortest paths in parallel. Given a weighted graph G and vertices s and t, the
st-shortest path problem looks for a path in G from s to t that minimizes the total length of
edges on the path. Algorithms for finding shortest paths have been studied extensively. In
the sequential setting, highly efficient algorithms are known when all lengths are non-negative.
These algorithms are based on Dijkstra’s algorithm [Dij59], which in turn can be viewed as a
generalization of breadth-first search: one explores vertices in order of their distances to the
starting vertex s. In the standard comparison-addition model, the Fibonacci heap by Fredman
and Tarjan [FT87] allows Dijkstra’s algorithm to run in O(m + n log n) time. In undirected
graphs where edge lengths are integers from [1, L], Pettie and Ramachandran gave an algorithm
that runs in O(m + n log log L) time [PR05]. Further speedups are also possible in the RAM
model, where a linear time algorithm was given by Thorup [Tho00].

One of the shortcomings of these algorithms is that the underlying greedy procedure can
have long chains of sequential dependencies. Processing vertices in increasing order of dis-
tances means that a vertex is dependent on its predecessor along the shortest path from the
source. This makes it difficult for parallel algorithms to obtain speedups over sequential algo-
rithms using a modest number of processors, especially on sparse graphs. One standard way
to measure the complexity of a parallel algorithm is to measure two parameters, its depth and
work. The depth of a parallel algorithm is the length of its longest sequential dependency,
and is often referred to as parallel time, since it is the running time of the algorithm assuming
an unlimited number of processors. The work of a parallel algorithm is the total number of
operation performed by all the processors.
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However, a bottleneck that is often more important in practice is work divided by the
number of processors. The simplest parallel algorithm for shortest path is based on matrix
multiplication, which takes O(n3) work and O(poly log n) depth. This means on a sparse
graph, O(n2) processors are required to obtain speedups over Dijkstra’s algorithm. Thus from a
practical standpoint, we would like parallel algorithms that achieve low depth (polylogarithmic
or even simply sublinear) with about the same amount of work as their sequential counterpart
(i.e. nearly linear in the number of edges). However such an algorithm remained elusive for
decades, and this is referred to as the transitive closure bottleneck in the literature.

A natural direction is then to consider approximations. Hopsets were formalized by Co-
hen [Coh00] as a crucial component for parallel approximate shortest paths algorithms, and
was implicitly used in a number of earlier works [KS97, UY91]. The goal is to add a set of extra
edges to the graph so that we can get good approximation on distances by only considering
paths with few edges.

Definition 5.1.1. Given a graph G = (V, E, l), a (ε, h, m′)-hopset is a set of edges E′ such that:

1. |E′| ≤ m′.

2. Each edge {u, v} ∈ E′ corresponds to a uv-path p in G such that l(u, v) = l(p).

3. For any vertices u and v, with probability 1/2 we have:

disth
E∪E′(u, v) ≤ (1 + ε)distE(u, v).

Here disth
E∪E′(·, ·) denotes the shortest path distance using only h edges from E and E′.

Given an (ε, h, m′)-hopset, Klein and Subramanian[KS97] showed how to approximate short-
est paths in O(h log∗ n/ε) depth and O((m + m′)/ε), where m is the number of edges includ-
ing the additional hopset. Thus in the rest of this section, we focus on the problem of finding
hopsets with h = o(n) and m′ = O(m).

Building on Cohen’s work [Coh00] and using the low diameter graph decomposition from
Chapter 2, we proved the following result in [MPVX15].

Theorem 5.1.2. There exists an algorithm that given as input an undirected graph G with non-
negative edge lengths, and parameters α, ε ∈ (0, 1), preprocesses the graph in O(mε−2−α log3+α n)
work and O

(
n

4+α
4+2α ε−1−α log2 n log∗ n

)
depth, so that for any vertices s and t one can find a (1 + ε)-

approximation to the s− t shortest path in O(mε−1−α) work and O
(

n
4+α
4+2α ε−2−α

)
depth.

Figure 5.1 contains a comparison of our hopset construction and previous works (ignor-
ing the dependencies on ε). Our main contribution here is to achieve nearly linear work with
sublinear depth, as oftentimes work is the bottleneck to empirical performances due to lim-
ited number of processors. For Cohen’s algorithm, Ω(nα) processors are needed for parallel
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Hop count Size Work Depth Notes
O(n1/2) O(n) O(mn0.5) O(n0.5 log n) [KS97, SS99]

O(poly log n) O(n1+αpoly log n) Õ(mnα) O(polylog n) [Coh00]

(log n)O((log log n)2) O
(

nO( 1
log log n )

)
Õ
(

mnO( 1
log log n )

)
(log n)O((log log n)2) [Coh00]

O(n
4+α

4+2α ) O(n) O(m log3+α n) O(n
4+α

4+2α ) new

Figure 5.1: Performances of Hopset Constructions, omitting ε dependency.

speedups in both the construction and query stages 1. In our case, if ε is a constant, O(log3+α n)
processors are sufficient to achieve parallel speedups. Furthermore, once a hopset is con-
structed, even a constant number of processors suffices for parallel speedups when querying.

5.2 Hopset Construction

5.2.1 Hopsets in Unweighted Graphs

Our hopset construction is based on a recursive application of the exponential start time clus-
tering from Chapter 2. We will designate some of the clusters produced, specifically the larger
ones, as special. Since each vertex belongs to at most one cluster, there cannot be too many
large clusters. As a result we can afford to compute distances from their centers to all other
vertices, and keep a subset of them as hopset edges in the graph. There are two kinds of edges
that we keep:

1. Star edges between the center of a large cluster and all other vertices in that cluster.

2. Clique edges between the all the centers of large clusters in one level of the hierarchy.

In other words, in building the hopset we put a star on top of each large cluster and connect
their centers into a clique. Then if an optimal s-t path p∗ encounters two or more of these large
clusters, we can jump from the first to the last by going through their centers. One possible
interaction between the decomposition scheme and a path p∗ in one level of the algorithm is
shown in Figure 5.2.

This allows us to replace what hopefully is a large part of p∗ with only three edges: two star
edges and one clique edge. However this may increase the length of the path by an amount
roughly equal to the diameter of the large clusters. But as this distortion can only happen once,
it is acceptable as long as the diameter of the clusters are less than ε · l(p∗). Our algorithm
then recursively builds hopsets on the small clusters. The exponential start time clustering

1A more detailed analysis leads to a tighter bound of Ω(exp(
√

log n))
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s t

c2
c1

vu

Figure 5.2: Interaction of a shortest path with the decomposition scheme. Hop set edges
connecting the centers of large clusters allow us to “jump” from the first vertex in a large
cluster (u), to the last vertex of a large cluster (v). The edges {u, c1}, {c2, v} are star edges,
while {c1, c2} is a clique edge.

algorithm guarantees that p∗ does not interact with too many such clusters, so once again we
can afford a reasonable distortion within each of them.

Formally, two parameters control the behavior of our algorithm: the parameter β with
which the clustering routine is run, and the threshold ρ by which a cluster is deemed large.
The algorithm then has the following main steps:

1. Compute an exponential start time clustering with parameter β

2. Identify clusters with more than n/ρ vertices as large clusters.

3. Construct star and clique edges from the centers of each large cluster.

4. Recurse on the small clusters.

Our choice of β at each level of the recursion is constrained by the additive distortion that we
can incur. Consider a cluster obtained at the ith level of the decomposition ran with parameter
βi. Since the path has length d and each edge is cut with probability βi, the path is expected
to be broken into βid pieces. Therefore on average, the length of each piece in a cluster is
about β−1

i . The diameter of a cluster in the next level on the other hand can be bounded by
kβ−1

i+1 log n, where the constant k ≥ 1 can be chosen to achieved the desired success probability
using Lemma 2.2.2. Therefore, we need to set βi+1 so that:

kβ−1
i+1 log n ≤ εβ−1

i

βi+1 ≥
(

kε−1 log n
)

βi.

In other words, the βs need to increase from one level to the next by a factor of kε−1 log n
where ε < 1 the distortion parameter. This means that the path p∗ is cut with granularity that
increases by a factor of O(ε−1 log n) each time. Note that the number of edges cut in all levels of
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the recursion serves as a rough estimate to the number of hops in our shortcut path. Therefore,
a different termination condition is required to ensure that the path is not completely shattered
by the decomposition scheme. As we only recurse on small clusters, if we require their size to
decrease at a much faster rate than the increase in β, our recursion will terminate with most
pieces of the path within large clusters. To achieve this, we introduce a parameter ρ to control
this rate of decrease. Given a cluster with n vertices, we designate a cluster Xi to be small if
|Xi| ≤ n/ρ. As our goal is a faster rate of decrease, we will set ρ =

(
kε−1 log n

)δ for some
δ > 1.

Pseudocode of our hopset construction algorithm is given in Algorithm 14. Two additional
parameters are needed to control the first and last level of the recursion: β = β0 is the de-
composition parameter on the top level, and nfinal is the base case size at which the recursion
stops.

We start with the following simple claim about the β parameters in the recursion.

Claim 5.2.1. If the top level of the recursion is called with β = β0 as the input parameter. then the
parameter β in itha level, denoted βi, is given by βi =

(
kε−1 log n

)i
β0.

We now describe how hopsets are used to speed up the parallel BFS. We prove the lemma
in the generalized weighted setting as it will become useful in Section 5.2.2.

Lemma 5.2.2. Given a weighted graph G = (V, E, w) with |V| = n and |E| = m, let E′ be the set of
edges added by running HopSet(V, E, β0). Then for any u, v ∈ V, we have with probability at least
1/2:

disth
E∪E′(u, v) ≤ distE(u, v) + O(ε logρ n · distE(u, v))

where h = n1−1/δ
final n1/δβ0distE(u, v).

Proof. Let p be any shortest path with endpoints u and v, we show how to transform it into
a path p′ satisfying the above requirements using edges in E′. In each level of the algorithm,
the clustering routine breaks p up into smaller pieces by cutting some edges of p. Consider an
input subgraph in the recursion that intersects the path p from vertex x to vertex y. The de-
composition partitions this intersection into a number of segments, each contained in a cluster.
Starting from x, we can identify the first segment that is contained in a large cluster, whose start
point is denoted by x′, and similarly we can find the last segment contained in a large cluster
with its end point denoted by y′. We drop all edges on p between x′ and y′ and reconnect
them using three edges (x′, c(x′)), (c(x′), c(y′)) and (c(y′), y′). We will refer to this procedure
as short-cutting. We then recursively build the shortcuts on each segment before u′ and after
v′. Note that these segments are all contained in small clusters, thus they are also recursed on
during the hopset construction. We stop at the base case of our hopset algorithm.
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We first analyze the number of edges in the final path p′, obtained by replacing some portion
of p with shortcut edges. The path p′ consists of edges cut by the decomposition, shortcut edges
that we introduced, and segments that are contained in base case pieces. It suffices to bound
the number of cut edges, as the segments in p′ separated by the cut edges have size at most the
size of the base case. Recall from Corollary 2.2.4 that any edge of length l(e) has probability
βl(e) of being cut in the clustering. Thus, the expected number of cut edges can be bounded
by

∑
e∈p

(
∑

i
βi

)
l(e) =

(
∑

i
βi

)
l(p).

Since βis are geometrically increasing, we can use the approximation ∑i βi ≈ βl , where l =

logρ n is the depth of recursion. Recalling that ρ = (kε−1 log n)δ:

βld =
(

kε−1 log n
)logρ

(
n

nfinal

)
β0d

=
(

ρ1/δ
)logρ

(
n

nfinal

)
β0d

=

(
n

nfinal

)1/δ

β0d.

As the recursion terminates when clusters have fewer than nfinal vertices, each path in such a
cluster can have at most nfinal hops. Multiplying in this factor gives n1/δn1−1/δ

final β0d.

Next we analyze the distortion introduced by p′ compared to the original path p. Short-
cutting in level i introduces an additive distortion of at most 4cβ−1

i log n. The expected number
of shortcut made in level i, in other words the expected number of cluster in (i − 1)th level
intersecting the path p, is bounded by βi−1d. Thus the amount of additive distortion introduced
in level i is at most

(βi−1d) · 4c log n
βi

= O(εd).

This gives an overall additive distortion of O(εd logρ n).

�

Lemma 5.2.3. If HopSet is run on a graph G with n vertices, it adds at most n star edges and
O
(
(n/nfinal) log2δ n

)
clique edges to G.

Proof. As we do not recurse on large clusters, each vertex is part of a large cluster at most once.
As a result, we add at most n edges as star edges in Line 17 of HopSet.

To bound the number of clique edges, we claim that the worst case is when we always
generate small clusters, except in the level above the base cases, where all the clusters are large.
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Suppose an adversary trying to maximize the number of clique edges decides which clusters
are large. Since we do not recurse on large clusters, if on any level above the base case we have
a large cluster, the adversary can always replace it with a small cluster, losing at most ρ clique
edges doing so (since there are at most ρ large clusters), and gain ρ2 edges in the next level
by making the algorithm recurse on that cluster. Since the base case clusters have size at most
nfinal, there are at most n/nfinal clusters in the level above, where each cluster adding at most ρ2

edges. Therefore at most (n/nfinal)ρ
2 = (n/nfinal)(log n/ε)2δ edges are added in total.

�

Theorem 5.2.4. Given constants δ > 1 and γ1 < γ2 < 1, we can construct a (ε log n, h, O(n))-hopset
on a graph with n vertices and m edges in O(nγ2 log2 n log∗ n) depth and O(m log1+δ nε−δ) work,
where h = n1+1/δ+γ1(1−1/δ)−γ2 .

Proof. The theorem statement can be obtained by setting β0 = n−γ2 and nfinal = nγ1 . The
correctness of the constructed hopset follows directly from Lemma 5.2.2, Lemma 5.2.3, and the
fact that any path in an unweighted graph has length at most n. Specifically, for any vertices u
and v with dist(u, v) = d, the expected hop-count is:

n1/δn1−1/δ
final β0d ≤ n1/δnγ1(1−1/δ2)n−γ2 n

= n1+1/δ+γ1(1−1/δ)−γ2

and the expected distortion is O(ε log n · d). By Markov’s inequality, the probability of both of
these exceeding four times their expected value is at most 1/2, and the result can be obtained
by adjusting the constants.

So we focus on bounding the depth and work. As the size of each cluster decreases by a fac-
tor of ρ from one level to the next, the number of recursion levels is bounded by logρ(n/nfinal).
As n/nfinal is polynomial in n with our choice of parameters, we will treat this term as log n.

The algorithm starts by calling HopSet(V, E, n−γ2). Since the recursive calls are done in
parallel, it suffices to bound the time spent in a single call on each level. Theorem 2.3.2 gives
that the clustering takes O(β−1 log n log∗ n) depth and linear work. Since the value of β only
increases in subsequent levels, all decompositions in each level of the recursion can be com-
puted in O(nγ2 log n log∗ n) depth and O(m) work. This gives a total of O(nγ2 log2 n log∗ n)
depth and O(m log n) work from Line 4. In addition, Line 17 can be easily incorporated into
the decomposition routine at no extra cost.

To compute the all-pair shortest distances between the centers of the large clusters (Line
22), we perform the parallel BFS by [UY91] from each of the centers. By Theorem 2.2.5, the
diameter of the input graphs to recursive calls after the top level is bounded by O(nγ2 log n).
Therefore the parallel BFS only need to be ran for O(nγ2 log n) levels. This gives a total depth
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of O(nγ2 log n log∗ n) and work of O(ρm) per level. Summing over O(log n) levels of recursion
gives O(nγ2 log2 n log∗ n) depth and O(ρm log n) = O(ε−δm log1+δ n) work.

�

The unweighted version of Theorem 5.1.2 then follows from Theorem 5.2.4 by setting δ =

1 + α, and solving h = nγ2 to balance the depth for hopset construction and the depth for
finding approximate distances using hopsets [KS97]. For a concrete example of setting these
parameters, δ = 1.1, ε = ε′

log n , γ2 = 0.96, and setting γ1 to some small constant leads to the
following bound.

Corollary 5.2.5. For any constant ε′ > 0, there exists an algorithm for finding (1 + ε′)-approximation
to unweighted s− t shortest path that runs in O(n0.96 log2 n log∗ n) depth and O(m log3.2 n) work.

5.2.2 Hopsets in Weighted Graphs

In this section we show how to construct hopsets in weighted graphs. We will assume that the
ratio between the longest and the shortest edge lengths is O(n3). This is due to a reduction
similar to the one by Klein and Subramanian [KS97] where they partitioned the edges into
buckets with lengths between powers of 2, and show that only considering edges from O(log n)
consecutive buckets suffices for approximate shortest path computation. This scheme can be
modified by choosing buckets with powers of n, and then considering a constant number
of consecutive buckets suffices for good approximations. This result is summarized in the
following lemma and a proof is provided in Appendix 5.3 for completeness.

Lemma 5.2.6. Given a weighted graph G = (V, E, w), we can efficiently construct a collection of graphs
with O(|V|) vertices and O(|E|) edges in total, such that the edge lengths in any one of these graphs are
within O(n3) of each other. Furthermore, given a shortest path query, we can map it to a query on one
of the graphs whose answer is a (1− ε)-approximation for the original query.

A simple adaptation of parallel BFS to weighted graphs can lead to depth linear in path
lengths, which can potentially be big even though the number of edge hops is small. To
alleviate this we borrow a rounding technique from [KS97]. The main idea is to round up small
edge lengths and pay a small amount of distortion, so that the search advances much faster.

Suppose we are interested in a path p with at most k edges whose length is between d and
cd. We can perturb the length of each edge additively by ζd

k without distorting the final length
by more than ζd. This value serves as the “granularity” of our rounding, which we denote
using ŵ:

ŵ =
ζd
k
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for some 0 < ζ < 1 and round the edge lengths l(e) to l̃(e)

l̃(e) =
⌈

l(e)
ŵ

⌉
.

Notice that this rounds edge lengths to multiples of ŵ. The properties we need from this
rounding scheme is summarized in the following lemma.

Lemma 5.2.7 (Klein and Subramanian [KS97]). Given a weighted graph and a number d. Under the
above rounding scheme, any shortest path p with size at most k and length d ≤ l(p) ≤ cd for some c in
the original graph now has length l̃(p) ≤ dck/ζe and ŵ · l̃(p) ≤ (1 + ζ)l(p).

Thus we only need to run weighted parallel BFS for O(ckζ−1) levels to recover p, giving
a depth of O(ckζ−1 log n). Therefore, if we set c = nη for some η < 1, and since the edge
lengths are within O(n3) of each other, we can just try building hopsets using O(3/η) estimates,
incurring a factor of O(3/η) in the work. As one of the values tried satisfies d ≤ l(p) ≤ cd,
Lemma 5.2.7 gives that if ζ is set to ε/2, an (1 + ε/2)-approximation of the shortest path in the
rounded graph is in turn an (1 + ε)-approximation to the shortest path in the original graph.
Therefore, from this point on we will focus on finding an (1+ ε)-approximation of the shortest
path in the rounded graph with lengths w̃(e). In particular, we have that all edge lengths are
positive integers, and the shortest path between s and t has length O(n1+η/ζ) = O(n1+η/ε).

Theorem 5.2.8. For any constants δ > 1 and γ1 < γ2 < 1, we can construct a (ε log n, h, O(n))-
hopset on a graph with n vertices and m edges in expected O((n/ε)γ2 log2 n log∗ n) depth and
O(m log1+δ nε−δ) work, where h = n1+1/δ+η+γ1(1−1/δ)−γ2 /ε1−γ2 .

Proof. Since the edge lengths are within a polynomial of each other, we can build O(1/η)

hopsets in parallel for all values of d being powers of nη . For any pair of vertices s and t,
one of the value tried will satisfy d ≤ dist(s, t) ≤ nηd. Given such an estimate, we first
perform the rounding described above, then we run Algorithm 14 with β = (n/ε)−γ2 and
nfinal = nγ1 . The exponential start time clustering in Line 4 takes place in the weighted setting,
and Line 22 becomes a weighted parallel BFS. The correctness of the hopset constructed follows
from Lemma 5.2.2, Lemma 5.2.3, and the fact that dist(s, t) = O(n1+η/ε) by the rounding.
Specifically, the expected hop count is

n1/δn1−1/δ
final βd ≤ n1/δnγ1(1−1/δ)

(n
ε

)−γ2 n1+η

ε

= n1+1/δ+η+γ1(1−1/δ)−γ2 /ε1−γ2

and the expected distortion is O(εd). By Markov’s inequality, the probability of both of these
exceeding four times their expected values is at most 1/2.

The number of recursion levels is still bounded by logρ n. Since the βs only increase, ac-
cording to Theorem 2.3.2 we spend O((n/ε)γ2 log n log∗ n) depth in each level of the recursion
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and O((n/ε)γ2 log2 n log∗ n) overall in Line 4. Since our decomposition is laminar, we spend
O(m) work in each level and O(m log n) overall in Line 4. Again, Line 17 can be incorporated
into the decomposition with no extra cost.

Since the diameter of the pieces below the top level is bounded by β−1 log n = (n/ε)γ2 log n
and the minimum edge length is one, Line 22 can be implemented by weighted parallel BFS in
depth O((n/ε)γ2 log n log∗ n) in one level and O((n/ε)γ2 log2 n log∗ n) in total. The work done
by the weighted parallel BFS is O(ρm) per level and O(ρm log n) = O(m log1+δ nε−δ) in total.

�

Theorem 5.1.2 then follows from Theorem 5.2.8 by adjusting the various parameters. Again,
to give a concrete example, we can set δ = 1.1, ε = ε′/(log n), γ2 = 0.96, and set γ1 and ζ to
some small constants to obtain the following corollary

Corollary 5.2.9. For any constant error factor ε′, there exists an algorithm for finding (1 + ε′)-
approximation to weighted s-t shortest path that runs in O(n0.96 log2 n log∗ n) depth and O(m log3.2 n)
work in a graph with polynomial edge length ratio.

Notice that with our current scheme it is not possible to push the depth under Õ(
√

n) as the
hop count becomes the bottle neck. A modification that allows us to obtain a depth of Õ(nα)

for arbitrary α > 0 at the expense of incurring more work can be found in Appendix 5.4.

5.3 Preprocessing of Weighted Graphs

Here we describe the reduction needed for the assumption of edge lengths being polynomially
bounded in Section 5.2.2. We will present a scheme for transforming a graph into a collection
of graphs where the ratio between the maximum and minimum edge lengths is at most O(n3)

in each graph. The total size of this collection is on the order of the original graph size, and
given any query, we can map it to a query on one of the graphs in this collection efficiently.
The technique presented is similar to the scheme used by Klein and Sairam [KS97]. They
partition edges into categories with lengths between consecutive powers of 2, and show that
only considering edges from O(log n) consecutive categories suffice for approximate shortest
path computation. We modify this scheme slightly by choosing categories by powers of n, and
show that picking a constant number of consecutive categories suffice.

We will divide the edges into successive categories according to their lengths, so that edge
lengths from non-consecutive categories differ significantly. If the shortest path needs to use
an edge from a category of very long length, any edges in shorter length categories can be
discarded with minor distortion. Thus setting lengths in these shorter categories to 0 does not
change the answer too much. As the graph is undirected, this is equivalent to constructing
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the quotient graph formed by contracting these edges. We then show that the total size of
these quotient graphs over all categories is small. This allows us to precompute all of them
beforehand, and use hopsets for one of them to answer each query. To simplify notations when
working with these quotient graphs, we use G/E′ to denote the quotient graph formed by
contracting a subset of edges E′ ⊆ E.

Given a weighted graph G = (V, E, w), we may assume that the minimum edge length is 1
by simplying renormalizing. Then we group the edges into categories as follows:

Ei =
{

e ∈ E | (n/ε)i ≤ l(e) < (n/ε)i+1
}

.

As the contractions are done to all edges belonging to some lower category, they correspond
to prefixes in this list of categories. We will denote these using Pj =

⋃j
i=0 Ei. Also, let

q(1), · · · , q(k) be the indices of the non-empty categories in G. Contracting E1, E2 . . . in or-
der leads to a laminar decomposition of the graph, which we formalize as a hierarchical length
decomposition:

Definition 5.3.1. A hierarchical length decomposition is defined inductively as follows.

• The vertices form the leaves. For convenience we say that the leaves form the 0th level and define
Eq(0) = ∅.

• Given the jth level whose nodes represent connected components of G[Eq(j)], we form the (j + 1)th

level by adding a node for each connected components of G[Eq(j+1)], and make it the parent of the
components in G[Eq(j)] it contains.

Lemma 5.3.2. A hierarchical weight decomposition can be computed in O(log3 n) depth and O(m log n)
work.

Proof. We first compute the non-empty categories Eq(1), · · · , Eq(k) where k ≤ m. Then we per-
form divide and conquer on the number of weight categories. Let Ej be the median weight
class, the connected components of G[Ej] can be computed using the graph connectivity algo-
rithm by Gazit [Gaz93] in O(log n) depth and |Ej| work. We then recurse on each connected
components and also on the quotient graph where all the components of G[Ej] are collapsed to
a point.

�

This then allows us to prove Lemma 5.2.6 at the start of Section 5.2.2 about only working
with graphs with polynomially bounded edge weights.

of Lemma. We first construct the decomposition tree from Definition 5.3.1. Once we have the
tree, given a query on the distance between s and t, we can find their least common ancestor
(LCA) in the tree using parallel tree contraction. Let j be the level the LCA of s and t is in,
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then we claim that we only need to consider edges in Eq(j−1) ∪ Eq(j) ∪ Eq(j+1). Since the LCA is
in jth level, the s− t shortest path uses at least one edge, say ej, from Eq(j). By definition, for
any edge ej−2 ∈ Pq(j−2), we have (n/ε)l(ej−2) ≤ l(ej). Since the s − t path can have at most
n− 1 edges, setting lengths of edges in Eq(j−2) to 0 incurs a multiplicative distortion of at most
ε. Moreover, edges in level j + 2 and above have weights at least (n/ε)l(e′), and since s and t
is in one connected components of G[Eq(j)], no edge in level j + 2 and above can be part of the
s− t shortest path.

Consider the induced subgraph G[Pq(j+1)] and its quotient graph where all edges in Pq(j−1)

are collapsed to points: G[Pq(j+1)]/Pq(j−1). Let s′ be the component in G[Eq(j−1)] containing
s and let t′ be the component that contains t. By the above argument, the shortest path be-
tween s′ and t′ in G[Pq(j+1)]/Pq(j−1) is an (1− ε)-approximation for the s− t shortest path in G.
Lemma 5.3.2 allows us to build the graphs G[Pq(j+1)]/Pq(j−1) for all j as part of the decompo-
sition tree construction without changing the total cost of constructing the hopsets. Each edge
of G appears at most three times in these quotient graphs, however the number of vertices is
equal to the size of the decomposition tree. We trim down this number by observing that any
chain in the tree of length more than three can be shortened to length three by throwing out the
middle parts as they will never be used for any query. This gives an overall bound of O(|V|).

�

5.4 Obtaining Lower Depth

We now show that the depth of our algorithms can be reduced arbitrarily to nα for any α > 0 in
ways similar to the Limited-Hopset algorithm by Cohen [Coh00]. So far, we have been trying to
approximate paths of potentially n hops with paths of much fewer hops. Consider the bound
from Theorem 5.2.4, which gives a hop count of n1+1/δ+γ1−γ2 for δ > 1 and γ1 < γ2 < 1. The
the first factor of n is a result of handling path containing up to n hops directly. We now show
a more gradual scheme that gradually reduces the length of these paths. Instead of reducing
the hop-count of paths containing up to n edges, we approximate n2η-hop paths with ones
containing nη hops for some small η. This routine can be applied to a longer path with k hops,
by breaking it into kn−2η ones of n2η hops each and apply the guarantee separately. If the
guarantee holds deterministically, we get an approximation with kn−η hops. Repeating this for
1/η steps would then lead to a low depth algorithm. However, the probabilistic guarantees of
our algorithms make it necessary to argue about the various piece simultaneously. This avoids
having probabilistic bounds on each piece separately, but rather one per weight class.

Lemma 5.4.1. Given a graph G = (V, E, w), let p1 . . . pt be a collection of disjoint paths hidden from
the program such that each pi has at most k = n2η hops and weight between d and dnη . For any failure
probability p f ailure, we can construct in O(nη/ε) depth and O(m log2+ 2

η n/ε) work a set of at most
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O(n1− η
2 ) edges E′ such that with probability at least 1− p f ailure there exist paths p′1 . . . p′t such that:

1. p′i starts and ends at the same vertices as pi.

2. The total number of hops in p′1 . . . p′t can be bounded by tnη .

3. ∑t
i=1 l(p′i) ≤ (1 + ε)∑t

i=1 l(pi).

Proof. We use the rounding scheme and construction for weighted paths from Section 5.2.2. We
first round the edge weights with ŵ = εdn−2η . As the paths have at most k = n2η edges, the
guarantees of Lemma 5.2.7 gives that the lengths of paths are distorted by a factor of (1 + ε).
Furthermore, this rounding leaves us with integer edge weights such that the total length of
each path is at most d = n3η/ε.

We can then call Algorithm 14 on the rounded graph with the following parameters:

δ =
2
η

,

β0 =

(
n3η

ε

)−1

=
1
d

,

nfinal = n
η
2 ,

ε′ =
ε

log n
.

By an argument similar to the proof of Theorem 5.2.8 and Lemma 5.2.2, this takes O((n2η/ε) log n logK nε)

depth and O(m log1+δ n/ε′) = O(m log2+ 2
η n/ε) work. Furthermore, for each pi, the expected

number of pieces that it is partitioned into is:

n
1
δ β0dnfinal = n

η
2 n

η
2 = nη

and if we take all shortcuts through centers of big clusters, the expected distortion is:

O(logρn
nε′d) = εd.

Applying linearity of expectation over all t paths gives that the expected total number of hops
is tnη , and the expected additive distortion is εdt. As both of these values are non-negative,
Markov’s inequality the probability of any of these exceeding 2

p f ailure
of their expected value is at

most p f ailure. Therefore, adjusting the constants and ε accordingly gives the guarantee. Finally,

the number of edges in the hopset can be bounded by n1−η log
4
η n ≤ n1− η

2 .

�

Then it suffices to run this routine for all values of d equaling to powers of nη . The fact
that edge weights are polynomially bounded means that this only leads to a constant factor
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overhead in work. Running this routine another nη times gives the hopset paths with arbitrary
number of hops.

Theorem 5.4.2. Given a graph G = (V, E, w) with polynomially bounded edge weights and any con-
stant α > 0, we can construct a (ε, nα, O(n))-hopset for G in O(nαε−1) depth and O(m logO( 1

α ) nε−1)

work

Proof. Let η = α/2. We will repeat the following 1
η times: run the algorithm given in Lemma 5.4.1

repeatedly for all values of d being powers of nη , and add the edges of the hopset to the current
graph. As the edge weights are polynomially bounded, there are O( 1

η2 ) invocations, and we
can choose the constants to that they can all succeed with probability at least 1/2. In this case,
we will prove the guarantees of the final set of edges by induction on the number of iterations.

Consider a path p with k hops. If k ≤ n2η , then the path itself serves as a k-hop equivalent.
Otherwise, partition the path into pieces with n2η hops, with the exception of possibly the last
n2η edges. Consider these sub-paths classified by their weights. The guarantees of Lemma 5.4.1
gives that each weight class can be approximated with a set of paths containing n−η as many
edges. Putting these shortcuts together gives that there is a path p′ with kn−η hops such that
l(p′) ≤ (1 + ε)l(p). Since p′ has fewer edges, applying the inductive hypothesis gives that p′

has an equivalent in the final graph with n2η hops that incurs a distortion of (1+(lognη k− 1)ε).
Multiplying together these two distortion factors gives that this path also approximates p with
distortion (1 + lognη kε). As k ≤ n and η is a constant, replacing ε with ηε gives the result.

�
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Algorithm 14 Unweighted-Hopset(G, β)

1: if then|V| ≤ nfinal

2: return ∅
3: end if
4: X ← ESTCluster(G, β)

5: if this is the top level call then
6: for each X ∈ X , in parallel do
7: HX ← Unweighted-Hopset(X, (kε−1 log n)β)

8: end for
9: return

⋃
X∈X HX

10: else
11: Xb ← {X ∈ X : |X| ≥ |V|/ρ} (the set of large clusters)
12: Xs ← {X ∈ X : |X| < |V|/ρ} (the set of small clusters)
13: H ← ∅
14: for each large cluster X ∈ Xl do
15: let c be the center of X
16: for vertex v ∈ X do
17: add a star edge between v and c with length dist(v, c) to H
18: end for
19: end for
20: for all pairs of large clusters X1, X2 ∈ X do
21: let c1 and c2 be the centers of X1 and X2 respectively
22: add a clique edge between c1 and c2 with length dist(c1, c2) to H
23: end for
24: for each small cluster X ∈ Xs, in parallel do
25: HX ← Unweighted-Hopset(X, (kε−1 log n)β)

26: end forreturn H ∪ (
⋃

X∈Xs
HX)

27: end if
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Chapter 6

Conclusions and Open Problems

In this thesis we presented efficient combinatorial algorithms that study the spectral properties
of graph Laplacians. Specifically we gave a simple parallel algorithm based on exponential start
time clustering for computing low diameter decompositions. We then applied this algorithm
to obtain improved constructions of graph spanners, spectral sparsifiers, and low stretch tree
embeddings suitable for fast graph Laplacian solvers. Given the ubiquitous applications of
graph Laplacians as well as the increasing number of recent theoretical work in the field of
spectral graph theory, the practicality of these algorithms becomes an important and intriguing
question.

Our exponential start time algorithm for low diameter graph decomposition already saw
a few practical successes due to its simplicity and parallel nature. Shun et al. [SDB14] gave
an efficient parallel implementation of this algorithm and applied it to the problem of parallel
graph connectivity. The closely related algorithms for graph spanners and sparsifiers have
also been applied to Laplacian smoothing by Sadhanala et al. [SWT16]. As for the other major
application of these algorithms, solving linear systems in graph Laplacians and SDD matrices,
is the topic of much ongoing and future work.

The first nearly linear time graph Laplacian solver studied in a practical setting is the flow
based solver of Kelner et al. [KOSZ13]. Recall from Section 1.1.2 that solving the linear system
in graph Laplacian Lx = b can be viewed as finding a voltage setting (the unknown vector x),
such that the induced electric flow satisfies the demand on the net incoming/outgoing flow
at each vertex specified by b. It turns out that this induced flow has the minimum electric
energy among all flows that satisfy the demand, and the Kelner et al. solver tries to directly
find such a flow. They start out by finding the (unique) flow that meets the demand on a low
stretch spanning tree, and iteratively improve its energy while staying as a feasible flow, by
updating the flow along fundamental cycles of the tree. Hoske et al. [HLMW15] conducted
an experimental work on this flow based solver and observed that the tree data structure is
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the major bottleneck of this algorithm. Subsequently Deweese et al. [DGM+
16] studied this

approach on the class of graphs where the low stretch spanning trees are a (Hamiltonian) path.
This assumption simplifies the data structure problem, and combined with a more efficient tree
data structure, we observed that the performance is competitive with some standard numeric
routines.

The natural next step is then to investigate the practicality of the recursive combinatorial
preconditioning framework based on low stretch trees. Compared to other existing combina-
torial preconditioning packages such as combinatorial multigrid [KMT11], this method have
a few potential drawbacks. First it relies on the ability to find high quality low stretch trees,
which is still a quite difficult problem in terms of having practical implementations. The other
potential drawback is the higher number of recursive calls as well as the more expensive iter-
ative method used, which can affect the running time by constant factors in practice. Thus it
would be beneficial to start by examining artificial graphs with low stretch trees already built-
in, and focus our attention on understanding with what types of graphs does being provably
fast gives this framework an edge over existing techniques. Alternatively, one could also ex-
plore possible practical compromises in order to obtain a fast solver, while still drawing ideas
developed from the literature.
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√
rank) iterations and faster algorithms for maxi-

mum flow. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, FOCS ’14, pages 424–433, Washington, DC, USA, 2014. IEEE
Computer Society.

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsifi-
cation. CoRR, abs/1702.08415, 2017.

[Mad10] Aleksander Madry. Fast approximation algorithms for cut-based problems in undi-
rected graphs. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 245–254, Washington, DC, USA, 2010. IEEE
Computer Society.

[Mad13] Aleksander Madry. Navigating central path with electrical flows: From flows to
matchings, and back. In Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on, pages 253–262, October 2013.

[MPVX15] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel
algorithms for spanners and hopsets. In Proceedings of the Twenty-seventh Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’15, New York,
NY, USA, 2015. ACM.

[MPX13] Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions
using random shifts. In Proceedings of the Twenty-fifth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’13, pages 196–203, New York, NY,
USA, 2013. ACM.

[MR85] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science, SFCS
’85, pages 478–489, Washington, DC, USA, 1985. IEEE Computer Society.

[MR89] Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. In
Silvio Micali, editor, Randomness and Computation, pages 47–72. JAI Press, Green-
wich, Connecticut, 1989. Vol. 5.

[OSV12] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating
the exponential, the Lanczos method and an Õ(m)-time spectral algorithm for
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