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Abstract
Homotopy type theory is a new field of mathematics based on the recently-

discovered correspondence between Martin-Löf’s constructive type theory and ab-
stract homotopy theory. We have a powerful interplay between these disciplines -
we can use geometric intuition to formulate new concepts in type theory and, con-
versely, use type-theoretic machinery to verify and often simplify existing mathe-
matical proofs. Higher inductive types form a crucial part of this new system since
they allow us to represent mathematical objects from a variety of domains, such as
spheres, tori, pushouts, and quotients, in the type theory.

In this thesis we formulated and investigated a class of higher inductive types
we call W-quotients which generalize Martin-Löf’s well-founded trees to a higher-
dimensional setting. We have shown that a propositional variant of W-quotients,
whose computational behavior is determined up to a higher path, is characterized
by the universal property of being a homotopy-initial algebra. As a corollary we
derived that W-quotients in the strict form are homotopy-initial. A number of other
interesting higher inductive types (such as spheres, suspensions, and type quotients)
arise as special cases of W-quotients, and the characterization of these as homotopy-
initial algebras thus follows as a corollary to our main result.

We have investigated further higher inductive types - arbitrary truncations, set
quotients, and groupoid quotients - and established analogous characterizations in
terms of the universal property of homotopy-initiality. Furthermore, we showed that
set and groupoid quotients can be recovered from W-quotients and truncations.
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1

Introduction

The mathematical discipline of type theory was developed by B. Russell as an alternative to
set theory which would not suffer from Russell’s paradox. A type theory is a deductive formal
system consisting of inference rules which specify how to assign a type to a term. In relation to
set theory, a type can thought of as a set and a term of a particular type as an element of this set.

Since its invention, type theory has been widely used as a basis for programming languages,
proof assistants, and formalization of mathematics (SML [24], Haskell [19], Coq [8, 32], Agda
[26], NuPRL [12], Twelf [27]). Among the most studied type theories is Martin-Löf’s intuition-
istic type theory ([20, 22]), also known as constructive or dependent type theory. It comes in two
general flavors - intensional and extensional - which differ in their treatment of equality between
terms. In the intensional system, we have two notions of equality: there is definitional equal-
ity, which is syntax-based and can only be reasoned about on the meta-level, and propositional
equality, which may be asserted and reasoned about from within the system. In the extensional
system, these two notions of equality coincide, which means that any two terms which are prov-
ably equal in the theory are considered syntactically interchangeable. Proofs of equality only
serve to establish this identification and do not hold any computational content of their own.
These features make extensional Martin-Löf’s type theory easier to use and more suited for im-
plementing everyday set-level mathematics.

On the other hand, the newly-developed field of homotopy type theory uncovers deep connec-
tions between (an extension of) intensional Martin-Löf’s type theory and the fields of abstract ho-
motopy theory, higher categories, and algebraic topology ([2, 6, 7, 9, 10, 14, 16, 34, 35, 37, 38]).
Insights from homotopy theory are used to add new concepts to the type theory, such as the
representation of various geometric objects as higher inductive types. Conversely, type theory is
used to formalize and verify existing mathematical proofs using proof assistants such as Coq and
Agda. Moreover, type-theoretic insights often help us discover novel proofs of known results
which are simpler than their homotopy-theoretic versions: the calculation of πn(Sn) ([13, 15]);
the Freudenthal Suspension Theorem [33]; the Blakers-Massey Theorem [33], etc.

As a formal system, homotopy type theory (HoTT) [33] extends intensional Martin-Löf type
theory with two features motivated by abstract homotopy theory: Voevodsky’s univalence axiom
([10, 37]) and higher inductive types ([17, 30]). The slogan in HoTT is that types are topological
spaces, terms are points, and proofs of identity are paths between points. The structure of an
identity type in HoTT is thus far more complex than just consisting of reflexivity paths [16, 34],
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despite the definition of IdA(x, y) as an inductive type with a single constructor 1x : IdA(x, x).
It is a beautiful, and perhaps surprising, fact that not only does this richer theory admit an inter-
pretation into homotopy theory ([2], [10]) but that many fundamental concepts and results from
mathematics arise naturally as constructions and theorems of HoTT.

For example, the circle S1 (see section 2.4) is defined as a higher inductive type with a point
base and a path loop going from base to itself. It comes with a recursion principle which says
that to construct a function f : S1 → X , it suffices to supply a point x : X and a loop based
at x. The value f(base) then computes to x. Such definitional computation rules are convenient
to work with but also pose some conceptual difficulties. For instance, an alternative encoding
of the circle as a higher inductive type S1

a specifies two points south, north and two paths from
north to south, called east and west. The recursion principle then says that in order to construct
a function f : S1

a → X , it suffices to supply two points x, y : X and two paths between them.
The values f(north) and f(south) then compute to x and y respectively.

We have a natural way of relating these two representations via an equivalence, i.e., a function
which has an inverse up to propositional equality: in one direction, map base to north and loop
to east; in the other direction, map both north and south to base and map east to loop and west to
the identity path at base. Unfortunately, the types S1, S1

a related this way do not satisfy the same
definitional laws, which poses a compatibility issue. Even more importantly, we do not have a
way of internalizing these notions of a circle and working with them inside the type theory, since
we can only talk about definitional equalities on the meta-level.

In this work we thus study higher inductive types abstractly, as arbitrary types endowed with
certain constructors and propositional computation behavior: in the case of S1, for example,
we say that a type C with constructors b : C and l : IdC(c, c) satisfies the recursion principle
for a circle if for any other type X , point x : X and loop based at x, there exists a function
f : C → X for which there is a path between f(b) and x (and which satisfies a higher coherence
condition). We note that we require no change to the underlying type theory: the particular
higher inductive type S1 just becomes a specific instance of the abstract definition of a circle,
one whose computation rules happen to hold definitionally.

A major advantage of types with propositional computation rules is that we can internalize the
definitions and reason about them within the type theory - and in particular, use proof assistants
to verify the results. In this respect, our work is complementary to [18], which gives an external,
category-theoretic semantics for a certain class of higher inductive types. Another advantage
of propositional computation behavior is portability: relaxing the computation laws satisfied by
the types S1 and S1

a to their propositional counterparts results in two notions of a circle that
are equivalent, in a precise sense. This in particular means that any type C which is a circle
according to one definition is also a circle according to the alternate definition. We can thus state
and prove results about either of these specifications, knowing that the proofs carry over to any
particular implementation - be it S1, S1

a, or a third one.
It further turns out that types with propositional rules tend to keep many of their desirable

properties; for instance, it can be shown that the main result of [15], that the fundamental group
of the circle is the group of integers, carries over to the case when both the circle and the inte-
ger types have propositional computational behavior. In addition, we can now show that higher
inductive types are characterized by the universal property of being a homotopy-initial algebra.
This notion was first introduced in [3], where an analogous result was established for the “ordi-
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nary” inductive type of well-founded trees (Martin-Löf’s W-types [21]). In the higher setting, an
algebra is a type X together with a number of finitary operations f, g, h . . ., which are allowed
to act not only on X but also on any higher identity type over X , for example IdX(. . . , . . .)
or IdIdX(...,...)(. . . , . . .). An algebra morphism has to preserve all operations up to propositional
equality. Finally, just as for W-types, we say that an algebra X is homotopy-initial if the type of
algebra morphisms from X to any other algebra Y is contractible, i.e., there exists a morphism
from X to Y which is unique up to propositional equality.

Our main theorem is stated for a class of higher inductive types which we call W-quotients;
they generalize ordinary W-types by allowing an arbitrary number of path constructors (which
construct canonical terms of the identity type over the higher inductive type X) in addition to the
ordinary point constructors (which construct canonical terms of the higher inductive type X it-
self). We show that the induction principle for W-quotients is equivalent (as a type) to homotopy-
initiality. This extends the main result of [3] for “ordinary” inductive types to the important, and
much more difficult, higher case. A number of other interesting higher inductive types, such
as spheres, suspensions, and type quotients (see 2.4) arise as special cases of W-quotients, and
the characterization of these as homotopy-initial algebras thus follows as a corollary to our main
result.

The chief significance of homotopy-initiality lies in its simplicity; the induction principle,
which involves dependent types, can be rather complicated to state and use even for higher in-
ductive types with relatively simple data, such as the torus. On the other hand, proving that
an algebra is homotopy-initial is generally a more pleasant endeavor, since we only have to
care about satisfying the universal property with respect to non-dependent types. Moreover, our
treatment is internal to the type theory and hence fully constructive and formalizable; this in par-
ticular means that once we prove that an algebra is homotopy-initial, we can run our algorithm
to automatically recover the term witnessing the induction principle.

We also investigate further higher inductive types - truncations 4.1, set quotients 4.2, and
groupoid quotients 4.3 - which do not arise as W-quotients in an obvious way, and establish
analogous characterizations in terms of homotopy-initiality. Furthermore, we show that set and
groupoid quotients can be recovered from W-quotients and truncations. Since recent work by
E. Rijke and F. van Doorn shows that truncations can be recovered from type quotients (which
are themselves subsumed by W-quotients) our result implies that set and groupoid quotients
are special cases of W-quotients. We conjecture that this holds for all higher inductive types
described in the first 9 chapters of [33].

If this is case, we would have one possible convincing answer to the still-open question of
“what is a higher inductive type”. As mentioned above, our approach is complementary to the
one pursued by M. Shulman and P. Lumsdaine [18], who aim to develop a unifying schema for
higher inductive types; the possible relationship and/or interplay between the two approaches is
unknown at this time. On the other hand, there is a strong relationship between our approach
and the work of van Doorn, Rijke, and others, on reducing general higher inductive types to a
combination of a few small “building blocks”. Finally, we designed all the proofs in this thesis
with the intent of formalization in the Coq proof assistant, which is a work in progress.

The remainder of the thesis is organized as follows. We first provide some background in
chapter 2, which summarizes the basic concepts in homotopy type theory and describes higher
inductive types. We also review the well-known result of P. Dybjer, which characterizes inductive
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types as initial algebras (in the setting of extensional type theory). In chapter 3, we introduce
the notions of algebras, morphisms, and homotopy-initiality for higher inductive types. We
give a formal definition of W-quotients and prove our main result - the characterization of W-
quotients as homotopy-initial algebras. We conclude the chapter by showing how to use the main
result to derive analogous characterizations for higher inductive types definable as W-quotients,
for example the circle. Finally, in chapter 4 we establish the characterization of truncations as
homotopy-initial algebras and present the reduction of set and groupoid quotients to W-quotients
(plus truncations). We derive the characterization of set and groupoid quotients as homotopy-
initial algebras as a corollary to this reduction.
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2

Background

We now review some background needed for the main chapters 3 and 4. In the first section,
we briefly describe the extensional and intensional varieties of dependent type theory and indi-
cate where homotopy type theory fits in the picture. The second section is devoted to the basic
concepts of homotopy type theory. In the third section, we discuss Martin-Löf’s W-types, a well-
studied class of inductive types which in the extensional setting subsumes many other inductive
types of interest such as natural numbers and lists. We give a syntactic presentation of Dybjer’s
result characterizing inductive types as initial algebras [5]; this sets the stage for the definitions
and results of chapter 3, where we move away from considering ordinary inductive types in the
extensional setting into the land of higher inductive types in the homotopy type-theoretic setting.
Finally, in the last section we describe higher inductive types by giving a number of specific
examples, which we will later revisit to indicate how they arise as special cases of our main
construction, the W-quotient.
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2.1 Intensional, Extensional, and Homotopy Type Theory
The core of Martin-Löf’s intensional type theory [20], denoted Hint, is a dependent type theory
with the following:
• Two main forms of judgment:

Γ ` a : A Γ ` a ≡ b : A

where the former stands for term membership, the latter for the definitional equality of two
terms, and Γ denotes a context of assumptions.

• A cumulative hierarchy of universes U0 : U1 : U2 : . . . in the style of Russell [28].
• Dependent pair types Σx:AB(x) and dependent function types Πx:AB(x) (with the non-

dependent versionsA×B andA→ B). We assume definitional η-conversion for functions
and pairs, both for the sake of simplicity and to stay close to the Coq [32] proof assistant,
which we intend to use for formalization.

• Identity types IdA(x, y), also denoted x =A y, obeying the following rules:

Id-formation rule.

Γ ` A : Ui Γ ` a : A Γ ` b : A

Γ ` IdA(a, b) : Ui

Id-introduction rule.

Γ ` a : A

Γ ` 1a : IdA(a, a)

Id-elimination rule.

Γ ` a : A Γ ` b : A Γ ` q : IdA(a, b)
Γ, x : A, y : A, p : IdA(x, y) ` E(x, y, p) : Uj Γ, x : A ` d(x) : E(a, a, 1a)

Γ ` J(x.y.p.E(x, y, p), x.d(x), a, b, q) : E(a, b, q)

Id-computation rule.

Γ ` a : A
Γ, x : A, y : A, p : IdA(x, y) ` E(x, y, p) : Uj Γ, x : A ` d(x) : E(a, a, 1a)

Γ ` J(x.y.p.E(x, y, p), x.d(x), a, a, 1a) ≡ d(a) : E(a, a, 1a)

If the type IdA(x, y) is inhabited, we say that x and y are (propositionally) equal. If we do
not care about the specific equality witness, we often simply say that x =A y or if the type
A is clear, x = y.

Martin-Löf’s extensional type theory [22], denoted Hext, is obtained by extending Hint with
the following rule:
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• Identity reflection.

Γ ` a : A Γ ` b : A Γ ` p : a =A b

Γ ` a ≡ b : A

Furthermore, the identity reflection rule implies the following:
• Uniqueness-of-identity-proofs principle (UIP) aka Streicher’s K [31]:

Γ ` a : A Γ ` b : A Γ ` p : a =A b Γ ` q : a =A b

Γ ` p =IdA(a,b) q

Another consequence of identity reflection is the principle of function extensionality, which states
that two pointwise-equal functions are equal as maps. This justifies the usage of the terminology
extensional type theory forHext.

In practice, we often extend the type theoriesHint andHext with specific inductive types, such
as finite types, coproducts, natural numbers, well-founded trees and so on. These type theories
admit a natural computational interpretation: for instance, it is possible to show that in the empty
context, every term of type N is definitionally equal to a numeral, a property known as the
canonicity for natural numbers. Intuitively, this is not surprising - since the only constructor for
identity types that we have available is reflexivity, we should always be able to reduce any term
involving an identity eliminator by using the computation rule for identity types (and similarly
for other type constructors). Translating this idea into a proof however requires a significant
amount of machinery [23].

In extensional type theory, the identity reflection rule makes propositional and definitional
equalities coincide. This makes the system significantly easier to work with and particularly
suitable for reasoning about sets as found in everyday mathematics. Here a proof of equality
does not carry any computational content - two objects can be equal in at most one way. The fact
that equality is no longer tied to the syntax leads to undecidable type checking, which, however,
does not have to prevent automation - the proof assistant NuPRL [12], which is also based on an
undecidable type theory, manages this by working with derivations of the typing judgment rather
than the terms themselves.

Inductive types in an extensional setting behave particularly nicely: for instance, they can be
characterized as the initial objects among certain algebras: the type of natural numbers N to-
gether with zero and the successor function is precisely the initial object among algebras formed
by a type C with a term c0 : C and a function cs : C → C.

This correspondence breaks down in intensional type theory as inductive types in this setting
tend to be rather poorly behaved. For instance, it is not true that there is a definitionally unique
function out of the empty type 0 into an arbitrary codomain C. The best we can do is to show
that any two such functions must be pointwise propositionally equal, which, in the absence of
function extensionality, does not even give us equality as functions. Right away we see that the
empty type cannot be characterized as being initial among all types and this pattern of course
carries over to other inductive types as well. As another consequence of this, we get that natural
numbers can no longer be encoded as Martin-Löf’s well-founded trees in any obvious way [5].
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Thus, most of the work on the theory of inductive types has traditionally been in the ex-
tensional setting (e.g. [5],[25],[1]). However, the technical difficulties associated with inductive
types in intensional type theory do not necessarily pose a problem when inductive types are
used as a device for programming. Furthermore, type checking in the absence of identity re-
flection remains decidable, which makes variants of intensional type theory a suitable choice for
application-oriented proof assistants such as Coq [32] and Agda [26].

Without identity reflection, two proofs of equality between a and b may or may not be equal
themselves. Similarly, two proofs of equality between two proofs of equality between a and b
may or may not be equal, and so on. Thus, in intensional type theory, proofs of equality carry
content and are hence better understood as paths between points (terms) in spaces (types). This
intuition is further justified by the fact that much like paths in topological spaces, proofs of
identity can be reversed, concatenated, transported along mappings, and so on. Furthermore, it
makes sense to talk about the space of all paths between a and b, the space of all paths between
p and q, where p, q are paths between a and b, and so on.

Despite the novel way of viewing proofs of equality as paths, as first observed independently
by Awodey/Warren, and Voevodsky, the purely intensional type theory discussed so far is rather
limiting since we have no other path constructors besides reflexivity. In particular, we have
no explicit way of constructing a path between two pointwise-equal functions or between two
isomorphic types in the same universe. Homotopy type theory provides us with both - and then
some. The core, denoted byH, is an extension of the theoryHint with the univalence axiom [37],
which can roughly be paraphrased as saying that isomorphic types are equal. We often extend
this system further with specific higher inductive types, which are a generalization of ordinary
inductive types. We will discuss these concepts in more detail in Sections 2.2 and 2.4.

The univalence axiom as well as (proper) higher inductive types give us new ways of con-
structing paths. This in particular leads to numerous examples of paths whose endpoints coincide
but which are provably not equal. Thus, the new system is inconsistent with UIP and the tradi-
tional set semantics is no longer sound. Instead, we can use the simplicial set model [10], the
cubical set model [4], or other related models, which are all highly nontrivial.

There are other far-reaching consequences of having nontrivial path constructors around: for
instance, what is the justification for the principle of identity elimination if the identity type has
other constructors besides reflexivity? In particular, what happens if we apply the eliminator to
a path which is not reflexivity? Can a certain form of canonicity still be recovered? These are
some of the more pressing open questions at the moment and are the subjects of intense ongoing
research, which we do not pursue in this thesis.

8



2.2 Homotopy Type Theory
In extensional type theory, a type can be interpreted as a set consisting of definitionally distinct
(equivalence classes of) terms with no non-trivial identity paths among them. In homotopy type
theory, this discrete interpretation is no longer valid. Instead, a type is better understood as a
structure loosely termed “∞-groupoid” [9, 16, 34], where at the lowest dimension we have all
the different terms (“points”), at the next dimension up we have all the different paths between
these points, a yet higher dimension has all the different paths between paths between points, and
so on.

A key notion in homotopy type theory [33] is that of an equivalence of types: two types
are called equivalent if there exists a function between them which has both a left and a right
inverse up to propositional equality (an equivalence). The univalence axiom then postulates
that the path space between any two types A,B : Ui in the universe can be characterized as
the type of equivalences between A and B. In particular, equivalent types are equal and are
thus indistinguishable from within the type theory. On the semantic side, examples of models
consisting of “∞-groupoids” which in addition satisfy univalence are provided by the simplicial
[10] and cubical [4] set models.

2.2.1 Groupoid Laws

Proofs of identity behave much like paths in topological spaces: they can be reversed, concate-
nated, mapped along functions, etc. Below we summarize a few of these properties:

• For any path p : x =A y there is a path p−1 : y =A x, and we have
(
1x)
−1 ≡ 1x.

• For any paths p : x =A y and q : y =A z there is a path p � q : x =A z, and 1x � 1x ≡ 1x.
• Associativity of composition: for any paths p : x =A y, q : y =A z, and r : z =A u we

have (p � q) � r = p � (q � r).
• We have 1x � p = p and p � 1y = p for any p : x =A y.

• For any p : x =A y, q : y =A z we have p � p−1 = 1x, p−1 � p = 1y, and (p−1)
−1

= p,
(p � q)−1

= q−1 � p−1.
• For any type family P : A → Ui and path p : x =A y there are functions pP∗ : P (x) →
P (y) and p∗P : P (y) → P (x), called the covariant transport and contravariant transport,
respectively. We furthermore have (1x)

P
∗ ≡ (1x)

∗
P ≡ idP (x).

• We have (p−1)
P
∗ = p∗P , (p−1)

∗
P = pP∗ and (p � q)P∗ = qP∗ ◦ pP∗ , (p � q)∗P = p∗P ◦ q∗P for any

family P : A→ Ui and paths p : x =A y, q : y =A z.
• For any function f : A → B and path p : x =A y, there is a path apf (p) : f(x) =B f(y)

and we have apf (1x) ≡ 1f(x).

• We have apf (p
−1) = apf (p)

−1 and apf (p � q) = apf (p) � apf (q) for any f : A → B and
p : x =A y, q : y =A z.

• We have apg◦f (p) = apg(apf (p)) for any f : A→ B, g : B → C and p : x =A y.
• For any f : Πx:AB(x) and path p : x =A y, there are paths dapf (p) : pB∗ (f(x)) =B(y) f(y)
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and dapf (p) : p∗B(f(y)) =B(x) f(x). We have dapf (1x) ≡ dapf (1x) ≡ 1f(x).
• All constructs respect propositional equality.

2.2.2 Truncation Levels
In general, the structure of paths on a type A can be rather complex - we can have many distinct
0-cells x, y, . . . : A; there can be many distinct 1-cells p, q, . . . : x =A y; there can be many
distinct 2-cells γ, δ, . . . : p =x=Ay q; ad infinitum. The hierarchy of truncation levels describes
those types which are, informally speaking, trivial beyond a certain dimension: a type A of
truncation level n, also called an n-type, can be characterized by the property that all m-cells for
m > n with the same source and target are equal. From this intuitive description we can see that
the hierarchy of truncation levels is cumulative, in the sense that if a type if of truncation level n,
then it is also of truncation level n+ 1.

It is customary to also speak of truncation levels −2 and −1, called contractible types and
mere propositions respectively:

Definition 1. A type A : Ui is called contractible if there exists a point a : A such that any other
point x : A is equal to a:

isContr(A) := Σa:AΠx:A(a =A x)

A type A : Ui is called a mere proposition if all its inhabitants are equal:

isProp(A) := Πx,y:A(x =A y)

A contractible type can be seen as having exactly one inhabitant, up to equality; a mere
proposition can be seen as having at most one inhabitant, up to equality. Clearly:

Lemma 2. If A : Ui is contractible then A : Ui is a mere proposition.

The existence of a path between any two points implies more than just path-connectedness:

Lemma 3. If A : Ui is a mere proposition, then x =A y is contractible for any x, y : A.

Thus, contractible types are in a sense the “nicest” possible: any two points are equal up to a
1-cell, which itself is unique up to a 2-cell, which itself is unique up to a 3-cell, and so on. Mere
propositions are the “nicest” ones after contractible types.

We can generalize the idea of the previous lemma to give a recursive definition of an n-type,
for n ≥ −2 (since we recurse on the natural numbers, we subtract 2):

Definition 4. We define a predicate is-(n− 2)-type : Ui → Ui by recursion on n : N as follows:

is-(−2)-type(A) := isContr(A)

is-(n− 1)-type(A) := Πx,y:Ais-(n− 2)-type(x =A y)

Using lemma 3, we can easily show the following:

Corollary 5. For n : N, if A : Ui is an (n− 2)-type then it is also an (n− 1)-type.

Corollary 6. For n : N, if A : Ui is an (n− 2)-type then for any x, y : A, the type x = y is also
an (n− 2)-type.
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2.2.3 Homotopies
A homotopy between two functions is in a sense a “natural transformation”:

Definition 7. For f, g : Πx:AB(x), we define the type

f ∼ g := Πa:AIdB(a)(f(a), g(a))

and call it the type of homotopies between f and g.
Definition 8. For f : A→ B and g : A′ → B, we define the type

f ∼H g := Πa:AΠa′:A′ IdB(f(a), g(a′))

and call it the type of heterogeneous homotopies between f and g.

We now observe the following:
• For any f, g : X → Y , p : x =X y, α : f ∼ g, there is a path

nat(α, p) : α(x) � apg(p) = apf (p) � α(y)

defined in the obvious way by induction on p and referred to as the naturality of the homo-
topy α. Pictorially, we have

nat(α, p)

f(x)

f(y)

g(x)

g(y)

apf (p)

α(x)

α(y)

apg(p)

• For any f, g : Πx:XY (x), p : x =X y, α : f ∼ g, there is a path

natF(α, p) : appY∗ (α(x)) � dapg(p) = dapf (p) � α(y)

defined in the obvious way by induction on p and referred to as the naturality of the
“fibered” homotopy α. Pictorially, we have

natF(α, p)

pY∗ (f(x))

f(y)

pY∗ (g(x))

g(y)

dapf (p)

appY∗ (α(x))

α(y)

dapg(p)

• For any f : X → Z, g : Y → Z, p : x1 =X x2, q : y1 =Y y2, α : f ∼H g, there is a path

natH(α, p, q) : α(x1, y1) � apg(q) = apf (p) � α(x2, y2)

defined in the obvious way by induction on p and q and referred to as the naturality of the
heterogeneous homotopy α. Pictorially, we have
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natH(α, p, q)

f(x1)

f(x2)

g(y1)

g(y2)

apf (p)

α(x1, y1)

α(x2, y2)

apg(q)

2.2.4 Equivalences
Definition 9. A map f : A→ B is called an equivalence if it has both a left and a right inverse:

isEq(f) :=
(
Σg:B→A(g ◦ f ∼ idA)

)
×
(
Σh:B→A(f ◦ h ∼ idB)

)
We define

(A ' B) := Σf :A→B isEq(f)

and call A and B equivalent if the above type is inhabited.

Unsurprisingly, we can prove that A and B are equivalent by constructing functions going
back and forth, which compose to identity on both sides1; this is also a necessary condition.

Lemma 10. Two types A and B are equivalent if and only if there exist functions f : A → B
and g : B → A such that g ◦ f ∼ idA and f ◦ g ∼ idB.

We will refer to such functions f and g as forming a quasi-equivalence and say that f and g
are quasi-inverses of each other. From this we can easily show:

Lemma 11. Equivalence of types is an equivalence relation.

We call A and B logically equivalent if there are exist functions f : A → B, g : B → A. It
is immediate that if both types are mere propositions then logical equivalence implies A ' B.
For example:

Corollary 12. For any A, isContr(A) ' A× isProp(A).

Corollary 13. For any A, is-(−1)-type(A) ' isProp(A).

2.2.5 Structure of Path Types
Let us first consider the product type A × B. We would like for two pairs c, d : A × B to be
equal precisely when their first and second projections are equal. By path induction we can easily
construct a function

=E×c,d : (c = d)→ (π1(c) = π1(d))× (π2(c) = π2(d))

We can show:

Lemma 14. The map =E×c,d is an equivalence for any c, d : A×B.

1Although the type of such functions itself is not equivalent to A ' B, see chapter 4 of [33].
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We will denote the quasi-inverse of =E×c,d by ×E=
c,d. We have a similar correspondence for depen-

dent pairs; however, the second projections of c, d : Σx:AB(x) now lie in different fibers of B
and we employ (covariant) transport. By path induction we can define a map

=EΣ
c,d : (c = d)→ Σ(p:π1(c)=π1(d))(p

B
∗ (π2(c)) = π2(d))

Lemma 15. The map =EΣ
c,d is an equivalence for any c, d : Σx:AB(x).

We will denote the quasi-inverse of =EΣ
c,d by ΣE=

c,d. We also have an analogous correspondence
using a contravariant transport.

We would like for two types A,B : Ui to be equal precisely when they are equivalent. As
before, we can easily obtain a function

=E'A,B : (A = B)→ (A ' B)

The univalence axiom now states that this map is an equivalence:
Axiom 1 (Univalence). The map =E'A,B is an equivalence for any A,B : Ui.
We will denote the quasi-inverse of =E'A,B by 'E=

A,B. It follows from univalence that equivalent
types are equal and hence they satisfy the same properties:

Lemma 16. (H) For any type family P : Ui → Uj , and types A,B : Ui with A ' B, we have
that P (A) ' P (B). Thus in particular, P (A) is inhabited precisely when P (B) is.

Finally, two functions f, g : Πx:AB(x) should be equal precisely when there exists a homo-
topy between them. Constructing a map

=EΠ
f,g : (f = g)→ (f ∼ g)

is easy. Showing that this map is an equivalence (or even constructing a map in the opposite
direction) is much harder, and is in fact among the chief consequences of univalence:

Lemma 17. (H,Hext) The map =EΠ
f,g is an equivalence for any f, g : Πx:AB(x).

Proof. See chapter 4.9 of [33].

We will denote the quasi-inverse of =EΠ
f,g by ΠE=

f,g. Function extensionality will turn out to be
crucial for most of the development in later chapters. As an example, we note that using lemma 3
and function extensionality, we can show the following:

Corollary 18. (H,Hext) For n : N, A : Ui, the types isContr(A), isProp(A), is-(n− 2)-type(A)
are all mere propositions.
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2.3 Inductive Types
In this section we give an overview of Martin-Löf’s well-founded trees [21], also known as W-
types, as a prominent example of an inductive type. The classical result by Dybjer [5] character-
izes W-types as initial algebras of polynomial endofunctors; here we present the type-theoretic
version of this correspondence, where we internalize the notions of algebras, morphisms, and
initiality using the propositions-as-types principle.

Formally, given a type A : Ui and a type family B : A→ Ui, the W-type W(A,B) : Ui is the
inductive type generated by the single constructor

sup : Πa:A(B(a)→ W(A,B))→ W(A,B)

W-types can be seen informally as the free algebras for signatures with operations of possibly
infinite arity, but no equations. Indeed, the parameters A and B can be thought of as specifying
a signature that has the elements of A as operations and where for any a : A, the type B(a)
represents the arity of the operation a. For instance, the obvious way to encode the type N of
natural numbers is to take A := 2 and B(>) := 0, B(⊥) := 1, where > represents the natural
number zero and ⊥ represents the successor operator. This encoding is adequate within exten-
sional type theory but, as remarked earlier, fails to exhibit the right computational behavior even
up to propositional equality when working in the purely intensional setting. Within homotopy
type theory, the computation laws can be recovered up to propositional equality.
The recursion principle for W(A,B) says that given terms
• E : Uj ,
• e : Πa:A(B(a)→ E)→ E,

there is a recursor recW(E, e) : W(A,B) → E. We usually omit the parameters E and e if they
are clear from the context. The recursor satisfies the computation law
• recW(sup(a, t)) ≡ e

(
a, recW ◦ t

)
for any a : A, t : B(a)→ W(A,B)

Similarly, we have an induction principle: given terms
• E : W(A,B)→ Uj ,
• e : Πa:AΠt:B(a)→W(A,B)

(
Πb:B(a)E(t b)

)
→ E(sup(a, t)),

there is an inductor indW(E, e) : Πw:W(A,B)E(w). As before, we usually omit E and e if they can
be inferred. The inductor satisfies the computation law
• indW(sup(a, t)) ≡ e

(
a, t, indW ◦ t

)
for any a : A, t : B(a)→ W(A,B)

To present Dybjer’s result, for the remainder of the section we work in extensional type
theory. We first note that the induction principle implies the following uniqueness principle:
given terms
• E : Uj ,
• e : Πa:A(B(a)→ E)→ E,
• f : W(A,B)→ E,
• β : Πa:AΠt:B(a)→W(A,B)

(
f(sup(a, t)) = e(a, f ◦ t)

)
,
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• g : W(A,B)→ E,
• γ : Πa:AΠt:B(a)→W(A,B)

(
g(sup(a, t)) = e(a, g ◦ t)

)
,

we have f = g. In other words, any two functions out of W(A,B) which satisfy the same
recurrence are equal. We have an analogous dependent version of the above uniqueness principle:
given terms
• E : W(A,B)→ Uj ,
• e : Πa:AΠt:B(a)→W(A,B)

(
Πb:B(a)E(t b)

)
→ E(sup(a, t)),

• f : Πw:W(A,B)E(w),
• β : Πa:AΠt:B(a)→W(A,B)

(
f(sup(a, t)) = e(a, t, f ◦ t)

)
,

• g : Πw:W(A,B)E(w),
• γ : Πa:AΠt:B(a)→W(A,B)

(
g(sup(a, t)) = e(a, t, g ◦ t)

)
,

we have f = g.

To show this, we use induction with the type family w 7→ f(w) = g(w). We need a term
of type Πa:AΠt:B(a)→W(A,B)

(
Πb:B(a)(f(t b) = g(t b))

)
→

(
f(sup(a, t)) = g(sup(a, t))

)
. Fix the

parameters a, t and the induction hypothesis u : Πb:B(a)(f(t b) = g(t b)). Using u with identity
reflection gives us f ◦ t ≡ g ◦ t. Together with the premises of the uniqueness rule (and identity
reflection again) this gives us f(sup(a, t)) ≡ g(sup(a, t)) as desired. The induction principle
thus establishes a pointwise equality between f and g and we appeal to function extensionality
to finish the proof. The simple uniqueness principle follows from the dependent one.

Based on the recursion and computation rules, we can internalize the well-known notions of
W-type algebras and morphisms as follows:

Definition 19. For A : Ui, B : A→ Ui, define the type of W-algebras on a universe Uj as

WAlgUj(A,B) := ΣC:UjΠa:A(B(a)→ C)→ C

Definition 20. For algebras X : WAlgUj(A,B) and Y : WAlgUk(A,B), define the type of W-
morphisms from X to Y by

WMor (C, c) (D, d) := Σf :C→DΠa:AΠt:B(a)→C
(
f(c(a, t)) = d(a, f ◦ t)

)
We note that in order to form the type of morphisms, we had to use propositional rather

than definitional equality. Of course, in the setting of an extensional type theory this distinction
is immaterial; however, it will become important in section 3. The recursion principle now
becomes a property internal to the type theory and can be expressed compactly as saying that
there is a morphism into any other algebra Y:

Definition 21. An algebra X : WAlgUj(A,B) satisfies the recursion principle on a universe Uk
if for any algebra Y : WAlgUk(A,B) there exists a morphism from X to Y:

hasWRecUk(X ) :=
(
ΠY : WAlgUk(A,B)

)
WMor X Y

To express the induction principle in a similar fashion, we first need to introduce dependent
or fibered versions of algebras and algebra morphisms:
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Definition 22. For an algebra X : WAlgUj(A,B), define the type of fibered W-algebras over X
on a universe Uk by

WFibAlgUk (C, c) := ΣE:C→UkΠa:AΠt:B(a)→C
(
Πb:B(a)E(t b)

)
→ E(c(a, t))

Definition 23. For algebras X : WAlgUj(A,B) and Y : WFibAlgUk X , define the type of fibered
W-morphisms from X to Y by

WFibMor (C, c) (E, e) := Σf :(Πx:C)E(x)Πa:AΠt:B(a)→C
(
f(c(a, t)) = e(a, t, f ◦ t)

)
Definition 24. An algebra X : WAlgUj(A,B) satisfies the induction principle on a universe Uk
if for any fibered algebra Y : WFibAlgUk X there exists a fibered morphism from X to Y:

hasWIndUk(X ) :=
(
ΠY : WFibAlgUk X

)
WFibMor X Y

Furthermore, the uniqueness principles motivate the following definitions:

Definition 25. An algebra X : WAlgUj(A,B) satisfies the recursion uniqueness principle on a
universe Uk if for any algebra Y : WAlgUk(A,B) any two morphisms from X to Y are equal:

hasWRecUniqUk(X ) :=
(
ΠY : WAlgUk(A,B)

)
isProp(WMor X Y)

Definition 26. An algebra X : WAlgUj(A,B) satisfies the induction uniqueness principle on a
universe Uk if for any fibered algebra Y : WFibAlgUk X any two fibered morphisms from X to Y
are equal:

hasWIndUniqUk(X ) :=
(
ΠY : WFibAlgUk X

)
isProp(WFibMor X Y)

The uniqueness principles as in Defs. 25, 26 require that any two morphisms (f, β) and
(g, γ) be equal as pairs; however, in the presence of UIP this is the same as saying that their first
components agree, i.e., that f = g (and hence f ≡ g).

Definition 27. An algebra X : WAlgUj(A,B) is initial on a universe Uk if for any algebra
Y : WAlgUk(A,B) there exists a unique morphism from X to Y:

isWInitUk(X ) :=
(
ΠY : WAlgUk(A,B)

)
isContr(WMor X Y)

The contractibility requirement precisely captures the notion of initiality: in the presence
of the identity reflection rule, a contractible type is one which contains a definitionally unique
element.

Note: We have used the concepts of contractibility and mere propositions, which were in-
troduced in section 2.2 in the context of homotopy type theory; however, these definitions are
perfectly applicable in the setting of extensional/intensional type theory as well. Clearly:

Lemma 28. For an algebra X : WAlgUj(A,B) we have

isWInitUk(X ) ↔ hasWRecUk(X )× hasWRecUniqUk(X )

We have the following relationship between the fibered and non-fibered versions of W-
algebras and morphisms:
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Lemma 29. For an algebra X : WAlgUj(A,B) we have a function

WAlgToFibAlgUk(X ) : WAlgUk(A,B) → WFibAlgUk X

Proof. Let algebras (C, c) : WAlgUj(A,B) and (D, d) : WAlgUk(A,B) be given. We turn (D, d)
into the desired fibered algebra (E, e) : WFibAlgUk (C, c) by puttingE(x) := D and e(a, t, u) :=
d(a, u).

Remark 30. We note that for any algebras X : WAlgUj(A,B) and Y : WAlgUk(A,B) we have

WMor X Y ≡ WFibMor X
(

WAlgToFibAlgUk(X ) Y
)

The previous two observations immediately imply the following:
Lemma 31. If an algebra X : WAlgUj(A,B) satisfies the induction principle on the universe Uk,
then it satisfies the recursion principle on Uk. In other words, we have

hasWIndUk(X ) → hasWRecUk(X )

Lemma 32. If an algebra X : WAlgUj(A,B) satisfies the induction uniqueness principle on the
universe Uk, then it satisfies the recursion uniqueness principle on Uk. In other words, we have

hasWIndUniqUk(X ) → hasWRecUniqUk(X )

The next lemma in particular shows that it is not necessary to have a “fibered” version of the
initiality property, which quantifies over all fibered algebras Y : WFibAlgUk X .
Lemma 33. (Hext) If an algebra X : WAlgUj(A,B) satisfies the induction principle on the
universe Uk, then it satisfies the induction uniqueness principle on Uk. In other words, we have

hasWIndUk(X ) → hasWIndUniqUk(X )

Proof. The proof is analogous to the one showing that the induction principle implies the depen-
dent uniqueness principle, except as in the proof of the previous lemma, we use the language of
algebras and morphisms.

Fix an algebra (C, c) : WAlgUj(A,B) and assume that hasWIndUk(C, c) holds. To prove that
hasWIndUniqUk(C, c) holds, take any fibered algebra (E, e) : WFibAlgUk (C, c) and morphisms
(f, β), (g, γ) : WFibMor (C, c) (E, e). Because of UIP, showing (f, β) = (g, γ) is equivalent to
showing f = g.

To do this, we use the induction principle with the fibered algebra (E ′, e′) : WFibAlgUk (C, c)
whereE ′(x) := (f(x) = g(x)) and e′(a, t, u) := 1f(c(a,t)). This is indeed well-typed since β(a, t)
gives us f(c(a, t)) ≡ e(a, t, f ◦ t) and γ(a, t) gives us g(c(a, t)) ≡ e(a, t, g ◦ t) and u gives us
f ◦ t ≡ g ◦ t, hence we have f(c(a, t)) ≡ g(c(a, t)).

The first component of the resulting morphism from (C, c) to (E ′, e′) together with function
extensionality then gives us f = g as desired.

Corollary 34. (Hext) If an algebra X : WAlgUj(A,B) satisfies the induction principle on the
universe Uk, then it is initial on Uk. In other words, we have

hasWIndUk(X ) → isWInitUk(X )
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Lemma 35. (Hext) If an algebraX : WAlgUj(A,B) satisfies the recursion and recursion unique-
ness principles on the universe Uk and k ≥ j, then it satisfies the induction principle on Uk. In
other words, we have

hasWRecUk(X )× hasWRecUniqUk(X ) → hasWIndUk(X )

provided k ≥ j.

Proof. Let an algebra (C, c) : WAlgUj(A,B) be given and assume that hasWRecUk(C, c) and
hasWRecUniqUk(C, c) hold. To prove that hasWIndUk(C, c) holds, fix a fibered algebra (E, e) :
WFibAlgUk (C, c). We use the recursion principle with the algebra (D, d) : WAlgUk(A,B) where
D := Σx:CE(x) and d(a, u) :=

(
c(a, π1◦u), e(a, π1◦u, π2◦u)

)
. We note that the typeD belongs

to Uk as j ≤ k. The recursion principle then gives us a morphism (f, β) : WMor (C, c) (D, d),
where f : C → Σx:CE(x) and β : Πa:AΠt:B(a)→C

(
f(c(a, t)) = d(a, f ◦ t)

)
. Hence, for any a, t

we have
f(c(a, t)) ≡

(
c(a, π1 ◦ f ◦ t), e(a, π1 ◦ f ◦ t, π2 ◦ f ◦ t)

)
(?)

We now want to show that the function π1 ◦ f : C → C is in fact the identity on C. We can
do this by endowing both of the functions π1◦ and idC with a morphism structure on the algebra
(C, c); by the recursion uniqueness principle it will follow that these morphisms are equal, and
in particular they are equal as maps. For the identity function, this reduces to showing that for
any a, t, we have c(a, t) = c(a, t), which is obvious. For the function π1 ◦ f , we need to show
that for any a, t, we have π1(f(c(a, t))) = c(a, π1 ◦ f ◦ t). But this follows by applying the first
projection to (?).

The recursion uniqueness principle tells us that the two morphisms just constructed are equal
and in particular, we have π1 ◦ f ≡ idC . This means that the map π2 ◦ f has the desired type
Πx:CE(x) and it remains to show that it can be endowed with a fibered morphism structure on
(E, e), i.e., that for any a, t we have π2(f(c(a, t))) = e(a, t, π2 ◦ f ◦ t). This follows by applying
the second projection to (?) and using the aforementioned result that π1 ◦ f ≡ idC .

Corollary 36. (Hext) For A : Ui, B : A → Ui, the following conditions on an algebra X :
WAlgUj(A,B) are logically equivalent:
• X satisfies the induction principle on the universe Uk
• X is initial on the universe Uk

for k ≥ j. In other words, we have

hasWIndUk(X ) ↔ isWInitUk(X )

provided k ≥ j.

Corollary 37. (Hext + W) For A : Ui, B : A→ Ui, the algebra(
W(A,B), sup

)
: WAlgUi(A,B)

is initial on any universe Uj .
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2.4 Higher Inductive Types
An inductive type X can be understood as being freely generated by a collection of constructors:
in the familiar case of natural numbers, we have the two constructors for zero and successor. The
property of being freely generated can be roughly stated as an induction principle: in order to
show that a property P : N → Ui holds for all n : N, it suffices to show that it holds for zero
and is preserved by the successor operation. As a special case, we get the recursion principle: in
order to define a map f : N→ C, is suffices to determine its value at zero and its behavior with
respect to successor.

Moreover, the induction principle (with function extensionality) implies that any two func-
tions out of N which satisfy the same recurrence are equal. This suggests another, perhaps more
familiar notion of being freely-generated, in the sense that there is an essentially unique homo-
morphism from X to any other structure having the same form - in the case of natural numbers,
the structures are triples (C, z, s) where C is a type and z : C, s : C → C are terms. In
[3], we showed that these two notions of freeness coincide for ordinary inductive types in the
homotopy-type-theoretic setting.

Higher inductive types generalize ordinary inductive types by allowing constructors involving
path spaces of X rather than just X itself, as the next example shows.

2.4.1 The Circle
The circle S1 ([15, 17, 30], chapter 6.2 of [33]) is represented as an inductive type S : U0 with
two constructors:

base : S

loop : base =S base

pictured as

base

loop

This in particular means that we have further paths, such as loop−1 � loop � loop � 1base (which is
equal to loop). We can reason about the circle using the principle of circle recursion, which tells
us that given terms
• C : Ui,
• c : C,
• s : c = c,

there is a recursor recS(C, c, s) : S→ C. The recursor satisfies the computation laws
• recS(base) ≡ c,
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• aprecS
(loop) = s.

The second rule type-checks by virtue of the first one. We note that in order to record the effect of
the recursor on the path loop, we use the “action-on-paths” construct ap. Since this is a derived
notion rather than a primitive one, we state the rule as a propositional rather than definitional
equality.

We also have the more general principle of circle induction, which subsumes recursion. In-
stead of a type C : Ui we now have a type family E : S → Ui. Where previously we required
a point c : C, we now need a point e : E(base). Finally, an obvious generalization of needing
a loop s : c =C c would be to ask for a loop d : e =E(base) e. However, this would be incor-
rect: once we have our desired inductor of type Πx:SE(x), its effect on loop is not a loop at e
in the fiber E(base) but a path from loopE∗ (e) to e in E(base) (or its contravariant version). The
induction principle thus takes the following form: given terms
• E : S→ Ui,
• e : E(base),
• d : loopE∗ (e) = e,

there is an inductor indS(E, e, d) : Πx:SE(x). The inductor satisfies the computation laws
• indS(base) ≡ e,
• dapindS

(loop) = d.

2.4.2 The Circle, Round Two
We could have alternatively represented S1 as an inductive type S : U0 with four constructors
(chapter 6.4 of [33]):

north : S
south : S

east : north =S south

west : north =S south

pictured as
north

south

east west

The recursion principle now says that given terms
• C : Ui,
• c : C,
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• d : C,
• p : c = d,
• q : c = d,

there is a recursor recS(C, c, d, p, q) : S→ C. The recursor satisfies the computation laws
• recS(north) ≡ c,
• recS(south) ≡ d,
• aprecS

(east) = p,
• aprecS

(west) = q.

The corresponding induction principle says that given terms
• E : S→ Ui,
• u : E(north),
• v : E(north),
• µ : eastE∗ (u) = v,
• ν : westE∗ (u) = v,

there is an inductor indS(E, u, v, µ, ν) : Πx:SE(x). The inductor satisfies the computation laws
• indS(north) ≡ u,
• indS(south) ≡ v,
• dapindS

(east) = µ,
• dapindS

(west) = ν.

In section 3.1, we will return to the two different definitions of a circle and examine how they
relate to each other.

2.4.3 The Interval
The interval type I : U0 ([17, 29, 30], chapter 6.3 of [33]) is a simple higher inductive type
generated by two points and a path connecting them:

0I : I
1I : I

seg : 0I =I 1I

pictured as

0I 1I
seg

The recursion principle now says that given terms
• C : Ui,
• c : C,
• d : C,
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• p : c = d,

there is a recursor recI(C, c, d, p) : I→ C. The recursor satisfies the computation laws
• recI(0I) ≡ c,
• recI(1I) ≡ d,
• aprecI

(seg) = p.

The corresponding induction principle says that given terms
• E : I→ Ui,
• u : E(0I),
• v : E(1I),
• µ : segE∗ (u) = v,

there is an inductor indI(E, u, v, µ) : Πx:IE(x). The inductor satisfies the computation laws
• indI(0I) ≡ u,
• indI(1I) ≡ v,
• dapindI

(seg) = µ.

It is easy to show that the interval is contractible (see chapter 6.3 of [33]); however, it still has
some interesting properties. For instance, the existence of an interval by itself implies function
extensionality ([29], chapter 6.3 of [33]).

2.4.4 Suspensions
If we look at the specification of the higher inductive types S and I, we see that they are both
generated by two points (north, south for S and 0I, 1I for I) and a given number of paths between
them (the two paths east, west for S and the single path seg for I). Suspensions ([17], chapter 6.5
of [33]) generalize this observation by allowing an arbitrary number of path generators between
the distinguished points. Formally, given a type A : Ui, the suspension ΣA : Ui is the higher
inductive type generated by the two constructors

N : ΣA

S : ΣA

mer : Πa:A

(
N =ΣA S

)
pictured as

N

S

mer(a) mer(a′). . .
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Hence, for each a : A we get one “meridian” mer(a) running from the “north” N to the “south”
S. The recursion principle for the suspension ΣA says that given terms
• C : Uj ,
• c : C,
• d : C,
• p : Πa:A(c = d),

there is a recursor recΣA(C, c, d, p) : ΣA→ C. The recursor satisfies the computation laws
• recΣA(N) ≡ c,
• recΣA(S) ≡ d,
• aprecΣA

(mer(a)) = p(a) for any a : A.

The corresponding induction principle says that given terms
• E : ΣA→ Uj ,
• u : E(N),
• v : E(S),
• µ : Πa:A

(
segE∗ (u) = v

)
,

there is an inductor indΣA(E, u, v, µ) : Πx:ΣAE(x). The inductor satisfies the computation laws
• indΣA(N) ≡ u,
• indΣA(S) ≡ v,
• dapindΣA

(mer(a)) = µ for any a : A.

It is easy to see that we can describe the types I and S as the suspensions Σ1 and Σ2 respec-
tively, and that the type 2 itself arises as the suspension Σ0. Moreover, it turns out the suspension
ΣS (or Σ(Σ2)) looks very much like the ordinary 3-dimensional sphere S2:

N

S

east

west

mer(north) mer(south)

As we can see in the above picture, for any point x : S, and in particular for north and south,
we get a path mer(x) running from N to S, giving us the full sphere S2. Using this idea ([17]
chapter 6.5 of [33]), we can define the n-sphere recursively:
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Definition 38. We define a type Sn−1 by recursion on n : N as follows:

S−1 := 0

Sn := ΣSn−1

One can show that spheres defined as above indeed have many of the familiar mathematical
properties that one would expect (see [13, 15], notes in chapter 8 of [33]).

2.4.5 Type Quotients
As we saw in the previous section, suspensions allow us to specify an arbitrary number of path
constructors between the two points N and S. We can take this idea further by also allowing an
arbitrary number of point constructors. Type quotients [36] accomplish just that: formally, for a
type A : Ui and a type-family R : A → A → Ui we define A/R : Ui to be the higher inductive
type generated by the constructors

point : A→ A/R

cell : Πa,b:AR(a, b)→ (point(a) = point(b))

The type A can be understood as the type of labels for point constructors and for each a, b : A,
the type R(a, b) can be understood as the type of labels for path constructors between the points
labeled by a and b. The recursion principle for type quotients says that given terms
• E : Uj ,
• f : A→ E,
• p : Πa,b:AR(a, b)→ (f(a) = f(b)),

there is a recursor rec·/·(E, f, p) : A/R→ E. The recursor satisfies the computation laws
• rec·/·(point(a)) ≡ f(a) for any a : A,
• aprec·/·

(cell(z)) = p(z) for any a : A, b : A, z : R(a, b).

Similarly, we have an induction principle: given terms
• E : A/R→ Uj ,
• f : Πa:AE(point(a)),
• p : Πa,b:AΠz:R(a,b)

(
cell(z)E∗ f(x) = f(y)

)
,

there is an inductor ind·/·(E, f, p) : Πx:A/RE(x). The inductor satisfies the computation laws
• ind·/·(point(a)) ≡ f(a) for any a : A,
• dapind·/·

(cell(z)) = p(z) for any a : A, b : A, z : R(a, b).

Recent work by F. van Doorn [36], Egbert Rijke, and others shows that despite their relative
simplicity, type quotients are a quite general class of higher inductive types, in the sense that
many other higher inductive types (such as any of the previous ones presented in this section
and propositional truncations), can be reduced to special cases of type quotients, although this
reduction can be highly non-trivial).
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3

W-quotients and Homotopy-initiality

In this chapter we describe the main contributions, most of which revolve around the notion of
homotopy-initiality, originally introduced in [3]. As the name suggests, this universal property
generalizes the category-theoretic concept of “initiality” to the homotopy-type-theoretic setting.
Its major significance is that it is equivalent to the induction principle but often simpler to state
and prove: the induction principle for a higher (or even an ordinary) inductive type involves
dependent types and as such can be rather hard to understand (let alone establish in a model).
Even for higher inductive types generated by relatively simple data, such as the torus, the full
induction principle can be rather convoluted and tedious to work with. Working with homotopy-
initiality, on the other hand, tends to be simpler since we only have to care about satisfying
the universal property with respect to non-dependent types. Moreover, all proofs we give are
internal to the type theory and hence fully constructive and formalizable; this in particular means
that once we prove that an algebra is homotopy-initial, we can run our algorithm to automatically
recover the term witnessing the induction principle.

The first section of this chapter serves to introduce the notion of algebras, morphisms, and
the associated recursion, induction, and homotopy-initiality principles for the higher inductive
types introduced in chapter 2.4. We start by showing how this generalized setting allows us
to overcome certain drawbacks introduced by relying on specific definitional behavior of some
higher inductive types (corollaries 61, 62).

The second section describes W-quotients, which are the central construction in the thesis.
The third section is entirely devoted to proving the main result (theorem ). The proof itself relies
on a series of steps, which we give as separate lemmas but which are useful on their own: for
example, lemmas 91 and 101 characterize the path space between two algebra morphisms as the
type of cells, and can be thought of as principles of “univalence” for the type of morphisms.

The last section focuses on showing that the higher inductive types introduced in chapter 2.4
are really just special cases of W-quotients. We show this in a precise sense and in the process
derive the homotopy-initiality characterization for these higher inductive types (e.g., corollaries
113, 114, 115).

25



3.1 Algebras for Higher Inductive Types
In section 2.3 we introduced the type-theoretic counterparts of the notions of algebras, mor-
phisms, and initiality for W-types [3], and used them to establish a syntactic version of the
well-known result by Dybjer [5], which characterizes W-types in extensional type theory as pre-
cisely the initial algebras. As given, our definitions make perfect sense even in the absence of
identity reflection and UIP - except, of course, they no longer internalize the concepts of (strict)
morphisms and initiality, but rather their “up-to-homotopy” counterparts. In the intensional set-
ting, we still want to refer to maps which preserve the algebra structure as morphisms, albeit in a
more general sense; however, we replace initiality by homotopy-initiality, which internalizes the
notion of existence plus uniqueness as contractibility:

Definition 39. An algebra X : WAlgUj(A,B) is homotopy-initial on a universe Uk if for any
algebra Y : WAlgUk(A,B), the type of W-morphisms from X to Y is contractible:

isWHInitUk(X ) :=
(
ΠY : WAlgUk(A,B)

)
isContr(WMor X Y)

As noted in chapter 2, the contractibility requirement implies that there exists a morphism
from X to Y which is unique up to a higher path, which is itself unique up to a yet higher path,
and so on. As we showed in [3], this is precisely the universal property characterizing W-types in
homotopy type theory; in fact, the notions of what it means to be a W-type and a homotopy-intial
algebra are equivalent mere propositions. Our goal in this chapter is to establish an analogous
equivalence for a reasonably large class of higher inductive types. We start by revisiting our
running example of the circle.

3.1.1 Circle Algebras
In section 2.4, we gave two definitions of the unit circle as a higher inductive type. It is not hard
to show that the two types are equivalent (chapter 6.5 of [33]):

Lemma 40. (Hint + S + S) We have S ' S.

Proof sketch. From left to right, map base to north and loop to east � west−1. From right to left,
map both north and south to base, east to loop, and west to 1base. Using the respective induction
principles, show that these two mappings compose to identity on both sides.

In particular, the types S and S satisfy the same properties (see Lem. 16). We would thus
expect the induction principle for S to carry over to S, and vice versa. Indeed, with a little effort
we can show the former:

Lemma 41. (Hint +S) The type S satisfies the induction and computation laws for S, with north
acting as the constructor base and east � west−1 acting as the constructor loop.

In the other direction, though, we hit a snag - the only obvious choice we have is to define
both points north and south to be base, one of the paths west and east to be loop, and the other
one the identity path at base. This, however, does not give us the desired induction principle:
unless the two given points u : E(base) and v : E(base) happen to be definitionally equal, we
will not be able to map base to both of them, as required by the computation rules.
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This poses more than just a conceptual problem - in mathematics, we often have several
possible definitions of a given notion, all of which are interchangeable from the point of view
of a “user”. Having two definitions of a circle which are not (known to be) interchangeable,
however, can be problematic: any theorem we establish about or by appealing to S might no
longer hold - or even type-check! - when using S instead. As an example, take the second
computation law for S, dapindS(E,u,v,µ,ν)(west) = ν. If we attempt to “implement” S using the
circle S instead - by taking north, south := base, east := loop, west := 1base - the computation
law is no longer well-typed since the left-hand side reduces to a reflexivity path whereas the right
hand side is a path from u to v. The issue associated with having different representations is not
specific to higher inductive types: a similar problem arises when we encode natural numbers as
a W-types. In this representation, we can show that the computation rule for the successor holds
up to propositional equality but have no (known) way to make it hold definitionally.

This is one of the motivations for considering inductive types with propositional computa-
tion behavior: we now want to investigate types which “act like the circle” up to propositional
equality. In the case of S, such a type C : Ui should come with a point b : C and loop l : c =C c.
In the case of S, such a type should come with two points n, s : C and two paths e, w : n =C s.
We can express this more concisely as follows:
Definition 42. Define the type of S-algebras on a universe Ui as

S-AlgUi := ΣC:UiΣb:C(b = b)

Definition 43. Define the type of S-algebras on a universe Ui as

S-AlgUi := ΣC:UiΣn:CΣs:C(n = s)× (n = s)

We are now interested in maps between algebras which in a suitable sense preserve the distin-
guished points and paths, i.e., algebra morphisms. A morphism between two S-algebras (C, c, p)
and (D, d, q) should be a function f : C → D for which we have a path β : f(c) = d. Further-
more, f should also appropriately relate p and q. To figure out what this means, we observe that
if we map p along f , we obtain a path apf (p) : f(c) = f(c). Each of the (identical) endpoints
is equal to d, via the path β. Thus, we now have another path β−1 � apf (p) � β : d = d. It is
reasonable to require that this path be equal to q, i.e., that the following diagram commutes:

f(c) f(c)

d d

apf (p)

β β

q

Likewise, a morphism between two S-algebras (C, a, b, p, q) and (D, c, d, r, s) should be a func-
tion f : C → D for which we have paths β : f(a) = c, γ : f(b) = d and for which the following
diagrams commute:

f(a) f(b)

c d

apf (p)

β γ

r

f(a) f(b)

c d

apf (q)

β γ

s
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In other words, an S- or S-morphism behaves just like a function constructed by the appropriate
circle recursion, albeit with propositional computation laws for points and paths. We can express
this as follows:

Definition 44. For algebras X : S-AlgUi and Y : S-AlgUj , define the type of S-morphisms from
X to Y by

S-Mor (C, c, p) (D, d, q) := Σf :C→DΣβ:f(c)=d

(
apf (p) = β � q � β−1

)
Definition 45. For algebras X : S-AlgUi and Y : S-AlgUj , define the type of S-morphisms from
X to Y by

S-Mor (C, a, b, p, q) (D, c, d, r, s) := Σf :C→DΣβ:f(a)=cΣγ:f(b)=d(
apf (p) = β � r � γ−1

)
× (apf (q) = β � s � γ−1)

We note that as in Sect. 2.3, we needed propositional computation laws to be able to form the
type of morphisms. The recursion principle is again a property internal to the type theory and
can be expressed analogously as saying that there is a morphism into any other algebra Y:

Definition 46. An algebra X : S-AlgUi satisfies the S-recursion principle on a universe Uj if for
any algebra Y : S-AlgUj there exists a morphism from X to Y:

has-S-RecUj(X ) :=
(
ΠY : S-AlgUj

)
S-Mor X Y

Definition 47. An algebra X : S-AlgUi satisfies the S-recursion principle on a universe Uj if for
any algebra Y : S-AlgUj there exists a morphism from X to Y:

has-S-RecUj(X ) :=
(
ΠY : S-AlgUj

)
S-Mor X Y

As in Sect. 2.3, to express the induction principle in a similar fashion we introduce the fibered
versions of algebras and algebra morphisms:

Definition 48. For an algebra X : S-AlgUi , define the type of fibered S-algebras over X on a
universe Uj by

S-FibAlgUj (C, c, p) := ΣE:C→UjΣe:E(c)

(
pE∗ (e) = e

)
Definition 49. For an algebra X : S-AlgUi , define the type of fibered S-algebras over X on a
universe Uj by

S-FibAlgUj (C, c, d, p, q) := ΣE:C→UjΣu:E(c)Σv:E(d)

(
pE∗ (u) = v

)
×
(
qE∗ (u) = v

)
Definition 50. For algebras X : S-AlgUi and Y : S-FibAlgUj X , we define the type of fibered
S-morphisms from X to Y by

S-FibMor (C, c, p) (E, e, q) := Σf :(Πx:C)E(x)Σβ:f(c)=e

(
dapf (p) = appE∗ (β) � q � β−1

)
Pictorially, the last component of an S-morphism witnesses the commuting diagram
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pE∗ (f(c)) f(c)

pE∗ (e) e

dapf (p)

via β β

q

Definition 51. For algebras X : S-AlgUi and Y : S-FibAlgUj X , we define the type of fibered
S-morphisms from X to Y by

S-FibMor (C, a, b, p, q) (D, c, d, r, s) := Σf :(Πx:C)E(x)Σβ:f(a)=cΣγ:f(b)=d(
dapf (p) = appE∗ (β) � r � γ−1

)
× (dapf (q) = apqE∗ (β) � s � γ−1)

Pictorially, the last two components of an S-morphism witness the commuting diagrams

pE∗ (f(a)) f(b)

pE∗ (c) d

dapf (p)

via β γ

r

pE∗ (f(a)) f(b)

pE∗ (c) d

dapf (q)

via β γ

s

The induction principle can now be expressed as saying that there is a fibered morphism into any
fibered algebra Y:

Definition 52. An algebra X : S-AlgUi satisfies the S-induction principle on a universe Uj if for
any fibered algebra Y : S-AlgUj X there exists a fibered morphism from X to Y:

has-S-IndUj(X ) :=
(
ΠY : S-FibAlgUj

)
S-FibMor X Y

Definition 53. An algebra X : S-AlgUi satisfies the S-induction principle on universe Uj if for
any fibered algebra Y : S-AlgUj X there exists a fibered morphism from X to Y:

has-S-IndUj(X ) :=
(
ΠY : S-FibAlgUj

)
S-FibMor X Y

The homotopy-initiality principle for circles states that there is a propositionally unique mor-
phism into any other algebra Y:

Definition 54. An algebra X : S-AlgUi is homotopy-initial on a universe Uj if for any other
algebra Y : S-AlgUj the type of S-morphisms from X to Y is contractible:

is-S-HInitUj(X ) :=
(
ΠY : S-AlgUj

)
isContr(S-Mor X Y)

Definition 55. An algebra X : S-AlgUi is homotopy-initial on a universe Uj if for any other
algebra Y : S-AlgUj the type of S-morphisms from X to Y is contractible:

is-S-HInitUj(X ) :=
(
ΠY : S-AlgUj

)
isContr(S-Mor X Y)
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3.1.2 Relating The Two Circles
We first note that the notions of S-algebras and S-algebras are in fact the same:
Lemma 56. We have a function

S-To-S-Alg : S-AlgUi → S-AlgUi

which is an equivalence.

Proof. Follows immediately from the fact that for any C : Ui, c : C, we have

c = c

'
(

Σr : Σd:C(d = c)
)(
c = π1(r)

)
' Σd:C(c = d)× (c = d)

where the first equivalence follows from the fact that the type Σd:C(c = d) is contractible with
the center of contraction (i.e., its propositionally unique term) (c, 1c).

Next, we note that the notions of fibered S-algebras and fibered S-algebras are the same, in the
following sense:
Lemma 57. For any algebra X : S-AlgUi we have a function

S-To-S-FibAlg(X ) : S-FibAlgUj X → S-FibAlgUj

(
S-To-S-Alg X

)
which is an equivalence.

Proof. Fix an algebra (C, c, p) : S-AlgUi . Then S-To-S-Alg (C, c, p) is the algebra (C, c, c, 1c, p).
The desired equivalence now follows exactly as in the non-fibered case.

The notions of (fibered) S-morphisms and S-morphisms also coincide:
Lemma 58. For any algebras X : S-AlgUi and Y : S-FibAlgUj X we have

S-FibMor X Y ' S-FibMor
(
S-To-S-Alg X

) (
S-To-S-FibAlg(X ) Y

)
Proof. Let algebras (C, c, p) : S-AlgUi and (D, d, q) : S-FibAlgUj (D, d, p) be given. Then as
before, S-To-S-Alg (C, c, p) is the algebra (C, c, c, 1c, p) and S-To-S-FibAlg(C, c, p) (D, d, q) is
the algebra (D, d, d, 1d, q). The desired equivalence now follows immediately from the fact that
for any f : Πx:CD(x), β : f(c) = d, we have

dapf (p) = appE∗ (β) � q � β−1

'
(

Σr : Σγ:f(c)=d(γ = β)
)(

dapf (p) = appE∗ (β) � q � π1(r)−1
)

'
(
Σγ : f(c) = d

)
(γ = β)×

(
dapf (p) = appE∗ (β) � q � γ−1

)
'

(
Σγ : f(c) = d

)(
dapf (1c) = ap(1c)E∗

(β) � 1d � γ
−1
)
×
(

dapf (p) = appE∗ (β) � q � γ−1
)

where the first equivalence follows from the fact that the type Σγ:f(c)=d(γ = β) is contractible
with the center of contraction (β, 1β).
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Lemma 59. For algebras X : S-AlgUi and Y : S-AlgUj we have

S-Mor X Y ' S-Mor
(
S-To-S-Alg X

) (
S-To-S-Alg Y

)
Proof. Analogously to the fibered case.

We can now show that S-recursion is the same as S-recursion, and likewise for induction and
homotopy-initiality:
Lemma 60. For an algebra X : S-AlgUi we have

has-S-RecUj(X ) ' has-S-RecUj

(
S-To-S-Alg(X )

)
has-S-IndUj(X ) ' has-S-IndUj

(
S-To-S-Alg(X )

)
is-S-HInitUj(X ) ' is-S-HInitUj

(
S-To-S-Alg(X )

)
Corollary 61. (Hint +S) The S-algebra (S, base, base, loop, 1base) satisfies the S-induction prin-
ciple on any universe Uj .
Corollary 62. (Hint+S) The S-algebra (S, north, east�west−1) satisfies the S-induction principle
on any universe Uj .

We note that the equivalence between S and S established in 40 together with the univalence
axiom give us an equality of types S = S. Hence we have another way to turn the type S it into
an S-algebra: we simply “carry over” each of the constructors base and loop along the equality
S = S, to get constructors base′ and loop′ operating on S instead of S. However, to understand
what base′ and loop′ in fact are, we need to “unwrap” the application of the univalence axiom
and understand how it acts on this specific equivalence. In our case, it is not hard to show that
base′ is equal to north and loop′ is appropriately related to east � west−1; this gives us an insight
into the computational content of univalence in this particular scenario.

3.1.3 Type Quotient Algebras
Just like we did in the preceding section for circles, we can define the notions of algebra, mor-
phism, and homotopy-initiality for any of the higher inductive types described in section 2.4.
However, it is not hard to see that the type quotients A/R subsume all the other ones as special
cases: for example, we can encode the circle S1 by putting A := 1 and R(−,−) := 1, and the
suspension ΣB by putting A := 2 and R(⊥,>), R(⊥,⊥), R(>,>) := 0, R(>,⊥) := B. For
this reason we will only focus on type quotients in this section.
Definition 63. For A : Ui and R : A → A → Ui, define the type of type quotient algebras on a
universe Uj as

TQAlgUj(A,R) := ΣC:UjΣc:A→CΠa,b:AR(a, b)→ (c(a) = c(b))

Definition 64. Given an algebra X : TQAlgUj(A,R), we define the type of fibered type quotient
algebras on a universe Uk by

TQFibAlgUk (C, c, p) := ΣE:C→UkΣe:(Πa:A)E(c(a))Πa,b:AΠz:R(a,b)(p(z)E∗ e(a) = e(b))
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Definition 65. Given algebras X : TQAlgUj(A,R) and Y : TQAlgUk(A,R), define the type of
type quotient morphisms from X to Y by

TQMor (C, c, p) (D, d, q) := Σf :C→DΣβ:(Πa:A)(f(c(a))=d(a))Πa,b:AΠz:R(a,b)(
apf (p(z)) = β(a) � q(z) � β(b)−1

)
Pictorially, the last component of a type quotient morphism witnesses the following commut-

ing diagram for any a, b, z:

f(c(a)) f(c(b))

d(a) d(b)

apf (p(z))

β(a) β(b)

q(z)

Definition 66. Given algebras X : TQAlgUj(A,R) and Y : TQFibAlgUk X , we define the type
of fibered type quotient morphisms from X to Y by

TQFibMor (C, c, p) (E, e, q) := Σf :(Πx:C)E(x)Σβ:(Πa:A)(f(c(a))=e(a))Πa,b:AΠz:R(a,b)(
dapf (p(z)) = app(z)E∗ (β(a)) � q(z) � β(b)−1

)
Pictorially, the last component of a fibered type quotient morphism witnesses the following

commuting diagram for any a, b, z:

p(z)E∗ (f(c(a)))p(z)E∗ (f(c(a))) f(c(b))

p(z)E∗
(
e(a)

)
p(z)E∗ (e(a)) e(b)

dapf (p(z))

via β(a) β(b)

q(z)

Definition 67. An algebra X : TQAlgUj(A,R) satisfies the recursion principle on a universe Uk
if for any algebra Y : TQAlgUk(A,R) there exists a morphism from X to Y:

hasTQRecUk(X ) :=
(

ΠY : TQAlgUk(A,R)
)

TQMor X Y

Definition 68. An algebra X : TQAlgUj(A,R) satisfies the induction principle on a universe Uk
if for any fibered algebra Y : TQFibAlgUk X there exists a fibered morphism from X to Y:

hasTQIndUk(X ) :=
(

ΠY : TQFibAlgUk X
)

TQFibMor X Y

Definition 69. An algebra X : TQAlgUj(A,R) is homotopy-initial on a universe Uk if for any
algebra Y : TQAlgUk(A,R) the type of morphisms from X to Y is contractible:

isTQHInitUk(X ) :=
(

ΠY : TQAlgUk(A,R)
)

TQMor X Y
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Now that we have introduced all the relevant notions, we can ask whether the analogue of
corollary 36 holds for higher inductive types. For this, we would like to study a class of higher
inductive types which is as general as we can make it, so that the special cases for the circle,
etc. would arise as simple corollaries. As we pointed out at the beginning of this section, type
quotients subsume all of the higher inductive types presented so far. However, they do not provide
us with a way to do nontrivial recursion, so constructions such as the W-types from section 2.3
do not obviously arise as special cases of type quotients. This raises a natural question of whether
we can come up with a useful class of higher inductive types that combines higher dimensional
structure with proper recursion. The answer is yes, as we will see shortly.

33



3.2 W-quotients

Here we consider a class of higher inductive types which we call W-quotients; informally, they
combine Martin-Löf’s W-types [21] with a certain form of type quotients ([36]). Ordinary W-
types allow proper induction on the level of points but have no higher-dimensional constructors.
Type quotients, on the other hand, only provide vacuous induction on the point level, in the form
of the [−] constructor; however, they allow us to specify an arbitrary number of path constructors
between the points thus obtained. A suitable combination of these two classes of types keeps the
of induction and higher-dimensionality orthogonal, which gives us a well-behaved elimination
principle.

Formally, given types A,C : Ui, a type family B : A→ Ui, and functions l, r : C → A, the
W-quotient WQ(A,B,C, l, r) : Ui is the higher inductive type generated by the constructors

pointW : Πa:A

(
B(a)→ WQ(A,B,C, l, r)

)
→ WQ(A,B,C, l, r)

cellW : Πc:CΠt:B(l c)→WQ(A,B,C,l,r)Πs:B(r c)→WQ(A,B,C,l,r)

(
pointW(l c, t) = pointW(r c, s)

)
As in the case of ordinary W-types, the type A can be thought of as the type of operations

and for any a : A, the type B(a) represents the arity of the operation a, i.e., it is the index type
for the arguments of a. Similarly, the type C represents the type of labels for paths between
points. For any c : C, the terms l(c) and r(c) determine the respective labels of the left and right
endpoints of the paths labeled by c. As can be read off from the type of the constructor cellW,
each label c : C determines a family of paths in WQ(A,B,C, l, r), one for each pair of terms
t : B(l c)→ WQ(A,B,C, l, r) and s : B(r c)→ WQ(A,B,C, l, r).

An ordinary W-type W(A,B) arises as a W-quotient in the obvious way by taking A := A,
B := B, C := 0, and letting both l and r be the canonical function from 0 into A. The
type quotient A/R arises if we take A := A, B(−) := 0, C := Σa,b:AR(a, b), l(a, b, z) := a,
r(a, b, z) := b. We can encode the circle S by taking A,C := 1, B(−) := 0, l(−) := ?,
r(−) := ?. The circle S arises when we take A,C := 2, B(−) := 0, l(−) := >, r(−) := ⊥.
Of course, we can also represent the special cases of type quotients and W-types: the interval,
suspensions - in particular all the higher spheres Sn - natural numbers, lists, and so on. We
remark, however, that in most of these cases, the higher inductive types encoded as W-quotients
will satisfy the computation rules up to propositional equality rather than definitionally; this goes
back to the issue of different representations mentioned in section 3.1.

As another example we consider positive integers modulo two. Let 4 be the inductive type
with constructors tt, tf, ft,ff : 4. We putA := 4;B(tt) := 0,B(ff) := 0,B(tf) := 1,B(ft) := 1;
C := 2; l(>) := tt, l(⊥) := ff; r(>) := tf, r(⊥) := ft. The nullary point labels tt and ff encode
the positive integers one and two, respectively. The unary point label tf represents the function
n 7→ 2n+ 1 and the unary point label ft represents the function n 7→ 2(n+ 1). The path label >
represents equations of the form (tt,−) = (tf,−), to equate all odd positive integers and the path
label ⊥ represents equations of the form (ff,−) = (ft,−), to equate all even positive integers.
We can see this more clearly in figure 3.1, where the positive integer represented is highlighted
in red, and ? stands for the canonical function out of the empty type.
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pointW(tt, ?) (1)(1) pointW(tt, ?) pointW
(
tf, 7→ pointW(tt)

)
(3)pointW(ff, ?) (2)

pointW
(
tf, 7→ pointW(tt)

)
(3)(3) pointW

(
tf, 7→ pointW(tt)

)
pointW

(
tf, 7→ pointW(tt)

)
(3)pointW

(
ft, 7→ pointW(tt)

)
(4)

(5) pointW
(
tf, 7→ pointW(ff)

)
pointW

(
ft, 7→ pointW(ff)

)
(6)

. . . . . .

cellW
(
>, ?, 7→ pointW(tt)

)
cellW

(
⊥, ?, 7→ pointW(tt)

)

cellW
(
>, ?, 7→ pointW(ff)

)
cellW

(
⊥, ?, 7→ pointW(ff)

)

Figure 3.1: Positive integers modulo 2 as a W-quotient

W-quotients come with the expected recursion principle: given terms
• E : Uj ,
• e : Πa:A(B(a)→ E)→ E,
• q : Πc:CΠu:B(l c)→EΠv:B(r c)→E

(
e(l c, u) = e(r c, v)

)
,

there is a recursor recWQ(E, e, q) : WQ(A,B,C, l, r)→ E. The recursor satisfies the computa-
tion laws
• recWQ(pointW(a, t)) ≡ e

(
a, recWQ ◦ t

)
for any a : A, t : B(a)→ WQ(A,B,C, l, r),

• aprecWQ
(cellW(c, t, s)) = q

(
c, recWQ ◦ t, recWQ ◦ s

)
for any c : C, t : B(l c)→ WQ(A,B,C, l, r), s : B(r c)→ WQ(A,B,C, l, r).

Similarly, we have an induction principle: given terms
• E : WQ(A,B,C, l, r)→ Uj ,
• e : Πa:AΠt:B(a)→WQ(A,B,C,l,r)

(
Πb:B(a)E(t b)

)
→ E(pointW(a, t)),

• q : Πc:CΠt:B(l c)→WQ(A,B,C,l,r)Πs:B(r c)→WQ(A,B,C,l,r)Πu:(Πb:B(l c))E(t b)Πv:(Πb:B(r c))E(s b)(
cellW(c, t, s)E∗ e(l c, t, u) = e(r c, s, v)

)
,

there is an inductor indWQ(E, e, q) : Πw:WQ(A,B,C,l,r)E(w). The inductor satisfies the computa-
tion laws
• indWQ(pointW(a, t)) ≡ e

(
a, t, indWQ ◦ t

)
for any a : A, t : B(a)→ WQ(A,B,C, l, r),

• dapindWQ
(cellW(c, t, s)) = q

(
c, t, s, indWQ ◦ t, indWQ ◦ s

)
for any c : C, t : B(l c)→ WQ(A,B,C, l, r), s : B(r c)→ WQ(A,B,C, l, r).

Following the now-familiar pattern, we define W-quotient algebras and morphisms, together
with their fibered counterparts. For convenience, we will utilize the corresponding notions for
ordinary W-types W(A,B) introduced in section 2.3. For notational convenience, we capture
the additional structure of a W-quotient algebra or morphism in a type family defined over the
corresponding W-type algebra or morphism.
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Definition 70. For A,C : Ui, B : A → Ui, l, r : C → A, we define a type family over the type
WAlgUj(A,B) by

WAlgFam(A,B,C, l, r) (D, d) := Πc:CΠu:B(l c)→DΠv:B(r c)→D
(
d(l c, u) = d(r c, v)

)
Definition 71. For A,C : Ui, B : A → Ui, l, r : C → A, we define the type of W-quotient
algebras on a universe Uj by

WQAlgUj(A,B,C, l, r) :=
(

ΣX0 : WAlgUj(A,B)
)

WAlgFam(A,B,C, l, r) X0

Definition 72. For an algebra X : WQAlgUj(A,B,C, l, r), we define a type family over the type
WFibAlgUk π1(X ) by

WFibAlgFam (D, d, p) (E, e) := Πc:CΠt:B(l c)→DΠs:B(r c)→D

Πu:(Πb:B(l c))E(t b)Πv:(Πb:B(r c))E(s b)

(
p(c, t, s)E∗ e(l c, t, u) = e(r c, s, v)

)
Definition 73. Given an algebra X : WQAlgUj(A,B,C, l, r), we define the type of fibered
W-quotient algebras on a universe Uk over X by

WQFibAlgUk X :=
(

ΣY0 : WFibAlgUk π1(X )
)

WFibAlgFam X Y0

Definition 74. Given algebras X : WQAlgUj(A,B,C, l, r) and Y : WQAlgUk(A,B,C, l, r),
define a type family over the type WMor π1(X ) π1(Y) by

WMorFam (D, d, p) (E, e, q) (f, β) := Πc:CΠt:B(l c)→DΠs:B(r c)→D(
apf (p(c, t, s)) = β(l c, t) � q(c, f ◦ t, f ◦ s) � β(r c, s)−1

)
Definition 75. Given algebras X : WQAlgUj(A,B,C, l, r) and Y : WQAlgUk(A,B,C, l, r),
define the type of W-quotient morphisms from X to Y by

WQMor X Y :=
(

Σµ0 : WMor π1(X ) π1(Y)
)

WMorFam X Y µ0

Pictorially, the last component of a W-quotient morphism witnesses the following commuting
diagram for any c, t, s:

f(d(l c, t)) f(d(r c, s))

e(l c, f ◦ t) e(r c, f ◦ s)

apf (p(c, t, s))

β(l c, t) β(r c, s)

q(c, f ◦ t, f ◦ s)
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Definition 76. For algebras X : WQAlgUj(A,B,C, l, r) and Y : WQFibAlgUk X , we define a
type family over the type WFibMor π1(X ) π1(Y) by

WFibMorFam (D, d, p) (E, e, q) (f, β) := Πc:CΠt:B(l c)→DΠs:B(r c)→D(
dapf (p(c, t, s)) = app(c,t,s)E∗ (β(l c, t)) � q(c, t, s, f ◦ t, f ◦ s) � β(r c, s)−1

)
Definition 77. For algebras X : WQAlgUj(A,B,C, l, r) and Y : WQFibAlgUk X , we define the
type of fibered W-quotient morphisms from X to Y by

WQFibMor X Y :=
(

Σµ0 : WFibMor π1(X ) π1(Y)
)

WFibMorFam X Y µ0

Pictorially, the last component of a fibered W-quotient morphism witnesses the following
commuting diagram for any c, t, s:

p(c, t, s)E∗
(
f(d(l c, t))

)
p(c, t, s)E∗

(
f(d(l c, t))

)
f(d(r c, s))

p(c, t, s)E∗
(
e(l c, t, f ◦ t)

)
p(c, t, s)E∗

(
e(l c, t, f ◦ t)

)
e(r c, s, f ◦ s)

dapf (p(c, t, s))

via β(l c, t) β(r c, s)

q(c, t, s, f ◦ t, f ◦ s)

The recursion and induction principles for W-quotients can now be defined as usual:

Definition 78. An algebra X : WQAlgUj(A,B,C, l, r) satisfies the recursion principle on a
universe Uk if for any algebra Y : WQAlgUk(A,B,C, l, r) there exists a morphism from X to Y:

hasWQRecUk(X ) :=
(

ΠY : WQAlgUk(A,B,C, l, r)
)

WQMor X Y

Definition 79. An algebra X : WQAlgUj(A,B,C, l, r) satisfies the induction principle on a
universe Uk if for any fibered algebra Y : WQAlgUk X there is a fibered morphism from X to Y:

hasWQIndUk(X ) :=
(

ΠY : WQFibAlgUk X
)

WQFibMor X Y

We will also need the following uniqueness properties which state that any two (fibered)
morphisms into any (fibered) algebra Y are equal:

Definition 80. An algebra X : WQAlgUj(A,B,C, l, r) satisfies the recursion uniqueness princi-
ple on a universe Uk if for any other algebra Y : WQAlgUk(A,B,C, l, r) the type of morphisms
from X to Y is a mere proposition:

hasWQRecUniqUk(X ) :=
(

ΠY : WQAlgUk(A,B,C, l, r)
)

isProp(WQMor X Y)

Definition 81. An algebra X : WQAlgUj(A,B,C, l, r) satisfies the induction uniqueness prin-
ciple on a universe Uk if for any fibered algebra Y : WQFibAlgUk X the type of morphisms from
X to Y is a mere proposition:

hasWQIndUniqUk(X ) :=
(

ΠY : WQFibAlgUk X
)

isProp(WQFibMor X Y)
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The homotopy-initiality condition again says that there is a propositionally unique morphism
into any other algebra Y:

Definition 82. An algebra X : WQAlgUj(A,B,C, l, r) is homotopy-initial on a universe Uk
if for any other algebra Y : WQAlgUk(A,B,C, l, r) the type of morphisms from X to Y is
contractible:

isWQHInitUk(X ) :=
(

ΠY : WQAlgUk(A,B,C, l, r)
)

isContr(WQMor X Y)
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3.3 Homotopy-initiality for W-quotients
Our main result establishes the equivalence between the universal property of being homotopy-
initial and the satisfaction of the induction principle:

Theorem 83. (H) For A,C : Ui, B : A → Ui, l, r : C → A, the following conditions on an
algebra X : WQAlgUj(A,B,C, l, r) are equivalent:

• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasWQIndUk(X ) ' isWQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

We note that since universe levels are cumulative, the technical restriction that k ≥ j does
not pose a problem. It is easy to see that homotopy-initiality is equivalent to the principles of
recursion plus recursion uniqueness (a fact recorded as lemma 84 later in this section). The
uniqueness condition is necessary since as is well known, in general the recursion principle does
not fully determine an inductive type: the recursion principle for the circle, for example, is also
satisfied by the disjoint union of two circles.

Proof outline A crucial step of the proof is the characterization of the path space µ = ν be-
tween two (fibered) W-quotient morphisms µ, ν : X → Y in a more explicit form. For simplicity
we only consider the non-fibered case here. We recall that a morphism between two algebras
(D, d, p), (E, e, q) is a triple (f, β, θ), where f : C → D is a function between the carrier
types, β specifies the behavior of f on the 0-cells, i.e., the value of f(d(a, t)), and θ specifies the
behavior of f on the 1-cells, i.e., the value of apf (p(c, t, s)).

Using the characterization of paths between tuples together with function extensionality, the
path space (f, β, θ) = (g, γ, φ) between two morphisms should be equivalent to a type of triples
(α, η, ψ), where α : f ∼ g is a homotopy relating the two underlying mappings, and η, ψ relate β
to γ resp. θ to φ in an appropriate way. We will call such a triple (α, η, ψ) a W-quotient cell. The
recursion uniqueness condition on an algebra X can then be equivalently expressed as saying
that for any algebra Y and morphisms µ, ν from X to Y , there exists a W-quotient cell between
µ and ν.

We point out that this uniqueness condition can itself be understood as a certain form of
induction, albeit a very specific one. The existence of a W-quotient cell between any two
morphisms (f, β, θ), (g, γ, φ) in particular guarantees the existence of a dependent function
α : Πx:X(f(x) = g(x)) - the “inductor”. The behavior of α on the 0-cells, i.e., the value of
α(d(a, t)), is specified by the term η, which thus serves as a witness for the first “computation
rule”. Finally, the behavior of α on the 1-cells, i.e., the value of dapα(p(c, t, s)), is specified by
the term ψ, which hence serves as a witness for the second “computation rule.”

We can thus see why the full induction principle for W-quotients gives us homotopy-initiality:
the latter essentially amounts to the recursion principle plus a specific form of induction, both of
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which are implied by the general induction principle. The hardest part of the proof is showing
the converse, i.e., that the general induction principle can be recovered from homotopy-initiality.

We now proceed to the formal proof of the main theorem. We have the following analogues
to the lemmas presented in section 2.3 for ordinary W-types in extensional type theory:

Lemma 84. For an algebra X : WQAlgUj(A,B,C, l, r) we have

isWQHInitUk(X ) ' hasWQRecUk(X )× hasWQRecUniqUk(X )

Lemma 85. For an algebra X : WQAlgUj(A,B,C, l, r) we have a function

WQAlgToFibAlgUk(X ) : WQAlgUk(A,B,C, l, r) → WQFibAlgUk X

Proof. Fix algebras (D, d, p) : WQAlgUj(A,B,C, l, r) and (E, e, q) : WQAlgUk(A,B,C, l, r).
We turn (E, e, q) into the desired fibered algebra (E ′, e′, q′) : WQFibAlgUk (D, d, p) by putting
E ′(x) := E and e′(a, t, u) := e(a, u) and letting q′(c, t, s, u, v) be the path

p(c, t, s) 7→E∗
(
e(l c, u)

)
e(l c, u) e(r c, v)

q(c, u, v)

where the first equality follows from the straightforward fact that the transport between any two
fibers of a constant type family is the identity function.

Lemma 86. (H) For algebras X : WQAlgUj(A,B,C, l, r) and Y : WQAlgUk(A,B,C, l, r) we
have

WQMor X Y ' WQFibMor X
(

WQAlgToFibAlgUk(X ) Y
)

Proof. Let algebras (D, d, p) : WQAlgUj(A,B,C, l, r) and (E, e, q) : WQAlgUk(A,B,C, l, r)
be given and let (E ′, e′, q′) := WQAlgToFibAlgUk(D, d, p) (E, e, q). We aim to show

WQMor (D, d, p) (E, e, q) ' WQFibMor (D, d, p) (E ′, e′, q′)

As observed in remark 30 we have WMor (D, d) (E, e) ≡ WFibMor (D, d) (E ′, e′). It thus
suffices to show that for any (f, β) : WMor (D, d) (E, e) and (by function extensionality) any
c, t, s, the commutativity of the diagram

A

f(d(l c, t)) f(d(r c, s))

e(r c, f ◦ s)e(l c, f ◦ t)

apf (p(c, t, s))

β(r c, s)

q(c, f ◦ t, f ◦ s)

β(l c, t)

is equivalent to the commutativity of the diagram
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B

p(c, t, s) 7→E∗
(
f(d(l c, t))

)
f(d(r c, s))

p(c, t, s) 7→E∗
(
e(l c, f ◦ t)

)
e(r c, f ◦ s)e(l c, f ◦ t)

dapf (p(c, t, s))

β(r c, s)via β(l c, t)

q(c, f ◦ t, f ◦ s)

We note that by a straightforward path induction we can express dapf (p(c, t, s)) equivalently as
the path

p(c, t, s) 7→E∗
(
f(d(l c, t))

)
f(d(l c, t)) f(d(r c, s))

apf (p(c, t, s))

Thus the commutativity of B is equivalent to the commutativity of the outer rectangle in the
diagram below:

C A

p(c, t, s) 7→E∗
(
f(d(l c, t))

)
f(d(l c, t)) f(d(r c, s))

p(c, t, s) 7→E∗
(
e(l c, f ◦ t)

)
e(r c, f ◦ s)e(l c, f ◦ t)

apf (p(c, t, s))

β(r c, s)via β(l c, t)

q(c, f ◦ t, f ◦ s)

β(l c, t)

But rectangle C clearly commutes by an easy generalization and subsequent path induction on
β(l c, t). Hence the commutativity of the outer rectangle is equivalent to the commutativity of A
and we are done.

As in section 2.3, the previous two lemmas immediately imply the following:

Lemma 87. (H) For any algebra X : WQAlgUj(A,B,C, l, r) we have

hasWQIndUk(X ) → hasWQRecUk(X )

Lemma 88. (H) For any algebra X : WQAlgUj(A,B,C, l, r) we have

hasWQIndUniqUk(X ) → hasWQRecUniqUk(X )

As discussed earlier, in order to establish the analogues of lemmas 33 and 35 we use the aux-
iliary notion of a (fibered) W-quotient cell. For simplicity we first introduce the corresponding
notions for ordinary W-types and then proceed to the general case of W-quotients.

Intuitively, a (fibered) W-cell between two (fibered) W-morphisms (f, β) and (g, γ) is a ho-
motopy α : f ∼ g, together with a proof that α behaves as expected on canonical elements, i.e.,
that the value of α(d(a, t)) is the “obvious” one obtained recursively by combining β, γ, and the
values of α(t b) for b : B(a).
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Definition 89. (H) For algebras X0 : WAlgUj(A,B), Y0 : WFibAlgUk(A,B) X0, and fibered
morphisms µ0, ν0 : WFibMor X0 Y0, define the type of fibered W-cells between µ0 and ν0 by

WFibCell (D, d) (E, e) (f, β) (g, γ) :=

Σα:f∼gΠa:AΠt:B(a)→D

(
α(d(a, t)) = β(a, t) � ape(a,t)

(
ΠE=(α ◦ t)

)
� γ(a, t)−1

)
Pictorially, the second component of a fibered W-cell witnesses the commutativity of the

following diagram for any a, t:

f(d(a, t)) g(d(a, t))

e(a, t, f ◦ t) e(a, t, g ◦ t)

α(d(a, t))

β(a, t) γ(a, t)

ape(a,t)
(

ΠE=(α ◦ t)
)

As observed in remark 30, a non-fibered W-morphism is just a special case of a fibered one.
We define a non-fibered W-cell analogously:

Definition 90. (H) For algebras X0 : WAlgUj(A,B), Y0 : WAlgUk(A,B), and morphisms
µ0, ν0 : WMor X0 Y0, define the type of W-cells between µ0 and ν0 by

WCell X0 Y0 µ0 ν0 := WFibCell X
(

WAlgToFibAlgUk Y
)
µ0 ν0

The right-hand side is well-typed precisely due to the fact recalled in remark 30. The second
component of a W-cell witnesses the commutativity of the following diagram for any a, t:

f(d(a, t)) g(d(a, t))

e(a, f ◦ t) e(a, g ◦ t)

α(d(a, t))

β(a, t) γ(a, t)

ape(a)

(
ΠE=(α ◦ t)

)
We note that a (fibered) W-cell is nothing more than a fibered W-morphism of a special form;

it is thus easy to see why the induction principle for W-types implies the uniqueness principle,
and hence homotopy-initiality. From now on we will omit all but the last two arguments to WCell
and WFibCell.

Our next order of business is to show that this definition of a (fibered) W-cell is indeed
the right one, i.e., that the type of (fibered) W-cells between two (fibered) morphisms µ0, ν0 is
equivalent to the type of paths between µ0 and ν0.

Lemma 91. (H) For algebras X0 : WAlgUj(A,B), Y0 : WFibAlgUk X0, and fibered morphisms
µ0, ν0 : WFibMor X0 Y0, we have an equivalence

WFibMorPathToCellµ0,ν0 : (µ0 = ν0) ' WFibCell µ0 ν0
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Proof. Let algebras (D, d) : WAlgUj(A,B) and (E, e) : WFibAlgUk (D, d) and fibered mor-
phisms (f, β), (g, γ) : WFibMor (D, d) (E, e) be given. We establish the following chain of
equivalences:

(f, β) = (g, γ)

'
(

Σα : f = g
)

(α)
h7→(Πa:A)(Πt:B(a)→D)

(
h(d(a,t))=e(a,t,h◦t)

)
∗ (β) = γ

'
(

Σα : f = g
)

Πa:AΠt:B(a)→D

((
=EΠ(α)

)
(d(a, t)) = βa,t � ape(a,t)

(
ΠE=

(
=EΠ(α) ◦ t

))
� γ−1

a,t

)
'

(
Σα : f ∼ g

)
Πa:AΠt:B(a)→D

(
α(d(a, t)) = βa,t � ape(a,t)

(
ΠE=(α ◦ t)

)
� γ−1

a,t

)
≡ WFibCell (f, β) (g, γ)

The first equivalence follows by the characterization of paths in dependent product spaces.
The third equivalence follows from the fact that the map =EΠ : (f = g) → (f ∼ g) is itself an
equivalence. Finally, to prove the second equivalence it suffices to show that for any α : f = g,
the respective fibers over α are equivalent. To do so, we generalize γ and perform a one-sided
path induction on α, keeping the left endpoint f fixed. This leaves us to prove that for any
γ : Πa:AΠt:B(a)→D

(
f(d(a, t)) = e(a, t, f ◦ t)

)
we have

β = γ ' Πa:AΠt:B(a)→D

(
1d(a,t) = βa,t � ape(a,t)

(
ΠE=

(
=EΠ(1f◦t)

))
� γ−1

a,t

)
By function extensionality it suffices to prove that for any a : A, t : B(a)→ D, we have

βa,t = γa,t '
(

1d(a,t) = βa,t � ape(a,t)
(

ΠE=
(

=EΠ(1f◦t)
))

� γ−1
a,t

)
This follows from the following chain of equivalences:

βa,t = γa,t

' γa,t = βa,t

' 1d(a,t)
� γa,t = βa,t � 1e(a,t,f◦t)

' 1d(a,t) = βa,t � 1e(a,t,f◦t) � γ
−1
a,t

≡ 1d(a,t) = βa,t � ape(a,t)(1f◦t) � γ
−1
a,t

' 1d(a,t) = βa,t � ape(a,t)
(

ΠE=
(

=EΠ(1f◦t)
))

� γ−1
a,t

Corollary 92. (H) For algebras X0 : WAlgUj(A,B), Y0 : WAlgUk(A,B), and morphisms
µ0, ν0 : WMor X0 Y0, we have an equivalence

WMorPathToCellµ0,ν0 : (µ0 = ν0) ' WCell µ0 ν0

We are now ready to define W-quotient cells. Following the same methodology as before, we
postulate that a W-quotient cell between (f, β, θ) and (g, γ, φ) should consist of a W-cell (α, η)
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together with a proof that the value of dapα(p(c, t, s)) is the “obvious” one. However, the type of
the term dapα(p(c, t, s)) involves a transport along the fibers of the type family x 7→ f(x) = g(x),
making it unwieldy to work with. Instead, we axiomatize the value of nat(α, p(c, t, s)), which
nevertheless specifies the value of dapα(p(c, t, s)) uniquely as the latter term is expressible using
the former.

Determining (and stating!) what the so-called obvious value of nat(α, p(c, t, s)) is requires a
little work; this is expected since we are now working with paths on a higher level. To state the
crucial definitions more compactly, we introduce the following notations:

• For any u : a =X b, v : b =X d, w : a =X c, z : c =X d, as in the diagram

a b

c d

u

w v

z

we have maps

I1
� : (u = w � z � v−1)→ (u � v = w � z)

I2
� : (u = w � z � v−1)→ (w−1 � u = z � v−1)

defined by induction on w, z, v; for the base case, given θ : u = 1a we let I1
�(θ) and I2

�(θ)
be the respective paths

u � 1a u 1a
θ

and 1a � u u 1a
θ

These maps are equivalences and we denote their quasi-inverses by I−1
� and I−2

� .

Definition 93. Given
• functions e1 : X1 → Y , e2 : X2 → Y ,
• a heterogeneous homotopy q : e1 ∼H e2,
• paths r1 : a1 =X1 b1, r2 : a2 =X2 b2 and δ1 : c1 =Y c2, δ2 : d1 =Y d2,
• paths β1 : c1 =Y e1(a1), β2 : c2 =Y e2(a2) and γ1 : d1 =Y e1(b1), γ2 : d2 =Y e2(b2),
• higher paths Θ : δ1 = β1

� q(a1, a2) � β−1
2 and Φ : δ2 = γ1

� q(b1, b2) � γ−1
2 ,

we let P(e1, e2, q,Θ,Φ, r1, r2) be the higher path in figure 3.2.

Definition 94. Given
• a function F : Y1 → Y2,
• functions e1 : X1 → Y1, e2 : X2 → Y2,
• a heterogeneous homotopy q : (F ◦ e1) ∼H e2,
• paths r1 : a1 =X1 b1, r2 : a2 =X2 b2 and δ1 : F (c1) =Y2 c2, δ2 : F (d1) =Y2 d2,
• paths β1 : c1 =Y1 e1(a1), β2 : c2 =Y2 e2(a2) and γ1 : d1 =Y1 e1(b1), γ2 : d2 =Y2 e2(b2),
• higher paths Θ : δ1 = apF (β1) � q(a1, a2) � β−1

2 and Φ : δ2 = apF (γ1) � q(b1, b2) � γ−1
2 ,

we let Q(e1, e2, q,Θ,Φ, r1, r2) be the higher path in figure 3.3.
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(
β1

� ape1(r1) � γ−1
1

)
� δ2

β1
�
(
ape1(r1) � q(b1, b2)

)
� γ−1

2

β1
�
(
q(a1, a2) � ape2(r2)

)
� γ−1

2

δ1
�
(
β2

� ape2(r2) � γ−1
2

)

R
(
β1, ape1(r1), I2

�(Φ)
)

via natH(q, r1, r2)−1

S
(

ape2(r2), γ−1
2 , I1

�(Θ)
)−1

Figure 3.2: The path P(e1, e2, q,Θ,Φ, r1, r2)

(
β1

� ape1(r1) � γ−1
1

)
� δ2

apF
(
β1

� ape1(r1) � γ−1
1

)
� δ2

(
apF (β1) � apF ◦ e1(r1) � (apF (γ1))−1

)
� δ2

δ1
�
(
β2

� ape2(r2) � γ−1
2

)
P
(
F ◦ e1, e2, q,Θ,Φ, r1, r2

)

Figure 3.3: The path Q(e1, e2, q,Θ,Φ, r1, r2)

(
α1

� α2
� α3

)
� α4

(
α1

� α2

)
�
(
α3

� α4

)

(
α1

� α2

)
�
(
α5

� α6

)

α1
�
(
α2

� α5

)
� α6

via Ψ

Figure 3.4: The pathR(α1, α2,Ψ)

α1
�
(
α2

� α3
� α4

)

(
α1

� α2

)
�
(
α3

� α4

)

(
α4

� α5

)
�
(
α3

� α4

)

α4
�
(
α5

� α3

)
� α4

via Ψ

Figure 3.5: The path S(α3, α4,Ψ)
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Definition 95. (H) Given

• algebras (D, d, p) : WQAlgUj(A,B,C, l, r) and (E, e, q) : WQAlgUk(A,B,C, l, r),
• morphisms (f, β, θ), (g, γ, φ) : WQMor (D, d, p) (E, e, q),
• a W-cell (α, η) : WCell (f, β) (g, γ),

we letM
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)

be the higher path in figure 3.6.

Definition 96. (H) Given

• algebras (D, d, p) : WQAlgUj(A,B,C, l, r) and (E, e, q) : WQFibAlgUk (D, d, p),
• fibered morphisms (f, β, θ), (g, γ, φ) : WQFibMor (D, d, p) (E, e, q),
• a fibered W-cell (α, η) : WFibCell (f, β) (g, γ),

we let N
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)

be the higher path in figure 3.7.

The higher pathsM and N in figures 3.6 and 3.7 are the aforementioned “obvious” values
of nat(α, p(c, t, s)) and natF(α, p(c, t, s)), obtained by combining β, θ, γ, φ and η in a suitable
fashion.

Definition 97. (H) For algebras X : WQAlgUj(A,B,C, l, r), Y : WQAlgUk(A,B,C, l, r) and
morphisms µ, ν : WQMor X Y , define a type family over the type WCell π1(µ) π1(ν) by

WCellFam (D, d, p) (E, e, q) (f, β, θ) (g, γ, φ) (α, η) := Πc:CΠt:B(l c)→DΠs:B(r c)→D

nat(α, p(c, t, s)) =M
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)

Definition 98. (H) For algebras X : WQAlgUj(A,B,C, l, r), Y : WQFibAlgUk X , and fibered
morphisms µ, ν : WQFibMor X Y , define a type family over WFibCell π1(µ) π1(ν) by

WFibCellFam (D, d, p) (E, e, q) (f, β, θ) (g, γ, φ) (α, η) := Πc:CΠt:B(l c)→DΠs:B(r c)→D

natF(α, p(c, t, s)) = N
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)

We will usually leave out all but the last three arguments to WCellFam and WFibCellFam.

Definition 99. (H) Given algebras X : WQAlgUj(A,B,C, l, r), Y : WQAlgUk(A,B,C, l, r)
and morphisms µ, ν : WQMor X Y , define the type of W-quotient cells between µ and ν by

WQCell µ ν :=
(

ΣC0 : WCell π1(µ) π1(ν)
)

WCellFam µ ν C0

Definition 100. (H) Given algebras X : WQAlgUj(A,B,C, l, r), Y : WQFibAlgUk X and
fibered morphisms µ, ν : WQFibMor X Y , define the type of fibered W-quotient cells between µ
and ν by

WQFibCell µ ν :=
(

ΣC0 : WFibCell π1(µ) π1(ν)
)

WFibCellFam µ ν C0
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α(d(l c, t)) � apg(p(c, t, s))

(
β(l c, t) � ape(l c)

(
ΠE=(α ◦ t)

)
� γ(l c, t)−1

)
� apg(p(c, t, s))

apf (p(c, t, s)) �
(
β(r c, s) � ape(r c)

(
ΠE=(α ◦ s)

)
� γ(r c, s)−1

)

apf (p(c, t, s)) � α(d(r c, s))

via η(l c, t)

P
(
e(l c), e(r c), q(c), θ(c, t, s), φ(c, t, s),ΠE=(α ◦ t),ΠE=(α ◦ s)

)

via η(r c, t)−1

Figure 3.6: The pathM
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)

app(c,t,s)E∗

(
α(d(l c, t))

)
� dapg(p(c, t, s))

)
app(c,t,s)E∗

(
β(l c, t) � ape(l c,t)

(
ΠE=(α ◦ t)

)
� γ(l c, t)−1

)
� dapg(p(c, t, s))

)
dapf (p(c, t, s)) �

(
β(r c, s) � ape(r c,s)

(
ΠE=(α ◦ s)

)
� γ(r c, s)−1

)

dapf (p(c, t, s)) � α(d(r c, s))

via η(l c, t)

Q
(
e(l c, t), e(r c, s), q(c, t, s), θ(c, t, s), φ(c, t, s),ΠE=(α ◦ t),ΠE=(α ◦ s)

)

via η(r c, t)−1

Figure 3.7: The path N
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)
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We have the following analogue of lemma 91:

Lemma 101. (H) For algebras X : WQAlgUj(A,B,C, l, r), Y : WQFibAlgUk X and fibered
morphisms µ, ν : WQFibMor X Y , we have

µ = ν ' WQFibCell µ ν

Proof. Fix algebras (D, d, p) : WQAlgUj(A,B,C, l, r) and (E, e, q) : WQFibAlgUk (D, d, p),
and fibered homomorphisms (µ0, θ), (ν0, φ) : WQFibMor (D, d, p) (E, e, q). We establish the
following chain of equivalences:

(µ0, θ) = (ν0, φ)

'
(

ΣC0 : µ0 = ν0

)
(C0)WFibMorFam (D,d,p) (E,e,q)

∗ (θ) = φ

'
(

ΣC0 : µ0 = ν0

)
WFibCellFam (µ0, θ) (ν0, φ)

(
WFibMorPathToCell(C0)

)
'

(
ΣC0 : WFibCell µ0 ν0

)
WFibCellFam (µ0, θ) (ν0, φ) C0

≡ WQFibCell (µ0, θ) (ν0, φ)

The first equivalence follows by the characterization of paths in dependent product spaces.
The third equivalence follows as WFibMorPathToCell : (µ0 = ν0) → (WFibCell µ0 ν0) is
itself an equivalence. Finally, to prove the second equivalence it suffices to show that for any
C0 : µ0 = ν0, the respective fibers over C0 are equivalent. To do so, we generalize φ and perform
a one-sided path induction on C0, keeping the left endpoint µ0 fixed. This leaves us to prove that
for any φ : WFibMorFam (D, d, p) (E, e, q) µ0 we have

θ = φ ' WFibCellFam (µ0, θ) (µ0, φ)
(
WFibMorPathToCell(1µ0)

)
Writing µ0 as a pair, we can reformulate our current goal as showing that for any (f, β) :

WFibMor (D, d) (E, e) and any θ, φ : WFibMorFam (D, d, p) (E, e, q) (f, β) we have

θ = φ ' WFibCellFam (f, β, θ) (f, β, φ)
(
WFibMorPathToCell(1(f,β))

)
Examining the definition of the map WFibMorPathToCell given in the proof of lemma 91, we

see that WFibMorPathToCell(1(f,β)) is equal to a pair (x 7→ 1f(x), η), where η(a, t) is the path

1f(d(a,t))

β(a, t) � ape(a,t)
(
1f◦t

)
� β(a, t)−1

β(a, t) � ape(a,t)
(

ΠE=
(

=EΠ(1f◦t)
))

� β(a, t)−1

I−1
�

(
I1,1(1β(a,t))

)
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and for any u, v : a =X b, the map I1,1 : (u = v) → (1a � u = v � 1b) is an equivalence defined
by mapping θ : u = v to the path below:

1a � u u v v � 1a
θ

Plugging in the above pair, we note that by function extensionality it suffices to show that for any
c, t, s, the type θ(c, t, s) = φ(c, t, s) is equivalent to

natF
(
x 7→ 1f(x), p(c, t, s)

)
= N

(
(D, d, p), (E, e, q), (f, β, θ), (f, β, φ), (x 7→ 1f(x), η)

)
Fix c, t, s. We now slightly generalize our goal, which also helps to keep the notation in check.
The desired equivalence will follow if we can show that given terms

• x, y : D,
• e1 :

(
Πb:B(l c)E(t b)

)
→ E(x) and e2 :

(
Πb:B(r c)E(s b)

)
→ E(y),

• β1 : f(x) = e1(f ◦ t) and β2 : f(y) = e2(f ◦ s),
• p : x = y and q : pE∗ ◦ e1 ∼H e2,
• Θ,Φ : dapf (p) = appE∗

(β1) � q(f ◦ t, f ◦ s) � β−2
2 ,

• r1 : f ◦ t = f ◦ t and r2 : f ◦ s = f ◦ s,
• r∗1 : 1f◦t = r1 and r∗2 : 1f◦s = r2,

the type Θ = Φ is equivalent to the commutativity of the diagram below

appE∗

(
1f(x)

)
� dapf (p)

appE∗

(
β1

� ape1(r1) � β−1
1

)
� dapf (p)

dapf (p) � 1f(x)

dapf (p) �
(
β2

� ape2(r2) � β−1
2

)via η1 via η2

natF
(
x 7→ 1f(x), p

)

Q(e1, e2, q,Θ,Φ, r1, r2)

where η1, η2 are the following two paths:

1f(x)

β1
� ape1(1f◦t) � β

−1
1

β1
� ape1(r1) � β−1

1

1f(x)

β2
� ape2(1f◦s) � β

−1
2

β2
� ape2(r2) � β−1

2

I−1
�

(
I1,1(1β1)

)
I−1
�

(
I1,1(1β2)

)

via r∗1 via r∗2
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To prove that this generalized statement implies our original goal, we just let x := d(l c, t),
y := d(r c, s), e1 := e(l c, t), e2 := e(r c, s), β1 := β(l c, t), β2 := β(r c, t), p := p(c, t, s),
q := q(c, t, s), Θ := θ(c, t, s), Φ := φ(c, t, s), r1 := ΠE=

(
=EΠ(1f◦t)

)
, r2 := ΠE=

(
=EΠ(1f◦s)

)
,

and let r∗1, r∗2 be the obvious paths. The paths η1, η2 then become η(l c, t) and η(r c, s), which
finishes the proof of the implication.

Working towards our generalized goal, we first note that we can now perform the usual path
induction on p and one-sided path induction on r∗1, r∗2 (with the right endpoint fixed). It thus
suffices to show that given terms

• x : D,
• e1 :

(
Πb:B(l c)E(t b)

)
→ E(x) and e2 :

(
Πb:B(r c)E(s b)

)
→ E(x),

• β1 : f(x) = e1(f ◦ t) and β2 : f(x) = e2(f ◦ s),
• q : e1 ∼H e2,
• Θ,Φ : 1f(x) = apid(β1) � q(f ◦ t, f ◦ s) � β−2

2 ,

the type Θ = Φ is equivalent to the commutativity of the following diagram:

apid

(
1f(x)

)
� 1f(x)

apid

(
β1

� 1f(x)
� β−1

1

)
� 1f(x)

1f(x)
� 1f(x)

1f(x)
�
(
β2

� 1f(x)
� β−1

2

)
via I−1

�

(
I1,1(1β1)

)
via I−1

�

(
I1,1(1β2)

)

Q1

where the path Q1 and its components look as follows:

a1) The path Q1

apid

(
β1

� 1 � β−1
1

)
� 1

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

1f(x)
�
(
β2

� 1 � β−1
2

)P1

b1) The path P1

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

apid(β1) �
(

1 � q(f ◦ t, f ◦ s)
)
� β−1

2

apid(β1) �
(
q(f ◦ t, f ◦ s) � 1

)
� β−1

2

1 �
(
β2

� 1 � β−1
2

)

R1

S−1
1
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c1) The pathR1

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

(
apid(β1) � 1

)
�
(

(apid(β1))−1 � 1
)

(
apid(β1) � 1

)
�
(
q(f ◦ t, f ◦ s) � β−1

2

)

apid(β1) �
(

1 � q(f ◦ t, f ◦ s)
)
� β−1

2

via I2
�(Φ)

d1) The path S1

1 �
(
β2

� 1 � β−1
2

)

(
1 � β2

)
�
(
1 � β−1

2

)

(
apid(β1) � q(f ◦ t, f ◦ s)

)
�
(
1 � β−1

2

)

apid(β1) �
(
q(f ◦ t, f ◦ s) � 1

)
� β−1

2

via I1
�(Θ)

We note that the path natF
(
x 7→ 1f(x), p

)
and the two paths involving r∗1 and r∗2 have reduced

to reflexivities. Furthermore, in the path P1 we no longer make use of the naturality of the
heterogeneous homotopy q, since the term natH(q, 1f◦t, 1f◦s) reduces to the obvious path from
q(f ◦ t, f ◦s) �1e2(f◦s) to 1e1(f◦t) �q(f ◦ t, f ◦s). The only way we do make use of the homotopy q

is by applying it to the two arguments f ◦ t, f ◦ s. A similar observation applies to the functions
e1, e2: the only way we make use of them is by referring to the values e1(f ◦ t) and e2(f ◦ s).
This suggests the following generalization of our current goal: given terms

• x : D,
• e1, e2 : E(x) and q : e1 = e2,
• β1 : f(x) = e1 and β2 : f(x) = e2,
• Θ,Φ : 1f(x) = apid(β1) � q � β−2

2 ,

the type Θ = Φ is equivalent to the commutativity of the following diagram:

apid

(
1f(x)

)
� 1f(x)

apid

(
β1

� 1f(x)
� β−1

1

)
� 1f(x)

1f(x)
� 1f(x)

1f(x)
�
(
β2

� 1f(x)
� β−1

2

)
via I−1

�

(
I1,1(1β1)

)
via I−1

�

(
I1,1(1β2)

)

Q2

where the path Q2 and its components now look as follows:
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a2) The path Q2

apid

(
β1

� 1 � β−1
1

)
� 1

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

1 �
(
β2

� 1 � β−1
2

)P2

b2) The path P2

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

apid(β1) �
(
1 � q

)
� β−1

2

apid(β1) �
(
q � 1

)
� β−1

2

1 �
(
β2

� 1 � β−1
2

)

R2

S−1
2

c2) The pathR2

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

(
apid(β1) � 1

)
�
(

(apid(β1))−1 � 1
)

(
apid(β1) � 1

)
�
(
q � β−1

2

)

apid(β1) �
(
1 � q

)
� β−1

2

via I2
�(Φ)

d2) The path S2

1 �
(
β2

� 1 � β−1
2

)

(
1 � β2

)
�
(
1 � β−1

2

)

(
apid(β1) � q

)
�
(
1 � β−1

2

)

apid(β1) �
(
q � 1

)
� β−1

2

via I1
�(Θ)

We can now perform path induction on q and our goal becomes to show that given terms

• x : D and e1 : E(x),

• β1, β2 : f(x) = e1,

• Θ,Φ : 1f(x) = apid(β1) � 1e1
� β−2

2 ,
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the type Θ = Φ is equivalent to the commutativity of the following diagram:

apid

(
1f(x)

)
� 1f(x)

apid

(
β1

� 1f(x)
� β−1

1

)
� 1f(x)

1f(x)
� 1f(x)

1f(x)
�
(
β2

� 1f(x)
� β−1

2

)
via I−1

�

(
I1,1(1β1)

)
via I−1

�

(
I1,1(1β2)

)

Q3

where the path Q3 and its components now look as follows:

a3) The path Q3

apid

(
β1

� 1 � β−1
1

)
� 1

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

1 �
(
β2

� 1 � β−1
2

)P3

b3) The path P3

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

apid(β1) �
(
1 � 1

)
� β−1

2

1 �
(
β2

� 1 � β−1
2

)

R3

S−1
3

c3) The pathR3

(
apid(β1) � 1 � (apid(β1))−1

)
� 1

(
apid(β1) � 1

)
�
(

(apid(β1))−1 � 1
)

(
apid(β1) � 1

)
�
(
1 � β−1

2

)

apid(β1) �
(
1 � 1

)
� β−1

2

via I2
�(Φ)

d3) The path S3

1f(x)
�
(
β2

� 1 � β−1
2

)

(
1f(x)

� β2

)
�
(
1 � β−1

2

)

(
apid(β1) � 1

)
�
(
1e1 � β

−1
2

)

apid(β1) �
(

1 � 1
)
� β−1

2

via I1
�(Θ)
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We now note that either one of the two assumptions Θ, Φ implies β1 = β2. Thus, it is enough
to prove our goal under the additional assumption ψ : β1 = β2. But now we can perform ordinary
path induction on ψ, which replaces β2 with β1, and a subsequent one-sided path induction on
β1 : f(x) = e1 (with the left endpoint fixed).

It now suffices to show the following: given terms x : D and Θ,Φ : 1f(x) = 1f(x), the type
Θ = Φ is equivalent to the commutativity of the following diagram:

1f(x)
� 1f(x) 1f(x)

� 1f(x)

1f(x)
� 1f(x)1f(x)

� 1f(x)1f(x)
� 1f(x)

via I2
�(Φ) via

(
I1
�(Θ)

)−1

In particular, we note that both of the vertical paths have reduced to reflexivities. The com-
mutativity of the above diagram is of course equivalent to the commutativity of the diagram
below:

1f(x)
� 1f(x)

1f(x)
� 1f(x)

1f(x)
� 1f(x)

1f(x)
� 1f(x)

via I2
�(Φ)via I1

�(Θ)

Now we note that for any u, v : a =X b and ψ : u = v, the following two diagrams commute:

u

v

1a � u

1a � v

ψvia ψ

u

v

u � 1b

v � 1b

ψvia ψ

In the case when ψ := I1
�Θ) and ψ := I2

�(Φ), all of the horizontal paths in the above two
diagrams become reflexivities; hence we can reformulate our goal as showing that given terms
x : D and Θ,Φ : 1f(x) = 1f(x), we have

(
Θ = Φ

)
'

(
I1
�(Θ) = I2

�(Φ)
)
. However, when

examining the definitions of I1
� and I2

�, we clearly see that I1
�(Θ) = Θ and I2

�(Φ) = Φ, which
means we are done.

Lemma 102. (H) For algebras X : WQAlgUj(A,B,C, l, r), Y : WQAlgUk(A,B,C, l, r) and
morphisms µ, ν : WQMor X Y , we have

µ = ν ' WQCell µ ν

Proof. By an entirely analogous argument as in the proof of 101.

We are now ready to establish the analogues of lemmas 33 and 35.
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Lemma 103. (H) For any algebra X : WQAlgUj(A,B,C, l, r) we have

hasWQIndUk(X ) → hasWQIndUniqUk(X )

Proof. Fix an algebra (D, d, p) : WQAlgUj(A,B,C, l, r) and assume that hasWQIndUk(D, d, p)
holds. In order to show that hasWQIndUniqUk(D, d, p) holds, take any fibered algebra (E, e, q) :
WQFibAlgUk (D, d, p) and fibered morphisms (f, β, θ), (g, γ, φ) : WQFibMor (D, d, p) (E, e, q).
By lemma 101, to show (f, β, θ) = (g, γ, φ) it suffices to exhibit a fibered W-quotient cell
between (f, β, θ) and (g, γ, φ).

To do so, we use the induction principle with an appropriate fibered algebra (E ′, e′, q′) :
WQFibAlg (D, d, p). Defining the first component is easy: we put E ′ := x 7→ f(x) = g(x),
which clearly still belongs to Uk fiberwise. For the second component, we put

e′(a, t, u) := β(a, t) � ape(a,t)(
ΠE=(u)) � γ(a, t)−1

Finally, we let q′(c, t, s, u, v) be the path

p(c, t, s)x 7→f(x)=g(x)
∗

(
e′(l c, t, u)

)

dapf (p(c, t, s))
−1 �

(
app(c,t,s)E∗ (e′(l c, t, u)) � dapg(p(c, t, s))

)
dapf (p(c, t, s))

−1 �
(

app(c,t,s)E∗ (e′(l c, t, u)) � dapg(p(c, t, s))
)

dapf (p(c, t, s))
−1 �

(
dapf (p(c, t, s)) � e

′(r c, s, v)
)

e′(r c, s, v)

TF
(
f, g, p(c, t, s), e′(l c, t, u)

)

via Q
(
e(l c, t), e(r c, s), q(c, t, s), θ(c, t, s), φ(c, t, s),ΠE=(u),ΠE=(v)

)

where for any h, i : Πx:XY (x) and w : a =X b, z : h(a) = i(a), the path

TF
(
h, i, w, z

)
: wx 7→h(x)=i(x)
∗ (z) = daph(w)−1 �

(
apwE

∗
(z) � dapi(w)

)
is defined by path induction on w in an obvious way. The induction principle then gives us a
fibered morphism (α, η, ψ) : WFibMor (D, d, p) (E ′, e′, q′), where α : f ∼ g and

η(a, t) : α(d(a, t)) = e′(a, t, α ◦ t)
ψ(c, t, s) : dapα(p(c, t, s)) = ap

p(c,t,s)E
′
∗

(
η(l c, t)

)
� q′(c, t, s, α ◦ t, α ◦ s) � η(r c, s)−1
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The pair (α, η) : WFibCell (f, β) (g, γ) forms the first component of our desired W-quotient cell
between (f, β, θ) and (g, γ, φ). It remains to show that for any c, t, s, we have

natF(α, p(c, t, s)) = N
(

(D, d, p), (E, e, q), (f, β, θ), (g, γ, φ), (α, η)
)

Fix c, t, s. The desired equality will follow if we can show that given terms

• x, y : D,
• e1 : E(x) and e2 : E(y),
• η1 : α(x) = e1 and η2 : α(y) = e2,
• p : x = y and q : appE∗

(e1) � dapg(p) = dapf (p) � e2,

the commutativity of the diagram

A

p
x 7→f(x)=g(x)
∗ (α(x))

α(y)

p
x 7→f(x)=g(x)
∗ (e1)

dapf (p)−1 �
(
appE∗

(e1) � dapg(p)
)

dapf (p)−1 �
(
dapf (p) � e2

)

e2

dapα(p)

via η1

TF (f, g, p, e1)

via q

η2

implies the commutativity of the following diagram:

B

appE∗
(α(x)) � dapg(p)appE∗

(α(x)) � dapg(p)

dapf (p) � α(y)

appE∗
(e1) � dapg(p)appE∗

(e1) � dapg(p)

dapf (p) � e2

qnatF (α, p)

via η1

via η2

To prove that this generalized statement implies our original goal, we just let x := d(l c, t),
y := d(r c, s), e1 := e′(l c, t, α ◦ t), e2 := e′(r c, s, α ◦ s), η1 := η(l c, t), η2 := η(r c, s),
p := p(c, t, s), q := Q

(
e(l c, t), e(r c, s), q(c, t, s), θ(c, t, s), φ(c, t, s), ΠE=(α ◦ t), ΠE=(α ◦ s)

)
.

Finally, ψ(c, t, s) implies the commutativity of A, which finishes the proof of the implication.
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Working towards our new goal, we note that by a straightforward path induction we can
express dapα(p) equivalently as the path

p
x 7→f(x)=g(x)
∗ (α(x))

dapf (p)−1 �
(
appE∗

(α(x)) � dapg(p)
)

dapf (p)−1 �
(
dapf (p) � α(y)

)
dapf (p)−1 �

(
dapf (p) � α(y)

)

α(y)

TF (f, g, p, α(x))

via natF (α, p)

Thus the commutativity of A is equivalent to the commutativity of the outer rectangle in the
diagram below:

C

D

E

p
x 7→f(x)=g(x)
∗ (α(x))

α(y)

dapf (p)−1 �
(
appE∗

(α(x)) � dapg(p)
)

dapf (p)−1 �
(
dapf (p) � α(y)

)
dapf (p)−1 �

(
dapf (p) � α(y)

)

p
x 7→f(x)=g(x)
∗ (e1)

dapf (p)−1 �
(
appE∗

(e1) � dapg(p)
)

dapf (p)−1 �
(
dapf (p) � e2

)

e2

via η1

TF (f, g, p, e1)

via q

TF (f, g, p, α(x))

via natF (α, p)

via η1

via η2

η2

Rectangles C and E clearly commute by an easy generalization and subsequent path induction
on η1 and η2. Hence the commutativity of the outer rectangle is equivalent to the commutativity
of D. But the commutativity of D is equivalent to the commutativity of B and we are done.

Corollary 104. (H) For any algebra X : WQAlgUj(A,B,C, l, r) we have

hasWQIndUk(X ) → isWQHInitUk(X )
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Lemma 105. (H) For any algebra X : WQAlgUj(A,B,C, l, r) we have

hasWQRecUk(X )× hasWQRecUniqUk(X ) → hasWQIndUk(X )

provided k ≥ j.

Proof. Fix an algebra (D, d, p) : WQAlgUj(A,B,C, l, r) and assume that hasWQRecUk(D, d, p)
and hasWQRecUniqUk(D, d, p) hold. To show that hasWQIndUk(D, d, p) holds, fix any fibered
algebra (E, e, q) : WQFibAlgUk (D, d, p). In order to apply the recursion principle, we need to
turn this into a non-fibered algebra (E ′, e′, q′). The first component is easy: the only reasonable
choice we have is to put E ′ := Σx:DE(x); we note that since D : Uj , E : D → Uk, and j ≤ k,
E ′ belongs to Uk as needed. For the second component, we put

e′(a, u) :=
(
d
(
a, π1 ◦ u

)
, e
(
a, π1 ◦ u, π2 ◦ u

))
Finally, we let q′(c, u, v) be the path

(
d
(
l c, π1 ◦ u

)
, e
(
l c, π1 ◦ u, π2 ◦ u

))

(
d
(
r c, π1 ◦ v

)
, e
(
r c, π1 ◦ v, π2 ◦ v

))
ΣE=

(
p
(
c, π1 ◦ u, π1 ◦ v

)
, q
(
c, π1 ◦ u, π1 ◦ v, π2 ◦ u, π2 ◦ v

))

The recursion principle then gives us a morphism (f, β, ϕ) : WQMor (D, d, p) (E ′, e′, q′), where
f : D → Σx:DE(x) and

β(a, t) : f(d(a, t)) = e′(a, f ◦ t)
ϕ(c, t, s) : apf (p(c, t, s)) = β(l c, t) � q′(c, f ◦ t, f ◦ s) � β(r c, s)−1

We now want to show that the function π1 ◦ f : D → D is in fact the identity on D (up to a
homotopy, of course). We can do this by endowing both of the functions π1 ◦ f and idD with a
morphism structure on the algebra (D, d, p); by the recursion uniqueness principle it will follow
that these morphisms are equal, and in particular they are equal as maps.

We start with the easier case: we turn the identity map idD into a morphism
(
idD, δ, φ

)
:

WQMor (D, d, p) (D, d, p) by defining δ(a, t) := 1d(a,t) and φ(c, t, s) := I−2
�

(
Φ(p(c, t, s))

)
,

where for any r : x =X y, Φ(r) : 1x � apid(r) = r � 1y is the obvious path.

We turn the composition π1 ◦ f into a morphism
(
π1 ◦ f, γ, θ

)
: WQMor (D, d, p) (D, d, p)

as follows. We note that β(a, t) : f(d(a, t)) =
(
d(a, π1 ◦f ◦ t), . . .

)
. We need a path between the

respective first components of the endpoints; to simplify the notation, we let π=
1 and π=

2 denote
the compositions π1 ◦ =EΣ and π2 ◦ =EΣ, and define γ(a, t) := π=

1 (β(a, t)).
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Finally, we define θ(c, t, s) := I−1
� (Θ(c, t, s)), where Θ(c, t, s) is the path

apπ1◦f (p(c, t, s))
� π=

1 (β(r c, s))

π=
1

(
apf (p(c, t, s)) � β(r c, s)

)

π=
1

(
β(l c, t) � q′(c, f ◦ t, f ◦ s)

)

π=
1 (β(l c, t)) � p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s)

U(c, t, s)

via I1
�(ϕ(c, t, s))

V(c, t, s)−1

and U(c, t, s), V(c, t, s) are the two paths below:

apπ1◦f (p(c, t, s))
� π=

1 (β(r c, s))

π=
1

(
apf (p(c, t, s))

)
� π=

1 (β(r c, s))

π=
1

(
apf (p(c, t, s)) � β(r c, s)

)

π=
1 (β(l c, t)) � p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s)

π=
1 (β(l c, t)) � π=

1

(
q′(c, f ◦ t, f ◦ s)

)

π=
1

(
β(l c, t) � q′(c, f ◦ t, f ◦ s)

)
By the recursion uniqueness rule, the morphisms (π1 ◦ f, γ, θ) and (idD, δ, φ) are equal. By

lemma 102 there exists a W-quotient cell (α, η, ψ) between them, where α : π1 ◦ f ∼ idD and

η(a, t) : α(d(a, t)) = π=
1 (β(a, t)) � apd(a)

(
ΠE=(α ◦ t)

)
� 1d(a,t)

ψ(c, t, s) : nat(α, p(c, t, s)) =M
(

(D, d, p), (D, d, p), (π1 ◦ f, γ, θ), (idD, δ, φ), (α, η)
)

Our desired fibered homomorphism (fD, βD, θD) : WQFibMor (D, d, p) (E, e, q) will be
constructed as follows. Given a homotopy H : h1 ∼ h2 between two maps h1, h2 : X → Y and
a function g : Πx:XZ(h1(x)), let H ◦H g denote the function x 7→ H(x)Z∗ g(x), which has type
Πx:XZ(h2(x)). We can now define fD := α ◦H (π2 ◦ f), which has the required type Πx:DE(x),
since we have α : π1 ◦ f ∼ idD and π2 ◦ f : Πx:DE

(
π1(f(x))

)
.
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For the second component, we need a path βD(a, t) : fD(d(a, t)) = e(a, t, fD ◦ t). To this end
we introduce the following auxiliary definitions:

• For any a : A, t : B(a)→ D, let

κ(a, t) :
(

ΠE=
(

=EΠ(α ◦ t)
))
◦H (π2 ◦ f ◦ t) = (α ◦ t) ◦H (π2 ◦ f ◦ t)

be the obvious equality.

• For any a : A, t1, t2 : B(a)→ D, r : t1 = t2, u1 : Πb:B(a)E(t1 b), let

ι(a, r, u1) :
(
apd(a)(r)

)E
∗ e(a, t1, u1) = e

(
a, t2,

(
=EΠ(r)

)
◦H u1

)
be the obvious equality defined by path induction on r.

• For any a : A, t1, t2 : B(a)→ D, r : t1 = t2, u1 : Πb:B(a)E(t1 b), let

ε(a, r, u1) :
(
d(a, t1), e(a, t1, u1)

)
=

(
d(a, t2), e

(
a, t2,

(
=EΠ(r)

)
◦H u1

))
be the path defined by ε(a, r, u1) := ΣE=

(
apd(a)(r), ι(a, r, u1)

)
.

• For any a : A, t : B(a)→ D, u1, u2 : Πb:B(a)E(t b), r : u1 = u2, let

υ(a, t, r) :
(
d(a, t), e(a, t, u1)

)
=

(
d(a, t), e(a, t, u2)

)
be the path defined by υ(a, t, r) := ΣE=

(
1d(a,t), ape(a,t)(r)

)
.

At this point we can define βD(a, t) as the path

α(d(a, t))E∗ π2

(
f(d(a, t))

)

(
π=

1

(
β(a, t) � ε

(
a, ΠE=(α ◦ t), π2 ◦ f ◦ t

)
� υ

(
a, t, κ(a, t)

)))E

∗
π2

(
f(d(a, t))

)

e
(
a, t, (α ◦ t) ◦H (π2 ◦ f ◦ t)

)

via B(a, t)

π=
2

(
β(a, t) � ε

(
a,ΠE=(α ◦ t), π2 ◦ f ◦ t

)
� υ

(
a, t, κ(a, t)

))

where B(a, t) is the path
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α(d(a, t))

π=
1 (β(a, t)) � apd(a)

(
ΠE=(α ◦ t)

)
� 1d(a,t)

π=
1 (β(a, t)) � π=

1

(
ε
(
a, ΠE=(α ◦ t), π2 ◦ f ◦ t

))
� π=

1

(
υ
(
a, t, κ(a, t)

))

π=
1

(
β(a, t) � ε

(
a, ΠE=(α ◦ t), π2 ◦ f ◦ t

)
� υ

(
a, t, κ(a, t)

))

η(a, t)

For the last component, we need a path

θD(c, t, s) : dapfD(p(c, t, s)) = app(c,t,s)E∗

(
βD(l c, t)

)
� q(c, t, s, fD ◦ t, fD ◦ s) � βD(r c, s)−1

To do so, we generalize our goal as follows: let i ∈ {1, 2}. Then given terms

• xi : A,
• si : B(xi)→ D and ui : Πb:B(xi)E(si b),
• ti : B(xi)→ D and vi : Πb:B(xi)E(ti b),
• ri : si = ti and ωi :

(
=EΠ(ri)

)
◦H ui = vi,

• βi : f(d(xi, ti)) =
(
d(xi, si), e(xi, si, ui)

)
,

• ηi : α(d(xi, ti)) = π=
1 (βi) � apd(xi)

(ri) � 1d(xi,ti),
• p : d(x1) ∼H d(x2),

• q : Πt:B(x1)→DΠs:B(x2)→D

((
p(t, s)E∗ ◦ e(x1, t)

)
∼H e(x2, s)

)
,

• ϕ∗ : apf (p(t1, t2)) � β2 = β1
� ΣE=

(
p(s1, s2), q(s1, s2, u1, u2)

)
,

the commutativity of the diagram

α(d(x1, t1)) � apid(p(t1, t2))α(d(x1, t1)) � apid(p(t1, t2))
()

� apid(p(t2, s2))
(
π=

1 (β1) � apd(x1)(r1) � 1
)
� apid(p(t1, t2))

apπ1◦f (p(t2, s2)) � α(d(y, s2))apπ1◦f (p(t1, t2)) � α(d(x2, t2))
()

apπ1◦f (p(t1, t2)) �
(
π=

1 (β2) � apd(x2)(r2) � 1
)

via η1

nat(α, p(t1, t2)) P1

via η2

implies the commutativity of the following diagram:
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p(t1, t2)E∗
(
fD(d(x1, t1))

)
p(t1, t2)E∗

(
fD(d(x1, t1))

)
fD(d(x2, t2))

pE∗
(
π2(z1)

)
p(t1, t2)E∗

(
e(x1, t1, v1)

)
e(x2, t2, v2)

dapfD(p(t1, t2))

D2
1via D1

1

q(t1, t2, u1, u2)

The paths Di1, P1 and their components are defined below.

a1) The path Di1

α(d(xi, ti))
E
∗ π2

(
f(d(xi, ti))

)

(
π=

1

(
βi � ε(xi, ri, ui) � υ(xi, ti, ωi)

))E
∗
π2

(
f(d(xi, ti))

)

e(xi, ti, vi)

via Bi1

π=
2

(
βi � ε(xi, ri, ui) � υ(xi, ti, ωi)

)

b1) The path Bi1

α(d(xi, ti))

π=
1 (βi) � apd(xi)

(ri) � 1

π=
1 (βi) � π=

1 (ε(xi, ri, ui)) � π=
1 (υ(xi, ti, ωi))

π=
1

(
βi � ε(xi, ri, ui) � υ(xi, ti, ωi)

)

ηi
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c1) The path P1

(
π=

1 (β1) � apd(x1)(r1) � 1
)
� apid(p(t1, t2))

π=
1 (β1) �

(
apd(x1)(r1) � p(t1, t2)

)
� 1

π=
1 (β1) �

(
p(s1, s2) � apd(x2)(r2)

)
� 1

(
π=

1 (β2) � apd(x2)(r2) � 1
)

apπ1◦f (p(t1, t2)) �
(
π=

1 (β2) � apd(x2)(r2) � 1
)

R1

via natH(p, r1, r2)−1

S−1
1

d1) The pathR1

(
π=

1 (β1) � apd(x1)(r1) � 1
)
� apid(p(t1, t2))

(
π=

1 (β1) � apd(x1)(r1) � 1
)
� apid(p(t1, t2))

π=
1 (β1) � apd(x1)(r1) �

(
1 � apid(p(t1, t2))

)
π=

1 (β1) � apd(x1)(r1) �
(

1 � apid(p(t1, t2))
)

π=
1 (β1) � apd(x)(r1) �

(
p(t2, s2) � 1d(y,s2)

)
π=

1 (β1) � apd(x1)(r1) �
(
p(t1, t2) � 1

)

π=
1 (β1) �

(
apd(x)(r1) � p(t2, s2)

)
� 1d(y,s2)π=

1 (β1) �
(

apd(x1)(r1) � p(t1, t2)
)
� 1

via I2
�

(
I−2
�

(
Φ(p(t1, t2))

))

e1) The path S1

apπ1◦f (p(t1, t2)) �
(
π=

1 (β2) � apd(x2)(r2) � 1
)

(
apπ1◦f (p(t1, t2)) � π=

1 (β2)
)
� apd(x2)(r2) � 1

(
π=

1 (β1) � p(s1, s2)
)
� apd(x2)(r2) � 1

π=
1 (β1) �

(
p(s1, s2) � apd(x2)(r2)

)
� 1

via I1
�(I−1

� (Θ1))

f1) The path Θ1

apπ1◦f (p(t1, t2)) � π=
1 (β2)

π=
1

(
apf (p(t1, t2)) � β2

)

π=
1

(
β1

� ΣE=
(
p(s1, s2), q(s1, s2, u1, u2)

))

π=
1 (β1) � p(s1, s2)

U1

via ϕ∗

V−1
1

We note that in the paths R1 and S1 we choose to use the equalities I2
�

(
I−2
�

(
Φ(p(t1, t2))

))
and I1

�(I−1
� (Θ1)) instead of the more economical Φ(p(t1, t2)) and Θ1. This is due to the fact that

in our chosen form, R1 and S1 are direct generalizations of the respective paths in our original
goal, which would not be the case had we opted for the more concise version.
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g1) The path U1

apπ1◦f (p(t1, t2)) � π=
1 (β2)

π=
1

(
apf (p(t1, t2))

)
� π=

1 (β2)

π=
1

(
apf (p(t1, t2)) � β1

)

h1) The path V1

π=
1 (β1) � p(s1, s2)

π=
1 (β1) � ΣE=

(
p(s1, s2), q(s1, s2, u1, u2)

)

π=
1

(
β1

� ΣE=
(
p(s1, s2), q(s1, s2, u1, u2)

))

To prove that this generalized statement implies our original goal, fix c, t, s and let x := l(c),
y := r(c), s1 := π1 ◦ f ◦ t, s2 := π1 ◦ f ◦ s, u1 := π2 ◦ f ◦ t, u2 := π2 ◦ f ◦ s, t1 := t,
t2 := s, v1 := fD ◦ t, v2 := fD ◦ s, r1 := ΠE=(α ◦ t), r2 := ΠE=(α ◦ s), ω1 := κ(l c, t),
ω2 := κ(r c, s), β1 := β(l c, t), β2 := β(r c, s), η1 := η(l c, t), β2 := η(r c, s), p := p(c),
q := q(c), ϕ∗ := I1

�(ϕ(c, t, s)). The paths B1
1, B2

1, D1
1, D2

1, U1, V1, Θ1 then become B(l c, t),
B(r c, s), βD(l c, t), βD(r c, s), U(c, t, s), V(c, t, s), Θ(c, t, s).

The pathR1 becomesR
(
γ(l c, t), apd(l c)

(
ΠE=(α◦t)

)
, I2

�

(
φ(c, t, s)

))
, where we refer to the

definitions of γ and φmade when endowing the map π1◦f with a morphism structure. Similarly,
S1 becomes S

(
apd(r c)

(
ΠE=(α◦s)

)
, δ(r c, s)−1, I1

�

(
θ(c, t, s))

)
; this makes sense since δ was de-

fined as a point-wise reflexivity. Finally, P1 becomes P
(
d(l c), d(r c), p(c), θ(c, t, s), φ(c, t, s)

)
and the higher path ψ(c, t, s) then proves the commutativity of the diagram required in the hy-
potheses, which finishes the proof of the implication.

Working towards our generalized goal, we note that we can now perform one-sided path
induction (with the right endpoint fixed) on ri and consequently on ωi. This leads to the following
goal: given terms

• xi : A,
• ti : B(xi)→ D and vi : Πb:B(xi)E(ti b),
• βi : f(d(xi, ti)) =

(
d(xi, ti), e(xi, ti, vi)

)
,

• ηi : α(d(xi, ti)) = π=
1 (βi) � 1d(xi,ti)

� 1d(xi,ti),
• p : d(x1) ∼H d(x2),

• q : Πt:B(x1)→DΠs:B(x2)→D

((
p(t, s)E∗ ◦ e(x1, t)

)
∼H e(x2, s)

)
,

• ϕ∗ : apf (p(t1, t2)) � β2 = β1
� ΣE=

(
p(t1, t2), q(t1, t2, v1, v2)

)
,

the commutativity of the diagram
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α(d(x1, t1)) � apid(p(t1, t2))α(d(x1, t1)) � apid(p(t1, t2))
()

� apid(p(t2, s2))
(
π=

1 (β1) � 1 � 1
)
� apid(p(t1, t2))

apπ1◦f (p(t2, s2)) � α(d(y, s2))apπ1◦f (p(t1, t2)) � α(d(x2, t2))
()

apπ1◦f (p(t1, t2)) �
(
π=

1 (β2) � 1 � 1
)

via η1

nat(α, p(t1, t2)) P2

via η2

implies the commutativity of the following diagram:

p(t1, t2)E∗
(
fD(d(x1, t1))

)
p(t1, t2)E∗

(
fD(d(x1, t1))

)
fD(d(x2, t2))

pE∗
(
π2(z1)

)
p(t1, t2)E∗

(
e(x1, t1, v1)

)
e(x2, t2, v2)

dapfD(p(t1, t2))

D2
2via D1

2

q(t1, t2, v1, v2)

The paths Di2, P2 and their components are defined below.

a2) The path Di2

α(d(xi, ti))
E
∗ π2

(
f(d(xi, ti))

)

(
π=

1 (βi � 1 � 1)
)E
∗ π2

(
f(d(xi, ti))

)

e(xi, ti, vi)

via Bi2

π=
2

(
βi � 1 � 1

)

b2) The path Bi2

α(d(xi, ti))

π=
1 (βi) � 1 � 1

π=
1 (βi � 1 � 1)

ηi
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c2) The path P2

(
π=

1 (β1) � 1 � 1
)
� apid(p(t1, t2))

π=
1 (β1) �

(
1 � p(t1, t2)

)
� 1

π=
1 (β1) �

(
p(t1, t2) � 1

)
� 1

apπ1◦f (p(t1, t2)) �
(
π=

1 (β2) � 1 � 1
)

R2

S−1
2

d2) The pathR2

(
π=

1 (β1) � 1 � 1
)
� apid(p(t1, t2))

π=
1 (β1) � 1 �

(
1 � apid(p(t1, t2))

)

π=
1 (β1) � 1 �

(
p(t1, t2) � 1

)

π=
1 (β1) �

(
1 � p(t1, t2)

)
� 1

via I2
�

(
I−2
�

(
Φ(p(t1, t2))

))

e2) The path S2

apπ1◦f (p(t1, t2)) �
(
π=

1 (β2) � 1 � 1
)

(
apπ1◦f (p(t1, t2)) � π=

1 (β2)
)
� 1 � 1

(
π=

1 (β1) � p(t1, t2)
)
� 1 � 1

π=
1 (β1) �

(
p(t1, t2) � 1

)
� 1

via I1
�(I−1

� (Θ2))

f2) The path Θ2

apπ1◦f (p(t1, t2)) � π=
1 (β2)

π=
1

(
apf (p(t1, t2)) � β2

)

π=
1

(
β1

� ΣE=
(
p(t1, t2), q(t1, t2, v1, v2)

))

π=
1 (β1) � p(t1, t2)

U2

via ϕ∗

V−1
2
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g2) The path U2

apπ1◦f (p(t1, t2)) � π=
1 (β2)

π=
1

(
apf (p(t1, t2))

)
� π=

1 (β2)

π=
1

(
apf (p(t1, t2)) � β1

)

h2) The path V2

π=
1 (β1) � p(t1, t2)

π=
1 (β1) � ΣE=

(
p(t1, t2), q(t1, t2, v1, v2)

)

π=
1

(
β1

� ΣE=
(
p(t1, t2), q(t1, t2, v1, v2)

))

We note that in the paths Bi2 andDi2 we no longer refer to the terms ε and υ, since ε(xi, 1t1 , vi)
and υ(xi, ti, 1vi) have reduced to the identity on the pair

(
d(xi, ti), e(xi, ti, vi)

)
. Furthermore, in

the pathP2 we no longer make use of the naturality of the heterogeneous homotopy p, as the term
natH(p, 1t1 , 1t2) reduces to the obvious path from p(t1, t2) �1d(x2,t2) to 1d(x1,t1)

�p(t1, t2). The only
way we do make use of the homotopy p is by applying it to the two arguments t1, t2. Similarly,
we only use the homotopy q when applying it to the arguments t1, t2, v1, v2. An analogous
observation applies to the functions d and e: the only way we utilize them is by referring to the
values d(x1, t1), d(x2, t2), e(x1, t1, v1), e(x2, t2, v2). This suggests the following generalization
of our current goal: given terms

• di : D and ei : E(di),

• βi : f(di) = (di, ei),

• ηi : α(di) = π=
1 (βi) � 1di � 1di ,

• p : d1 = d2 and q : pE∗ e1 = e2,

• ϕ∗ : apf (p) � β2 = β1
� ΣE=(p,q),

the commutativity of the diagram

α(d1) � apid(p)α(d1) � apid(p)
()

� apid(p(t2, s2))
(
π=

1 (β1) � 1 � 1
)
� apid(p)

apπ1◦f (p) � α(d2)apπ1◦f (p) � α(d2)
()

apπ1◦f (p) �
(
π=

1 (β2) � 1 � 1
)

via η1

nat(α,p) P3

via η2

implies the commutativity of the following diagram:
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p(t1, t2)E∗
(
fD(d(x1, t1))

)
pE∗ (fD(d1)) fD(d2)

pE∗
(
π2(z1)

)
pE∗ (e1) e2

dapfD(p)

D3
2via D3

1

q

The paths Di3, P3 and their components are as follows:

a3) The path Di3

α(di)
E
∗ π2(f(di))

(
π=

1 (βi � 1 � 1)
)E
∗ π2(f(di))

ei

via Bi3

π=
2

(
βi � 1 � 1

)

b3) The path Bi3

α(di)

π=
1 (βi) � 1 � 1

π=
1 (βi � 1 � 1)

ηi

c3) The path P3

(
π=

1 (β1) � 1 � 1
)
� apid(p)

π=
1 (β1) �

(
1 � p

)
� 1

π=
1 (β1) �

(
p � 1

)
� 1

apπ1◦f (p) �
(
π=

1 (β2) � 1 � 1
)

R3

S−1
3

d3) The pathR3

(
π=

1 (β1) � 1 � 1
)
� apid(p)

π=
1 (β1) � 1 �

(
1 � apid(p)

)

π=
1 (β1) � 1 �

(
p � 1

)

π=
1 (β1) �

(
1 � p

)
� 1

via I2
�

(
I−2
�

(
Φ(p)

))

e3) The path S3

apπ1◦f (p) �
(
π=

1 (β2) � 1 � 1
)

(
apπ1◦f (p) � π=

1 (β2)
)
� 1 � 1

(
π=

1 (β1) � p
)
� 1 � 1

π=
1 (β1) �

(
p � 1

)
� 1

via I1
�(I−1

� (Θ3))
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f3) The path Θ3

apπ1◦f (p) � π=
1 (β2)

π=
1

(
apf (p) � β2

)

π=
1

(
β1

� ΣE=(p,q)
)

π=
1 (β1) � p

U3

via ϕ∗

V−1
3

g3) The path U3

apπ1◦f (p) � π=
1 (β2)

π=
1

(
apf (p)

)
� π=

1 (β2)

π=
1

(
apf (p) � β1

)

h3) The path V3

π=
1 (β1) � p

π=
1 (β1) � ΣE=(p,q)

π=
1

(
β1

� ΣE=(p,q)
)

We can now perform the usual path induction on p and consequently on q. It thus suffices to
show that given terms

• d1 : D and e1 : E(d1),
• βi : f(d1) = (d1, e1),
• ηi : α(d1) = π=

1 (βi) � 1d1
� 1d1 ,

• ϕ∗ : 1f(d1)
� β2 = β1

� 1(d1,e1),

the commutativity of the diagram

α(d1) � 1
(
π=

1 (β1) � 1 � 1
)
� 1

1 � α(d1) 1 �
(
π=

1 (β2) � 1 � 1
)

via η1

P4

via η2

implies the commutativity of the following diagram:

fD(d1) fD(d2)

e1 e1

D2
4D1

4
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We note that the two horizontal paths in the above diagram have reduced to reflexivities;
furthermore, we no longer refer to the naturality of α since the term nat(α, 1d1) reduces to the
obvious path from α(d1) � 1d1 to 1d1

� α(d1). The paths Di4, P4 and their components are as
follows:

a4) The path Di4

α(d1)E∗ π2(f(d1))

(
π=

1 (βi � 1 � 1)
)E
∗ π2(f(d1))

e1

via Bi4

π=
2

(
βi � 1 � 1

)

b4) The path Bi4

α(d1)

π=
1 (βi) � 1 � 1

π=
1 (βi � 1 � 1)

ηi

c4) The path P4

(
π=

1 (β1) � 1 � 1
)
� 1

π=
1 (β1) �

(
1 � 1

)
� 1

1 �
(
π=

1 (β2) � 1 � 1
)

R4

S−1
4

d4) The pathR4

(
π=

1 (β1) � 1 � 1
)
� 1

π=
1 (β1) � 1 �

(
1 � 1

)

π=
1 (β1) �

(
1 � 1

)
� 1

e4) The path S4

1 �
(
π=

1 (β2) � 1 � 1
)

(
1 � π=

1 (β2)
)
� 1 � 1

(
π=

1 (β1) � 1
)
� 1 � 1

π=
1 (β1) �

(
1 � 1

)
� 1

via I1
�(I−1

� (Θ4))

f4) The path Θ4

1 � π=
1 (β2)

π=
1 (1 � β2)

π=
1 (β1

� 1)

π=
1 (β1) � 1

via ϕ∗

We note that in the pathR4 we no longer refer to the term Φ, since the term I2
�

(
I−2
�

(
Φ(1d1)

))
reduces to reflexivity. Furthermore, the only way we make use of the homotopy α is by referring
to the value α(d1).

To prove our newest goal, we observe that assuming a higher path ϕ∗ : 1f(d1)
�β2 = β1

�1(d1,e1)

is equivalent to assuming a path ϕ∗∗ : β2 = β1 instead and replacing the occurrence of ϕ∗ in Θ4 by
I1,1(ϕ∗∗). The assumption ϕ∗∗ has the advantage that we can immediately perform path induction
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on it (keeping the right endpoint fixed), which results in replacing β2 with β1. Moreover, at this
point we can generalize not only the paths α(d1) and β1, but also the points f(d1) and (d1, e1),
replacing every occurrence of d1 and e1 with the appropriate first or second projection. This leads
to the following goal: given terms

• z1, z2 : Σx:DE(x),
• α∗ : π1(z1) = π1(z2) and β∗ : z1 = z2,
• ηi : α∗ = π=

1 (β∗) � 1π1(z2)
� 1π1(z2),

the commutativity of the diagram

α∗ � 1
(
π=

1 (β∗) � 1 � 1
)
� 1

1 � α∗ 1 �
(
π=

1 (β∗) � 1 � 1
)

via η1

P5

via η2

implies the commutativity of the following diagram:

(α∗)
E
∗ π2(z1) (α∗)

E
∗ π2(z1)

π2(z1) π2(z2)

D2
5D1

5

The paths Di5, P5 and their components are as follows:

a5) The path Di5

(α∗)
E
∗ π2(z1)

(
π=

1 (β∗ � 1 � 1)
)E
∗ π2(z2)

π2(z2)

via Bi5

π=
2

(
β1

� 1 � 1
)

b5) The path Bi5

α∗

π=
1 (β∗) � 1 � 1

π=
1 (β∗ � 1 � 1)

ηi

c5) The path P5

(
π=

1 (β∗) � 1 � 1
)
� 1

π=
1 (β∗) �

(
1 � 1

)
� 1

1 �
(
π=

1 (β∗) � 1 � 1
)

R5

S−1
5
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d5) The pathR5

(
π=

1 (β∗) � 1 � 1
)
� 1

π=
1 (β∗) � 1 �

(
1 � 1

)

π=
1 (β∗) �

(
1 � 1

)
� 1

e5) The path S5

1 �
(
π=

1 (β∗) � 1 � 1
)

(
1 � π=

1 (β∗)
)
� 1 � 1

(
π=

1 (β∗) � 1
)
� 1 � 1

π=
1 (β∗) �

(
1 � 1

)
� 1

via I1
�(I−1

� (Θ5))

f5) The path Θ5

1 � π=
1 (β∗)

π=
1 (1 � β∗)

π=
1 (β∗ � 1)

π=
1 (β∗) � 1

via I1,1(1β∗)

Of course, either one of the two assumptions η1, η2 implies α∗ = π=
1 (β∗). Thus, it is enough

to prove our goal under the additional assumption ξ : α∗ = π=
1 (β∗). But now we can perform one-

sided path induction on ξ, which replaces α∗ with π=
1 (β∗), and a subsequent path induction on

β∗. It now suffices to show the following: given terms d1 : D, e1 : E(d1) and η1, η2 : 1d1 = 1d1 ,
the commutativity of the diagram on the left implies the commutativity of the diagram on the
right:

1d1
� 1d1 1d1

� 1d1

1d1
� 1d1 1d1

� 1d1

via η1

via η2

(1d1)E∗ e1 (1d1)E∗ e1

(1d1)E∗ e1 (1d1)E∗ e1

via η2via η1

In particular, we note that the path P5 and all of its components have reduced to reflexivity and
the paths D1

5 and D2
5 have become equal to η1 and η2.

As observed in the proof of lemma 101, for any u, v : a =X b and ξ : u = v, the following
two diagrams commute:

u

v

1a � u

1a � v

ξvia ξ

u

v

u � 1b

v � 1b

ξvia ξ
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In the case when ξ := η1 and ψ := η2, all of the horizontal paths in the above two diagrams
become reflexivities; hence it suffices to show that given terms d1 : D, e1 : E(d1) and η1, η2 :
1d1 = 1d1 , the equality η1 = η2 implies the commutativity of the diagram below:

(1d1)E∗ e1 (1d1)E∗ e1

(1d1)E∗ e1 (1d1)E∗ e1

via η2via η1

But this is clear and we are done.

Corollary 106. (H) For any algebra X : WQAlgUj(A,B,C, l, r) we have

isWQHInitUk(X ) → hasWQIndUk(X )

provided k ≥ j.

At this point, the main theorem 83 is an easy corollary, which we restate here:

Corollary 107. (H) For A,C : Ui, B : A → Ui, l, r : C → A, the following conditions on an
algebra X : WQAlgUj(A,B,C, l, r) are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasWQIndUk(X ) ' isWQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Proof. Using corollaries 104 and 106, we have a logical equivalence between hasWQIndUk(X )
and isWQHInitUk(X ). It remains to show that both of these types are mere propositions. The
latter is a mere proposition by lemma 18. To show that hasWQIndUk(X ) is a mere proposition,
it is sufficient to do so under the assumption that it is inhabited. Since X satisfies the induction
principle, by lemma 103 it satisfies the induction uniqueness principle. This means that for any
fibered algebra Y , the type WQFibMor X Y is a mere proposition. Since taking a Π of a family
of mere propositions results again in a mere proposition, this finishes the proof.

Furthermore:

Corollary 108. (H + WQ) For A,C : Ui, B : A→ Ui, l, r : C → A, the algebra(
WQ(A,B,C, l, r), point, cell

)
: WQAlgUi(A,B,C, l, r)

is homotopy-initial on any universe Uj .
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3.4 Definability
We now show how to construct the circles S and S, type quotients A/R, and W-types W(A,B)
as specific W-quotients. As a consequence, we derive the analogue of our main result for these
higher inductive types as a corollary to theorem 3. The interval I and suspensions ΣA follow the
same methodology.

3.4.1 Homotopy-initiality for W-types
In this section, fix A := A, B := B, C := 0 and let l, r := rec0(A), i.e., the canonical function
from 0 to A.

Lemma 109. (H) We have a function

WQToWAlg : WQAlgUj(A,B,C, l, r) → WAlgUj(A,B)

which is an equivalence.

Proof. This follows immediately from the fact that for any X0 : WAlgUj(A,B), we have

WAlgFam(A,B,C, l, r) X0 ' 1

Lemma 110. (H) For an algebra X : WQAlgUj(A,B,C, l, r) we have a function

WQToWFibAlg(X ) : WQFibAlgUk X → WFibAlgUk

(
WQToWAlg X

)
which is an equivalence.

Proof. Fix an algebra (D, d, p) : WQAlgUj(A,B,C, l, r). Then WQToWAlg (D, d, p) is just the
algebra (D, d). The desired equivalence follows easily since for any X0 : WFibAlgUk (D, d), we
have

WFibAlgFam (D, d, p) X0 ' 1

Lemma 111. (H) For algebras X : WQAlgUj(A,B,C, l, r) and Y : WQFibAlgUk X we have

WQFibMor X Y ' WFibMor
(

WQToWAlg X
) (

WQToWFibAlg(X ) Y
)

Proof. Fix algebras (D, d, p) : WQAlgUj(A,B,C, l, r) and (E, e, q) : WQFibAlgUk (D, d, p).
Then WQToWAlg (D, d, p) is the algebra (D, d) and WQToWFibAlg(D, d, p) (E, e, q) is the
algebra (E, e). The equivalence follows easily since for any µ0 : WFibMor (D, d) (E, e), we
have

WFibMorFam (D, d, p) (E, e, q) µ0 ' 1
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Corollary 112. (H) For algebras X : WQAlgUj(A,B,C, l, r) and Y : WQAlgUk(A,B,C, l, r)
we have

WQMor X Y ' WMor
(

WQToWAlg X
) (

WQToWAlg Y
)

Proof. Using lemma 86.

Corollary 113. (H) For an algebra X : WAlgUj(A,B) we have

hasWRecUk(X ) ' hasWQRecUk

(
WQToWAlg−1(X )

)
hasWIndUk(X ) ' hasWQIndUk

(
WQToWAlg−1(X )

)
isWHInitUk(X ) ' isWQHInitUk

(
WQToWAlg−1(X )

)
Corollary 114. (H) For A : Ui, B : A → Ui, the following conditions on an algebra X :
WAlgUj(A,B) are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasWIndUk(X ) ' isWHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Corollary 115. (H + W) For A : Ui, B : A→ Ui, the algebra(
W(A,B), sup

)
: WAlgUi(A,B)

is homotopy-initial on any universe Uj .

3.4.2 Homotopy-initiality for The Circle
We first treat the S-case, for which we define A,C := 1, B(−) := 0, l(−) := ?, r(−) := ?.
Lemma 116. (H) We have a function

S-To-WQ-Alg : S-AlgUi → WQAlgUi(A,B,C, l, r)

which is an equivalence.

Proof. This follows easily from the observations that for any D : Ui, we have the equivalence

d 7→ λa:1λt:0→Dd : D ' Πa:1(0→ D)→ D

and for any D : Ui, d : D, we have the equivalence

p 7→ λc:1λu:0→Dλv:0→Dp : d = d ' WAlgFam(A,B,C, l, r)
(
D,λa:1λt:0→Dd

)
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Lemma 117. (H) For an algebra X : S-AlgUi we have a function

S-To-WQ-FibAlg(X ) : S-FibAlgUj X → WQFibAlgUj

(
S-To-WQ-Alg X

)
which is an equivalence.

Proof. Fix an algebra (D, d, p) : S-FibAlgUi . Let (D, d′, p′) := S-To-WQ-Alg (D, d, p). Then

d′(a, t) := d

p′(c, t, s) := p

The desired equivalence follows easily from the observations that for any E : D → Uj , we have
the equivalence

e 7→ λa:1λt:0→Dλu:(Πb:0)E(t b)e : E(d) ' Πa:1Πt:0→D
(
Πb:0E(t b)

)
→ E(d)

and for any E : D → Uj , e : E(d), we have the equivalence

q 7→ λc:1λt:0→Dλs:0→Dλu:(Πb:0)E(t b)λv:(Πb:0)E(s b)q :

pE∗ (e) = e ' WFibAlgFam (D, d′, p′)
(
E, λa:1λt:0→Dλu:(Πb:0)E(t b)e

)

Lemma 118. (H) For algebras X : S-AlgUi and Y : S-FibAlgUj X we have

S-FibMor X Y ' WQFibMor
(
S-To-WQ-Alg X

) (
S-To-WQ-FibAlg(X ) Y

)
Proof. Fix algebras (D, d, p) : S-AlgUi and (E, e, q) : S-FibAlgUj (D, d, p). As before, we let
(D, d′, p′) := S-To-WQ-Alg (D, d, p). Then

d′(a, t) := d

p′(c, t, s) := p

Similarly, let (E, e′, q′) := S-To-WQ-FibAlg(D, d, p) (E, e, q). Then

e′(a, t) := e

q′(c, t, s) := q

The desired equivalence follows easily from the observations that for any f : Πx:DE(x), we have
the equivalence

β 7→ λa:1λt:0→Dβ : f(d) = e ' Πa:1Πt:0→D(f(d) = e)

and for any f : Πx:DE(x), β : f(d) = e, we have the equivalence

θ 7→ λc:1λt:0→Dλs:0→Dθ :

dapf (p) = appE∗ (β) � q � β−1 ' WFibMorFam (D, d′, p′) (E, e′, q′)
(
f, λa:1λt:0→Dβ

)
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Lemma 119. (H) For algebras X : S-AlgUi and Y : S-AlgUj we have

S-Mor X Y ' WQMor
(
S-To-WQ-Alg X

) (
S-To-WQ-Alg Y

)
Proof. Exactly as in the fibered case.

Corollary 120. (H) For an algebra X : S-AlgUi we have

has-S-RecUj(X ) ' hasWQRecUj

(
S-To-WQ-Alg(X )

)
has-S-IndUj(X ) ' hasWQIndUj

(
S-To-WQ-Alg(X )

)
is-S-HInitUj(X ) ' isWQHInitUj

(
S-To-WQ-Alg(X )

)
Corollary 121. (H) The following conditions on an algebra X : S-AlgUi are equivalent:
• X satisfies the induction principle on the universe Uj
• X is homotopy-initial on the universe Uj

for j ≥ i. In other words, we have

has-S-IndUj(X ) ' is-S-HInitUj(X )

provided for j ≥ i. Moreover, the two types above are mere propositions.

Corollary 122. (H + S) The algebra(
S, base, loop

)
: S-AlgU0

is homotopy-initial on any universe Ui.
Corollary 123. (H) The following conditions on an algebra X : S-AlgUi are equivalent:
• X satisfies the induction principle on the universe Uj
• X is homotopy-initial on the universe Uj

for j ≥ i. In other words, we have

has-S-IndUj(X ) ' is-S-HInitUj(X )

provided for j ≥ i. Moreover, the two types above are mere propositions.

Proof. Using corollary 60.

Corollary 124. (H + S) The algebra(
S, north, east,west

)
: S-AlgU0

is homotopy-initial on any universe Ui.
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3.4.3 Homotopy-initiality for Type Quotients
For a type quotient A/R, define A := A, B(−) := 0, C := Σa,b:AR(a, b), l := π1, r := π1 ◦ π2.

Lemma 125. (H) We have a function

TQToWAlg : TQAlgUj(A,R) → WQAlgUj(A,B,C, l, r)

which is an equivalence.

Proof. This follows easily from the observations that for any D : Uj , we have the equivalence

d 7→ λa:Aλt:0→Dd(a) : A→ D ' Πa:A(0→ D)→ D

and for any D : Uj , d : A→ D, we have the equivalence

p 7→ λc:(Σa,b:A)R(a,b)λu:0→Dλv:0→Dp
(
π1(c), π1(π2(c)), π2(π2(c))

)
:

Πa,b:AR(a, b)→ (d(a) = d(b)) ' WAlgFam(A,B,C, l, r)
(
D,λa:Aλt:0→Dd(a)

)

Lemma 126. (H) For an algebra X : TQAlgUj(A,R) we have a function

TQToWFibAlg(X ) : TQFibAlgUk X → WQFibAlgUk

(
TQToWAlg X

)
which is an equivalence.

Proof. Fix an algebra (D, d, p) : TQAlgUj(A,R). Let (D, d′, p′) := TQToWAlg (D, d, p). Then

d′(a, t) := d(a)

p′(c, t, s) := p
(
π1(c), π1(π2(c)), π2(π2(c))

)
The desired equivalence follows easily from the observations that for any E : D → Uk, we have
the equivalence

e 7→ λa:Aλt:0→Dλu:(Πb:0)E(t b)e(a) : Πa:AE(d(a)) ' Πa:AΠt:0→D
(
Πb:0E(t b)

)
→ E(d(a))

and for any E : D → Uj , e : Πa:AE(d(a)), we have the equivalence

q 7→ λc:(Σa,b:A)R(a,b)λt:0→Dλs:0→Dλu:(Πb:0)E(t b)λv:(Πb:0)E(s b)q
(
π1(c), π1(π2(c)), π2(π2(c))

)
:

Πa,b:AΠz:R(a,b)

(
p(a, b, z)E∗ e(a) = e(b)

)
'

WFibAlgFam (D, d′, p′)
(
E, λa:Aλt:0→Dλu:(Πb:0)E(t b)e(a)

)
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Lemma 127. (H) For algebras X : TQAlgUj(A,R) and Y : TQFibAlgUk X we have

TQFibMor X Y ' WQFibMor
(

TQToWAlg X
) (

TQToWFibAlg(X ) Y
)

Proof. Fix algebras (D, d, p) : TQAlgUj(A,R) and (E, e, q) : TQFibAlgUk (D, d, p). As before,
let (D, d′, p′) := TQToWAlg (D, d, p). Then

d′(a, t) := d(a)

p′(c, t, s) := p
(
π1(c), π1(π2(c)), π2(π2(c))

)
Similarly, let (E, e′, q′) := TQToWFibAlg(D, d, p) (E, e, q). Then

e′(a, t) := e(a)

q′(c, t, s, u, v) := q
(
π1(c), π1(π2(c)), π2(π2(c))

)
The desired equivalence follows easily from the observations that for any f : Πx:DE(x), we have
the equivalence

β 7→ λa:Aλt:0→Dβ(a) : Πa:A(f(d(a)) = e(a)) ' Πa:AΠt:0→D(f(d(a)) = e(a))

and for any f : Πx:DE(x), β : Πa:A(f(d(a)) = e(a)), we have the equivalence

θ 7→ λc:(Σa,b:A)R(a,b)λt:0→Dλs:0→Dθ
(
π1(c), π1(π2(c)), π2(π2(c))

)
:

Πa,b:AΠz:R(a,b)

(
dapf (p(a, b, z)) = app(a,b,z)E∗ (β(a)) � q(a, b, z) � β(b)−1

)
'

WFibMorFam (D, d′, p′) (E, e′, q′)
(
f, λa:Aλt:0→Dβ(a)

)

Lemma 128. (H) For algebras X : TQAlgUj(A,R) and Y : TQAlgUk(A,R) we have

TQMor X Y ' WQMor
(

TQToWAlg X
) (

TQToWAlg Y
)

Proof. Exactly as in the fibered case.

Corollary 129. (H) For an algebra X : TQAlgUj(A,R) we have

hasTQRecUk(X ) ' hasWQRecUk

(
TQToWAlg(X )

)
hasTQIndUk(X ) ' hasWQIndUk

(
TQToWAlg(X )

)
isTQHInitUk(X ) ' isWQHInitUk

(
TQToWAlg(X )

)
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Corollary 130. (H) For A : Ui, R : A → A → Ui, the following conditions on an algebra
X : TQAlgUj(A,R) are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasTQIndUk(X ) ' isTQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Corollary 131. (H + /) For A : Ui, R : A→ A→ Ui, the algebra(
A/R, [−], c

)
: TQAlgUi(A,R)

is homotopy-initial on any universe Uj .
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4

Homotopy-initiality for Further Higher
Inductive Types

As we saw in the previous chapter, all the higher inductive types described in section 2.4 are
special cases of W-quotients and as such admit a simple characterization as homotopy-initial
algebras of a certain form. A natural question to ask at this point would be whether we can
characterize all higher inductive types in a similar fashion. As of now, this is not a mathemat-
ically precise statement because homotopy type theory does not yet have a universally agreed-
upon definition of what a higher inductive type should be (although recent unpublished work
by Lumsdaine and Shulman offers significant progress in this direction). Instead, one generally
works with specific examples that everybody agrees are well-behaved higher inductive types,
such as the ones we saw in section 2.4.

In this chapter we will study two further classes of higher inductive types - truncations (chap-
ters 6.9 and 7.3 of [33]) and set/groupoid quotients (chapters 6.10 and 9.9 of [33]) and show
that they too can be characterized as appropriate homotopy-initial algebras. The proof we give
for truncations is not a corollary of our main theorem 83 since truncations do not arise as W-
quotients in an obvious way, the way a type quotient or a W-type does. Recent work by Rijke
and van Doorn [36] shows that truncations can in fact be recovered from type quotients (and
hence from W-quotients) but the reduction is highly nontrivial. On the other hand, we present
the reduction of groupoid (and, rather trivially, set) quotients to W-quotients plus truncations
(which by Rijke’s result implies a reduction to W-quotients themselves) in this section as a new
result and derive the analogue of theorem 83 for set and groupoid quotients as a consequence of
this reduction. We also remark that while the definition of a group quotient as a higher inductive
type appears in [33] (chapter 9.9, page 333), the associated recursion and induction rules are not
described in the book and hence we give our own version here.
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4.1 Homotopy-initiality for Truncations

4.1.1 Truncations
The n-truncation ||A||n of a type A for n ≥ −2 should intuitively be the “best approximation”
of A by an n-type. For n := −2, the only choice is of course the unit type 1. For n := −1,
we could define ||A||−1 to be the higher inductive type generated by the point constructor | · | :
A→ ||A||−1, and a path constructor ensuring that the resulting higher inductive type will indeed
be a mere proposition, for example t :

(
Πx, y : ||A||−1

)
(x = y). For n := 0, we would

modify the path constructor to t :
(
Πx, y : ||A||0

)(
Πp, q : x = y

)
(p = q), for n := 1 to

t :
(
Πx, y : ||A||1

)(
Πp, q : x = y

)(
Πγ, δ : p = q

)
(γ = δ) and so on. Clearly, this does not

scale very well to higher n; in fact, even for n := 1 the associated induction principle is too ugly
to write down. Instead, we will describe n-truncations compactly by using n-spheres, exactly as
done in [33], although our motivation and subsequent justification will be slightly different.

Since we will be working with n-spheres, let us remind ourselves of the following universal
properties of suspensions, whose proofs are simple exercises:

Lemma 132. (H + Σ) For any A,D : Ui we have

ΣA→ D ' Σn,s:DA→ (n = s)

Proof. The equivalence is given by the following quasi-inverses:

f 7→
(
f(N), f(S), λa:Aapf (mer(a))

)
(n, s,m) 7→ recΣA(D,n, s,m)

Lemma 133. (H + Σ) For any A : Ui, E : A→ Ui, we have

Πx:ΣAE(x) ' Σn:E(N)Σs:E(S)Πa:A

(
mer(a)E∗ (n) = s

)
Proof. The equivalence is given by the following quasi-inverses:

f 7→
(
f(N), f(S), λa:Adapf (mer(a))

)
(n, s,m) 7→ indΣA(E, n, s,m)

Our next goal is to establish a different characterization of n-types, for n ≥ −1, as precisely
those types A : Ui for which any function f : Sn+1 → A is constant up to propositional equality
(see [11] on various notions of “constant” maps):

Definition 134. A function f : A → B is said to be homotopy-constant if it is propositionally
equal to a constant function:

HConst(f) := Σb:BΠa:A(f(a) = b)

82



Lemma 135. (H + Σ) For any n : N and f : Sn → A, we have

HConst(f) ' HConst
(
(λx : Sn−1)apf (mer(x))

)
Proof. We have the following chain of equivalences:

HConst(f)

≡
(
Σa : A

)(
Πx : Sn

)
(f(x) = a)

(2) '
(
Σa : A

)(
Σα : f(N) = a

)(
Σβ : f(S) = a

)(
Πx : Sn−1

)(
mer(x)z 7→f(z)=a

∗ (α) = β
)

(3) '
(
Σa : A

)(
Σα : f(N) = a

)(
Σβ : f(S) = a

)(
Πx : Sn−1

)(
apf (mer(x)) = α � β−1

)
'

(
Σr : Σa:A(a = f(N))

)(
Σβ : f(S) = π1(r)

)(
Πx : Sn−1

)(
apf (mer(x)) = π2(r) � β−1

)
(5) '

(
Σβ : f(S) = f(N)

)(
Πx : Sn−1

)(
apf (mer(x)) = 1f(N)

� β−1
)

'
(
Σβ : f(N) = f(S)

)(
Πx : Sn−1

)(
apf (mer(x)) = 1f(N)

� β
)

'
(
Σβ : f(N) = f(S)

)(
Πx : Sn−1

)(
apf (mer(x)) = β

)
≡ HConst

(
(λx : Sn−1)apf (mer(x))

)
The second equivalence follows from lemma 133, the third by a suitable generalization and path
induction on mer(x), and the fifth from the fact that the type Σa:A(a = f(N)) is contractible with
the center of contraction

(
f(N), 1f(N)

)
.

Lemma 136. (H + Σ) For any n : N and A : Ui, we have(
Πf : Sn → A

)
HConst(f) '

(
Πa, b : A

)(
Πf : Sn−1 → (a = b)

)
HConst(f)

Proof. We have the following chain of equivalences:(
Πf : Sn → A

)
HConst(f)

'
(

Πr : Σa,b:AS
n−1 → (a = b)

)
HConst

(
recSn

(
A, π1(r), π1(π2(r)), π2(π2(r))

))
'

(
Πa, b : A

)(
Πf : Sn−1 → (a = b)

)
HConst

(
recSn(A, a, b, f)

)
'

(
Πa, b : A

)(
Πf : Sn−1 → (a = b)

)
HConst(f)

Here the first equivalence follows from lemma 132 and the third from lemma 135.

Corollary 137. (H + Σ) For any n : N and A : Ui, we have(
Πf : Sn → A

)
HConst(f) ' is-(n− 1)-type(A)

Proof. By induction on n. For the base case, we have is-(−1)-type(A) ' isProp(A) and(
Πf : S0 → A

)
HConst(f) '

(
Πa, b : A

)(
Πf : 0→ (a = b)

)
HConst(f)
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by lemma 136. For any a, b : A, we have

Πf :0→(a=b) HConst(f)

≡ Πf :0→(a=b) Σp:a=bΠx:0(f(x) = p)

' Πf :0→(a=b) (a = b)

' (a = b)

This finishes the base step; the inductive step follows easily from lemma 136.

We are now ready to formally define truncations. For n : N and a type A : Ui, we define
the truncation ||A||n−2 : Ui by case analysis on n. For n := 0, we put ||A||−2 := 1. For the
successor case, just like in chapter 7.3 of [33] we define ||A||n−1 : Ui to be the higher inductive
type generated by the constructors

| · |n−1 : A→ ||A||n−1

hub :
(
Sn → ||A||n−1

)
→ ||A||n−1

spoke :
(
Πr : Sn → ||A||n−1

)(
Πx : Sn

)
(r(x) = hub(r))

The recursion principle for truncations ||A||n−1 says that given terms
• E : Uj ,
• e : A→ E,
• h : (Sn → E)→ E,
• s : Πu:Sn→EΠx:Sn(u(x) = h(u)),

there is a recursor rec||·||(E, e, h, s) : ||A||n−1 → E. The recursor satisfies the following compu-
tation laws:
• rec||·||(|a|n−1) ≡ f(a) for any a : A,
• rec||·||(hub(r)) = h

(
rec||·|| ◦ r

)
for any r : Sn → ||A||n−1,

• aprec||·||
(spoke(r, x)) is equal to the path below for any r : Sn → ||A||n−1, x : Sn, where

equality (1) uses the computation rule for the hub constructor:

rec||·||(r(x)) h
(
rec||·|| ◦ r

)
rec||·||(hub(r))

s
(
rec||·|| ◦ r, x

)
(1)

As we see, the computation law for the hub constructor is propositional rather than defini-
tional. There is little incentive for stating it definitionally; the hub and spoke constructors only
serve to ensure that ||A||n−1 is indeed an (n− 1)-type and are not intended for purposes of com-
putation. Furthermore, the propositional form of the above law will turn out to be quite useful,
as we will see shortly.

The induction principle says that given terms
• E : ||A||n−1 → Uj ,
• e : Πa:AE(|a|n−1),
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• h :
(
Πr : Sn → ||A||n−1

)(
Πx:SnE(r(x))

)
→ E(hub(r)),

• s :
(
Πr : Sn → ||A||n−1

)(
Πu : Πx:SnE(r(x))

)(
Πx : Sn

)(
spoke(r, x)E∗ u(x) = h(r, u)

)
,

there is an inductor ind||·||(E, e, h, s) : Πx:||A||n−1E(x). The inductor satisfies the computation
laws

• ind||·||(|a|n−1) ≡ e(a) for any a : A,
• ind||·||(hub(r)) ≡ h

(
r, ind||·|| ◦ r

)
for any r : Sn → ||A||n−1,

• dapind||·||
(spoke(r, x)) is equal to the path below for any r : Sn → ||A||n−1, x : Sn, where

equality (1) uses the computation rule for the hub constructor:

spoke(r, x)E∗
(
ind||·||(r(x))

)
h
(
r, ind||·|| ◦ r

)
ind||·||(hub(r))

s
(
r, ind||·|| ◦ r, x

)
(1)

Before we proceed further, we establish a couple of technical lemmas:

Lemma 138. (H + Σ) For any n : N and f : Sn−1 → A, we have

is-(n− 2)-type(A) → isContr
(
HConst(f)

)
Proof. By induction on n. For the base step, assume A is contractible. Then

HConst(f) ≡ Σa:AΠx:0(f(x) = a) ' A

is also contractible. The inductive step follows easily from lemma 135.

Lemma 139. (H + Σ) For any n : N and D : Uj we have(
Σh : (Sn → D)→ D

)(
Πu : Sn → D

)(
Πx : Sn

)
(u(x) = h(u)) ' is-(n− 1)-type(D)

Proof. We have the following chain of equivalences:(
Σh : (Sn → D)→ D

)(
Πu : Sn → D

)(
Πx : Sn

)
(u(x) = h(u))

'
(
Πu : Sn → D

)(
Σd : D

)(
Πx : Sn

)
(u(x) = d)

≡
(
Πu : Sn → D

)
HConst(u)

' is-(n− 1)-type(D)

Lemma 140. (H + Σ) For any n : N and terms
• D : Uj ,
• h : (Sn → D)→ D,
• s :

(
Πu : Sn → D

)(
Πx : Sn

)
(u(x) = h(u)),

• E : D → Uk,
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the type (
Σi :

(
Πr : Sn → D

)(
Πx:SnE(r(x))

)
→ E(h(r))

)
(
Πr : Sn → D

)(
Πu : Πx:SnE(r(x))

)(
Πx : Sn

)(
s(r, x)E∗ u(x) = i(r, u)

)
is equivalent to (

Πy : D
)

is-(n− 1)-type(E(y))

Proof. The former type is clearly equivalent to(
Πr : Sn → D

)(
Πu : Πx:SnE(r(x))

)(
Σi : E(h(r))

)(
Πx : Sn

)(
s(r, x)E∗ u(x) = i

)
Furthermore, for any r : Sn → D, the types Πx:SnE(r(x)) and Sn → E(h(r)) are equivalent,
via the quasi-equivalences

u 7→ λx:Sn

(
s(r, x)E∗ u(x)

)
u 7→ λx:Sn

(
s(r, x)∗E u(x)

)
Hence we have(

Πr : Sn → D
)(

Πu : Πx:SnE(r(x))
)(

Σi : E(h(r))
)(

Πx : Sn
)(
s(r, x)E∗ u(x) = i

)
'

(
Πr : Sn → D

)(
Πu : Sn → E(h(r))

)(
Σi : E(h(r))

)(
Πx : Sn

)(
u(x) = i

)
≡

(
Πr : Sn → D

)(
Πu : Sn → E(h(r))

)
HConst(u)

'
(
Πr : Sn → D

)
is-(n− 1)-type

(
E(h(r))

)
where the last equivalence follows from corollary 137. Finally, it is not hard to see that(

Πr : Sn → D
)

is-(n− 1)-type
(
E(h(r))

)
'

(
Πy : D

)
is-(n− 1)-type(E(y))

To show this, we first note that both types are mere propositions. Furthermore, the latter clearly
implies the former. To show the converse, take any y : D and define r(x) := y. Then we get
is-(n− 1)-type

(
E(h(r))

)
. Now we have spoke(r,N) : y = h(r), hence E(y) = E(h(r)) and in

particular is-(n− 1)-type(E(y)) as desired.

Lemma 141. (H + Σ) For any n : N and terms
• D : Uj ,
• h : (Sn → D)→ D,
• s :

(
Πu : Sn → D

)(
Πx : Sn

)
(u(x) = h(u)),

• E : D → Uk,
• i :

(
Πr : Sn → D

)(
Πx:SnE(r(x))

)
→ E(h(r)),

• t :
(
Πr : Sn → D

)(
Πu : Πx:SnE(r(x))

)(
Πx : Sn

)(
s(r, x)E∗ u(x) = i(r, u)

)
,

• f : Πx:DE(x),
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the type (
Σγ :

(
Πr : Sn → D

)(
f(h(r)) = i(r, f ◦ r)

))
(
Πr : Sn → D

)(
Πx : Sn

)(
dapf (s(r, x)) = t(r, f ◦ r, x) � γ(r)−1

)
is contractible.

Proof. It is not hard to see that the type in question is equivalent to(
Πr : Sn → D

)(
Σγ : f(h(r)) = i(r, f ◦ r)

)(
Πx : Sn

)(
dapf (s(r, x)) = t(r, f ◦ r, x) � γ−1

)
which in turn is equivalent to(

Πr : Sn → D
)(

Σγ : f(h(r)) = i(r, f ◦ r)
)(

Πx : Sn
)(

dapf (s(r, x))−1 � t(r, f ◦ r, x) = γ
)

This is definitionally the same as(
Πr : Sn → D

)
HConst

(
(λx : Sn)dapf (s(r, x))−1 � t(r, f ◦ r, x)

)
Using lemma 140, we see that the pair (i, t) implies that each fiber of E, and in particular
E(h(r)), is an (n−1)-type. Hence f(h(r)) = i(r, f ◦r) is also an (n−1)-type. From lemma 138
we can thus conclude that our type is contractible as desired.

Lemma 142. (H + Σ) For any n : N and terms
• D : Uj ,
• h : (Sn → D)→ D,
• s :

(
Πu : Sn → D

)(
Πx : Sn

)
(u(x) = h(u)),

• E : Uk,
• i : (Sn → E)→ E,
• t :

(
Πu : Sn → E

)(
Πx : Sn

)
(u(x) = i(u)),

• f : D → E,
the type (

Σγ :
(
Πr : Sn → D

)(
f(h(r)) = i(f ◦ r)

))
(
Πr : Sn → D

)(
Πx : Sn

)(
apf (s(r, x)) = t(f ◦ r, x) � γ(r)−1

)
is contractible.

Proof. Exactly as in the fibered case, we show that the type in question is equivalent to(
Πr : Sn → D

)
HConst

(
(λx : Sn)apf (s(r, x))−1 � t(f ◦ r, x)

)
By lemma 139, we see that the pair (i, t) implies E is an (n− 1)-type. Hence f(h(r)) = i(f ◦ r)
is also an (n − 1)-type. From lemma 138 we can thus conclude that our type is contractible as
desired.
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Lemmas 139, 140, 141, 142 show that the (n − 1)-truncation of A : Ui for n : N can be
equivalently presented as a type ||A||n−1 : Ui endowed with constructors

| · |n−1 : A→ ||A||n−1

tr : is-(n− 1)-type(||A||n−1)

such that that given terms
• E : Uj ,
• t : is-(n− 2)-type(E),
• e : A→ E,

there is a recursor rec||·||(E, t, e) : ||A||n−1 → E satisfying the computation law
• rec||·||(|a|n−1) ≡ e(a) for any a : A,

and for any terms
• E : ||A||n−1 → Uj ,
• t : Πy:Dis-(n− 2)-type(E(y)),
• e : Πa:AE(|a|n−1),

there is an inductor ind||·||(E, t, e) : Πx:||A||n−1E(x) satisfying the computation law
• ind||·||(|a|n−1) ≡ e(a) for any a : A.

We are now ready to define truncation algebras and morphisms. We note that the definitions
presented also subsume the case of −2:

Definition 143. For n : N, A : Ui, let the type of truncation algebras on a universe Uj be

TrAlgUj(n,A) := ΣD:Uj is-(n− 2)-type(D)× (A→ D)

Definition 144. For an algebra X : TrAlgUj(n,A), define the type of fibered truncation algebras
over X on a universe Uk by

TrFibAlgUk (D,−, d) := ΣE:D→Uk

(
Πy:Dis-(n− 2)-type(E(y))

)
×

(
Πa:AE(d(a))

)
Definition 145. For algebras X : TrAlgUj(n,A) and Y : TrAlgUk(n,A), we define the type of
truncation morphisms from X to Y by

TrMor (D,−, d) (E,−, e) := Σf :D→EΠa:A(f(d(a)) = e(a))

Definition 146. For algebrasX : TrAlgUj(n,A) andY : TrFibAlgUk X , define the type of fibered
truncation morphisms from X to Y by

TrFibMor (D,−, d) (E,−, e) := Σf :(Πx:D)E(x)Πa:A(f(d(a)) = e(a))

As before, we can define the recursion and induction principles, the associated uniqueness
principles, and homotopy-initiality.
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Definition 147. An algebra X : TrAlgUj(n,A) satisfies the recursion principle on a universe Uk
if for any algebra Y : TrAlgUk there exists a morphism from X to Y:

hasTrRecUk(X ) :=
(

ΠY : TrAlgUk(n,A)
)

TrMor X Y

Definition 148. An algebra X : TrAlgUj(n,A) satisfies the induction principle on a universe Uk
if for any fibered algebra Y : TrFibAlgUk X there exists a fibered morphism from X to Y:

hasTrIndUk(X ) :=
(

ΠY : TrFibAlgUk X
)

TrFibMor X Y

Definition 149. An algebra X : TrAlgUj(n,A) satisfies the recursion uniqueness principle on a
universe Uk if for any algebra Y : TrAlgUk(n,A) the type of morphisms from X to Y is a mere
proposition:

hasTrRecUniqUk(X ) :=
(

ΠY : TrAlgUk(n,A)
)

isProp(TrMor X Y)

Definition 150. An algebra X : TrAlgUj(n,A) satisfies the induction uniqueness principle on a
universe Uk if for any fibered algebra Y : TrFibAlgUk X the type of morphisms from X to Y is a
mere proposition:

hasTrIndUniqUk(X ) :=
(

ΠY : TrFibAlgUk X
)

isProp(TrFibMor X Y)

Definition 151. An algebra X : TrAlgUj(n,A) is homotopy-initial on a universe Uk if for any
other algebra Y : TrAlgUk(A, n) the type of morphisms from X to Y is contractible:

isTrHInitUk(X ) :=
(

ΠY : TrAlgUk(n,A)
)

isContr(TrMor X Y)
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4.1.2 Homotopy-initiality for Truncations
We aim to show the following analogue to our main theorem for W-quotients:

Theorem 152. (H) For n : N, A : Ui, the following conditions on an algebra X : TrAlgUj(n,A)
are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasTrIndUk(X ) ' isTrHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

In principle, one could recover the characterization of truncations as homotopy-initial alge-
bras from the recently-discovered conjectured reduction of truncations to type quotients, due to
Rijke and van Doorn [36], and our main theorem for W-quotients. However, at this point this is
not needed due to the work done in the previous section, where we “polished up” the definitions
of truncation algebras and morphisms to the degree that most of the proofs are now straightfor-
ward.

Lemma 153. For an algebra X : TrAlgUj(n,A) we have

isTrHInitUk(X ) ' hasTrRecUk(X )× hasTrRecUniqUk(X )

Lemma 154. For an algebra X : TrAlgUj(n,A) we have a function

TrAlgToFibAlgUk(X ) : TrAlgUk(n,A) → TrFibAlgUk X

Proof. Fix algebras (D, p, d) : TrAlgUj(n,A) and (E, q, e) : TrAlgUk(n,A). We turn (E, q, e)
into the desired fibered algebra (E ′, q′, e′) : TrFibAlgUk (D, p, d) in the expected way by defining
E ′(x) := E, q′(y) := q, e′(a) := e(a).

Remark 155. We note that for any algebras X : TrAlgUj(n,A) and Y : TrAlgUk(n,A) we have

TrMor X Y ≡ TrFibMor X
(

TrAlgToFibAlgUk(X ) Y
)

Lemma 156. For any algebra X : TrAlgUj(n,A) we have

hasTrIndUk(X ) → hasTrRecUk(X )

Lemma 157. For any algebra X : TrAlgUj(n,A) we have

hasTrIndUniqUk(X ) → hasTrRecUniqUk(X )

The notion of a truncation cell is now particularly simple, since the morphisms have no higher
dimensional computation rules:
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Definition 158. For algebras X : TrAlgUj(n,A), Y : TrFibAlgUk(n,A) X , and fibered mor-
phisms µ, ν : TrFibMor X Y , define the type of fibered truncation cells from µ to ν by

TrFibCell (D, p, d) (E, q, e) (f, β) (g, γ) := Σα:f∼gΠa:A

(
α(d(a)) = β(a) � γ(a)−1

)
Pictorially, the second component of a fibered truncation cell witnesses the commutativity of

the following diagram for any a:

f(d(a)) g(d(a))

e(a)

α(d(a))

β(a, t) γ(a, t)

Definition 159. For algebras X : TrAlgUj(n,A), Y : TrAlgUk(n,A), and morphisms µ, ν :
TrMor X Y , define the type of (n− 1)-truncation cells between µ and ν by

TrCell X Y µ ν := TrFibCell X
(

TrAlgToFibAlgUk Y
)
µ ν

Lemma 160. (H) For algebras X : TrAlgUj(n,A), Y : TrFibAlgUk X , and fibered morphisms
µ, ν : TrFibMor X Y , we have an equivalence

(µ = ν) ' TrFibCell µ ν

Proof. Let algebras (D, p, d) : TrAlgUj(n,A) and (E, q, e) : TrFibAlgUk (D, p, d) and fibered
morphisms (f, β), (g, γ) : TrFibMor (D, p, d) (E, q, e) be given. We establish the following
chain of equivalences:

(f, β) = (g, γ)

'
(

Σα : f = g
)

(α)h7→(Πa:A)(h(d(a))=e(a))
∗ (β) = γ

'
(

Σα : f = g
)

Πa:A

((
=EΠ(α)

)
(d(a)) = β(a) � γ(a)−1

)
'

(
Σα : f ∼ g

)
Πa:A

(
α(d(a)) = β(a) � γ(a)−1

)
≡ TrFibCell (f, β) (g, γ)

The first equivalence follows by the characterization of paths in dependent product spaces.
The second equivalence follows by induction on α and function extensionality. Finally, the
third equivalence follows from the fact that the map =EΠ : (f = g) → (f ∼ g) is itself an
equivalence.

Corollary 161. (H) Given algebras X : TrAlgUj(n,A), Y : TrAlgUk(n,A), and morphisms
µ, ν : TrMor X Y , we have an equivalence

(µ = ν) ' TrCell µ ν
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Lemma 162. (H) For any algebra X : TrAlgUj(n,A) we have

hasTrIndUk(X ) → hasTrIndUniqUk(X )

Proof. Fix an algebra (D, p, d) : TrAlgUj(n,A) and assume that hasTrIndUk(D, p, d) holds. To
show that hasTrIndUniqUk(D, p, d) holds, take a fibered algebra (E, q, e) : TrFibAlgUk (D, p, d)
and fibered morphisms (f, β), (g, γ) : TrFibMor (D, p, d) (E, q, e). By lemma 160, to show
(f, β) = (g, γ) it suffices to exhibit a fibered truncation cell between (f, β) and (g, γ).

To do so, we use the induction principle with an appropriate fibered algebra (E ′, q′, e′) :
TrFibAlg (D, p, d). To this end, we put E ′ := x 7→ f(x) = g(x), which clearly still belongs to
Uk fiberwise. For the third component, we put e′(a) := β(a) � γ(a)−1. Finally, to construct q′ we
need to show that each fiber of E ′, namely f(x) =E(x) g(x) for x : D, is an (n− 2)-type. It thus
suffices to show E(x) is an (n− 2)-type; but this is exactly assumption q(x).

The induction principle gives us a fibered morphism (α, η) : TrFibMor (D, p, d) (E ′, q′, e′),
which is exactly our desired truncation cell between (f, β) and (g, γ).

Corollary 163. (H) For any algebra X : TrAlgUj(n,A) we have

hasTrIndUk(X ) → isTrHInitUk(X )

Lemma 164. For any algebra X : TrAlgUj(n,A) we have

hasTrRecUk(X )× hasTrRecUniqUk(X ) → hasTrIndUk(X )

provided k ≥ j.

Proof. Let an algebra (D, p, d) : TrAlgUj(n,A) be given and assume that hasTrRecUk(D, p, d)
and hasTrRecUniqUk(D, p, d) hold. To show that hasTrIndUk(D, p, d) holds, fix any fibered al-
gebra (E, q, e) : TrFibAlgUk (D, p, d). In order to apply the recursion principle, we need to
turn this into a non-fibered algebra (E ′, q′, e′). We put E ′ := Σx:DE(x); we note that since
D : Uj , E : D → Uk, and j ≤ k, E ′ belongs to Uk as needed. For the third component, we put
e′(a) := (a, e(a)). Finally, to construct q′ we need to show that Σx:DE(x) is an (n−2)-type. But
we have that D is an (n− 2)-type by the assumption p and for any x, E(x) is an (n− 2)-type by
the assumption q(x). Since taking a Σ of a family of (n− 2)-types over an (n− 2)-type results
again in an (n− 2)-type, we are done.

The recursion principle then gives us a morphism (f, β) : TrMor (D, p, d) (E ′, q′, e′), where
f : D → Σx:DE(x) and β(a) : f(d(a)) = (a, e(a)).

We now want to show that the function π1 ◦ f : D → D is in fact the identity on D (up to a
homotopy, of course). We can do this by endowing both of the functions π1 ◦ f and idD with a
morphism structure on the algebra (D, p, d); by the recursion uniqueness principle it will follow
that these morphisms are equal, and in particular they are equal as maps.

We turn the identity map idD into the morphism
(
idD, a 7→ 1d(a)

)
and the composition π1 ◦ f

into the morphism
(
π1 ◦ f, a 7→ π=

1 (β(a))
)
. By the recursion uniqueness rule, these morphisms

are equal and by corollary 161, there exists a truncation cell (α, η) between them, where α :
π1 ◦ f ∼ idD and η(a) : α(d(a)) = π=

1 (β(a)) � 1d(a).
Our desired fibered homomorphism (fD, βD) : TrFibMor (D, p, d) (E, q, e) is now con-

structed by putting fD := α ◦H (π2 ◦ f) and defining βD(a) as the path
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α(d(a))E∗ π2

(
f(d(a))

)

π=
1 (β(a))E∗ π2

(
f(d(a, t))

)

e(a)

via B(a)

π=
2 (β(a))

where B(a, t) is the path

α(d(a)) π=
1 (β(a, t)) � 1d(a) π=

1 (β(a, t))
η(a)

Corollary 165. (H) For any algebra X : TrAlgUj(n,A) we have

isTrHInitUk(X ) → hasTrIndUk(X )

provided k ≥ j.

Corollary 166. (H) For n : N, A : Ui, the following conditions on an algebra X : TrAlgUj(n,A)
are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasTrIndUk(X ) ' isTrHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Proof. Exactly as in the proof of 107.

Corollary 167. (H + || · ||) For n : N, A : Ui, the algebra(
||A||n−2, p, | · |

)
: TrAlgUi(n,A)

is homotopy-initial for any p on any universe Uj .
Finally, we note that homotopy-initial truncation algebras satisfy the following universal proper-
ties, whose proofs are simple exercises:

Lemma 168. (H) For any algebra X := (D,−, | · |D) : TrAlgUj(n,A) and type E : Uk, if X is
homotopy-initial on Uk and E is an (n− 2)-type, then we have

D → E ' A→ E

provided k ≥ j.
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Proof. The quasi-inverse from left to right is given by precomposition with | · |D; the quasi-
inverse in the opposite direction is given by the recursion principle.

Lemma 169. (H) For an algebra X := (D,−, | · |D) : TrAlgUj(n,A) and type family E : D →
Uk, if X is homotopy-initial on Uk and each fiber of E is an (n− 2)-type, then we have

Πx:DE(x) ' Πa:AE(|a|D)

provided k ≥ j.

Proof. The quasi-inverse from left to right is given by precomposition with | · |D; the quasi-
inverse in the opposite direction is given by the induction principle.
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4.2 Homotopy-initiality for Set Quotients

4.2.1 Set Quotients
In mathematics, we very often need to take the quotient of a set by an equivalence relation, e.g.,
when constructing the rational numbers from the integers. The notion of an equivalence relation
in the type-theoretic setting is straightforward; we start off with the following definition.

Definition 170. For a general type-valued relation R : A→ A→ Ui on A : Ui we define

id(R) := Πa:AR(a, a)

inv(R) := Πa,b:AR(a, b)→ R(b, a)

comp(R) := Πa,b,c:A(R(a, b)×R(b, c))→ R(a, c)

In the special case when R(a, b) is a mere proposition for all a, b : A, the above types can
be understood as statements of reflexivity, symmetry, and transitivity of R. Thus, we have the
following:

Definition 171. For A : Ui, we define the type of equivalence relations on A as

EqRel(A) := ΣR:A→A→Ui
(
Πa,b:AisProp(R(a, b))

)
× id(R)× inv(R)× comp(R)

We note that any equivalence relation on A can be thought of as specifying the path structure
of a 0-type, also known as a set, where the 0-cells are induced by the points of A and the 1-cells
with source a : A and target b : A are induced by the terms ofR(a, b). The notion of a set quotient
is meant to capture this intuition. We follow the definition in [33], chapter 6.10, except we do
not require the type A : Ui itself to be a set (as mentioned in remark 6.10.1, this is unnecessary
for the general theory of set quotients).

Formally, given A : Ui and an equivalence relation R := (R,−,−,−,−) : EqRel(A), the set
quotient A/0R of A by R is the higher inductive type generated by the following constructors:

point0 : A→ A/0R

cell0 : Πa,b:AR(a, b)→ (point0(a) = point0(b))

hub :
(
S1 → A/0R

)
→ A/0R

spoke :
(
Πr : S1 → A/0R

)(
Πx : S1

)
(r(x) = hub(r))

The constructor point0 can be understood as taking a : A to its equivalence class under R.
The constructor cell0 is meant to identify the two equivalence classes point0(a) and point0(b)
whenever we have R(a, b). Finally, as it was in the case of truncations, the purpose of the
constructors hub and spoke is to ensure that the resulting set quotient is a 0-type.

How do we know that this definition of set a quotient is indeed correct? In mathematics, the
most important property of a quotient by an equivalence relation is the fact that two elements
belong to the same equivalence class if and only if they are related; in our setting, this means
(point0(a) = point0(b)) ' R(a, b) for all a, b : A, a property also known as effectiveness. This
is lemma 10.1.8 of [33]; we will show this in a more general setting at the end of this section.
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The recursion principle for quotients says that given terms
• E : Uj ,
• e : A→ E,
• p : Πa,b:AR(a, b)→ (e(x) = e(y)),
• h : (S1 → E)→ E,
• s : Πu:S1→EΠx:S1(u(x) = h(u)),

there is a recursor rec·/0·(E, e, p, h, s) : A/0R→ E. The recursor satisfies the computation laws
• rec·/0·(point0(a)) ≡ e(a) for any a : A,
• aprec·/0·

(cell0(z)) = p(z) for any a : A, b : A, z : R(a, b),

• rec·/0·(hub(r)) = h
(
rec·/0· ◦ r

)
for any r : S1 → A/0R,

• aprec·/0·
(spoke(r, x)) is equal to the path below for any r : S1 → A/0R and x : S1, where

equality (1) uses the computation rule for the hub constructor:

rec·/0·(r(x)) h
(
rec·/0·(s) ◦ r

)
rec·/0·(hub(r))

(1)s
(
rec·/0· ◦ r, x

)
Similarly, we have an induction principle: given terms
• E : A/0R→ Uj ,
• e : Πa:AE(point0(a)),
• p : Πa,b:AΠz:R(a,b)

(
cell0(z)E∗ e(a) = e(b)

)
,

• h :
(
Πr : S1 → A/0R

)(
Πx:S1E(r(x))

)
→ E(hub(r)),

• s :
(
Πr : S1 → A/0R

)(
Πu : Πx:S1E(r(x))

)(
Πx : S1

)(
spoke(r, x)E∗ u(x) = h(r, u)

)
,

there is an inductor ind·/0·(E, e, p, h, s) : Πx:A/0RE(x). The inductor satisfies the following
computation laws:
• ind·/0·(point0(a)) ≡ e(a) for any a : A,
• dapind·/0·

(cell0(z)) = p(z) for any a : A, b : A, z : R(a, b),

• ind·/0·(hub(r)) = h
(
r, ind·/0· ◦ r

)
for any r : S1 → A/0R,

• dapind·/0·
(spoke(r, x)) is equal to the path below for any r : S1 → A/0R and x : S1, where

equality (1) uses the computation rule for the hub constructor:

spoke(r, x)E∗
(
ind·/0·(r(x))

)
h
(
r, ind·/0· ◦ r

)
ind·/0·(hub(r))

(1)s
(
r, ind·/0· ◦ r, x

)
At this point we note that all but the first computation rules are unnecessary, both in the recur-

sive and the inductive case: as in the case of truncations, the hypotheses h and s are equivalent
to asserting that E is (fiberwise) a 0-type (lemmas 139 and 140); the computation laws for cell0
are then redundant by lemma 3 and the laws for hub and spoke were redundant to begin with, by
lemmas 142 and 141.
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Hence, the set quotient of A : Ui by an equivalence relation R := (R, . . .) : EqRel(A) can be
equivalently presented as a type A/0R : Ui endowed with constructors

point0 : A→ A/0R

cell0 : Πa,b:AR(a, b)→ (point0(a) = point0(b))

tr : isSet(A/0R)

where we use the abbreviation isSet(X) := is-0-type(X), such that given terms
• E : Uj ,
• t : isSet(E),
• e : A→ E,
• p : Πa,b:AR(a, b)→ (e(x) = e(y)),

there is a recursor rec·/0·(E, t, e, p) : A/0R→ E satisfying the computation law
• rec·/0·(point0(a)) ≡ e(a) for any a : A,

and for any terms
• E : A/0R→ Uj ,
• t : Πy:DisSet(E(y)),
• e : Πa:AE(point0(a)),
• p : Πa,b:AΠz:R(a,b)

(
cell0(z)E∗ e(a) = e(b)

)
,

there is an inductor ind·/0·(E, t, e, p) : Πx:A/0RE(x) satisfying the computation law
• ind·/0·(point0(a)) ≡ e(a) for any a : A.

Definition 172. For A : Ui, R := (R, . . .) : EqRel(A), we define the type of set quotient algebras
on a universe Uj be

SQAlgUj(A,R) := ΣD:Uj isSet(D)×
(

Σe:A→DΠa,b:AR(a, b)→ (e(x) = e(y))
)

Definition 173. For an algebraX : SQAlgUj(A,R) with R := (R, . . .), define the type of fibered
set quotient algebras over X on a universe Uk by

SQFibAlgUk (D,−, d, p) := ΣE:D→Uk

(
Πy:DisSet(E(y))

)
×(

Σe:(Πa:A)E(d(a))Πa,b:AΠz:R(a,b)

(
p(a, b, z)E∗ e(a) = e(b)

))
Definition 174. For algebras X : SQAlgUj(A,R) and Y : SQAlgUk(A,R), we define the type of
set quotient morphisms from X to Y by

SQMor (D,−, d,−) (E,−, e,−) := Σf :D→EΠa:A(f(d(a)) = e(a))

Definition 175. For algebras X : SQAlgUj(A,R) and Y : SQFibAlgUk X , we define the type of
fibered set quotient morphisms from X to Y by

SQFibMor (D,−, d,−) (E,−, e,−) := Σf :(Πx:D)E(x)Πa:A(f(d(a)) = e(a))
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Definition 176. An algebra X : SQAlgUj(A,R) satisfies the recursion principle on a universe
Uk if for any algebra Y : SQAlgUk(A,R) there exists a morphism from X to Y:

hasSQRecUk(X ) :=
(

ΠY : SQAlgUj(A,R
)

SQMor X Y

Definition 177. An algebra X : SQAlgUj(A,R) satisfies the induction principle on a universe
Uk if for any fibered algebra Y : SQFibAlgUk X there exists a fibered morphism from X to Y:

hasSQIndUk(X ) :=
(

ΠY : SQFibAlgUk X
)

SQFibMor X Y

Definition 178. An algebra X : SQAlgUj(A,R) is homotopy-initial on a universe Uk if for any
other algebra Y : SQAlgUk(A,R) the type of morphisms from X to Y is contractible:

isSQHInitUk(X ) :=
(

ΠY : SQAlgUj(A,R
)

isContr(SQMor X Y)
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4.2.2 Homotopy-initiality for Set Quotients
We aim to show the following analogue to our main theorem for W-quotients:
Theorem 179. (H + /) For A : Ui, R : EqRel(A), the following conditions on an algebra
X : SQAlgUj(A,R) are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasSQIndUk(X ) ' isSQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.
Fix k ≥ j, type A : Ui, and an equivalence relation R := (R, . . .). We aim to establish

the above theorem by encoding each X as a 0-truncation of a suitable type quotient algebra and
invoking theorem 152. Let us fix an algebra (T, pT , cT ) : TQAlgUi(A,R) which satisfies the
induction principle on Uk. We now show that set quotient algebras are really the same thing as
0-truncation algebras over the type quotient T . We note that we need to use the parameter n := 2
to obtain a 0-truncation.
Lemma 180. (H + /) We have a function

TrToSQAlg : TrAlgUj(2, T ) → SQAlgUj(A,R)

which is an equivalence.

Proof. We proceed in four steps:

Step 1 First we define TrToSQAlg; for this, take an algebra (X, tX , | · |X) : TrAlgUj(2, T ). To
construct a set quotient algebra, we can use the same underlying type X , with tX showing it
is a 0-type as desired. For the third component, we need a function pX : A → X . The only
possibility we have is to define pX(a) := |pT (a)|X . To obtain the fourth component, we need a
function cX mapping each a, b : A, z : R(a, b) to a path from |pT (a)|X to |pT (b)|X . Again, the
only choice we have is to define cX(z) := ap|−|X (cT (z)).

Step 2 Define the intended quasi-inverse SQToTrAlg; for this, take an algebra (X, tX , pX , cX) :
SQAlgUj(A,R). To construct a truncation algebra, we can use the same underlying type X , with
tX showing it is a 0-type as desired. To obtain the last component, we need a function T -to-X :
T → X . We proceed by recursion (we can do this since j ≤ k), mapping pT (a) 7→ pX(a) for
any a : A and cT (z) 7→ cX(z) for any a, b : A, z : R(a, b). The first computation rule then gives
us a family of paths βT-to-X(a) : T -to-X(pT (a)) = pX(a) for a : A.

Step 3 We now want to show that for any set quotient algebra X : SQAlgUj(A,R), we have
TrToSQAlg(SQToTrAlg(X )) = X . Let such an algebra (X, tX , pX , cX) be given. The first and
second components of TrToSQAlg

(
SQToTrAlg(X, tX , pX , cX)

)
are X and tX themselves. The

third component is the map a 7→ T -to-X(pT (a)). Since the type of the fourth component is a
mere proposition, all we need is a path γ equating the third component with pX . But we can just
put γ := ΠE=(βT-to-X).
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Step 4 Finally, we want to show that for any truncation algebra X : TrAlgUj(2, T ), we have
SQToTrAlg(TrToSQAlg(X )) = X . Let such an algebra (X, tX , | · |X) be given. The first and
second components of SQToTrAlg

(
TrToSQAlg(X, tX , | · |X)

)
are X and tX themselves. The

third component is the map T -to-X . We thus need to show that for any t : T, we have
T -to-X(t) = |t|X . We proceed by induction, mapping pT (a) 7→ βT-to-X(a) for any a : A.
Since the type T -to-X(t) = |t|X is a mere proposition for any t, we do not have to provide a
mapping for cT (z), which means we are done.

Lemma 181. (H + /) For an algebra X : TrAlgUj(2, T ) we have a function

TrToSQFibAlg : TrFibAlgUk X → SQFibAlgUk

(
TrToSQAlg X

)
which is an equivalence.

Proof. Fix an algebra X := (X, tX , | · |X) : TrAlgUj(2, T ). We recall that TrToSQAlg X is the
algebra (X, tX , pX , cX), where

pX(a) := |pT (a)|X for a : A

cX(z) := ap|−|X (cT (z)) for a, b : A, z : R(a, b)

We now proceed in four steps:

Step 1 First we define TrToSQFibAlg; for this, take an algebra (E, tE, | · |E) : TrFibAlgUk X .
To construct a fibered set quotient algebra, we can use the same underlying type family E, with
tE showing it is fiberwise a 0-type as desired. For the third component, we need a function
pE : Πa:AE(|pT (a)|X). The only possibility we have is to define pE(a) := |pT (a)|E . For the
fourth component, we need a function cE mapping each a, b : A and z : R(a, b) to a path from(

ap|−|X (cT (z))
)E
∗
|pT (a)|E to |pT (b)|E . Again, the only reasonable choice we have is to define

cE(z) to be the following path:

(
ap|−|X (cT (z))

)E
∗
|pT (a)|E

cT (z)E ◦ |−|X∗ |pT (a)|E

|pT (b)|E

dap|−|E
(
cT (z)

)
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Step 2 Define the intended quasi-inverse SQToTrFibAlg; for this, fix algebra (E, tE, pE, cE) :
SQFibAlgUk

(
TrToSQAlg X

)
. To construct a fibered truncation algebra, we can use the same

underlying type family E, with tE showing it is fiberwise a 0-type as desired. To obtain the
last component, we need a function T -to-E : Πt:TE(|t|X). We proceed by induction, mapping
pT (a) 7→ pE(a) for any a : A and cT (z) to the path below for any a, b : A, z : R(a, b):

cT (z)E ◦ |−|X∗ pE(a)

(
ap|−|X (cT (z))

)E
∗

pE(a)

|b|E

cE(z)

The first computation rule then gives us a family of paths βT-to-E(a) : T -to-E(pT (a)) = pE(a)
for a : A.

Steps 3 + 4 These are entirely analogous to the non-fibered case.

Lemma 182. (H + /) For algebras X : TrAlgUj(2, T ) and Y : TrFibAlgUk X we have

TrFibMor X Y ' SQFibMor
(

TrToSQAlg X
) (

TrToSQFibAlg(X ) Y
)

Proof. Fix algebras X := (X, tX , | · |X) : TrAlgUj(2, T ) and Y := (E, tE, | · |E) : TrFibAlgUk X .
To construct a map from left to right, take a morphism (f, β) : TrFibMor X Y . To turn f into an
appropriate set quotient morphism, we show that for each a : Awe have f(|pT (a)|X) = |pT (a)|E .
But this is exactly the equality witnessed by β(pT (a)). For a map in the opposite direction, take
a morphism (f, β) : SQFibMor

(
TrToSQAlg X

) (
TrToSQFibAlg(X ) Y

)
. To turn f into a

truncation morphism, we need to show that for any t : T , we have f(|t|X) = |t|E . For this,
we proceed by induction. Since the type f(|t|X) = |t|E is a mere proposition for any t : T ,
we only need to show that it is inhabited for t := pT (a), i.e., that for each a : A we have
f(|pT (a)|X) = |pT (a)|E . But this is exactly the equality observed by β(a).

Showing that these two functions compose to identity on both sides is trivial since they both
preserve the underlying map f and for each morphism involved, the type of its second component
is a mere proposition.

Corollary 183. (H + /) For algebras X : TrAlgUj(2, T ) and Y : TrAlgUj(2, T ) we have

TrMor X Y ' SQFibMor
(

TrToSQAlg X
) (

TrToSQAlg Y
)

Proof. Exactly as in the fibered case.
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Corollary 184. (H + /) For an algebra X : SQAlgUj(A,G) we have

hasSQRecUk(X ) ' hasTrRecUk

(
TrToSQAlg−1(X )

)
hasSQIndUk(X ) ' hasTrIndUk

(
TrToSQAlg−1(X )

)
isSQHInitUk(X ) ' isTrHInitUk

(
TrToSQAlg−1(X )

)
Corollary 185. (H + /) For A : Ui, R : EqRel(A), the following conditions on an algebra
X : SQAlgUj(A,R) are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasSQIndUk(X ) ' isSQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Corollary 186. (H + /+ ·/0·) For A : Ui, R : EqRel(A), the algebra(
A/0R, p, point0, cell0

)
: SQAlgUi(A,R)

is homotopy-initial for any p on any universe Uj .
Homotopy-initial set quotient algebras enjoy the property of effectiveness:

Lemma 187. (H) For A : Ui, R : EqRel(A), and algebra X := (D, tD, p, c) : SQAlgUi(A,R),
where R := (R, tR, r, i, c), if X is homotopy-initial on the universe Ui+1, then for any a, b : A
we have

(p(a) = p(b)) ' R(a, b)

Proof. We employ the “encode-decode” method introduced by D. Licata. That is, we first define
a function C : D → D → ΣX:Ui isProp(X), where C(x, y) is meant to explicitly describe the
path type x = y, and then show that we indeed have (x = y) ' π1(C(x, y)). Of course, we will
construct C in such a way that π1

(
C(p(a), p(b))

)
is equivalent to R(a, b), which will finish the

proof. Since for any x, y : D the types (x = y) and π1(C(x, y)) are mere propositions, it suffices
to exhibit a logical equivalence between them, i.e., construct maps

e(x, y) : (x = y)→ π1(C(x, y))

d(x, y) : π1(C(x, y))→ (x = y)

Step 1 To define C, we proceed by recursion on the first argument. In other words, we construct
a set quotient algebra on Ui+1 whose carrier type is D → ΣX:Ui isProp(X). The function C
will then be the underlying map of the propositionally unique morphism into this algebra, the
existence of which is guaranteed by the fact thatX satisfies the recursion principle on Ui+1 (being
homotopy-initial on Ui+1). To obtain the aforementioned set quotient algebra, we first need to
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verify that the type D → ΣX:Ui isProp(X) indeed belongs to Ui+1, which is easy to check. Next
we need to show that the type D → ΣX:Ui isProp(X) is in fact a set. For this it suffices to show
that ΣX:Ui isProp(X) is a set, which is a simple exercise (or see theorem 7.1.11 in [33]).

Now we need to define a function F : A → D → ΣX:Ui isProp(X). We do this by recursion
on the second argument. So we fix a : A and map p(b) 7→ (R(a, b), tR(a, b)). To finish the
definition, we need to show that for any b1, b2 : A, and z : R(b1, b2), there is a path from
(R(a, b1), tR(a, b1)) to (R(a, b2), tR(a, b2)) in the type ΣX:Uj isProp(X). Since isProp(X) is a
mere proposition for any X , this is equivalent to showing R(a, b1) = R(a, b2) (the map apπ1

serves as the equivalence). By univalence, this is equivalent to showing R(a, b1) ' R(a, b2). But
this clearly holds since we have the quasi-inverses u 7→ c(u, z) and v 7→ c(v, i(z)) (these maps
are necessarily quasi-inverse to each other since R(a, b1) and R(a, b2) are mere propositions).
This finishes the definition of F (a). We note that by the first computation rule, we get a family
of paths βF (a, b) : F (a, p(b)) = (R(a, b), tR(a, b)).

To finish the definition of C, we must show that for any a1, a2 : A and v : R(a1, a2), we
have F (a1) = F (a2). By function extensionality, it suffices to show that for any x : D, we
have F (a1, x) = F (a2, x). We now proceed by induction on x. It is clear that for any x,
the type F (a1, x) = F (a2, x) belongs to Ui+1. We also need to show that it is a set, but it
is even a mere proposition, so it only remains to establish the case F (a1, p(b)) = F (a2, p(b))
for b : A. By βF (a1, b) and βF (a2, b), it suffices to show that (R(a1, b), tR(a1, b)) is equal to
(R(a2, b), tR(a2, b)). For this it suffices to exhibit an equivalence R(a1, b) ' R(a2, b). This
clearly holds since we have the quasi-inverses u 7→ c(i(v), u) and w 7→ c(v, w). This finishes
the definition of C and we note that by the first computation rule, we get a family of paths
βC(a) : C(p(a)) = F (a) for any a : A.

Step 2 To define d(x, y), we proceed by induction on x. We can do this since the type
Πy:Dπ1(C(x, y)) → (x = y) belongs to Ui+1 and is a mere proposition for any x : D. The
latter implies that it suffices to show that Πy:Dπ1(C(p(a), y)) → (p(a) = y) is inhabited for any
a : A. To show this, fix a : A and proceed by induction on y. It suffices to show that the type
π1

(
C(p(a), p(b))

)
→ (p(a) = p(b)) is inhabited for any b : A. To this end, let ε(a, b) be the path

below:

C(p(a), p(b))

F (a, p(b))

(R(a, b), tR(a, b))

=EΠ
(
βC(a), p(b)

)

βF (a, b)

Then c ◦ π1

(
=E'(apπ1

(ε(a, b)))
)

is our desired function from π1

(
C(p(a), p(b))

)
to p(a) = p(b),

and the definition of d is complete.

103



Step 3 To define e(x, y, u), we perform path induction on u. To construct a function G(x) :
π1(C(x, x)), we proceed by induction on x. Since the type π1(C(x, x)) is a mere proposition
for any x : D, it suffices to show that it is inhabited when x := p(a) for a : A. We map
p(a) 7→ π1

(
=E'(apπ1

(ε(a, a)))
)
r(a), where ε was defined in the previous step. This finishes

the definition of e.
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4.3 Homotopy-initiality for Groupoid Quotients

4.3.1 Groupoid Quotients

We can take the underlying idea of set quotients one level higher to obtain groupoid quotients.
In homotopy theory, the canonical example of a groupoid quotient is the classifying space BG
of a group G. Type-theoretically, a groupoid on A : Ui is a structure that “looks like” the path
structure of a 1-type; namely, it is a set-valued relation with identity, inverse, and composition
operators which satisfy the usual algebraic laws.

Definition 188. For A : Ui, we define the type of groupoids on A as

Grp(A) := ΣR:A→A→Ui
(
Πa,b:AisSet(R(a, b))

)
× Σr:id(R)Σi:inv(R)Σc:comp(R)(

Πa,b:AΠz:R(a,b)

(
c(r(a), z) = z

))
×
(

Πa,b:AΠz:R(a,b)

(
c(z, r(b)) = z

))
×(

Πa,b:AΠz:R(a,b)

(
c(z, i(z)) = r(a)

))
×
(

Πa,b:AΠz:R(a,b)

(
c(i(z), z) = r(b)

))
×(

Πa,b,c,d:AΠv:R(a,b)Πw:R(b,c)Πz:R(c,d)

(
c(v, c(w, z)) = c(c(v, w), z)

))
Given A : Ui and a groupoid G := (R,−, r, i, c, . . .) : Grp(A), the groupoid quotient A/1G

of A by G is the higher inductive type generated by the following constructors:

point1 : A→ A/1G

cell1 : Πa,b:AR(a, b)→ (point1(a) = point1(b))

presc : Πa,b,c:AΠv:R(a,b)Πw:R(b,c)

(
cell1(c(v, w)) = cell1(v) � cell1(w)

)
hub :

(
S2 → A/1G

)
→ A/1G

spoke :
(
Πr : S2 → A/1G

)(
Πx : S2

)
(r(x) = hub(r))

The only constructor which is not analogous to the set quotient case is presc. It asserts that the
composition operator given by the groupoid structure mirrors the one given by the path structure
of A/1G. In other words, the mapping cell1 carries the composition of two “arrows” v : R(a, b)
and w : R(b, c) to the actual composition of the component paths cell1(v) and cell1(w).

Of course, we could have also included constructors asserting that identities and inverses
are preserved in a similar way, e.g., the constructors presr : Πa:A

(
cell1(r(a)) = 1[a]1

)
and

presi : Πa,b:AΠz:R(a,b)

(
cell1(i(z)) = cell1(z)−1

)
. However, this is unnecessary: the preserva-

tion of composition automatically implies the preservation of identities and inverses; that is, we
are able to construct terms having the same types as presr and presi just by using the constructors
given above. Moreover, such terms are necessarily unique (up to propositional equality) since
A/1G is a 1-type (as ensured by the hub and spoke constructors). We also note that a constructor
such as presc was unnecessary in the set quotient case since in a 0-type any two paths with the
same endpoints are automatically equal.
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The recursion principle for groupoid quotients says that given terms
• E : Uj ,
• e : A→ E,
• p : Πa,b:AR(a, b)→ (e(a) = e(b)),
• m : Πa,b,c:AΠv:R(a,b)Πw:R(b,c)

(
p(c(v, w)) = p(v) � p(w)

)
,

• h : (S2 → E)→ E,
• s : Πu:S2→EΠx:S2(u(x) = h(u)),

there is a recursor rec·/1·(E, e, p,m, h, s) : A/1G → E. The recursor satisfies the computation
laws
• rec·/1·(point1(a)) ≡ e(a) for any a : A,
• aprec·/1·

(cell1(z)) = p(z) for any a : A, b : A, z : R(a, b),

• apaprec·/1·
(presc(v, w)) is equal to the path below for any a, b, c : A, v : R(a, b), w : R(b, c),

where equalities (1) and (2) use the computation rule for the cell1 constructor:

aprec·/1·

(
cell1(c(v, w))

)

p(c(v, w))

p(v) � p(w)

aprec·/1·
(cell1(v)) � aprec·/1·

(cell1(w))

aprec·/1·

(
cell1(v) � cell1(w)

)

(1)

m(v, w)

(2)

• rec·/1·(hub(r)) = h
(
rec·/1· ◦ r

)
for any r : S2 → A/1G,

• aprec·/1·
(spoke(r, x)) is equal to the path below for any r : S2 → A/1G and x : S2, where

equality (1) uses the computation rule for the hub constructor:

rec·/1·(r(x)) h
(
rec·/1· ◦ r

)
rec·/1·(hub(r))

(1)s
(
rec·/1· ◦ r, x

)

To express the induction rule concisely, we introduce the following notation. For any type
E : X → Uk, paths v : a =X b, w : b =X c, terms ea : E(a), eb : E(b), ec : E(c), and paths
µ : vE∗ ea = eb, ν : wE∗ eb = ec, we denote by C(µ, ν) the path

(v � w)
E
∗ ea wE∗ (vE∗ ea) wE∗ eb ec

via µ ν
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The induction principle for groupoid quotients then says that given terms

• E : A/1G→ Uk,
• e : Πa:AE(point1(a)),
• p : Πa,b:AΠz:R(a,b)

(
cell1(z)E∗ e(a) = e(b)

)
,

• m : Πa,b,c:AΠv:R(a,b)Πw:R(b,c)(
p(c(v, w)) = =EΠ

(
ap(−)E∗

(presc(v, w)), e(a)
)
� C(p(v), p(w))

)
,

• h :
(
Πr : S2 → A/1G

)(
Πx:S2E(r(x))

)
→ E(hub(r)),

• s :
(
Πr : S2 → A/1G

)(
Πu : Πx:S2E(r(x))

)(
Πx : S2

)(
spoke(r, x)E∗ u(x) = h(r, u)

)
,

there is an inductor ind·/1·(E, e, p,m, h, s) : Πx:A/1GE(x) satisfying the computation laws

• ind·/1·(point1(a)) ≡ e(a) for any a : A,
• dapind·/1·

(cell1(z)) = p(z) for any a : A, b : A, z : R(a, b),

• dapdapind·/1·
(presc(v, w)) is equal to the path below for any a, b, c : A and v : R(a, b),

w : R(b, c). Here equalities (1) and (3) use the computation rule for the cell1 construc-
tor, (2) is given by the characterization of transport between the fibers of the type family
q 7→ qE∗ e(a) = e(c) (easily shown by path induction), and (4) is an analogue of functori-
ality for the dap operator (also easily shown by path induction).

presc(v, w)q 7→ qE∗ e(a) = e(c)
∗

(
dapind·/1·

(
cell1(c(u,w))

))

presc(v, w)q 7→ qE∗ e(a) = e(c)
∗ p(c(v, w))

(
=EΠ

(
ap(−)E∗

(presc(v, w)), e(a)
))−1

� p(c(v, w))

(
=EΠ

(
ap(−)E∗

(presc(v, w)), e(a)
))−1

�
(

=EΠ
(
ap(−)E∗

(presc(v, w)), e(a)
)
� C(p(v), p(w))

)

C
(
p(v), p(w)

)

C
(

dapind·/1·
(cell1(v)), dapind·/1·

(cell1(w))
)

dapind·/1·

(
cell1(v) � cell1(w)

)

(1)

(2)

via m(v, w)

(3)

(4)
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• ind·/1·(hub(r)) = h
(
r, ind·/1· ◦ r

)
for any r : S2 → A/1G,

• dapind·/1·
(spoke(r, x)) is equal to the path below for any r : S2 → A/1G and x : S2, where

equality (1) uses the computation rule for the hub constructor:

spoke(r, x)E∗
(
ind·/1·(r(x))

)
h
(
r, ind·/1· ◦ r

)
ind·/1·(hub(r))

(1)s
(
r, ind·/1· ◦ r, x

)

To give some intuition for the induction principle, let us look at how we obtained the type for
the hypothesis m. For any a, b, c : A and v : R(a, b), w : R(b, c), the term p(c(v, w)) gives us
a path from cell1(c(v, w))E∗ e(a) to e(c). However, the constructor presc allows us to construct
another path with the same endpoints: namely, we first apply congruence to presc to take us from
cell1(c(v, w))E∗ e(a) to

(
cell1(v) � cell1(w)

)E
∗ e(a) and then appeal to C(p(v), p(w)) to take us all

the way to e(c). We want these two paths to coincide, which is what m asserts.
The computation rule associated to presc ensures that the inductor behaves as expected when

applied to presc; “applied” here means in the higher-dimensional sense of course. Fortunately
for us, the presence of the hypotheses h and s means that this rule is redundant since they imply
that E is fiberwise a 1-type (lemma 140) and in a 1-type, any two paths between paths are equal
provided the endpoints agree. However, the above computation rule for presc serves to illustrate
the difficulty involved in developing a unifying theory of higher inductive types: had we not
included constructors ensuring that the resulting type is appropriately truncated, we would have
been forced to carry this rule around.

In light of the above discussion, the groupoid quotient of A : Ui by a groupoid G :=
(R,−, r, i, c, . . .) : Grp(A) can be equivalently presented as a type A/1G : Ui endowed with
constructors

point1 : A→ A/1G

cell1 : Πa,b:AR(a, b)→ (point1(a) = point1(b))

presc : Πa,b,c:AΠv:R(a,b)Πw:R(b,c)

(
cell1(c(v, w)) = cell1(v) � cell1(w)

)
tr : isGrp(A/1G)

where we use the abbreviation isGrp(X) := is-1-type(X), such that that given terms
• E : Uj ,
• t : isGrp(E),
• e : A→ E,
• p : Πa,b:AR(a, b)→ (e(a) = e(b)),
• m : Πa,b,c:AΠv:R(a,b)Πw:R(b,c)

(
p(c(v, w)) = p(v) � p(w)

)
,

there is a recursor rec·/1·(E, t, e, p,m) : A/1G→ E satisfying the computation laws
• rec·/1·(point1(a)) ≡ e(a) for any a : A,
• aprec·/1·

(cell1(z)) = p(z) for any a : A, b : A, z : R(a, b),

and for any terms
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• E : A/1G→ Uk,
• t : Πy:DisGrp(E(y)),
• e : Πa:AE(point1(a)),
• p : Πa,b:AΠz:R(a,b)

(
cell1(z)E∗ e(a) = e(b)

)
,

• m : Πa,b,c:AΠv:R(a,b)Πw:R(b,c)(
p(c(v, w)) = =EΠ

(
ap(−)E∗

(presc(v, w)), e(a)
)
� C(p(v), p(w))

)
,

there is an inductor ind·/1·(E, t, e, p,m) : Πx:A/1GE(x) satisfying the computation laws
• ind·/1·(point1(a)) ≡ e(a) for any a : A,
• dapind·/1·

(cell1(z)) = p(z) for any a : A, b : A, z : R(a, b).

Definition 189. For A : Ui, G := (R,−, r, i, c, . . .) : Grp(A), we define the type of groupoid
quotient algebras on a universe Uj to be

GQAlgUj(A,G) := ΣD:Uj isGrp(D)×
(

Σe:A→DΣp:(Πa,b:A)R(a,b)→(e(x)=e(y))

Πa,b,c:AΠv:R(a,b)Πw:R(b,c)

(
p(c(v, w)) = p(v) � p(w)

))
Definition 190. For an algebra X : GQAlgUj(A,G) with G := (R,−, r, i, c, . . .), define the type
of fibered groupoid quotient algebras on a universe Uk by

GQFibAlgUk (D,−, d, p,m) := ΣE:D→Uk

(
Πy:DisGrp(E(y))

)
×
(

Σe:(Πa:A)E(d(a))

Σq:(Πa,b:A)(Πz:R(a,b))(p(z)E∗ e(a)=e(b))Πa,b,c:AΠv:R(a,b)Πw:R(b,c)(
q(c(v, w)) = =EΠ

(
ap(−)E∗

(prc(v, w)), e(a)
)
� C(q(v), q(w))

))
Definition 191. For algebras X : GQAlgUj(A,G) and Y : GQAlgUk(A,G), with G := (R, . . .),
we define the type of groupoid quotient morphisms from X to Y by

GQMor (D,−, d, p,−) (E,−, e, q,−) := TQMor (D, d, q) (E, e, q)

Definition 192. For algebras X : GQAlgUj(A,G) with Y : GQFibAlgUk X , with G := (R, . . .),
we define the type of fibered groupoid quotient morphisms from X to Y by

GQFibMor (D,−, d, p,−) (E,−, e, q,−) := TQFibMor (D, d, q) (E, e, q)

Definition 193. An algebra X : GQAlgUj(A,G) satisfies the recursion principle on a universe
Uk if for any algebra Y : GQAlgUk(A,G) there exists a morphism from X to Y:

hasGQRecUk(X ) :=
(

ΠY : GQAlgUj(A,G)
)

GQMor X Y

Definition 194. An algebra X : GQAlgUj(A,G) satisfies the induction principle on a universe
Uk if for any fibered algebra Y : GQFibAlgUk X there exists a fibered morphism from X to Y:

hasGQIndUk(X ) :=
(

ΠY : GQFibAlgUk X
)

GQFibMor X Y
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Definition 195. An algebra X : GQAlgUj(A,G) is homotopy-initial on a universe Uk if for any
other algebra Y : SQAlgUk(A,G) the type of morphisms from X to Y is contractible:

isGQHInitUk(X ) :=
(

ΠY : GQAlgUj(A,G)
)

isContr(GQMor X Y)
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4.3.2 Homotopy-initiality for Groupoid Quotients
We aim to show the following analogue to our main theorem for W-quotients:

Theorem 196. (H + W) For A : Ui, G : Grp(A), the following conditions on an algebra
X : GQAlgUj(A,G) are equivalent:
• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasGQIndUk(X ) ' isGQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Fix k ≥ j, type A : Ui, and groupoid G := (R,−, r, i, c, . . .). We aim to establish the above
theorem by encoding each X as a 1-truncation of a suitable W-quotient algebra and invoking
theorem 152. We first need to fix the parameters for the W-quotient, which already requires
some work. Let us fix an algebra (S, b, lp) : S-AlgU0

which satisfies the induction principle on
Umax(i,k) and an algebra (T, pT , cT ) : TQAlgUi(A,R) which satisfies the induction principle on
Uk. Let D := Σa,b,c:AR(a, b)×R(b, c).

Define a map f : D → S → T by recursion on the second argument, with b 7→ pT (c) and
lp 7→

(
cT (v) � cT (w)

)−1 � cT (c(v, w)) for any d := (a, b, c, v, w) : D. Hence we have a family
of paths βf (d) : f(d, b) = pT (c) and a family of higher paths θf (d) witnessing the following
commuting diagram:

f(d, b) f(d, b)

pT (c) pT (c)

apf(d)(lp)

βf (d) βf (d)

(
cT (v) � cT (w)

)−1 � cT (c(v, w))

The intuition behind this definition is to help us construct the “presc” component of a groupoid
quotient algebra, as we will see shortly.

The parameters for our W-quotient will be as follows. For the “A” parameter, which encodes
the type of labels for points, we will use T + D. The left component serves to embed the type
quotient T into our W-quotient and the right component introduces a “hub” point for each d : D,
which will be used to ensure that f composed with the embedding of T into the W-quotient is
homotopy-constant. This will imply that

(
cT (v) � cT (w)

)−1 � cT (c(v, w)) when mapped into the
W-quotient becomes the identity path, which is what we want for the construction of presc.

Since all of labels described above are nullary, the “B” parameter, which encodes the arity of
each point label, will always return 0. For the “C” parameter, which encodes the type of labels
for paths, we will use D×S. A term (d, x) will stand for the “spoke” going from the embedding
of f(d, x) to the hub point. The maps l, r : D×S → T +D encode this intuition: we define the
map l by (d, x) 7→ inl(f(d, x)) and the map r by (d,−) 7→ inr(d).
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Fix an algebra (W, pW , cW ) : WQAlgUi
(
T + D, 7→ 0, D × S, l, r

)
which satisfies the in-

duction principle on Uk. Finally, define a function h : T → W, which will be the aforementioned
embedding of T into W, by y 7→ pW (inl(y), f0), where f0 is the canonical function out of 0 to
W.

We are now ready to prove that the groupoid quotient algebras are really the same thing as
1-truncation algebras over the W-quotient W. We note that we need to use the parameter n := 3
to obtain a 1-truncation.
Lemma 197. (H + W) We have a function

TrToGQAlg : TrAlgUj(3,W ) → GQAlgUj(A,G)

which is an equivalence.

Proof. We first introduce some notation that will be used throughout:

• For any t : 0→ W , we have a path α?(t) : f0 = t witnessing the fact that f0 is the unique
function out of the empty type.

• For any u : a =Y b and c : Z, we have a path

apc(c, u) : ap 7→ c(u) = 1c

defined by induction on u.
• For any f, g : Y → Z, and u, v : a =Y a, and γ : f = g, δ : u = v, we have a function

idc(γ, δ) : (apg(v) = 1g(a))→ (apf (u) = 1f(a))

defined by induction on γ and δ.
• For any u, v : a =Y b, we have equivalences

Il : (1a � u = v)→ (u = v)

Ir : (u = v � 1b)→ (u = v)

• For a function f : Y → Z and paths u : a =Y a, v : a =Y b, w : d =Y b, w1 : d =Y c,
w2 : c =Y b, as in the diagram

a a

b b

u

v v

(w1
� w2)−1 � w

we have a map

Hc :
(
v �

(
(w1

� w2)−1 � w
)

= u � v
)
→

(apf (u) = 1f(a))→
(

apf (w) = apf (w1) � apf (w2)
)

defined by induction on v, w1, w2, and subsequently mapping any θ : 1a � (1a �w) = u � 1a
to the term idc

(
1f , Il(Il(Ir(θ)))

)
.
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• For d : D, let f?(d) := pW (inr(d), f0). Then the composition h ◦ f(d) is equal to the
constant map on f?(d), as evidenced by the path

ηf (d) := ΠE=
(
x 7→ cW ((d, x), f0, f0)

)
This implies that the term aph ◦ f(d)(lp) is equal to reflexivity, as witnessed by the path

υf (d) := idc
(
ηf (d), 1lp, apc

(
f?(d), lp

))
Of course, the term aph(apf(d)(lp)) is then also equal to reflexivity, as witnessed by the
obvious path ϑf (d) :=

aph(apf(d)(lp)) aph ◦ f(d)(lp) 1
υf (d)

Finally, it follows that the term ap|−|X◦ h
(
apf(d)(lp)

)
is equal to reflexivity, as evidenced by

the path εf (d) :=

ap|−|X◦ h
(
apf(d)(lp)

)
ap|−|X

(
aph(apf(d)(lp))

)
ap|−|X (1)

via ϑf (d)

Furthermore, we will use the following observation:

• Observation: Given a type family Y : W → Uk and function g : Πy:TY (h(t)), if each
fiber of Y is a set then there is a function f : Πw:WY (w) such that f(h(y)) = g(y) for any
y : T.

To prove this claim, we construct the desired function f by induction. For this we first
need to define a map

e : Πx:T+DΠt:0→W
(
Πb:0Y (t b)

)
→ Y (pW (x, t))

We define e(x, t,−) := e(x, t, α?(t)), where for any x : T +D, t : 0→ W, α : t = f0, the
term

e(x, t, α) : E(pW (x, t))

is defined by one-sided path induction on α and the subsequent mapping

inl(y) 7→ g(y)

inr(d) 7→ cW ((d, b), f0, f0)Y∗ g(f(d, b))

To complete the inductive definition we need to construct a map

q : Πc:D×SΠt:0→WΠs:0→WΠu:(Πb:0)Y (t b)Πv:(Πb:0)E(s b)(
cW (c, t, s)Y∗ e(l(c), t, u) = e(r(c), s, v)

)
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We define q(c, t, s,−,−) := q(c, t, α?(t), s, α?(s)), where for c : D × S, t : 0 → W,
αt : t = f0, s : 0→ W, αs : s = f0, the term

q(c, t, αt, s, αs) : cW (c, t, s)Y∗ e(l(c), t, αt) = e(r(c), s, αs)

is defined by one-sided path induction on αt, αs, and the subsequent mapping (d, x) 7→
q′(d, x). Here for any d : D, x : S, the path family

q′(d, x) : cW ((d, x), f0, f0)Y∗ g(f(d, x)) = cW ((d, b), f0, f0)Y∗ g(f(d, b))

is defined by induction on x (we can do this since k ≤ max(i, k)), mapping b 7→ 1. We do
not have to supply a mapping for the path constructor lp since by assumption, each fiber of
Y is a set and this makes the type of q′(d, x) a mere proposition.

We now proceed in four steps:

Step 1 First we define TrToGQAlg; for this, take an algebra (X, tX , | · |X) : TrAlgUj(3,W ). To
construct a group quotient algebra, we can use the same underlying type X , with tX showing it
is a 1-type as desired. For the third component, we need a function pX : A → X . The only
real possibility we have is to define pX(a) := |h(pT (a))|X . To obtain the fourth component, we
need a function cX mapping each a, b : A, z : R(a, b) to a path from |h(pT (a))|X to |h(pT (b))|X .
Again, the only obvious choice we have (up to homotopy) is to define cX(z) := ap|−|X◦ h(cT (z)).
To obtain the final component, we need to exhibit a path

mX(v, w) : cX
(
c(v, w)

)
= cX(v) � cX(w)

for any a, b, c : A, and v : R(a, b), w : R(b, c). For this, we define mX(v, w) := Hc(θf (d), εf (d)),
where d := (a, b, c, v, w).

Step 2 We define the intended quasi-inverse GQToTrAlg; fix an algebra (X, tX , pX , cX ,mX) :
GQAlgUj(A,G). To construct a truncation algebra, we can use the same underlying type X ,
with tX showing it is a 1-type as desired. To obtain the last component, we need a function
W -to-X : W → X . For this we will first need a function T -to-X : T → X . We proceed by
recursion (we can do this since j ≤ k), mapping pT (a) 7→ pX(a) for any a : A and cT (z) 7→
cX(z) for any a, b : A, z : R(a, b). The first computation rule then gives us a family of paths
βT-to-X(a) : T -to-X(pT (a)) = pX(a) for a : A, and the second computation rule implies the
commutativity of the following diagram for any a, b : A, z : R(a, b):

T -to-X(pT (a)) T -to-X(pT (b))

pX(a) pX(b)

apT -to-X(cT (z))

βT -to-X(a) βT -to-X(b)

cX(z)
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To obtain W -to-X we again proceed by recursion. For this we first need to define a function
e : T + D → (0 → X) → X; we do so by mapping inl(y), 7→ T -to-X(y) and inr(d), 7→
T -to-X(f(d, b)). It remains to construct a q : Πc:D×SΠu:0→XΠv:0→X(e(l(c), u) = e(r(c), v)).
For this, it suffices to prove the following:

• Goal: For any d : D, x : S, there exists a path family

cf (d, x) : T -to-X(f(d, x)) = T -to-X(f(d, b))

We can then define q((d, x),−,−) := cf (d, x). To prove the existence of the function cf , we will
make use of the following easy claim:

• Claim: For a type Z : Uk and map f : S → Z, if apf (lp) = 1 then there is a type family
c(x) : f(x) = f(b).

By the above claim it suffices to show that apT-to-X ◦ f(d)(lp) = 1 for any d : D. Fix d :=
(a, b, c, v, w) : D. It now suffices to establish the following generalization: given terms

• xk : T and yk : X for k ∈ {1, 2, 3},
• γk : T -to-X(xk) = yk for k ∈ {1, 2, 3},
• p : x1 = x3 and qk : xk = xk+1 for k ∈ {1, 2},
• β : f(d, b) = x3,
• sk : yk = yk+1 for k ∈ {1, 2},
• θ : β �

(
(q1

� q2)−1 � p
)

= apf(d)(lp) � β,

we have apT-to-X ◦ f(d)(lp) = 1 provided the diagrams below commute for k ∈ {1, 2}:

T -to-X(x1) T -to-X(x3)

y1 y3

apT -to-X(p)

γ1 γ3

s1
� s2

T -to-X(xk) T -to-X(xk+1)

yk yk+1

apT -to-X(qk)

γk γk+1

sk

We instantiate this generalization by γ1 := βT-to-X(a), γ2 := βT-to-X(b), γ3 := βT-to-X(c),
p := cT (c(v, w)), q1 := cT (v), q2 := cT (w), β := βf (d), s1 := cX(v), s2 := cX(w), θ := θf (d).
The commutativity of the diagrams in the hypotheses is implied by the second computation rule
for T -to-X and mX(v, w).

Finally, to prove this generalization we perform one-sided path induction on β, γ1, γ2, γ3, q1,
q2. The commutativity of the diagrams in the hypothesis becomes equivalent to the conditions
apT-to-X(p) = s1

� s2 for the first diagram and s1 = 1, s2 = 1 for the remaining two. Performing
one-sided path induction on these last two conditions then replaces s1 and s2 with reflexivities,
and the first condition thus reduces to apT-to-X(p) = 1.

Moreover, we now have an assumption θ : 1 � p = apf(d)(lp) � 1, which is equivalent to as-
suming p = apf(d)(lp). Performing a one-sided path induction on this latter assumption replaces
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p with apf(d)(lp), giving us apT-to-X(apf(d)(lp)) = 1. This implies apT-to-X ◦ f(d)(lp) = 1 as
desired.

Although we are done with this step, it will be useful to note that since W -to-X was defined
by recursion, the first computation rule gives us a family of paths

βW-to-X(y) : W -to-X(h(y)) = T -to-X(y)

for any y : T .

Step 3 We now want to show that for any groupoid quotient algebra X : GQAlgUj(A,G), we
have TrToGQAlg(GQToTrAlg(X )) = X . Let such an algebra (X, tX , pX , cX ,mX) be given.
The first and second components of TrToGQAlg

(
GQToTrAlg(X, tX , pX , cX ,mX)

)
are X and

tX themselves. The third and fourth components are the maps a 7→ W -to-X(h(pT (a))) and
a, b, z 7→ apW-to-X◦ h(cT (z)) respectively.

The type of the final component is a mere proposition, so all we need to show is that there
is a path γ equating the third component with pX , such that the fourth component transported
along γ among the fibers of the type family f 7→ Πa,b:AΠz:R(a,b)(f(a) =X f(b)) is equal to cX .
An easy generalization and path induction, with an appeal to function extensionality, shows that
the latter condition is equivalent to the assertion that the diagram below commutes for all a, b, z:

W -to-X
(
h(pT (a))

)
W -to-X

(
h(pT (b))

)

pX(a) pX(b)

apW -to-X◦ h(cT (z))

=EΠ(γ, a) =EΠ(γ, b)

cX(z)

To construct γ, we put

γ := ΠE=
(
a 7→ βW-to-X(pT (a)) � βT-to-X(a)

)
It now suffices to show that the outer rectangle in the diagram below commutes:

A

W -to-X
(
h(pT (a))

)
W -to-X

(
h(pT (b))

)

T -to-X(pT (a)) T -to-X(pT (b))

pX(a) pX(b)

B

apW -to-X◦ h(cT (z))

βW -to-X(pT (a)) βW -to-X(pT (b))

apT -to-X(cT (z))

βT -to-X(a) βT -to-X(b)

cX(z)

But rectangle A commutes by an easy path induction and rectangle B commutes by the second
computation rule for T -to-X , so we are done.
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Step 4 Finally, we want to show that for any truncation algebra X : TrAlgUj(3,W ), we
have GQToTrAlg(TrToGQAlg(X )) = X . Let such an algebra (X, tX , | · |X) be given. The
first and second components of GQToTrAlg(TrToGQAlg(X, tX , | · |X)

)
are X and tX them-

selves. The third component is the map W -to-X . We need to show that for any w : W we
have W -to-X(w) = |w|X . Since the type W -to-X(w) = |w|X is a set for any w : W, by
an earlier observation at the beginning of the proof of lemma 197 it suffices to show that for
any y : T we have W -to-X(h(y)) = |h(y)|X . However, we recall that we have the path
βW-to-X(y) : W -to-X(h(y)) = T -to-X(y). Hence it suffices to show that T -to-X(y) = |h(y)|X
for any y : T .

We proceed by induction, mapping pT (a) 7→ βT-to-X(a) for any a : A. To map cT (z) for
a, b : A, z : R(a, b), we need to show that βT-to-X(a) transported along cT (z) among the fibers
of the type family x 7→ T -to-X(x) = |h(x)|X is equal to βT-to-X(b). An easy generalization and
path induction shows that this is equivalent to the assertion that the diagram below commutes:

T -to-X(pT (a)) T -to-X(pT (b))

|h(pT (a))|X |h(pT (b))|X

apT -to-X(cT (z))

βT -to-X(a) βT -to-X(b)

ap|−|X◦ h(cT (z))

But this is implied by the second computation rule for T -to-X , as observed earlier.

Lemma 198. (H + W) For an algebra X : TrAlgUj(3,W ) we have a function

TrToGQFibAlg : TrFibAlgUk X → GQFibAlgUk

(
TrToGQAlg X

)
which is an equivalence.

Proof. Fix an algebra X := (X, tX , | · |X) : TrAlgUj(3,W ). We recall that TrToGQAlg X is the
algebra (X, tX , pX , cX ,mX), where

pX(a) := |h(pT (a))|X for a : A

cX(z) := ap|−|X ◦h(cT (z)) for a, b : A, z : R(a, b)

mX(v, w) := Hc(θf (d), εf (d)) for a, b, c : A, v : R(a, b), w : R(b, c) with d := (a, b, c, v, w)

We will also make use of the following notation:

• For a map f : U → Z, type family Y : V → Um, terms y1 : Y (f(x1)) and y2 : Y (f(x2)),
and paths p : x1 =U x2 and q : pY ◦f∗ y1 = y2 we have an equivalence

Df (q) :
(
pY ◦f∗ y1 = y2

)
'

((
apf (p)

)Y
∗ y1 = y2

)
defined simply by mapping q to the path
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(
apf (p)

)Y
∗ y1 pY ◦f∗ y1 y2

q

We note that we will only be interested in the specific case when f := | · |X ◦h and will thus
omit the subscript to Df (q). We now proceed in four steps:

Step 1 First we define TrToGQFibAlg; for this, take an algebra (E, tE, | · |E) : TrFibAlgUk X .
To construct a fibered group quotient algebra, we can use the same underlying type E, with
tE showing it is fiberwise a 1-type as desired. For the third component, we need a function
pE : Πa:AE(|h(pT (a))|X). The only possibility we have is to define pE(a) := |h(pT (a))|E . To
obtain the fourth component, we need a function cE mapping each a, b : A, z : R(a, b) to a path
from

(
ap|−|X ◦h(cT (z))

)E
∗ |h(pT (a))|E to |h(pT (b))|E . Using the notation from above, we define

cE(z) := D
(
dap|−|E ◦h(cT (z))

)
, which makes sense since the term dap|−|E ◦h(cT (z)) provides

us with a path from cT (z)E ◦ |−|X ◦h∗ |h(pT (a))|E to |h(pT (b))|E . To obtain the final component
of our desired fibered groupoid quotient algebra, we need to show that for any a, b, c : A and
v : R(a, b), w : R(b, c), the following diagram commutes:

(
cX(c(v, w))

)E
∗ pE(a)

[c]E

(
cX(v) � cX(w)

)E
∗ pE(a)

cE(c(v, w))

via mX(v, w)

C
(
cE(v), cE(w)

)

To show this, fix a, b, c, v, w with d := (a, b, c, v, w), and consider the following generalization:
given terms

• p : x =T x, q : x =T y3, r : y1 =T y3, r1 : y1 =T y2, r2 : y2 =T y3, as in the diagram

x x

y3 y3

p

q q

(r1
� r2)−1 � r

• θ : q �
(
(r1

� r2)−1 � r
)

= p � q,

• γ : aph(p) = 1,

the following diagram commutes

118



(
ap|−|X ◦h(r)

)E
∗ |h(y1)|E

|h(y3)|E

(
ap|−|X ◦h(r1) � ap|−|X ◦h(r2)

)E
∗
|h(y1)|E

D
(
dap|−|E ◦h(r)

)
viaHc(θ, ε)

C
(
D
(
dap|−|E ◦h(r1)

)
,D

(
dap|−|E ◦h(r1)

))

where ε denotes the path

ap|−|X ◦h(p) ap|−|X (aph(p)) ap|−|X (1)
via γ

To show that the above generalization implies our original goal, we instantiate p := apf(d)(lp),
q := βf (d), r := cT (c(v, w)), r1 := cT (v), r2 := cT (w), θ := θf (d), γ := ϑf (d).

To prove our new goal, we perform path induction on r1 and r2. This reduces the above
diagram to

(
ap|−|X ◦h(r)

)E
∗ |h(y1)|E

|h(y1)|E

(1)E∗ |h(y1)|E

D
(
dap|−|E ◦h(r)

)
viaHc(θ, ε)

To show that this simplified diagram commutes, we first note that for a general r′ : y1 = y′1 we
can express the path D

(
dap|−|E ◦h(r′)

)
is an equivalent way, as justified by the diagram below

which commutes by an obvious path induction:

(
ap|−|X ◦h(r′)

)E
∗ |h(y1)|E

(
ap|−|X (aph(r′))

)E
∗ |h(y1)|E

(aph(r′))E ◦ |−|X∗ |h(y1)|E

(r′)E ◦ |−|X ◦h∗ |h(y1)|E

|h(y′1)|E
dap|−|E (aph(r′))

dap|−|E ◦h(r′)

Specializing this situation to r′ := r, it suffices to show that the outer rectangle in the diagram
below commutes:
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A

B

(
ap|−|X ◦h(r)

)E
∗ |h(y1)|E

(
ap|−|X (aph(r))

)E
∗ |h(y1)|E

(aph(r))E ◦ |−|X∗ |h(y1)|E

(1)E∗ |h(y1)|E

(
ap|−|X (1)

)E
∗ |h(y1)|E

|h(y1)|E
dap|−|E (aph(r))

viaHc(θ, ε)

viaHc(θ, γ)

It suffices to show that the rectangles A and B commute. The commutativity of B follows
by generalizing Hc(θ, γ) together with its left endpoint aph(r) and performing a one-sided path
induction. To show the commutativity of A, we first perform a path induction on q. This reduces
the terms Hc(θ, ε) and Hc(θ, γ) to idc

(
1|−|X ◦h, Il(Il(Ir(θ))), ε

)
and idc

(
1h, Il(Il(Ir(θ))), γ

)
respectively. Since θ now has type 1 � (1 � r) = p � 1, Il(Il(Ir(θ))) has type r = p. Thus,
generalizing Il(Il(Ir(θ))) and performing a one-sided path induction on it replaces r with p and
reduces the terms idc

(
1|−|X ◦h, Il(Il(Ir(θ))), ε

)
and idc

(
1h, Il(Il(Ir(θ))), γ

)
to ε and γ them-

selves. Hence we are down to showing that the diagram below commutes:

(
ap|−|X ◦h(p)

)E
∗ |h(x)|E

(
ap|−|X (aph(p))

)E
∗ |h(x)|E

(1)E∗ |h(x)|E

(
ap|−|X (1)

)E
∗ |h(x)|E

via ε

via γ

But this follows immediately from the definition of ε and we are done.

Step 2 We define the intended quasi-inverse GQToTrFibAlg; fix algebra (E, tE, pE, cE,mE) :
GQFibAlgUk

(
TrToGQAlg X

)
. To construct a fibered truncation algebra, we can use the same

underlying type family E, with tE showing it is fiberwise a 1-type as desired. To obtain the last
component, we need a function W -to-E : Πw:WE(|w|X). For this we will first need a function
T -to-E : Πy:TE(|h(y)|X). We proceed by induction, mapping pT (a) 7→ pE(a) for any a : A
and cT (z) 7→ D−1(cE(z)) for any a, b : A, z : R(a, b). This definition makes sense as cE(z)

provides us with a path from
(
ap|−|X ◦h(cT (z))

)E
∗ pE(a) to pE(b); this means that applying D−1

to it produces a path from cT (z)E ◦ |−|X ◦h∗ pE(a) to pE(b) as desired.
The first computation rule gives us a family of paths βT-to-E(a) : T -to-E(pT (a)) = pE(a)

for a : A, and the second computation rule implies the commutativity of the following diagram
for any a, b : A, z : R(a, b):
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cT (z)E ◦ |−|X ◦h∗ T -to-E(pT (a)) T -to-E(pT (b))

cT (z)E ◦ |−|X ◦h∗ pE(a) pE(b)

dapT -to-E(cT (z))

via βT -to-E(a) βT -to-E(b)

D−1(cE(z))

To obtain W -to-E we again proceed by induction. For this we first need to define a function

e : Πx:T+DΠt:0→W
(
Πb:0E(|t b|X)

)
→ E(|pW (x, t)|X)

We define e(x, t,−) := e(x, t, α?(t)), where for any x : T +D, t : 0→ W, α : t = f0, the term

e(x, t, α) : E(|pW (x, t)|X)

is defined by one-sided path induction on α and the subsequent mapping

inl(y) 7→ T -to-E(y)

inr(d) 7→ cW ((d, b), f0, f0)E ◦ |−|X∗ T -to-E(f(d, b))

To complete the inductive definition we need to construct a function

q : Πc:D×SΠt:0→WΠs:0→WΠu:(Πb:0)E(|t b|X)Πv:(Πb:0)E(|s b|X)(
cW (c, t, s)E ◦ |−|X∗ e(l(c), t, u) = e(r(c), s, v)

)
For this it suffices to prove the following:

• Goal: For any d : D, x : S, there exists a path family

cf (d, x) : cW ((d, x), f0, f0)E ◦ |−|X∗ T -to-E(f(d, x)) =

cW ((d, b), f0, f0)E ◦ |−|X∗ T -to-E(f(d, b))

We can then define q(c, t, s,−,−) := q(c, t, α?(t), s, α?(s)), where for c : D × S, t : 0 → W,
αt : t = f0, s : 0→ W, αs : s = f0, the term

q(c, t, αt, s, αs) : cW (c, t, s)E ◦ |−|X∗ e(l(c), t, αt) = e(r(c), s, αs)

is defined by one-sided path induction on αt, αs, and the subsequent mapping (d, x) 7→ cf (d, x).
To prove the existence of the function cf as specified above, we will make use of the following
claim:
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• Claim: For a type Z : Ui, type family Y : Z → Uk, maps r : S → Z, f : Πx:SY (r(x)),
term z? : Z, and path α : r = λ(y:S)z?, if dapf (lp) is equal to the path

(lp)Y ◦ r∗ f(b)

(
apr(lp)

)Y
∗ f(b)

(1)Y∗ f(b)

via idc
(
α, 1lp, apc(z?, lp)

)

(?)

then there is a path family

c(x) :
(

=EΠ(α, x)
)Y
∗
f(x) =

(
=EΠ(α, b)

)Y
∗
f(b)

To prove this claim, we proceed by induction on α. The term idc
(
α, 1lp, apc(z?, lp)

)
then

becomes just apc(z?, lp). Furthermore, it reduces the problem to that of finding a path
family c(x) : f(x) = f(x). As observed before, for this it suffices to show that apf (lp) =
1, which is well-typed since r is now a constant function on z?, which makes f a non-
dependent function from S to Y (z?). We now generalize this situation by considering an
arbitrary p : x1 = x2 instead of lp. By an obvious path induction, dapf (p) is equal to the
path below:

pY ◦ r∗ f(x1)

(
apr(p)

)Y
∗ f(x1)

(1)Y∗ f(x1)

f(x2)

via apc(z?, p)

apf (p)

Performing the instantiation p := lp, we see that by assumption, the term dapf (lp) is in
fact equal to the composition of the first two equalities in the above path, which means we
must necessarily have apf (lp) = 1 as desired.
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Having proved the claim, we now return to our original goal of constructing cf . We fix
d := (a, b, c, v, w) : D and instantiate the above claim by putting Z := W , Y := E ◦ | · |X ,
r := h ◦ f(d), f := T -to-E ◦ f(d), z? := f?(d), α := ηf (d). Recalling the definition of ηf (d) and
noting that =EΠ and ΠE= are quasi-inverses, we see that the conclusion of the claim guarantees
the existence of our desired cf . It therefore remains to establish the hypothesis of the claim, that
is, show that dapT-to-E ◦ f(d)(lp) has the form specified in (?). This is precisely the conclusion of
the following generalization: given terms

• xk : T and yk : E(|h(xk)|X) for k ∈ {1, 2, 3},
• γk : T -to-E(xk) = yk for k ∈ {1, 2, 3},
• p : x1 = x3 and qk : xk = xk+1 for k ∈ {1, 2},
• β : f(d, b) = x3,

• sk :
(

ap|−|X ◦h(qk)
)E
∗
yk = yk+1 for k ∈ {1, 2},

• θ : β �
(
(q1

� q2)−1 � p
)

= apf(d)(lp) � β,

the term dapT-to-E ◦ f(d)(lp) is equal to the path

(lp)E ◦ |−|X◦ h ◦ f(d)
∗ T -to-E(f(d, b))

(
aph ◦ f(d)(lp)

)E ◦ |−|X
∗ T -to-E(f(a, b))

(1)E ◦ |−|X∗ T -to-E(f(d, b))

via υf (d)

provided the diagrams below commute for k ∈ {1, 2}:

p
E ◦ |−|X◦ h
∗ T -to-E(x1) T -to-E(x3)

y3p
E ◦ |−|X◦ h
∗ y1

dapT -to-E(p)

via γ1 γ3

D−1(κ)

(qk)
E ◦ |−|X◦ h
∗ T -to-E(xk) T -to-E(xk+1)

yk+1(qk)
E ◦ |−|X◦ h
∗ yk

dapT -to-E(qk)

via γk γk+1

D−1(sk)
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Here κ denotes the following path:

(ap|−|X ◦h(p))E∗ y1

(
ap|−|X ◦h(q1) � ap|−|X ◦h(q2)

)E
∗
y1

y3

viaHc(θ, εf (d))

C(s1, s2)

We instantiate this generalization by γ1 := βT-to-E(a), γ2 := βT-to-E(b), γ3 := βT-to-E(c),
p := cT (c(v, w)), q1 := cT (v), q2 := cT (w), β := βf (d), s1 := cE(v), s2 := cE(w), θ := θf (d).
The commutativity of the diagrams in the hypotheses is implied by the second computation rule
for T -to-E and mE(v, w).

Finally, to prove this generalization we perform one-sided path induction on β, γ1, γ2,
γ3, q1, q2. This reduces the term Hc(θ, εf (d)) to idc

(
1|−|X ◦h, Il(Il(Ir(θ))), εf (d)

)
, and the

commutativity of the first diagram in the hypothesis then becomes equivalent to the condition
dapT-to-E(p) = D−1(κ), where κ is the path

(
ap|−|X ◦h(p)

)E
∗ T -to-E(f(d, b))

(1)E∗ T -to-E(f(d, b))

T -to-E(f(d, b))

via idc
(
1|−|X ◦h, Il(Il(Ir(θ))), εf (d)

)

C(s1, s2)

Furthermore, the commutativity of the remaining two diagrams in the hypothesis becomes
equivalent to the conditions s1 = 1, s2 = 1. Performing one-sided path induction on these last
two conditions then replaces s1 and s2 with reflexivities, which in turn reduces the term C(s1, s2)
to reflexivity.

Also, θ now has type 1 � (1 � p) = apf(d)(lp) � 1, which means that the term Il(Il(Ir(θ)))
has type p = apf(d)(lp). Thus, generalizing Il(Il(Ir(θ))) and performing a one-sided path in-
duction on it replaces p with apf(d)(lp) and reduces the term idc

(
1|−|X ◦h, Il(Il(Ir(θ))), εf (d)

)
to εf (d). Hence it suffices to establish the conclusion of the generalization under the hypothesis
that dapT-to-E(apf(d)(lp)) equals the path
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(
apf(d)(lp)

)E ◦ |−|X◦ h
∗ T -to-E(f(d, b))

(
ap|−|X ◦h

(
apf(d)(lp)

))E
∗
T -to-E(f(d, b))

(1)E∗ T -to-E(f(d, b))

via εf (d)

To do so, we first relate the two terms dapT-to-E ◦ f(d)(lp) and dapT-to-E(apf(d)(lp)) by observing
that the former is equal to the path below by an easy path induction:

(lp)E ◦ |−|X◦ h ◦ f(d)
∗ T -to-E(f(d, b))

(
apf(d)(lp)

)E ◦ |−|X◦ h
∗ T -to-E(f(d, b))

T -to-E(f(d, b))

dapT -to-E
(
apf(d)(lp)

)

Hence it only remains to show that the following diagram commutes:

(lp)E ◦ |−|X◦ h ◦ f(d)
∗

(
aph ◦ f(d)(lp)

)E ◦ |−|X
∗

(1)E ◦ |−|X∗

(
apf(d)(lp)

)E ◦ |−|X◦ h
∗

(
ap|−|X ◦h

(
apf(d)(lp)

))E
∗

(1)E∗

via υf (d) via εf (d)

Expanding the definition of εf (d), we see that it remains to show that the outer rectangle in the
diagram below commutes:
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A

B

(lp)E ◦ |−|X◦ h ◦ f(d)
∗

(
aph ◦ f(d)(lp)

)E ◦ |−|X
∗

(1)E ◦ |−|X∗

(
apf(d)(lp)

)E ◦ |−|X◦ h
∗

(
ap|−|X◦ h

(
apf(d)(lp)

))E
∗

(
ap|−|X

(
aph(apf(d)(lp))

))E
∗

(
ap|−|X

(
aph ◦ f(d)(lp)

))E
∗

(
ap|−|X (1)

)E
∗

via υf (d) via υf (d)

But both of the inner rectangles A and B commute by an easy generalization and subsequent path
induction, so we are done.

Although this step is finished, it will be useful to note that since W -to-E was defined by
induction, the first computation rule gives us a family of paths

βW-to-E(y) : W -to-E(h(y)) = e
(
inl(y), f0, α?(f0)

)
for any y : T . But of course we have α?(f0) = 1f0 so in fact we have a family of paths

β′W-to-E(y) : W -to-E(h(y)) = T -to-E(y)

for any y : T .

Step 3 We show that for a fibered groupoid quotient algebra Y : GQFibAlgUk
(
TrToGQAlg X

)
,

we have TrToGQFibAlg(GQToTrFibAlg(Y)) = Y . Let such an algebra (E, tE, pE, cE,mE) be
given. The first and second components of TrToGQAlg

(
GQToTrAlg(E, tE, pE, cE,mE)

)
are E

and tE themselves. The third and fourth components are the maps a 7→ W -to-E(h(pT (a))) and
a, b, z 7→ D

(
dapW-to-E ◦h(cT (z))

)
respectively.

The type of the final component is a mere proposition, so all we need to show is that there is
a path γ equating the third component with pE , such that the fourth component transported along
γ among the fibers of the type family f 7→ Πa,b:AΠz:R(a,b)

((
ap|−|X ◦h(cT (z))

)E
∗ f(a) = f(b)

)
is

equal to cE . An easy generalization and path induction, with function extensionality, shows that
the latter condition is equivalent to the assertion that the diagram below commutes for all a, b, z:
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cT (z)E ◦ |−|X ◦h∗ W -to-X
(
h(pT (a))

)
W -to-E

(
h(pT (b))

)

cT (z)E ◦ |−|X ◦h∗ pE(a) pE(b)

D−1
(
D
(
dapW -to-E ◦ h(cT (z))

))

via =EΠ(γ, a) =EΠ(γ, b)

D−1(cE(z))

To construct γ, we put

γ := ΠE=
(
a 7→ β′W-to-E(pT (a)) � βT-to-E(a)

)
It thus remains to show that the outer rectangle in the diagram below commutes:

A

cT (z)E ◦ |−|X ◦h∗ W -to-E
(
h(pT (a))

)
W -to-E

(
h(pT (b))

)

cT (z)E ◦ |−|X ◦h∗ T -to-E(pT (a)) T -to-E(pT (b))

cT (z)E ◦ |−|X ◦h∗ pE(a) pE(b)

B

dapW -to-E ◦ h(cT (z))

via β′W -to-X(pT (a)) β′W -to-X(pT (b))

dapT -to-E(cT (z))

via βT -to-E(a) βT -to-E(b)

D−1(cE(z))

But rectangle A commutes by an easy path induction and rectangle B commutes by the second
computation rule for T -to-E, so we are done.

Step 4 Finally, we want to show that for any fibered truncation algebra Y : TrAlgUk X , we
have GQToTrFibAlg(TrToGQFibAlg(Y)) = Y . Let such an algebra (E, tE, | · |E) be given.
The first and second components of GQToTrFibAlg(TrToGQFibAlg(E, tE, | · |E)

)
are E and tE

themselves. The third component is the map W -to-E. We thus need to show that for any w : W,
we have W -to-E(w) = |w|E . Since the type W -to-X(w) = |w|E is a set for any w : W,
by an earlier observation at the beginning of the proof of lemma 197 it suffices to show that
for any y : T we have W -to-E(h(y)) = |h(y)|E . However, we recall that we have the path
β′W-to-E(y) : W -to-E(h(y)) = T -to-E(y). Hence it suffices to show that T -to-E(y) = |h(y)|E
for any y : T .

We proceed by induction, mapping pT (a) 7→ βT-to-E(a) for any a : A. To map cT (z) for
a, b : A, z : R(a, b), we need to show that βT-to-E(a) transported along cT (z) among the fibers
of the type family x 7→ T -to-E(x) = |h(x)|E is equal to βT-to-E(b). An easy generalization and
path induction shows that this is equivalent to the assertion that the diagram below commutes:
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cT (z)E ◦ |−|X ◦h∗ T -to-E(pT (a)) T -to-E(pT (b))

cT (z)E ◦ |−|X ◦h∗ |h(pT (a))|E |h(pT (b))|E

dapT -to-E(cT (z))

via βT -to-E(a) βT -to-E(b)

dap|−|E ◦ h(cT (z))

But this is implied by the second computation rule for T -to-E.

Lemma 199. (H + W) For algebras X : TrAlgUj(3,W ) and Y : TrFibAlgUk X we have

TrFibMor X Y ' GQFibMor
(

TrToGQAlg X
) (

TrToGQFibAlg(X ) Y
)

Proof. Fix an algebra X := (X, tX , | · |X) : TrAlgUj(3,W ). We recall that TrToGQAlg X is the
algebra (X, tX , pX , cX ,mX), where

pX(a) := |h(pT (a))|X for a : A

cX(z) := ap|−|X ◦h(cT (z)) for a, b : A, z : R(a, b)

Fix an algebra Y := (E, tE, | · |E) : TrFibAlgUk X . Then TrToGQFibAlg(X ) Y is the algebra
(E, tE, pE, cE,mE), where

pE(a) := |h(pT (a))|E for a : A

cE(z) := D
(
dap|−|E ◦h(cT (z))

)
for a, b : A, z : R(a, b)

We now proceed in four steps:

Step 1 First we define a function TrToGQFibMor going from left to right. For this, take a
morphism (f, β) : TrFibMor X Y . To construct the desired fibered group quotient morphism,
we can use the same underlying map f . For the second component, we need a function β·/· :
Πa:A

(
f(|h(pT (a))|X) = |h(pT (a))|E

)
. The obvious choice is to define β·/· := β(h(pT (a))).

To obtain the final component, we need to show that the following diagram commutes for all
a, b : A, z : R(a, b):

(
ap|−|X ◦h(cT (z))

)E
∗ f

(
|h(pT (a))|X

)
f
(
|h(pT (b))|X

)

(
ap|−|X ◦h(cT (z))

)E
∗ |h(pT (a))|E |h(pT (b))|E

dapf
(
ap|−|X ◦h(cT (z))

)

via β
(
h(pT (a))

)
β
(
h(pT (b))

)
D
(
dap|−|E ◦h(cT (z))

)
But this follows by a straightforward generalization and path induction.
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Step 2 We define the intended quasi-inverse GQToTrFibMor going from right to left. For this,
take a morphism (f, β, θ) : GQFibMor

(
TrToGQAlg X

) (
TrToGQFibAlg(X ) Y

)
. To construct

a truncation morphism, we can use the same underlying map f . For the second component,
we need a function β| · | : Πw:W (f(|w|X) = |w|E). As the type f(|w|X) = |w|E is a set for
any w : W, by an earlier observation at the beginning of the proof of lemma 197 it suffices to
construct a function γ| · | : Πy:T (f(|h(y)|X) = |h(y)|E).

We construct γ| · | by induction, mapping pT (a) 7→ β(a) for any a : A. To map cT (z) for
a, b : A, z : R(a, b), we need to show that β(a) transported along cT (z) among the fibers of
the type family y 7→ f(|h(y)|X) = |h(y)|E is equal to β(b). An easy generalization and path
induction shows that this is equivalent to the assertion that the diagram below commutes:

(
ap|−|X ◦h(cT (z))

)E
∗ f

(
|h(pT (a))|X

)
f
(
|h(pT (b))|X

)

(
ap|−|X ◦h(cT (z))

)E
∗ |h(pT (a))|E |h(pT (b))|E

dapf
(
ap|−|X ◦h(cT (z))

)

via β(a) β(b)

D
(
dap|−|E ◦h(cT (z))

)
But this is implied right away by θ.

Although we are done with this step, it will be useful to note that by our definition of β| · | and
γ| · |, we have β| · |(h(y)) = γ| · |(y) for any y : T and γ| · |(pT (a)) = β(a) for any a : A.

Step 3 We show that for a morphism µ : GQFibMor
(
TrToGQAlg X

) (
TrToGQFibAlg(X ) Y

)
,

we have TrToGQFibMor(GQToTrFibMor(µ)) = µ. Let such a morphism (f, β, θ) be given. Then
f itself is the first component of TrToGQFibMor

(
GQToTrFibMor(f, β, θ)

)
. The second compo-

nent is the map a 7→ β| · |(h(pT (a))). The type of the final component is a mere proposition, so
all we need to show is that there is a path equating the third component with β. Using function
extensionality, we only need to show that for any a : A we have β| · |(h(pT (a))) = β(a). But as
we noted at the end of the previous step, by construction we have

β| · |(h(pT (a))) = γ| · |(pT (a)) = β(a)

so we are done.

Step 4 We show that we have GQToTrFibMor(TrToGQFibMor(µ)) = µ for any morphism
µ : TrFibMor X Y . Let such morphism (f, β) be given. Then f itself is the first component of
GQToTrFibMor(TrToGQFibMor(f, β)). The second component is the map β| · |. Using function
extensionality, we only need to show that for any w : W we have β| · | = β(w). Since the type
β| · |(w) = β(w) is a mere proposition for any w : W, and hence a set, by an earlier observation
at the beginning of the proof of lemma 197 it suffices to show that for any y : T we have
β| · |(h(y)) = β(h(y)). However, we recall that we have β| · |(h(y)) = γ| · |(y). Hence it suffices
to show that γ| · |(y) = β(h(y)) for any y : T . But since the type γ| · |(y) = β(h(y)) is a mere
proposition for any y : T, it suffices to show that it is inhabited for y := pT (a), i.e., that for any
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a : A we have γ| · |(pT (a)) = β(h(pT (a))). But this follows right away from the construction of
γ| · |.

Lemma 200. (H + W) For algebras X : TrAlgUj(3,W ) and Y : TrAlgUk(3,W ) we have

TrMor X Y ' GQFibMor
(

TrToGQAlg X
) (

TrToGQAlg Y
)

Proof. Exactly as in the fibered case.

Corollary 201. (H + W) For an algebra X : GQAlgUj(A,G) we have

hasGQRecUk(X ) ' hasTrRecUk

(
TrToGQAlg−1(X )

)
hasGQIndUk(X ) ' hasTrIndUk

(
TrToGQAlg−1(X )

)
isGQHInitUk(X ) ' isTrHInitUk

(
TrToGQAlg−1(X )

)
Corollary 202. (H + W) For A : Ui, G : Grp(A), the following conditions on an algebra
X : GQAlgUj(A,G) are equivalent:

• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

hasGQIndUk(X ) ' isGQHInitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Corollary 203. (H + W + ·/1·) For A : Ui, G : Grp(A), the algebra(
A/1G, point1, cell1

)
: GQAlgUi(A,G)

is homotopy-initial on any universe Uj .
Analogously to set quotients, homotopy-initial groupoid quotient algebras enjoy the property

of effectiveness, in the sense that the path structure on the groupoid quotient is “the same” as the
structure specified by G:

Lemma 204. (H) For A : Ui, G : Grp(A), and algebra X := (D, tD, p, c,m) : GQAlgUi(A,G),
where G := (R, tR, r, i, c, . . .), ifX is homotopy-initial on the universe Ui+1, then for any a, b : A
we have

(p(a) = p(b)) ' R(a, b)

Proof. As in the case of set quotients, we employ the “encode-decode” method by Licata. We
define a function C : D → D → ΣX:Ui isSet(X), where C(x, y) is intended to explicitly describe
the path type x = y, and then show that we indeed have (x = y) ' π1(C(x, y)). Since C will be
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defined in such a way that π1

(
C(p(a), p(b))

)
is equivalent to R(a, b), this will finish the proof.

To obtain the desired equivalence, we construct maps

e(x, y) : (x = y)→ π1(C(x, y))

d(x, y) : π1(C(x, y))→ (x = y)

and show that they compose to identities. We will also make use of a couple observations and
notations:

• For any a, b1, b2 : A and z : R(b1, b2), we have the equivalence

R(a, b1) ' R(a, b2)

given by post-composition with z. Let postceq(a, z) denote the witness that this map is
indeed an equivalence.

• For any a1, a2, b : A and z : R(a1, a2), we have the equivalence

R(a1, b) ' R(a2, b)

given by pre-composition with the inverse of z. Let preceq(b, z) denote the witness that
this map is indeed an equivalence.

• For any a, b : A, we let R(a, b) := (R(a, b), tR(a, b)) : ΣX:Ui isSet(X).
• For any X,Y : ΣX:Ui isSet(X), we have the equivalence

apπ1
: (X = Y)→ (π1(X) ' π1(Y))

since the type isSet(X) is a mere proposition for any X . By the univalence axiom, we also
have the equivalence

=E' : (π1(X) = π1(Y))→ (π1(X) ' π1(Y))

The composition thus yields an equivalence

K : (X = Y)→ (π1(X) ' π1(Y))

We let K1 := π1 ◦K.
• For any X,Y : ΣX:Ui isSet(X) and α1, α2 : X = Y, we have

(α1 = α2) ' (K1(α1) = K1(α2))

This follows as K is an equivalence and the type isEq(f) is a mere proposition for any f .
• For any X,Y,Z : ΣX:Ui isSet(X) and α1 : X = Y, α2 : Y = Z, we have

K1(α1
� α2) = K1(α2) ◦K1(α1)

We now proceed in five steps:
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Step 1 To define C, we proceed by recursion on the first argument. We are allowed to do this
since the type D → ΣX:Ui isSet(X) indeed belongs to Ui+1 and is a 1-type (the latter follows
since ΣX:Ui isSet(X) is itself a 1-type, as a simple exercise or an appeal to theorem 7.1.11 in [33]
shows).

Now we need to define a function F : A → D → ΣX:Ui isSet(X). We do this by recursion
on the second argument. So we fix a : A and map p(b) 7→ R(a, b). To map c(z) for b1, b2 : A,
z : R(b1, b2), we need to construct a path γF (a, z) : R(a, b1) = R(a, b2). Using the notation
from above, we define

γF (a, z) := K−1
(
c(−, z), postceq(a, z)

)
To finish the definition of F , we need to show that for any b1, b2, b3 : A and z1 : R(b1, b2),
z2 : R(b2, b3), we have

γF (a, c(z1, z2)) = γF (a, z1) � γF (a, z2)

As observed above, for this it suffices to show that

K1

(
γF (a, c(z1, z2))

)
= K1

(
γF (a, z1) � γF (a, z2)

)
By yet another observation from above, it suffices to show that

K1

(
γF (a, c(z1, z2))

)
= K1(γF (a, z2)) ◦K1(γF (a, z1))

Unfolding the definition of γF we see that this is equivalent to showing that

c(−, c(z1, z2)) = c(−, z2) ◦ c(−, z1)

But this is obvious from function extensionality and the groupoid properties.
Although the definition of F (a) is finished, we note that the computation rules give us a fam-

ily of paths βF (a, b) : F (a, p(b)) = R(a, b) for a, b : A such that the diagram below commutes
for any a, b1, b2 : A and z : R(b1, b2):

F (a, p(b1)) F (a, p(b2))

R(a, b1) R(a, b2)

apF (a)(c(z))

βF (a, b1) βF (a, b2)

γF (a, z)

We now continue with our definition of C. For any a1, a2 : A and w : R(a1, a2), we must
construct a path from F (a1) to F (a2). By function extensionality, it suffices to construct a
homotopy δC(w) : F (a1) ∼ F (a2). Our desired path between F (a1) and F (a2) will then be
ΠE=(x 7→ δC(w)). To construct δC(w), we proceed by induction on its argument. It is clear that
for any x : D, the type F (a1, x) = F (a2, x) belongs to Ui+1. We also need to show that it is a
1-type, which is true since it is in fact a set. To map p(b) for b : A, we need to construct a path
equating F (a1, p(b)) with F (a2, p(b)). Appealing to βF (a1, b) and βF (a2, b), we see that for this
it suffices to construct a path γC(w, b) : R(a1, b) = R(a2, b). We define

γC(w, b) := K−1
(
c(i(w),−), preceq(b, w)

)
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Putting the above together, we map

p(b) 7→ βF (a1, b) � γC(w, b) � βF (a2, b)
−1

To map c(z) for b1, b2 : A, z : R(b1, b2), we must show that βF (a1, b1) � γC(w, b1) � βF (a2, b1)−1

transported along c(z) among the fibers of the type family x 7→ F (a1, x) = F (a2, x) is equal to
the path βF (a1, b2) � γC(w, b2) � βF (a2, b2)−1. An easy generalization and path induction shows
that this is equivalent to the assertion that the outer rectangle in the diagram below commutes:

A

B

C

F (a1, p(b1)) F (a1, p(b2))

R(a1, b1) R(a1, b2)

R(a2, b1) R(a2, b2)

F (a2, p(b1)) F (a2, p(b2))

apF (a1)(c(z))

βF (a1, b1) βF (a1, b1)

γF (a1, z)

γC(w, b1) γC(w, b2)

γF (a2, z)

βF (a2, b1)−1 βF (a2, b2)−1

apF (a2)(c(z))

Rectangles A and C commute by the construction of F , as observed earlier. It thus remains to
show that rectangle B commutes, i.e., that we have

γC(w, b1) � γF (a2, z) = γF (a1, z) � γC(w, b1)

For this it suffices to show that

K1(γF (a2, z)) ◦K1(γC(w, b1)) = K1(γC(w, b1)) ◦K1(γF (a1, z))

Using the definition of γF and γC, we see that this is equivalent to showing that

c(−, z) ◦ c(i(w),−) = c(i(w),−) ◦ c(−, z)

But this is obvious from function extensionality and the groupoid properties, which means that
we are done with the mapping of c(z). To finish the definition of δC(w), we should provide the
appropriate mapping corresponding to m. But there is a propositionally unique way to do this
since as noted before, the type F (a1, x) = F (a2, x) is a set for each x. Hence the definition of
δC(w) is complete, and by the first computation rule we get

δC(w, p(b)) = βF (a1, b) � γC(w, b) � βF (a2, b)
−1
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To finish the definition of C, we need to show that for any a1, a2, a3 : A and w1 : R(a1, a2),
w2 : R(a2, a3), we have

ΠE=
(
δC(c(w1, w2))

)
= ΠE=(δC(w1)) � ΠE=(δC(w2))

This is equivalent to showing that for any x : D, we have

δC(c(w1, w2), x) = δC(w1, x) � δC(w2, x)

We once again proceed by induction on x : D. However, the type above is a mere proposition so
we only need to show that it is inhabited for the case x := p(b), i.e., that for any b : D we have

δC
(
c(w1, w2), p(b)

)
= δC(w1, p(b)) � δC(w2, p(b))

By the construction of δC, this is equivalent to showing that

βF (a1, b) � γC(c(w1, w2), b) � βF (a3, b)
−1 =(

βF (a1, b) � γC(w1, b) � βF (a2, b)
−1
)
�
(
βF (a2, b) � γC(w2, b) � βF (a3, b)

−1
)

Clearly, it suffices to show that

γC(c(w1, w2), b) = γC(w1, b) � γC(w2, b)

This is equivalent to showing that

K1

(
γC(c(w1, w2), b)

)
= K1(γC(w2, b)) ◦K1(γC(w1, b))

This is in turn equivalent to showing that

c
(
i(c(w1, w2)),−

)
= c(i(w2),−) ◦ c(i(w1),−)

But this is obvious from function extensionality and the groupoid properties.
Although we are done with the definition of C, we note that the computation rules give us a

family of paths βC(a) : C(p(a)) = F (a) for a : A such that the following diagram commutes for
each a1, a2 : A, w : R(a1, a2):

C(p(a1)) C(p(a2))

F (a1) F (a2)

apC(c(w))

βC(a1) βC(a2)

ΠE=(δC(w))

Putting together what we have so far, we see that for any a, a′, b, b′ : A and w : R(a, a′), z :
R(b, b′), all rectangles in the following diagram commute:
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A

B

C

D

C(p(a), p(b))

F (a, p(b))

R(a, b)

C(p(a′), p(b))

F (a′, p(b))

R(a′, b)

C(p(a′), p(b′))

F (a′, p(b′))

R(a′, b′)

=EΠ
(
βC(a), p(b)

)

βF (a, b)

=EΠ
(
βC(a′), p(b)

)

βF (a′, b)

=EΠ
(
βC(a′), p(b′)

)

βF (a′, b′)

=EΠ
(
apC(c(w)), p(b)

)

δC(w, p(b))

γC(w, b)

apC(p(a′))(c(z))

apF (a′)(c(z))

γF (a′, z)

Rectangle A commutes by the construction of C; B by the construction of δC(w); C by path
induction; and D by the construction of F (a′).

It will also be useful to give names to some of the edges in this diagram. We let ε(a, b) be the
path

C(p(a), p(b))

F (a, p(b))

R(a, b)

=EΠ
(
βC(a), p(b)

)

βF (a, b)

and η(w, z) the path

C(p(a), p(b)) C(p(a′), p(b)) C(p(a′), p(b′))

=EΠ
(
apC(c(w)), p(b)

)
apC(p(a′))(c(z))

Step 2 To define e(x, y, u), we perform path induction on u. To construct G(x) : π1(C(x, x)),
we proceed by induction on x, mapping p(a) 7→ K1(ε(a, a)−1) r(a) for a : A. To map c(w) for
a1, a2 : A and w : R(a1, a2), we must show that K1(ε(a1, a1)−1) r(a1) transported along c(w)
among the fibers of the type family x 7→ π1(C(x, x)) is equal to K1(ε(a2, a2)−1) r(a2). An easy
generalization and path induction shows that this is equivalent to the assertion that

K1

(
η(c(w), c(w))

) (
K1(ε(a1, a1)−1) r(a1)

)
= K1(ε(a2, a2)−1) r(a2)
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The function K1

(
η(c(w), c(w))

)
goes from π1

(
C(p(a1), p(a1))

)
to π1

(
C(p(a2), p(a2))

)
, so the

above makes sense. By definition of γF , γC, and the groupoid properties, it is equivalent to
showing that

K1

(
η(c(w), c(w))

) (
K1(ε(a1, a1)−1) r(a1)

)
=

K1(ε(a2, a2)−1)
(
K1(γF (a2, w))

(
K1(γC(w, a1)) r(a1)

))
This in turn is equivalent to showing that

K1

(
ε(a1, a1)−1 � η

(
c(w), c(w)

))
r(a1) = K1

(
γC(w, a1) � γC(w, a1) � ε(a2, a2)−1

)
r(a1)

For this it clearly suffices to show that

ε(a1, a1)−1 � η
(
c(w), c(w)

)
= γC(w, a1) � γC(w, a1) � ε(a2, a2)−1

But this is obvious from the commuting diagram noted at the end of the first step. The mapping
of c(w) is finished, and since the type π1(C(x, x)) is a set for any x : D, it is not necessary to
construct a mapping corresponding to m. The definition of e is thus complete. It will be useful
to note that for any a : A, we have G(p(a)) = K1(ε(a, a)−1) r(a).

Step 3 We now show that for any x : D, the type Σy:Dπ1(C(x, y)) is contractible. We proceed
by induction on x. Since the property of being contractible is a mere proposition, it suffices to
prove it in the case x := p(a), i.e., that for any a : A, the type Σy:Dπ1(C(p(a), y)) is contractible.
So fix a : A. The type in question is clearly inhabited by

(
p(a), G(p(a))

)
, so it suffices to show

that for any y : D and u : π1(C(p(a), y)), we have
(
p(a), G(p(a))

)
= (y, u). But it is easy to see

that for any y and u we have(
p(a), G(p(a))

)
= (y, u)

' Σp:p(a)=y

(
px 7→π1(C(p(a),x))
∗ G(p(a)) = u

)
' Σp:p(a)=y

(
K1(apC(p(a))(p)) G(p(a)) = u

)
Hence we aim to show that for any y and u, the last type in the above chain of equivalences

is inhabited. We proceed by induction on y. We can do this since for any y, u, the type p(a) = y
is a set and, furthermore, for any p : p(a) = y the type K1(apC(p(a))(p)) G(p(a)) = u is even a
mere proposition (a fact we will use later). To map p(b) for b : A, we construct a function

H(b) : Πu:π1(C(p(a),p(b)))Σp:p(a)=p(b)

(
K1(apC(p(a))(p)) G(p(a)) = u

)
To define H(b), fix u : π1(C(p(a), p(b))). The first component of our desired pair will be the
path c(K1(ε(a, b)) u). To obtain the second component, we need to show that

K1

(
apC(p(a))

(
c(K1(ε(a, b)) u)

))
G(p(a)) = u
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By construction of G, the left-hand side is equal to

K1

(
apC(p(a))

(
c(K1(ε(a, b)) u)

)) (
K1(ε(a, a)−1) r(a)

)
This in turn is equal to

K1

(
ε(a, a)−1 � apC(p(a))

(
c(K1(ε(a, b)) u)

))
r(a)

From the right part of the commuting diagram noted at the end of the first step we see that

ε(a, a)−1 � apC(p(a))

(
c(K1(ε(a, b)) u)

)
= γF

(
a,K1(ε(a, b)) u

)
� ε(a, b)−1

Hence the above is equal to

K1

(
γF

(
a,K1(ε(a, b)) u

)
� ε(a, b)−1

)
r(a)

This in turn is equal to

K1(ε(a, b)−1)
(
K1

(
γF (a,K1(ε(a, b)) u)

)
r(a)

)
By definition of γF and the groupoid properties, this is equal to

K1(ε(a, b)−1)
(
K1(ε(a, b)) u

)
But this is clearly equal to u so we are done. This finishes the definition of H and hence the
mapping of p(b). We note that by the definition of H , we have π1(H(b, u)) = c(K1(ε(a, b)) u)
for any b : A and u : π1(C(p(a), p(b))).

To map c(z) for b1, b2 : A, z : R(b1, b2), we must show that the map H(b1) transported along
c(z) among the fibers of the type family b 7→ Πu:π1(C(p(a),p(b)))Σp:p(a)=p(b) . . . is equal to the map
H(b2). Here we left out the body of the Σ-type because as noticed earlier, it is a mere proposition
for any b : A, u : π1(C(p(a), p(b))), and p : p(a) = p(b). This observation together with path
induction and function extensionality shows that in order to map c(z), it suffices to show that for
any u : π1

(
C(p(a), p(b1))

)
we have

π1(H(b1, u)) � c(z) = π1

(
H
(
b2, K1(apC(p(a))(c(z))) u

))
This makes sense because K1

(
apC(p(a))(c(z))

)
u gives us a term of type π1

(
C(p(a), p(b2))

)
. To

show the above, we note that by our definition of H , it is equivalent to showing that

c
(
K1(ε(a, b1)) u

)
� c(z) = c

(
K1(ε(a, b2))

(
K1(apC(p(a))(c(z))) u

))
By the groupoid properties, the left-hand side is equal to c

(
c
(
K1(ε(a, b1)) u, z

))
, so it suffices

to show that
c
(
K1(ε(a, b1)) u, z

)
= K1(ε(a, b2))

(
K1(apC(p(a))(c(z))) u

)
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This is in turn equivalent to

c
(
K1(ε(a, b1)) u, z

)
= K1

(
apC(p(a))(c(z)) � ε(a, b2)

)
u

As the right side of the commuting diagram at the end of the first step shows, we have

apC(p(a))(c(z)) � ε(a, b2) = ε(a, b1) � γF (a, z)

Hence it suffices to show that

c
(
K1(ε(a, b1)) u, z

)
= K1

(
ε(a, b1) � γF (a, z)

)
u

This is equivalent to showing that

c
(
K1(ε(a, b1)) u, z

)
= K1(γF (a, z))

(
K1(ε(a, b1)) u

)
By definition of γF , this is equivalent to showing

c
(
K1(ε(a, b1)) u, z

)
= c

(
K1(ε(a, b1)) u, z

)
and we are done. This finishes the mapping of c(z), and as before, there is no need to supply a
mapping corresponding to m. Hence, we have completed the proof that the type Σy:Dπ1(C(x, y))
is contractible for any x : D. In particular, this gives us a path family α(x, q) : q = (x,G(x)) for
any x : D and q : Σy:Dπ1(C(x, y)).

Step 4 We define d by d(x, y, u) := d
(
x, α(x, (y, u))

)
, where for x : D, q : Σy:Dπ1(C(x, y)),

αq : q = (x,G(x)), the term
d(x, αq) : x = π1(q)

is defined by a one-sided path induction on αq and the subsequent mapping x 7→ 1. This finishes
the definition of d.

It now remains to show that e(x, y) and d(x, y) are indeed quasi-inverse to each other for any
x, y. In one direction, take x, y : D, u : x = y. To show that d(x, y, e(x, y, u)) = u, we proceed
by path induction on u. This reduces the goal to showing that d

(
x, α(x, (x,G(x)))

)
= 1 for any

x : D. But this follows at once from the fact that α(x, (x,G(x))) = 1(x,G(x)) by contractibility.
For the other direction, take x, y : D, u : π1(C(x, y)). The goal e(x, y, d(x, y, u)) = u

follows immediately from the generalization e
(
x, π1(q),d(x, αq)

)
= π2(q) for any x : D, q :

Σy:Dπ1(C(x, y)), αq : q = (x,G(x)). The generalization itself follows right away by one-sided
path induction on αq.
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5

Conclusion

We have investigated a class of higher inductive types with propositional computational behav-
ior and shown that they can be equivalently characterized as homotopy-initial algebras. We have
stated and proved this result for propositional truncations and for the so-called W-quotients,
which subsume a number of other interesting cases - ordinary W-types, the unit circle S1, the
interval type I, all the higher spheres Sn, all suspensions, and all type quotients. The character-
ization of these specific types as homotopy-initial algebras can be easily obtained as a corollary
to our main theorem.

We have also established a characterization of truncations, set quotients, and groupoid quo-
tients as homotopy-initial algebras. For set and groupoid quotients, we have shown that they can
be recovered from W-quotients and truncations, the same way natural numbers or lists can be re-
covered from W-types. Furthermore, recent work by E. Rijke and F. van Doorn [36] shows that
truncations can be reduced to type quotients (and hence to W-quotients). Thus, we conjecture
that W-quotients play the same role in the higher dimensional setting as Martin-Löf’s W-types
do for ordinary inductive types: that of a simple, well-studied class of (higher) inductive types,
which subsumes most of the other (higher) inductive types of interest as special cases.

This result would provide one possible answer to the earlier question of what a higher in-
ductive type should be, and the characterization of higher inductive types as homotopy-initial
algebras would follow from our main theorem. In this respect, the results in this thesis are re-
lated to the work of van Doorn, Rijke, and others, on reducing general higher inductive types to a
combination of W-types and type quotients. We conjecture that W-quotients themselves arise as
such a combination. While this decomposition of W-quotients into W-types and type quotients
would not significantly simplify the development we presented here – establishing the character-
ization of type quotients as homotopy-initial algebras directly is almost as much work as doing
it for the full W-quotients – it would provide further evidence for W-types and type quotients,
either individually or combined into a W-quotient, as being the main building blocks for most
(or even all?) other higher inductive types of interest.
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