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Abstract

Error-correcting codes were originally developed in the context of reli-
able delivery of data over a noisy communication channel and continue to
be widely used in communication and storage systems. Over time, error-
correcting codes have also been shown to have several exciting connections
to areas in theoretical computer science. Recently, there have been several
advances including new constructions of efficient codes as well as coding in
different settings. This thesis explores several new directions in modern cod-
ing theory. To this end, we:

1. Provide a theoretical analysis of polar codes, which were a breakthrough
made by Arikan in the last decade [Arı09]. We show that polar codes
over prime alphabets are the first explicit construction of efficient codes
to provably achieve Shannon capacity for symmetric channels with poly-
nomially fast convergence. We introduce interesting new techniques in-
volving entropy sumset inequalities, which are an entropic analogue of
sumset inequalities studied in additive combinatorics.

2. Consider the recent problem of coding for two-party interactive commu-
nication, in which two parties wish to execute a protocol over a noisy
interactive channel. Specifically, we provide an explicit interactive cod-
ing scheme for oblivious adversarial errors and bridge the gap between
channel capacities for interactive communication and one-way commu-
nication.

3. Study the problem of list decodability for codes. We resolve an open
question about the list decodability of random linear codes and show
surprising connections to the field of compressed sensing, in which we
provide improved bounds on the number of frequency samples needed
for exact reconstruction of sparse signals (improving upon the work of
Candès and Tao [CT06] as well as Rudelson and Vershynin [RV08]).

4. Study locally-testable codes and affine invariance in codes. Specifically,
we investigate the limitations posed by local testability, which has served
as an important notion in the study of probabilistically checkable proofs
(PCPs) and hardness of approximation.
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Chapter 1

Introduction

The subject of this thesis is coding theory, or the study of error-correcting codes. Histor-
ically, error-correcting codes were developed in the context of reliable communication, in
which a sender is trying to transmit a message consisting of symbols to a receiver over a
noisy channel. While much research continues to focus on the initial motivation for the
field, in recent years, there have emerged a number of new exciting connections of error-
correcting codes to other areas. We explore several new directions in coding theory in this
thesis.

1.1 Error-Correcting Codes

Error-correcting codes allow two parties to communicate reliably in the presence of noise
by providing a method to add redundancy to a desired message.

Let us describe some of the basic notions and definitions involving error-correcting
codes.

Definition 1. An [n, k] error-correcting code consists of an encoding function Enc : Σk →
Σ′n and a decoding function Dec : Σ′n → Σk. Here, Σ is the alphabet of the message, and
Σ′ is the alphabet of the received word. In most cases we consider, we will have Σ′ = Σ. If
we wish to highlight that |Σ′| = |Σ| = q, then we will often refer to the code as an [n, k]q
code (with the subscript q).

We now describe several key terms and properties of error-correcting codes:

• Code. The code generally refers to the image of the encoding function Enc.
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• Codewords. Given an error-correcting code with encoding function Enc, we refer
to each element of the image of Enc as a codeword.

• Communication Rate. The communication rate, or simply rate, of an [n, k]q error-
correcting code is given by k/n. In other words, it is the ratio of the length of the
message to the length of the encoding. The rate lies betwen 0 and 1 and essentially
measures the amount of redundancy introduced by the encoding.

• Minimum Distance. The minimum distance (often referred to as simply distance)
refers to the smallest Hamming distance between any two codewords. Thus, it pro-
vides a measure of how far apart the codewords are spaced out. If the minimum
distance of an [n, k]q code C is d, then we will often refer to the code as an [n, k, d]q
code.

1.1.1 Communication Channels and Reliable Communication

The primary use of error-correcting codes has been to enable reliable communication over
a noisy communication channel. A mathematical theory of communication was proposed
in the seminal work of Shannon [Sha48], which introduced the notion of communication
rate and related it to the use of an encoder and decoder in order to add redundancy.

Specifically, Shannon introduced a probabilistic model of the communication chan-
nel, in which conditional probabilities specify the probability of any input symbol being
outputted as a particular symbol. In a remarkable result that resulted in the birth of in-
formation theory and coding theory, Shannon showed that for any channel, there exists a
certain real number called the capacity of the channel such that any communication rate
below the capacity is achievable for reliable transmission over the given channel, while
any communication rate above the capacity results in non-negligible loss of information.

Shannon’s result was, however, existential—it only showed the existence of good cod-
ing schemes achieving any specified rate below the channel capacity. In particular, it did
not show how to construct explicit error-correcting codes (with efficient encoding and de-
coding functions) that achieve the desired rate. Thus, one of the central challenges in
coding theory over the past several decades following Shannon’s work has been to find
explicit constructions of codes that perform well.
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1.1.2 Adversarial Errors and Minimum Distance

While Shannon’s work viewed communication from a probabilistic viewpoint, there is
another perspective of reliable communication that views error-correcting codes as a com-
binatorial and geometric object. The celebrated work of Hamming [Ham50] adopted this
latter viewpoint and laid many of the foundations of error-correcting codes. The viewpoint
is most natural in the context of reliable communication under adversarial errors.

Recall that Shannon’s model of a communication channel treats errors as probabilis-
tic (as determined by the underlying conditional probabilities) and requires that a coding
scheme reliably communicate a message with high proability (over the randomness of the
channel).

On the other hand, one can consider the case of adversarial errors, in which one wishes
to have a reliable coding scheme that tolerates any error pattern of up to a certain number
of errors. Intuitively, one wishes to use an error-correcting code with the property that pairs
of codewords are far from each other. Then, if a few symbols in a transmitted codeword
are distorted, the resulting string will still be closer in structure to the original codeword
than any other codeword, meaning that the decoder will not confuse the two codewords.

This property of pairs of codewords being far is formalized as the minimum distance
of a code. The Hamming distance between two codewords is the number of positions in
which the two codewords differ. Recall that the minimum distance of a code is simply the
minimum Hamming distance between any two codewords of the code. The minimum dis-
tance property of a code has an intuitive geometric property. If one represents codewords
by points in space, then the property that the code has minimum distance d implies that
closed Hamming balls of radius (d− 1)/2 around each codeword are disjoint. Therefore,
if a code has minimum distance d, then corrupting up to (d− 1)/2 symbols in a codeword
results in a string whose closest codeword is still the original codeword. This provides a
decoding mechanism that can tolerate any pattern of up to (d − 1)/2 errors in the trans-
mission. In general, for a fixed rate or dimension of a code, one wishes to maximize the
minimum distance d. This amounts to a sphere-packing problem in which the metric is
given by Hamming distance. This interpretation has allowed the use of techniques from
geometry, combinatorics, etc. to coding theory.

1.2 Overview of the Thesis

The primary focus of thesis thesis is on determining capacity and limitations of struc-
tures in coding theory. One of the fundamental tradeoffs in coding theory is between the
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amount of errors that can be tolerated and the amount of redundancy that one adds. The
capacity of communication channels is a notion that quantifies the optimal tradeoff in the
case of probabilistic errors, where the channel determines a particular error model and
capacity detemines the redundancy. The main topics of this thesis concern understanding
this tradeoff as well as constructing coding schemes that try to achieve optimal tradeoffs.
Specifically, we discuss the following topics in this thesis:

Polar codes. One important question in the realm of coding theory has been the explicit
construction of capacity-achieving error correcting codes over various channels. A major
breakthrough in this area was made recently by Arikan [Arı09], who discovered a new
class of capacity-achieving codes known as polar codes. Polar codes are efficiently en-
codable and decodable and have been shown to achieve capacity for symmetric channels.

Our contribution is to analyze the convergence properties of these codes to capac-
ity [GV15]. In the process, we introduce an interesting technique involving entropy sumset
inequalities. This contribution is discussed in Section 3.

Coding in the interactive setting. Classical coding theory has primarily dealt with the
setting of one-way communication, in which a single party wishes to transmit a message.
However, with the advent of such notions such as communication complexity and informa-
tion complexity, there has recently been much interest in coding for interactive two-party
communication protocols. In hopes of better understanding the limits of coding schemes
in such a setting, we consider questions regarding the capacity of interactive channels in
Section 4 [HV16].

List decodability and local testability. We also investigate limitations of error-correcting
codes with additional structure. Two important structural notions that have gained impor-
tance in recent years are list decodability and local testability. The former allows decoding
beyond the unique decoding radius by allowing a decoder to ouptut a small list of possible
messages corresopnding to a received word. In Section 5, we investigate list decodability
properties of random linear codes and introduce new techniques that exhibit surprising
connections to the area of compressed sensing [CGV13].

Local testability is a notion of locality that allows one to test a received word for
membership in the code by querying a small number of positions in the word and has
connections to property testing and probabilistically checkable proofs (PCPs) in complex-
ity theory. In Section 6, we investigate local testability for a class of codes known as
affine-invariant codes [GSVW15].
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Chapter 2

Preliminaries

In this chapter, we provide some background information about information theory and
error-correcting codes and introduce notation and definitions.

2.1 Basic Information Theory

We now introduce some basic information theory, as we will make use of information
theory concepts throughout this thesis. We are primarily concerned with discrete random
variables. A discrete random variable X is specified by X , the set of values that X can
take, along with a probability distribution {pX(x)}x∈X satisfying the normalization condi-
tion

∑
x∈X pX(x) = 1.

2.1.1 Entropy

We now define the entropy of a random variable.

Definition 2. The entropy (in bits) of a random variable X with an underlying probability
distribution p is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x) = E [log2(1/p(x))] ,

where we define 0 log2 0 = 0 (by continuity).
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Note that the above definition measures entropy in bits, since the logarithms are base 2.
We can also measure entropy in different units by using logarithms with a different base,
which results in a quantity that differs by a multiplicative constant.

Roughly speaking, the entropy provides a measure of the uncertainty of a random
variable. A larger entropy corresponds to less a priori information about the variable. For
instance, suppose a random variable X takes values in a size of set n. If X is uniformly
distributed (i.e., X has maximum uncertainty), then the entropy of X is

H(X) = n

(
− 1

n
log2

1

n

)
= log2 n.

On the other hand, if X takes a particular value with probability 1 and all other n − 1
values with probability 0 (i.e., X is deterministic), then

H(X) = −1 log2 1− (n− 1) · 0 log2 0 = 0.

As it turns out, if X is a random variable taking values in a set of size n, then its entropy
always satisfies 0 ≤ H(X) ≤ log2 n.

As a special case, one can consider a random variable X which takes values in {0, 1}.
Then, note that X is completely specified by the parameter p = Pr[X = 0]. In this case,
the entropy H(X) is given by

H(X) = −p log2 p− (1− p) log2(1− p).

Since the above function of p arises repeatedly in many settings, we define the function as
follows:

Definition 3. The binary entropy function h is defined by

h(x) = x log2 x− (1− x) log2(1− x).

Thus, H(X) = h(p) for our binary random variable X . In a slight abuse of notation,
we will often use H(p) to denote the value of the binary entropy function at p (e.g., in
Chapter 4); however, in such an event, there will be no ambiguity, as the argument to H(·)
will be a real number instead of a random variable.

2.1.2 Conditional Entropy

Suppose X and Y are random variables taking values in X and Y , respectively. Then, let
p(x, y) denote their joint probability distribution (where x ∈ X and y ∈ Y), and let pX(x)
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and pY (y) denote the marginal probability distributions for X and Y , respectively (we
often abbreviate them as p(x) or p(y) when the context is clear). Then, we can write the
conditional probability distribution (for y given x) as p(y|x). Recall that p(y|x) is given
by Bayes’ rule:

p(y|x) = p(x, y)|p(x).

Now, we can define a quantity known as the conditional entropy.

Definition 4. The conditional entropy H(Y |X) is given by

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x).

Intuitively, H(Y |X) quantifies the amount of information gained from y ∼ Y condi-
tional on knowing x ∼ X . It is not too hard to verify that the following identity holds:

H(Y |X) = H(X, Y )−H(X).

In general, a chain rule for multiple random variables holds. Given random variables
X1, X2, . . . , Xk, we have

H(X1, X2, . . . , Xk) =
k∑
i=1

H(Xi|X1, X2, . . . , Xi−1).

2.1.3 Mutual Information

Recall that if we have two random variables X and Y , then the total entropy of (X, Y ) is
given by

H(X, Y ) = H(X) +H(Y |X).

In the special case that X and Y are independent, we have H(Y |X) = H(Y ), and so,

H(X, Y ) = H(X) +H(Y ).

Moreover, in this special case, information about X does not provide information about
Y . However, in the more general setting where X and Y may be correlated, one generally
obtains some information about Y from X . We quantify this concept through the notion
of mutual information:

7



Definition 5. Given two random variables X and Y taking values in X and Y , respec-
tively, we define their mutual information to be

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
.

A simple consequence of Jensen’s Inequality is the following theorem:

Theorem 1. For random variables X and Y , we have that I(X;Y ) ≥ 0, i.e., the mutual
information of X and Y is nonnegative. Moreover, I(X;Y ) = 0 if and only if X and Y
are independent random variables.

The mutual information of X and Y intuitively quantifies the amount of information
one learns about y by revealing x. This will be a useful notion later on in Section 2.3 while
discussing the capacity of commmunication channels.

2.2 Basic Definitions for Error-Correcting Codes

Given an integer q ≥ 2, we write [q] = {1, 2, . . . , q}. We define the Hamming distance of
two q-ary strings as follows:

Definition 6. For any strings x,y ∈ [q]n, where x = (x1, . . . , xn) and y = (y1, . . . , yn),
we define the Hamming distance between x and y, denoted ∆(x,y), to be the number of
coordinates 1 ≤ i ≤ n for which xi 6= yi.

Moreover, we define the Hamming weight of a string:

Definition 7. For any string x ∈ [q]n, we define the Hamming weight of x to be the number
of coordinates where x is zero.

Now, we define an error-correcting code.

Definition 8. An error-correcting code (or code) over a q-ary alphabet is a set C ⊆ [q]n.
The codewords of C are the individual elements of C.

The most common case occurs when q = 2, in which case the code C is said to be a
binary code.

Definition 9. Given a code C ⊆ [q]n over q-ary alphabet, we define the folowing quanti-
ties:
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• The block length of C is defined to be n.

• The dimension of C is defined to be logq |C|.

• The rate of C is defined to be logq |C|
n

.

• The minimum distance (or just distance) of C, denoted dist(C), is defined as

dist(C) = min
c1,c2∈C
c1 6=c2

∆(c1, c2).

In other words, dist(C) is the minimum Hamming distance between two distinct
codewords of C.

• The relative distance of C, denoted δ(C), is defined as

δ(C) =
dist(C)
n

.

Definition 10. We say that an error-correcting code C is an [n, k, d]q code if C ⊆ [q]n and
dim(C) = k as well as dist(C) = d. Furthermore, we often omit the minimum distance
and refer to a code C as an [n, k]q code if C ⊆ [q]n and dim(C) = k. When the alphabet
size q is understood from context, we often omit the subscript q.

Although a code C is defined to be simply a set of tuples, it is often useful to view C
explicity in terms of an encoding function. More precisely, suppose |C| = M . Then, we
can view C as a function C : [M ] → [q]n. Each element of [M ] is considered a message,
and the function maps each message to a codeword of C. It will generally be the case that
M = qk for an integer k = dim(C), in which case we can identify the message space [M ]
with the set of q-ary strings of length k. Thus, the function C : [M ]→ [q]n can be viewed
as encoding messages that are q-ary strings of length k into longer q-ary strings of length
n. Note that the encoding function for C is not unique!

2.2.1 Linearity

One convenient property for an error-correcting code to have is linearity.

Definition 11. Let q be a prime power. Then, a code C ⊆ [q]n is said to be linear if it forms
a linear subspace of Fnq .
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Note that if C is a linear code, then dim(C) is equal to the dimension of the correspond-
ing vector space over Fq. Also, observe that a linear code always contains the all-zeroes
string as a codeword, and the minimum distance of a linear code is the minimum Hamming
weight of a non-zero codeword.

Linearity is a useful property, as it allows a code to be specified in terms of a generator
matrix or a parity check matrix:

• An [n, k]q linear code C can be expressed as

C = {GT · x : x ∈ Fkq}

for some k × n matrix G. Such a matrix G is called a generator matrix for C.

• An [n, k]q linear code C can be expressed as

C = {c ∈ Fnq : Hc = 0}

for some (n− k)× n matrix H . Such a matrix H is called a parity check matrix of
C.

A number of important error-correcting codes happen to be linear (e.g., Reed-Solomon,
Reed-Muller, low-density parity-check (LDPC) codes), which is an important motivation
for studying codes with this property.

It is often useful to define a dual code for a linear code:

Definition 12 (Dual code). Given an [n, k]q linear code C, we define its dual code C⊥ to
be the code given by

C⊥ = {c′ ∈ Fnq : cT · c′ = 0 for all c ∈ C}.

It is not too hard to show that if C is an [n, k]q linear code, then C⊥ is an [n, n − k]q
linear code.

2.3 Communication Channels and Channel Coding

Now, we introduce the notion of a communication channels. Recall that error-correcting
codes are used in order to ensure reliable communication over a noisy medium. Com-
munication channels model the probabilistic behavior of noisy mediums. The problem of
communication over a noisy channel is often referred to as channel coding.
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Definition 13. A discrete memoryless channel (DMC) W = (X ,Y , p) consists of an input
alphabet X , an output alphabet Y , and a set of transition probabilities p(y|x) for all
x ∈ X and y ∈ Y . (Note that

∑
y∈Y = p(y|x) = 1 for any x ∈ X .)

One can view a DMC as taking in a symbol from X and outputting a symbol from Y
according to conditional probability distribution of the channel. Thus, the channel models
a probabilistic corruption of the input symbol. Note that a DMC is called memoryless be-
cause the channel behaves independently on every use of the channel, i.e., if two symbols
x1, x2 ∈ X are fed into the channel, then the output symbol for x1 is independent of the
output symbol for x2.

Also, any DMC can be specified uniquely by its transition probability matrix, i.e., the
matrix consisting of the entries p(y|x) (where rows are indexed by X and columns are
indexed by Y) such that the rows all sum to 1.

One of the simplest examples of a channel is the binary symmetric channel (BSC). For
this channel, X = Y = {0, 1}, and p(1|0) = p(0|1) = ε and p(0|0) = p(1|1) = 1 − ε,
where 0 ≤ ε ≤ 1 is a parameter known as the crossover probability. In other words,
in a BSC with crossover probability ε (referred to as BSCε, an input bit is flipped with
probability ε, while it is left alone with probability 1 − ε. Note that if ε = 0, then the
channel is a “perfect” channel, as the output bit is always equal to the input bit. On the
other hand, if ε = 1/2, then the channel is “completely noisy,” as the output bit is simply
a uniformly random bit, regardless of the input.

Another important well-known example of a channel is the binary erasure channel
(BEC). For the BEC, X = {0, 1}, while Y = {0, 1, ?}. Moreover, the underlying
conditional probability distribution of the BEC is given by p(?|0) = p(?|1) = ε and
p(0|0) = p(1|1) = 1− ε and p(0|1) = p(1|0) = 0, where ε > 0 is the erasure probability.
One can view the output symbol ’?’ as an “erasure,” i.e., the channel takes in an input
bit and erases it with probability ε > 0; otherwise, it outputs the same bit. A BEC with
erasure probability ε is often referred to as BECε. Again, note that if ε = 0, then BECε is
a perfect channel, while if ε = 1, then the output is always ’?’ irrespective of the input.

The work of Shannon shows that any channel has an associated constant known as the
channel capacity, which determines how much redundancy is needed to enable reliable
communication over the channel.

Theorem 2 (Shannon’s noisy channel coding theorem [Sha48]). For any discrete memo-
ryless channel W = (X ,Y ,Π), there exists a constant C(W ) ≥ 0 known as the channel
capacity (or simply capacity) such that:

1. For any R < C(W ), for large enough N , there exists an error-correcting code over
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alphabet X of block length N and rate ≥ R along with a decoder such that the
probability of an error in decoding is 2−ΩR,C(W )(n).

2. For any R > C(W ), it is impossible to find an error-correcting code for sufficiently
large N such that the probability of an error in decoding is < δ for all δ > 0.

The channel capacity is not always easy to compute. However, for the simple examples
of channels discussed above, we know the capacity. As it turns out, the capacity of BECε

is precisely 1 − ε. Note that if ε = 0, then the capacity is 1, implying that no redundancy
is required to communicate reliably over the channel—this agrees with the fact that BECε

is a perfect channel in the case ε = 0. On the other hand, if ε = 1, then the capacity is
0, meaning that one cannot possibly hope to communicate reliably over the channel and
achieve any positive communication rate. This is expected, since in the case ε = 1, the
channel simply outputs ’?’ all the time and loses any possible information about the input
symbol.

For BSCε, the channel capacity is a bit more complicated. In particular, the capacity is
1 − h(ε), where h is the binary entropy function defined in Definition 3. Again note that
for ε = 0, we have that the capacity is 1 − h(ε) = 1, which means that no redundancy is
required for reliable communication over BSCε. On the other hand, for ε = 1/2, we have
that the capacity is 1−h(ε) = 0, which means that no positive communication rate can be
obtained.

The following theorem provides a general expression for the channel capacity in terms
of mutual entropy:

Theorem 3. For any DMC W , the channel capacity C(W ) is given by

C(W ) = max
p(X)

I(X;Y ),

where X and Y are random variables for the input and output, respectively, of W , and
p(X) (over which the maximum is computed) denotes a probability distribution for X .

Recall that the channel W determines conditional probabilities p(y|x) for all x, y.
Thus, if one specifies a probability distribution p for X , then this determines a joint prob-
ability distribution (X, Y ). The above theorem states that the channel capacity happens to
be the maximum of the mutual information of X and Y over all possible choices of the
distribution of X .

It is often useful to consider symmetric DMCs, which are DMCs whose probability
transition matrix satisfies some symmetry properties:
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Definition 14. A DMC is said to be symmetric if one can group the columns of the tran-
sition matrix of the channel into submatrices such that in each submatrix, the following
properties hold:

• Each row is a permutation of every other row.

• Each column is a permutation of every other column.

As an example, recall that the transition matrix of the binary erasure channel BECε is(
1− ε ε 0

0 ε 1− ε

)
,

whose columns can be divided to form the following submatrices:(
1− ε 0

0 1− ε

)
,

(
ε
ε

)
.

Since each of the above matrices satisfies the conditions listed in Definition 14, we see
that BECε is a symmetric channel.

A useful property about symmetric channels is that the capacity is achieved by a uni-
formly distributed input. In other words, if W is a symmetric DMC with input X over X
and output Y over Y , then I(X;Y ) is maximized when X is a uniformly random over X .

It is often useful to consider the notion of the symmetric capacity of a channel, which
is the capacity achievable by a uniformly distributed input:

Definition 15. Given a DMC W = (X ,Y ,Π), we define the symmetric capacity of W to
be I(X;Y ) where X and Y are random variables for the input and output, respectively,
of W , and X is taken to be uniformly distributed over X .

Again, it is not too hard to show that for a symmetric channelW , the capacity and sym-
metric capacity are equal, i.e., takingX to be uniformly distributed achieves the maximum
value of I(X;Y ) in Theorem 3.

2.4 Source Coding and Data Compression

Another natural problem in information theory that is the problem of source coding, which
deals with data compression. More precisely, we have a source of symbols, and we wish to
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map sequences of symbols into sequences of codewords. In this section, we will consider
lossless source coding, which means that the original sequence of symbols should be ex-
actly reconstructible from the sequence of codewords. The general goal is to minimize the
average codeword length per source symbol. One can also consider lossy source coding,
in which one can allow some loss in the reconstruction process. Source codng techniques
have a range of applications and are used in various file archivers, audio compression
standards, video compression standards, etc.

Consider a source, which is modeled by a random variable X over a set of symbols
X . Without loss of generality, we assume X = {0, 1, . . . ,m− 1}, where m is the number
of possible source symbols. Now, let Xn denote an i.i.d. sequence of random variables
sampled from X . We wish to map Xn into a string over symbols from an output alphabet
Y . Given any alphabet Σ, we denote the set of finite strings with symbols from Σ as Σ∗.
We define a symbol code as follows:

Definition 16. A symbol code C is a mapping C : X → Y∗. As an extension of C, we also
define C(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn) for x1, x2, . . . , xn ∈ X , which determines
a mapping C : X ∗ → Y∗.

A symbol code is said to be uniquely decodable if any two distinct sequences of sym-
bols in X map to distinct sequences of symbols in Y under the extension. An important
class of uniquely decodable codes, are prefix codes:

Definition 17. A symbol code C is said to be a prefix code if no sequence in the image of
C is the prefix of another sequence in the image of C, i.e., for any distinct x, x′ ∈ X , C(x)
is not a prefix of C(x′).

Note that in general, different elements of X can map to sequences of different lengths
under a symbol code. For a symbol x ∈ X , let l(x) = |C(x)| denote the length of the
sequence C(x). Then, we have the following inequality for uniquely decodable symbol
codes:

Theorem 4 (Kraft-McMillan inequality [Kra49, McM56]). For any uniquely decodable
symbol code C : X → {0, 1, . . . , D − 1}∗, we have∑

x∈X

D−l(x) ≤ 1.

Conversely, given any choice of sets {lx}x∈X of positive integers satisfying
∑

x∈X D
−lx ≤

1, there exists a prefix code C : X → {0, 1, . . . , D− 1}∗ such that lx is the length of C(x)
for all x ∈ X .
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Now, let pi = Pr[X = i]. Assume that Y = {0, 1} for simplicity. Then, for a symbol
code C, it is clear that the expected number of bits per symbol of X in the encoding of a
random sequence Xn is given by

L =
m−1∑
i=0

pil(i).

The general goal is to minimize L. As it turns out, Shannon [Sha48] determined the
optimal number of bits per symbol for a code:

Theorem 5 (Shannon source coding theorem [Sha48]). A collection of N i.i.d. ran-
dom variables sampled from a source X (with entropy H(X)) can be compressed into
N(H(X) + ε) bits with negligible probability of information loss as N →∞. Conversely,
there is no way to compress them into fewer than NH(X) bits with negligible probability
of information loss.

Finding explicit constructions of source codes that achieve, on average, ≈ H(X) bits
per symbol is a challenging task. A number of source codes that achieve close to this
rate have been developed over time (e.g., Shannon codes, Huffman codes [Huf52]). In
Chapter 3, we will discuss how to use polar codes to solve the lossless source coding
problem.
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Chapter 3

Achieving Channel Capacity for
Error-Correcting Codes

The results of this chapter were published in [GV15].

3.1 Introduction

In this section, we concentrate on reliable communication in the presence of random er-
rors. Recall Shannon’s noisy channel coding theorem, which guarantees the existence of
a channel capacity for any discrete memoryless channel:

Theorem 2 (Shannon’s noisy channel coding theorem [Sha48]). For any discrete memo-
ryless channel W = (X ,Y ,Π), there exists a constant C(W ) ≥ 0 known as the channel
capacity (or simply capacity) such that:

1. For any R < C(W ), for large enough N , there exists an error-correcting code over
alphabet X of block length N and rate ≥ R along with a decoder such that the
probability of an error in decoding is 2−ΩR,C(W )(n).

2. For any R > C(W ), it is impossible to find an error-correcting code for sufficiently
large N such that the probability of an error in decoding is < δ for all δ > 0.

The result of Shannon actually implies that there exists a constant aW such that for
any gap to capacity ε > 0 and N ≥ aW/ε

2, there exists a binary code C ⊂ {0, 1}N of
rate at least R ≥ C(W ) − ε that enables reliable communication. In fact, random codes
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with the appropriate block length N and rate C(W ) − ε satisfy the desired property with
high probability. However, Shannon’s theorem says nothing about how to construct such
a code.

Over the past several decades, the existential result of Shannon has guided the quest of
coding theorists to find explicit constructions of codes that achieve the parameters guar-
anteed by random codes while having encoding and decoding procedures that are efficient
(say, with running time that is polynomial in 1/ε for a gap to capacity of ε). Numerous
codes have been constructed, but most constructions either fail to provably achieve capac-
ity for a large enough class of channels, or do not have efficient encoders/decoders.

For instance, Forney’s construction of concatenated codes has long been known to
achieve capacity, but the time complexity of the decoder is unfortunately not efficient in
terms of the gap to capacity. Similarly, the widely used low-density parity-check (LDPC)
codes are known to achieve capacity only for the binary erasure channel but not for general
channels. Turbo codes perform well in practice and have been employed in a number of
applications, but they are not known to achieve capacity arbitrarily closely.

A recent breakthrough was made when, in a remarkable work, Arıkan introduced the
technique of channel polarization and used it to construct a family of binary linear codes
called polar codes that achieve the symmetric Shannon capacity of binary-input discrete
memoryless channels in the limit of large block lengths [Arı09]. Polar codes are based
on an elegant recursive construction and analysis guided by information-theoretic intu-
ition. Arıkan’s work gave a construction of binary codes, and this was subsequently ex-
tended to general alphabets [cTA09]. In addition to being an approach to realize Shan-
non capacity that is radically different from prior ones, channel polarization turns out to
be a powerful and versatile primitive applicable in many other important information-
theoretic scenarios. For instance, variants of the polar coding approach give solutions to
the lossless and lossy source coding problem [Arı10, KU10], capacity of wiretap chan-
nels [MV11], the Slepian-Wolf, Wyner-Ziv, and Gelfand-Pinsker problems [Kor10], cod-
ing for broadcast channels [GAG13], multiple access channels [cTY13, AT12], interfer-
ence networks [Wc14], etc. We recommend the well-written survey by Şaşoğlu [Ş12] for
a detailed introduction to polar codes.

The advantage of polar codes over previous capacity-achieving methods (such as For-
ney’s concatenated codes that provably achieved capacity) was highlighted in a recent
work of Guruswami and Xia [GX13], where polynomial convergence to capacity was
shown in the binary case (this was also shown independently by Hassani et al. [HAU13]).
Specifically, it was shown that polar codes enable approaching the symmetric capacity of
binary-input memoryless channels within an additive gap of ε with block length, construc-
tion, and encoding/decoding complexity all bounded by a polynomially growing function
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of 1/ε. Polar codes are the first and currently only known construction which provably
has this property, thus providing a formal complexity-theoretic sense in which they are the
first constructive capacity-achieving codes.

Our main objective in this chapter is to extend this result to the non-binary case, and
we manage to do this for all alphabets in. We stress that the best previously proven com-
plexity bound for communicating at rates within ε of capacity of channels with non-binary
inputs was exponential in 1/ε. Our work shows the polynomial solvability of the central
computational challenge raised by Shannon’s non-constructive coding theorems, in the
full generality of all discrete sources (for compression/noiseless coding) and all discrete
memoryless channels (for noisy coding).

The high level approach to prove the polynomially fast convergence to capacity is
similar to what was done in [GX13], which is to replace the appeal to general martingale
convergence theorems (which lead to ineffective bounds) with a more direct analysis of the
convergence rate of a specific martingale of entropies.1 However, the extension to the non-
binary case is far from immediate, and we need to establish a quantitatively strong “entropy
increase lemma” (see details in Section 3.4) over all prime alphabets. The corresponding
inequality admits an easier proof in the binary case, but requires more work for general
prime alphabets. For alphabets of size m where m is not a prime, we can construct a
capacity-achieving code by combining together polar codes for each prime dividing m.

In the next few sections, we briefly sketch the high level structure of polar codes, and
the crucial role played by a certain “entropy sumset inequality” in our effective analysis.
Proving this entropic inequality is the main new component in this work, though additional
technical work is needed to glue it together with several other ingredients to yield the
overall coding result.

3.2 Fundamentals of Polar Codes

In this section, we describe the basic construction of polar codes.

Notation. We begin by setting some of the notation to be used in this section. We will let
lg denote the base 2 logarithm, while ln will denote the natural logarithm.

For our purposes, unless otherwise stated, q will be a prime integer, and we identify
Zq = {0, 1, 2, . . . , q − 1} with the additive group of integers modulo q. We will generally

1The approach taken in [HAU13] to analyze the speed of polarization for the binary was different, based
on channel Bhattacharyya parameters instead of entropies. This approach does not seem as flexible as the
entropic one to generalize to larger alphabets.
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view Zq as a q-ary alphabet.

For this section, given a q-ary random variable X taking values in Zq, we let H(X)
denote the normalized entropy of X:

H(X) = − 1

lg q

∑
a∈Zq

Pr[X = a] lg(Pr[X = a]).

Note that this notation is different from the usual definition of H(X) in which the 1/ lg q
factor is not present. In a slight abuse of notation, we also define H(p) for a probability
distribution p. If p is a probability distribution over Zq, then we shall let H(p) = H(X),
where X is a random variable sampled according to p. Also, for nonnegative constants
c0, c1, . . . , cq−1 summing to 1, we will often write H(c0, . . . , cq−1) as the entropy of the
probability distribution on Zq that samples i with probability ci. Moreover, for a prob-
ability distribution p over Zq, we let p(+j) denote the j th cyclic shift of p, namely, the
probability distribution p(+j) over Zq that satisfies

p(+j)(m) = p(m− j)

for all m ∈ Zq, where m− j is taken modulo q. Note that H(p) = H(p(+j)) for all j ∈ Zq.
Also, let ‖ ·‖1 denote the `1 norm on Rq. In particular, for two probability distributions

p and p′, the quantity ‖p − p′‖1 will correspond to twice the total variational distance
between p and p′.

Finally, given a row vector (tuple) ~v, we let ~vt denote a column vector given by the
transpose of ~v.

3.2.1 Source Coding: Intuition for Polarization

While polar codes can be used for both channel coding and source coding, we first consider
the setting of source coding for simplicity. In this set-up, suppose we have a pair of discrete
random variables (X, Y ), where X ∈ Zq and Y ∈ Y . Note that the variables X and Y
may be correlated. We will viewX as a source and Y as side information about the source.

We considerN independent copies (X1, Y1), (X2, Y2), . . . , (XN , YN) of (X, Y ). In the
source coding with side information framework, a receiver wishes to decode X1, . . . , XN

after observing the side information Y1, . . . , YN . From elementary information theory,
we know that it suffices (and is necessary) to provide the receiver with approximately
H(X1, . . . , XN |Y1, . . . , YN) · (lg q) bits of information in order to allow X1, . . . , XN to be
decoded with negligible probability of error.

20



There are two extremal cases in which decoding is obvious. One one hand, if we have
H(X1, . . . , XN |Y1, . . . , YN) = 0, then the receiver can decode X1, . . . , XN without any
additional information. On the other hand, if H(X1, . . . , XN |Y1, . . . , YN) = 1, then the
optimal way to allow the decoder to decode X1, . . . , XN is to provide X1, . . . , XN . The
basic principle behind Arıkan’s polarization technique is to transform X1, X2, . . . , XN

into a sequence such that the receiver need only perform a series of tasks, each of which
corresponds to one of the aforementioned extremal cases.

3.2.2 Polarization Transform for Two Variables

Equipped with the intuition for polarization, we introduce Arıkan’s polarization transform.
Suppose N = 2. Then, we have two independent copies (X0, Y0 and (X1, Y1) of (X, Y ).
We define

U0 = X0 +X1 and U1 = X1, (3.1)

where addition is over Zq. Now, note that

2H(X|Y ) = H(X0, X1|Y0, Y1) = H(U0, U1|Y0, Y1)

= H(U0|Y0, Y1) +H(U1|Y0, Y1, U0),

by the chain rule for entropy. Morever, since conditioning can never increase entropy,
we have that H(U1|Y0, Y1, U0) = H(X1|Y0, Y1, U0) ≤ H(X1|Y1) = H(X|Y ). Thus, it
follows that

H(U1|Y0, Y1, U0) ≤ H(X|Y ) ≤ H(U0|Y0, Y1).

Thus, getting access to Y0, Y1, U0 produces a better estimate of U1 than getting access to
just Y1. Moreover, observing Y0, Y1 gives a worse estimate of U0 than observing Y0 would
give for X0.

The basic principle regarding polarization is that we have taken two identical condi-
tional entropies H(X0|Y0) and H(X1|Y1) and produced two different entropies, namely,
H(U1|Y0, Y1, U0) and H(U0|Y0, Y1). Thus, one of the new entropies is closer to 0 than the
original entropy, while the other is closer to 1.

3.2.3 Extending the Polarization Transform to More Copies

Now, it turns out that we can extend the procedure from the previous section to more
copies of (X, Y ). Let us consider N = 4, so that we have four copies (X0, Y0), (X1, Y1),
(X2, Y2), and (X3, Y3) of (X, Y ).
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For the first step, we perform the transform in (3.1) separately to X0, X1 and X2, X3.
Thus, we have

S0 = X0 +X1 and S1 = X1

and
T0 = X2 +X3 and T1 = X3.

Now, we apply another layer of the tranform from (3.1) separately to S0, T0 and S1, T1.
Then, we have

U0 = S0 + T0 = X0 +X1 +X2 +X3

U1 = T0 = X2 +X3

U2 = S1 + T1 = X1 +X3

U3 = T1 = X3.

With some computation, we see that

H(U1|Y0, . . . , Y3, U0) ≤ H(S0|Y0, Y1) ≤ H(U0|Y0, . . . , Y3)

H(U3|Y0, . . . , Y3, U0, . . . , U2) ≤ H(S1|Y0, Y1, S0) ≤ H(U2|Y0, . . . , Y3, U0, U1)

Thus, we see that performing the 2-stage transformation with four copies of (X, Y ) fur-
ther polarizes the conditional entropies, i.e., starting with the two conditional entropies
H(S0|Y0, Y1) and H(S1|Y0, Y1, S0) (obtained from the previous section), we obtain four
entropies that are separated even further.

The hope is that performing more stages of the 2 × 2 polarization map on a larger
number of copies of (X, Y ) would produce entropies that are more and more polarized,
ideally approaching the extremes of 0 and 1. This turns out to be the case, and we discuss
this further (see Theorem 6 and the subsequent discussion in Section 3.3).

3.2.4 Encoding Map: Recursive Construction

In general, we can extend the procedure of the previous sections to yield a polarization
map for N = 2n copies of (X, Y ). In this section, we formally define the polarization
map that we will use to compress a source X . Given n ≥ 1, we define an invertible linear
transformation G : Z2n

q → Z2n

q by G = Gn, where Gt : Z2t

q → Z2t

q , 0 ≤ t ≤ n is a
sequence of invertible linear transformations defined as follows: G0 is the identity map
on Zq, and for any 0 ≤ k < n and ~X = (X0, X1, . . . , X2k+1−1)t, we recursively define
Gk+1

~X as

Gk+1
~X = πk+1(Gk(X0, . . . , X2k−1) +Gk(X2k , . . . , X2k+1−1), Gk(X2k , . . . , X2k+1−1)),
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where πk+1 : Z2k+1

q → Z2k+1

q is a permutation such that πn(v)j = vi for j = 2i, and
πn(v)j = vi+2k for j = 2i+ 1.

G also has an explicit matrix form, namely, G = BnK
⊗n, where K = ( 1 1

0 1 ), ⊗ is the
Kronecker product, and Bn is the 2n × 2n bit-reversal permutation matrix for n-bit strings
(see [Arı10]).

In our set-up, we have a q-ary source X , and we let ~X = (X0, X1, . . . , X2n−1)t

be a collection of N = 2n i.i.d. samples from X . Moreover, we encode ~X as ~U =
(U0, U1, . . . , U2n−1)t, given by ~U = G · ~X . Note that G only has 0, 1 entries, so each Ui is
the sum (modulo q) of some subset of the Xi’s.

3.2.5 Source Coding Through Polarization

We now describe how to get a source code from the encoding map (polarization map).
First, we introduce the notion of a virtual channel.

Virtual Channels

For purposes of our analysis, we define a virtual channel (or, simply channel)W = (A;B)
to be a pair of correlated random variables A,B; moreover, we define the channel entropy
of W to be H(W ) = H(A|B), i.e., the entropy of A conditioned on B.2

Given a channel W , we can define two channel transformations − and + as follows.
Suppose we take two i.i.d. copies (A0;B0) and (A1;B1) of W . Then, W− and W+ are
defined by

W− = (A0 + A1;B0, B1)

W+ = (A1;A0 + A1, B0, B1).

By the chain rule for entropy, we see that

H(W−) +H(W+) = 2H(W ). (3.2)

2It should be noted W can also be interpreted as a communication channel that takes in an input A and
outputs B according to some conditional probability distribution. This is quite natural in the noisy channel
coding setting in which one wishes to use a polar code for encoding data in order to achieve the channel
capacity of a symmetric discrete memoryless channel. However, since we focus on the problem of source
coding (data compression) rather than noisy channel coding in this thesis, we will simply view W as a pair
of correlated random variables.
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In other words, splitting two copies of W into W− and W+ preserves the total channel
entropy. These channels are easily seen to obeyH(W+) ≤ H(W ) ≤ H(W−), and the key
to our analysis will be quantifying the separation in the entropies of the two split channels.

Source Coding Using the Encoding Map

The aformentioned channel transformations will help us abstract each step of the recursive
polarization that occurs in the definition of our encoding map G. Let W = (X;Y ),
where X is a source taking values in Zq, and Y can be viewed as side information. Then,
H(W ) = H(X|Y ). One special case occurs when Y = 0, which corresponds to an
absence of side information.

Note that if start with W , then after n successive applications of either W 7→ W−

or W 7→ W+, we can obtain one of N = 2n possible channels in {W s : s ∈ {+,−}n}.
(Here, if s = s0s1 · · · sn−1, with each si ∈ {+,−}, then W s denotes

W s = (· · · ((W s0)s1)· · · )sn−2)sn−1 .

By successive applications of (3.2), we know that∑
s∈{+,−}n

W s = 2nH(W ) = 2nH(X|Y ).

Moreover, it can be verified (see [Ş12]) that if 0 ≤ i < 2n has binary representation
bn−1bn−2 · · · b0 (with b0 being the least significant bit of i), then

H(Ui|U0, . . . , Ui−1, Y0, . . . , YN−1) = H(W sn−1sn−2···s0),

where sj = − if bj = 0, and sj = + if bj = 1. As shorthand notation, we will define the
channel

W (i)
n = W sn−1sn−2···s0 ,

where s0, s1, . . . , sn−1 are as above. Şaşoğlu et al. [cTA09] show that all but a vanishing
fraction of the N channels W s will be have channel entropy close to 0 or 1:

Theorem 6. For any δ > 0, we have that

lim
n→∞

|{s ∈ {+,−}n : H(W s) ∈ (δ, 1− δ)}|
2n

= 0.
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Hence, one can then argue that as n grows, the fraction of channels with channel
entropy close to 1 approaches H(X|Y ). In particular, for any δ > 0, if we let

Highn,δ = {i : H(Ui|U0, . . . , Ui−1, Y0, . . . , YN−1) > δ}, (3.3)

then
|Highn,δ|

2n
→ H(X|Y ),

as n → ∞. Then, as our source code, we can take {Ui}i∈Highn,δ . Furthermore, as we
discuss later, it can be shown that for any fixed ε > 0 and small δ > 0, there exists suitably
large n such that {Ui}i∈Highn,δ gives a source coding of ~X = (X0, X1, . . . , XN−1) (with
side information ~Y = (Y0, Y1, . . . , YN−1)) with rate≤ H(X|Y ) + ε. Our goal later on will
be to show that N = 2n can be taken to be just polynomial in 1/ε in order to obtain a rate
≤ H(X|Y ) + ε.

Decoding

Having described the construction of the source code resulting from polarization, we now
show how the decoding procedure operates. Recall that for some N = 2n, the encoder
has (X0, X1, . . . , XN−1), obtained from the source, and computes (U0, U1, . . . , UN−1) by
applying the map G = Gn to (X0, X1, . . . , XN−1). Then, for some sufficiently small
δ > 0, Bob transmits all Ui for i ∈ Highn,δ, where Highn,δ is given by (3.3).

For ease of notation, we use variables with lowercase letters to indicate realizations of
the random variables with the corresponding uppercase letters. For instance, x0, . . . , xN−1

are the realizations of X0, . . . , XN−1

Now, the receiver attempts to compute estimates ûi of Ui for all i in a successive fash-
ion: Assuming û0, û1, . . . , ûi−1 have been computed, the receiver computes ûi as follows:

• If i ∈ Highn,δ, then the receiver simply sets ûi = ui, since the receiver has already
received ui.

• If i 6∈ Highn,δ, then it must be the case that H(Ui|U0, . . . , Ui−1, Y0, . . . , YN−1) < δ,
i.e., there is not much uncertainty in Ui given U0, . . . , Ui−1, Y0, . . . , YN−1. Thus, the
receiver simply sets ûi to be the most likely symbol, i.e.,

ûi = arg max
a∈[q]

pUi|U0,...,Ui−1,Y0,...,YN−1
(a | û0, û1, . . . , ûi−1, ŷ0, . . . , ŷN−1).

At the end of the procedure, the receiver knows ~u = (û0, . . . , ûN−1)t and can simply com-
pute G−1

n ~u to obtain (x̂0, x̂1, . . . , x̂N−1)t, which is an estimate of ~x = (x0, x1, . . . , xN−1)t.
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3.2.6 Polarization for Channel Coding

So far, we have discussed the use of Arıkan’s technique of polarization in obtaining source
codes. However, recall that our goal as outlined in the beginning of the chapter is to
obtain channel codes that achieve Shannon capacity. As it turns out, the same technique of
polarization can be used to obtain channel codes with some slight modifications. Although
the rest of this chapter will primarily deal with the source coding framework for ease of
exposition, we briefly describe the translation from source coding to channel coding. For
a more in-depth discussion of this translation, one can consult [Ş12, Sec 2.4].

SupposeW is a q-ary input DMC with output alphabetY . Also, supposeX1, X2, . . . , XN

is a sequence of i.i.d. inputs to W , and let Y1, Y2, . . . , YN be the respective outputs under
W , where N = 2n. Observe that (X1, Y1), (X2, Y2), . . . , (XN , YN) are also i.i.d.

Then, one can design a channel code as follows. Again, pick ~U = Gn · ~X and define
Highn,δ as in (3.3) for some sufficiently small choice of δ > 0. Moreover, we let Highcn,δ
be the complement of Highn,δ. We now describe the encoding and decoding procedures of
the channel code.

• Encoder: Assume the encoder wishes to transmit a uniformly distributed message
M ∈ [q]|High

c
n,δ|. Then, for each i ∈ Highn,δ, we choose Ui independently and

uniformly at random from [q] (the symbols Ui for i ∈ Highn,δ are often referred
to as frozen symbols, since their values are fixed or “frozen” independently of the
message M ). Moreover, we set {Ui}i∈Highcn,δ = M . The encoder then then transmits
~X = G−1

n (~U) over W .

• Decoder: After receiving Y0, Y1, . . . , YN−1 from the output of our channel W , the
decoder simply decodes U0, U1, . . . , UN−1 successively as in Section 3.2.5. Out-
putting those Ui for which i ∈ Highcn,δ then produces the decoder’s estimate of the
original message M .

Note that the rate of the aforementioned channel code is |Highcn,δ|/N = 1− (|Highn,δ|/N),
which approaches 1−H(X|Y ) in the limit N → ∞. Since M is uniform and the frozen
symbols are chosen uniformly, we have that ~U is uniformly random in {0, 1}N . Thus,
~X is also uniformly random in {0, 1}N . This implies that the rate of the code actually
approaches

H(X)−H(X|Y ) = I(X;Y ), (3.4)

whereX is uniform and the conditional distribution of Y givenX is obviously determined
by the channel W .
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However, observe that the expression (3.4) is equal to the channel capacity of W if and
only if I(X;Y ) is maximized by choosing X to be a uniformly random variable over [q]
(see Theorem 3). Thus, in order for the aforementioned polar codes to be capacity achiev-
ing, we need to make an assumption about the channel W . In particular, we assume that
the channel is symmetric (see Definition 14), which guarantees that I(X;Y ) is maximized
when X is uniformly random and that (3.4) is, indeed, the channel capacity.

It should be noted that one can also use polar codes for general channels that are not
necessarily symmetric; however, the achievable rate in this case is the so-called symmetric
capacity of the channel, which is defined to be I(X;Y ) for uniformly random X .

3.2.7 Bhattacharyya Parameter

In order to analyze a virtual channel W = (X;Y ), where X takes values in Zq, we will
define the q-ary source Bhattacharyya parameter Zmax(W ) of the channel W as

Zmax(W ) = max
d6=0

Zd(W ),

where
Zd(W ) =

∑
x∈Zq

∑
y∈Supp(Y )

√
p(x, y)p(x+ d, y).

Here, p(x, y) is the probability that X = x and Y = y under the joint probability distribu-
tion (X, Y ).

Now, the maximum likelihood decoder attempts to decode x given y by choosing the
most likely symbol x̂:

x̂ = arg max
x′∈Zq

Pr[X = x′|Y = y].

Let Pe(W ) be the probability of an error under maximum likelihood decoding, i.e., the
probability that x̂ 6= x (or the defining arg max for x̂ is not unique) for random (x, y) ∼
(X, Y ). It is known (see Proposition 4.7 in [Ş12]) that Zmax(W ) provides an upper bound
on Pe(W ):

Lemma 1. If W is a channel with q-ary input, then the error probability of the maximum-
likelihood decoder for a single channel use satisfies Pe(W ) ≤ (q − 1)Zmax(W ).

Next, the following proposition shows how the Zmax operator behaves on the polarized
channels W− and W+. For a proof, see Proposition 4.16 in [Ş12].

Lemma 2. Zmax(W+) ≤ Zmax(W )2, and Zmax(W−) ≤ q3Zmax(W ).
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Finally, the following lemma shows that Zmax(W ) is small whenever H(W ) is small.

Lemma 3. Zmax(W )2 ≤ (q − 1)2H(W ).

The proof follows from Proposition 4.8 of [Ş12].

3.3 Overview of the Contribution: Speed of Polarization

In order to illustrate our main contribution, which is an inequality on conditional entropies
for inputs from prime alphabets, in a simple setting, we will focus on the source coding
(lossless compression) model in this thesis. The consequence of our results for channel
coding follows in a standard manner from the procedure outlined in Section 3.2.6, which
involves the compression of sources with side information (for a more in-depth treatment
of the source coding to channel coding translation, consult [Ş12, Sec 2.4])—we state the
channel coding result as Theorem 9.

Suppose X is a source (random variable) over Zq (with q prime), with (normalized)
entropy H(X) (throughout Chapter 3, by entropy we will mean the entropy normalized by
a lg q factor, so thatH(X) ∈ [0, 1]). The source coding problem consists of compressingN
i.i.d. copies X0, X1, . . . , XN−1 of X to ≈ H(X)N (say (H(X) + ε)N ) symbols from Zq.
The approach based on channel polarization is to find an explicit permutation matrix A ∈
ZN×Nq , such that if (U0, . . . , UN−1)t = A(X0, . . . , XN−1)t, then in the limit of N → ∞,
for most indices i, the conditional entropy H(Ui|U0, . . . , Ui−1) is either ≈ 0 or ≈ 1. Note
that the conditional entropies at the source H(Xi|X0, . . . , Xi−1) are all equal to H(X)
(as the samples are i.i.d.). However, after the linear transformation by A, the conditional
entropies get polarized to the boundaries 0 and 1. By the chain rule and conservation of
entropy, the fraction of i for which H(Ui|U0, . . . , Ui−1) ≈ 1 (resp. ≈ 0) must be ≈ H(X)
(resp. ≈ 1−H(X)).

The polarization phenomenon is used to compress the Xi’s as follows: The encoder
only outputs Ui for indices i ∈ B where B = {i | H(Ui|U0, . . . , Ui−1) > ζ} for some
tiny ζ = ζ(N) → 0. The decoder (decompression algorithm), called a successive can-
cellation decoder, estimates the Ui’s in the order i = 0, 1, . . . , N − 1. For indices i ∈ B
that are output at the encoder, this is trivial, and for other positions, the decoder computes
the maximum likelihood estimate ûi of Ui, assuming U0, . . . , Ui−1 equal û0, . . . , ûi−1, re-
spectively. Finally, the decoder estimates the inputs at the source by applying the inverse
transformation A−1 to (û0, . . . , ûN−1)t.

The probability of incorrect decompression (over the randomness of the source) is up-
per bounded, via a union bound over indices outside B, by

∑
i/∈BH(Ui|U0, . . . , Ui−1) ≤
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ζN . Thus, if ζ � 1/N , we have a reliable lossless compression scheme. Thus, in
order to achieve compression rate H(X) + ε, we need a polarizing map A for which
H(Ui|U0, . . . , Ui−1)� 1/N for at least 1−H(X)− ε fraction of indices. This in partic-
ular means that H(Ui|U0, . . . , Ui−1) ≈ 0 or ≈ 1 for all but a vanishing fraction of indices,
which can be compactly expressed as Ei

[
H(Ui|U0, . . . , Ui−1)

(
1−H(Ui|U0, . . . , Ui−1)

)]
→

0 as n→∞.

Such polarizing maps A are in fact implied by a source coding solution, and exist in
abundance (a random invertible map works w.h.p.). The big novelty in Arıkan’s work is
an explicit recursive construction of polarizing maps, which further, due to their recur-
sive structure, enable efficient maximum likelihood estimation of Ui given knowledge of
U0, . . . , Ui−1.

3.4 Quantification of Polarization

Arıkan’s construction is based on recursive application of the basic 2 × 2 invertible map
(kernel) K = ( 1 1

0 1 ).3 While Arıkan’s original analysis was for the binary case, the same
construction based on the matrix K also works for any prime alphabet [cTA09]. Let
An denote the matrix of the polarizing map for N = 2n. In the base case n = 1,
the outputs are U0 = X0 + X1 and U1 = X1. If X0, X1 ∼ X are i.i.d., the en-
tropy H(U0) = H(X0 + X1) > H(X) (unless H(X) ∈ {0, 1}), and by the chain rule
H(U1|U0) < H(X), thereby creating a small separation in the entropies. Recursively,
if (V0, . . . , V2n−1−1) and (T0, . . . , T2n−1−1) are the outputs of An−1 on the first half and
second half of (X0, . . . , X2n−1), respectively, then the output (U0, . . . , U2n−1) satisfies
U2i = Vi + Ti and U2i+1 = Ti.

Let Hn denote the random variable equal to H(Ui|U0, . . . , Ui−1) for a random i ∈
{0, 1, . . . , 2n − 1}. Arıkan’s original analysis shows that the sequence {Hn} forms a
bounded martingale. Thus, the polarization property, namely thatHn → Bernoulli(H(X))
in the limit of n→∞, can be shown by appealing to the martingale convergence theorem.
However, recall that we wish to establish the speed of convergence. As it turns out, in order
to obtain a finite upper bound on n(ε), the value of n needed for E[Hn(1 −Hn)] ≤ ε (so
that most conditional entropies to polarize to < ε or > 1− ε), we need a more quantitative
analysis.

Guruswami and Xia [GX13] propose a method of establishing convergence for binary

3Subsequent work established that polarization is a common phenomenon that holds for most choices of
the “base” matrix instead of just K [KcU10].
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polar codes that avoids use of the martingale convergence theorem by instead quantifying
the increase in entropyH(Vi+Ti|V0, . . . , Vi−1, T0, . . . , Ti−1)−H(Vi|V0, . . . , Vi−1) at each
stage and proving that the entropies diverge apart at a sufficient pace for Hn to polarize
to 0/1 exponentially fast in n, namely E[Hn(1 − Hn)] ≤ ρn for some absolute constant
ρ < 1.

Our main technical challenge is to show an analogous entropy increase lemma for all
prime alphabets. The primality assumption is necessary, because a random variable X
uniformly supported on a proper subgroup has H(X) /∈ {0, 1} and yet H(X + X) =
H(X). Formally, we prove:

Theorem 7. Let (Xi, Yi), i = 1, 2 be i.i.d. copies of a correlated random variable (X, Y )
with X supported on Zq for a prime q. Then for some α(q) > 0,

H(X1 +X2|Y1, Y2)−H(X|Y ) ≥ α(q) ·H(X|Y )(1−H(X|Y )). (3.5)

The linear dependence of the entropy increase on the quantity H(X|Y )(1−H(X|Y ))
is crucial to establish a speed of polarization adequate for polynomial convergence to
capacity. A polynomial dependence is implicit in [Ş10], but obtaining a linear dependence
requires lot more care. For the case q = 2, Theorem 7 is relatively easy to establish, as
it is known that the extremal case (with minimal increase) occurs when H(X|Y = y) =
H(X|Y ) for all y in the support of Y [Ş12, Lem 2.2]. This is based on the so-called
“Mrs. Gerber’s Lemma” for binary-input channels [WZ73, Wit74], the analog of which is
not known for the non-binary case [JA14]. This allows us to reduce the binary version of
(3.5) to an inequality about simple Bernoulli random variables with no conditioning, and
the inequality then follows, as the sum of two p-biased coins is 2p(1 − p)-biased and has
higher entropy (unless p ∈ {0, 1

2
, 1}). In the q-ary case, no such simple characterization

of the extremal cases is known or seems likely [Ş12, Sec 4.1]. Nevertheless, we prove the
inequality in the q-ary setting by first proving two inequalities for unconditioned random
variables, and then handling the conditioning explicitly based on several cases. The details
are in Section 3.5.

Given the entropy sumset inequality for conditional random variables, we are able to
track the decay of

√
Hn(1−Hn) and use Theorem 7 to show that for N = poly(1/ε), at

most H(X) + ε of the conditional entropies H(Ui|U0, . . . , Ui−1) exceed ε. However, to
construct a good source code, we need H(X) + ε fraction of the conditional entropies to
be � 1/N . This is achieved by augmenting a “fine” polarization stage that is analyzed
using an appropriate Bhattacharyya parameter.

The efficient construction of the linear source code (i.e., figuring out which entropies
polarize very close to 0 so that those symbols can be dropped), and the efficient imple-
mentation of the successive cancellation decoder are similar to the binary case [GX13]
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and omitted here. Upon combining these ingredients, we get the following result on loss-
less compression with complexity scaling polynomially in the gap to capacity:

Theorem 8. Let X be a q-ary source for q prime with side information Y (which means
(X, Y ) is a correlated random variable). Let 0 < ε < 1

2
. Then there exists N ≤ (1/ε)c(q)

for a constant c(q) < ∞ depending only on q and an explicit (constructible in poly(N)

time) matrix L ∈ {0, 1}(H(X|Y )+ε)N×N such that ~X = (X0, X1, . . . , XN−1)t, formed by
taking N i.i.d. copies (X0, Y0), (X1, Y1), . . . , (XN−1, YN−1) of (X, Y ), can, with high
probability, be recovered from L · ~X and ~Y = (Y0, Y1, . . . , YN−1)t in poly(N) time.

Moreover, can obtain Theorem 8 for arbitrary (not necessarily prime) q with the mod-
ification that the map ZNq → ZH(X|Y )+ε)N

q is no longer linear. This is obtained by factoring
q into primes and combining polar codes over prime alphabets for each prime in the fac-
torization.

Channel coding. Using known methods to construct channel codes from polar source
codes for compressing sources with side information (see, for instance, [Ş12, Sec 2.4] for a
nice discussion of this aspect), we obtain the following result for channel coding, enabling
reliable communication at rates within an additive gap ε to the symmetric capacity for
discrete memoryless channels over any fixed alphabet, with overall complexity bounded
polynomially in 1/ε. Recall that a discrete memoryless channel (DMC) W has a finite
input alphabet X and a finite output alphabet Y with transition probabilities p(y|x) for
receiving y ∈ Y when x ∈ X is transmitted on the channel. The entropy H(W ) of the
channel is defined to be H(X|Y ) where X is uniform in X and Y is the output of W on
input X; the symmetric capacity of W , which is the largest rate at which one can reliably
communicate on W when the inputs have a uniform prior, equals 1 − H(W ). Moreover,
it should be noted that if W is a symmetric DMC, then the symmetric capacity of W is
precisely the Shannon capacity of W . (See the discussion at the end of Section 2.3 as well
as Definition 15.)

Theorem 9. Let q ≥ 2, and let W be any discrete memoryless channel capacity with input
alphabet Zq. Then, there exists an N ≤ (1/ε)c(q) for a constant c(q) <∞ depending only
on q, as well as a deterministic poly(N) construction of a q-ary code of block length N
and rate at least 1−H(W )− ε, along with a deterministic N ·poly(logN) time decoding
algorithm for the code such that the block error probability for communication over W is
at most 2−N

0.49
. Moreover, when q is prime, the constructed codes are linear.
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3.5 Proof of Entropy Sumset Inequality

In this section, we prove Theorem 7. Our proof technique involves using an averaging
argument to write the left-hand side of (3.5) as the expectation, over y, z ∼ Y , of ∆y,z =

H(Xy+Xz)−H(Xy)+H(Xz)

2
, the entropy increase in the sum of random variablesXy andXz

with respect to their average entropy (this increase is called the Ruzsa distance between the
random variables Xy and Xz, see [Tao10]). We then rely on inequalities for unconditioned
random variables to obtain a lower bound for this entropy increase. In general, once needs
the entropy increase to be at least c ·min{H(Xy)(1−H(Xy)), H(Xz)(1−H(Xz))}, but
for some cases, we actually need such an entropy increase with respect to a larger weighted
average. Hence, we prove the stronger inequality given by Theorem 15, which shows such
an increase with respect to 2H(Xy)+H(Xz)

3
forH(Xy) ≥ H(Xz)

4. Moreover, for some cases
of the proof, it suffices to bound ∆y,z from below by |H(Xy)−H(Xz)|

2
, which is provided by

Lemma 14, another inequality for unconditional random variables.

We note a version of Theorem 7 (in fact with tight bounds) for the case of uncondi-
tioned random variables X taking values in a torsion-free group was established by Tao
in his work on entropic analogs of fundamental sumset inequalities in additive combina-
torics [Tao10] (results of similar flavor for integer-valued random variables were shown
in [HAT14]). Theorem 7 is a result in the same spirit for groups with torsion (and which
further handles conditional entropy). While we do not focus on optimizing the dependence
of α(q) on q, pinning down the optimal dependence, especially for the case without any
conditioning, seems like a natural question; see Remark 16 for further elaboration. Related
but somewhat different entropic inequalities for the purpose of analyzing polar codes also
appear in [ALM15].

3.5.1 Basic Entropic Lemmas and Proofs

For a random variable X taking values in Zq, let H(X) denote the entropy of X , nor-
malized to the interval [0, 1]. More formally, if p is the probability mass function of X ,
then

H(X) =
1

lg q

q∑
i=1

p(i) lg(p(i))

4While the weaker inequalityH(A+B) ≥ H(A)+H(B)
2 +c ·min{H(A)(1−H(A)), H(B)(1−H(B))}

seems to be insufficient for our approach, it should be noted that the stronger inequality H(A + B) ≥
max{H(A), H(B)}+c·min{H(A)(1−H(A)), H(B)(1−H(B))} is generally not true. Thus, Theorem 15
provides the right middle ground. A limitation of similar spirit for the entropy increase when summing two
integer-valued random variables was pointed out in [HAT14].
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Moreover, note for the lemmas and theorems in this section, q ≥ 2 is an integer. We
do not make any primality assumption about q anywhere in this section with the exception
of Lemma 6.

Lemma 4. If X and Y are random variables taking values in Zq, then

H(αX + (1− α)Y ) ≥ αH(X) + (1− α)H(Y ) +
1

2 lg q
α(1− α)‖X − Y ‖2

1.

Proof. This follows from the fact that −H is a 1
lg q

-strongly convex function with respect
to the `1 norm on

{x = (x1, x2, . . . , xq) ∈ Rq : x1, x2, . . . , xq ≥ 0, ‖x‖1 ≤ 1}

(see Example 2.5 in [Sha12] for details).

Lemma 5. Let p be a distribution over Zq. Then, if λ0, λ1, . . . , λq−1 are nonnegative
numbers adding up to 1, we have

H(λ0p
(+0) + λ1p

(+1) + · · ·+ λq−1p
(+(q−1))) ≥ H(p) +

1

2 lg q
· λiλj
λi + λj

‖p(+i) − p(+j)‖2
1,

for any i 6= j such that λi + λj > 0.

Proof. Note that if λi + λj > 0, then we have that by Lemma 4,

H

(
q−1∑
k=0

λkp
(+k)

)
= H

(∑
k 6=i,j

λkp
(+k) + (λi + λj)

(
λi

λi + λj
p(+i) +

λj
λi + λj

p(+j)

))

≥
∑
k 6=i.j

λkH(p(+k)) + (λi + λj)H

(
λi

λi + λj
p(+i) +

λj
λi + λj

p(+j)

)
= (1− λi − λj)H(p)

+(λi + λj)

(
λi

λi + λj
H(p(+i)) +

λj
λi + λj

H(p(+j))

)
+(λi + λj) ·

1

2 lg q
· λi
λi + λj

· λj
λi + λj

· ‖p(+i) − p(+j)‖2
1

= H(p) +
1

2 lg q
· λiλj
λi + λj

· ‖p(+i) − p(+j)‖2
1,

as desired.
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Lemma 6. Let p be a distribution over Zq, where q is prime. Then,

‖p(+i) − p(+j)‖1 ≥
(1−H(p)) lg q

2q2(q − 1) lg e
.

See Lemma 4.5 of [Ş12] for a proof of the above lemma.

Lemma 7. There exists an ε1 > 0 such that for any 0 < ε ≤ ε1, we have

−(1− ε) lg(1− ε) ≤ −1

6
ε lg ε.

Proof. By L’Hôpital’s rule,

lim
ε→0+

(1− ε) lg(1− ε)
ε lg ε

= lim
ε→0+

(1− ε) ln(1− ε)
ε ln ε

= lim
ε→0+

−1− ln(1− ε)
1 + ln ε

= 0,

This implies the claim.

Remark 10. One can, for instance, take ε1 = 1
500

in the above lemma.

The following claim states that for sufficiently small ε, the quantity ε lg
(
q−1
ε

)
is close

to −ε lg ε. We omit the proof, which is rather straightforward.

Fact 11. Let ε2 = 1
(q−1)4 . Then, for any 0 < ε ≤ ε2, we have

ε lg

(
q − 1

ε

)
≤ 5

4
ε lg(1/ε).

We present one final fact.

Fact 12. The function f(x) = x lg(1/x) is increasing on the interval (0, 1/e) and decreas-
ing on the interval (1/e, 1).

Proof. The statement is a simple consequence of the fact that f ′(x) = 1
ln 2

(−1 + ln(1/x))
is positive on the interval (0, 1/e) and negative on the interval (1/e, 1).

Low Entropy Variables. Now, we prove lemmas that provide bounds on the entropy
of a probability distribution that samples one symbol in Zq with high probability, i.e., a
distribution that has low entropy.
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Lemma 8. Suppose 0 < ε < 1. If p is a distribution on Zq with mass 1− ε on one symbol,
then

H(p) ≥ ε lg(1/ε)

lg q
.

Proof. Recall that the normalized entropy function H is concave. Therefore,

H(p) ≥ H(1− ε, ε, 0, 0, . . . , 0︸ ︷︷ ︸
q−2

).

Note that

H(1− ε, ε, 0, 0, . . . , 0︸ ︷︷ ︸
q−2

) =
1

lg q
(−(1− ε) lg(1− ε)− ε lg ε) ≥ −ε lg ε

lg q
,

which establishes the claim.

Lemma 9. Suppose 0 < ε ≤ min{ε1, ε2}, where ε1 = 1
500

and ε2 = 1
(q−1)4 . If p is a

distribution on Zq with mass 1− ε on one symbol, then

H(p) ≤ 17ε lg(1/ε)

12 lg q
.

Proof. By concavity of the normalized entropy function H , we have that

H(p) ≤ H

1− ε, ε

q − 1
,

ε

q − 1
, . . . ,

ε

q − 1︸ ︷︷ ︸
q−1

 .

Moreover,

H

1− ε, ε

q − 1
, . . . ,

ε

q − 1︸ ︷︷ ︸
q−1

 =
−(1− ε) lg(1− ε) + (q − 1) ·

(
ε

q−1
lg q−1

ε

)
lg q

=
−(1− ε) lg(1− ε)

lg q
+
ε lg
(
q−1
ε

)
lg q

.

By Lemma 7 (and the remark following it) and Fact 11, the above quantity is bounded
from above by

1
6
ε lg(1/ε)

lg q
+

5
4
ε lg(1/ε)

lg q
=

17ε lg(1/ε)

12 lg q
,

as desired.
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Remark 13. Lemmas 8 and 9 show that for sufficiently small ε, a random variable X over
Zq having weight 1 − ε on a particular symbol in Zq has entropy Θ(ε lg(1/ε)/ lg q). This
allows us to prove Lemma 10. Therefore, the constant 17/12 in Lemma 9 is not so critical
except that it is close enough to 1 for our purposes.

Lemma 10. Let X, Y be random variables taking values in Zq such that H(X) ≥ H(Y ),
and assume 0 < ε, ε′ ≤ min{ε1, ε2}, where ε1 = 1

500
and ε2 = 1

(q−1)4 . Suppose that X has
mass 1− ε on one symbol, while Y has mass 1− ε′ on a symbol. Then,

H(X + Y )− 2H(X) +H(Y )

3
≥ 1

51
·H(Y )(1−H(Y )). (3.6)

Overview of proof. The idea is that ε, ε′ are small enough that we are able to invoke
Lemmas 8 and 9. In particular, we show that X + Y also has high weight on a particular
symbol, which allows us to use Lemma 8 to bound H(X + Y ) from below. Furthermore,
we use Lemma 9 in order to bound H(X), H(Y ), and, therefore, 2H(X)+H(Y )

3
from above.

This gives us the necessary entropy increase for the left-hand side of 3.6. Note that the
constant 1/51 on the right-hand side of 3.6 is not of any particular importance, and we
have not made any attempt to optimize the constant.

Proof. Let j ∈ Zq such that Pr[X = j] = 1 − ε, and let j′ ∈ Zq such that Pr[X = j′] =
1− ε′. Then,

Pr[X + Y = j + j′] ≥ (1− ε)(1− ε′) ≥
(

499

500

)2

. (3.7)

(In a slight abuse of notation, j + j′ will mean j + j′ (mod q).)

Similarly, let us find an upper bound on Pr[X + Y = j + j′]. Let p and p′ be the
underlying probability distributions of X and X ′, respectively. Then, observe that Pr[X+
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Y = j + j′] can be bounded from above as follows:

q−1∑
k=0

p(k)p′(j + j′ − k) = p(j)p′(j′) +
∑
k 6=j

p(k)p′(j + j′ − k)

≤ (1− ε)(1− ε′) +
∑
k 6=j

(
p(k) + p′(j + j′ − k)

2

)2

≤ (1− ε)(1− ε′) +

(∑
k 6=j(p(k) + p′(j + j′ − k))

2

)2

= (1− ε)(1− ε′) +

(∑
k 6=j p(k) +

∑
k 6=j′ p

′(k)

2

)2

= (1− ε)(1− ε′) +

(
ε+ ε′

2

)2

= 1−
(
ε+ ε′ − 3

2
εε′ − ε2

4
− ε′2

4

)
≤ 1− 17

18
(ε+ ε′). (3.8)

Now, by Lemma 9, we have

H(X) ≤ 17ε lg(1/ε)

12 lg q

and

H(Y ) ≤ 17ε′ lg(1/ε′)

12 lg q
.

Also, by (3.7) and (3.8), we know that X has mass 1− δ on a symbol, where 17
18

(ε+ ε′) ≤
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δ < 1
e
. Thus, by Lemma 8 and Fact 12, we have

H(X + Y )− 2H(X) +H(Y )

3
≥ H(X + Y )− 17

18 lg q
ε lg(1/ε)− 17

36 lg q
ε′ lg(1/ε′)

≥ 1

lg q

(
17

18
(ε+ ε′) lg

(
1

17
18

(ε+ ε′)

)
−17

18
ε lg(1/ε)− 17

36
ε′ lg(1/ε′)

)
≥ 1

lg q

(
17

18
(17ε′ + ε′) lg

(
1

17
18

(17ε′ + ε′)

)
−17

18
(17ε′) lg(1/17ε′)− 17

36
ε′ lg(1/ε′)

)
(3.9)

=
1

lg q

(
17

18
ε′ lg(1/17ε′)− 17

36
ε′ lg(1/ε′)

)
≥ 1

36 lg q
ε′ lg(1/ε′)

≥ 1

51
H(Y )(1−H(Y )),

were (3.9) follows from the fact that

d

dε

(
17

18
(ε+ ε′) lg

(
1

17
18

(ε+ ε′)

)
− 17

18
ε lg(1/ε)− 17

36
ε′ lg(1/ε′)

)
=

17

18

(
lg

(
ε

17
18

(ε+ ε′)

))
,

which is negative for ε < 17ε′ and positive for ε > 17ε′.

High Entropy Variables. For the remainder of this section, let f(x) = −x lg x
lg q

. The
following lemma proves lower and upper bounds on f(x).

Lemma 11. For −1
q
≤ t ≤ q−1

q
, we have

− q

ln q
t2 ≤ f

(
1

q
+ t

)
− 1

q
−
(

1− 1

ln q

)
t ≤ −q(q ln q − (q − 1))

(q − 1)2 ln q
t2. (3.10)
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Proof. Let

g(t) = f

(
1

q
+ t

)
− 1

q
−
(

1− 1

ln q

)
t+

q

ln q
t2.

To prove the lower bound in (3.10), it suffices to show that g(t) ≥ 0 for all −1
q
≤ t ≤ q−1

q
.

Note that the first and second derivatives of g are

g′(t) = −
ln
(

1
q

+ t
)

ln q
− 1 +

2qt

ln q

g′′(t) = − 1(
1
q

+ t
)

ln q
+

2q

ln q
.

It is clear that g′′(t) is an increasing function of t ∈
(
−1
q
, q−1

q

)
, and g′′(−1/2q) = 0.

Since g′(−1/2q) = ln 2−1
ln q

< 0, it follows that g(t) is minimized either at t = −1/q or at
the unique value of t > − 1

2q
for which g′(t) = 0. Note that this latter value of t is t = 0,

at which g(t) = 0. Moreover, g(−1/q) = 0. Thus, g(t) ≥ 0 on the desired domain, which
establishes the lower bound.

Now, let us prove the upper bound in (3.10). Define

h(t) =
1

q
+

(
1− 1

ln q

)
t− q(q ln q − (q − 1))

(q − 1)2 ln q
t2 − f

(
1

q
+ t

)
.

Note that it suffices to show that h(t) ≥ 0 for all −1
q
≤ t ≤ q−1

q
. Observe that the first and

second derivatives of h are

h′(t) = 1− 2q(q ln q − (q − 1))

(q − 1)2 ln q
t+

ln
(

1
q

+ t
)

ln q

h′′(t) = −2q(q ln q − (q − 1))

(q − 1)2 ln q
+

1(
1
q

+ t
)

ln q
.

Now, observe that h′(0) = 0 and h′′(0) > 0. Moreover, h′′(t) is decreasing on t ∈(
−1
q
, q−1

q

)
. Thus, it follows that the minimum value of h(t) occurs at either t = 0 or

t = q−1
q

. Since h(0) = h
(
q−1
q

)
= 0, we must have that h(t) ≥ 0 on the desired domain,

which establishes the upper bound.

Next, we prove a lemma that provides lower and upper bounds on the entropy of a
distribution that samples each symbol in Zq with probability close to 1

q
.
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Lemma 12. Suppose p is a distribution on Zq such that for each 0 ≤ i ≤ q − 1, we have
p(i) = 1

q
+ δi with max0≤i<q |δi| = δ. Then,

1− q2

ln q
δ2 ≤ H(p) ≤ 1− q2(q ln q − (q − 1))

(q − 1)3 ln q
δ2.

Proof. Observe that
∑q−1

i=0 δi = 0. Thus, for the lower bound on H(p), note that

H(p) =

q−1∑
i=0

f

(
1

q
+ δi

)

≥
q−1∑
i=0

(
1

q
+

(
1− 1

ln q

)
δi −

q

ln q
δ2
i

)

= 1− q

ln q

q−1∑
i=0

δ2
i

≥ 1− q2

ln q
δ2,

where the second line is obtained using Lemma 11, and the final line uses the fact that
|δi| ≤ δ for all i.

Similarly, note that the upper bound on H(p) can be obtained as follows:

H(p) =

q−1∑
i=0

f

(
1

q
+ δi

)

≤
q−1∑
i=0

(
1

q
+

(
1− 1

ln q

)
δi −

q(q ln q − (q − 1))

(q − 1)2 ln q
δ2
i

)

= 1− q(q ln q − (q − 1))

(q − 1)2 ln q

q−1∑
i=0

δ2
i

≤ 1− q2(q ln q − (q − 1))

(q − 1)3 ln q
δ2,

where we have used the fact that
q−1∑
i=0

δ2
i ≥ δ2 + (q − 1) ·

(
δ

q − 1

)2

=
q

q − 1
δ2.
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Remark 14. Lemma 12 shows that if p is a distribution over Zq with max0≤i<q |p(i)− 1
q
| =

δ, then H(p) = 1−Θq(δ
2).

Lemma 13. Let X and Y be random variables taking values in Zq such that H(X) ≥
H(Y ). Also, assume 0 < δ, δ′ ≤ 1

2q2 . Suppose Pr[X = i] = 1
q

+ δi and Pr[Y = i] = 1
q

+ δ′i
for 0 ≤ i ≤ q − 1, such that max0≤i<q |δi| = δ and max0≤i<q |δ′i| = δ′. Then,

H(X + Y )−H(X) ≥ ln q

16q2
·H(X)(1−H(X)). (3.11)

Overview of proof. We show that since X and Y sample all symbols in Zq with proba-
bility close to 1/q, it follows that X + Y also samples each symbol with probability close
to 1/q. In particular, one can show that X + Y samples each symbol with probability
in
[

1
q
− δ

2q
, 1
q

+ δ
2q

]
. Thus, we can use Lemma 12 to get a lower bound on H(X + Y ).

Similarly, Lemma 12 also gives us an upper bound on H(X). This allows us to bound the
left-hand side of (3.11) adequately.

Proof. By Lemma 12, we know that

1− q2

ln q
δ2 ≤ H(X) ≤ 1− q2(q ln q − (q − 1))

(q − 1)3 ln q
δ2. (3.12)

Note that

Pr[X + Y = k] =

q−1∑
i=0

Pr[X = i] Pr[Y = k − i]

=

q−1∑
i=0

(
1

q
+ δi

)(
1

q
+ δ′k−i

)

=
1

q
+

q−1∑
i=0

δiδ
′
k−i

≤ 1

q
+ qδδ′

≤ 1

q
+

δ

2q
.

Similarly,

Pr[X + Y = k] =
1

q
+

q−1∑
i=0

δiδk−i ≥
1

q
− qδδ′ ≥ 1

q
− δ

2q
.
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Thus, Lemma 12 implies that

H(X + Y ) ≥ 1− q2

ln q

(
δ

2q

)2

= 1− 1

4 ln q
δ2. (3.13)

Therefore, by (3.12) and (3.13), we have

H(X + Y )−H(X) ≥
(

1− 1

4 ln q
δ2

)
−
(

1− q2(q ln q − (q − 1))

(q − 1)3 ln q
δ2

)
=

(
q ln q − (q − 1)

(q − 1)3
− 1

4q2

)
· q

2

ln q
δ2

≥ ln q

16q2
· q

2

ln q
δ2

≥ ln q

16q2
(1−H(X))

≥ ln q

16q2
H(X)(1−H(X)),

as desired.

3.5.2 Unconditional Entropy Gain

We first prove some results that provide a lower bound on the normalized entropy H(A+
B) of a sum of random variables A,B in terms of the individual entropies.

Lemma 14. Let A and B be random variables taking values over Zq. Then,

H(A+B) ≥ max{H(A), H(B)}.

Proof. Without loss of generality, assume H(A) ≥ H(B). Let p be the underlying proba-
bility distribution forA. Let λi = Pr[B = i]. Then, the underlying probability distribution
ofA+B is λ0p

(+0) +λ1p
(+1) + · · ·+λq−1p

(+(q−1)). The desired result then follows directly
from Lemma 5.

The next theorem provides a different lower bound for H(A+B).

Theorem 15. Let A and B be random variables taking values over Zq such that H(A) ≥
H(B). Then,

H(A+B) ≥ 2H(A) +H(B)

3
+ c ·min{H(A)(1−H(A)), H(B)(1−H(B))}

for c =
γ3

0 lg q

48q5(q−1)3 lg(6/γ0) lg2 e
, where γ0 = 1

500(q−1)4 lg q
.
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Overview of proof. The proof of the Theorem 15 splits into various cases depending on
where H(A) and H(B) lie. Note that some of these cases overlap. The overall idea is
as follows. If H(A) and H(B) are both bounded away from 0 and 1 (Case 2), then the
desired inequality follows from the concavity of the entropy function, using Lemmas 5
and 6 (note that this uses primality of q). Another setting in which the inequality can be
readily proven is when H(A) − H(B) is bounded away from 0 (which we deal with in
Cases 4 and 5).

Thus, the remaining cases occur when H(A) and H(B) are either both small (Case
1) or both large (Case 3). In the former case, one can show that A must have most of
its weight on a particular symbol, and similarly for B (note that this is why we must
choose γ0 � 1

log q
; otherwise, A could be, for instance, supported uniformly on a set of

size 2). Then, one can use the fact that a q-ary random variable having weight 1 − ε has
entropy Θ(ε log(1/ε)) (Lemmas 8 and 9) in order to prove the desired inequality (using
Lemma 10).

For the latter case, we simply show that each of the q symbols of A must have weight
close to 1/q, and similarly for B. Then, we use the fact that such a random variable whose
maximum deviation from 1/q is δ has entropy 1−Θ(δ2) (Lemma 12) in order to prove the
desired result (using Lemma 13).

Proof. Let γ0 be as defined in the theorem statement. Note that we must have at least one
of the following cases:

1. 0 ≤ H(A), H(B) ≤ γ0.

2. γ0

2
≤ H(A), H(B) ≤ 1− γ0

2
.

3. 1− γ0 ≤ H(A), H(B) ≤ 1.

4. H(A) > γ0 and H(B) < γ0

2
.

5. H(A) > 1− γ0

2
and H(B) < 1− γ0.

We treat each case separately. For ease of notation, we write

M = min{H(A)(1−H(A)), H(B)(1−H(B))}.

Case 1. Let max0≤j<q Pr[A = j] = 1− ε, where ε ≤ q−1
q

. Note that if ε ≥ 1
e
, then Fact 12
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implies that

H(A) ≥ −(1− ε) lg(1− ε)
lg q

≥ 1

lg q
·min

{
−1

q
lg

(
1

q

)
,−
(

1− 1

e

)
lg

(
1− 1

e

)}
> γ0,

which is a contradiction. Thus, ε < 1
e
.

Now, simply note that if ε > γ0 lg q, then Lemma 8 and Fact 12 would imply that

H(A) ≥ ε lg(1/ε)

lg q
> γ0,

a contradiction. Hence, we must have ε ≤ γ0 lg q. Similarly, we can write max0≤j<q Pr[B =
j] = 1− ε′ for some positive ε′ ≤ γ0 lg q. Then, Lemma 10 implies that

H(A+B) ≥ 2H(A) +H(B)

3
+

1

51
H(B)(1−H(B)),

as desired.

Case 2. Let p be the underlying probability distribution for A, and let λi = Pr[B =
i]. Then, the underlying probability distribution of A + B is λ0p

(+0) + λ1p
(+1) + · · · +

λq−1p
(+(q−1)). Let (i0, i1, . . . , iq−1) be a permutation of (0, 1, . . . , q − 1) such that λi0 ≥

λi1 ≥ · · · ≥ λiq−1 .

Since λ0 + λ1 + · · ·+ λq−1 = 1 and max0≤j≤q−1 λj = λi0 , we have

λi0 ≥
1

q
. (3.14)

Next, let ε0 = γ0

6 lg(6/γ0)
. we claim that

λi1 >
ε0

q − 1
. (3.15)

Suppose not, for the sake of contradiction. Then, λi1 , λi2 , . . . , λiq−1 ≤ ε0
q−1

, which implies

that λi0 = 1−
∑q−1

j=1 λij ≥ 1− ε0. Since ε0 ≤ min
{

1
e
, 1

500
, 1

(q−1)4

}
, Lemma 9 and Fact 12

imply that

H(B) ≤ 17ε0 lg(1/ε0)

12 lg q
,
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which is less than γ0

2
, resulting in a contradiction. Thus, (3.15) is true.

Therefore, by Lemma 5 and Lemma 6,

H(A+B) = H(λ0p
(+0) + λ1p

(+1) + · · ·+ λq−1p
(+(q−1)))

≥ H(A) +
1

2 lg q
· λi0λi1
λi0 + λi1

‖p(+i0) − p(+i1)‖2
1

≥ H(A) +
1

2 lg q
λi0λi1‖p(+i0) − p(+i1)‖2

≥ H(A) +
λi0λi1(1−H(p))2 lg q

8q4(q − 1)2 lg2 e

= H(A) +
λi0λi1γ

2
0 lg q

32q4(q − 1)2 lg2 e

≥ 2H(A) +H(B)

3
+

ε0γ
2
0 lg q

32q5(q − 1)3 lg2 e
.

Finally, note that M ≤ 1
4
, which implies that

ε0γ
2
0 lg q

32q5(q − 1)3 lg2 e
≥ ε0γ

2
0 lg q

8q5(q − 1)3 lg2 e
M.

Therefore,

H(A+B) ≥ 2H(A) +H(B)

3
+ cM,

where c =
γ3

0 lg q

48q5(q−1)3 lg(6/γ0) lg2 e
.

Case 3. Let Pr[A = i] = 1
q
+δi for 0 ≤ i ≤ q−1. If δ = max0≤i<q |δi|, then by Lemma 12,

we have

1− γ0 ≤ H(A) ≤ 1− q2(q ln q − (q − 1))

(q − 1)3 ln q
δ2,

which implies that

δ ≤

√
γ0(q − 1)3 ln q

q2(q ln q − (q − 1))
<

1

2q2
.

Similarly, if we let Pr[B = i] = 1
q

+ δ′i for all i, and δ′ = max0≤i<q |δ′i|, then

δ′ ≤

√
γ0(q − 1)3 ln q

q2(q ln q − (q − 1))
<

1

2q2
.
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Thus, by Lemma 13, we see that

H(A+B) ≥ H(A) +
ln q

16q2
·H(A)(1−H(A))

≥ 2H(A) +H(B)

3
+

ln q

16q2
M,

as desired.

Case 4. Note that by Lemma 14,

H(A+B)− 2H(A) +H(B)

3
≥ H(A)− 2H(A) +H(B)

3

=
H(A)−H(B)

3

≥ γ0

6

≥ 1

3
H(B)(1−H(B)).

Case 5. As in Case 4, we have that

H(A+B)− 2H(A) +H(B)

3
≥ γ0

6
.

However, this time, the above quantity is bounded from below by 1
3
H(A)(1 − H(A)),

which completes this case.

3.5.3 Conditional Entropy Gain

Theorem 7 now follows as a simple consequence of our main theorem, which we restate
and prove below.

Theorem 7. Let (Xi, Yi), i = 1, 2 be i.i.d. copies of a correlated random variable (X, Y )
with X supported on Zq for a prime q. Then for some α(q) > 0,

H(X1 +X2|Y1, Y2)−H(X|Y ) ≥ α(q) ·H(X|Y )(1−H(X|Y )). (3.5)
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Remark 16. We have not attempted to optimize the dependence of α(q) on q, and our proof
gets α(q) ≥ 1

qO(1) . It is easy to see that α(q) ≤ O(1/ log q) even without conditioning (i.e.,
when Y = 0). Understanding what is the true behavior of α(q) seems like an interesting
and basic question about sums of random variables. For random variables X taking
values from a torsion-free group G and with sufficiently large H2(X), it is known that
H2(X1 + X2) − H2(X) ≥ 1

2
− o(1) and that this is best possible [Tao10], where H2(·)

denotes the unnormalized entropy (in bits). WhenG is the group of integers, a lower bound
H2(X1 + X2) − H2(X) ≥ g(H2(X)) for an increasing function g(·) was shown for all
Z-valued random variables X [HAT14]. For groups G with torsion, we cannot hope for
any entropy increase unless G is finite and isomorphic to Zq for q prime (as G cannot
have non-trivial finite subgroups), and we cannot hope for an absolute entropy increase
even for Zq. So determining the asymptotics of α(q) as a function of q is the analog of the
question studied in [Tao10] for finite groups.

Overview of proof. Let Xy denote X|Y = y. Then, we use an averaging argument:
We reduce the desired inequality to providing a lower bound for ∆y,z = H(Xy + Xz) −
H(Xy)+H(Xz)

2
, whose expectation over y, z ∼ Y is the left-hand side of (3.5). Then, one

splits into three cases for small, large, and medium values of H(X|Y ).

Thus, we reduce the problem to aruguing about unconditional entropies. As a first step,
one would expect to prove ∆y,z ≥ min{H(Xy)(1−H(Xy)), H(Xz)(1−H(Xz))} and use
this in the proof of the conditional inequality. However, this inequality turns out to be too
weak to deal with the case in which H(X|Y ) is tiny (case 2). This is the reason we require
Theorem 15, which provides an increase for H(Xy +Xz) over a higher weighted average
instead of the simple average of H(Xy) and H(Xz). Additionally, we use the inequality
H(Xy + Xz) ≥ max{H(Xy), H(Xz)} to handle certain cases, and this is provided by
Lemma 14.

In cases 1 and 3 (for H(X|Y ) in the middle and high regimes), the proof idea is that
either (1) there is a significant mass of (y, z) ∼ Y × Y for which H(Xy) and H(Xz) are
separated, in which case one can use Lemma 14 to bound E[∆y,z] from below, or (2) there
is a significant mass of y ∼ Y for which H(Xy) lies away from 0 and 1, in which case
H(Xy)(1−H(Xy)) can be bounded from below, enabling us to use Theorem 15.

Proof. Let h = H(X|Y ), and let c be the constants defined in the statement of Theo-
rem 15. Moreover, let γ1 = 1/20 and let

p = Pr
y

[
H(Xy) ∈

(γ1

2
, 1− γ1

2

)]
.
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Also, let Xy denote X|Y = y, and let

∆y,z = H(Xy +Xz)−
H(Xy) +H(Xz)

2
.

Note that Lemma 14 implies that ∆y,z ≥ 0 for all y, z. Also, Ey∼Y,z∼Y [∆y,z] = H(X1 +
X2|Y1, Y2)−H(X|Y ). For simplicity, we will often omit the subscript and write E[∆y,z].

We split into three cases, depending on the value of h.

Case 1: h ∈ (γ1, 1− γ1).

• Subcase 1: p ≥ γ1

4
. Note that if H(Xy) ∈

(
γ1

2
, 1− γ1

2

)
, then H(Xy)(1−H(Xy)) ≥

γ1

2

(
1− γ1

2

)
. Hence, by Theorem 15, we have

E[∆y,z] ≥
∑
y,z

γ1
2
<H(Xy),H(Xz)<1− γ1

2

Pr[Y = y] · Pr[Y = z]

·
(
H(Xy +Xz)−

2 max{H(Xy), H(Xz)}+ min{H(Xy), H(Xz)}
3

)
≥

∑
y,z

γ1
2
<H(Xy),H(Xz)<1− γ1

2

Pr[Y = y] · Pr[Y = z] · c

·min{H(Xy)(1−H(Xy)), H(Xz)(1−H(Xz))}

≥ cγ1

2

(
1− γ1

2

) ∑
y,z

γ1
2
<H(Xy),H(Xz)<1− γ1

2

Pr[Y = y] · Pr[Y = z]

= cp2 · γ1

2

(
1− γ1

2

)
≥ cγ3

1

32

(
1− γ1

2

)
≥ cγ3

1

8

(
1− γ1

2

)
· h(1− h).

• Subcase 2: p < γ1

4
. Note that

γ1 < h

≤ Pr
y

[
H(Xy) ≤

γ1

2

]
· γ1

2
+ Pr

y

[
H(Xy) >

γ1

2

]
· 1

≤ γ1

2
+ Pr

y

[
H(Xy) >

γ1

2

]
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which implies that
Pr
y

[
H(Xy) >

γ1

2

]
≥ γ1

2
.

Thus,

Pr
y

[
H(Xy) ≥ 1− γ1

2

]
= Pr

y

[
H(Xy) >

γ1

2

]
− Pr

y

[γ1

2
< H(Xy) < 1− γ1

2

]
≥ γ1

2
− p

>
γ1

4
. (3.16)

Also,
1− γ1 > h ≥

(
1− γ1

2

)
· Pr
y

[
H(Xy) ≥ 1− γ1

2

]
,

which implies that

Pr
y

[
H(Xy) ≥ 1− γ1

2

]
<

1− γ1

1− γ1

2

.

Hence,

Pr
y

[
H(Xy) ≤

γ1

2

]
= 1− Pr

y

[γ1

2
< H(Xy) < 1− γ1

2

]
− Pr

y

[
H(Xy) ≥ 1− γ1

2

]
> 1− p− 1− γ1

1− γ1

2

> 1− γ1

4
− 1− γ1

1− γ1

2

≥ γ1

4
. (3.17)

Using Lemma 14 along with (3.16) and (3.17), we now conclude that

E[∆y,z] ≥
∑
y,z

H(Xy)≥1− γ1
2

H(Xz)≤ γ1
2

Pr[Y = y] · Pr[Z = z] ·
∣∣∣∣H(Xy)−H(Xz)

2

∣∣∣∣
≥ γ1

4
· γ1

4
· 1− γ1

2

≥ γ2
1(1− γ1)

8
· h(1− h),

as desired.

49



Case 2: h ≤ γ1. Then, define S =
{
y : H(Xy) >

4
5

}
. We split into two subcases.

• Subcase 1:
∑

y∈S Pr[Y = y] · H(Xy) ≥ 2h
3

. Then, Pr[Y ∈ S] ≥ 2h
3

, and so, by
Lemma 14, we have

Ey,z[H(Xy +Xz)]− h ≥ Pr
y,z

{y,z}∩S 6=∅

Pr[Y = y] · Pr[Y = z] ·max{H(Xy), H(Xz)}

− h

≥ 4

5
(2 · Pr[Y ∈ S]− Pr[Y ∈ S]2)− h

≥ 4

5

(
2 · 2h

3
−
(

2h

3

)2
)
− h

=
1

15
h

(
1− 16

3
h

)
≥ 1

15

(
1− 16γ1

3

)
h(1− h).

• Subcase 2:
∑

y∈S Pr[Y = y] ·H(Xy) <
2h
3

. Then,

∑
y 6∈S

Pr[Y = y] ·H(Xy) >
h

3
. (3.18)

Moreover, observe that h ≥ 4
5
· Pr[Y ∈ S], implying that

Pr[Y 6∈ S] ≥ 1− 5h

4
. (3.19)
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Hence, using Theorem 15 as well as (3.18) and (3.19), we find that

E[∆y,z] ≥
∑
y,z 6∈S

Pr[Y = y] · Pr[Y = z] ·
(

2 max{H(Xy), H(Xz)}+ min{H(Xy), H(Xz)}
3

+ c ·min{H(Xy)(1−H(Xy)), H(Xz)(1−H(Xz))} −
H(Xy) +H(Xz)

2

)
≥
∑
y,z 6∈S

Pr[Y = y] · Pr[Y = z]

(∣∣∣∣H(Xy)−H(Xz)

6

∣∣∣∣+
c

5
·min{H(Xy), H(Xz)}

)
≥
∑
y,z 6∈S

Pr[Y = y] · Pr[Y = z] ·
(
H(Xy)

6
−
(

1

6
− c

5

)
H(Xz)

)
=
c

5
Pr[Y 6∈ S] ·

∑
y 6∈S

Pr[Y = y] ·H(Xy)

>
c

5

(
1− 5h

4

)
· h

3
≥ c

(
1

15
− γ1

12

)
h(1− h),

as desired.

Case 3: h ≥ 1− γ1. Write γ = 1− h, and let

S =
{
y : H(Xy) > 1− γ

2

}
.

Moreover, let S be the complement of S. We split into two subcases.

1. Subcase 1: Pry[y ∈ S] < 1
10

. Then, letting r = Pry
[
H(Xy) ≤ 1

10

]
, we see that

h = 1− γ

=
∑
y

H(Xy)≤ 1
10

Pr[Y = y] ·H(Xy) +
∑
y

H(Xy)> 1
10

Pr[Y = y] ·H(Xy)

≤ 1

10
· Pr
y

[
H(Xy) ≤

1

10

]
+ 1 · Pr

y

[
H(Xy) >

1

10

]
=

r

10
+ (1− r),

which implies that r ≤ 10
9
γ ≤ 10

9
γ1. Hence, letting T =

{
y : 1

10
≤ H(Xy) ≤ 1− γ

2

}
,

we see that

Pr
y

[y ∈ T ] ≥ 1− 1

10
− r ≥ 9

10
− 10

9
γ1 ≥

1

2
. (3.20)
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Hence, by Theorem 15 and (3.20),

E[∆y,z] ≥
∑
y,z∈T

Pr[Y = y] · Pr[Y = z] ·∆y,z

≥
∑
y,z∈T

Pr[Y = y] · Pr[Y = z]

· (c ·min{H(Xy)(1−H(Xy)), H(Xz)(1−H(Xz))})

≥ (Pr[Y ∈ T ])2
(
c · γ

2

(
1− γ

2

))
≥ c

8
γ
(

1− γ

2

)
≥ c

8
h(1− h).

2. Subcase 2: Pry[y ∈ S] ≥ 1
10

. Then, observe that by Lemma 14,

E[∆y,z] ≥
∑
y∈S
z∈S

Pr[Y = y] · Pr[Y = z] · (H(Xy)−H(Xz))

2

=
Pr[Y ∈ S] ·

∑
y∈S Pr[Y = y] ·H(Xy)

2

−
Pr[Y ∈ S] ·

∑
y∈S Pr[Y = y] ·H(Xy)

2

=

∑
y∈S Pr[Y = y]H(Xy)

2
− (1− γ) Pr[Y ∈ S]

2

≥
(
1− γ

2

)
Pr[Y ∈ S]− (1− γ) Pr[Y ∈ S]

2

≥ γ

4
· Pr[Y ∈ S] ≥ γ

40
≥ 1

40
h(1− h).

3.6 Rough Polarization

Now that we have established Theorem 7, we are ready to show rough polarization of the
channels W (i)

n , 0 ≤ i < 2n, for large enough n. The precise theorem showing rough
polarization is as follows.

52



Theorem 17. There is a constant Λ < 1 such that the following holds. For any Λ < ρ < 1,
there exists a constant bρ such that for all channels W with q-ary input, all ε > 0, and all
n > bρ lg(1/ε), there exists a set

W ′ ⊆ {W (i)
n : 0 ≤ i ≤ 2n − 1}

such that for allM ∈ W ′, we have Zmax(M) ≤ 2ρn and Pri[W
(i)
n ∈ W ′] ≥ 1−H(W )−ε.

The proof of Theorem 17 follows from the following lemma:

Lemma 15. Let T (W ) = H(W )(1−H(W )) denote the symmetric entropy of a channel
W . Then, there exists a constant Λ < 1 (possibly dependent on q) such that

1

2

(√
T
(
W

(2j)
n+1

)
+

√
T
(
W

(2j+1)
n+1

))
≤ Λ

√
T
(
W

(j)
n

)
(3.21)

for any 0 ≤ j < 2n.

Proof of Lemma 15: Fix a 0 ≤ j < 2n. Also, let h = H(W
(j)
n ), and let δ = H((W

(j)
n )−)−

H(W
(j)
n ) = H(W

(j)
n )−H((W

(j)
n )+). Then, letting t =

√
T (W

(2j)
n+1) +

√
T (W

(2j+1)
n+1 ), we

note that

t =
√
h(1− h) + (1− 2h)δ − δ2 +

√
h(1− h)− (1− 2h)δ − δ2. (3.22)

For ease of notation, let f : [−1, 1]→ R be the function given by

f(x) =
√
h(1− h) + x+

√
h(1− h)− x.

By symmetry, we may assume that h ≤ 1
2

without loss of generality. Moreover, if we let
α = α(q) be the constant described in Theorem 7, then we know that δ ≥ αh(1 − h).
Then, since f ′′′(x) ≤ 0 for 0 ≤ x ≤ h(1− h), Taylor’s Theorem implies that

t ≤ f((1− 2h)δ)

≤ f(0) + f ′(0)((1− 2h)δ) +
f ′′(0)

2
((1− 2h)δ)2

= 2
√
h(1− h)− ((1− 2h)δ)2

4(h(1− h))3/2

≤ 2
√
h(1− h)− (αh(1− h)(1− 2h))2

4(h(1− h))3/2

= 2
√
h(1− h)− α2

4
(1− 2h)2

√
h(1− h).
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Thus, if 1− 2h ≥ α
8+α

, then the desired result follows for Λ ≥ 1− 1
2

(
α2

16+2α

)2

.

Next, consider the case in which 1 − 2h < α
8+α

. Then, 4
8+α

< h ≤ 1
2
. Hence,

δ ≥ αh(1− h) ≥ 2α
8+α

, which implies that δ ≥ 2(1− 2h). It follows that

(1− 2h)δ − δ2 ≤ −δ
2

2
.

Hence, by plugging this into (3.22), we have that

1

2
t ≤

√
h(1− h)− δ2

2
.

Now, recall that δ ≥ 2α
8+α

, a constant bounded away from 0. Moreover, if c is a positive
constant, then

√
x−c√
x

is an increasing function of x for x > c. Since h(1−h) ≤ 1
4
, it follows

that

1
2
t

T (W
(j)
n )
≤

√
h(1− h)− δ2

2√
h(1− h)

≤

√
1
4
− δ2

2√
1
4

≤

√
1− 8α2

(8 + α)2
.

We conclude that the desired statement holds for

Λ = max

{
1− 1

2

(
α2

16 + 2α

)2

,

√
1− 8α2

(8 + α)2

}
.

Now, we are ready to prove Theorem 17:

Proof of Theorem 17. For any ρ ∈ (0, 1), let

Alρ =

{
i : H(W (i)

n ) ≤ 1−
√

1− 4ρn

2

}
Auρ =

{
i : H(W (i)

n ) ≥ 1 +
√

1− 4ρn

2

}
Aρ = Alρ ∪ Auρ .
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Moreover, note that repeated application of (3.21), we have

Ei

√
T (W

(i)
n ) ≤ Λn

√
T (W ) ≤ Λn

2
.

Thus, by Markov’s inequality,

Pr
i

[T (W (i)
n ) ≥ α] ≤ Λn

2
√
α

(3.23)

Then, observe that

H(W ) = Ei

[
H(W (i)

n )
]

≥ Pr[Alρ] ·min
i∈Alρ

H(W (i)
n ) + Pr[Auρ ] ·min

i∈Auρ
H(W (i)

n )

+ Pr[Aρ] ·min
i∈Aρ

H(W (i)
n )

≥ Pr[Auρ ] · (1− 2ρn). (3.24)

Therefore, letting t = Pri

[
H(W

(i)
n ) ≤ 2ρn

]
, we have

t ≥ Pr[Alρ]

= 1− Pr[Auρ ]− Pr[Aρ]

≥ 1−H(W )− Pr[Auρ ] · 2ρn − Pr[Aρ] (3.25)

≥ 1−H(W )− 2ρn − 1

2
(Λ/
√
ρ)n, (3.26)

where (3.25) follows from (3.24), and (3.26) follows from (3.23). Thus, it is clear that if
ρ > Λ2, then there exists a constant aρ such that for n > aρ lg(1/ε), we have

t ≥ 1−H(W )− ε.
To conclude, note that Lemma 3 implies

Pr
i

[
Zmax(W (i)

n ) ≤ 2ρn
]
≥ Pr

i

[
H(W (i)

n ) ≤ 4ρ2n

(q − 1)2

]
≥ Pr

i

[
H(W (i)

n ) ≤ 2

(
ρ2

(q − 1)2

)n]
≥ 1−H(W )− ε

for n > bρ lg(1/ε), where bρ = aρ2/(q−1)2 .

Note that the proofs of Theorem 17 and Lemma 15 follow from arguments similar to
those found in the proofs of Proposition 5 and Lemma 8 in [GX13], except that we work
with Zmax.
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3.7 Fine Polarization

Now, we describe the statement of “fine polarization.” This is quantified by the following
theorem.

Theorem 18. For any 0 < δ < 1
2
, there exists a constant cδ that satisfies the following

statement: For any q-ary input memoryless channel W and 0 < ε < 1
2
, if n0 > cδ lg(1/ε),

then
Pr
i

[
Zmax(W (i)

n0
) ≤ 2−2δn0

]
≥ 1−H(W )− ε.

The proof follows from arguments similar to those in [AT09, GX13]. For the sake of
completeness, and because there are some slight differences in the behavior of the q-ary
Bhattacharyya parameters from Section 3.2.7 compared to the binary case, we present a
proof here.

Proof. Let ρ ∈ (Λ2, 1) be a fixed constant, where Λ is the constant described in The-
orem 17, and choose γ > lg(1/ρ) such that β =

(
1 + 1

γ

)
δ < 1

2
. Then, let us set

m =
⌊
n0

1+γ

⌋
and n =

⌈
γn0

1+γ

⌉
, so that n0 = m + n. Moreover, let d =

⌊
12n lg q
m lg(1/ρ)

⌋
and

choose a constant aρ > 0 such that

aρ >
12(ln 2)(lg q)

(1− 2β)2 lg(1/ρ)

(
1 + lg

(
48γ lg q

lg(1/ρ)

))
.

Now, letting

t = max

{
2bρ lg(2/ε),

24 lg(1/β) lg q

β lg(1/ρ)
, 2aρ lg(2/ε), 1,

1

γ

}
,

we choose

n0 > (1 + γ)t, (3.27)

where bρ is the constant described in Theorem 17. Note that this guarantees that

m > max

{
bρ lg(2/ε),

12 lg(1/β) lg q

β lg(1/ρ)
, aρ lg(2/ε)

}
. (3.28)

Then, Theorem 17 implies that there exists a set

W ′ ⊆ {W (i)
m : 0 ≤ i ≤ 2m − 1}
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such that for all M ∈ W ′, we have Zmax(M) ≤ 2ρm and

Pr
i

[W (i)
m ∈ W ′] ≥ 1−H(W )− ε

2
. (3.29)

Let T be the set of indices i for which W (i)
m ∈ W ′.

Fix an arbitraryM ∈ W ′. Recursively define
{
Z̃

(i)
k

}
0≤i≤2k−1

by Z̃(0)
0 = Zmax(M) and

Z̃
(i)
k+1 =


(
Z̃
bi/2c
k

)2

, i ≡ 1 (mod 2)

q3Z̃
bi/2c
k , i ≡ 0 (mod 2)

.

Now, let us define the sets Gj(n) ⊆ {i ∈ Z : 0 ≤ i ≤ 2n − 1}, for j = 0, 1, . . . , d − 1 as
follows:

Gj(n) =

i :
∑

jn
d
≤k< (j+1)n

d

ik ≥ βn/d

 ,

where in−1in−2 · · · i0 is the binary representation of i. Also, let G(n) =
⋂

0≤j<dGj(n).
Note that if we choose i uniformly among 0, 1, . . . , 2n − 1, then i0, i1, . . . , in−1 are i.i.d.
Bernoulli random variables. Thus, Hoeffding’s inequality implies that

Pr
0≤i<2n

[i ∈ Gj(n)] ≥ 1− exp(−(1− 2β)2n/2d)

for every j. Hence, by the union bound,

Pr
0≤i<2n

[i ∈ G(n)] ≥ 1− d exp(−(1− 2β)2n/2d). (3.30)

Now, assume i ∈ G(n). Note that Z̃(bi/2n(d−j−1)/dc)
(j+1)n/d can be obtained by taking Z̃(bi/2n(d−j)/dc)

jn/d

and performing a sequence of n/d operations, each of which is either z 7→ z2 (squaring)
or z 7→ q3z (q3-fold increase). Since i ∈ Gj(n), at least βn/d of the operations must
be squarings. Hence, it is not too difficult to see that the maximum possible value of

Z̃
(bi/2n(d−j−1)/dc)
(j+1)n/d is obtained when we have (1−β)n/d q3-fold increases followed by βn/d

squarings. Hence,

lg Z̃
(bi/2n(d−j−1)/dc)
(j+1)n/d ≤ 2βn/d

(
n

d
(1− β)(3 lg q) + lg Z̃

(bi/2n(d−j)/dc)
jn/d

)
.
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Making repeated use of the above inequality, we see that

lgZ(M (i)
n ) ≤ lg Z̃(i)

n

≤ 2βn lgZmax(M) +
n

d
(1− β)(3 lg q)

d∑
k=1

2
kβn
d

≤ 2βn lgZmax(M) +
n

d
(3 lg q)

(1− β)2βn

1− 2−
βn
d

≤ 2βn
(

lg(2ρm) +
n

d
(3 lg q)

)
(3.31)

≤ −2βn, (3.32)

where (3.31) follows from (3.28) and

2−
n
d
β ≤ 2−

βm lg(1/ρ)
12 lg q

≤ β,

while (3.32) follows from (3.28) and

lg(2ρm) +
n

d
(3 lg q) ≤ lg(2ρm) +

3n lg q
6n lg q

m lg(1/ρ)

≤ 1−m lg(1/ρ) +
m lg(1/ρ)

2

= 1− m lg(1/ρ)

2
≤ −1.

Therefore, for any 0 ≤ k < 2n0 that can be written as k = 2ni′ + i, for 0 ≤ i′ < 2m and
0 ≤ i < 2n such that i′ ∈ T and i ∈ G(n), we have that for M = W

(i′)
m ,

lgZmax(W (k)
n0

) = lgZmax(M (i)
n ) ≤ −2βn ≤ −2δn0 .

Moreover, by (3.29), (3.30), and the union bound, we see that the probability that a uni-

formly chosen 0 ≤ k < 2n0 is of the above form is at least 1−H(W )− ε
2
− de−

(1−2β)2n
2d ,

58



which is

≥ 1−H(W )− ε

2
− 12n lg q

m lg(1/ρ)
exp

(
(1− 2β)2m lg ρ

12 lg q

)
≥ 1−H(W )− ε

2
− 48γ lg q

lg(1/ρ)
exp

(
−(1− 2β)2m lg(1/ρ)

12 lg q

)
≥ 1−H(W )− ε

2
− 48γ lg q

lg(1/ρ)

( ε
2

)aρ(1−2β)2 lg(1/ρ)

12(ln 2)(lg q)

≥ 1−H(W )− ε

2
− 48γ lg q

lg(1/ρ)

( ε
2

)1+lg( 48γ lg q
lg(1/ρ) )

≥ 1−H(W )− ε

2
− 48γ lg q

lg(1/ρ)
· ε

2
·
(

1

2

)lg( 48γ lg q
lg(1/ρ) )

= 1−H(W )− ε.

So if we take cδ = max
{

4(1 + γ)aρ, 4(1 + γ)bρ, 1 + γ, 1+γ
γ
, 24(1+γ) lg(1/β) lg q

β lg(1/ρ)

}
, then n0 >

cδ lg(1/ε) would guarantee (3.27). This completes the proof.

As a corollary, we obtain the following result on lossless compression with complexity
scaling polynomially in the gap to capacity:

Theorem 8. Let X be a q-ary source for q prime with side information Y (which means
(X, Y ) is a correlated random variable). Let 0 < ε < 1

2
. Then there exists N ≤ (1/ε)c(q)

for a constant c(q) < ∞ depending only on q and an explicit (constructible in poly(N)

time) matrix L ∈ {0, 1}(H(X|Y )+ε)N×N such that ~X = (X0, X1, . . . , XN−1)t, formed by
taking N i.i.d. copies (X0, Y0), (X1, Y1), . . . , (XN−1, YN−1) of (X, Y ), can, with high
probability, be recovered from L · ~X and ~Y = (Y0, Y1, . . . , YN−1)t in poly(N) time.

Proof. Let W = (X;Y ), and fix δ = 0.499. Also, let N = 2n0 . Then, by Theorem 18, for
any n0 > cδ lg(1/ε), we have that

Pr
i

[
Zmax(W (i)

n0
) ≤ 2−2δn0

]
≥ 1−H(X)− ε.

Moreover, let N = 2n0 . Recall the notation in (3.3). Then, letting δ′ = 2−2δn0 , we have
that Pri[i ∈ Highn0,δ′ ] ≤ H(X|Y ) + ε and Z(W

(i)
n0 ) ≥ δ′ for all i ∈ Highn0,δ′ . Thus, we

can take L to be the linear map Gn0 projected onto the coordinates of Highn0,δ′ .
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By Lemma 1 and the union bound, the probability that attempting to recover ~X from
L · ~X and ~Y results in an error is given by∑

i 6∈Highn0,δ
′

Pe(W
(i)
n0

) ≤
∑

i 6∈Highn0,δ
′

(q − 1)Zmax(W (i)
n0

)

≤ (q − 1)Nδ′

= (q − 1)2n0−2δn0 , (3.33)

which is ≤ 2−N
0.49 for N ≥ (1/ε)µ for some positive constant µ (possibly depending on

q). Hence, it suffices to take c(q) = 1 + max{cδ, µ}.

Finally, the fact that both the construction of L and the recovery of ~X from L · ~X and
~Y can be done in poly(N) time follows in a similar fashion to the binary case (see the
binning algorithm and the successive cancellation decoder in [GX13] for details). Also,
the entries of L are all in {0, 1} since L can be obtained by taking a submatrix of BnK

⊗n0 ,
where Bn is a permutation matrix, and K = ( 1 1

0 1 ) (see [Arı10]).

3.8 Extension to Arbitrary Alphabets

In the previous sections, we have shown polarization and polynomial gap to capacity for
polar codes over prime alphabets. We now describe how to extend this to obtain channel
polarization and the explicit construction of a polar code with polynomial gap to capacity
over arbitrary alphabets.

The idea is to use the multi-level code construction technique sketched in [cTA09] (and
also recently in [LA14] for alphabets of size 2m). We outline the procedure here. Suppose
we have a channel W = (X;Y ), where X ∈ Zq and Y ∈ Y . Moreover, assume that
q =

∏s
i=1 qi is the prime factorization of q.

Now, we can write X = (U (1), U (2), . . . , U (s)), where each U (i) is a random vari-
able distributed over [qi]. We also define the channels W (1),W (2), . . . ,W (s) by W (j) =
(U (j);Y, U (1), U (2), . . . , U (j−1)). Note that

H(W ) = H(X|Y ) = H(U (1), U (2), . . . , U (s)|Y )

=
s∑
j=1

H(U (j)|Y, U (1), U (2), . . . , U (j−1))

=
s∑
j=1

H(W (j)),

60



which means thatW splits intoW (1),W (2), . . . ,W (s). Since eachW (j) is a channel whose
input is over a prime alphabet, one can polarize each W (j) separately using the procedure
of the previous sections. More precisely, the encoding procedure is as follows. For N
large enough (as specified by Theorem 8), we take N copies (X0;Y0), . . . , (XN−1;YN−1)

of W , where Xi = (U
(1)
i , U

(2)
i , . . . U

(s)
i ). Then, sequentially for j = 1, 2, . . . , s, we encode

U
(j)
0 , U

(j)
1 , . . . , U

(j)
N−1 using

{(
Yi, U

(1)
i , U

(2)
i , . . . , U

(j−1)
i

)}
i=0,1,...,N−1

as side information

(which can be done by the procedure in previous sections, since Uj is a source over a prime
alphabet).

For decoding, one can simply use s stages of the successive cancellation decoder. In
the j th stage, one uses the successive cancellation decoder for W (j) in order to decode
U

(j)
0 , U

(j)
1 , . . . , U

(j)
N−1, assuming that

{
U

(k)
i

}
k<j

has been recovered correctly from the pre-

vious stages of successive canellation decoding. Note that the error probability in decoding
X0, X1, . . . , XN−1 can be obtained by taking a union bound over the error probabilities for
each of the s stages of successive cancellation decoding. Since each individual error prob-
ability is exponentially small (see (3.33)), it follows that the overall error probability is
also negligible.

As a consequence, we obtain Theorem 8 for non-prime q, with the additional modifi-
cation that the map ZNq → ZH(X|Y )+ε)N

q is not linear. Moreover, using the translation from
source coding to noisy channel coding (see [Ş12, Sec 2.4]), we obtain the following result
for channel coding.

Theorem 9. Let q ≥ 2, and let W be any discrete memoryless channel capacity with input
alphabet Zq. Then, there exists an N ≤ (1/ε)c(q) for a constant c(q) <∞ depending only
on q, as well as a deterministic poly(N) construction of a q-ary code of block length N
and rate at least 1−H(W )− ε, along with a deterministic N ·poly(logN) time decoding
algorithm for the code such that the block error probability for communication over W is
at most 2−N

0.49
. Moreover, when q is prime, the constructed codes are linear.

Remark 19. If q is prime, then the q-ary code of Theorem 9 is, in fact, linear.
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Chapter 4

Coding for Interactive Communication

The results of this chapter appear in [HV16].

4.1 Background

The work of Shannon and Hamming applies to the problem of one-way communication,
in which one party, say Alice, wishes to send a message to another party, say Bob. How-
ever, in many applications, underlying (two-party) communications are interactive, i.e.,
Bob’s response to Alice may be based on what he received from her previously and vice
versa. As in the case of one-way communication, one wishes to make such interactive
communications robust to noise by adding some redundancy.

At first sight, it seems plausible that one could use error-correcting codes to encode
each round of communication separately. However, this does not work correctly because
the channel might corrupt the codeword of one such round of communication entirely and
as a result derail the entire future conversation. With the naive approach being insufficient,
it is not obvious whether it is possible at all to encode interactive protocols in a way that
can tolerate some small constant fraction of errors in an interactive setting. Nonetheless,
Schulman [Sch92, Sch93, Sch96] showed that this is possible and numerous follow-up
works over the past several years have led to a drastically better understanding of error-
correcting coding schemes for interactive communications.
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4.1.1 Error Fractions for Interactive Coding

Schulman was the first to consider the question of coding for interactive communica-
tion and showed that one can tolerate an adversarial error fraction of ε = 1/240 with
an unspecified constant communication rate [Sch92, Sch93, Sch96]. Schulman’s result
also implies that for the easier setting of random errors, one can tolerate any error rate
bounded away from 1/2 by repeating symbols multiple times. Since Schulman’s semi-
nal work, there has been a number of subsequent works pinning down the tolerable er-
ror fraction. For instance, Braverman and Rao [BR14] showed that any error fraction
ε < 1/4 can be tolerated in the realm of adversarial errors, provided that one can use
larger alphabet sizes, and this bound was shown to be optimal. A series of subsequent
works [BE14, GH14, GHS14, EGH15, FGOS15] worked to determine the error rate re-
gion under which non-zero communication rates can be obtained for a variety of mod-
els, e.g., adversarial errors, random errors, list decoding, adaptivity, and channels with
feedback. Unlike the initial coding schemes of [Sch96] and [BR14] that relied on tree
codes and as a result required exponential time computations, many of the newer cod-
ing schemes are computationally efficient [BK12, BN13, BKN14, GMS14, GH14]. All
these results achieve small often unspecified constant communication rate of Θ(1) which
is fixed and independent of amount of noise. Only the works of Kol and Raz [KR13] and
Haeupler [Hae14] achieve a communication rate approaching 1 for error fractions going
to zero.

4.1.2 Communication Rates of Interactive Coding Schemes

Only recently, however, has this study led to results shedding light on the tradeoff between
the achievable communication rate for a given error fraction or amount of noise.

Kol and Raz [KR13] gave a communication scheme for random errors that achieves a
communication rate of 1−O(

√
H(ε)) for any alternating protocol, where ε > 0 is the error

rate. They also developed powerful tools to prove upper bounds on the communication
rate. Haeupler [Hae14] showed communication schemes that achieve a communication
rate of 1−O(

√
ε) for any oblivious adversarial channel, including random errors, as well as

a communication rate of 1−O(
√
ε log log(1/ε)) for any fully adaptive adversarial channel.

These results apply to alternating protocols as well as adaptively simulated non-alternating
protocols (see [Hae14] for a more detailed discussions). Lastly, Haeupler conjectured
these rates to be optimal for their respective settings.

On the other hand, in the one-way communication setting, the classical result of Shan-
non shows that the capacity of a binary symmetric channel with error rate ε is 1 − H(ε).
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Furthermore, for the case of adversarial errors, in which an adversary is allowed to in-
troduce any error pattern of up to an error fraction of ε, the capacity is known to be
1− Θ(H(ε)) (as suggested by the Gilbert-Varshamov and Hamming bounds). Therefore,
there is an almost quadratic gap between the conjectured rate achievable in the interactive
setting and the 1−Θ(H(ε)) rate known to be optimal for one-way communications.

4.2 Overview of Results: Capacity of Interactive Com-
munication Channels for Low Error Rates

While the result of [Hae14] is somewhat disappointing in that the (conjectured to be
optimal) communication rates are worse than the 1 − Θ(H(ε)) rate achievable for non-
interactive communication, it does leave open some interesting questions. In particular,
the hardest protocols to encode under the underlying coding schemes of Haeupler seem to
be “maximally interactive” protocols, which we discuss below. However, most protocols
that are likely to show up in real-world applications seem to be far from the worst-case
“maximally interactive” case. This leaves open the possibility for some assumptions on
the input protocol that would allow coding schemes with better rates:

Question 20. Is there a reasonable set of assumptions under which a two party proto-
col can be encoded into a longer protocol that is resilient to an ε error fraction of fully
adversarial errors with a communication rate of 1−O(ε log(1/ε))?

Another shortcoming of [Hae14] is that while the coding schemes are rather simple and
elegant, they have virtually nothing in common with error-correcting codes and techniques
for non-interactive communication that have been developed over the past several decades.
This is true for other interactive coding schemes from past works as well, where seemingly
disparate methods have been used across several works. More specifically, the early works
in the field [Sch96, BR14] used the combinatorial object of tree codes to construct coding
schemes, while latter works [GHS14, GH14, Hae14] that obtain efficient schemes have
used no such objects and are much simpler. Explicit efficient constructions of tree codes
have thus far eluded researchers; on the other hand, tree codes are a nice clean combina-
torial object that appears to be a natural analogue to the sphere packing interpretation of
normal error-correcting codes. Thus, we consider the following goal.

Objective 21. Find a unifying mathematical theory for coding of (two-way) interactive
protocols that relates to coding theory for one-way communication.
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In this thesis, we address both Question 20 and Objective 21. In particular, we show
that for a natural and large class of protocols the conjectured capacity gap between the one-
way and interactive communication settings disappears. Our primary focus is on protocols
for oblivious adversarial channels. Such a channel can corrupt any ε fraction of bits that
are exchanged in the execution of a protocol, and the simulation is required to work, with
high probability, for any such error pattern. This is significantly stronger, more interesting,
and, as we will see, also much more challenging than the case of independent random
errors. We remark that, in contrast to a fully adaptive adversarial channel, the decision
whether an error happens in a given round is not allowed to depend on the transcript of the
execution thus far. This seems to be a minor but crucially necessary restriction (see also
Section 4.6).

As mentioned, the conjectured optimal communication rate of 1−O(
√
ε) for the obliv-

ious adversarial setting is worse than the 1 − O(H(ε)) communication rate achievable in
the one-way communication settings. However, the conjectured upper bound seems to
be tight mainly for “maximally interactive” protocols, i.e., protocols in which the party
that is sending bits changes frequently. In particular, alternating protocols, in which Al-
ice and Bob take turns sending a single bit, seem to require the most redundancy for a
noise-resilient encoding. On the other hand, the usual one-way communication case in
which one party just sends a single message consisting of several bits is an example of a
“minimally interactive” protocol. It is a natural question to consider what the tradeoff is
between achievable communication rate and the level of interaction that takes place. In
particular, most natural real-world protocols are rarely “maximally interactive” and could
potentially be simulated with communication rates going well beyond 1 − O(

√
ε). We

seek to investigate this possibility.

Our first contribution is to introduce the notion of average message length as a natural
measure of the interactivity of a protocol in the context of analyzing communication rates.
Loosely speaking, the average message length of an n-round protocol corresponds to the
average number of bits a party sends before receiving a reply from the other party. A
lower average message length roughly corresponds to more interactivity in a protocol,
e.g., a maximally interactive protocol has average message length 1, while a one-way
protocol with no interactivity has average message length n. The formal definition of
average message length appears as Definition 18 in Section 4.4.

Our second and main contribution in this chapter is to show that for protocols with an
average message length of at least some constant in ε (but independent of the number of
rounds n) one can go well beyond the 1−Θ(

√
ε) communication rate achieved by [Hae14]

for channels with oblivious adversarial errors. In fact, we show that for such protocols one
can actually achieve a communication rate of 1−Θ(H(ε)), matching the communication
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rate for one-way communication up to the (unknown) constant in the H(ε) term.

Theorem 22. For any ε > 0 and any n-round interactive protocol Π with average mes-
sage length ` = Ω(poly(1/ε)), it is possible to encode Π into a protocol over the same
alphabet which, with probability at least 1 − exp(−nε6), simulates Π over an oblivious
adversarial channel with an ε fraction of errors while achieving a communication rate of
1−Θ(H(ε)) = 1−Θ(ε log(1/ε)).

Under the (simplifying) assumption of public shared randomness, our protocol can
furthermore be seen to have the nice property of being rateless. This means that the com-
munication rate adapts automatically and only depends on the actual error rate ε without
having to specify or know in advance what amount of noise to prepare for.

Theorem 23. Suppose Alice and Bob have access to public shared randomness. For
any ε′ > 0 and any n-round interactive protocol Π with average message length ` =
Ω(poly(1/ε′)), it is possible to encode Π into protocol Πrateless over the same alphabet such
that for any true error rate ε, executing Πrateless for n(1 +O(H(ε)) +O(ε′ polylog(1/ε′)))
rounds simulates Π with probability at least 1− exp(−nε′3).

We note that one should think of ε′ in Theorem 23 as chosen to be very small, in
particular, smaller than the smallest amount of noise one expects to encounter. In this case,
the communication rate of the protocol simplifies to the optimal 1−O(H(ε)) for essentially
any ε > ε′. The only reason for not choosing ε′ too small is that it very slightly increases the
failure probability. As an example, choosing ε′ = o(1) suffices to get ratelessness for any
constant ε and still leads to an essentially exponential failure probability. Alternatively,
one can even set ε′ = n−1/6 which leads to optimal communication rates even for tiny
sub-constant true error fractions ε > n−0.2 while still achieving a strong sub-exponential
failure probability of at most exp(−

√
n).

4.3 Preliminaries

An interactive protocol Π consists of communication performed by two parties, Alice and
Bob, over a channel with alphabet Σ. Alice has an input x and Bob has an input y, and the
protocol consists of n rounds. During each round of a protocol, each party decides whether
to listen or transmit a symbol from Σ, based on his input and the player’s transcript thus
far. Alice’s transcript is defined as a tuple of symbols from Σ, one for each round that has
occurred, such that the ith symbol is either (a.) the symbol that Alice sent during the ith

round, if she chose to transmit, or (b.) the symbol that Alice received, otherwise.
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Moreover, protocols can utilize randomness. In the case of private randomness, each
party is given its own infinite string of independent uniformly random bits as part of its
input. In the case of shared randomness, both parties have access to a common infinite
random string during each round. In general, our protocols will utilize private randomness,
unless otherwise specified.

In a noiseless setting, we can assume that in any round, exactly one party speaks and
one party listens. In this case, the listening party simply receives the symbol sent by the
speaking party.

The communication order of a protocol refers to the order in which Alice and Bob
choose to speak or listen. A protocol is non-adaptive if the communication order is fixed
prior to the start of the protocol, in which case, whether a party transmits or listens de-
pends only on the round number. A simple type of non-adaptive protocol is an alternating
protocol, in which one party transmits during odd numbered rounds, while the other party
transmits during even numbered rounds. On the other hand, an adaptive protocol is one in
which the communication order is not fixed prior to the start; therefore, the communica-
tion order can vary depending on the transcript of the protocol. In particular, each party’s
decision whether to speak or listen during a round will depend on his input, randomness,
as well as the transcript of the protocol thus far.

For an n-round protocol over alphabet Σ, one can define an associated protocol tree of
depth n. The protocol tree is a rooted tree in which each non-leaf node of the tree has |Σ|
children, and the outgoing edges are labeled by the elements of Σ. Each non-leaf node is
owned by some player, and the owner of the node has a preferred edge that emanates from
the node. The preferred edge is a function of the owner’s input and any randomness that is
allowed. Also, leaf nodes of the protocol tree correspond to ending states.

A proper execution of the protocol corresponds to the unique path from the root of
the protocol tree to a leaf node, such that each traversed edge is the preferred edge of
the parent node of the edge. In this case, each edge along the path can be viewed as a
successive round in which the owner of the parent node transmits the symbol along the
edge.

An example of a protocol tree is shown in Figure 4.1.

4.3.1 Communication Channels

For our purposes, the communication between the two parties occurs over a communi-
cation channel that delivers a possibly corrupted version of the symbol transmitted by the
sending party. In this thesis, transmissions will be from a binary alphabet, i.e., Σ = {0, 1}.
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Figure 4.1: An example of a protocol tree for a 3-round interactive protocol. Nodes owned
by Alice are colored red, while those owned by Bob are colored blue. Note that Alice
always speaks during the first and third rounds, while Bob speaks during the second round.
The orange edges are the set of preferred edges for some choice of inputs of Alice and Bob.
In this case, a proper execution of the protocol corresponds to the path “011.”

In a random error channel, each transmission occurs over a binary symmetric channel
with crossover probability ε. In other words, in each round, if only one party is speaking,
then the transmitted bit gets corrupted with probability ε.

In this thesis, we mainly consider the oblivious adversarial channel, in which an ad-
versary gets to corrupt at most ε fraction of the total number of rounds. However, the
adversary is restricted to making his decisions prior to the start of the protocol, i.e., the ad-
versary must decide which rounds to corrupt independently of the communication history
and randomness used by Alice and Bob. For each round that the adversary decides to cor-
rupt, he can either commit a flip error or replace error. Suppose a round has one party that
speaks and one party that listens. Then, a flip error means that the listening party receives
the opposite of the bit that the transmitting party sends. On the other hand, a replace error
requires the adversary to specify a symbol α ∈ Σ for the round. In this case, the listening
party receives α regardless of which symbol was sent by the transmitting party.

An adaptive adversarial channel allows an adversary to corrupt at most ε fraction of
the total number of rounds. However, in this case, the adversary does not have to commit
to which rounds to corrupt prior to the start of the protocol. Rather, the adversary can
decide to corrupt a round based on the communication history thus far, including what is
being sent in the current round. Thus, in any round that the adversary chooses to corrupt
in which one party transmits and one party receives, the adversary can make the listening
party receive any symbol of his choice.
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Note that we have not yet specified the behavior for rounds in which both parties speak
or both parties listen. Such rounds can occur for adaptive protocols when the communica-
tion occurs over a noisy communication channel.

If both parties speak during a round, we stipulate that neither party receives any symbol
during that round (since neither party is expecting to receive a symbol).

Moreover, we stipulate that in rounds during which both parties listen, the symbols
received by Alice and Bob are unspecified. In other words, an arbitrary symbol may be
delivered to each of the parties, and we require that the protocol work for any choice of
received symbols. Alternatively, one can imagine that the adversary chooses arbitrary
symbols for Alice and Bob to receive without this being counted as a corruption (i.e., a
free corruption that is not counted toward the budget of ε fraction of corruptions). The
reason for this model is to disallow the possibility of transmitting information by using
silence. An extensive discussion on the appropriateness of this error model can be found
in [GHS14].

4.4 Average Message Length and Blocked Protocols

One conceptual contribution of this thesis is to introduce the notion of average message
length as a natural measure of the level of interactivity of a protocol. While we use it only
in the context of analyzing the optimal rate of interactive coding schemes, we believe that
this notion and parametrization will also be useful in other settings, such as compression.
Next, we define this notion formally.

Definition 18. The average message length ` of an n-round interactive protocol Π is the
minimum, over all paths in the protocol tree of Π, of the average length in bits of a maximal
contiguous block (spoken by a single party) down the path.

More precisely, given any string s ∈ {0, 1}n, there exist integer message lengths
l0, . . . , lk > 0 such that along the path of Π given by s one player (either Alice or Bob)
speaks between round 1 +

∑
j<i lj and round

∑
j≤i lj for even i while the other speaks

during the remaining intervals, i.e., those for odd i. We then define `s to be the average of
these message lengths l0, . . . , lk and define the average message length of Π to be minimum
over all possible inputs, i.e., ` = mins∈{0,1}n `s.

An alternate characterization of the amount of interaction in a protocol involves the
number of alternations in the protocol:
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Definition 19. An n-round protocol Π is said to be k-alternating if any path in the protocol
tree of Π can be divided into at most k blocks of consecutive rounds such that only one
person (either Alice or Bob) speaks during each block.

More precisely, Π is k-alternating if, given any string s ∈ {0, 1}n, there exist k′ ≤ k
integers r0, r1, . . . , rk′ with 0 = r0 < · · · < rk′ = n, such that along the path of Π given
by s, only one player (either Alice or Bob) speaks for rounds ri + 1, . . . , ri+1 for any
0 ≤ i < k′.

It is easy to see that the two notions are essentially equivalent, as an n-round protocol
with average message length ` is an (n/`)-alternating protocol, and a k-alternating n-round
protocol has average message length n/k. Note that an n-round alternating protocol has
average message length 1, while a one-way protocol has average message length n. The
average message length can thus be seen as a natural measure for the interactivity of a
protocol.

We emphasize that the average message length definition does not require message
lengths to be uniform along any path or across paths. In particular, this allows for the
length of a response to vary depending on what was communicated before, e.g., the state-
ment the other party has just made—a common phenomenon in many applications. Taking
as an example real-world conversations between two people, responses to statements can
be as short as a simple “I agree” or much longer, depending on what the conversation has
already covered and what the opinion or input of the receiving party is. Thus, a sufficiently
large average message length roughly states that while the ith response of a person can be
short or long depending on the history of the conversation, no sequence of responses can
lead to two parties going back and forth with super short statements for too long a period
of time. This flexibility makes the average message length a highly applicable parame-
ter that is reasonably large in most settings of interest. We expect it to be a very useful
parametrization for questions going beyond the communication rate considered here.

However, the non-uniformity of protocols with an average message length bound can
make the design and analysis of protocols somewhat harder than one would like. For-
tunately, adding some dummy rounds of communication in a simple procedure we call
blocking allows us to transform any protocol with small number of alternations into a
much more regularly structured protocol which we refer to as blocked.

Definition 20. An n-round protocol Π is said to be b-blocked if for any 1 ≤ j ≤ dn/be,
only one person (either Alice or Bob) speaks during all rounds r such that (j − 1)b < r ≤
jb.

Lemma 16. Any n-round k-alternating protocol Π can be simulated by a b-blocked pro-
tocol Π′ that consists of at most n+ kb rounds.
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Proof of Lemma 16. Consider the protocol tree of Π, where each node corresponds to a
state of the protocol (with the root as the starting state) and each node has at most two
edges leaving from it (labeled ‘0’ and ‘1’). Moreover, each node is colored one of two
colors depending on whether Alice or Bob speaks next in the corresponding state, and the
edges emanating from the node are colored the same. The leaves of the protocol tree are
terminating states of the protocol, and one can view any (possibly corrupted) execution of
the protocol as a path from the root to a leaf of the tree, where the edge taken from any
node indicates the bit that is transmitted by the sender from the corresponding state.

Now, consider any path down the protocol tree. We can group the edges of the path
into maximal groups of consecutive edges of the same color. Now, if any group of edges
contains a number of edges that is not a multiple of b, then we add some dummy nodes
(with edges) in the middle of the group so that the new number of edges in the group
is the next largest multiple of b. It is clear that if we do this for every path down the
original protocol tree, then the resulting protocol tree will correspond to a protocol Π′ that
is b-blocked and simulates Π (i.e., each leaf of Π′ corresponds to a leaf of Π).

Moreover, note that the number of groups of edges is at most k, since Π is k-alternating.
Also, the number of dummy nodes we add in each group is at most b. It follows that the
number of nodes (and edges) down any original path of Π has increased by at most kn in
Π′. Thus, the desired claim follows.

4.5 Warmup: Interactive Coding for Random Errors

As a warmup for the much more difficult adversarial setting, we first consider the set-
ting of random errors, as this will illustrate several ideas including blocking, the use of
error-correcting codes, and how to incorporate those with known techniques in coding for
interactive communication.

In this section, we suppose that each transmission of Alice and Bob occurs over a
binary symmetric channel with an ε probability of corruption. Recall that we wish to
encode an n-round protocol Π into a protocol Πrandom

enc such that with high probability over
the communication channel, execution of Πrandom

enc robustly simulates Π. By [Hae14], it is
known that one can achieve a communication rate of 1−O(

√
ε). In this section, we show

how to go beyond the rate of 1−O(
√
ε) for protocols with at least a constant (in ε) average

message length.

72



4.5.1 Trivial Scheme for Non-Adaptive Protocols with Minimum Mes-
sage Length

The first coding scheme we present for completeness is a completely trivial and straight
forward application of error correcting codes which works for non-adaptive protocols Π
with a guaranteed minimum message length. In particular, the coding scheme achieves a
communication rate of 1 − O(H(ε)) for non-adaptive protocols with minimum message
length Ω((1/ε) log n).

In particular, we assume that Π is a a non-adaptive n-round protocol with message
lengths of size b1, b2, . . . , bk, i.e., Alice sends b1 bits, then Bob sends b2 bits, and so on.
Moreover, we assume that that b1, b2, . . . , bk ≥ b, where b = Ω((1/ε) log n) is the mini-
mum message length.

Now, we can form the encoded protocol Πrandom
enc by simply having the transmitting

party replace its intended message in Π (of bi bits) with the encoding (of length, say, b′i)
of the message under an error-correcting code of minimum relative distance Ω(ε) and rate
1−O(H(ε)) and then transmitting the resulting codeword. The receiver then decodes the
word according to the nearest codeword of the appropriate error-correcting code.

Note that for any given message (codeword) of length b′i, the expected number of cor-
ruptions due to the channel is εb′i. Thus, by Chernoff bound, the probability that the
corresponding codeword is corrupted beyond half the minimum distance of the relevant
error-correcting code is e−Ω(εb′) = n−Ω(1). Since k = O(n/b) = O(nε/ log n), the union
bound implies that the probability that any of the k < nmessages is corrupted beyond half
the minimum distance is also n−Ω(1). Thus, with probability 1−n−Ω(1), Πrandom

enc simulates
the original protocol without error. Moreover, the overall communication rate is clearly
1−O(H(ε)) due to the choice of the error-correcting codes.

Remark 24. Note that the aforementioned trivial coding scheme has the disadvantage of
working only for nonadaptive protocols with a certain minimum message length, which is
a much stronger assumption than average message length. In Section 4.5.2, we show how
to get around this problem by converting the input protocol to a blocked protocol.

Another problem with the coding scheme is that the minimum message length is re-
quired to be Ωε(log n). This is in order to ensure that the probability of error survives a
union bound, as the trivial coding scheme has no mechanism for recovering if a particular
message gets corrupted. This also results in a success probability of only 1 − 1/poly(n)
instead of the 1 − exp(n) one would like to have for a coding scheme. Section 4.5.2
shows how to rectify both problems by combining the reduced error probability of a error
correcting code failing with any existing interactive coding scheme, such as the one in
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[Hae14].

4.5.2 Coding Scheme for Protocols with Average Message Length of
Ω(log(1/ε)/ε2)

In this section, we build on the trivial scheme discussed earlier to provide an improved
coding scheme that handles any protocol Π with an average message length of at least
` = Ω(log(1/ε)/ε2).

The first step will be to transform Π into a protocol that is blocked. Note that the Π
is a k-alternating protocol, where k = n/` = O(nε2/ log(1/ε)). Thus, by Lemma 16,
we can transform Π into a b-blocked protocol Πblk, for b = Θ(log(1/ε)/ε), such that Πblk

simulates Π and consists of nb = n+ kb = n(1 +O(ε)) rounds.

Now, we view Πblk as a q-ary protocol with nb/b rounds, where q = 2b. This can be
done by grouping the symbols in each b-sized block as a single symbol from an alphabet of
size q. Next, we can use the coding scheme of [Hae14] in a blackbox manner to encode this
q-ary protocol as a q-ary protocol Π′ with nb

b
(1 + Θ(

√
ε′)) rounds such that Π′ simulates Π

under oblivious random errors with error fraction ε′ (i.e., each q-ary symbol is corrupted
(in any way) with an independent probability of at most ε′). We pick ε′ = ε4.

Finally, we transform Π′ into a binary protocol Πrandom
enc as follows: We expand each

q-ary symbol of Π′ back into a sequence of b bits and then expand the b bits into b′ > b bits
using an error-correcting code. In particular, we use an error-correcting code C : {0, 1}b →
{0, 1}b′ with block length b′ = b + (2c + δ) log2(1/ε) and minimum distance 2c log(1/ε)
for appropriate constants c, δ (such a code is guaranteed to exist by the Gilbert-Varshamov
bound). Thus, Πrandom

enc is a b′-blocked binary protocol with nb · b
′

b
(1 + Θ(

√
ε′)) = n(1 +

O(ε log(1/ε)) rounds. Moreover, each b′-sized block of Πrandom
enc simply simulates each q-

ary symbol of Π′ and the listening party simply decodes the received b′ bits to the nearest
codeword of C.

To see that Πrandom
enc successfully simulates Π in the presence of random errors with

error fraction ε, observe that a b′-block is decoded incorrectly if and only if more than
d/2 of the b′ bits are corrupted. By the Chernoff bound, the probability of such an event
is < ε4 (for appropriate choice of c, δ). Thus, since Π′ is known to simulate Π under
oblivious errors with error fraction ε4, it follows that Πrandom

enc satisfies the desired property.
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4.6 Conceptual Challenges and Key Ideas

In this section, we wish to provide some intuition for the difficulties in surpassing the
1 − Θ(

√
ε) communication rate for interactive coding when dealing with non-random

errors. We do this because the adversarial setting comes with a completely new set of
challenges that are somewhat subtle but nonetheless fundamental. As such, the techniques
used in the previous section for interactive coding under random errors still provide a
good introduction to some of the building blocks in the framework we use to deal with the
adversarial setting, but they are not sufficient to circumvent the main technical challenges.
Indeed, we show in this section that the adversarial setting inherently requires several
completely new techniques to beat the 1−Θ(

√
ε) communication rate barrier.

We begin by noting that all existing interactive coding schemes encode the input proto-
col Π into a protocol Π′ with a certain type of structure: There are some, a priori specified,
communication rounds which simulate rounds of the original protocol (i.e., result in a walk
down the protocol tree of Π), while other rounds constitute redundant information which is
used for error correction. In the case of protocols that use hashing (e.g., [Hae14], [KR13]),
this is directly apparent in their description, as rounds in which hashes and control infor-
mation are communicated constitute redundant information. However, this is also the case
for all protocols based on tree codes (e.g., [BR14, GHS14, GH14]): To see this, note that
in such protocols, one can simply use an underlying tree code that is linear and systematic,
with the non-systematic portion of the tree code then corresponding to redundant rounds.

We next present an argument which shows that, due to the above structure, no existing
coding scheme can break the natural 1 − Ω(

√
ε) communication rate barrier, even for

protocols with near-linear o(n) average message lengths. This will also provide some
intuition about what is required to surpass this barrier.

Suppose that for a (randomized) n-round communication protocol Π, the simulating
protocol Π′ has the above structure and a communication rate of 1 − ε′. The simulation
Π′ thus consists of exactly N = n/(1 − ε′) rounds. Note that, since every simulation
must have at least n non-redundant rounds, the fraction of redundant rounds in Π′ can be
at most ε′. Given that the position of the redundant rounds is fixed, it is therefore pos-
sible to find a window of (ε/ε′)N consecutive rounds in Π′ which contain at most εN
redundant rounds, i.e., an ε′ fraction. Now, consider an oblivious adversarial channel that
corrupts all the redundant information in the window along with a few extra rounds. Such
an adversary renders any error correction technique useless, while the few extra errors
derail the unprotected parts of the communication, thereby rendering essentially all the
non-redundant information communicated in this window useless as well—all while cor-
rupting essentially only εN rounds in total. This implies that in the remainingN−(ε/ε′)N
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communication rounds outside of this window, there must be at least n non-redundant
rounds in order for Π′ to be able to successfully simulate Π. However, it follows that
N − (ε/ε′)N ≥ n = N(1− ε′) which simplifies to 1− (ε/ε′) ≥ 1− ε′, or ε′2 ≥ ε, implying
that the communication rate of 1− ε′ can be at most 1−Ω(

√
ε), where ε is the fraction of

errors applied by the channel.

this window in order to simulate the input protocol Π even in the absence of any further
errors. This implies that n ≥ (1 − ε′)n + (ε/ε′)n, which implies that ε′ ≥

√
ε, meaning

that the communication rate must be 1− Ω(
√
ε).

One can note that a main reason for the 1 − Ω(
√
ε) limitation in the above argument

is that the adversary can target the rounds with redundant information in the relevant win-
dow. For instance, in the interactive coding scheme of [Hae14], the rounds with control
information are in predetermined positions of the encoded protocol, and so, the adversary
knows exactly which locations to corrupt.

Our idea for overcoming the aforementioned limitations in the case of an oblivious
adversarial channel is to employ some type of information hiding to hide the locations of
the redundant rounds carrying control/verification information. In particular, we random-
ize the locations of control information bits within the output protocol, which allows us to
guard against attacks that target solely the redundant information. In order to allow for this
synchronized randomization in the standard private randomness model assumed in this
chapter, Alice and Bob use the standard trick of first running an error-corrected random-
ness exchange procedure that allows them to establish some shared randomness hidden
from the oblivious adversary that can be used for the rest of the simulation. Note that this
inherently does not work for a fully adaptive adversary, as the adversary can adaptively
choose which locations to corrupt based on any randomness that has been shared over the
channel. In fact, we believe that beating the 1−Ω(

√
ε) communication rate barrier against

fully adaptive adversaries may be fundamentally impossible for precisely this reason.

Information hiding, while absolutely crucial, does not, however, make use of a larger
average message length which, according to the conjectures of [Hae14], is necessary to
beat the 1 − Ω(

√
ε) barrier. The idea we use for this, as already demonstrated in Section

4.5, is the use of blocking and the subsequent application of error-correcting codes on each
such block.

Unfortunately, the same argument as given above shows that a straightforward appli-
cation of block error-correcting codes, as done in Section 4.5, cannot work against an
oblivious adversarial channel. The reason is that in such a case, an application of system-
atic block error-correcting codes would be possible as well, and such codes again have
pre-specified positions of redundancy which can be targeted by the adversarial channel.
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In particular, one could again disable all redundant rounds including the non-systematic
parts of block error-correcting codes in a large window of (ε/ε′)N rounds and make the
remaining communication useless with few extra errors. More concretely, suppose that
one simply encodes all blocks of data with a standard block error-correcting code. For
such block codes, one needs to specify a priori how much redundancy should be added,
and the natural direction would be to set the relative distance to, say, 100ε given that one
wants to prepare against an error rate of ε. However, this would allow the adversary to
corrupt a constant fraction (e.g., 1/200) of error correcting codes beyond their distance,
thus making a constant fraction of the communicated information essentially useless. This
would lead to a communication rate of 1 − Θ(1). It can again be easily seen that in this
tradeoff, the best fixed relative distance one can choose for block error-correcting codes
is essentially

√
ε, which would lead to a rate loss of H(

√
ε) for the error-correcting codes

but would also allow the adversary to corrupt at most a
√
ε fraction of all codewords. This

would again lead to an overall communication rate of 1− Ω̃(
√
ε).

Our solution to the hurdle of having to commit to a fixed amount of redundancy in
advance is to use rateless error-correcting codes. Unlike block error-correcting codes
with fixed block length and minimum distance, rateless codes encode a message into a
potentially infinite stream of symbols such that having access to enough uncorrupted sym-
bols allows a party to decode the desired message with a resulting communication rate that
adapts to the true error rate without requiring a priori knowledge of the error rate. Since
it is not possible for Alice and Bob to know in advance which data bits the adversary will
corrupt, rateless codes allow them to adaptively adjust the amount of redundancy for each
communicated block, thereby allowing the correction of errors without incurring too great
a loss in the overall communication rate.

4.7 Main Result: Interactive Coding for Oblivious Ad-
versarial Errors

In this section, we develop our main result. We remind the reader that in the oblivious
adversarial setting assumed throughout the rest of Chapter 4, the adversary is allowed to
corrupt up to an ε fraction of the total number of bits exchanged by Alice and Bob. The
adversary commits to the locations of these bits before the start of the protocol. Alice and
Bob will use randomness in their encoding, and one asks for a coding scheme that allows
Alice and Bob to recover the transcript of the original protocol with exponentially high
probability in the length of the protocol (over the randomness that Alice and Bob use) for
any fixed error pattern chosen by the adversary.
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For simplicity in exposition, we assume that the input protocol is binary, so that the
simulating output protocol will also be binary. However, the results hold virtually as-is for
protocols over larger alphabet. We first provide a high-level overview of our construction
of an encoded protocol. The pseudocode of the algorithm appears in Figure 4.3.

4.7.1 High-Level Description of Coding Scheme

Let us describe the basic structure of our interactive coding scheme. Suppose Π is an n-
round binary input protocol with average message length ` ≥ poly(1/ε). Using Lemma 16,
we first produce a B-blocked binary protocol Πblk with n′ rounds that simulates Π.

Our encoded protocol Πoblivious
enc will begin by having Alice and Bob performing a ran-

domness exchange procedure. More specifically, Alice will generate some number of bits
from her private randomness and encode the random string using an error-correcting code
of an appropriate rate and distance. Alice will then transmit the encoding to Bob, who can
decode the received string. This allows Alice and Bob to maintain shared random bits.
The randomness exchange procedure is described in further detail in Section 4.7.3.

Next, Πoblivious
enc will simulate the B-sized blocks (which we call B-blocks) of Πblk in

order in a structured manner. Each B-block will be encoded as a string of 2B bits using
a rateless code, and the encoded string will be divided into chunks of size b < B. For a
detailed discussion on the encoding procedure via rateless codes, see Section 4.7.4.

Now, Πoblivious
enc will consist of a series of Niter iterations. Each iteration consists of

transmitting b′ rounds, and we call such a b′-sized unit a mini-block, where b′ > b. Each
mini-block will consist of b data bits, as well as b′ − b bits of control information. The
data bits in successive mini-blocks will taken from the successive b-sized chunks obtained
by the encoding under the rateless code. Meanwhile, the control information bits are sent
by Alice and Bob in order to check whether they are in sync with each other and to allow
a backtracking mechanism to tack place if they are not.

For a particular B-block that is being simulated, mini-blocks keep getting sent until
the receiving party of the B-block is able to decode the correct B-block, after which Alice
and Bob move on to the next B-block in Π.

In addition to data bits, each mini-block also contains b′−b bits of control information.
A party’s unencoded control information during a mini-block consists of some hashes of
his view of the current state of the protocol as well as some backtracking parameters. The
aforementioned quantities are encoded using a hash for verification as well as an error-
correcting code. Each party sends his encoded control information as part of each mini-
block. The locations of the control information within each mini-block will be randomized
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for the sake of information hiding, using bits from the shared randomness of Alice and
Bob. This is described in further detail in Section 4.8. Moreover, we note that the hashes
used for the control information in each mini-block are seeded using bits from the shared
randomness. The structure of each mini-block is shown in Figure 4.2.

After each iteration, Alice and Bob try to decode each other’s control information in
order to determine whether they are in sync. If not, the parties decide whether to backtrack
in a controlled manner (see Section 4.9 for details).

Throughout the protocol, Alice maintains a block index cA (which indicates which
block of Πblk she believes is currently being simulated), a chunk counter jA, a transcript
(of the blocks in Πblk that have been simulated so far) TA, a global counter m (indicat-
ing the number of the current iteration), a backtracking parameter kA, as well as a sync
parameter syncA. Similarly, Bob maintains cB, jB, TB, m, kB, and syncB.

Figure 4.2: Each B-block of Πblk gets encoded into chunks of size b using a rateless
code. Every b′-sized mini-block in Πoblivious

enc consists of the b bits of such a chunk, along
with (b′ − b)/2 bits of Alice’s control information and (b′ − b)/2 bits of Bob’s control
information. The positions of the control information within a mini-block are randomized.
Note that rounds with Alice’s control information are in green, while rounds with Bob’s
control information are in light blue.
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4.7.2 Parameters

We now set the parameters of the protocol. For convenience, we will define a loss param-
eter ε′ < ε. Our interactive coding scheme will incur a rate loss of Θ(ε′ polylog(1/ε′)),
in addition to the usual rate loss of Θ(H(ε)). Alice and Bob are free to decide on an ε′

based on what rate loss they are willing to tolerate in the interactive coding scheme. In
particular, note that if ε′ = Θ(ε2), then the rate loss of Θ(ε′ polylog(1/ε′)) is overwhelmed
by Θ(H(ε)). For the purposes of Theorem 22, it will suffice to take ε′ = Θ(ε2) at then
end, but for the sake of generality, we maintain ε′ as a separate parameter.

We now take the average message length threshold to be Ω(1/ε′3), i.e., we assume
that our input protocol Π has average message length ` = Ω(1/ε′3). Then, Π has at most
alt = n/` = O(nε′3) alternations. Moreover, we take B = Θ(1/ε′2) and b = s = Θ(1/ε′),
with B = sb. Then, by Lemma 16, note that n′ ≤ n+ alt ·B = n(1 +O(ε′)).

We also take b′ = b + 2c log(1/ε′), so that within each b′-sized mini-block, each party
transmits c log(1/ε′) bits of (encoded) control information.

Finally, we take Niter = n′

b
(1 + Θ(ε log(1/ε)) iterations. This will guarantee, with high

probability, that at the end of the protocol, Alice and Bob have successfully simulated all
blocks of Πblk, and therefore, Π. Also, it should be noted that we append trivial blocks of
zeros (sent by, say, Alice) to the end of Πblk to simulate in case Πoblivious

enc ever runs out of
blocks of Πblk to simulate (because it has reached the bottom of the protocol tree) before
Niter iterations of Πoblivious

enc have been executed.

4.7.3 Randomness Exchange

Alice and Bob will need to have some number of shared random bits throughout the course
of the protocol. The random bits will be used for two main purposes: information hiding
and seeding hash functions, which will be discussed in Section 4.8. As it turns out, it will
suffice for Alice and Bob to have l′ = O(nε′ polylog(1/ε′)) shared random bits for the
entirety of the protocol, using some additional tricks.

Thus, in the private randomness model, it suffices for Alice to generate the necessary
number of random bits and transmit them to Bob using an error-correcting code. More pre-
cisely, Alice generates a uniformly random string str ∈ {0, 1}l′ , uses an error-correcting
code Cexchange : {0, 1}l′ → {0, 1}10εNiterb

′ of relative distance 2/5 to encode str, and trans-
mits the encoded string to Bob. Since the adversary can corrupt only at most ε fraction of
all bits, the transmitted string cannot be corrupted beyond half the minimum distance of
Cexchange. Hence, Bob can decode the received string and determine str.
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Note that the exchange of randomness via the codeword in Cexchange results in a rate
loss of Θ(ε), which is still overwhelmed by Θ(H(ε)).

4.7.4 Sending Data Bits Using “Rateless” Error-Correcting Codes

To transmit data from blocks of Πblk, we will use an error-correcting code that has in-
cremental distance properties. One can think of this as a rateless code with minimum
distance properties. Recall that b = s = Θ(1/ε′) and B = sb. In particular, we require an
error-correcting code Crateless : {0, 1}B → {0, 1}2B for which the output is divided in to
2s chunks of b bits each such that the code restricted to any contiguous block (with cyclic
wrap-around) of > s chunks has a certain guaranteed minimum distance. The following
lemma guarantees the existence of such a code.

Lemma 17. For sufficiently large b, s, there exists an error-correcting code C : {0, 1}sb →
{0, 1}2sb such that for any a = 0, 1, . . . , 2s − 1 and j = s + 1, s + 2, . . . , 2s, the code
Ca,j : {0, 1}sb → {0, 1}jb formed by restricting C to the bits ab, ab + 1, . . . , ab + jb − 1

(modulo 2sb) has relative distance at least δj = H−1
(
j−s
j
− 1

4s

)
, while C has relative

distance at least δ2s = 1
15

. (Here, H−1 denotes the unique inverse of H that takes values
in [0, 1/2].)

Proof of Lemma 17. We use a slight modification of the random coding argument that is
often used to establish the Gilbert-Varshamov bound. Suppose we pick a random linear
code. For s < j ≤ 2s, let us consider the probability Pa,j that the resulting Ca,j does
not have relative distance at least δj . Consider any codeword y ∈ {0, 1}jb in Ca,j . The
probability that y has Hamming weight less than δj is at most 2−jb(1−H(δj)). Thus, by
the union bound, we have that the probability that Ca,j contains a codeword of Hamming
weight less than δj is at most

Pa,j = 2sb · 2−jb(1−H(δj)) = 2sb−jb(1− j−s
j

+ 1
4s)

= 2−jb/4s

≤ 2−b/4.

Similarly, P , the probability that C contains a codeword of Hamming weight less than 2
15
s,

is at most

P ≤ 2sb · 2−2sb(1−H(2/15)) ≤ 2−sb/4 ≤ 2−b/4.
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Therefore, by another application of the union bound, the probability that some Ca,j or
C does not have the required relative distance is at most

P +
∑

0≤a≤2s−1
s<j≤2s

Pa,j ≤ (2s2 + 1) · 2−b/4 < 1

for sufficiently large b, s.

Remark 25. For our purposes, b = s = Θ(1/ε′). Therefore, for suitably small ε′ > 0,
there exists such an error-correcting code C as guaranteed by Lemma 17. Moreover, it is
possible to find a such a code by brute force in time poly(1/ε′).

Thus, Alice and Bob can agree on a fixed error-correcting code Crateless of the type
guaranteed by Lemma 17 prior to the start of the algorithm. Now, let us describe how data
bits are sent during the iterations of Πoblivious

enc . The blocks of Πoblivious
enc are simulated in

order as follows.

First, suppose Alice’s block index cA indicates a B-block in Πblk during which Alice
is the sender. Then in Πoblivious

enc , Alice will transmit up to a maximum of 2s chunks (of
size b) that will encode the data x from that block. More specifically, Alice will compute
y = Crateless(x) ∈ {0, 1}2B and decompose it as y = y0 ◦ y1 ◦ · · · ◦ y2s−1, where ◦ denotes
concatenation and y0, y1, . . . , y2s−1 ∈ {0, 1}b.

Recall that each mini-block of Πoblivious
enc contains b data bits (in addition to b′−b control

bits). Thus, Alice can send each yi as the data bits of a mini-block. The chunk that Alice
sends in a given iteration depends on the global counter m. In particular, Alice always
sends the chunk ym mod 2s. Moreover, Alice keeps a chunk counter jA, which is set to 0
during the first iteration in which she transmits a chunk from y and then increases by 1
during each subsequent iteration (until jA = 2s, at which point jA stops increasing).

On the other hand, suppose Alice’s block index cA indicates a B-block in Πblk during
which Alice is the receiver. Then, Alice listens for data during each mini-block. Alice
stores her received b-sized chunks as g̃0, g̃1, . . . and increments her chunk counter jA after
each iteration to keep track of how many chunks she has stored, along with a, an index
indicating which ya she expects the first chunk g̃0 to be. Once Alice has received more
than s chunks (i.e., jA > s), she starts to keep an estimate x̃ of the data x that Bob is
sending that Alice has by decoding g̃0 ◦ g̃1 ◦ · · · ◦ g̃jA−1 to the nearest codeword of Cratelessa,jA

.
This estimate is updated after each subsequent iteration. As soon as Alice undergoes an
iteration in which she receives valid control information suggesting that x̃ = x (if Alice’s
estimate x̃ matches the hash of x that Bob sends as control information, see Section 4.8),
she advances her block index cA and appends her transcript TA with x̃.
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Note that it is possible that jA reaches 2s and Alice has not yet received valid control
information suggesting that he has decoded x. In this case, Alice resets jA to 0 and also
resets a to the current value of m, thereby restarting the listening process. Also, during
any iteration, if Alice receives control information suggesting that jB < jA (i.e., Alice
has been listening for a greater number of iterations than Bob has been transmitting), then
again, Alice resets jA and a and restarts the process.

Remark 26. The key observation is that using a rateless code allows the amount of re-
dundancy in data that the sender sends to adapt to the number of errors being introduced
by the adversary, rather than wasting redundant bits or not sending enough of them.

4.8 Control Information

Alice’s unencoded control information in the mth iteration consists of (1.) a hash h(m)
A,c =

hash(cA, S) of the block index cA, (2.) a hash h(m)
A,x = hash(x, S) of the data in the current

block of Πblk being communicated, (3.) a hash h(m)
A,k = hash(kA, S) of the backtracking

parameter kA, (4.) a hash h
(m)
A,T = hash(TA, S) of Alice’s transcript TA, (5.) a hash

h
(m)
A,MP1 = hash(TA[1, MP1], S) of Alice’s transcript up till the first meeting point, (6.) a

hash h(m)
A,MP2 = hash(TA[1, MP2], S) of Alice’s transcript up till the second meeting point,

(7.) the chunk counter jA, and (8.) the sync parameter syncA. Here, S refers to a string
of fresh random bits used to seed the hash functions (note that S is different for each
instance). Thus, we write Alice’s unencoded control information as

ctrl
(m)
A =

(
h

(m)
A,c , h

(m)
A,x , h

(m)
A,k , h

(m)
A,T , h

(m)
A,MP1, h

(m)
A,MP2, jA, syncA

)
.

Bob’s unencoded control information ctrl
(m)
B is similar in the analogous way.

For the individual hashes, we can use the following Inner Product hash function hash :
{0, 1}l × {0, 1}r → {0, 1}p, where r = lp:

hash(X,R) =
(
〈X,R[1,l]〉, 〈X,R[l+1,2l]〉, . . . , 〈X,R[lp−(l−1),lp]〉

)
,

where the first argument X is the quantity to be hashed, and the second argument R is a
random seed. This choice of hash function guarantees the following property:

Property 4.8.1. For any X, Y ∈ {0, 1}l such that X 6= Y , we have that

Pr
R∼Unif({0,1}r)

[hash(X,R) = hash(Y,R)] ≤ 2−p.
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Now, we wish to take output size p = O(log(1/ε′)) for each of the hashes so that the
total size of each party’s control information in any iteration is O(log(1/ε′)). Note that
some of the quantities we hash (e.g., TA, TB) actually have size l = Ω(n). Thus, for the
corresponding hash function, we would naively require r = lp = Ω(n log(1/ε′)) fresh
bits of randomness for the seed (per iteration), for a total of Ω(Nitern log(1/ε′)) bits of
randomness. However, as described in Section 4.7.3, Alice and Bob only have access to
O(nε′polylog(1/ε′)) bits of shared randomness!

To get around this problem, we make use of δ-biased sources to minimize the amount
of randomness we need. In particular, we can use the δ-biased sample space of [NN93]
to stretch Θ(log(L/δ)) independent random bits into a string of L = Θ(Nitern log(1/ε′))
pseudorandom bits that are δ-biased. We take δ = 2−Θ(Niter·p). The sample space guaran-
tees that the L pseudorandom bits are δΘ(1)-statistically close to being k-wise independent
for k = log(1/δ) = Θ(Niter · p) = Θ(Niter log(1/ε′)). Moreover, the Inner Product Hash
Function satisfies the following modified collision property, which follows trivially from
Property 4.8.1 and the definition of δ-bias:

Property 4.8.2. For any X, Y ∈ {0, 1}l such that X 6= Y , we have that

Pr
R

[hash(X,R) = hash(Y,R)] ≤ 2−p + δ,

where R is sampled from a δ-biased source.

As it turns out, this property is good enough for our purposes. Thus, after the ran-
domness exchange, Alice and Bob can simply take Θ(log(L/δ)) bits from str and stretch
them into an L-bit string strstretch as described. Then, for each iteration, Alice and Bob
can simply seed their hash functions using bits from strstretch.

4.8.1 Encoding and Decoding Control Information

Recall that during the mth iteration, Alice’s (unencoded) control information is ctrl
(m)
A ,

while Bob’s (unencoded) control information is ctrl
(m)
B . In this section, we describe the

encoding and decoding functions that Alice and Bob use for their control information. We
start by listing the properties we desire.

Definition 21. SupposeX ∈ {0, 1}l and V ∈ {∗,¬, 0, 1}l for some l > 0. Then, we define
CorruptV (X) = Y ∈ {0, 1}l as follows:

Yi =


Vi if Vi ∈ {0, 1}
Xi ⊕ 1 if Vi = ¬
Xi if Vi = ∗

.
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Moreover, we define wt(V ) to be the number of coordinates of V that are not equal to ∗.

Remark 27. Note that V corresponds to an error pattern. In particular, ∗ indicates a
position that is not corrupted, while ¬ indicates a bit flip, and 0/1 indicate a bit that is
fixed to the appropriate symbol (see Section 4.3.1 for details about flip and replace errors).
The function CorruptV applies the error pattern V to the bit string given as an argument.
Also, wt(V ) corresponds to the number of positions that are targeted for corruption.

We require a seeded encoding function Enc : {0, 1}l × {0, 1}r → {0, 1}o as well as a
seeded decoding function Dec : {0, 1}o×{0, 1}r → {0, 1}l ∪{⊥} such that the following
property holds:

Property 4.8.3. The following holds:

1. For any X ∈ {0, 1}l, R ∈ {0, 1}r, and V ∈ {∗,¬, 0, 1}o such that wt(V ) < 1
8
o,

Dec(CorruptV (Enc(X,R)), R) = X.

2. For any X ∈ {0, 1}l and V ∈ {0, 1}o such that wt(V ) ≥ 1
8
o,

Pr
R∼Unif({0,1}r)

[Dec(CorruptV (Enc(X,R)), R) 6∈ {X,⊥}] ≤ 2−Ω(l).

Remark 28. The second argument of Enc and Dec will be a seed, which is generated
by taking r fresh bits from the shared randomness of Alice and Bob. A decoding output
of ⊥ indicates a decoding failure. Moreover, (1.) of Property 4.8.3 guarantees that a
party can successfully decode the other party’s control information if at most a constant
fraction of the encoded control information symbols are corrupted (this is then used to
prove Lemmas 18 and 19). On the other hand, (2.) of Property 4.8.3 guarantees that
if a larger fraction of the encoded control information symbols are corrupted, then the
decoding party can detect any possible corruption with high probability (this is then used
to establish Lemma 20).

We now show how to obtain Enc, Dec that satisfy Property 4.8.3. The idea is that
Enc consists of a three-stage encoding: (1.) append a hash value to the unencoded control
information, (2.) encode the resulting string using an error-correcting code, and (3.) XOR
each output bit with a fresh random bit taken from the shared randomness.

For our purposes, we want l = O(log(1/ε′)) to be the number of bits in ctrl
(m)
A (or

ctrl
(m)
B ) and o = c log(1/ε′).

First, we choose a hash function h : {0, 1}l×{0, 1}t → {0, 1}o′ that has the following
property:
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Property 4.8.4. Suppose X,U ∈ {0, 1}l, where U is not the all-zeros vector, and W ∈
{0, 1}o′ . Then,

Pr
R∼Unif({0,1}t)

[h(X + U,R) = h(X,R) +W ] ≤ 2−o
′
.

In particular, we can use the simple Inner Product Hash Function with t = l · o′ and
o′ = Θ(log(1/ε′)):

h(X,R) =
(〈
X,R[1,l]

〉
,
〈
X,R[l+1,2l]

〉
, . . . ,

〈
X,R[l·o′−(l−1),l·o′]

〉)
.

Next, we choose a linear error-correcting code Chash : {0, 1}l+o′ → {0, 1}o of constant
relative distance 1/4 and constant rate.

We now take r = t+ o and define Enc as

Enc(X,R) = Chash(X ◦ h(X,R[o+1,r]))⊕R[1,o].

Moreover, we define Dec as follows: Given Y,R, let X ′ be the decoding of Y + R[1,o]

under Chash (using the nearest codeword of Chash and then inverting the map Chash). We
then define

Dec(Y,R) =

{
X ′[1,l] if h(X ′[1,l], R[o+1,r]) = X ′[l+1,l+o′]

⊥ if h(X ′[1,l], R[o+1,r]) 6= X ′[l+1,l+o′]

.

Remark 29. Note that we have r = O(log2(1/ε′)), which means that over the course of
the protocol Πoblivious

enc , we will need O(Niterr) = O(nε′ log2(1/ε′)) fresh random bits for
the purpose of encoding and decoding control information.

We now prove that the above Enc, Dec satisfy Property 4.8.3.

Proof. Note that if V ∈ {∗,¬, 0, 1}o satisfies wt(V ) < 1
8
o, then note that the Ham-

ming distance between CorruptV (Enc(X,R)) and Enc(X,R) is less than 1
8
o. Hence,

since Chash has relative distance 1/4, it follows that under the error-correcting code Chash,
CorruptV (Enc(X,R)) ⊕ R[1,o] and Enc(X,R) ⊕ R[1,o] decode to the same element of
{0, 1}l+o′ , namely, X ◦ h(X,R). Part (1.) of Property 4.8.3 therefore holds.

Now, let us establish (2.) of Property 4.8.3. Consider a V ∈ {0, 1}o with wt(V ) ≥ 1
8
o.

Now, let us enumerate W (1),W (2), . . . ,W (2wt(V )) ∈ {0, 1}o as the set of all 2wt(V ) vectors
in {0, 1}o which have a 0 in all coordinates where V has a ∗. Now, observe that the
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distribution of CorruptV (Enc(X,R)) over R1, R2, . . . , Ro taken i.i.d. uniformly in {0, 1}
is identical to the distribution of

Chash(X ◦ h(X,R[o+1,r]))⊕W,

where W is chosen uniformly from
{
W (1),W (2), . . . ,W (2wt(V ))

}
. Now, note that for each

W (i), there exists a corresponding U (i) ∈ {0, 1}o+l such that under the nearest-codeword
decoding of Chash,

Chash(X ◦ h(X,R[o+1,r])))⊕W (i)

decodes to (X ◦ h(X,R[o+1,r]))⊕ U (i). Thus, we have that

Pr
R∼Unif({0,1}r)

[Dec(CorruptV (Enc(X,R)), R) 6∈ {X,⊥}]

= Pr
Ro+1...,Rr∼Unif({0,1})

1≤i≤2wt(V )

[
U (i) 6= (0, 0, . . . , 0) AND h

(
X ⊕ U (i)

[1,l]

)
= h

(
X,R[o+1,r]

)
⊕ U (i)

[l+1,l+o]

]
,

which, by Property 4.8.4, is at most 2−o
′ , thereby establishing (2.) of Property 4.8.3.

4.8.2 Information Hiding

We now describe how the encoded control information bits are sent within each mini-
block. Recall that in the mth iteration, Alice chooses a fresh random seed RA taken from
the shared randomness str and computes her encoded control information Enc(ctrl

(m)
A , RA).

Similarly, Bob choosesRB and computes Enc(ctrl(m)
B , RB). Recall thatRA, RB are known

to both Alice and Bob.

As discussed previously, the control information bits in each mini-block are not sent
contiguously. Rather, the locations of the control information bits within each b′-sized
mini-block are hidden from the oblivious adversary by using the shared randomness to
agree on a designated set of 2c log(1/ε′) locations. In particular, the locations of the control
information bits sent by Alice and Bob during the mth iteration are given by the variables
zAm,i and zBm,i (i = 1, . . . , c log(1/ε′)), respectively. For each m, these variables are chosen
randomly at the beginning usingO(log2(1/ε′)) fresh random bits from the preshared string
str. Since there are Niter iterations, this will require a total of Θ(Niter · log2(1/ε′)) =
Θ(nε′ log2(1/ε′)) random bits from str.

Thus, Alice sends the c log(1/ε′) bits of Enc(ctrl(m)
A , RA) in positions zAm,i (i = 1, . . . , c log(1/ε′))

of the mini-block of themth iteration, and similarly, Bob sends the bits of Enc(ctrl(m)
B , RB)
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in positions zBm,i (i = 1, . . . , c log(1/ε′)). Meanwhile, Bob listens for Alice’s encoded con-
trol information in positions zAm,i of the mini-block and assembles the received bits as a
string Y ∈ {0, 1}c log(1/ε′), after which Bob tries to decode Alice’s control information by
computing Dec(Y,RA). Similarly, Alice listens for Bob’s encoded control information in
locations zBm,i and tries to decode the received bits.

After each iteration, Alice and Bob use their decodings of each other’s control infor-
mation to decide how to proceed. This is described in detail in Section 4.9.

Remark 30. The information hiding provided by the randomization of zAm,i and zBm,i (i =
1, . . . , c log(1/ε′)) ensures that an oblivious adversary generally needs to corrupt a con-
stant fraction of bits in a mini-block in order to corrupt a constant fraction of either party’s
encoded control information bits in that mini-block. Along with Property 4.8.3, this state-
ment is used to prove Lemma 18.

4.9 Flow of the Protocol and Backtracking

Throughout Πoblivious
enc , each party maintains a state that indicates whether both parties are

in sync as well as parameters that allow for backtracking in the case that the parties are
not in sync. After each iteration, Alice and Bob use their decodings of the other party’s
control information from that iteration to update their states. We describe the flow of the
protocol in detail.

Alice and Bob maintain binary variables syncA and syncB, respectively, which indicate
the players’ individual perceptions of whether they are in sync. Note that syncA = 1
implies kA = 1 (and similarly, syncB = 1 implies kB = 1). Moreover, in the case that
syncA = 1 (resp. syncB = 1), the variable speakA (resp. speakB) indicates whether Alice
(resp. Bob) speaks in the cth

A (resp. cth
B) block of Πblk, based on the transcript thus far.

Let us describe the protocol from Alice’s point of view, as Bob’s procedure is analo-
gous. Note that after each iteration, Alice attempts to decode Bob’s control information
for that iteration. We say that Alice successfully decodes Bob’s control information if the
decoding procedure (see Section 4.8.1) does not output⊥. In this case, we write the output
of the control information decoder (for the mth iteration) as

c̃trl
(m)

B =
(
h̃

(m)
B,c , h̃

(m)
B,x, h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,MP1, h̃

(m)
B,MP2, j̃B, s̃yncB

)
.

We now split into two cases, based on whether syncA = 1 or syncA = 0.

syncA = 1:
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The general idea is that whenever Alice thinks she is in sync with Bob (i.e., syncA = 1),
she either (a.) listens for data bits from Bob while updating her estimate x̃ of block cA of
Πblk, if speakA = 0, or (b.) transmits, as data bits of the next iteration, the (m mod 2s)-th
chunk of the encoding of x (the cA-th B-block of Πblk) under Crateless, if speakA = 1 (see
Section 4.7.4 for details).

If Alice is listening for data bits, then Alice expects that kA = kB = 1 and either (1.)
cA = cB, TA = TB or (2.) cA = cB + 1, TB = TA[1 . . . (cB − 1)B]. Condition (1.) is
expected to hold if Alice has still not managed to decode the B-block x that Bob is trying
to relay, while (2.) is expected if Alice has managed to decode x and has advanced her
transcript but Bob has not yet realized this.

On the other hand, if Alice is transmitting data bits, then Alice expects that kA = kB =
1, as well as either (1.) cA = cB, TA = TB, or (2.) cB = cA + 1, TB = TA ◦ x, or (3.)
cA = cB + 1, TB = TA[1 . . . (cB − 1)B]. Condition (1.) is expected to hold if Bob is still
listening for data bits and has not yet decoded Alice’s x, while (2.) is expected to hold if
Bob has already managed to decode x and advanced his block index and transcript, and
(3.) is expected to hold if Bob has been transmitting data bits to Alice (for the (cA − 1)-th
B-block of Πblk), but Bob has not realized that Alice has decoded the correct B-block and
moved on.

Now, if Alice manages to successfully decode Bob’s control information in the most
recent iteration, then Alice checks whether the hashes h̃(m)

B,c , h̃(m)
B,k , h̃(m)

B,T , h̃(m)
B,x, as well as

s̃yncB are consistent with Alice’s expectations (as outlined in the previous two paragraphs).
If not, then Alice sets syncA = 0. Otherwise, Alice proceeds normally.

Remark 31. Note that in general, if a party is trying to transmit the contents x of aB-block
and the other party is trying to listen for x, then there is a delay of at least one iteration
between the time that the listening party decodes x and the time that the transmitting party
receives control information suggesting that the other party has decoded x. However, since
b/B = O(ε′), the rate loss due to this delay turns out to be just O(ε′).

syncA = 0:

Now, we consider what happens when Alice believes she is out of sync (i.e., syncA =
0). In this case, Alice uses a meeting point based backtracking mechanism along the lines
of [Sch92] and [Hae14]. We sketch the main ideas below:

Specifically, Alice keeps a backtracking parameter kA that is initialized as 1 when
Alice first believes she has gone out of sync and increases by 1 each iteration thereafter.
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(Note that kA is also maintained when syncA = 1, but it is always set to 1 in this case.)
Alice also maintains a counter EA that counts the number of discrepancies between kA
and kB, as well as meeting point counters v1 and v2. The counters EA, v1, v2 are initialized
to zero when Alice first sets syncA to 0.

The parameter kA measures the amount by which Alice is willing to backtrack in her
transcript TA. More specifically, Alice creates a scale k̃A = 2blog2 kAc by rounding kA to
the largest power of two that does not exceed it. Then, Alice defines two meeting points
MP1 and MP2 on this scale to be the two largest multiples of k̃AB not exceeding |TA|.
More precisely, MP1 = k̃AB

⌊
|TA|
kAB

⌋
and MP2 = MP1 − k̃AB. Alice is willing to rewind

her transcript to either one of TA[1 . . . MP1] and TA[1 . . . MP2], the last two positions in her
transcript where the number of B-blocks of Πblk that have been simulated is an integral
multiple of k̃A.

If Alice is able to successfully decode Bob’s control information, then she checks h̃(m)
B,k .

If it does not agree with the hash of kA (suggesting that kA 6= kB), then Alice increments
EA. Alice also increments EA if s̃yncB = 1.

Otherwise, if h̃(m)
B,k matches her computed hash of kA, then Alice checks whether either

of h̃(m)
B,MP1, h̃

(m)
B,MP2 matches the appropriate hash of TA[1 . . . MP1]. If so, then Alice increments

her counter v1, which counts the number of times her first meeting point matches one of
the meeting points of Bob. If not, then Alice then checks whether either of h̃(m)

B,MP1, h̃
(m)
B,MP2

matches the hash of TA[1 . . . MP2] and if so, she increments her counter v2, which counts
the number of times her second meeting point matches one of the meeting points of Bob.

In the case that Alice is not able to successfully decode Bob’s control information from
the most recent iteration (i.e., the decoder outputs ⊥), she increments EA.

Regardless of which of the above scenarios holds, Alice then increases kA by 1 and
updates k̃A, MP1, and MP2 accordingly.

Next, Alice checks whether to initiate a transition. Alice only considers making a
transition if kA = k̃A ≥ 2 (i.e., kA is a power of two and is ≥ 2). Alice first decides
whether to initiate a meeting point transition. If v1 ≥ 0.2kA, then Alice rewinds TA to
TA[1 . . . MP1] and resets kA, k̃A, syncA to 1 and EA, v1, v2 to 0. Otherwise, if v2 ≥ 0.2kA,
then Alice rewinds TA to TA[1 . . . MP2] and again resets kA, k̃A, syncA to 1 and EA, v1, v2

to 0.

If Alice has not made a meeting point transition, then Alice checks whether EA ≥
0.2kA. If so, Alice undergoes an error transition, in which she simply resets kA, k̃A, syncA
to 1 and EA, v1, v2 to 0 (without modifying TA).
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Finally, if kA = k̃A ≥ 2 but Alice has not made any transition, then she simply resets
v1, v2 to 0.

Remark 32. The idea behind meeting point transitions is that if the transcripts TA and TB
have not diverged too far, then there is a common meeting point up to which the transcripts
of Alice and Bob agree. Thus, during the control information of each iteration, both Alice
and Bob send hash values of their two meeting points in the hope that there is a match.
For a given scale k̃A, there are k̃A hash comparisons that are generated. If at least a
constant fraction of these comparisons result in a match, then Alice decides to backtrack
and rewind her transcript to the relevant meeting point. This ensures that in order for an
adversary to cause Alice to backtrack incorrectly, he must corrupt the control information
in a constant fraction of iterations.

4.10 Pseudocode

We are now ready to provide the pseudocode for the protocol Πoblivious
enc , which follows

the high-level description outlined in Section 4.7.1 and is shown in Figure 4.3. The pseu-
docode for the helper functions AliceControlFlow, AliceUpdateSyncStatus, AliceUpdateControl,
AliceDecodeControl, AliceAdvanceBlock, AliceUpdateEstimate, and AliceRollback
for Alice is also displayed. Bob’s functions BobControlFlow, BobUpdateSyncStatus,
BobUpdateControl, BobDecodeControl, BobAdvanceBlock, BobUpdateEstimate, and
BobRollback are almost identical, except that “A” subscripts are replaced with “B” and
are thus omitted. Furthermore, the function InitializeSharedRandomness is the same
for Alice and Bob.

4.11 Analysis of Coding Scheme for Oblivious Adversar-
ial Channels

Now, we show that the coding scheme presented in Figure 4.3 allows one to tolerate an
error fraction of ε under an oblivious adversary with high probability.
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Global parameters

b′ = b+ 2c log(1/ε′) Πblk = B-blocked simulating protocol for Π (see Lemma 16)
Niter = n′(1 + Θ(ε log(1/ε)))/b l′ = Θ(nε′ polylog(1/ε′))

ε′ = ε2 Chash : {0, 1}Θ(log(1/ε′)) → {0, 1}Θ(log(1/ε′)) (see Section 4.8.1)
b = s = Θ(1/ε′) Cexchange : {0, 1}l

′
→ {0, 1}10εNiterb

′
(see Section 4.7.3)

B = sb Crateless : {0, 1}B → {0, 1}2B (see Lemma 17)

Alice Bob

—————– Random string exchange —————–

Choose a random string str ∈ {0, 1}l′

w ← Cexchange(str) w′ ← nearest codeword of Cexchange to w̃
str← (Cexchange)−1(w′)

—————– Initialization —————–

TA ← ∅; x← nil
kA, k̃A, cA, syncA ← 1
EA, v1, v2, jA, speakA, a,m, MP1, MP2← 0

InitializeSharedRandomness()

if Alice speaks in the first block of Πblk then
speakA ← 1
x← contents of first block of Πblk

y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)

end if

TB ← ∅; x← nil
kB , k̃B , cB , syncB ← 1
EB , v1, v2, jB , speakB , a,m, MP1, MP2← 0

InitializeSharedRandomness()

if Bob speaks in the first block of Πblk then
speakB ← 1
x← contents of first block of Πblk

y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)

end if

—————– Block transmission (repeat Niter times) —————–

AliceUpdateControl()

Send r[i] in slot zAm,i for i = 1, . . . , (b′ − b)/2
Listen during slots z̃Bm,i for i = 1, . . . , (b′ − b)/2
and write bits to r̃

if syncA = 1 and speakA = 1 then
Send bits of ym mod 2s in the b remaining slots

else
Listen during b remaining slots and store as gA

end if

AliceControlFlow()

BobUpdateControl()

Send r[i] in slot zBm,i for i = 1, . . . , (b′ − b)/2
Listen during slots z̃Am,i for i = 1, . . . , (b′ − b)/2
and write bits to r̃

if syncB = 1 and speakB = 1 then
Send bits of ym mod 2s in the b remaining slots

else
Listen during b remaining slots and store as gB

end if

BobControlFlow()

—————– End of repeat —————–

w
w̃

Figure 4.3: Encoded protocol Πoblivious
enc for tolerating oblivious adversarial errors.
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Algorithm 1 Procedure for Alice to process received data bits and control info from a
mini-block
1: function ALICECONTROLFLOW

B Update phase:

2: c̃trl
(m)

B ← ALICEDECODECONTROL

3: if c̃trl
(m)

B 6=⊥ then

4:
(
h̃

(m)
B,c , h̃

(m)
B,x, h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,MP1, h̃

(m)
B,MP2, j̃B , s̃yncB

)
← c̃trl

(m)

B

5: if syncA = 0 then
6: if h̃(m)

B,k 6= hash
(m)
B,k(kA) or s̃yncB = 1 then

7: EA ← EA + 1
8: else if hash(m)

B,MP1(TA[1 . . . MP1]) = h̃
(m)
B,MP1 or hash(m)

B,MP2(TA[1 . . . MP1]) = h̃
(m)
B,MP2 then

9: v1 ← v1 + 1
10: else if hash(m)

B,MP1(TA[1 . . . MP2]) = h̃
(m)
B,MP1 or hash(m)

B,MP2(TA[1 . . . MP2]) = h̃
(m)
B,MP2 then

11: v2 ← v2 + 1
12: end if
13: end if
14: else if syncA = 0 then
15: EA ← EA + 1
16: end if

17: if syncA = 0 then
18: kA ← kA + 1
19: k̃A ← 2blog2 kAc

20: end if

21: ALICEUPDATESYNCSTATUS

B Transition phase:

22: if kA = k̃A ≥ 2 and v1 ≥ 0.2kA then
23: ALICEROLLBACK(MP1)
24: else if kA = k̃A ≥ 2 and v2 ≥ 0.2kA then
25: ALICEROLLBACK(MP2)
26: else if kA = k̃A ≥ 2 and EA ≥ 0.2kA then
27: a← (m+ 1) mod 2s

28: kA, k̃A, syncA ← 1
29: EA, v1, v2, jA ← 0
30: else if kA = k̃A ≥ 2 then
31: v1, v2 ← 0
32: end if

33: MP1← k̃AB
⌊
|TA|
k̃AB

⌋
34: MP2← MP1− k̃AB
35: m← m+ 1
36: end function
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Algorithm 2 Procedure for Alice to update sync status
1: function ALICEUPDATESYNCSTATUS
2: syncA ← 0

3: if kA = 1 then
4: if c̃trl

(m)

B 6= ⊥ and h̃(m)
B,k = hash

(m)
B,k(1) then

5: if s̃yncB = 0 then
6: syncA ← 1; jA ← 0; a← (m+ 1) mod 2s

7: else if hash(m)
B,c (cA) = h̃

(m)
B,c and hash(m)

B,T (TA) = h̃
(m)
B,T then

8: syncA ← 1
9: if speakA = 0 then

10: if jA ≤ j̃B then
11: ALICEUPDATEESTIMATE
12: else
13: jA ← 0; a← (m+ 1) mod 2s
14: end if
15: else
16: jA ← min{jA + 1, 2s}
17: end if
18: else if speakA = 1 and hash(m)

B,c (cA + 1) = h̃
(m)
B,c and hash

(m)
B,T (TA ◦ x) = h̃

(m)
B,T then

19: syncA ← 1
20: ALICEADVANCEBLOCK
21: else if Bob speaks in block (cA − 1) of Πblk and hash

(m)
B,c (cA − 1) = h̃

(m)
B,c and

hash
(m)
B,T (TA[1 . . . (cA − 2)B]) = h̃

(m)
B,T and hash(m)

B,x(TA[((cA − 2)B + 1) . . . (cA − 1)B]) = h̃
(m)
B,x

then
22: syncA ← 1
23: if speakA = 0 then
24: jA ← 0; a← (m+ 1) mod 2s
25: else
26: jA ← min{jA + 1, 2s}
27: end if
28: end if
29: else if c̃trl

(m)

B = ⊥ then
30: syncA ← 1
31: if speakA = 0 then
32: if jA 6= 0 then
33: ALICEUPDATEESTIMATE
34: else
35: a← (m+ 1) mod 2s
36: end if
37: else
38: jA ← min{jA + 1, 2s}
39: end if
40: end if
41: end if
42: end function
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Algorithm 3 Procedure for Alice to update control information
1: function ALICEUPDATECONTROL
2: ctrl

(m)
A ← (hashA,m(cA), hash

(m)
A,x(x), hash

(m)
A,k (kA), hash

(m)
A,T (TA), hash

(m)
A,MP1(TA[1 . . . MP1]),

hash
(m)
A,MP2(TA[1 . . . MP2]), jA, syncA)

3: r← Chash
(
ctrl

(m)
A ◦ hash(m)

A,ctrl

(
ctrl

(m)
A

))
⊕ V (m)

A

4: end function

Algorithm 4 Procedure for Alice to decode control information sent by Bob
1: function ALICEDECODECONTROL
2: z← decoding of r̃⊕ V (m)

B under Chash (inverse of Chash applied to nearest codeword)
3: zc ◦ zh ← z, where zc has length (b′ − b)/2

4: if hash(m)
B,ctrl(z

c) = zh then
5: return zc

6: else
7: return ⊥
8: end if
9: end function

Algorithm 5 Procedure for Alice to advance the block index and prepare for future trans-
missions
1: function ALICEADVANCEBLOCK
2: if speakA = 1 then
3: TA ← TA ◦ x
4: else
5: TA ← TA ◦ x̃
6: end if

7: cA ← cA + 1
8: jA ← 0

9: if Alice speaks in block cA of Πblk then
10: speakA ← 1
11: x← contents of block cA of Πblk

12: y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
13: else
14: speakA ← 0
15: a← (m+ 1) mod 2s
16: x← nil
17: end if
18: end function
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Algorithm 6 Procedure for Alice to update her estimate of the contents of the current
block based on past data blocks
1: function ALICEUPDATEESTIMATE
2: g̃jA ← gA
3: jA ← jA + 1

4: if jA > s then
5: x̃← result after decoding (g̃0, g̃1, . . . , g̃jA−1) via the nearest codeword in Cratelessa,jA

6: if hash(m)
B,x(x̃) = h̃

(m)
B,x then

7: ALICEADVANCEBLOCK
8: else if jA = 2s then
9: jA ← 0

10: a← (m+ 1) mod 2s
11: end if
12: end if
13: end function

Algorithm 7 Procedure for Alice to backtrack to a previous meeting point
1: function ALICEROLLBACK(MP)
2: TA ← TA[1 . . . MP]
3: cA ← MP

B + 1

4: kA, k̃A, syncA ← 1
5: EA, v1, v2, jA ← 0

6: if Alice speaks in block cA of Πblk then
7: speakA ← 1
8: x← contents of block cA of Πblk

9: y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
10: else
11: speakA ← 0
12: a← (m+ 1) mod 2s
13: x← nil
14: end if
15: end function
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Algorithm 8 Procedure for Alice and Bob to use exchanged random string to initialize
hash functions, information hiding mechanism, and encoding functions for control infor-
mation
1: function INITALIZESHAREDRANDOMNESS
2: p← Θ(log(1/ε′))
3: δ ← 2−Θ(Niter·p)

4: L← Θ(Nitern log(1/ε′))
5: Let str = strloc ◦ str′, where strloc is of length Θ(Niter · log2(1/ε′)) and str′ is of length

Θ(log(L/δ))
6: S ← δ-biased length L pseudorandom string derived from str′ (via the biased sample space of

[NN93])

B Generate locations for information hiding in each iteration:

7: for i = 0 to Niter − 1 do
8: Choose zAi,1, z

A
i,2, . . . , z

A
i,(b′−b)/2, z

B
i,1, z

B
i,2, . . . , z

B
i,(b′−b)/2 to be distinct numbers in

{1, 2, . . . , b′} using O(log2(1/ε′)) fresh random bits from strloc

9: end for

B Set up parameters for encoding control information during each iteration

10: for i = 0 to Niter − 1 do
11: V

(i)
A ← (b′ − b)/2 fresh random bits from strloc

12: V
(i)
B ← (b′ − b)/2 fresh random bits from strloc

13: Initialize hash(i)
A,ctrl, hash

(i)
B,ctrl to an inner product hash function with output length

Θ(log(1/ε′)) and seed fixed as Θ(log(1/ε′)) fresh random bits from strloc

14: end for

B Initialize hash functions for control information in each iteration:

15: for i = 0 to Niter − 1 do
16: Initialize hash(i)

A,c, hash
(i)
A,x, hash(i)

A,k, hash(i)
A,T , hash(i)

A,MP1, hash(i)
A,MP2, hash(i)

B,c, hash
(i)
B,x,

hash
(i)
B,k, hash(i)

B,T , hash(i)
B,MP1, hash(i)

B,MP2 to be inner product hash functions with output
length Θ(log(1/ε′)) and seed fixed using fresh random bits from S

17: end for
18: end function
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4.11.1 Protocol States and Potential Function

Let us define states for the encoded protocol Πoblivious
enc . First, we define

`+ = bmax{`′ ∈ [1,min{|TA|, |TB|}] : TA[1 . . . `′] = TB[1 . . . `′]c
`− = |TA|+ |TB| − 2`+.

In other words, `+ is the length of the longest common prefix of the transcripts TA and TB,
while `− is the total length of the parts of TA and TB that are not in the common prefix.
Also recall that δs+1, δs+2, . . . , δ2s are defined as in Lemma 17. Furthermore, we define
δ0, δ1, . . . , δs = 0 for convenience.

Now we are ready to define states for the protocol Πoblivious
enc as its execution proceeds.

Definition 22. At the beginning of an iteration (the start of the code block in Figure 4.3
that is repeated Niter times), the protocol is said to be in one of three possible states:

• Perfectly synced state: This occurs if syncA = syncB = 1, kA = kB = 1, `− = 0,
cA = cB, and jA ≥ jB if Alice is the sender in block cA = cB of Πblk (resp. jB ≥ jA
if Bob is the sender in B-block cA = cB of Πblk). In this case, we also define
j = min{jA, jB}.

• Almost synced state: This occurs if syncA = syncB = 1, kA = kB = 1, and one of
the following holds:

1. `− = B, cB = cA + 1, and TB = TA ◦ w, where w represents the contents of
the cA-th B-block of Πblk. In this case, we define j = jB.

2. `− = B, cA = cB + 1, and TA = TB ◦ w, where w represents the contents of
the cB-th B-block of Πblk. In this case, we define j = jA.

3. `− = 0, cA = cB, jB > jA, and Alice speaks in B-block cA = cB of Πblk. In
this case, we define j = jB.

4. `− = 0, cA = cB, jA > jB, and Bob speaks in B-block cA = cB of Πblk. In
this case, we define j = jA.

• Unsynced state: This is any state that does not fit into the above two categories.

We also characterize the control information sent by each party during an iteration based
on whether/how it is corrupted.

Definition 23. For any given iteration, the encoded control information sent by a party is
categorized as one of the following:
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• Sound control information: If a party’s unencoded control information for an itera-
tion is decoded correctly by the other party (i.e., the output of Dec correctly retrieves
the intended transmission), and no hash collisions (involving the hashes contained

in the control information c̃trl
(m)

A or c̃trl
(m)

B ) occur, then the (encoded) control infor-
mation is considered sound.

• Invalid control information: If the attempt to decode a party’s unencoded control
information by the other party results in a failure (i.e., Dec outputs ⊥), then the
(encoded) control information is considered invalid.

• Maliciously corrupted control information: If a party’s control information is de-
coded incorrectly (i.e., Dec does not output ⊥, but the output does not retrieve the
intended transmission) or a hash collision (involving the hashes contained in the

control information c̃trl
(m)

A or c̃trl
(m)

B ) occurs, then the (encoded) control informa-
tion is considered maliciously corrupted.

Next, we wish to define a potential function Φ that depends on the current state in the
encoded protocol. Before we can do so, we define a few quantities:

Definition 24. Suppose the protocol is in a perfectly synced state. Then, we define the
quantities err and inv as follows:

• err is the total number of data (non-control information) bits that have been cor-
rupted during the last j iterations.

• inv is the number of iterations among the last j iterations for which the control
information of at least one party was invalid or maliciously corrupted.

Definition 25. Suppose the protocol is in an unsynced state. Then, we define malA as
follows: At the start of Πoblivious

enc , we initialize malA to 0. Whenever an iteration occurs
from a state in which syncA = 0, such that either Alice’s or Bob’s control information
during that iteration is maliciously corrupted, malA increases by 1 at the end of line 21 of
AliceControlFlow during that iteration. Moreover, whenever Alice undergoes a transi-
tion (i.e., one of the “if” conditions in lines 22-29 of AliceControlFlow is true), malA
resets to 0.

The variable malB is defined in the obvious analagous manner.

Definition 26. For the sake of brevity, a variable varAB will denote varA + varB (e.g.,
kAB = kA + kB and EAB = EA + EB).
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Now, we are ready to define the potential function Φ.

Definition 27. Let C0, C1, C2, C3, C4, C5, C6, C7, Cinv, Cmal, C,D > 0 be suitably chosen
constants (to be determined by Lemmas 21, 22, 23 and Theorem 33). Then, we define the
potential function Φ associated with the execution of Πoblivious

enc according to the state of the
protocol (see Definition 22):

Φ =



`+(1 + C0H(ε)) + (jb− C · err · log(1/ε))−Db · inv perfectly synced
max{`A, `B} · (1 + C0H(ε))− (j + 1)b almost synced
`+(1 + C0H(ε))− C1`

− + b(C2kAB − C3EAB) unsynced, (kA, syncA) = (kB, syncB)

−2C7BmalAB − Z1

`+(1 + C0H(ε))− C1`
− + bC5(−0.8kAB + 0.9EAB) unsynced, (kA, syncA) 6= (kB, syncB)

−C7BmalAB − Z2

,

where Z1 and Z2 are defined by:

Z1 =


bC4 if kA = kB = 1 and syncA = syncB = 1
1
2
bC4 if kA = kB = 1 and syncA = syncB = 0

0 otherwise
,

and

Z2 =

{
bC6 if kA = kB = 1

0 otherwise
.

4.11.2 Bounding Iterations with Invalid or Maliciously Corrupted Con-
trol Information

We now prove some lemmas that bound the number of iterations that can have invalid or
maliciously corrupted control information.

Lemma 18. If the fraction of errors in a mini-block is O(1), say, < 1
20

, then with proba-
bility at least 1− ε′2, both parties can correctly decode and verify the control symbols sent
in the block.

Proof. Let ν < 1/20 be the fraction of errors in a mini-block. Recall that Alice’s control
information in the mini-block consists of c log(1/ε′) randomly located bits. Let X be the
number of these control bits that are corrupted. Note that E[X] = νc log(1/ε′). Now, since
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the control information is protected with an error correcting code of distance c log(1/ε′)/4,
we see that Bob can verify and correctly decode Alice’s control symbols as long as X <
c log(1/ε′)/8. Note that by the Chernoff bound,

Pr (X > c log(1/ε′)/8) ≤ e−
c log(1/ε′)

8 − c log(1/ε′)
20

3

≤ ε′
c/40

,

which is < ε′2/2 for a suitable constant c. Similarly, the probability that Alice fails to
verify and correctly decode Bob’s control symbols is < ε′2/2. Thus, the desired statement
follows by a union bound.

Lemma 19. With probability at least 1−2−Ω(ε′Niter), the number of iterations in which some
party’s control information is invalid but neither party’s control information is maliciously
corrupted is O(εNiter).

Proof. First of all, consider the number of iterations of Πoblivious
enc for which the fraction

of errors within the iteration is at least 1/20. Since the total error fraction throughout the
protocol is ε, we know that at at most 20εNiter iterations have such an error fraction.

Next, consider any “low-error” iteration in which the error fraction is less than 1/20.
By Lemma 18, the probability that control information of some party is invalid (but neither
party’s control information is maliciously corrupted) is at most ε′2. Then, by the Chernoff
bound, the number of “low-error” iterations with invalid control information is at most
(ε′2 + ε′)Niter = O(ε′Niter) with probability at least 1− 2−Ω(ε′Niter).

It follows that with probability at least 1 − 2−Ω(ε′Niter), the total number of iterations
with invalid control information (but not maliciously corrupted control information) is
O(εNiter).

Lemma 20. With probability at least 1 − 2−Ω(ε′2Niter), the number of iterations in which
some party’s control information is maliciously corrupted is at most O(ε′2Niter).

Proof. Suppose a particular party’s control information is maliciously corrupted during a
certain iteration (say, the mth iteration). Without loss of generality, assume Alice’s control
information is maliciously corrupted. Then, we must have one of the following:

1. The number of corrupted bits in the encoded control information of Alice is >
1
8

(
b′−b

2

)
, i.e., the fraction of control information bits that is corrupted is greater than

1
8
.
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2. The number of corrupted bits in the encoded control information of Alice is <
1
8

(
b′−b

2

)
, but a hash collision occurs for one of h(m)

A,c , h(m)
A,x , h(m)

A,k , h(m)
A,T , h(m)

A,MP1, h
(m)
A,MP2.

Note that by Property 4.8.3, case (1.) happens with probability at most

2−Θ(log(1/ε′)) ≤ ε′2,

for suitable constants.

Next, we consider the probability that case (2.) occurs. By Property 4.8.2, we have that
the probability of a hash collision any specific quantity among cA, x, kA, TA, TA[1, MP1],
TA[1, MP2] is at most 2−Θ(log(1/ε′)) +2−Θ(Niter log(1/ε′)) ≤ ε′2 for appropriate constants. Thus,
by a simple union bound, the probability that any one of the aforementioned quantities has
a hash collision is at most 6ε′2.

A simple union bound between the two events shows that the probability that Alice’s
control information in a given iteration is maliciously corrupted is at most 7ε′2. Similarly,
the probability that Bob’s control information in a given iteration is maliciously corrupted
is also at most 7ε′2. Hence, the desired claim follows by the Chernoff bound (recall that
there is limited independence, due to the fact that we use pseudorandom bits to seed hash
functions, but this is not a problem due to our choice of parameters (see Section 4.8)).

4.11.3 Evolution of Potential Function During Iterations

We now wish to analyze the evolution of the potential function Φ as the execution of the
protocol proceeds. First, we define some notation that will make the analysis easier:

Definition 28. Suppose we wish to analyze a variable var over the course of an iteration.
For the purpose of Lemmas 21, 22, and 23, we let var denote the value of the variable at the
start of the iteration (the start of the code block in Figure 4.3 that is repeated Niter times).
Moreover, we let var′ denote the value of the variable just after the “update phase” of the
iteration (lines 2-21 of AliceControlFlow and BobControlFlow), while we will let var′′

denote the value of the variable at the end of the iteration (at the end of the execution of
AliceControlFlow and BobControlFlow).

Moreover, we will use the notation ∆var to denote var′′ − var, i.e., the change in the
variable over the course of an iteration. For instance, ∆Φ = Φ′′ − Φ.

Definition 29. During an iteration of Πoblivious
enc , Alice is said to undergo a transition if one

of the “if” conditions in lines 22-29 of AliceControlFlow is true. The transition is called
a meeting point transition (or MP transition) if either line 23 or line 25 is executed, while
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the transition is called an error transition if lines 27-29 are executed. Transitions for Bob
are defined similarly, except that one refers to lines in the corresponding BobControlFlow
function.

Now, we are ready for the main analysis. Lemmas 21, 22, and 23 prove lower bounds on
the change in potential, ∆Φ, over the course of an iteration, depending on (1.) the state of
the protocol prior to the iteration and (2.) whether/how control information is corrupted
during the iteration.

Lemma 21. Suppose the protocol is in a perfectly synced state at the beginning of an
iteration. Then, the change in potential Φ over the course of the iteration behaves as
follows, according to the subsequent state (at the end of the iteration):

1. If the subsequent state is perfectly synced or almost synced, then:

• If the control information received by both parties is sound, then ∆Φ ≥ b−Ct·
log(1/ε), where t is the number of data (non-control) bits that are corrupted in
the next iteration.

• If the control information received by at least one party is invalid or mali-
ciously corrupted, then ∆Φ ≥ −Ct · log(1/ε)− (D− 1)b ≥ −Ct · log(1/ε)−
min{Cinvb, CmalB}.

2. If the subsequent state is unsynced, then ∆Φ ≥ −CmalB.

Proof. Assume that the protocol is currently in a perfectly synced state, and, without loss
of generality, suppose that Alice is trying to send data bits corresponding to cA-th B-block
of Πblk to Bob.

For the first part of the lemma statement, assume that the state after the next iteration
is perfectly synced or almost synced. At the end of the iteration, Bob updates his estimate
of what Alice is sending, and there are three cases:

• Case 1: Bob is still not able to decode the cA-th B-block that Alice is sending, and
jB does not reset to zero. In this case, it is clear that j increases by 1, while err
increases by t. Thus, ∆Φ ≥ b − Ct · log(1/ε) if the control information received
by both parties is sound, while ∆Φ ≥ −Ct · log(1/ε)− (D − 1)b otherwise (as inv
increases by 1).

• Case 2: Bob is still not able to decode the cA-th B-block that Alice is sending, but
jB resets to 0 (after increasing to 2s). Then, note that if both parties receive sound
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control information in the next iteration, we have

∆Φ ≥ (b− Ct · log(1/ε)) + (Db · inv + C(err + t) log(1/ε)− 2B).

Moreover, we must have err + t ≥ 1
2
δ2s(2B) = 1

15
B, which implies that

Db · inv + C(err + t) log(1/ε)− 2B ≥ 0,

as desired (for suitably large C).

On the other hand, suppose some party receives invalid or maliciously corrupted
control information in the next iteration. Then,

∆Φ ≥ (−Ct · log(1/ε)− (D− 1)b) + (Db · (inv + 1) +C(err + t) log(1/ε)− 2B).

Thus, to prove the lemma, it suffices to show

Db · (inv + 1) + C(err + t) log(1/ε)− 2B ≥ 0. (4.1)

Let j0 be the last/most recent value of jB occurring after an iteration in which Bob
receives sound control information (or j0 = 0 if such an iteration did not occur).
Thus, in the last 2s− j0− 1 iterations, Bob has not received sound control informa-
tion. This implies that inv ≥ 2s − j0 − 1 and err ≥ 1

2
δj0j0b. Thus, we reduce (4.1)

to showing the following:

D(2s− j0)b+
C

2
δj0j0b · log(1/ε)− 2B ≥ 0. (4.2)

Note that if j0 ≤ s, then δj0 = 0, and so the lefthand side of (4.2) is at least

Dsb− 2B = (D − 2)B ≥ 0,

as desired. Hence, we now assume that j0 > s. Then, by Lemma 17, δj0 ≥
H−1

(
j0−s
j0
− 1

4s

)
(recall that H−1 is the unique inverse of H that takes values in

[0, 1/2]). Thus, (4.2) reduces to showing

C

2
H−1

(
j0 − s
j0

− 1

4s

)
log(1/ε) ≥ D − 2s(D − 1)

j0

. (4.3)

Note that if j0 ≤ D−1
D
· 2s, then (4.3) is clearly true, as the righthand side of (4.3) is

nonpositive.
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If j0 >
D−1
D
·2s, then note that the righthand side of (4.3) is at most 1 (since j0 ≤ 2s),

while the lefthand side is at least

C

2
H−1

(
1− s

D−1
D
· 2s
− ε′

4

)
log(1/ε) ≥ C

2
H−1

(
D − 2

2(D − 1)
− ε′

4

)
log(1/ε)

≥ 1.

• Case 3: Bob manages to decode the cA-th B-block and updates his transcript. Then,
the protocol either transitions to an almost synced state or remains in a perfectly
synced state (if Alice receives maliciously corrupted control information indicating
that Bob has already advanced his transcript). Thus,

∆Φ ≥ (b−Ct·log(1/ε))+B(1+C0H(ε))+C(err+t) log(1/ε)−(j+2)b+Db· inv,

Hence, it suffices to show that

B(1 + C0H(ε)) + C(err + t) log(1/ε)− (j + 2)b+Db · inv ≥ 0. (4.4)

Note that j ≥ s. Suppose j0 is the last/most recent value of jB occurring after an
iteration in which Bob receives sound control information (or j0 = 0 if such an
iteration did not occur). Then, inv ≥ j − j0. Hence, (4.4) reduces to showing

B(1 + C0H(ε)) + C · err′ · log(1/ε)− (j + 2)b+Db(j − j0) ≥ 0. (4.5)

Note that if j0 ≤ s, then the lefthand side of (4.5) is at least

B(1 + C0H(ε))− (j + 2)b+Db(j − s) ≥ B(1 + C0H(ε)) + (D − 1)jb

−DB − 2b

≥ B(1 + C0H(ε)) + (D − 1)B

−DB − 2b

≥ B(C0H(ε)− 2ε′)

≥ 0,

as desired.

Now, assume j0 > s. Let ε0 be the fraction of errors in the first j0b data bits sent
since Alice and Bob became perfectly synced (or since the last reset). Then,

err′ ≥ ε0j0b.
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Hence, the lefthand side of (4.5) is at least

B(1 + C0H(ε)) + j0b(Cε0 log(1/ε)− 1)− 2b+ (D − 1)b(j − j0). (4.6)

Note that if Cε0 log(1/ε) ≥ 1, then the above quantity is clearly nonnegative, as
B ≥ b/ε′ ≥ 2b. Thus, let us assume that Cε0 log(1/ε) < 1. Now, recall from our
choice of Crateless and the fact that Bob had not successfully decoded the blocks sent
by Alice before the current iteration, we have ε0 ≥ 1

2
δj0 , which implies that

j0 − s
j0
− 1

4s
= H(δj0) ≤ H(2ε0).

Hence,

j0 ≤
s

1−H(2ε0)− 1
4s

.

Now, (4.6) is at least

B(1 + C0H(ε)) +
B(Cε0 log(1/ε)− 1)

1−H(2ε0)− 1
4s

− 2b

≥ B(1 + C0H(ε)) +
B(Cε0 log(1/ε)− 1)

1−H(2ε0)− ε′

4

− 2b

≥ B

(
1 + C0H(ε)− (1− Cε0 log(1/ε))

(
1 +H(2ε0) +

ε′

4
+ 2

(
H(2ε0) +

ε′

4

)2
)
− 2ε′

)

≥ B

(
1 + C0H(ε)− 1−H(2ε0)− ε′

4
− 2H(2ε0)2 − ε′H(2ε0)− ε′2

8
+ Cε0 log(1/ε)− 2ε′

)
≥ B (C0H(ε)− 4ε′ − 3H(2ε0) + Cε0 log(1/ε)) . (4.7)

Note that if ε0 < ε, then (4.7) is bounded from below by

B(C0H(ε)− 4ε′ − 3H(2ε)) ≥ B ((4H(ε)− 4ε′) + ((C0 − 4)H(ε)− 3H(2ε)))

≥ 0,

since H(ε) ≥ ε ≥ ε′, C0 ≥ 10, and 2H(ε) ≥ H(2ε).

On the other hand, if ε0 ≥ ε, then (4.7) is bounded from below by

B ((4H(ε)− 4ε′) + (Cε0 log(1/ε0)− 3H(2ε0))) ≥ 0,

as long as C ≥ 10.
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This completes the proof of the first part of the lemma.

Next, we prove the second part of the lemma. Assume that the protocol is currently
in a perfectly synced state and that the subsequent state is unsynced. Then, note that the
control information of at least one party must be maliciously corrupted. Observe that
k′′A = k′′B = 1, and `−′′ ≤ 2B, while E ′′A = E ′′B = 0. Thus, if sync′′A = sync′′B, then

∆Φ ≥ −jb− 2C1B + 2bC2 − bC4 ≥ −CmalB,

while if sync′′A 6= sync′′B, then

∆Φ ≥ −jb− 2C1B − 1.6bC5 − bC6 ≥ −CmalB,

since jb ≤ 2B.

Lemma 22. Suppose the protocol is in an almost synced state at the beginning of an
iteration. Then, the change in potential Φ over the course of the iteration behaves as
follows, according to the control information received during the iteration:

• If the control information received by both parties is sound, then ∆Φ ≥ b.

• If the control information received by at least one party is invalid, but neither party’s
control information is maliciously corrupted, then the potential does not change, i.e.,
∆Φ ≥ −b ≥ −Cinvb.

• If the control information received by at least one party is maliciously corrupted,
then ∆Φ ≥ −CmalB.

Proof. Assume the protocol lies in an almost synced state. We consider the following
cases, according to the subsequent state in the protocol.

• Case 1: The subsequent state is perfectly synced. Then, we must have that ∆Φ ≥
(j + 1)b ≥ b.

• Case 2: The subsequent state is also almost synced. Then, note that the control infor-
mation received by some party must be invalid or maliciously corrupted. Moreover,
since max{`A, `B} remains unchanged and j can increase by at most 1, it follows
that ∆Φ ≥ −b ≥ −CmalB.

• Case 3: The subsequent state is unsynced. Then, observe that the control infor-
mation received by some party must be maliciously corrupted. Note that `+′′ ≥
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max{`A, `B} − B, and `−
′′ ≤ 3B. Moreover, k′′A = k′′B = 1. Therefore, if

sync′′A = sync′′B, then

∆Φ ≥ −B(1 + C0H(ε))− 3C1B + 2bC2 − bC4

≥ −CmalB,

while if sync′′A 6= sync′′B, then

∆Φ ≥ −B(1 + C0H(ε))− 3C1B − 1.6bC5 − bC6

≥ −CmalB,

as desired.

Lemma 23. Suppose the protocol is in an unsynced state at the beginning of an itera-
tion. Then, the change in potential Φ over the course of the iteration behaves as follows,
according to the control information received during the iteration:

1. If the control information received by both parties is sound, then ∆Φ ≥ b.

2. If the control information received by at least one party is invalid, but neither party’s
control information is maliciously corrupted, then ∆Φ ≥ −Cinvb.

3. If the control information received by at least one party is maliciously corrupted,
then ∆Φ ≥ −CmalB.

Proof. We consider several cases, depending on the values of kA, kB and what transitions
occur before the end of the iteration.

• Case 1: kA 6= kB.

– Subcase 1: No transitions occur before the start of the next iteration.

a.) If the control information sent by both parties is sound or invalid, then
note that ∆kA = ∆EA ∈ {0, 1} and ∆kB = ∆EB ∈ {0, 1}. Also, at
least one of ∆kA, ∆kB must be 1, while `+, `−, malAB remain unchanged.
Moreover, the state will remain an unsynced state with k′′A 6= k′′B. There-
fore,

∆Φ ≥ b(−0.8C5 + 0.9C5) ≥ b.
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b.) If at least one party’s control information is maliciously corrupted and
kA, kB > 1, then note that the state at the beginning of the next iteration
will also be unsynced with k′′A 6= k′′B. Also, observe that ∆kA = ∆kB = 1,
while `+, `− remain unchanged. Thus,

∆Φ ≥ 2b(−0.8C5)− 2C7B ≥ −CmalB.

c.) If at least one party’s control information is maliciously corrupted and one
of kA, kB is 1, then without loss of generality, assume kA = 1 and kB > 1.
Note that kB increases by 1. Also, if kA does not increase, then `− can
increase by at most B. Hence,

∆Φ ≥ −0.8bC5 − 2C7B −max{0.8bC5, C1B} ≥ −CmalB.

– Subcase 2: Only one of Alice and Bob undergoes a transition before the start
of the next iteration. Without loss of generality, assume that Alice makes the
transition. Also, let

P1 =

{
0.2C7(kA + 1)B − (1 + C0H(ε) + C1)kAB if Alice has an MP trans.
0 otherwise

(4.8)

Note that P1 ≥ 0 for a suitable choice of constants C0, C1, C7. Also observe
that if kA ≥ 3, then

EA ≤
1

2
(kA + 1)− 1 + 0.2 · 1

2
(kA + 1) = 0.6kA − 0.4 ≤ 0.7(kA − 1),

(4.9)

since an error transition did not occur when Alice’s backtracking parameter
was equal to 1

2
(kA+1), and an additional 1

2
(kA+1)−1 iterations have occurred

since then. Note that (4.9) also holds if kA < 3 since it must be the case that
EA = 0.

a.) Suppose the control information sent by each party is sound. Then, note
that (k′′A, sync

′′
A) 6= (k′′B, sync

′′
B). Moreover, if Alice’s transition is a meet-

ing point transition, then we must have malA ≥ 0.2(kA + 1), and the
transition can cause Alice’s transcript TA to be rewound by at most kAB
bits, which implies that ∆`− ≤ kAB and ∆`+ ≥ −kAB.
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Thus, if kA, kB > 1, then by (4.9), we have

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA + (−0.8bC5 + 0.9bC5) + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1) + 0.1bC5

≥ 0.27bC5

≥ b,

while if kA = 1 and kB > 1, then

∆Φ ≥ −0.8bC5 + 0.9bC5 + P1

≥ 0.1bC5

≥ b.

Finally, if kB = 1, then kA > 1 and so, by (4.9), we have

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA − bC6 + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1)− bC6

≥ (0.17C5 − C6)b

≥ b.

b.) Suppose the control information sent by at least one party is invalid, but
neither party’s control information is maliciously corrupted. Again, we
note that if Alice’s transition is a meeting point transition, then malA ≥
0.2(kA + 1) and ∆`− ≤ kAB and ∆`+ ≥ −kAB.
First, suppose that kB = syncB = 1 and that Bob receives invalid control
information. Then, note that (k′′A, sync

′′
A) = (k′′B, sync

′′
B) = (1, 1). Thus,

by (4.9),

∆Φ ≥ 0.8bC5(kA + 1)− 0.9bC5EA + 2bC2 − bC4 + P1

≥ 0.8bC5(kA + 1)− 0.9bC5 · 0.7(kA − 1) + 2bC2 − bC4

≥ (2C2 − C4 + 1.77C5)b

≥ −Cinvb.

Next, suppose that kB = syncB = 1 but Bob receives sound information.
Then, note that (k′′A, sync

′′
A) 6= (k′′B, sync

′′
B). Hence, by (4.9),

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA − bC6 + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1)− bC6

≥ (0.17C5 − C6)b

≥ −Cinvb.
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Finally, suppose that (kB, syncB) 6= (1, 1). Then, ∆kB = ∆EB = 1.
Thus, if kA > 1, then by (4.9),

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA + (−0.8bC5 + 0.9bC5) + P1

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1) + 0.1bC5

≥ 0.27C5b

≥ −Cinvb,

while if kA = 1, Alice’s transition must be an error transition and so,

∆Φ ≥ −0.8bC5 + 0.9bC5

= 0.1C5b

≥ −Cinvb.

c.) Suppose the control information sent by at least one of the parties is mali-
ciously corrupted. If Alice’s transition is a meeting point transition, then
malA ≥ 0.2(kA + 1) − 1, and TA can be rewound up to at most kAB bits
during the transition.
First, suppose that (k′′B, sync

′′
B) 6= (1, 1). Then, ∆kB ≤ 1 and ∆malB ≤ 1.

Thus, by (4.9), we have

∆Φ ≥ 0.8bC5(kA − 1)− 0.9bC5EA − 0.8bC5 − C7B − bC6 + (P1 − C7B)

≥ 0.8bC5(kA − 1)− 0.9bC5 · 0.7(kA − 1)− 0.8bC5 − C7B − bC6 − C7B

≥ −(0.8C5 + C6)b− 2C7B

≥ −CmalB.

Next, suppose that (k′′B, sync
′′
B) = (1, 1). Then, since Bob does not un-

dergo a transition, we have kB = syncB = 1. Also, the length of TB can
increase by at most B bits over the course of the next iteration. Hence,

∆Φ ≥ 0.8bC5kAB − 0.9bC5EAB − C1B + (P − C7B) + 2bC2 − bC4

≥ 0.8bC5(kA + 1)− 0.9bC5 · 0.7(kA − 1)− C1B − C7B + 2bC2 − bC4

≥ (2C2 − C4 + 1.6C5)b− (C1 + C7)B

≥ −CmalB.

– Subcase 3: Both Alice and Bob undergo transitions before the start of the next
iteration. Again, note that note that EA ≤ 0.7(kA − 1), due to (4.9). Similarly,
EB ≤ 0.7(kB − 1). Also, we define P1 as in (4.8) and define P2 analogously:

P2 =

{
0.2C7(kB + 1)B − (1 + C0H(ε) + C1)kBB if Bob has an MP trans.
0 otherwise

.
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Observe that P1, P2 ≥ 0 for a suitable choice of constants C0, C1, C7.
First, suppose that no party receives maliciously corrupted control information.
Then, note that if Alice undergoes a meeting point transition, then malA ≥
0.2(kA + 1), and the transition can cause TA to be rewound by at most kAB
bits. Similarly, if Bob undergoes a meeting point transition, then malB ≥
0.2(kB + 1), and the transition can cause TB to be rewound by at most kBB
bits. Thus, regardless of the types of transitions that Alice and Bob make, we
have

∆Φ ≥ 0.8bC5kAB − 0.9bC5EAB + P1 + P2 + 2bC2 − bC4

≥ 0.8bC5kAB − 0.9bC5 · 0.7((kA − 1) + (kB − 1)) + 2bC2 − bC4

≥ (2C2 − C4 + 1.6C5)b

≥ b,

Now, suppose some party receives maliciously corrupted control information.
We instead have malA ≥ 0.2(kA + 1)− 1 and malB ≥ 0.2(kA + 1)− 1. Thus,

∆Φ ≥ 0.8bC5kAB − 0.9bC5EAB + (P1 − C7B) + (P2 − C7B) + 2bC2 − bC4

≥ (2C2 − C4 + 1.6C5)b− 2C7B

≥ −CmalB,

as desired.

• Case 2: kA = kB = 1.

– Subcase 1: syncA = syncB = 1. Then, note that if both parties receive sound
control information, then sync′′A = sync′′B = 0. Thus,

∆Φ = −∆Z1 =
1

2
bC4 ≥ b.

On the other hand, if some party receives invalid control information but nei-
ther party receives maliciously corrupted control information, then note that
either sync′′A = sync′′B = 1, in which case,

∆Φ = 0 ≥ −Cinvb,

or sync′′A 6= sync′′B, in which case,

∆Φ ≥ −2bC2 + bC4 − 1.6bC5 − bC6 ≥ −Cinvb.
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Finally, consider the case in which some party receives maliciously corrupted
information. Then, if sync′′A = sync′′B, note that ∆`− ≤ 2. Thus, if the subse-
quent state is unsynced, then

∆Φ ≥ −2C1B ≥ −CmalB,

while if the subsequent state is perfectly or almost synced, then

∆Φ ≥ −2bC2 + bC4 − (2s+ 1)b ≥ −CmalB.

Otherwise, if sync′′A 6= sync′′B, then ∆`− ≤ 1, and so,

∆Φ ≥ −C1B − 2bC2 + bC4 − 1.6bC5 − bC6 ≥ −CmalB.

– Subcase 2: syncA = syncB = 0. First, suppose both parties receive sound
control information. Then, either both parties do not undergo any transitions,
in which case,

∆Φ ≥ 2bC2 +
1

2
bC4 ≥ b,

or both parties undergo a meeting point transition, in which case the subsequent
state is perfectly synced, and so,

∆Φ ≥ −2bC2 +
1

2
bC4 ≥ b.

Next, consider the case in which some party receives invalid control infor-
mation, but neither party receives maliciously corrupted control information.
Suppose, without loss of generality, that Alice receives invalid control infor-
mation. Then, k′′A = sync′′A = 1. Note that if k′′B = 2, then

∆Φ ≥ −2bC2 +
1

2
bC4 − 2.4bC5 ≥ −Cinvb.

Otherwise, if k′′B = 1, then either the subsequent state is perfectly synced, in
which case

∆Φ ≥ −2bC2 +
1

2
bC4 ≥ −Cinvb,

or the subsequent state is almost synced, in which case

∆Φ ≥ B(1 + C0H(ε))− 2bC2 +
1

2
bC4 − b ≥ −Cinvb,
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or the subsequent state is unsynced, in which case

∆Φ ≥ −1

2
bC4 ≥ −Cinvb.

Finally, consider the case in which some party receives maliciously corrupted
control information. If k′′A = k′′B = 2, then

∆Φ ≥ 2bC2 − 4C7B +
1

2
bC4 ≥ −CmalB.

On the other hand, if k′′A = k′′B = 1, then ∆`− ≤ 2. Thus, if the subsequent
state is unsynced, then

∆Φ ≥ −2(1 + C0H(ε) + C1)B − 1

2
bC4 ≥ −CmalB,

while if the subsequent state is perfectly or almost synced, then

∆Φ ≥ −2(1 + C0H(ε) + C1)B +
1

2
bC4 − b ≥ −CmalB.

If k′′A 6= k′′B, then without loss of generality, assume that k′′A = 2 and k′′B = 1.
We then have

∆Φ ≥ −(1 + C0H(ε) + C1)B − 2bC2 +
1

2
bC4 − 2.4bC5 − C7B ≥ −CmalB.

– Subcase 3: syncA 6= syncB. Without loss of generality, assume that syncA = 1
and syncB = 0.
First, suppose that neither party receives maliciously corrupted control infor-
mation. Then, k′′A = sync′′A = k′′B = sync′′B = 1. Thus, if the subsequent state
is unsynced, then we have

∆Φ ≥ 1.6bC5 + bC6 + 2bC2 − bC4 ≥ b,

while if the subsequent state is perfectly or almost synced, then

∆Φ ≥ 1.6bC5 + bC6 − b ≥ b.

Next, suppose that some party receives maliciously corrupted control infor-
mation. Note that k′′A = 1. If syncA = 1 and k′′B = 2, then ∆`− ≤ 1, and
so,

∆Φ ≥ −C1B − 0.8bC5 − C7B + bC6 ≥ −CmalB.
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If syncA = 1 and k′′B = 1, then either the subsequent state is unsynced, in
which case,

∆Φ ≥ −C1B−(1+C0H(ε)+C1)B+0.8bC5 +bC6 +2bC2−bC4 ≥ −CmalB,

or the subsequent state is perfectly/almost synced, in which case,

∆Φ ≥ −C1B− (1 +C0H(ε) +C1)B+ 1.6bC5 + bC6− (2s+ 1)b ≥ −CmalB.

Finally, suppose syncA = 0. Then, note that

∆Φ ≥ −(1 + C0H(ε) + C1)B − 0.8bC5 − C7B ≥ −CmalB.

• Case 3: The protocol is in an unsynced state, and kA = kB > 1.

– Subcase 1: Suppose neither Alice nor Bob undergoes a transition before the
start of the next iteration. Then, we have ∆kA = ∆kB = 1. If the control
information received by both parties is either sound or invalid, then we have

∆Φ ≥ 2bC2 ≥ b.

On the other hand, if some party’s control information is maliciously corrupted,
then

∆Φ ≥ 2bC2 − 2bC3 − 4BC7 ≥ −CmalB.

– Subcase 2: Suppose both Alice and Bob undergo a transition, and suppose at
least one of the transitions is a meeting point transition.

a.) Suppose `−′′ = 0 and kA+1 = kB+1 ≤ 4`−

B
. Then, note that `+ decreases

by at most kAB = kBB. Thus,

∆Φ ≥ −kAB(1 + C0H(ε)) + C1`
− − 2C2b(kA − 1)− C4b

≥ −kAB(1 + C0H(ε)) + C1 ·
B(kA + 1)

4
− 2C2b(kA − 1)− C4b

= kAB

(
C1

4
− C0H(ε)− 2C2b

B
− 1

)
+
C1B

4
+ (2C2 − C4)b

≥ b.

b.) Suppose `−′′ 6= 0. Without loss of generality, assume that Alice has made
a meeting point transition. Note that if Alice has made an incorrect meet-
ing point transition, then it is clear that mal′A ≥ 0.2(kA + 1). On the
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other hand, if she has made a correct transition, then Bob has made an
incorrect transition, since `−′′ 6= 0, and so, mal′B ≥ 0.2(kA + 1). Since
mal′A = mal′B, it follows that mal′AB ≥ 0.4(kA + 1) in either case. Thus, if
the control information in the current round is not maliciously corrupted,
then malAB ≥ 0.4(kA + 1), and so,

∆Φ ≥ −kAB(1 + C0H(ε) + C1)− 2C2b(kA − 1)

+ 2C7B · 0.4(kA + 1)− C4b

≥ kAB

(
0.8C7 − C0H(ε)− C1 −

2C2b

B
− 1

)
+ (2C2 − C4)b+ 0.8C7B

≥ b.

Otherwise, if some party’s control information in the current round is cor-
rupted, then malAB ≥ 0.4(kA + 1)− 2, and so,

∆Φ ≥ kAB

(
0.8C7 − C0H(ε)− C1 −

2C2b

B
− 1

)
+ (2C2 − C4)b− 3.2C7B

≥ −CmalB.

c.) Suppose that `−′′ = 0 but kA+1 = kB +1 > 4`−

B
. Then observe that there

must have been at least
1

4
(kA + 1)− 0.2 · 1

2
(kA + 1)− 0.2 · 1

2
(kA + 1) = 0.05(kA + 1) (4.10)

maliciously corrupted rounds among the past kA rounds. This is because
there were 1

4
(kA+1) iterations taking place as Alice’s backtracking param-

eter increased from 1
4
(kA+1) to 1

2
(kA+1), of which at most 0.2· 1

2
(kA+1)

iterations could have had invalid control information for Alice, and at most
0.2 · 1

2
(kA+1) iterations could have had sound control information for Al-

ice (since Alice did not undergo a meeting point transmission when her
backtracking parameter reached kA+1

2
). Thus, malAB ≥ 2 ·0.05(kA + 1) =

0.1(kA + 1) and so,

∆Φ ≥ −kAB(1 + C0H(ε))− 2bC2(kA − 1) + C7B ·malAB − C4b

≥ kAB

(
0.1C7 − C0H(ε)− 2C2b

B
− 1

)
+ (2C2 − C4)b+ 0.1C7B

≥ b.
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– Subcase 3: Suppose both Alice and Bob undergo error transitions. Then,E ′A ≥
0.2(kA + 1) and E ′B ≥ 0.2(kB + 1) = 0.2(kA + 1). Therefore, if both parties
receive sound control information, then EA, EB ≥ 0.2(kA + 1), and so,

∆Φ ≥ C3bEAB − 2C2b(kA − 1)− C4b

≥ C3b(0.4kA + 0.4)− 2C2b(kA − 1)− C4b

≥ (0.4C3 − 2C2)kAb+ (2C2 + 0.4C3 − C4)b

≥ (0.8C3 − C4)b

≥ b.

On the other hand, if some party receives invalid or maliciously corrupted con-
trol information, then EA, EB ≥ 0.2(kA + 1)− 1, and so,

∆Φ ≥ C3bEAB − 2C2b(kA − 1)− C4b

≥ (0.4C3 − 2C2)kAb+ (2C2 − 1.6C3 − C4)b

≥ (−1.2C3 − C4)b

≥ −Cinvb.

– Subcase 4: Suppose only one of Alice and Bob undergoes a transition before
the next iteration. Without loss of generality, assume Alice undergoes the tran-
sition.

a.) Suppose the transition is an error transition. If both parties’ control infor-
mation is sound, then observe that EA ≥ 0.2(kA + 1). Thus,

∆Φ ≥ −2bC2kA + bC3EA − 0.8bC5(kA + 2)

≥ −2bC2kA + bC3(0.2kA + 0.2)− 0.8bC5(kA + 2)

≥ kAb(0.2C3 − 0.8C5 − 2C2) + (0.2C3 − 1.6C5)b

≥ b.

Otherwise, if some party’s control information is invalid, but neither party’s
control information is maliciously corrupted, thenEA ≥ 0.2(kA+1)−1 =
0.2kA − 0.8, and so,

∆Φ ≥ −2bC2kA + bC3EA − 0.8bC5(kA + 2)

≥ −2bC2kA + bC3(0.2kA − 0.8)− 0.8bC5(kA + 2)

≥ kAb(0.2C3 − 0.8C5 − 2C2)− (0.8C3 + 1.6C5)b

≥ −Cinvb.

117



Finally, if some party’s control information is maliciously corrupted, then
again, we have EA ≥ 0.2kA − 0.8. Thus,

∆Φ ≥ −2bC2kA + bC3EA − 0.8bC5(kA + 2)− C7B

≥ kAb(0.2C3 − 0.8C5 − 2C2)− (0.8C3 + 1.6C5)b− C7B

≥ −CmalB.

b.) Suppose the transition is a meeting point transition. Then, since only one
of the two players is transitioning, either (1.) Alice is incorrectly transi-
tioning, meaning that mal′A,mal′B ≥ 0.2(kA + 1), or (2.) Bob should have
also been transitioning, meaning that mal′A,mal′B ≥ 1

2
(kA + 1)− 0.2(kA +

1)− 0.2(kA + 1) ≥ 0.1(kA + 1). Either way, mal′A,mal′B ≥ 0.1(kA + 1).
Hence, if neither party’s control information in the current round is mali-
ciously corrupted, then malA,malB ≥ 0.1(kA + 1), and so,

∆Φ ≥ −2bC2kA − 0.8bC5(kA + 2) + 2C7B ·malA + C7B ·malB

− kAB(1 + C0H(ε) + C1)

≥ −2bC2kA − 0.8bC5(kA + 2) + 0.3C7B(kA + 1)− kAB(1 + C0H(ε) + C1)

≥ kAB

(
0.3C7 − C1 − C0H(ε)− 2C2

b

B
− 0.8C5

b

B
− 1

)
− 1.6bC5 + 0.3C7B

≥ b.

Otherwise, if there is maliciously corrupted control information in the cur-
rent round, then malA,malB ≥ 0.1(kA + 1)− 1 = 0.1kA − 0.9, and so,

∆Φ ≥ −2bC2kA − 0.8bC5(kA + 2) + 2C7B ·malA + C7B ·malB − C7B

− kAB(1 + C0H(ε) + C1)

≥ −2bC2kA − 0.8bC5(kA + 2) + 3C7B(0.1kA − 0.9)− C7B

− kAB(1 + C0H(ε) + C1)

≥ kAB

(
0.3C7 − C1 − C0H(ε)− 2C2

b

B
− 0.8C5

b

B
− 1

)
− 1.6bC5 − 2.7C7B

≥ −CmalB,

as desired.

Now, we are ready to prove the main theorem of the section, which implies Theorem 22
for the choice ε′ = ε2.
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Theorem 33. For any sufficiently small ε > 0 and n-round interactive protocol Π with av-
erage message length ` = Ω(1/ε′3), the protocol Πoblivious

enc given in Figure 4.3 successfully
simulates Π, with probability 1−2−Ω(ε′2Niter), over an oblivious adversarial channel with an
ε error fraction while achieving a communication rate of 1−Θ(ε log(1/ε)) = 1−Θ(H(ε)).

Proof. Recall that Πblk has n′ rounds, where n′ = n(1+O(ε′)). LetNmal be the number of
iterations of Πoblivious

enc in which some party’s control information is maliciously corrupted.
Moreover, letNinv be the number of iterations in which some party’s control information is
invalid but neither party’s control information is maliciously corrupted. Finally, let Nsound

be the number of iterations starting at an unsynced or almost synced state such that both
parties receive sound control information.

Now, by Lemma 20, we know that with probability 1−2−Ω(ε′2Niter),Nmal = O(ε′2Niter).
Also, by Lemma 19, Ninv = O(εNiter) with probability 1−2−Ω(ε′Niter). Recall that the total
number of data bits that can be corrupted by the adversary throughout the protocol is at
most εbNiter. Since Niter = Nsound +Ninv +Nmal, Lemmas 21, 22, and 23 imply that at the
end of the execution of Πoblivious

enc , the potential function Φ satisfies

Φ ≥ bNsound − CεbNiter log(1/ε)− CinvbNinv − CmalBNmal

= b(Niter −Ninv −Nmal)− CεbNiter log(1/ε)− CinvbNinv − CmalBNmal

= bNiter − CεbNiter log(1/ε)− (Cinv + 1)bNinv − (CmalB + b)Nmal

= bNiter − CεbNiter log(1/ε)−O(ε) · (Cinv + 1)bNiter −O(ε′2) · (CmalB + b)Niter

= bNiter(1−O(ε) · (Cinv + 1)−O(ε′2) · (Cmals+ 1)− Cε log(1/ε))

= bNiter(1−O(ε log(1/ε)))

= b · n
′

b
(1 + Θ(ε log(1/ε)))

≥ n′(1 + C0H(ε)) + (C0 + 1)B.

Now, in order to complete the proof, it suffices to show that `+ ≥ n′. We consider several
cases, based on the ending state:

• If the ending state is perfectly synced, then note that jb − C · err · log(1/ε) ≤ 2B.
Thus,

`+ ≥ Φ− 2B

1 + C0H(ε)
≥ n′.

• If the ending state is almost synced, then note that

`+ ≥ Φ

1 + C0H(ε)
−B ≥ n′.
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• If the ending state is unsynced and (kA, syncA) = (kB, syncB), then first consider
the case kA = kB = 1. In this case,

Φ ≤ `+(1 + C0H(ε)) + 2bC2,

and so,

`+ ≥ Φ− 2bC2

1 + C0H(ε)
≥ n′.

Now, consider the case kA = kB ≥ 2. Note that either `− ≥ B
4

(kA + 1) or

malAB ≥ 2 ·malA ≥ 2

(
1

2
k̃A − 0.2k̃A − 0.2k̃A

)
≥ 0.2k̃A ≥ 0.1(kA + 1)

(see (4.10)). If the former holds, then

Φ ≤ `+(1 + C0H(ε))− C1`
− + bC2kAB

≤ `+(1 + C0H(ε))− C1 ·
B

4
(kA + 1) + 2bC2kA

≤ `+(1 + C0H(ε)).

Otherwise, if the latter holds, then

Φ ≤ `+(1 + C0H(ε)) + bC2kAB − 2C7BmalAB

≤ `+(1 + C0H(ε)) + 2bC2kA − 2C7B(0.1(kA + 1))

≤ `+(1 + C0H(ε)).

Either way,

`+ ≥ Φ

1 + C0H(ε)
≥ n′.

• If the ending state is unsynced and kA 6= kB, then consider the following. Note that
if kA = 1, then EA = 0 ≤ 0.6kA − 0.4. On the other hand, if kA ≥ 2, then

EA ≤ 0.2k̃A + (kA − k̃A)

= kA − 0.8k̃A

≤ kA − 0.8

(
kA + 1

2

)
≤ 0.6kA − 0.4.
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Either way, EA ≤ 0.6kA − 0.4. Similarly, EB ≤ 0.6kB − 0.4. Thus,

Φ ≤ `+(1 + C0H(ε)) + bC5(−0.8kAB + 0.9EAB)

≤ `+(1 + C0H(ε)) + bC5(−0.8kAB + 0.9((0.6kA − 0.4) + (0.6kB − 0.4)))

≤ `+(1 + C0H(ε)).

Thus,

`+ ≥ Φ

1 + C0H(ε)
≥ n′.

Finally, we prove Theorem 23.

Proof. Consider the same protocol Πoblivious
enc as in Theorem 33, except that we discard

the random string exchange procedure at the beginning of the protocol. Since Alice and
Bob have access to public shared randomness, they can instead initialize str to a com-
mon random string of the appropriate length and continue with the remainder of Πoblivious

enc .
Moreover, in this case, ε′ is a parameter that is set as part of the input. Then, it is clear that
the analysis of Theorem 33 still goes through. In this case, we have that the total number
of rounds is

Niter b
′ =

n′b′

b
(1 +O(ε log(1/ε))) = n(1 +O(H(ε)) +O(ε′ polylog(1/ε′))),

while the success probability is 1− 2−Ω(ε′2Niter) = 1− 2−Ω(ε′3n), as desired.

Remark 34. It is routine to verify that the constantsC0, C1, C2, C3, C4, C5, C6, C7, Cinv, Cmal, C,D >
0 can be chosen appropriately such that the relevant inequalities in Lemmas 21, 22, 23,
and Theorem 33 all hold.
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Chapter 5

List Decodability

The results of this chapter were published in [CGV13].

5.1 Introduction

This work is motivated by the list decodability properties of random linear codes for cor-
recting a large fraction of errors, approaching the information-theoretic maximum limit.
We prove a near-optimal bound on the rate of such codes, by making a connection to and
establishing improved bounds on the restricted isometry property of random submatrices
of Hadamard matrices.

A q-ary error correcting code C of block length n is a subset of [q]n, where [q] denotes
any alphabet of size q. The rate of such a code is defined to be (logq |C|)/n. A good
code C should be large (rate bounded away from 0) and have its elements (codewords)
well “spread out.” The latter property is motivated by the task of recovering a codeword
c ∈ C from a noisy version r of it that differs from c in a bounded number of coordinates.
Since a random string r ∈ [q]n will differ from c on an expected (1− 1/q)n positions, the
information-theoretically maximum fraction of errors one can correct is bounded by the
limit (1−1/q). In fact, when the fraction of errors exceeds 1

2
(1−1/q), it is not possible to

unambiguously identify the close-by codeword to the noisy string r (unless the code has
very few codewords, i.e., a rate approaching zero).

In the model of list decoding, however, recovery from a fraction of errors approaching
the limit (1 − 1/q) becomes possible. Under list decoding, the goal is to recover a small
list of all codewords of C differing from an input string r in at most ρn positions, where ρ
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is the error fraction (our interest in this thesis being the case when ρ is close to 1 − 1/q).
This requires that C have the following sparsity property, called (ρ, L)-list decodability,
for some small L : for every r ∈ [q]n, there are at most L codewords within Hamming
distance ρn from r. We will refer to the parameter L as the “list size” — it refers to the
maximum number of codewords that the decoder may output when correcting a fraction
ρ of errors. Note that (ρ, L)-list decodability is a strictly combinatorial notion, and does
not promise an efficient algorithm to compute the list of close-by codewords. In this work,
we only focus on this combinatorial aspect, and study a basic trade-off between between
ρ, L, and the rate for the important class of random linear codes, when ρ → 1− 1/q. We
describe the prior results in this direction and state our results next.

For integers q, L ≥ 2, a random q-ary code of rate R = 1 − hq(ρ) − 1/L is (ρ, L)-
list decodable with high probability. Here hq : [0, 1 − 1/q] → [0, 1] is the q-ary entropy
function: hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x). This follows by a
straightforward application of the probabilistic method, based on a union bound over all
centers r ∈ [q]n and all (L+1)-element subsets S of codewords that all codewords in S lie
in the Hamming ball of radius ρn centered at r. For ρ = 1−1/q−ε, where we think of q as
fixed and ε→ 0, this implies that a random code of rate Ωq(ε

2) is (1− 1/q− ε, Oq(1/ε
2))-

list decodable. (Here and below, the notation Ωq and Oq hide constant factors that depend
only on q.)

Understanding list decodable codes at the extremal radii ρ = 1 − 1/q − ε, for small
ε, is of particular significance mainly due to numerous applications that depend on this
regime of parameters. For example, one can mention hardness amplification of Boolean
functions [STV01], construction of hardcore predicates from one-way functions [GL89],
construction of pseudorandom generators [STV01] and randomness extractors [Tre01], in-
approximability of NP witnesses [KS99], and approximating the VC dimension [MU01].
Moreover, linear list decodable codes are further appealing due to their symmetries, suc-
cinct description, and efficient encoding. For some applications, linearity of list decodable
codes is of crucial importance. For example, the black-box reduction from list decodable
codes to capacity achieving codes for additive noise channels in [GS10], or certain ap-
plications of Trevisan’s extractor [Tre01] (e.g., [Che10, § 3.6, § 5.2]) rely on linearity of
the underlying list decodable code. Furthermore, list decoding of linear codes features an
interplay between linear subspaces and Hamming balls and their intersection properties,
which is of significant interest from a combinatorial perspective.

This work is focused on random linear codes, which are subspaces of Fnq , where Fq is
the finite field with q elements. A random linear code C of rate R is sampled by picking
k = Rn random vectors in Fnq and letting C be their Fq-span. Since the codewords of C are
now not all independent (in fact they are not even 3-wise independent), the above naive
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argument only proves the (ρ, L)-list decodability property for codes of rate 1 − hq(ρ) −
1/ logq(L + 1) [ZP82].1 For the setting ρ = 1 − 1/q − ε, this implies a list size bound of
exp(Oq(1/ε

2)) for random linear codes of rate Ωq(ε
2), which is exponentially worse than

for random codes. Understanding if this exponential discrepancy between general and
linear codes is inherent was raised an open question by [Eli91]. Despite much research,
the exponential bound was the best known for random linear codes (except for the case
of q = 2, and even for q = 2 only an existence result was known; see the related results
section below for more details).

Our main result in this work closes this gap between random linear and random codes,
up to polylogarithmic factors in the rate. We state a simplified version of the main theorem
(Theorem 43) below.

Theorem 35 (Main, simplified). Let q be a prime power, and let ε > 0 be a constant
parameter. Then for some constant aq > 0 only depending on q and all large enough
integers n, a random linear code C ⊆ Fnq of rate aqε2/ log3(1/ε) is (1−1/q− ε, O(1/ε2))-
list decodable with probability at least 0.99. (One can take aq = Ω(1/ log4 q).)

We remark that both the rate and list size are close to optimal for list decoding from a
(1−1/q− ε) fraction of errors. For rate, this follows from the fact the q-ary “list decoding
capacity” is given by 1− hq(ρ), which is Oq(ε

2) for ρ = 1− 1/q− ε. For list size, a lower
bound of Ωq(1/ε

2) is known — this follows from [Bli86] for q = 2, and was shown for all
q in [GV10, Bli08]. We have also assumed that the alphabet size q is fixed and have not
attempted to obtain the best possible dependence of the constants on the alphabet size.

5.1.1 Related Results

We now discuss some other previously known results concerning list decodability of ran-
dom linear codes.

First, it is well known that a random linear code of rate Ωq(ε
4) is (1−1/q−ε, O(1/ε2))-

list decodable with high probability. This follows by combining the Johnson bound for
list decoding (see, for example, [GS01]) with the fact that such codes lie on the Gilbert-
Varshamov bound and have relative distance 1−1/q−ε2 with high probability. This result
gets the correct quadratic dependence in list size, but the rate is worse.

1The crux of the argument is that any L non-zero vectors in Fkq must have a subset of logq(L + 1)
linearly independent vectors, and these are mapped independently by a random linear code. This allows one
to effectively substitute logq(L+ 1) in the place of L in the argument for fully random codes.
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Second, for the case of q = 2, the existence of (ρ, L)-list decodable binary linear
codes of rate 1− h(ρ)− 1/L was proved in [GHSZ02]. For ρ = 1/2− ε, this implies the
existence of binary linear codes of rate Ω(ε2) list decodable with list size O(1/ε2) from an
error fraction 1/2 − ε. This matches the bounds for random codes, and is optimal up to
constant factors. However, there are two shortcomings with this result: (i) it only works
for q = 2 (the proof makes use of this in a crucial way, and extensions of the proof to
larger q have been elusive), and (ii) the proof is based on the semi-random method. It only
shows the existence of such a code while failing to give any sizeable lower bound on the
probability that a random linear code has the claimed list decodability property.

Motivated by this state of affairs, in [GHK11], the authors proved that a random q-ary
linear code of rate 1 − hq(ρ) − Cρ,q/L is (ρ, L)-list decodable with high probability, for
some Cρ,q <∞ that depends on ρ, q. This matches the result for completely random codes
up to the leading constant Cρ,q in front of 1/L. Unfortunately, for ρ = 1 − 1/q − ε, the
constant Cρ,q depends exponentially2 on 1/ε. Thus, this result only implies an exponential
list size in 1/ε, as opposed to the optimal O(1/ε2) that we seek.

Summarizing, for random linear codes to achieve a polynomial in 1/ε list size bound
for error fraction 1 − 1/q − ε, the best lower bound on rate was Ω(ε4). We are able to
show that random linear codes achieve a list size growing quadratically in 1/ε for a rate of
Ω̃(ε2). One downside of our result is that we do not get a probability bound of 1 − o(1),
but only 1 − γ for any desired constant γ > 0 (essentially our rate bound degrades by a
log(1/γ) factor).

Finally, there are also some results showing limitations on list decodability of random
codes. It is known that both random codes and random linear codes of rate 1− hq(ρ)− η
are, with high probability, not (ρ, cρ,q/η)-list decodable [Rud11, GN12]. For arbitrary (not
necessarily random) codes, the best lower bound on list size is Ω(log(1/η)) [Bli86, GN12].

Remark 36. We note that subsequent to our result, an improved version of our coding
result was obtained in [Woo13], where it is shown that the rate of a random linear code can
be improved to Ω(ε2/ log(q)) while achieving ((1−1/q)(1− ε), O(1/ε2))-list decodability
with probability 1 − o(1), thereby obtaining the optimal dependence of rate on ε. While
[Woo13] does make use of the simplex encoding technique used here, it bypasses the use
of RIP-2 and instead controls a related L1 norm to achieve a simpler proof of the list
decodability result. However, as a result, it does not improve the number of row samples
of a DFT matrix needed to obtain RIP-2, a question that is interesting in its own right.

2 The constant Cρ,q depends exponentially on 1/δρ, where q−δpn is an upper bound on the probability
that two random vectors in Fnq of relative Hamming weight at most ρ, chosen independently and uniformly
among all possibilities, sum up (over Fnq ) to a vector of Hamming weight at most ρ. When ρ = 1− 1/q− ε,
we have δρ = Θq(ε

2) which makes the list size exponentially large.
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5.1.2 Proof Technique

The proof of our result uses a different approach from the earlier works on list decodability
of random linear codes [ZP82, Eli91, GHSZ02, GHK11]. Our approach consists of three
steps.

Step 1: Our starting point is a relaxed version of the Johnson bound for list decoding that
only requires the average pairwise distance of L codewords to be large (where L is the
target list size), instead of the minimum distance of the code.

Technically, this extension is easy and pretty much follows by inspecting the proof of
the Johnson bound. This has recently been observed for the binary case by [Che11]. Here,
we give a proof of the relaxed Johnson bound for a more general setting of parameters,
and apply it in a setting where the usual Johnson bound is insufficient. Furthermore, as a
side application, we show how the average version can be used to bound the list decoding
radius of codes which do not have too many codewords close to any codeword — such a
bound was shown via a different proof in [GKZ08], where it was used to establish the list
decodability of binary Reed-Muller codes up to their distance.

Step 2: Prove that the L-wise average distance property of random linear codes is im-
plied by the order L restricted isometry property (RIP-2) of random submatrices of the
Hadamard matrix (or in general, matrices related to the Discrete Fourier Transform).

This part is also easy technically, and our contribution lies in making this connec-
tion between restricted isometry and list decoding. The restricted isometry property has
received much attention lately due to its relevance to compressed sensing (cf. [Can08,
CRT06a, CRT06b, CT06, Don06]) and is also connected to the Johnson-Lindenstrauss di-
mension reduction lemma [BDDW08, AL13, KW11]. Our work shows another interesting
application of this concept.

Step 3: Prove the needed restricted isometry property of the matrix obtained by sampling
rows of the Hadamard matrix.

This is the most technical part of our proof. Let us focus on q = 2 for simplicity,
and let H be the N × N Hadamard (Discrete Fourier Transform) matrix with N = 2n,
whose (x, y)’th entry is (−1)〈x,y〉 for x, y ∈ {0, 1}n. We prove that (the scaled version of)
a random submatrix of H formed by sampling a subset of m = O(k log3 k logN) rows of
H satisfies RIP of order k with probability 0.99. This means that every k columns of this
sampled matrix M are nearly orthogonal — formally, every m× k submatrix of M has all
its k singular values close to 1.

For random matrices m×N with i.i.d Gaussian or (normalized) ±1 entries, it is rela-
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tively easy to prove RIP-2 of order k when m = O(k logN) [BDDW08]. Proving such a
bound for submatrices of the Discrete Fourier Transform (DFT) matrix (as conjectured in
[RV08]) has been an open problem for many years. The difficulty is that the entries within
a row are no longer independent, and not even triple-wise independent. The best proven
upper bound on m for this case was O(k log2 k(log k + log logN) logN), improving an
earlier upper bound O(k log6N) of [CT06]. We improve the bound to O(k log3 k logN)
— the key gain is that we do not have the log logN factor. This is crucial for our list
decoding connection, as the rate of the code associated with the matrix will be (logN)/m,
which would be o(1) if m = Ω(logN log logN). We will take k = L = Θ(1/ε2) (the
target list size), and the rate of the random linear code will be Ω(1/(k log3 k)), giving
the bounds claimed in Theorem 35. We remark that any improvement of the RIP bound
toward the best known lower bound of m = Ω(k logN) [BLM15], a challenging open
problem, would immediately translate into an improvement on the list decoding rate of
random linear codes via our reductions.

Our RIP-2 proof for row-subsampled DFT matrices proceeds along the lines of [RV08],
and is based on upper bounding the expectation of the supremum of a certain Gaussian
process [LT91, Chap. 11]. The index set of the Gaussian process is Bk,N2 , the set of all k-
sparse unit vectors in RN , and the Gaussian random variable Gx associated with x ∈ Bk,N2

is a Gaussian linear combination of the squared projections of x on the rows sampled from
the DFT matrix (in the binary case these are just squared Fourier coefficients)3. The key to
analyzing the Gaussian process is an understanding of the associated (pseudo)-metric X
on the index set, defined by ‖x− x′‖2

X = EG|Gx −Gx′|2. This metric is difficult to work
with directly, so we upper bound distances under X in terms of distances under a different
metric X ′. The principal difference in our analysis compared to [RV08] is in the choice
of X ′ — instead of the max norm used in [RV08], we use an Lp norm for large finite p
applied to the sampled Fourier coefficients. We then estimate the covering numbers for X ′

and use Dudley’s theorem to bound the supremum of the Gaussian process.

It is worth pointing out that, as we prove in this work, for low-rate random linear
codes the average-distance quantity discussed in Step 1 above is substantially larger than
the minimum distance of the code. This allows the relaxed version of the Johnson bound
attain better bounds than what the standard (minimum-distance based) Johnson bound
would obtain on list decodability of random linear codes. While explicit examples of
linear codes surpassing the standard Johnson bound are already known in the literature

3We should remark that our setup of the Gaussian process is slightly different from [RV08], where the
index set is k-element subsets of [N ], and the associated Gaussian random variable is the spectral norm of
a random matrix. Moreover, in [RV08] the number of rows of the subsampled DFT matrix is a random
variable concentrating around its expectation, contrary to our case where it is a fixed number. We believe
that the former difference in our setup may make the proof accessible to a broader audience.
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(see [GGR11] and the references therein), a by-product of our result is that in fact most
linear codes (at least in the low-rate regime) surpass the standard Johnson bound. However,
an interesting question is to see whether there are codes that are list decodable even beyond
the relaxed version of the Johnson bound studied in this work.

Remark 37. We note that in a subsequent work of Haviv and Regev [HR16], the authors
further improve on the number of row samples needed in the subsampled DFT matrix to
obtain RIP-2. They show that it suffices to take O(k log2 k logN) row samples, which
improves on our result of O(k log3 k logN). Note that for the list decoding problem, this
implies a rate of Ω(ε2/ log2(1/ε)), which again provides logarithmic improvements but
falls short of Ω(ε2) rate provided by [Woo13].

Furthermore, we remark that also subsequent to our work, Bourgain [Bou14] obtained
a result showing that O(k log k log2N) samples, which is incomparable to our result as
well as the result of [RV08]. However, the bound of [HR16] strictly improves upon this
result.

Organization of Chapter 5. The rest of Chapter 5 is organized as follows. After fix-
ing some notation, in Section 5.2 we prove the average-case Johnson bound that relates
a lower bound on average pair-wise distances of subsets of codewords in a code to list
decoding guarantees on the code. We also show, in Section 5.2.3, an application of this
bound on proving list decodability of “locally sparse” codes, which is of independent in-
terest and simplifies some earlier list decoding results. In Section 5.3, we prove our main
theorem on list decodability of random linear codes by demonstrating a reduction from
RIP-2 guarantees of DFT-based complex matrices to average distance of random linear
codes, combined with the Johnson bound. Finally, the RIP-2 bounds on matrices related
to random linear codes are proved in Section 5.4.

Notation. Throughout this chapter, we will be interested in list decodability of q-ary
codes. We will denote an alphabet of size q by [q] := {1, . . . , q}. For linear codes, the
alphabet will be Fq, the finite field with q elements (when q is a prime power). However,
whenever there is a need to identify Fq with [q] and vice versa (for example, to form the
simplex encoding in Definition 32), we implicitly assume a fixed, but arbitrary, bijection
between the two sets.

We use the notation I :=
√
−1. When f ≤ Cg (resp., f ≥ Cg) for some absolute

constant C > 0, we use the shorthand f . g (resp., f & g). We use the notation log(·)
when the base of logarithm is not of significance (e.g., f . log x). Otherwise the base is
subscripted as in logb(x). The natural logarithm is denoted by ln(·).

For a matrix M and a multiset of rows T , define MT to be the matrix with |T | rows,
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formed by the rows of M picked by T (in some arbitrary order). Each row in MT may be
repeated for the appropriate number of times specified by T .

5.2 Average-Distance Based Johnson Bound

In this section, we show how the average pair-wise distances between subsets of codewords
in a q-ary code translate into list decodability guarantees on the code.

Recall that the relative Hamming distance between strings x, y ∈ [q]n, denoted δ(x, y),
is defined to be the fraction of positions i for which xi 6= yi. The relative distance of a
code C is the minimum value of δ(x, y) over all pairs of codewords x 6= y ∈ C. We define
list decodability as follows.

Definition 30. A code C ⊆ [q]n is said to be (ρ, `)-list decodable if ∀y ∈ [q]n, the number
of codewords of C within relative Hamming distance less than ρ is at most `.4

The following definition captures a crucial function that allows one to generically pass
from distance property to list decodability.

Definition 31 (Johnson radius). For an integer q ≥ 2, the Johnson radius function Jq :
[0, 1− 1/q]→ [0, 1] is defined by

Jq(x) :=
q − 1

q

(
1−

√
1− qx

q − 1

)
.

The well known Johnson bound in coding theory states that a q-ary code of relative
distance δ is (Jq(δ − δ/L), L)-list decodable (see for instance [GS01]). Below we prove
a version of this bound which does not need every pair of codewords to be far apart but
instead works when the average distance of every set of codewords is large. The proof of
this version of the Johnson bound is a simple modification of earlier proofs, but working
with this version is a crucial step in our near-tight analysis of the list decodability of
random linear codes.

Theorem 38 (Average-distance Johnson bound). Let C ⊆ [q]n be a q-ary code and L ≥
2 an integer. If the average pairwise relative Hamming distance of every subset of L
codewords of C is at least δ, then C is (Jq(δ − δ/L), L− 1)-list decodable.

Thus, if one is interested in a bound for list decoding with list size L, it is enough to
consider the average pairwise Hamming distance of subsets of L codewords.

4We require that the radius is strictly less than ρ instead of at most ρ for convenience.
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5.2.1 Geometric Encoding of q-ary Symbols

We will give a geometric proof of the above result. For this purpose, we will map vectors
in [q]n to complex vectors and argue about the inner products of the resulting vectors.

Definition 32 (Simplex encoding). The simplex encoding maps x ∈ [q] to a vector ϕ(x) ∈
Cq−1. The coordinate positions of this vector are indexed by the elements of [q − 1] :=
{1, 2, . . . , q − 1}. Namely, for every α ∈ [q − 1], we define ϕ(x)(α) := ωxα where
ω = e2πI/q is the primitive qth complex root of unity.

For complex vectors ~v = (v1, v2, . . . , vm) and ~w = (w1, w2, . . . , wm), we define their
inner product 〈~v, ~w〉 =

∑m
i=1 viw

∗
i . From the definition of the simplex encoding, the

following immediately follows:

〈ϕ(x), ϕ(y)〉 =

{
q − 1 if x = y,
−1 if x 6= y.

(5.1)

We can extend the above encoding to map elements of [q]n into Cn(q−1) in the natural way
by applying this encoding to each coordinate separately. From the above inner product
formula, it follows that for x, y ∈ [q]n we have

〈ϕ(x), ϕ(y)〉 = (q − 1)n− qδ(x, y)n . (5.2)

Similarly, we overload the notation to matrices with entries over [q]. Let M be a matrix in
[q]n×N . Then, ϕ(M) is an n(q − 1) × N complex matrix obtained from M by replacing
each entry with its simplex encoding, considered as a column complex vector.

Finally, we extend the encoding to sets of vectors (i.e., codes) as well. For a set C ⊆
[q]n, ϕ(C) is defined as a (q − 1)n × |C| matrix with columns indexed by the elements of
C, where the column corresponding to each c ∈ C is set to be ϕ(c).

5.2.2 Proof of Average-Distance Johnson Bound

We now prove the Johnson bound based on average distance.

Proof (of Theorem 38). Suppose {c1, c2, . . . , cL} ⊆ [q]n are such that their average pair-
wise relative distance is at least δ, i.e.,∑

1≤i<j≤L

δ(ci, cj) ≥ δ ·
(
L

2

)
. (5.3)
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We will prove that c1, c2, . . . , cL cannot all lie in a Hamming ball of radius less than Jq(δ−
δ/L)n. Since every subset of L codewords of C satisfy (5.3), this will prove that C is
(Jq(δ − δ/L), L− 1)-list decodable.

Suppose, for contradiction, that there exists c0 ∈ [q]n such that δ(c0, ci) ≤ ρ for i =
1, 2, . . . , L and some ρ < Jq(δ − δ/L). Recalling the definition of Jq(·), note that the
assumption about ρ implies(

1− qρ

q − 1

)2

> 1− qδ

q − 1
+

q

q − 1

δ

L
. (5.4)

For i = 1, 2, . . . , L, define the vector vi = ϕ(ci) − βϕ(c0) ∈ Cn(q−1), for some
parameter β to be chosen later. By (5.2) and the assumptions about c0, c1, . . . , cL, we have
〈ϕ(ci), ϕ(c0)〉 ≥ (q − 1)n − qρn, and

∑
1≤i<j≤L〈ϕ(ci), ϕ(cj)〉 ≤

(
L
2

)(
(q − 1)n − qδn

)
.

We have

0 ≤
〈 L∑

i=1

vi,
L∑
i=1

vi

〉
=

L∑
i=1

〈vi, vi〉+ 2 ·
∑

1≤i<j≤L

〈vi, vj〉

≤ L
(
n(q − 1) + β2n(q − 1)− 2β(n(q − 1)− qρn)

)
+

+ L(L− 1)
(
n(q − 1)− qδn+ β2n(q − 1)− 2β(n(q − 1)− qρn)

)
= L2n(q − 1)

(
q

q − 1

δ

L
+

(
1− qδ

q − 1
+ β2 − 2β

(
1− qρ

q − 1

)))
Picking β = 1 − qρ

q−1
and recalling (5.4), we see that the above expression is negative, a

contradiction.

5.2.3 An Application: List Decodability of Reed-Muller and Locally
Sparse Codes

Our average-distance Johnson bound implies the following combinatorial result for the
list decodability of codes that have few codewords in a certain vicinity of every codeword.
The result allows one to translate a bound on the number of codewords in balls centered
at codewords to a bound on the number of codewords in an arbitrary Hamming ball of
smaller radius. An alternate proof of the below bound (using a “deletion” technique)
was given by Gopalan, Klivans, and Zuckerman in [GKZ08], where they used it to argue
the list decodability of (binary) Reed-Muller codes up to their relative distance. A mild
strengthening of the deletion lemma was later used in [GGR11] to prove combinatorial
bounds on the list decodability of tensor products and interleavings of binary linear codes.
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Lemma 24. Let q ≥ 2 be an integer and η ∈ (0, 1− 1/q]. Suppose C is a q-ary code such
that for every c ∈ C, there are at most A codewords of relative distance less than η from c
(including c itself). Then, for every positive integer L ≥ 2, C is (Jq(η− η/L), AL− 1)-list
decodable.

Note that setting A = 1 above gives the usual Johnson bound for a code of relative
distance at least η.

Proof. We will lower bound the average pairwise relative distance of every subset of AL
codewords of C, and then apply Theorem 38.

Let c1, c2, . . . , cAL be distinct codewords of C. For i = 1, 2, . . . , AL, the sum of relative
distances of cj , j 6= i, from ci is at least (AL − A)η since there are at most A codewords
at relative distance less than η from ci. Therefore

1(
AL
2

) · ∑
1≤i<j≤AL

δ(ci, cj) ≥
AL · (AL− A)η

AL(AL− 1)
=
A(L− 1)

AL− 1
η .

Setting η′ = A(L−1)η
AL−1

, Theorem 38 implies that C is (Jq(η
′ − η′

AL
), AL− 1)-list decodable.

But η′ − η′

AL
= η − η/L, so the claim follows.

5.3 Proof of the List Decoding Result

In this section, we prove our main result on list decodability of random linear codes. The
main idea is to use the restricted isometry property (RIP) of complex matrices arising from
random linear codes for bounding average pairwise distances of subsets of codewords.
Combined with the average-distance based Johnson bound shown in the previous section,
this proves the desired list decoding bounds. The RIP-2 condition that we use in this work
is defined as follows.

Definition 33. We say that a complex matrix M ∈ Cm×N satisfies RIP-2 of order k with
constant δ if, for any k-sparse vector x ∈ CN , we have5

(1− δ)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1 + δ)‖x‖2
2.

Generally we think of δ as a small positive constant, say δ = 1/2.

5We stress that in this work, we crucially use the fact that the definition of RIP that we use is based on
the Euclidean (`2) norm.
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Since we will be working with list decoding radii close to 1− 1/q, we derive a simpli-
fied expression for the Johnson bound in this regime; namely, the following:

Theorem 39. Let C ⊆ [q]n be a q-ary code and L ≥ 2 an integer. If the average pairwise
relative Hamming distance of every subset of L codewords of C is at least (1−1/q)(1−ε),
then C is ((1− 1/q)(1−

√
ε+ 1/L), L− 1)-list decodable.

Proof. The proof is nothing but a simple manipulation of the bound given by Theorem 38.
Let δ := (1 − 1/q)(1 − ε). Theorem 38 implies that C is (Jq(δ(1 − 1/L)), L − 1)-list
decodable. Now,

Jq(δ(1− 1/L)) =
q − 1

q

(
1−

√
1− q

q − 1
· q − 1

q

(
1− ε

)(
1− 1

L

))
=
q − 1

q

(
1−

√
ε+

1

L
− ε

L

)
≥ q − 1

q

(
1−

√
ε+

1

L

)
.

In order to prove lower bounds on average distance of random linear codes, we will use
the simplex encoding of vectors (Definition 32), along with the following simple geometric
lemma.

Lemma 25. Let c1, . . . , cL ∈ [q]n be q-ary vectors. Then, the average pairwise distance δ
between these vectors satisfies

δ :=
∑

1≤i<j≤L

δ(ci, cj)/

(
L

2

)
=
L2(q − 1)n−

∥∥∥∑i∈[L] ϕ(ci)
∥∥∥2

2

qL(L− 1)n
.

Proof. The proof is a simple application of (5.2). The second norm on the right hand side
can be expanded as∥∥∥∑

i∈[L]

ϕ(ci)
∥∥∥2

2
=

∑
i,j∈[L]

〈ϕ(ci), ϕ(cj)〉

(5.2)
=

∑
i,j∈[L]

(
(q − 1)n− qnδ(ci, cj)

)
= L2(q − 1)n− 2qn

∑
1≤i<j≤L

δ(ci, cj)

= L2(q − 1)n− 2qn

(
L

2

)
δ,

and the bound follows.
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Now we are ready to formulate our reduction from RIP-2 to average distance of codes.

Lemma 26. Let C ⊆ [q]n be a code and suppose ϕ(C)/
√

(q − 1)n satisfies RIP-2 of order
L with constant 1/2. Then, the average pairwise distance between every L codewords of
C is at least

(
1− 1

q

)(
1− 1

2(L−1)

)
.

Proof. Consider any set S of L codewords, and the real vector x ∈ R|C| with entries in
{0, 1} that is exactly supported on the positions indexed by the codewords in S. Obviously,
‖x‖2

2 = L. Thus, by the definition of RIP-2 (Definition 33), we know that, defining
M := ϕ(C),

‖Mx‖2
2 ≤ 3L(q − 1)n/2. (5.5)

Observe that Mx =
∑

i∈[L] ϕ(ci). Let δ be the average pairwise distance between code-
words in S. By Lemma 25 we conclude that

δ =
L2(q − 1)n−

∥∥∥∑i∈[L] ϕ(ci)
∥∥∥2

2

2q
(
L
2

)
n

(5.5)
≥ (L2 − 1.5L)(q − 1)n

qL(L− 1)n

=
q − 1

q

(
1− 1

2(L− 1)

)
.

We remark that, for our applications, the exact choice of the RIP constant in the above
result is arbitrary, as long as it remains an absolute constant (although the particular choice
of the RIP constant would also affect the constants in the resulting bound on average
pairwise distance). Contrary to applications in compressed sensing, for our application
it also makes sense to have RIP-2 with constants larger than one, since the proof only
requires the upper bound in Definition 33.

By combining Lemma 26 with the simplified Johnson bound of Theorem 39, we obtain
the following corollary.

Theorem 40. Let C ⊆ [q]n be a code and suppose ϕ(C)/
√

(q − 1)n satisfies RIP-2 of

order L with constant 1/2. Then C is
((

1− 1
q

)(
1−

√
1.5
L−1

)
, L− 1

)
-list decodable.

Remark 41. Theorem 40 is a direct corollary of Lemma 26 and Theorem 39, that in
turn follow from mathematically simple proofs and establish more general connections
between the notion of average distance of codes, list decodability, and RIP. However, it is
possible to directly prove Theorem 40 without establishing such independently interesting
connections. We present the direct proof below.
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Direct proof of Theorem 40. Let ε :=
√

1.5
L−1

and M := ϕ(C)/
√

(q − 1)n. Let S ⊆ C
be a set of L codewords, and suppose for the sake of contradiction that there is a vector
w ∈ [q]n that is close in Hamming distance to all the L codewords in S. Namely, that for
each c ∈ S we have

δ(w, c) <
(
1− 1

q

)
(1− ε). (5.6)

Let M ′ be the (q − 1)n × L submatrix of M formed by removing all the columns of M
corresponding to codewords of C outside the set S, and define v := ϕ(w)/

√
(q − 1)n,

considered as a row vector. RIP implies that for every non-zero vector x ∈ RL,

‖M ′x‖2
2

‖x‖2
2

≤ 3/2.

That is, if σ denotes the largest singular value of M ′, we have σ2 ≤ 3/2. Let u := vM ′.
From (5.6) combined with (5.2), we know that all the entries of u are greater than ε. Thus,
‖u‖2

2 > ε2L > 3/2. On the other hand, ‖v‖2 = 1. This means that ‖vM ′‖2
2/‖v‖2

2 > 3/2,
contradicting the bound on σ (maximum singular value of M ′).

Now, the matrix ϕ(C) for a linear code C ⊆ Fnq has a special form. It is straightforward
to observe that, when q = 2, the matrix is an incomplete Hadamard-Walsh transform
matrix with 2k̃ columns, where k̃ is the dimension of the code. In general ϕ(C) turns out
to be related to a Discrete Fourier Transform matrix. Specifically, we have the following
observation.

Observation 42. Let C ⊆ Fnq be an [n, k̃] linear code with a generator matrix G ∈ Fk̃×nq ,
and define N := qk̃. Consider the matrix of linear forms Lin ∈ FN×Nq with rows and
columns indexed by elements of Fk̃q and entries defined by

Lin(x, y) := 〈x, y〉,

where 〈·, ·〉 is the finite-field inner product over Fk̃q . Let T ⊆ Fk̃q be the multiset of columns
of G. Then, ϕ(C) = ϕ(LinT ) (Recall, from Definition 32, that the former simplex encoding
ϕ(C) is applied to the matrix enumerating the codewords of C, while the latter, ϕ(LinT ),
is applied to the entries of a submatrix of Lin. Also recall from the notations section that
LinT denotes the submatrix of Lin obtained by choosing all the rows of Lin indexed by the
elements of the multiset T , with possible repetitions).

When G is uniformly random, C becomes a random linear code and ϕ(C) can be
sampled by the following process: Arrange n uniformly random rows of Lin, sampled
independently and with replacement, as rows of a matrix M . Then, replace each entry of
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M by its simplex encoding, seen as a column vector in Cq−1. The resulting complex matrix
is ϕ(C).

The RIP-2 condition for random complex matrices arising from random linear codes
is proved in Theorem 48 of Section 5.4. We now combine this theorem with the preceding
results of this section to prove our main theorem on list decodability of random linear
codes.

Theorem 43 (Main). Let q be a prime power, and let ε, γ > 0 be constant parameters.
Then for all large enough integers n, a random linear code C ⊆ Fnq of rate R, for some

R &
ε2

log(1/γ) log3(q/ε) log q

is ((1− 1/q)(1− ε), O(1/ε2))-list decodable with probability at least 1− γ.

Proof. Let C ⊆ Fnq be a uniformly random linear code associated to a random Rn × n
generator matrix G over Fq, for a rate parameter R ≤ 1 to be determined later. Consider
the random matrixM = ϕ(C) = ϕ(LinT ) from Observation 42, where |T | = n. Recall that
M is a (q− 1)n×N complex matrix, where N = qRn. Let L := 1 + d1.5/ε2e = Θ(1/ε2).
By Theorem 48, for large enough N (thus, large enough n) and with probability 1− γ, the
matrix M/

√
(q − 1)n satisfies RIP-2 of order L with constant 1/2, for some choice of |T |

bounded by
n = |T | . log(1/γ)L log(N) log3(qL). (5.7)

Suppose n is large enough and satisfies (5.7) so that the RIP-2 condition holds. By The-
orem 40, this ensures that the code C is ((1 − 1/q)(1 − ε), O(1/ε2))-list decodable with
probability at least 1− γ.

It remains to verify the bound on the rate of C. We observe that, whenever the RIP-
2 condition is satisfied, G must have rank exactly Rn, since otherwise, there would be
distinct vectors x, x′ ∈ FRnq such that xG = x′G. Thus in that case, the columns of M
corresponding to x and x′ become identical, implying that M cannot satisfy RIP-2 of any
nontrivial order. Thus we can assume that the rate of C is indeed equal to R. Now we have

R = logq |C|/n = logN/(n log q)

(5.7)
&

logN

log(1/γ)L log(N) log3(qL) log q
.

Substituting L = Θ(1/ε2) into the above expression yields the desired bound.
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5.4 Restricted Isometry Property of DFT-Based Matrices

In this section, we prove RIP-2 for random incomplete Discrete Fourier Transform ma-
trices. However, we first prove some technical ingredients that we will later use in the
proof.

The original definition of RIP-2 given in Definition 33 considers all complex vectors
x ∈ Cn. Below we show that it suffices to satisfy the property only for real-valued vectors
x.

Proposition 44. Let M ∈ Cm×N be a complex matrix such that M †M ∈ RN×N and for
any k-sparse vector x ∈ RN , we have

(1− δ)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1 + δ)‖x‖2
2.

Then, M satisfies RIP-2 of order k with constant δ.

Proof. Let x = a + Ib, for some a, b ∈ RN , be any complex vector. We have ‖x‖2
2 =

‖a‖2
2 + ‖b‖2

2, and∣∣∣‖Mx‖2
2 − ‖x‖2

2

∣∣∣ =
∣∣∣x†M †Mx− ‖x‖2

2

∣∣∣
=

∣∣∣(a† − Ib†)M †M(a+ Ib)− ‖x‖2
2

∣∣∣
=

∣∣∣a†M †Ma+ b†M †Mb+ I(a†M †Mb− b†M †Ma)− ‖x‖2
2

∣∣∣
(?)
=

∣∣∣a†M †Ma+ b†M †Mb− ‖x‖2
2

∣∣∣
=

∣∣∣a†M †Ma− ‖a‖2
2 + b†M †Mb− ‖b‖2

2

∣∣∣
(??)

≤ δ‖a‖2
2 + δ‖b‖2

2

= δ‖x‖2
2,

where (?) is due to the assumption that M †M is real, which implies that a†M †Mb and
b†M †Ma are conjugate real numbers (and thus, equal), and (??) is from the assumption
that the RIP-2 condition is satisfied by M for real-valued vectors and the triangle inequal-
ity.

As a technical tool, we use the standard symmetrization technique summarized in the
following proposition for bounding deviation of summation of independent random vari-
ables from the expectation. The proof is a simple convexity argument (see, e.g., [LT91,
Lemma 6.3] and [Ver12, Lemma 5.70]).
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Proposition 45. Let (Xi)i∈[m] be a finite sequence of independent random variables in a
Banach space, and (εi)i∈[m] and (gi)i∈[m] be sequences of independent Rademacher (i.e.,
each uniformly random in {−1,+1}) and standard Gaussian random variables, respec-
tively. Then,

E
∥∥∥ ∑
i∈[m]

(Xi − E[Xi])
∥∥∥ . E

∥∥∥ ∑
i∈[m]

εiXi

∥∥∥ . E
∥∥∥ ∑
i∈[m]

giXi

∥∥∥.
More generally, for a stochastic process (X

(τ)
i )i∈[m],τ∈T where T is an index set,

E sup
τ∈T

∥∥∥ ∑
i∈[m]

(
X

(τ)
i − E[X

(τ)
i ]
)∥∥∥ . E sup

τ∈T

∥∥∥ ∑
i∈[m]

εiX
(τ)
i

∥∥∥ . E sup
τ∈T

∥∥∥ ∑
i∈[m]

giX
(τ)
i

∥∥∥.
The following bound will be used in the proof of Claim 49, a part of the proof of

Lemma 27.

Proposition 46. Let (εi)i∈[m] be a sequence of independent Rademacher random variables,
and (aij)i,j∈[m] be a sequence of complex coefficients with magnitude bounded byK. Then,∣∣∣∣∣∣E

( ∑
i,j∈[m]

aijεiεj

)s∣∣∣∣∣∣ ≤ (4Kms)s.

Proof. By linearity of expectation, we can expand the moment as follows.

E
( ∑
i,j∈[m]

aijεiεj

)s
=

∑
(i1,...is)∈[m]s

(j1,...js)∈[m]s

(
ai1j1 · · · aisjsE

[
εi1 · · · εisεj1 · · · εjs

])
.

Observe that E[εi1 · · · εisεj1 · · · εjs ] is equal to 1 whenever all integers in the sequence

(i1, . . . , is, j1, . . . , js)

appear an even number of times. Otherwise the expectation is zero. Denote by S ⊆ [m]2s

the set of sequences (i1, . . . , is, j1, . . . , js) that make the expectation non-zero. Then,∣∣∣∣∣∣E
( ∑
i,j∈[m]

aijεiεj

)s∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(i1,...is,j1,...js)∈S

ai1j1 · · · aisjs

∣∣∣∣∣∣ ≤ Ks|S|.

One way to generate a sequence σ ∈ S is as follows. Pick s coordinate positions of σ out of
the 2s available positions, fill out each position by an integer in [m], duplicate each integer
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at an available unpicked slot (in some fixed order), and finally permute the s positions of σ
that were not originally picked. Obviously, this procedure can generate every sequence in
S (although some sequences may be generated in many ways). The number of combina-
tions that the combinatorial procedure can produce is bounded by

(
2s
s

)
ms(s!) ≤ (4ms)s.

Therefore, |S| ≤ (4ms)s and the bound follows.

We will use the following technical statement in the proof of Lemma 27.

Proposition 47. Suppose for real numbers a > 0, µ ∈ [0, 1], δ ∈ (0, 1], we have

a ·
( a

1 + a

) 1
1+µ ≤ δ

2+µ
1+µ

4
.

Then, a ≤ δ.

Proof. Let δ′ := δ
2+µ
1+µ/4

1
1+µ ≥ δ

2+µ
1+µ/4. From the assumption, we have

a ·
( a

1 + a

) 1
1+µ ≤ δ′ ⇒ a2+µ ≤ δ2+µ(1 + a)/4. (5.8)

Consider the function
f(a) := a2+µ − δ2+µa/4− δ2+µ/4.

The proof is complete if we show that, for every a > 0, the assumption f(a) ≤ 0 implies
a ≤ δ; or equivalently, a > δ ⇒ f(a) > 0. Note that f(0) < 0, and f ′′(a) > 0 for all
a > 0. The function f attains a negative value at zero and is convex at all points a > 0.
Therefore, it suffices to show that f(δ) > 0. Now,

f(δ) = δ2+µ − δ3+µ/4− δ2+µ/4 ≥ (3δ2+µ − δ3+µ)/4.

Since δ ≤ 1, the last expression is positive, and the claim follows.

Now, we are ready to prove the following theorem, which establishes the RIP-2 prop-
erty for random incomplete DFT matrices.

Theorem 48. Let T be a random multiset of rows of Lin, where |T | is fixed and each
element of T is chosen uniformly at random, and independently with replacement. Then,
for every δ, γ > 0, and assuming N ≥ N0(δ, γ), with probability at least 1− γ the matrix
ϕ(LinT )/

√
(q − 1)|T | (with (q− 1)|T | rows) satisfies RIP-2 of order k with constant δ for

a choice of |T | satisfying

|T | . log(1/γ)

δ2
k log(N) log3(qk). (5.9)
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The proof extends and closely follows the original proof in [RV08]. However we mod-
ify the proof at a crucial point to obtain a strict improvement over their original analysis
which is necessary for our list decoding application. We present our improved analysis in
this section.

Proof (of Theorem 48). Let M := ϕ(LinT ). Each row of M is indexed by an element of T
and some α ∈ F∗q , where in the definition of simplex encoding (Definition 32), we identify
F∗q with [q−1] in a fixed but arbitrary way. Recall that T ⊆ Fk̃q , where N = qk̃. Denote the
row corresponding to t ∈ T and α ∈ F∗q by Mt,α, and moreover, denote the set of k-sparse
unit vectors in CN by Bk,N2 .

In order to show that M/
√

(q − 1)|T | satisfies RIP of order k, we need to verify that
for any x = (x1, . . . , xN) ∈ Bk,N2 ,

|T |(q − 1)(1− δ) ≤ ‖Mx‖2
2 ≤ |T |(q − 1)(1 + δ). (5.10)

In light of Proposition 44, without loss of generality we can assume that x is real-valued
(since the inner product between any pair of columns of M is real-valued).

For i ∈ Fnq , denote the ith column of M by M i. For x = (x1, . . . , xN) ∈ Bk,N2 , define
the random variable

∆x := ‖Mx‖2
2 − |T |(q − 1) (5.11)

=
∑

(i,j)∈supp(x)
i 6=j

xixj〈M i,M j〉,

where the second equality holds since each column of M has `2 norm
√

(q − 1)|T | and
‖x‖2 = 1. Thus, the RIP condition (5.10) is equivalent to

∆ := sup
x∈Bk,N2

|∆x| ≤ δ|T |(q − 1). (5.12)

Recall that ∆ is a random variable depending on the randomness in T . The proof of the
RIP condition involves two steps. First, bounding ∆ in expectation, and second, a tail
bound. The first step is proved, in detail, in the following lemma.

Lemma 27. Let δ′ > 0 be a real parameter. Then, E[∆] ≤ δ′|T |(q − 1) for a choice of
|T | bounded as follows:

|T | . k log(N) log3(qk)/δ′
2
.
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Proof. We begin by observing that the columns of M are orthogonal in expectation; i.e.,
for any i, j ∈ Fnq , we have

ET 〈M i,M j〉 =

{
|T |(q − 1) i = j,
0 i 6= j.

This follows from (5.2) and the fact that the expected relative Hamming distance between
the columns of Lin corresponding to i and j, when i 6= j, is exactly 1−1/q. It follows that
for every x ∈ Bk,N2 , E[∆x] = 0, namely, the stochastic process {∆x}x∈Bk,N2

is centered.

Recall that we wish to estimate

E := ET∆

= ET sup
x∈Bk,N2

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 − |T |(q − 1)

∣∣∣∣∣∣ . (5.13)

Suppose the chosen multiset of the rows of Lin is written as a random sequence T =
(t1, t2, . . . , t|T |). The random variables

∑
α∈F∗q
〈Mti,α, x〉2, for different values of i, are

independent. Therefore, we can use the standard symmetrization technique on summation
of independent random variables in a stochastic process (Proposition 45) and conclude
from (5.13) that

E . E1 := ETEG sup
x∈Bk,N2

∑
t∈T

gt
∑
α∈F∗q

〈Mt,α, x〉2
 , (5.14)

where G := (gt)t∈T is a sequence of independent standard Gaussian random variables.
Denote the term inside ET in (5.14) by ET ; namely,

ET := EG sup
x∈Bk,N2

∑
t∈T

gt
∑
α∈F∗q

〈Mt,α, x〉2
 .

Now we observe that, for any fixed T , the quantity ET defines the supremum of a
Gaussian process. The Gaussian process {Gx}x∈Bk,N2

induces a pseudo-metric ‖ · ‖X on
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Bk,N2 (and more generally, CN ), where for x, x′ ∈ Bk,N2 , the (squared) distance is given by

‖x− x′‖2
X := EG|Gx −Gx′ |2

=
∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 −
∑
α∈F∗q

〈Mt,α, x
′〉2
2

=
∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉〈Mt,α, x− x′〉

2

. (5.15)

By Cauchy-Schwarz, (5.15) can be bounded as

‖x− x′‖2
X ≤

∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉2
∑

α∈F∗q

〈Mt,α, x− x′〉2
 (5.16)

≤
∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉2 max
t∈T

∑
α∈F∗q

〈Mt,α, x− x′〉2
 . (5.17)

Here is where our analysis differs from [RV08]. When q = 2, (5.17) is exactly how
the Gaussian metric is bounded in [RV08]. We obtain our improvement by bounding the
metric in a different way. Specifically, let η ∈ (0, 1] be a positive real parameter to be
determined later and let r := 1 + η and s := 1 + 1/η such that 1/r+ 1/s = 1. We assume
that η is so that s becomes an integer. We use Hölder’s inequality with parameters r and s
along with (5.16) to bound the metric as follows:

‖x− x′‖X ≤∑
t∈T

(∑
α∈F∗q

〈Mt,α, x+ x′〉2
)r1/2r∑

t∈T

(∑
α∈F∗q

〈Mt,α, x− x′〉2
)s1/2s

. (5.18)

Since ‖x‖2 = 1, x is k-sparse, and |Mt,α| = 1 for all choices of (t, α), Cauchy-Schwarz
implies that 〈Mt,α, x〉2 ≤ k and thus, using the triangle inequality, we know that∑

α∈F∗q

〈Mt,α, x+ x′〉2 ≤ 4qk.
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Therefore, for every t ∈ T , seeing that r = 1 + η, we have(∑
α∈F∗q

〈Mt,α, x+ x′〉2
)r
≤ (4qk)η

∑
α∈F∗q

〈Mt,α, x+ x′〉2,

which, applied to the bound (5.18) on the metric, yields

‖x− x′‖X ≤

(4qk)η/2r

∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉2


︸ ︷︷ ︸
E2

1/2r∑
t∈T

(∑
α∈F∗q

〈Mt,α, x− x′〉2
)s1/2s

. (5.19)

Now,

E2 ≤ 2

∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 +
∑
t∈T

∑
α∈F∗q

〈Mt,α, x
′〉2
 ≤ 4E ′T , (5.20)

where we have defined
E ′T := sup

x∈Bk,N2

∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2. (5.21)

Observe that, by the triangle inequality,

E ′T ≤ sup
x∈Bk,N2

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 − |T |(q − 1)

∣∣∣∣∣∣+ |T |(q − 1). (5.22)

Plugging (5.21) back in (5.19), we so far have

‖x− x′‖X ≤ 4(4qk)η/2rE ′T
1/2r

∑
t∈T

(∑
α∈F∗q

〈Mt,α, x− x′〉2
)s1/2s

. (5.23)

For a real parameter u > 0, defineNX(u) as the minimum number of spheres of radius
u required to cover Bk,N2 with respect to the metric ‖ · ‖X . We can now apply Dudley’s
theorem on supremum of Gaussian processes (cf. [LT91, Theorem 11.17]) and deduce that

ET .
∫ ∞

0

√
logNX(u)du. (5.24)
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In order to make the metric ‖ ·‖X easier to work with, we define a related metric ‖ ·‖X′
on Bk,N2 , according to the right hand side of (5.23), as follows:

‖x− x′‖2s
X′ :=

∑
t∈T

(∑
α∈F∗q

〈Mt,α, x− x′〉2
)s
. (5.25)

Let K denote the diameter of Bk,N2 under the metric ‖ · ‖X′ . Trivially, K ≤ 2|T |1/2s
√
qk.

By (5.23), we know that

‖x− x′‖X ≤ 4(4qk)η/2rE ′T
1/2r‖x− x′‖X′ . (5.26)

Define NX′(u) similar to NX(u), but with respect to the new metric X ′. The preceding
upper bound (5.26) thus implies that

NX(u) ≤ NX′(u/(4(4qk)η/2rE ′T
1/2r

)). (5.27)

Now, using this bound in (5.24) and after a change of variables, we have

ET . (4qk)η/2rE ′T
1/2r

∫ ∞
0

√
logNX′(u)du. (5.28)

Now we take an expectation over T . Note that (5.22) combined with (5.13) implies

ETE ′T ≤ E + |T |(q − 1). (5.29)

Using (5.24), we get

E2r
(5.14)
. E2r

1 = (ETET )2r ≤ ETE2r
T

. (4qk)ηET

(
(E ′T )1/2r

∫ ∞
0

√
logNX′(u)du

)2r

≤ (4qk)η(ETE ′T ) max
T

(∫ ∞
0

√
logNX′(u)du

)2r

(5.29)
≤ (4qk)η(E + |T |(q − 1)) max

T

(∫ ∞
0

√
logNX′(u)du

)2r

.

Define

Ē := E ·
(

E
E + |T |(q − 1)

)1/(1+2η)

. (5.30)
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Therefore, recalling that r = 1 + η, the above inequality simplifies to

Ē . (4qk)η max
T

(∫ K

0

√
logNX′(u)du

)1+1/(1+2η)

, (5.31)

where we have replaced the upper limit of integration by the diameter of Bk,N2 under the
metric ‖ · ‖X′ (obviously, NX′(u) = 1 for all u ≥ K).

Now we estimate NX′(u) in two ways. The first estimate is the simple volumetric
estimate (cf. [RV08]) that gives

logNX′(u) . k log(N/k) + k log(1 + 2K/u). (5.32)

This estimate is useful when u is small. For larger values of u, we use a different estimate
as follows.

Claim 49. logNX′(u) . |T |1/s(logN)qks/u2.

Proof. We use the method used in [RV08] (originally attributed to B. Maurey, cf. [Car85,
§ 1]) and empirically estimate any fixed real vector x = (x1, . . . , xN) ∈ Bk,N2 by an m-
sparse random vector Z, for sufficiently large m. The vector Z is an average

Z :=

√
k

m

m∑
i=1

Zi, (5.33)

where each Zi is a 1-sparse vector in CN and E[Zi] = x/
√
k. The Zi are independent and

identically distributed.

The way each Zi is sampled is as follows. Let x′ := x/
√
k so that ‖x′‖1 = ‖x‖1√

k
≤ 1.

With probability 1 − ‖x′‖, we set Zi := 0. With the remaining probability, Zi is sampled
by picking a random j ∈ supp(x) according to the probabilities defined by absolute values
of the entries of x′, and setting Zi = sgn(x′j)ej , where ej is the jth standard basis vector6.
This ensures that E[Zi] = x′. Thus, by linearity of expectation, it is clear that E[Z] = x.
Now, consider

E3 := E‖Z − x‖X′ .

If we pick m large enough to ensure that E3 ≤ u, regardless of the initial choice of x, then
we can conclude that for every x, there exists a Z of the form (5.33) that is at distance
at most u from x (since there is always some fixing of the randomness that attains the
expectation). In particular, the set of balls centered at all possible realizations of Z would

6Note that, since we have assumed x is a real vector, sgn(·) is always well-defined.
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cover Bk,N2 . Since the number of possible choices of Z of the form (5.33) is at most
(2N + 1)m, we have

logNX′(u) . m logN. (5.34)

In order to estimate the number of independent samples m, we use symmetrization
again to estimate the deviation of Z from its expectation x. Namely, since the Zi are
independent, by the symmetrization technique stated in Proposition 45 we have

E3 .

√
k

m
· E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
X′

, (5.35)

where (εi)i∈[m] is a sequence of independent Rademacher random variables in {−1,+1}.
Now, consider

E4 := E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
2s

X′

= E
∑
t∈T

(∑
α∈F∗q

〈Mt,α,
m∑
i=1

εiZi〉2
)s

=
∑
t∈T

E

∑
α∈F∗q

( m∑
i=1

εi〈Mt,α, Zi〉
)2

s

=
∑
t∈T

E

 m∑
i,j=1

εiεj
∑
α∈F∗q

〈Mt,α, Zi〉〈Mt,α, Zj〉∗
s

. (5.36)

Since the entries of the matrix M are bounded in magnitude by 1, we have∣∣∣ ∑
α∈F∗q

〈Mt,α, Zi〉〈Mt,α, Zj〉∗
∣∣∣ ≤ q.

Using this bound and Proposition 46, (5.36) can be simplified as

E4 = E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
2s

X′

≤ |T |(4qms)s,

and combined with (5.35), and using Jensen’s inequality,

E3 . |T |1/2s
√

4qks/m.
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Therefore, we can ensure that E3 ≤ u, as desired, for some large enough choice of m;
specifically, for some m . |T |1/sqks/u2. Now from (5.34), we get

logNX′(u) . |T |1/s(logN)qks/u2. (5.37)

Claim 49 is now proved.

Now we continue the proof of Lemma 27. Break the integration in (5.31) into two
intervals. Consider

E5 :=

∫ A

0

√
logNX′(u)du︸ ︷︷ ︸
E6

+

∫ K

A

√
logNX′(u)du︸ ︷︷ ︸
E7

,

where A := K/
√
qk. We claim the following bound on E5.

Claim 50. E5 . |T |1/2s
√

(logN)qks log(qk).

Proof. First, we use (5.32) to bound E6 as follows.

E6 . A
√
k log(N/k) +

√
k

∫ A

0

√
ln(1 + 2K/u)du. (5.38)

Observe that 2K/u ≥ 1, so 1 + 2K/u ≤ 4K/u. Thus,∫ A

0

√
ln(1 + 2K/u) du ≤

∫ A

0

√
ln(4K/u) du

= 2K

∫ A/2K

0

√
ln(2/u) du

= 2K

(
A

2K

√
ln(4K/A) +

√
π
(

1− erf
(√

ln(4K/A)
)))

= A
√

ln(4K/A) + 2
√
πK erfc

(√
ln(4K/A)

)
, (5.39)

where erf(·) is the Gaussian error function erf(x) := 2√
π

∫ x
0
e−t

2
dt, and erfc(x) := 1 −

erf(x), and we have used the integral identity∫ √
ln(1/x)dx = −

√
π

2
erf
(√

ln(1/x)
)

+ x
√

ln(1/x) + C
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that can be verified by taking derivatives of both sides. Let us use the following upper
bound

(∀x > 0) erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt ≤ 2√
π

∫ ∞
x

t

x
e−t

2

dt =
1√
π
· e
−x2

x
,

and plug it into (5.39) to obtain∫ A

0

√
ln(1 + 2K/u) du ≤ A

√
ln(4K/A) + 2

√
πK

(
1√
π
· A

4K
· 1√

ln(4K/A)

)
= A

√
ln(4K/A) +

A

2
√

ln(4K/A)

. A
√

log(qk) . |T |1/2s
√

log(qk)),

where the last inequality holds since A = K/
√
qk . |T |1/2s. Therefore, by (5.38) we get

E6 . |T |1/2s
√
k(
√

logN +
√

log(qk)). (5.40)

On the other hand, we use Claim 49 to bound E7.

E7 .
√
|T |1/s(logN)qks

∫ K

A

du/u

. |T |1/2s
√

(logN)qks log(qk). (5.41)

Combining (5.40) and (5.41), we conclude that for every fixed T ,

E5 = E6 + E7 . |T |1/2s
√

(logN)qks log(qk).

Claim 50 is now proved.

By combining Claim 50 and (5.31), we have

Ē . (4qk)η max
T
E1+1/(1+2η)

5

. (4qk)η
(
|T |1/2s

√
(logN)qks log(qk)

)1+1/(1+2η)

= (4qk)η|T |η/(1+2η)
(√

(logN)qks log(qk)
)1+1/(1+2η)

. (5.42)

By Proposition 47 (setting a := E/(|T |(q − 1)) and µ := 2η), and recalling the definition
(5.30) of Ē , in order to ensure that E ≤ δ′(q − 1)|T |, it suffices to have

Ē ≤ δ′
2(1+η)
1+2η |T |(q − 1)/4. (5.43)
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Using (5.42), and after simple manipulations, (5.43) can be ensured for some

|T | . (4qk)2η

η
k(logN) log2(qk)/δ′

2
.

This expression is minimized for some η = 1/Θ(log(qk)), which gives

|T | . k(logN) log3(qk)/δ′
2
.

This concludes the proof of Lemma 27.

Now we turn to the tail bound on the random variable ∆ and estimate the appropriate
size of T required to ensure that Pr[∆ > δ|T |(q− 1)] ≤ γ. We observe that the tail bound
proved in [RV08] uses the bound on E[∆] as a black box. In particular, the following
lemma, for q = 2, is implicit in the proof of Theorem 3.9 in [RV08]. The extension to
arbitrary alphabet size q and our slightly different sub-sampling process is straightforward.
However, for completeness, we include a detailed proof.

Lemma 28. [RV08, implicit] Suppose that, for some δ′ > 0, E[∆] ≤ δ′|T |(q − 1). Then,
there are absolute constants c1, c2, c3 such that for every λ ≥ 1,

Pr[∆ > (c1 + c2λ)δ′|T |(q − 1)] ≤ 6 exp(−λ2),

provided that

|T |/k ≥ c3λ/δ
′. (5.44)

Before we prove Lemma 28, we recall the following concentration theorem used by
[RV08]:

Theorem 51 (Theorem 3.8 of [RV08]). There is an absolute constant CRV > 0 such that
the following holds. Let Y1, . . . , Yr be independent symmetric variables taking values in
some Banach space. Assume ‖Yj‖ ≤ R for all j, and let Y := ‖

∑r
i=1 Yi‖. Then, for any

integers l ≥ Q and any τ > 0, it holds that

Pr[Y ≥ 8QE[Y ] + 2Rl + τ ] ≤
(CRV

Q

)l
+ 2 exp

(
− τ 2

256QE[Y ]2

)
.

From this theorem, we derive the following corollary.

150



Corollary 52. There are absolute constants C1, C2 > 0 such that the following holds.
Let Y1, . . . , Yr be independent symmetric variables taking values in some Banach space.
Assume ‖Yj‖ ≤ R for all j, and let Y := ‖

∑r
i=1 Yi‖. Moreover, assume that E[Y ] ≤ E

for some E > 0. Then, for every λ ≥ 1, we have

Pr[Y ≥ (C1 + C2λ)E] ≤ 3 exp(−λ2),

provided that E ≥ λR.

Proof. We properly set up the parameters of Theorem 51. Let τ := 16
√
QλE. Suppose

R > 0 (otherwise, the conclusion is trivial). Let Q := deCRVe so that(CRV

Q

)l
≤ exp(−l). (5.45)

Let l := Qdτ/(2R)e = Qd8
√
QλE/Re ≥ λ2, where the inequality is because of the

assumption E/R ≥ λ. The coefficient Q also ensures that l ≥ Q. Note that

R ≤ E/λ ≤ Eλ ≤ τ ⇒ 2Rl ≤ 2RQ(τ/(2R) + 1) = Qτ + 2QR ≤ 3Qτ. (5.46)

Thus,

Pr[Y ≥ 8QE + 2Rl + τ ] ≤ Pr[Y ≥ 8QE[Y ] + 2Rl + τ ] ≤ 3 exp(−λ2),

where the second inequality follows from Theorem 51 and by observing the choice of τ ,
the bound (5.45), and the lower bounds on l. Finally,

8QE + 2Rl + τ
(5.46)
≤ 8QE + (3Q+ 1)τ = 8QE + 16(3Q+ 1)

√
QλE =: (C1 +C2λ)E,

where C1 := 8Q and C2 := 16(3Q+ 1)
√
Q. The result now follows since

Pr[Y ≥ (C1 + C2λ)E] ≤ Pr[Y ≥ 8QE + 2Rl + τ ].

Now, we are ready for the proof of Lemma 28.

Proof of Lemma 28. We closely follow the proof of Theorem 3.9 in [RV08]. In order
to prove the desired tail bound, we shall apply Corollary 52 on norm of an independent
summation of matrices. Recall thatN = qk̃. Let the variable t ∈ Fk̃q be chosen uniformly at
random, and consider the random (q−1)×N matrixA := ϕ(Lin{t}) formed by picking the
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tth row of the N ×N matrix Lin and replacing each entry by a column vector representing
its simplex encoding. LetA := A>A− (q− 1)IN , where IN is the N ×N identity matrix,
and let ‖A‖Υ denote the following norm

‖A‖Υ := sup
x∈Bk,N2

∣∣x>Ax∣∣.
Denote the rows of A by A1, . . . , Aq−1, and observe that for every x ∈ Bk,N2 and i ∈
{1, . . . , q − 1},

|〈Ai, x〉| ≤ ‖Ai‖∞‖x‖1 ≤
√
k, (5.47)

where the second inequality follows from Cauchy-Schwarz. Therefore, since

A =

q−1∑
i=1

(A>i Ai − IN),

for every x ∈ Bk,N2 , we have

x>Ax =

q−1∑
i=1

〈Ai, x〉2 − (q − 1)
(5.47)
≤ (q − 1)(k − 1),

and thus,
‖A‖Υ ≤ qk. (5.48)

Suppose the original random row of Lin is written as a vector over FNq with coordinates
indexed by the elements of Fk̃q . That is, Lin{t} =: (w(u))u∈Fk̃q =: w. In particular, w(u) =

〈u, t〉, where the inner product is over Fq. Let u, v ∈ Fk̃q . By basic linear algebra,

Pr
t

[w(u) = w(v)] = Pr[〈(u− v), t〉 = 0] =

{
1/q if u 6= v,
1 if u = v.

Note that the (u, v)th entry of the matrix A>A can be written as

(A>A)(u, v) = 〈ϕ(w(u)), ϕ(w(v))〉 (5.1)
=

{
−1 if w(u) 6= w(v),
q − 1 if w(u) = w(v).

Therefore, from this we can deduce that E[A>A] = (q−1)IN , or in other words, all entries
of A are centered random variables; i.e., E[A] = 0.

Let X1, . . . , X|T | be independent random matrices, each distributed identically to A,
and consider the independent matrix summation

X := X1 + · · ·+X|T |.
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Since each summand is a centered random variable, X is centered as well. Recall the
random variables ∆x and ∆ from (5.11) and (5.12), and observe that ∆x can be written as

∆x = x>Xx,

which in turn implies
∆ = ‖X‖Υ.

Thus, the assumption of the lemma implies that

E[‖X‖Υ] ≤ δ′|T |(q − 1),

and proving a tail bound on ∆ is equivalent to proving a tail bound on the norm of X .
This can be done using Corollary 52. However, the result cannot be directly applied to X
since the Xi are centered but not symmetric for q > 2. As in [RV08], we use standard
symmetrization techniques to overcome this issue. Namely, let B be the symmetrized
version of A defined as

B := A−A′,
where A′ is an independent matrix identically distributed to A. Similar to X , define

Y := Y1 + · · ·+ Y|T |,

where the Yi are independent and distributed identically to B. As in the proof of Theo-
rem 3.9 of [RV08], a simple application of Fubini and triangle inequalities implies that

E[X] ≤ E[Y ] ≤ 2E[X],

Pr[X > 2E[X] + τ ] ≤ 2 Pr[Y > τ ]. (5.49)

Let E := 2δ′|T |(q− 1) so that by the above inequalities we know that E[Y ] ≤ E. We can
now apply Corollary 52 to Y and deduce that, for some absolute constants C1, C2 > 0,
and every λ ≥ 1,

Pr[Y ≥ (C1 + C2λ)E] ≤ exp(−λ2), (5.50)

provided that E ≥ λR, where we can take R = qk by (5.48). Plugging in the choice of E,
we get the requirement that

|T |
k
≥ λq

2δ′(q − 1)
,

which can be ensured by an appropriate choice of c3 in (5.44). Finally, (5.49) and (5.50)
can be combined to deduce that

Pr[X > 2E + (C1 + C2λ)E] ≤ Pr[X > 2E[X] + (C1 + C2λ)E]

≤ 2 Pr[Y > (C1 + C2λ)E]

≤ 6 exp(−λ2).
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This completes the proof of Lemma 28.

Now it suffices to instantiate the above lemma with λ :=
√

ln(6/γ) and δ′ := δ/(c1 +

c2λ) = δ/Θ(
√

ln(6/γ)), and use the resulting value of δ′ in Lemma 27. Since Lemma 27
ensures that |T |/k = Ω(logN), we can take N large enough (depending on δ, γ) so that
(5.44) is satisfied. This completes the proof of Theorem 48.

The proof of Theorem 48 does not use any property of the DFT-based matrix other
than orthogonality and boundedness of the entries. However, for syntactical reasons, that
is, the way the matrix is defined for q > 2, we have presented the theorem and its proof
for the special case of the DFT-based matrices. The proof goes through with no technical
changes for any orthogonal matrix with bounded entries (as is the case for the original
proof of [RV08]). In particular, we remark that the following variation of Theorem 48 also
holds:

Theorem 53. LetA ∈ CN×N be any orthonormal matrix with entries bounded byO(1/
√
N).

Let T be a random multiset of rows ofA, where |T | is fixed and each element of T is chosen
uniformly at random, and independently with replacement. Then, for every δ, γ > 0, and
assuming N ≥ N0(δ, γ), with probability at least 1− γ the matrix (

√
N/|T |)AT satisfies

RIP-2 of order k with constant δ for a choice of |T | satisfying

|T | . log(1/γ)

δ2
k(logN) log3 k.

We also note that the sub-sampling procedure required by Theorem 48 is slightly dif-
ferent from the one originally used by [RV08]. In our setting, we appropriately fix the
target number of row (i.e., |T |) first, and then draw as many uniform and independent
samples of the rows of the original Fourier matrix as needed (with replacement). On the
other hand, [RV08] samples the RIP matrix by starting from the original N × N Fourier
matrix, and then removing each row independently with a certain probability. This proba-
bility is carefully chosen so that the expected number of remaining rows in the end of the
process is sufficiently large. Our modified sampling is well suited for our coding-theoretic
applications, and offers the additional advantage of always returning a matrix with the ex-
act desired number of rows. However, we point out that since Theorem 48 is based on
the original ideas of [RV08], it can be verified to hold with respect to either of the two
sub-sampling procedures.

154



Chapter 6

Affine Invariance and Local Testability

The results of this chapter were published in [GSVW15].

6.1 Motivation

Another property of interest in the context of error-correcting codes is local testability.
Locally testable codes (LTCs) have received much attention in recent years. They are
error-correcting codes equipped with a tester, a randomized algorithm that queries the
received word at a few judiciously chosen positions and decides whether the word is a
valid codeword. The tester must accept valid codewords with probability 1 and reject
words that are far from the code in Hamming distance with nontrivial probability. LTCs
have garnered much interest due to their connections to probabilistically checkable proofs
(PCPs) and property testing (see the surveys [Gol11, Tre04]). Many PCP constructions are
based on or related to LTCs [BSGH+06, GS06, Din07, BSS08]. The primary focus thus
far has been on LTCs in which the number of queries is constant, and much progress has
been made on constructions in this regime (see for example the line of work culminating
in [Vid13]). There has also been work on LTCs with a sub-linear number of queries (i.e.,
N ε queries where N is the block length and ε > 0 is arbitrary) [BSS06, GKS13].

Recently, high-rate LTCs in which the tester is allowed to make a linear number of
queries (i.e., εN queries) have been shown to have surprising connections to central ques-
tions in the theory of approximation algorithms. Specifically, in [BGH+12] a beautiful
connection between such LTCs and the construction of small set expander graphs is pre-
sented. Instantiating this connection with the binary Reed-Muller (RM) code, the authors
of [BGH+12] construct small set expanders whose Laplacian has many small eigenvalues.
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They also derandomize the “long code” (hypercube) which underlies all optimal PCP con-
structions to give a shorter low-degree version (which they called the “short code”). The
low-degree long code has since been used to construct more size-efficient PCPs, leading
to improved hardness results for hypergraph coloring [DG13, GHH+14, KS14].

The binary Reed-Muller code RM(r, n) of degree r in n variables encodes a (mul-
tilinear) polynomial f ∈ F2[X1, . . . , Xn] of total degree at most r by the vector of its
evaluations

(
f(α)

)
α∈Fn2

. The (minimum) distance of RM(r, n) equals 2n−r. A central in-
gredient in the above exciting recent developments is a local testability result for binary
RM codes due to [BKS+10]. In the high-rate regime of relevance to the above connec-
tions, the result of [BKS+10] shows the following (one should think of s as constant, and
n as growing in the statement below):

Theorem 54 ([BKS+10]). There exists an absolute constant ξ > 0 such that the Reed-
Muller code RM(n − s, n) (of distance 2s) can be tested with 2n−s+1 queries, rejecting a
function f : Fn2 → F2 that is 2s/3-far from RM(n− s, n) with probability at least ξ.

The n-variate binary RM code of constant distance d has dimension≈ N−(logN)log d−1,
where N = 2n, and is testable with 2N/d queries. For the connection to small set expan-
sion in [BGH+12], a binary linear code C of block lengthN that is testable with εN queries
results in a graph with vertex set C⊥ (the dual code to C) whose Laplacian has Ω(N) eigen-
values smaller than O(ε). To get many “bad” eigenvalues as a function of the graph size,
we would like C⊥ to be small compared to N , i.e., we would like the dimension of C to be
as large as possible. This leads to the following question, which motivates our work:

Question 55. What is the largest dimension of a distance d binary linear code C ⊂ FN2
that is testable with O(N/d) queries?

Reed-Muller codes give a construction with dimension ≈ N − (logN)log d−1. Achiev-
ing higher dimension would imply small set expanders (SSEs) whose Laplacians have
even larger number of small eigenvalues, and in particular, a dimension of N −Od(logN)
would imply polynomially many small eigenvalues (the existence of such SSEs is neces-
sary if the SSE intractability hypothesis of [RS10] holds). The only known upper bound on
dimension is the Hamming bound ≈ N − d

2
logN , based just on the distance (without us-

ing the testability condition). BCH codes achieve (up to lower order terms) the Hamming
bound; however, as all codewords in the dual of the BCH code have Hamming weight
close to N/2, the BCH code is not testable with O(N/d) queries.1

1It is known that for linear codes, one can assume without loss of generality that the tester checks or-
thogonality to a set of dual codewords (see [BSHR05]).
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In other words, there is a gap between the dimension of the testable distance d Reed-
Muller code, which is≈ N−(logN)log d−1, and the dimension of the BCH code of distance
d, which is ≈ N − d

2
logN (and best possible for distance d). The natural question moti-

vating the work in this chapter is to understand how significant a limitation the testability
requirement poses on the dimension of the code, and whether the highest possible dimen-
sion of a testable code with distance d is closer to that of BCH or RM. Unfortunately, this
seems to be a difficult problem in general.

As a first step toward the above challenging goal, in this chapter, we focus on proving
limitations in the special case of affine-invariant codes. Affine invariance generalizes many
popular families of algebraic codes and is a well-studied concept in coding theory. The
investigation of the role of affine invariance, and invariance in general, in the context
of testability were initiated by [KS07a] and there have been many further works in the
area (see, for instance, the survey by Sudan [Sud11, Section 5] and references therein).
Affine-invariant codes are subsets of functions from FnQ to Fq that are invariant under
affine transformations of the domain, where FQ and Fq are finite fields with FQ extending
Fq (see Section 6.2.1 for a more formal definition in the case of Q = q).

As it turns out, both Reed-Muller and BCH are affine-invariant codes. Furthermore,
[GKS13] as well as [HRZS13] show constructions of additional classes of codes that are
testable with O(N/d) queries and provide slight improvements to the dimension of the
Reed-Muller code. Interestingly, these improved codes, too, are affine-invariant. It seems
worthwhile, therefore, to initially restrict our attention to affine-invariant codes and gain
further insights into the problem. The rich structure of affine invariance gives us some
handle for understanding the constraints imposed by local testability. For example, al-
though we know virtually no lower bounds for LTCs in the constant-query regime, it was
shown in [BSS11] that affine-invariant LTCs for a constant number of queries cannot have
constant rate.

Affine invariance also offers many advantages for constructing locally testable codes.
It turns out that their structure means that only fairly weak conditions have to be satisfied in
order for a code to be testable. For example, it has been shown that any affine-invariant lin-
ear code which is characterized by constant-weight constraints is testable with constantly
many queries [KS07a].2

In the constant distance (linear query) regime, affine-invariant codes have yielded
LTCs with the highest dimension known thus far, and improving slightly upon binary
Reed-Muller codes. By using a technique known as lifting of affine-invariant codes, the

2In fact, the testability also extends to non-linear codes [BFH+13], but with an enormous price in the
error analysis.
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works [GKS13, HRZS13] give constructions of a class of affine-invariant linear-query
LTCs that improve upon the dimension of the RM code. For some of these codes, with
lower dimension, [HRZS13] shows the soundness guarantee that is necessary to allow
them to replace the RM code in the application of [BGH+12]. Without this stronger guar-
antee, [GKS13] gives a code C ⊆ {0, 1}N (where N = 2n) of distance d and dimension

dim(C) ≥ N −
(

1 +
logN

log d− 1

)log d−1

, (6.1)

which is testable with 2N/d queries. This code contains the binary code RM(n− log d, n),
as do the corresponding codes of [HRZS13]. Hence, it is natural to ask for the optimal
dimension of a code containing the RM code that still has the desired testability properties.
Note that the (extended) BCH code of distance d (which does not satisfy the testability
requirements) also contains RM(n− log d, n).

In this chapter, we show that the code of [GKS13] is essentially optimal. That is, we
show for constant d that any linear affine-invariant code C ⊆ {F2n → F2} of distance
d which is testable with 2N/d queries (the number of queries needed for testing the RM
code of the same distance) and contains RM(n− log d, n) has dimension at most

dim(C) ≤ N −
(

logN

log2 d

)log d−1

,

where N = 2n (see Theorem 43 for the formal statement of the result). We also show
that any linear affine-invariant code C satisfying (6.1) must contain the RM code of degree
logN − (log d− 1) log(n+ log d− 1) + Ωd(1), implying that our assumptions are not far
from the truth.

Our results suggest that any LTC which improves noticeably on the Reed-Muller code
in the linear query regime would need techniques beyond the known ones based on affine
invariance.

Organization. In Section 6.2, we give definitions and preliminaries on affine-invariant
LTCs. Section 6.3 then describes previous work that complements our results. In Sec-
tion 6.4, we prove our lower bound on affine-invariant codes that contain high-order Reed-
Muller codes. Finally, Section 6.5 provides some justification for why containment of a
high-order Reed-Muller code is a reasonable assumption. Omitted proofs appear in the
appendices.
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6.2 Preliminaries

6.2.1 Our Setup

We begin with some basic terminology for locally testable codes. In the following, F is a
finite field. Recall Definition 12 for the dual code of a linear code, which we restate for
convenience below:

Definition 12 (Dual code). Given an [n, k]q linear code C, we define its dual code C⊥ to
be the code given by

C⊥ = {c′ ∈ Fnq : cT · c′ = 0 for all c ∈ C}.

Definition 34 (δ-far). A word w ∈ FN is said to be δ-far from a linear code C ⊆ FN if
minc∈C∆(w, c) ≥ δN , where ∆(x, y) denotes the Hamming distance between two vectors.

We now define the notions of (weak) locally testable codes (LTCs) and canonical
testers.

Definition 35 (Canonical testers). Suppose C ⊆ FN is a linear code. A k-query canonical
tester for C is a distribution D over subsets I ⊆ {1, 2, . . . , N} satisfying |I| ≤ k; invoking
the tester on a word w ∈ FN consists of sampling I ∼ D and accepting w if and only if
w|I ∈ C|I .

Definition 36 (LTCs). A linear code C ⊆ FN is said to be a (k, ε, ρ)-LTC if there exists a
k-query canonical tester that always accepts elements of C and rejects all w 6∈ C that are
ρ-far from C with probability at least ε. The parameter ε is known as the soundness of the
tester.

Our definition for LTCs and testers is motivated by a result of Ben-Sasson, et al. [BSHR05],
which shows that any general tester for an LTC can be reduced to the above canonical
form. Together with the linearity, it follows that a necessary condition for a linear code to
be testable is the existence of a dual codeword of low Hamming weight.

Fact 56 (Existence of a low weight dual codeword). Let C ⊆ FN be a linear LTC of
distance at least 2 that is testable with k queries. Then, for any 1 ≤ j ≤ N , there must
exist a nonzero w ∈ C⊥ such that wj 6= 0 and |{i ∈ {1, . . . , N} : wi 6= 0}| ≤ k, i.e., w
has Hamming weight at most k.
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Proof. By Theorem 3.3 in [BSHR05], we know that if C is a (k, ε, ρ)-LTC, then C has
a k-query canonical tester T that accepts all v ∈ C with probability 1 and rejects any v
that is ρ-far from C with probability at least ε. Consider an arbitrary v that is ρ-far from
C. There exists some I ⊆ {1, 2, . . . , N} in the support of the underlying distribution of
T such that v|I 6∈ C|I . Thus, C|I is a linear subspace of FN |I that is strictly contained
in FN |I . It follows that there exists a nonzero w′ ∈ FN |I that is orthogonal to all of C|I .
Hence, the word w ∈ FN that is supported on I and satisfies w|I = w′ is an element of C⊥
with Hamming weight at most k.

In this work, we will write N = 2n. All logarithms will be base 2 unless otherwise
specified.

We next define affine-invariant codes, which are the focus of this work.

Definition 37. Let FQ be a field of size Q. We call a function A : FtQ → FtQ an affine
transformation if A(x) = Mx+ b for some matrix M ∈ Ft×tQ and vector b ∈ FtQ.

Definition 38. Let Fq be a field of size q, and let FQ be its extension field of size Q = qm.
Then, we call a code F ⊆ {FtQ → Fq} affine-invariant if for every f ∈ F and affine
transformation A : FtQ → FtQ, the function f ◦ A is in F .

Throughout, we will make use of the following useful fact about affine-invariant codes.

Fact 57. If C ⊆ FN is a linear affine-invariant code of dimension D, then its dual code
C⊥ ⊆ FN is also a linear affine-invariant code, of dimension N −D.

The task is to consider binary affine-invariant codes C ⊆ {f : Fn2 → F2} with fixed
distance d such that C is an LTC with locality O

(
N
d

)
. We wish to find the optimal rate of

such a code C.

6.2.2 Affine-Invariant Codes

From now on, we will only consider univariate affine-invariant codes (i.e., subsets of
{f : F2n → F2}), since (F2s)

t is isomorphic to F2st for all t, and passing from a multi-
variate code to the corresponding univariate code preserves affine invariance and testabil-
ity ([BSS11]). More precisely, there exists an isomorphism φ : F2st → (F2s)

t such that
for any multivariate linear affine-invariant LTC C ⊆ {f : (F2s)

t → F2}, the corresponding
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univariate code {g ◦ φ | g ∈ C} ⊆ {f : F2st → F2} is also a linear affine-invariant LTC
with the same testability parameters and dimension.3

Here, we present some basic facts that will allow us to study affine-invariant codes by
analyzing their degree sets (see, for example, [KS07b]). The definitions are stated in their
full generality for fields of size q, although we will primarily be concerned with the case
q = 2.

Definition 39. For a function f : Fqn → Fq, write it as the unique polynomial f(x) =∑qn−1
e=0 cex

e of degree at most qn − 1 which agrees with f on Fqn . Then, the support of f ,
denoted Supp(f), is the set of degrees with non-zero coefficients in f , that is, Supp(f) =
{e : ce 6= 0}.

Definition 40. Let F ⊆ {Fqn → Fq} be a code. We define Deg(F), the degree set of F ,
to be the set Deg(F) =

⋃
f∈F Supp(f).

Definition 41. Suppose D ⊆ {0, 1, . . . , qn − 1}. We define T (D) ⊆ {Fqn → Fq} to be
the trace code on D defined by

T (D) =

{(∑
e∈D

Tr(cexe)

)
∈ (Fqn → Fq) : ce ∈ Fqn

}
,

where Tr : Fqn → Fq is the field trace function given by Tr(x) = x+xq+xq
2
+ · · ·+xq

n−1
.

Let (mod∗ Q) refer to the operation that maps non-negative integers into {0, 1, . . . , Q−
1} such that a (mod∗ Q) = 0 if a = 0, while if a 6= 0, then a (mod∗ Q) = b, where
b ∈ {1, 2, . . . , Q− 1} is the unique integer such that a ≡ b (mod Q− 1).

Definition 42. For any e ∈ {0, 1, . . . , qn − 1}, we say that e′ ∈ {0, 1, . . . , qn − 1} is
a q-shift of e if there exists some nonnegative integer i such that e′ = qi · e (mod∗ qn).
Furthermore, we define the shift closure of e to be the set of all shifts of e:

shift(e) = {eqi (mod∗ qn) : i ∈ {0, 1, . . . , n− 1}.

The shift closure of a set D ⊆ {0, 1, . . . , qn− 1} is then defined to be the union of the shift
closures of its elements:

shift(D) =
⋃
e∈D

shift(e).

3Note that multivariate functions admit a larger class of affine transformations than univariate functions
over the corresponding domain. However, each affine transformation of F2st corresponds to an affine trans-
formation of (F2s)t under the isomorphism φ. Thus, since we are proving limitations of affine-invariant
codes, any upper bound on the dimension of univariate affine-invariant LTCs will also apply to multivariate
affine-invariant LTCs over the corresponding domain.
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Finally, D is said to be shift-closed if D = shift(D).

An alternate view of shift-closed sets arises by viewing an element e ∈ D as a vector
in {0, 1, . . . , q−1}n given by the base q representation of e. The q-shifts of e are precisely
the integers whose corresponding vectors (obtained by taking the base q representation)
are cyclic shifts of the vector associated with e. A set D is, therefore, shift-closed if the
set is closed under taking “cyclic” shifts of the associated base q representations.

Definition 43. Let e, e′ ∈ {0, 1, . . . , qn − 1}. Let e =
∑n−1

i=0 eiq
i and e′ =

∑n−1
i=0 e

′
iq
i be

the base q representations of e and e′, respectively. We say that e′ lies in the q-shadow of
e if e′i ≤ ei for all 0 ≤ i ≤ n− 1. We will denote this as e′ ≤q e.

A set D ⊆ {0, 1, . . . , qn − 1} is said to be q-shadow-closed if

{e′ : e′ ≤q e for some e ∈ D} = D.

When q is understood, we will say D is shadow-closed.

It is known that linear affine-invariant codes can be characterized by their correspond-
ing degree sets.

Theorem 58. Let F ⊆ {Fqn → Fq} be a linear affine-invariant code. Then, D = Deg(F)
is the unique set D ⊆ {0, 1, . . . , qn − 1} that is shift-closed and shadow-closed such that
F equals the trace code T (D). Conversely, if D ⊆ {0, 1, . . . , qn − 1} is shift-closed and
shadow-closed, then T (D) is a linear affine-invariant code with degree set D.

Moreover, the dimension of a linear affine-invariant code is given by the size of its
degree set.

Theorem 59. If F ⊆ {Fqn → Fq} is a linear affine-invariant code, then dim(F) =
|Deg(F)|.

6.3 Background and Previous Work

We now state some results on binary affine-invariant codes that motivate our work.

Definition 44. The 2-weight of a degree e ∈ {0, 1, . . . , 2n − 1}, denoted wt2(e), is the
number of ones in the binary representation of e.
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Recall the definition of a trace code (see Definition 41, with q = 2). It is a folklore fact
that the Reed-Muller code is equivalent to the univariate code

RM(r, n) = T ({e ∈ {0, 1, . . . , 2n − 1} : wt2(e) ≤ r}).

Furthermore, the dual of the extended BCH code of distance d = 2t+ 2 can be expressed
as

dual-eBCH(n, t) = T ({0, 1, . . . , t}).

Similarly, the extended BCH code itself is expressible as

eBCH(n, t) = T (D),

where D ⊆ {0, 1, . . . , 2n − 1} is the set of all degrees e such that the zeros in the n-bit
binary representation of e do not all lie within a cyclic block of length log d− 1. Note that
we have

RM(n− log d, n) ⊆ eBCH(n, t),

and both are linear affine-invariant codes of distance d. Moreover, RM(n − log d, n) has
dimension

n−log d∑
i=0

(
n

i

)
≈ N −

(
en

log d− 1

)log d−1

,

while eBCH(n, t) has dimension roughly N − dn
2

. However, RM(n − log d, n) can be
tested with 2N

d
queries [BKS+10, AKK+05]. More specifically, we have the following

result (one should think of s as constant, and n as growing in the statement below):

Theorem 60 ([BKS+10]). There exists an absolute constant ξ > 0 such that the Reed-
Muller code RM(n − s, n) (of distance 2s) can be tested with 2n−s+1 queries, rejecting a
function f : Fn2 → F2 that is 2s/3-far from RM(n− s, n) with probability at least ξ.

On the other hand, we cannot hope to test eBCH(n, t) with the same number of queries
(for d > 4), due to Fact 56 and the fact that dual-eBCH(n, t) has relative distance close to
1/2 (see [MS81]).

6.3.1 Testable Codes Surpassing Reed-Muller

The authors of [GKS13] construct linear affine-invariant codes of linear locality that con-
tain the generalized Reed-Muller code of appropriate order. More specifically, for n = `m,
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where ` = log d − 1 and m is any positive integer, they present a multivariate affine-
invariant LTC C ⊆ {Fm

2`
→ F2} of block length N = 2n which satisfies dim(C) = N −

(m+1)` = N−
(

1 + n
log d−1

)log d−1

. This code contains the binary code RM(n−log d, n),
and is testable with 2N/d queries (where N = 2n).

There is also a univariate analogue of the above codes with identical distance and
dimension. See 6.6.1 of Appendix 6.6 for details.

6.3.2 Consequence of the Extended Weil Bound

In [KL11], the authors prove an extension of the Weil bound, which implies that sparse lin-
ear affine-invariant codes have relative distance close to 1/2. The main theorem of [KL11],
specialized to our setting (where we set p = 2, χ(x) ≡ Tr(x) and g(x) ≡ 0), can be stated
as follows.

Theorem 61 ([KL11]). Let f(x) be the sum of k ≥ 1 monomials, each of 2-weight at most
d. Then, either Tr(f(x)) is constant over all x ∈ F2n , or∣∣Ex∈F2n

[Tr(f(x))]
∣∣ ≤ 2−

n

4d22dk .

This yields a lower bound on the dimension of any sparse linear affine-invariant code
that has relative distance much less than 1/2:

Theorem 62 (consequence of [KL11]). Let F ⊆ {F2n → F2} be a linear affine-invariant

code of relative distance ≤ 1
2
− δ, for some δ > 0. Then for any ε > 0, |F| ≥ 2Ω(n

3
2−ε),

i.e., dim(F) = Ω(n
3
2
−ε).

This theorem does not appear explicitly in [KL11], but it can be deduced from their
techniques. In this section, we show how to prove Theorem 62. For the remainder of
this section, assume F is a linear affine-invariant code, and let D = Deg(F). Let R =
{1, 3, 5, . . . , 2n − 1} be the set of odd degrees, and set R′ = D ∩R.

Let us bound the maximum possible 2-weight of a degree in D in terms of |D| and
|R′|.

Lemma 29. Let r be the maximum 2-weight of a degree in D. Then, r ≤ log |D|.

Proof. Pick a degree e ∈ D of 2-weight r. There are exactly 2r degrees in the shadow of
e. Since D is shadow-closed, 2r ≤ |D|, as desired.
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Lemma 30. Suppose |D| > 1. Let r be the maximum 2-weight of a degree in D. Then,
r ≤ log |R′|+ 1.

Proof. Observe that we can pick a degree e ∈ R′ of weight r ≥ 1 (since |D| > 1 and D is
shift-closed). Note that there are 2r−1 odd degrees in the shadow of e. Thus, 2r−1 ≤ |R′|,
which implies the claim.

Next, we prove an upper bound on |R′| in terms of |D|.

Lemma 31. Suppose |D| > 1. Then, |R′| ≤ |D| log2 |D|
n

.

Proof. Note that for any nonzero degree e ∈ D, there are at least n
wt2(e)

≥ n
log |D| distinct

shifts of e, by Lemma 29. Moreover, for any nonzero degree e ∈ D, there are at most
wt2(e) ≤ log |D| shifts of e that lie in R′. Since D contains |D| − 1 nonzero degrees, we
see that

|R′| ≤ |D| − 1

n/ log |D|
· log |D| ≤ |D| log2 |D|

n
,

as desired.

Now, we are ready to prove Theorem 62.

Proof of Theorem 62. Suppose the code F ⊆ {F2n → F2} satisfies the hypothesis of
Theorem 62. Let D = Deg(F). Since the code has relative distance 1

2
− δ, |D| > 1.

For the sake of contradiction, assume that dim(F) ≤ O(n
3
2
−ε) for some ε > 0. Then,

|D| ≤ O(n
3
2
−ε). (6.2)

We have that F = T (R′ ∪ {0}), since each nonzero degree in D has some shift
contained in R′. Therefore, any h(x) ∈ F can be written as Tr(f(x)) for some f(x) that
is a sum of at most k = |R′| + 1 monomials. Moreover, by Lemma 30, we can guarantee
that each of these monomials has 2-weight at most d = log |R′| + 1. Then, Theorem 61
implies that either h is constant or

|Ex∈F2n
[h(x)]| ≤ 2

− n
8(log |R′|+1)2·|R′|(|R′|+1) .

Assume h is not constant. By Lemma 31, we have |R′| ≤ |D| log2 |D|
n

, and so,

|Ex∈F2n
[h(x)]| ≤ exp

(
−Ω

(
n3

|D|2 log4 |D| · (log(|D| log2 |D|)− log n+ 1)2

))
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It is now straightforward to observe that (6.2) implies that

|Ex∈F2n
[h(x)]| → 0

as n → ∞. However, this implies that the relative Hamming weight of any nonconstant
h(x) approaches 1

2
in the limit n → ∞. Furthermore, any (nonzero) constant h(x) has

relative Hamming weight 1. Hence, the relative distance of F approaches 1
2

in the limit
n → ∞, which contradicts the assumption that the relative distance is ≤ 1

2
− δ. This

concludes the proof of Theorem 62.

Because we are interested in very large codes C whose duals are sparse, we can apply
Theorem 62 to F = C⊥ to obtain an upper bound on the dimension of C. The requirement
d ≥ 5 used below ensures that 2N/d < 1/2.

Corollary 63. If C is a linear affine-invariant code of distance d ≥ 5 testable with 2N
d

queries, then dim(C⊥) ≥ n3/2−o(1).

Remark 64. Although we are able to prove much stronger lower bounds in the follow-
ing section, our results only hold when C⊥ contains (the indicator of) a low-dimensional
subspace. The work of [KL11] does not require this assumption.

6.4 Upper Bounds on the Dimension of C

In this section, we prove the following bound on the co-dimension of certain families of
affine-invariant LTCs:

Theorem 65. Let C ⊇ RM(n− log d, n) be a linear affine-invariant code of block length

N = 2n that has distance d and is testable with 2N
d

queries. Then, dim(C⊥) ≥
(

n
log2 d

)log d−1

.

Note that this bound is much stronger than that of Corollary 63, which followed from
the results of [KL11]. However, our bound only holds in the special case when C ⊇
RM(n− log d, n), unlike the results of [KL11]. Strengthening the results of [KL11] in the
more general setting is a challenging open problem.

By Theorem 59, to show that dim(C) is small, it suffices to show that Deg(C) is small.
Thus, we will show that under our assumptions, there are many degrees which cannot be
in Deg(C). At a high level, we start with a monomial which violates some dual constraint,
and use affine invariance to translate it to many other monomials which also violate this
dual constraint.
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We first show an equivalent condition for a monomial to violate a dual constraint
(Lemma 32), which can already be used to show that C ⊆ eBCH(n, t) (Theorem 66).
The proof itself is given in Section 6.4.3, where we consider a degree which violates some
dual constraint, and show that the bits of its binary expansion can be “moved around” to
give new degrees which also violate this dual constraint (Lemmas 68 and 69). Bounding
the number of such degrees gives us our main theorem, Theorem 65.

We will assume throughout that C ⊆ {F2n → F2} is affine-invariant, contains the
Reed-Muller code RM(n− log d, n), and is testable with 2N/d queries. Note that the con-
tainment assumption implies that Deg(C) contains all degrees of 2-weight at most n−log d
(see the discussion about degree sets of Reed-Muller codes at the beginning of Sec-
tion 6.3). Furthermore, Fact 56 guarantees the existence of some f ∈ C⊥ ⊆ {F2n → F2}
of Hamming weight 2N/d. Since C⊥ is affine-invariant, we have that g = f ◦ A ∈ C⊥
for any affine transformation A : F2n → F2n . In particular, choose A to be an invertible
transformation that maps 0 to some x ∈ F2n with f(x) 6= 0. Then, g has Hamming weight
2N/d and is supported on 0.

Since C⊥ is contained in the dual of RM(n− log d, n), all dual codewords of Hamming
weight 2N/d correspond to (indicators of) affine subspaces of dimension n − log d + 1
(see [PHE98]). Therefore, g must be (the indicator of) an affine subspace S of dimension
n− log d+ 1. Moreover, since g is supported on 0, S must in fact be a linear subspace.

6.4.1 Matrix Determinant Formulation

In this section, we give a necessary condition (Equation (6.4)) for a degree to be in the
degree set of our code C, whenever the indicator of the subspace S lies in C⊥.

Recall that an affine-invariant code is specified by its degree set. Thus, if e ∈ Deg(C)
and the indicator vector of a subspace S is in the dual code C⊥, then we must have∑

α∈S

αe = 0. (6.3)

We will often abuse notation and say that if (6.3) holds, then S is orthogonal to e, or e
passes S.

We have assumed that any degree e of 2-weight at most n− log d is in Deg(C). Thus,
let us consider which degrees e of 2-weight exactly n − log d + 1 can be contained in
Deg(C). The following lemma gives an equivalent condition for when a subspace of a
certain dimension k is orthogonal to a degree of the 2-weight k. Note that we are interested
in the special case k = n− log d+ 1.
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Lemma 32. Suppose e = 2i1 +2i2 + · · ·+2ik is a degree of 2-weight k ≥ 1, for ij distinct.
Suppose S is a subspace of dimension k, and let α1, α2, . . . , αk be an F2-basis for S. Then
S is orthogonal to e if and only if the following determinant is zero:

Me(α1, α2, . . . , αk) :=


α2i1

1 α2i1
2 · · · α2i1

k

α2i2
1 α2i2

2 · · · α2i2
k

...
...

...
α2ik

1 α2ik
2 · · · α2ik

k

 (6.4)

Proof. S is orthogonal to e if and only if
∑

α∈S α
e = 0. Note that

∑
α∈S

αe =
∑

λ1,...,λk∈{0,1}

k∏
j=1

(λ1α1 + · · ·+ λkαk)
2ij

=
∑
π∈Sn

k∏
j=1

α2
iπ(j)

j ,

where the last sum ranges over all permutations of {1, 2, . . . , n}. The final line fol-
lows because any term αt11 α

t2
2 · · ·α

tk
k that has some tj of 2-weight at least 2 must also

have some tj = 0, hence implying that such a term must occur an even number of
times in the sum. Since we are working over fields of characteristic 2, it follows that
such a term cannot have a nonzero coefficient. Moreover, the above quantity is equal to
the permanent of Me(α1, α2, . . . , αk), which, over fields of characteristic 2, is equal to
detMe(α1, α2, . . . , αk). This proves the claim.

6.4.2 Warm-up: Containment in Extended BCH

To give some idea of our approach, let us first show how to use the determinant formulation
of Lemma 32 to prove that if an LTC satisfies our desired conditions, then it must be
contained inside an extended BCH code of the same distance.

Loosely, we find a nontrivial degree (e∗) which cannot be in Deg(C), and use the fact
that Deg(C) is closed under cyclic “shifts” to obtain more degrees which are not in Deg(C).

Theorem 66. Suppose C is a linear affine-invariant code of distance d = 2t + 2 that
contains RM(n− log d, n) and is locally testable with 2N

d
queries. Then, C ⊆ eBCH(n, t).

Proof. First, we consider the degree e∗ = 20 + 21 + 22 + · · · + 2n−log d of 2-weight
n− log d+ 1. We will show that e∗ 6∈ Deg(C).
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Let S be an arbitrary subspace of dimension k = n − log d + 1. We will show that S
cannot be orthogonal to e∗. Let α1, α2, . . . , αk be an F2-basis for S. Then,

Me∗(α1, . . . , αk) =


α1 α2 · · · αk

α2
1 α2

2 · · · α2
k

...
...

...

α2k−1

1 α2k−1

2 · · · α2k−1

k

 ,

which has been studied as the (transpose) Moore matrix, whose (i, j) entry is α2i−1

j (see
[Moo96]). The determinant of the matrix is known to be∏

λ1,λ2,...,λk∈{0,1} not all zero

(λ1α1 + λ2α2 + · · ·+ λkαk),

i.e., the product of all non-trivial F2-linear combinations of α1, α2, . . . , αk. Since the αi
are F2-linearly independent by choice, it follows that the above determinant is nonzero.
Thus, Lemma 32 implies that S cannot be orthogonal to e∗. Since S was arbitrary, any
C whose degree set contains e∗ cannot have dual distance 2N

d
and would therefore not be

locally testable with the desired locality.

Now recall that for d = 2t + 2, Deg(eBCH(n, t)) = {0, 1, . . . , 2n − 1} \ T , where T
is the set of all degrees e for which the zeros in the n-bit base-2 representation of e are
contained in a consecutive (cyclic) block of size log d− 1 (see the discussion about degree
sets of extended BCH codes at the beginning of Section 6.3). Note that for any e ∈ T ,
there is some cyclic shift of e∗ in its shadow (see Definition 43, with q = 2). Since Deg(C)
does not contain e∗, and affine-invariant codes are closed under shifts and shadows (by
Theorem 58), it follows that Deg(C) ∩ T = ∅. Hence, Deg(C) ⊆ Deg(eBCH(n, t)), and
so, C ⊆ eBCH(n, t).

6.4.3 Dimension Bound via Local Transformations of Degree

Now, we show that for any degree e of 2-weight n − log d + 1 that does not pass a fixed
subspace S of dimension n− log d+ 1, we can perform a slight perturbation to e to obtain
another degree e′ of 2-weight n − log d + 1 that does not pass S. In other words, for any
subspace S, the existence of one degree that does not pass S implies many others.

First, let us state some facts which will be useful for the proof of the main result.

Fact 67. Let λ ∈ F2n be nonzero. Then, a subspace S is orthogonal to a degree e if and
only if the subspace λS = {λs : s ∈ S} is orthogonal to e.

169



Lemma 33. Let m < n and α1, α2, . . . , αm ∈ F2n . There exists a nonzero λ ∈ F2n such
that

Tr(λα1) = Tr(λα2) = · · · = Tr(λαm) = 0. (6.5)

Proof. As (Tr(λα1), . . . ,Tr(λαm)) ∈ {0, 1}m for all λ ∈ F2n \{0}, the pigeonhole princi-
ple implies that there exist two distinct λ1, λ2 ∈ F2n\{0} for which (Tr(λiα1),Tr(λiα2), . . . ,Tr(λiαm))
is identical for i = 1, 2. Thus, by linearity of trace, we see that (6.5) holds for λ =
λ1 − λ2.

Now, we prove one of the main technical theorems.

Theorem 68. Suppose S is a subspace of dimension k = n− log d+1. Let e = 2i1 +2i2 +
· · ·+ 2ik be a degree of 2-weight k that does not pass S. Then, for any integer 1 ≤ r ≤ k,
there exists u ∈ {0, 1, . . . , n − 1} \ {i1, i2, . . . , ik} such that e′ = e − 2ir + 2u does not
pass S.

Proof. Let {j1, j2, . . . , j`} = {0, 1, . . . , n − 1} \ {i1, i2, . . . , ik}. Let α1, α2, . . . , αk be a
basis for S. Then, by Lemma 33, there exists some nonzero λ ∈ F2n such that Tr(λαi) = 0
for each i. Scaling S by λ, we may assume that Tr(α1) = Tr(α2) = · · · = Tr(αk) = 0.

For ease of notation, we will write α[i] for α2i . Consider the matrix

M =



α
[i1]
1 α

[i1]
2 · · · α

[i1]
k

...
...

...

α
[ir−1]
1 α

[ir−1]
2 · · · α

[ir−1]
k∑`

t=1 α
[jt]
1

∑`
t=1 α

[jt]
2 · · ·

∑`
t=1 α

[jt]
k

α
[ir+1]
1 α

[ir+1]
2 · · · α

[ir+1]
k

...
...

...

α
[ik]
1 α

[ik]
2 · · · α

[ik]
k


We observe that detM is equal to the determinant of the following matrix M ′ which is
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obtained by replacing the rth row of M with the sum of all rows of M :

M ′ =



α
[i1]
1 · · · α

[i1]
k

...
...

α
[ir−1]
1 · · · α

[ir−1]
k∑

0≤t<n,t6=ir α
[t]
1 · · ·

∑
0≤t<n,t6=ir α

[t]
k

α
[ir+1]
1 · · · α

[ir+1]
k

...
...

α
[ik]
1 · · · α

[ik]
k


However, note that

∑
0≤t<n,t6=ir α

[t]
s = α

[ir]
s + Tr(αs) = α

[ir]
s for s = 1, 2, . . . , k. Hence,

M ′ = Me(α1, . . . , αk). By Lemma 32, since S is not orthogonal to e, we must have that
det(Me(α1, . . . , αk)) 6= 0. It follows that detM 6= 0. Note that

detM =
∑̀
s=1

detMes(α1, . . . , αk),

where es = e − 2ir + 2js . Thus, there exists some s for which detMes(α1, . . . , αk) 6= 0.
Hence, we conclude that the desired statement holds for u = js.

Theorem 68 shows that for a given degree e that does not pass a fixed subspace S, one
can shift any 1 in the binary representation of e to some position that is currently occupied
by a 0 and obtain another degree that does not pass S. Next, we try to prove an analogue
(Theorem 69) which allows us to shift any desired 0 to a position occupied by a 1. First,
we prove a lemma.

Lemma 34. Suppose α1, α2, . . . , αk ∈ F2n are F2-linearly independent, and let v0, . . . , vn−1 ∈
Fk2n be defined as

vi = (α2i

1 , α
2i

2 , . . . , α
2i

k ),

where k = n− log d+ 1. Then any set of (n/ log d) of the vi is linearly independent over
F2n .

Proof. Let h = n
log d

and suppose, for the sake of contradiction, that λ1vi1 + λ2vi2 + · · ·+
λhvit = 0, where i1, i2, . . . , ih are distinct, and not all of the λ1, λ2, . . . , λh ∈ F2n are zero.
Without loss of generality, suppose 0 ≤ i1 < i2 < · · · < ih ≤ n− 1. Let jr = (ir+1 − ir)
(mod n), where ih+1 = i1. Since j1 + j2 + · · · + jh = n, there exists some r such that
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jr ≥ n
h

= log d. Then, note that vir+1 , vir+1+1, · · · , vir+1+(k−1) are linearly independent
(where subscripts on v are modulo n): Letting e∗ = 20 + 21 + · · ·+ 2k−1, we have

det


vir+1

vir+1+1
...

vir+1+k−1

 = (detMe∗(α1, . . . , αk))
2ir+1 6= 0,

where the last statement is shown in the proof of Theorem 66. However, vi1 , vi2 , . . . , vih
appear among vir+1 , vir+1+1, . . . , vir+1+(k−1). Thus, we obtain a contradiction.

Theorem 69. Suppose S is a subspace of dimension k = n − log d + 1. Let e = 2i1 +
2i2 + · · · + 2ik be a degree of 2-weight k that does not pass S. Then, for any integer
0 ≤ u ≤ n− 1 with u 6∈ {i1, i2, . . . , ik}, there exist at least n

log d
− 1 values of r ∈ [k] for

which e+ 2u − 2ir is a degree that does not pass S.

Proof. Let u 6∈ {i1, i2, . . . , ik}, and let α1, α2, . . . , αk be a basis for S. Because e does
not pass S, we know that the matrix M = Me(α1, α2, . . . , αk) has a nonzero determinant.
Write wt = (α2it

1 , α2it
2 , . . . , α2it

k ) for t = 1, 2, . . . , k, i.e., wt is the tth row of M . Also, let
v = (α2u

1 , α
2u

2 , . . . , α
2u

k ). Since M has nonzero determinant, its row span is all of Fk2n , and
we can find λ1, λ2, . . . , λk ∈ F2n such that v = λ1w1 + λ2w2 + · · ·+ λkwk.

Suppose λj 6= 0. Then, the linear dependence∑
1≤i≤k
i 6=j

λiwi + λj(wj + λ−1
j v) = 0

implies that

0 = det



w1...
wj−1

wj + λ−1
j v

wj+1...
wk


= detM + λ−1

j detMe′(α1, . . . , αk),

where e′ = e+2u−2ij . Since detM 6= 0, we have detMe′(α1, α2, . . . , αk) 6= 0, implying
that e′ does not pass S. To conclude, simply note that Lemma 34 implies that there are at
least n

log d
− 1 values of j for which λj 6= 0. Thus, the desired conclusion follows.
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Remark 70. The bounds in Theorems 68 and 69 are tight, as they are achieved by the
(univariate analogue) of the codes of [GKS13]. See 6.6.2 in Appendix 6.6 for details.

Now, we are ready to prove the main theorem, which proves a lower bound on dim(C⊥).

Theorem 65. Let C ⊇ RM(n− log d, n) be a linear affine-invariant code of block length

N = 2n that has distance d and is testable with 2N
d

queries. Then, dim(C⊥) ≥
(

n
log2 d

)log d−1

.

Proof. Fix a subspace S of dimension n − log d + 1 whose indicator is in C⊥. Let k =
n− log d+ 1. Recall that e∗ = 20 + 21 + · · ·+ 2k−1 does not pass S.

Consider the following procedure. Let ek = e∗. Then, for j = k, k + 1, . . . , n − 1 (in
succession), we perform either one of the following steps:

• Set ej+1 = ej .

• Choose an ij ∈ {0, 1, . . . , n − 1} such that 2ij appears in the binary representation
of ej and so that ej + 2j − 2ij does not pass S. Set ej+1 = ej + 2j − 2ij .

It is clear that at the end of the procedure, en will be a degree of 2-weight k that does not
pass S. Moreover, for each j in the procedure, there will be at least n

log d
choices for setting

ej+1 (by Theorem 69). On the other hand, any final en could have been obtained in at most

(log d)log d−1 ways. Thus, it follows that there are at least
(

n
log d

)log d−1/
(log d)log d−1 =(

n
log2 d

)log d−1

degrees that do not pass S.

6.5 Reed-Muller Containment Assumption

In this work, we have analyzed affine-invariant codes C ⊆ {F2n → F2} that contain
RM(n − log d, n). Let us provide some justification for this assumption by showing that
any linear affine-invariant code with large dimension must contain a Reed-Muller code of
large order.

Theorem 71. Suppose C ⊆ {F2n → F2} is a linear affine-invariant code such that
RM(s, n) 6⊆ C, for some s = n − (log d − 1) log(n + log d − 1) + Ωd(1). Then,

dim(C) ≤ 2n −
(

1 + n
log d−1

)log d−1

.
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Proof. Suppose C satisfies the conditions of the hypothesis. Recall that RM(s, n) is the
trace code with degree set consisting of precisely those 0 ≤ e < 2n of 2-weight at most s.
Thus, there exists some degree of 2-weight at most s that does not appear in Deg(C). Since
the degree set of C is shadow-closed, it then follows that there exists e of 2-weight exactly
s that does not appear in Deg(C). Note that there are n shifts of e (possibly repeated). For
any shift e′ of e, there are 2n−s degrees that contain e′ in their shadow, for a total of n·2n−s.
Moreover, any of these degrees may appear up to n times (since each degree contains at
most n shifts of e in its shadow). Thus, there are at least n ·2n−s/n = 2n−s distinct degrees
that cannot be in Deg(C). This shows that

dim(C) ≤ 2n − 2n−s.

Thus when s = n− (log d− 1) log(n+ log d− 1) + Ωd(1), we have

dim(C) ≤ 2n −
(

1 +
n

log d− 1

)log d−1

.

Therefore, any affine-invariant code that is expected to improve on the testable codes
of [GKS13] and [HRZS13] must contain a Reed-Muller code of order n − Od(1) log n.
However, note that the above theorem holds for any linear affine-invariant code and does
not use testability. It seems that using the testability assumption should yield a tighter
bound, which is a promising direction for future work.

6.6 Univariate Constructions of Codes

Recall that [GKS13] gives a linear affine-invariant code C ⊆ {Fm
2`
→ F2} with block

length N = 2n, where n = `m. For ` = log d− 1, the code has distance d and is testable
with 2N/d queries. Moreover, C contains the multivariate Reed-Muller code RM(n −
log d, n).

The above code is obtained by “lifting” a parity check code of smaller block length
and happens to be multivariate. In our work, we are concerned with dimension bounds on
univariate codes. As it turns out, the code of [GKS13] has a univariate analogue, i.e., a
subset of {F2n → F2}. We provide a construction of this univariate code which does not
involve lifting. For the sake of convenience, we state the important properties of the code
below:
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Theorem 72. Suppose N = 2n, d ≥ 2, and ` = log d − 1 such that ` | n. Then, there
exists a linear affine-invariant LTC RM(n − ` − 1, n) ⊆ C ⊆ {F2n → F2} of distance d
that is testable with 2N/d queries and has dimension

dim(C) = N −
(

1 +
n

`

)`
= N −

(
1 +

logN

log d− 1

)log d−1

.

Note that the dimension of the code essentially matches the upper bound on dim(C)
implied by Theorem 65 (up to some lower-order factors involving d). While we present
a construction of the code, we do not prove here that the code is an LTC (the proof of
testability can be found in [GKS13]).

6.6.1 Subspaces from Subfields

We now try to construct a code with the properties listed in Theorem 72. LetN , n, d, and `
be as defined in the theorem statement. Again, we consider C ⊇ RM(n− `− 1, n). Recall
from Fact 56 that in order for C to be testable with the desired locality, there must be a
codeword in w ∈ C⊥ of Hamming weight at most 2N/d such that w0 6= 0. It is known that
RM(n − ` − 1, n) has dual distance 2N/d, and the dual codewords of minimum weight
are precisely the affine subspaces of dimension n− `. Hence, w must be (the indicator of)
a linear subspace S of the aforementioned dimension.

Hence, we will consider a fixed subspace S of dimension n − ` and consider which
degrees we can take in Deg(C). We will say that a degree e passes the subspace S if

∑
a∈S

ae = 0.

The above condition is necessary for us to be able to take e in Deg(C).

Assume ` | n, so that F2` is a subfield of F2n . Write n = `m. We can then consider
subspaces S of the form

S = λ1F2` + λ2F2` + · · ·+ λm−1F2` , (6.6)

where λ1, λ2, . . . , λm−1 ∈ F2n and λA is used to mean {λa : a ∈ A}.
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Now, a degree e = 2i1 + 2i2 + · · ·+ 2iu passes S if and only if

0 =
∑
a∈S

ae =
∑
a∈S

u∏
j=1

a2ij

=
∑

a1,...,am−1∈F2`

u∏
j=1

(λ1a1 + · · ·+ λm−1am−1)2ij

=
∑

a1,...,am−1∈F2`

u∏
j=1

m−1∑
k=1

(λkak)
2ij

=
∑

a1,...,am−1∈F2`

∑
e1,...,em−1

m−1∏
j=1

(λjaj)
ej

=
∑

e1,...,em−1

λe11 · · ·λ
em−1

m−1

m−1∏
j=1

∑
a∈F

2`

aej

 , (6.7)

where in the last two equations, e1, . . . , em−1 range over all e1, . . . , em−1 with distinct sup-
ports in their binary expansion, such that e1+· · ·+em−1 = e. Observe that

∑
a∈F2t

aej 6= 0

if and only if ej is a positive integral multiple of 2`− 1. Hence, the above condition would
be guaranteed for e if there happens to be no way to write e as a sum e = e1+e2+· · ·+em−1

such that (1.) e1, . . . , em−1 have distinct supports in their binary expansion, and (2.)
e1, e2, . . . , em−1 are all positive multiples of 2` − 1.

Now, it will be convenient to reason about degrees in terms of a matrix form.

Definition 45. Let 0 ≤ e < 2n. Moreover, let e = b020 + b121 + · · · + bn−12n−1 be the
binary representation of e (where b0, b1, . . . , bn−1 ∈ {0, 1}). Then, define the block matrix
representation of e to be the following m× ` matrix:

bn−` bn−`+1 · · · bn−1
...

...
...

b` b`+1 · · · b2`−1

b0 b1 · · · b`−1

 .

Furthermore, for j = 0, 1, . . . , ` − 1, we define the j-shifted row projection of e, denoted
projj(e), as

projj(e) =
n−1∑
i=0

bi2
((i+j) mod `).
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In other words, projj(e) is obtained by taking the block matrix representation of e, cycli-
cally shifting its columns by j to the right, and then taking the inner product of the vector
(20, 21, . . . , 2n−1) with the row sum of the resulting matrix.

Note the following easy property about row projections.

Lemma 35. For any j = 0, 1, . . . , ` − 1, we have that projj(e) ≡ 2je (mod 2` − 1). In
particular, projj(e) ≡ 0 (mod 2` − 1) if and only if e ≡ 0 (mod 2` − 1).

Proof. As usual, let e = b020 + · · ·+ bn−12n−1 be the binary representation of e. Note that

projj(e) =
n−1∑
i=0

bi2
((i+j) mod `)

≡ 2je (mod 2` − 1),

which proves the first part of the claim. The second part of the claim is a simple conse-
quence of the first part.

Theorem 73. Suppose e is a degree whose block matrix representation has at least two
zeros in some column. Then, e passes any (n− log d + 1)-dimensional subspace S of the
form (6.6).

Proof. Recall (6.7). Suppose e satisfies the hypothesis of the claim. As noted before, it
suffices to show that there is no way to write e as a sum e = e1 + e2 + · · ·+ em−1 such that
(1.) e1, . . . , em−1 have distinct supports in their binary expansion, and (2.) e1, e2, . . . , em−1

are all positive multiples of 2` − 1.

For the sake of contradiction, assume that there does exist a decomposition e = e1 +
e2 + · · ·+ em−1 satisfying (1.) and (2.). Also, suppose the j th column of the block matrix
representation of e contains at least two zeros. Then, by Lemma 35, we have that for
i = 1, 2, . . . ,m− 1,

proj`−j(ei) ≡ 2`−jei ≡ 0 (mod 2` − 1).

Moreover, since ei is positive, we must have that proj`−j(ei) > 0. Thus, proj`−j(ei) ≥
2` − 1. It follows that

proj`−j(e) =
m−1∑
i=1

proj`−j(ei) ≥ (m− 1)(2` − 1). (6.8)
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On the other hand, since there are at least two zeros in the j th column of the block matrix
representation of e, we have

proj`−j(e) ≤ m(20 + 21 + · · ·+ 2`−1)− 2 · 2`−1

= (m− 1)(2` − 1)− 1,

which contradicts (6.8). Hence, (1.) and (2.) cannot be satisfied, and the desired result
follows.

Thus, let us define D ⊆ {0, 1, . . . , 2n − 1} by

D = {0 ≤ e ≤ 2n − 1 : the block matrix rep. of e
contains at least two zeros in some column}. (6.9)

It is easy to see that D is shift-closed and shadow-closed. Thus, T (D) ⊆ {F2n → F2}.
Moreover, for none of the degrees in D can the zeros in the n-bit binary representation lie
in a cyclic block of length log d− 1 (this is guaranteed by the condition that there are two
zeros in some column of the block matrix representation). Thus, T (D) ⊆ eBCH(n, (d −
2)/2). Combining this with RM(n − log d, n) ⊆ T (D) shows that T (D) has distance
exactly d. Moreover, by Theorem 73, all e ∈ D simultaneously pass a common subspace
S of dimension n− log d+ 1, which means that the distance of the dual code is 2N/d.

Finally, recall from Theorem 59 that dim(T (D)) = |Deg(D)|. The degrees that are
not inD are precisely those that have at most one zero in each column of their block matrix
representation. Hence, a simple counting argument shows that

dim(T (D)) = N −
(

1 +
logN

log d− 1

)(log d−1)

.

Remark 74. The above code T (D) turns out to be the univariate analogue of the mul-
tivariate linear locality LTC presented in [GKS13]. The criterion for the degree set in
the multivariate code is virtually the same “two zeros in some column” criterion here,
except that the degrees for the multivariate code are m-tuples, and each component of
the m-tuple corresponds to a row (viewed as a binary representation) of our block matrix
representation. Testability of our univariate analogue follows from [GKS13], with the use
of an isomorphism between F2n and Fm

2`
.

Remark 75. The linear locality code of [HRZS13] is a code C ⊆ {Fn/t2t → F2} for general
t dividing n. It is a generalization of the code in [GKS13] (the latter follows by setting
t = ` for n that are multiples of `). The procedure of this section can be applied in a
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similar fashion to obtain univariate analogues of the codes of [HRZS13], except that one
uses subspaces constructed using the subfield F2t instead of F2` , and the block matrix
representation will have to be defined as an (n/t) × t matrix. We omit the details, since
the technique is similar enough, and the specific construction of [GKS13] is the one that
matches the lower bound on co-dimension given by Theorem 65.

6.6.2 Optimality Results

Now, we show that the technical results of Theorems 68 and 69 are tight by showing that
the univariate construction of the previous section matches those bounds.

Again, take ` = log d− 1 and n = `m, and let D be as in (6.9). Moreover, choose S to
be a subspace whose indicator lies in the dual of T (D). Let e∗ = 20 + 21 + · · ·+ 2n−`−1.

Lemma 36. For any 0 ≤ r ≤ n− `− 1, there exists at most one value of u ∈ {n− `, n−
`+ 1, . . . , n− 1} such that e′ = e∗ − 2r + 2u does not pass S.

Proof. Let s = rmod `. Note that for any u ∈ {n− `, . . . , n− 1} such that u 6= n− `+ s,
the block matrix representation of e′ = e∗ − 2r + 2u contains two zeros in some column,
and thus, e′ would pass S. This implies that the only admissible value of u for which
e′ = e∗ − 2r + 2u does not pass S is u = n− `+ s, as desired.

From the proof of Theorem 66, we know that e∗ does not pass S. Therefore, the result
of Theorem 68 shows that there must exist at least one value of e′ = e− 2r + 2u that does
not pass S. Thus, Lemma 36 matches this lower bound.

Next, we note the following lemma.

Lemma 37. For any n− ` ≤ u ≤ n− 1, there exist at most m− 1 = n
log d−1

− 1 values of
r < n− ` such that e′ = e∗ + 2u − 2r does not pass S.

Proof. Let s = umod `. Then, note that for any r < n−` such that rmod ` 6= s, the block
matrix representation of e′ = e∗ + 2u− 2r contains two zeros in some column, and hence,
e′ would pass S. Thus, the only possible values of r < n− ` for which e′ = e∗ + 2u − 2r

may not pass S are those for which rmod ` = s. There are precisely m− 1 such values of
r, which proves the desired claim.

Since the result of Theorem 69 shows that there must exist at least n
log d−1

− 1 values
of e′ = e+ 2u − 2r that do not pass S, we see that Lemma 37 matches this lower bound.
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Remark 76. In a straighforward manner, one can show that Lemmas 36 and 37 still hold
for any e∗ whose block matrix representation has exactly one zero in each column. Such
generalizations actually imply that T (D) is maximal among affine-invariant codes with
the desired properties, i.e., that there is no non-trivial affine-invariant LTC whose degree
set D′ is a strict superset of D.
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Chapter 7

Conclusion

In this thesis, we have examined questions relating to capacity and limitations of error-
correcting codes. The questions we tackle are fundamental in nature and, in general, relate
to the central question of determining and achieving the optimal tradeoff between error
tolerance and redundancy that has occupied the minds of coding theorists for decades. In
answering such questions, we have considered a number of different settings for coding
schemes, including one-way communication, interactive communication, list decoding,
and local testing. Moreover, although error-correcting codes were initially developed for
the purpose of reliable communication over noisy channels, we have not only focused on
addressing this original goal but have also highlighted applications and connections to ex-
citing new areas such as compressed sensing, approximation, communication complexity,
etc.

We summarize the main contributions of this thesis and highlight some important open
questions and future directions for research below.

7.1 Polar Codes

As discussed in Chapter 3, we have shown that polar codes are the first-known construc-
tion of explicit error-correcting codes that are efficiently encodable/decodable and provide
a polynomial speed of convergence to capacity over all symmetric channels with input
symbols from an alphabet of prime size. Moreover, for general (possibly non-symmetric)
channels, we have shown that polar codes provide a polynomial speed of convergence to
the symmetric capacity. Furthermore, we have shown how to extend the construction to
alphabets of arbitrary size.
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However, in the construction of polar codes, the dependence of the block length on N
on the gap to capacity ε depends poorly on the arity q. In particular, a polynomial speed of
convergence implies that there exists some constant c > 0 (possibly depending on q), often
referred to as the scaling exponent, such that it suffices to take N = Ω((1/ε)c) in order to
achieve ε gap to capacity. Our result has shown that c = poly(q) suffices. Furthermore,
for q = 2 (the binary case), one can obtain 3.5 < c < 4 [HAU13]. On the other hand, for
a random code, it suffices to take c = 2. Thus, one possible objective for future work is to
close this gap:

Objective 77. Determine the optimal scaling exponent c as a function of q for polar codes
over an alphabet of size q.

As it turns out, c cannot be improved to 2 for the standard binary polar code construc-
tion discussed in Chapter 3, as the work of [HAU13] shows that one must necessarily take
c ≥ 3.579. However, we do not know the limit of the optimal c as the arity q of the polar
code increases. One possible route to improving c beyond poly(q) is to improve the en-
tropy sumset inequality that is used in the proof technique. It may be possible to reduce the
exponent from c = poly(q) to c = poly(log q) via such an approach by proving Theorem 7
with α(q) = 1/poly(log q) (recall that we obtain α(q) = 1/poly(q); see Remark 16). This
leads to the following concrete question:

Question 78. Can the constant α(q) in the underlying entropy sumset inequality of Theo-
rem 7 be improved?

While the above question is of interest due to its connection to the convergence prop-
erties of polar codes, it is also of independent interest as a fundamental question in pseu-
dorandomness, especially in light of similar sumset inequality counterparts in additive
combinatorics.

Furthermore, it is possible that the scaling exponent c can be improved by changing
the construction of polar codes. This can be done, for example, by concatenation with
other codes or by using different polarizing kernels. Another possibility is to find a better
decoder.

The approach to tighten the gap in the scaling exponent of polar codes and random
codes by considering different polarizing kernels is especially intriguing. The kernel refers
to the basic polarizing transform that is used in the construction of the codes. The stan-
dard kernel that has been used by [Arı09] and much of the polar codes literature, as well as
Chapter 3, corresponds to the 2× 2 matrix K = ( 1 1

0 1 ). However, it is possible that we can
use a different kernel, and, more specifically, it may be possible to achieve scaling expo-
nents that approach 2 for kernels corresponding to `× ` matrices for large `. Moreover, it
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is known that in the limit `→∞, one can achieve a scaling exponent c ≈ 2 because of the
known behavior of random linear codes. An `× ` kernel corresponds to using ` copies of
a channel (instead of just two copies) in each recursive step of the polarization. Although
using an `×` kernel results in an increased decoding complexity ofO(2`N logN) (instead
of the O(N logN) decoding complexity under Arıkan’s standard 2 × 2 kernel), it would
nevertheless be interesting to investigate how increasing ` impacts the scaling exponent c:

Question 79. Can polar codes based on larger `×` polarizing kernels (for ` > 2) achieve
a tighter polynomial dependence of block length on inverse gap to capacity with scaling
exponent c ≈ 2?

Of course, the ultimate goal of the above questions is to construct explicit codes that
exhibit a speed of convergence to capacity that matches that of random codes:

Objective 80. Establish explicit capacity-achieving error-correcting codes whose speed
of convergence to capacity matches the guarantees obtained by random codes, i.e., codes
that exhibit polynomial convergence with scaling exponent c ≈ 2.

7.2 Interactive Communication

In Chapter 4, we have addressed the question of coding for interactive communication, in
which two parties communicate back and forth with messages that can depend on the com-
munication thus far. In particular, we have focused on finding interactive coding schemes
for low error fractions ε > 0 and have showed that under some modest assumptions about
the protocol to be encoded, one can achieve a communication rate of 1 − Θ(H(ε)) over
random and oblivious adversarial channels, which matches (up to the constant factors on
the H(ε)) the capacity for one-way communication. Furthermore, our interactive coding
scheme seems reasonably practical and have the added flexibility of being able to adapt
to a rateless setting in which the error fraction is not known a priori. We also incorporate
coding theoretic techniques (e.g., rateless codes) that were not used in prior interactive
coding literature.

The most logical extension to our work would be to determine whether a similar result
to Theorems 22 and 23 can be obtained for fully adversarial channels, in which the cor-
ruption patterns are allowed to depend adaptively on the communication transcript as the
protocol proceeds:
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Question 81. Is there a reasonable set of assumptions on a two-party interactive protocol
that would allow it to be encoded into a longer protocol that is resilient to an ε fraction of
fully adversarial errors with a communication rate of 1−Θ(H(ε)) = 1−Θ(ε log(1/ε))?

Of course, we have still not entirely ruled out the possibility of achieving such com-
munication rates for general interactive protocols. Recall that the work of [Hae14] showed
that allowing adaptivity in the output protocol (i.e., a non-fixed speaking order) can support
communication rates that surpass the bound of [KR13]. Specifically, Haeupler showed that
for random errors or oblivious adversarial errors, there is a randomized coding scheme that
allows one to achieve an error rate of 1 − O(

√
ε). Furthermore, in the case of full adver-

sarial errors, he showed that a capacity of 1−O(
√
ε log log(1/ε)) is achievable. Although

the results described in Chapter 4 allow us to surpass these error rates for the case of
random and oblivious adversarial channels (see Theorems 22 and 23), they do have un-
derlying assumptions about the average message length of the protocol that is being sim-
ulated. However, determining the optimality of the communication rates 1 − O(

√
ε) and

1−O(
√
ε log log(1/ε)) in their respective settings remains an important open question:

Question 82. Is it possible to show the optimality of the best-known communication rates
of 1−

√
ε and 1−

√
ε log log(1/ε) for random errors and adversarial errors with low error

fraction ε > 0?

Haeupler [Hae14] conjectures that this should be the case. One potential approach to
resolving the question would be to adapt the lower-bound techniques from [KR13].

There also remain some open questions regarding the tolerable error fractions for inter-
active coding schemes. One question asked in [BR14] that remains open is the following
fundamental question involving the tolerable error fraction for binary interactive coding
schemes:

Question 83. What is the maximum adversarial error fraction ε that can be tolerated by
a binary coding scheme that encodes an arbitrary two-way protocol?

While [BR14] showed that any adversarial error fraction ε < 1/4 can be tolerated
by encoding a given protocol into a longer protocol, approaching 1/4 arbitrarily closely
requires use of symbols from an alphabet that grows. If one restricts to coding schemes in
which the output is a binary protocol, then the coding scheme of [BR14] only allows one
to tolerate error rates up to 1/8, and indeed, this is the best known bound so far.

On the other hand, it is known that a binary coding scheme cannot tolerate an error
fraction of 1/6 or more. This bound follows from an impossibility result for the prob-
lem of communication with noiseless feedback [Ber64, EGH15]. In this setup, the Alice
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and Bob communicate over a noisy channel, but the sender has access to an uncorrupted
feedback channel. Essentially, one can show an upper limit of 1/3 for the fraction of er-
rors that one can tolerate in an interactive coding scheme over channels with feedback,
and this translates to the 1/6 bound for Question 83. It should be noted that the problem
of communication with noiseless feedback is also related to the classic game of “Twenty
Questions with a Liar” [SW92]. Closing the gap between 1/8 and 1/6 for Question 83
would be very interesting.

Finally, there have been several recent papers on interactive coding under various other
models (e.g., multiparty communication, insertion/deletion errors), and one can ask ques-
tions about the tolerable error fractions and capacities for interactive coding under such
models [BGMO16, ABE+16, BEGH16, EGH16, GH15].

7.3 List Decoding and Compressed Sensing

In Chapter 5, we have considered the setting of list decoding, in which one relaxes the re-
quirement that a decoder output a single message and allows the decoder to output a short
list of possible messages that were intended by the sender. One of the important themes
in coding theory is the investigation how random coding-theoretic objects behave, as they
provide a reasonable target for what parameters and tradeoffs are achievable. As a con-
crete example, Shannon’s noisy channel coding theorem provides an existential result and
shows that random codes can achieve the channel capacity of a DMC with a block length
that scales quadratically in the inverse gap to capacity. Although the codes achieved by
the theorem are not explicit and, therefore, not practical, the result nevertheless provides
a baseline for the search for explicit capacity-achieving codes (see the discussion in Sec-
tion 7.1).

In the realm of list decoding, the known performance of random codes was largely
incomplete prior to our work in Chapter 5. In particular, the optimal tradeoffs between
the list decoding radius, rate, and list size were note known for random linear codes as
the list decoding radius approaches 1 − 1/q (where the alphabet size is q). Since many
well-known and widely-used error-correcting codes happen to be linear, determining the
optimal tradeoff between various parameters for random linear codes is a fundamental
question in coding theory. Further motivation for analyzing list decodability in this regime
is provided by connections to a number of other topics in theoretical computer science,
such as pseudorandom generators, randomness extractors, etc. In this thesis, we have
essentially closed the gap between random linear codes and random codes. In particular,
we have shown that a random q-ary linear code of rate Ωq(ε

2/ log3(1/ε)) is list decodable
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up to a radius of 1−1/q−εwith list sizeO(1/ε2). As mentioned earlier, Wootters [Woo13]
removed the suboptimal logarithmic factors in 1/ε that appear in the rate. However, the
dependence on q in the rate still appears. It is highly believed that the dependence on q
should be removable, and this forms the basis of an interesting open question:

Question 84. Is it possible to show that a random q-ary linear code of rate Ω(ε2) (inde-
pendent of q) is (1− 1/q − ε, O(1/ε2))-list decodable?

Answering this question in the affirmative would essentially resolve the question about
the optimal tradeoffs for random linear codes in the aforementioned regime.

Another major contribution of this thesis is to establish a connection between list de-
coding and compressed sensing. Compressed sensing has been an emerging field that has
attracted much attention in electrical engineering, computer science, and applied mathe-
matics. We have established that the well-known restricted isometry property for subsam-
pled Fourier matrices implies list decodability of random linear codes in our regime. In the
process, we have improved important results of [CT06, RV08] on the number of Fourier
samples needed to enable recovery of sparse signals. Although the connection of the com-
pressed sensing result to list decoding is important, the question about the optimal number
of samples for compressed sensing is also an interesting question in its own right, and
the best known lower bound for the number of row samples needed in an N × N Fourier
matrix in order to satisfy the restricted isometry property (RIP-2) of order k (with a fixed
constant δ) is Ω(k logN) [BLM15]. This suggests the following important question in
compressed sensing:

Question 85. Let δ > 0 be a sufficiently small fixed constant. What is the minimum
number of random row samples m needed for a normalized N × N Fourier matrix M
with entries of absolute value O(1/

√
N) such that the resulting subsampled matrix (with

m rows chosen uniformly and independently from the rows of M ) satisfies RIP-2 of order
k with constant δ? In particular, can one take m = O(k logN)?

7.4 Local Testability

Finally, in Chapter 6 of this thesis, we have explored the property of local testability in
error-correcting codes. Recall that local testability gurarantees the property that it is pos-
sible to distinguish codewords from words that are far in Hamming distance from the code
with nontrivial probability by querying a received word in just a few carefully chosen po-
sitions. As discussed, locally testable codes have been showed to have applications to
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probabilistically checkable proofs and property testing, especially in the case in which the
query complexity is sub-linear or constant.

In this thesis, we have examined locally testable codes in a different regime, namely,
those codes in which the query complexity is linear. The specific application in mind for
this regime is the theory of approximation algorithms, where locally testable codes can be
used to construct small set expander graphs. Under certain assumptions (e.g., affine invari-
ance, containment of a sufficiently large Reed-Muller code), we have shown that among
locally testable codes of block length N , distance d, and appropriate query complexity,
the lifted codes of [GKS13] are essentially optimal. Another consequence of our work in
Chapter 6 is the resolution of the limitation posed by the local testability requirement in
the spectrum of codes from Reed-Muller to BCH (for fixed N and d).

However, the nature of the assumptions that we have made in order to prove the upper
bound on code dimension in Theorem 65 leaves open the possibility for other locally
testable codes with higher dimension that do not satisfy these assumptions. Thus, the
main open question is to determine whether we can still establish upper bounds on the
dimension with fewer assumptions about the code:

Question 86. Can the assumptions on C be relaxed in the statement of Theorem 65? In
particular, can we:

1. Remove the assumption about containing RM(n− log d, n)?

2. Show similar bounds for codes that are testable with O(N/d) queries instead of
specifically 2N/d queries?

3. Show similar bounds for codes that are not affine-invariant?

If any of the individual questions in the bulleted list in Question 86 cannot be an-
swered in the affirmative, it could mean the existence of locally testable codes that surpass
the dimension of the lifted codes of Guo, et al. [GKS13]. This would imply interesting
algorithmic results relating to the aforementioned small set expander problem. However,
addressing Question 86 will require new techniques beyond the ones we use to prove The-
orem 65.
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[Wc14] Lele Wang and Eren Şaşoğlu. Polar coding for interference networks. CoRR,
abs/1401.7293, 2014. 3.1

[Wit74] Hans S. Witsenhausen. Entropy inequalities for discrete channels. IEEE
Transactions on Information Theory, 20(5):610–616, 1974. 3.4

[Woo13] Mary Wootters. On the list decodability of random linear codes with large
error rate. CoRR, abs/1302.2261, 2013. 36, 37, 7.3

[WZ73] Aaron D. Wyner and Jacob Ziv. A theorem on the entropy of certain binary
sequences and applications-I. IEEE Transactions on Information Theory,
19(6):769–772, 1973. 3.4

200



[ZP82] Victor V. Zyablov and Mark S. Pinsker. List cascade decoding. Problems of
Information Transmission, 17(4):29–34, 1981 (in Russian); pp. 236-240 (in
English), 1982. 5.1, 5.1.2

201


	1 Introduction
	1.1 Error-Correcting Codes
	1.1.1 Communication Channels and Reliable Communication
	1.1.2 Adversarial Errors and Minimum Distance

	1.2 Overview of the Thesis

	2 Preliminaries
	2.1 Basic Information Theory
	2.1.1 Entropy
	2.1.2 Conditional Entropy
	2.1.3 Mutual Information

	2.2 Basic Definitions for Error-Correcting Codes
	2.2.1 Linearity

	2.3 Communication Channels and Channel Coding
	2.4 Source Coding and Data Compression

	3 Achieving Channel Capacity for Error-Correcting Codes
	3.1 Introduction
	3.2 Fundamentals of Polar Codes
	3.2.1 Source Coding: Intuition for Polarization
	3.2.2 Polarization Transform for Two Variables
	3.2.3 Extending the Polarization Transform to More Copies
	3.2.4 Encoding Map: Recursive Construction
	3.2.5 Source Coding Through Polarization
	3.2.6 Polarization for Channel Coding
	3.2.7 Bhattacharyya Parameter

	3.3 Overview of the Contribution: Speed of Polarization
	3.4 Quantification of Polarization
	3.5 Proof of Entropy Sumset Inequality
	3.5.1 Basic Entropic Lemmas and Proofs
	3.5.2 Unconditional Entropy Gain
	3.5.3 Conditional Entropy Gain

	3.6 Rough Polarization
	3.7 Fine Polarization
	3.8 Extension to Arbitrary Alphabets

	4 Coding for Interactive Communication
	4.1 Background
	4.1.1 Error Fractions for Interactive Coding
	4.1.2 Communication Rates of Interactive Coding Schemes

	4.2 Overview of Results: Capacity of Interactive Communication Channels for Low Error Rates
	4.3 Preliminaries
	4.3.1 Communication Channels

	4.4 Average Message Length and Blocked Protocols
	4.5 Warmup: Interactive Coding for Random Errors
	4.5.1 Trivial Scheme for Non-Adaptive Protocols with Minimum Message Length
	4.5.2 Coding Scheme for Protocols with Smaller Average Message Length

	4.6 Conceptual Challenges and Key Ideas
	4.7 Main Result: Interactive Coding for Oblivious Adversarial Errors
	4.7.1 High-Level Description of Coding Scheme
	4.7.2 Parameters
	4.7.3 Randomness Exchange
	4.7.4 Sending Data Bits Using ``Rateless'' Error-Correcting Codes

	4.8 Control Information
	4.8.1 Encoding and Decoding Control Information
	4.8.2 Information Hiding

	4.9 Flow of the Protocol and Backtracking
	4.10 Pseudocode
	4.11 Analysis of Coding Scheme for Oblivious Adversarial Channels
	4.11.1 Protocol States and Potential Function
	4.11.2 Bounding Iterations with Invalid or Maliciously Corrupted Control Information
	4.11.3 Evolution of Potential Function During Iterations


	5 List Decodability
	5.1 Introduction
	5.1.1 Related Results
	5.1.2 Proof Technique

	5.2 Average-Distance Based Johnson Bound
	5.2.1 Geometric Encoding of q-ary Symbols
	5.2.2 Proof of Average-Distance Johnson Bound
	5.2.3 An Application: List Decodability of Reed-Muller and Locally Sparse Codes

	5.3 Proof of the List Decoding Result
	5.4 Restricted Isometry Property of DFT-Based Matrices

	6 Affine Invariance and Local Testability
	6.1 Motivation
	6.2 Preliminaries
	6.2.1 Our Setup
	6.2.2 Affine-Invariant Codes

	6.3 Background and Previous Work
	6.3.1 Testable Codes Surpassing Reed-Muller
	6.3.2 Consequence of the Extended Weil Bound

	6.4 Upper Bounds on the Dimension of C
	6.4.1 Matrix Determinant Formulation
	6.4.2 Warm-up: Containment in Extended BCH
	6.4.3 Dimension Bound via Local Transformations of Degree

	6.5 Reed-Muller Containment Assumption
	6.6 Univariate Constructions of Codes
	6.6.1 Subspaces from Subfields
	6.6.2 Optimality Results


	7 Conclusion
	7.1 Polar Codes
	7.2 Interactive Communication
	7.3 List Decoding and Compressed Sensing
	7.4 Local Testability

	Bibliography

