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Abstract

Cameras are becoming ubiquitous in the Internet of Things (IoT) and can use face recognition tech-
nology to improve context. There is a large accuracy gap between today’s publicly available face
recognition systems and the state-of-the-art private face recognition systems. This paper presents
our OpenFace face recognition library that bridges this accuracy gap. We show that OpenFace pro-
vides near-human accuracy on the LFW benchmark and present a new classification benchmark
for mobile scenarios. This paper is intended for non-experts interested in using OpenFace and
provides a light introduction to the deep neural network techniques we use.

We released OpenFace in October 2015 as an open source library under the Apache 2.0 license.
It is available at: http://cmusatyalab.github.io/openface/

This research was supported by the National Science Foundation (NSF) under grant number CNS-1518865. Ad-
ditional support was provided by Crown Castle, the Conklin Kistler family fund, Google, the Intel Corporation, and
Vodafone. NVIDIA’s academic hardware grant provided the Tesla K40 GPU used in all of our experiments. Any
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1 Introduction
Video cameras are extremely cheap and easily integrated into today’s mobile and static devices
such as surveillance cameras, auto dashcams, police body cameras, laptops, smartphones, GoPro,
and Google Glass. Video cameras can be used to improve context in mobile scenarios. The identity
of a person is a large part of context in humans and modulates what people say and how they act.
Likewise, recognizing people is a primitive operation in mobile computing that adds context to
applications such as cognitive assistance, social events, speaker annotation in meetings, and person
of interest identification from wearable devices.

State-of-the-art face recognition is dominated by industry- and government-scale datasets. Ex-
ample applications in this space include person of interest identification from mounted cameras
and tagging a user’s friends in pictures. Training is often an offline, batch operation and produces
a model that can predict in hundreds of milliseconds. The time to train new classification models
in these scenarios isn’t a major focus because the set of people to classify doesn’t change often.

Mobile scenarios span a different problem space where a mobile user may have a device per-
forming real-time face recognition. The context of the mobile user and people around them pro-
vide information about who they are likely to see. If the user attends a meetup, the system should
quickly learn to recognize the other attendees. Many people in the system are transient and the
user only needs to recognize them for a short period of time. The time to train new classification
models now becomes important as the user’s context changes and people are added and removed
from the system.

Towards exploring transient and mobile face recognition, we have created OpenFace as a
general-purpose library for face recognition. Our experiments show that OpenFace offers higher
accuracy than prior open source projects and is well-suited for mobile scenarios. This paper dis-
cusses OpenFace’s design, implementation, and evaluation and presents empirical results relevant
to transient mobile applications.

2 Background and Related Work

2.1 Face Recognition
Face recognition has been an active research topic since the 1970’s [Kan73]. Given an input
image with multiple faces, face recognition systems typically first run face detection to isolate the
faces. Each face is preprocessed and then a low-dimensional representation (or embedding) is
obtained. A low-dimensional representation is important for efficient classification. Challenges in
face recognition arise because the face is not a rigid object and images can be taken from many
different viewpoints of the face. Face representations need to be resilient to intrapersonal image
variations such as age, expressions, and styling while distinguishing between interpersonal image
variations between different people [Jeb95].

Jafri and Arabnia [JA09] provide a comprehensive survey of face recognition techniques up
to 2009. To summarize the regimes, face recognition research can be characterized into feature-
based and holistic approaches. The earliest work in face recognition was feature-based and sought

1



Figure 1: Training flow for a feed-forward neural network.

to explicitly define a low-dimensional face representation based on ratios of distances, areas, and
angles [Kan73]. An explicitly defined face representation is desirable for an intuitive feature space
and technique. However, in practice, explicitly defined representations are not accurate. Later
work sought to use holistic approaches stemming from statistics and Artificial Intelligence (AI)
that learn from and perform well on a dataset of face images. Statistical techniques such as Princi-
pal Component Analysis (PCA) [Hot33] represent faces as a combination of eigenvectors [SK87].
Eigenfaces [TP91] and fisherfaces [BHK97] are landmark techniques in PCA-based face recogni-
tion. Lawrence et al. [LGTB97] present an AI technique that uses convolutional neural networks
to classify an image of a face.

Today’s top-performing face recognition techniques are based on convolutional neural net-
works. Facebook’s DeepFace [TYRW14] and Google’s FaceNet [SKP15] systems yield the highest
accuracy. However, these deep neural network-based techniques are trained with private datasets
containing millions of social media images that are orders of magnitude larger than available
datasets for research.

2.2 Face Recognition with Neural Networks
This section provides a deeper introduction to face recognition with neural networks from the
techniques used in Facebook’s DeepFace [TYRW14] and Google’s FaceNet [SKP15] systems that
are used within OpenFace. This section is intended to give an overview of the two most impactful
works in this space and is not meant to be a comprehensive overview of the thriving field of
neural network-based face recognition. Other notable efforts in face recognition with deep neural
networks include the Visual Geometry Group (VGG) Face Descriptor [PVZ15] and Lightened
Convolutional Neural Networks (CNNs) [WHS15], which have also released code.

A feed-forward neural network consists of many function compositions, or layers, followed by
a loss function L as shown in Figure 1. The loss function measures how well the neural network
models the data, for example how accurately the neural network classifies an image. Each layer i
is parameterized by θi, which can be a vector or matrix. Common layer operations are:

• Spatial convolutions that slide a kernel over the input feature maps,

• Linear or fully connected layers that take a weighted sum of all the input units, and

• Pooling that take the max, average, or Euclidean norm over spatial regions.

These operations are often followed by a nonlinear activation function, such as Rectified Linear
Units (ReLUs), which are defined by f(x) = max{0, x}. Neural network training is a (nonconvex)
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optimization problem that finds a θ that minimizes (or maximizes) L. With differentiable layers,
∂L/∂θi can be computed with backpropagation. The optimization problem is then solved with
a first-order method, which iteratively progress towards the optimal value based on ∂L/∂θi. See
[BGC15] for a more thorough introduction to modern deep neural networks.

Figure 2: Logic flow for face recognition with a
neural network.

Figure 2 shows the logic flow for face
recognition with neural networks. There are
many face detection methods to choose from,
as it is another active research topic in com-
puter vision. Once a face is detected, the
systems preprocess each face in the image to
create a normalized and fixed-size input to
the neural network. The preprocessed im-
ages are too high-dimensional for a classifier
to take directly on input. The neural network
is used as a feature extractor to produce a low-
dimensional representation that characterizes a
person’s face. A low-dimensional representa-
tion is key so it can be efficiently used in clas-
sifiers or clustering techniques.

DeepFace first preprocesses a face by us-
ing 3D face modeling to normalize the input
image so that it appears as a frontal face even
if the image was taken from a different angle.
DeepFace then defines classification as a fully-
connected neural network layer with a softmax
function, which makes the network’s output a
normalized probability distribution over identi-
ties. The neural network predicts some probability distribution p̂ and the loss function L measures
how well p̂ predicts the person’s actual identity i.1 DeepFace’s innovation comes from three dis-
tinct factors: (a) the 3D alignment, (b) a neural network structure with 120 million parameters, and
(c) training with 4.4 million labeled faces. Once the neural network is trained on this large set of
faces, the final classification layer is removed and the output of the preceding fully connected layer
is used as a low-dimensional face representation.

Often, face recognition applications seek a desirable low-dimensional representation that gen-
eralizes well to new faces that the neural network wasn’t trained on. DeepFace’s approach to this
works, but the representation is a consequence of training a network for high-accuracy classifica-
tion on their training data. The drawback of this approach is that the representation is difficult to
use because faces of the same person aren’t necessarily clustered, which classification algorithms
can take advantage of. FaceNet’s triplet loss function is defined directly on the representation.
Figure 3 illustrates how FaceNet’s training procedure learns to cluster face representations of the
same person. The unit hypersphere is a high-dimensional sphere such that every point has distance

1 Formally, this is done with the cross-entropy loss L(p̂, i) = − log p̂i, where p̂i is the ith element of p̂.
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Figure 3: Illustration of FaceNet’s triplet-loss training procedure.

1 from the origin. Constraining the embedding to the unit hypersphere provides a structure to a
space that is otherwise unbounded. FaceNet’s innovation comes from four distinct factors: (a) the
triplet loss, (b) their triplet selection procedure, (c) training with 100 million to 200 million labeled
images, and (d) (not discussed here) large-scale experimentation to find an network architecture.
For reference, we formally define FaceNet’s triplet loss in Appendix A.

2.3 Face Recognition in Mobile Computing
The mobile computing community studies and improves off-the-shelf face recognition techniques
in mobile scenarios. Due to lack of availability, these studies often use techniques with an order of
magnitude less accuracy than the state-of-the-art. Soyata et al. [SMF+12] study how to partition
an Eigenfaces-based face recognition system between the mobile device, cloudlet, and cloud. Hsu
et al. [HC15] study the accuracies of cloud-based face recognition services as a drone’s distance
and angle to a person is varied. There has also been a rise of efficient GPU architectures for mobile
devices, such as NVIDIA’s Jetson TK1.

These studies and research directions are complementary to our studies in this paper. We do not
study the impacts of executing techniques on different architectures, such as on an embedded GPU
or offloaded to a surrogate. We instead present performance experiments showing that OpenFace’s
execution time is well-suited for mobile scenarios compared to other techniques.
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Figure 4: OpenFace’s project structure.

3 Design and Implementation
Our interest in building OpenFace is in mobile scenarios where a user’s real-time face recognition
system adapts depending on context. Our key design consideration is a system that gives high
accuracy with low training and prediction times.

OpenFace provides the logic flow presented in Figure 2 to obtain low-dimensional face rep-
resentations for the faces in an image. Figure 4 highlights OpenFace’s implementation. The
neural network training and inference portions use Torch [CKF11], Lua [IDFCF96] and luajit
[Pal08]. Our Python [VRDJ95] library uses numpy [Oli06] for arrays and linear algebra opera-
tions, OpenCV [B+00] for computer vision primitives, and scikit-learn [PVG+11] for classifica-
tion. We also provide plotting scripts that use matplotlib [H+07]. The project structure is agnostic
to the neural network architecture and we currently use FaceNet’s architecture [SKP15]. We use
dlib’s [Kin09] pre-trained face detector for higher accuracy than OpenCV’s detector. We compile
native C code with gcc [Sta89] and CUDA code with NVIDIA’s LLVM-based [LA04] nvcc.
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Figure 5: OpenFace’s affine transformation. The transformation is based on the large blue land-
marks and the final image is cropped to the boundaries and resized to 96× 96 pixels.

3.1 Preprocessing: Alignment with an Affine Transformation
The face detection portion returns a list of bounding boxes around the faces in an image that can be
under different pose and illumination conditions. A potential issue with using the bounding boxes
directly as an input into the neural network is that faces could be looking in different directions or
under different illumination conditions. FaceNet is able to handle this with a large training dataset,
but a heuristic for our smaller dataset is to reduce the size of the input space by normalizing the
faces so that they eyes, nose, and mouth appear at similar locations in each image. Normalization
of faces is an active research topic in computer vision. Many modern techniques such as DeepFace
[TYRW14] frontalize the face to a 3D model so the image appears as if the face is looking directly
towards the camera. OpenFace uses a simple 2D affine transformation to make the eyes and nose
appear in similar locations for the neural network input.

Figure 5 illustrates how the affine transformation normalizes faces. The 68 landmarks are
detected with dlib’s face landmark detector [Kin09], which is an implementation of Kazemi et
al. [KS14]. Given an input face, our affine transformation makes the eye corners and nose close to
the mean locations. The affine transformation also resizes and crops the image to the edges of the
landmarks so the input image to the neural network is 96× 96 pixels.
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Figure 6: OpenFace’s end-to-end network training flow.

3.2 Training the Face Representation Neural Network
Training the neural network requires a lot of data. FaceNet [SKP15] uses a private dataset with
100M-200M images and DeepFace [TYRW14] uses a private dataset with 4.4M images. OpenFace
is trained with 500k images from combining the two largest labeled face recognition datasets for
research, CASIA-WebFace [YLLL14] and FaceScrub [NW14].

The neural network component from Figure 2 maps a preprocessed (aligned) image to a low-
dimensional representation. The best neural network structure for a task is an unsolved and thriving
research topic in computer vision. OpenFace uses a modified version of FaceNet’s nn4 network
presented in Appendix C. nn4 is based on the GoogLeNet [SLJ+15] architecture and our modi-
fied nn4.small2 variant reduces the number of parameters for our smaller dataset. OpenFace uses
FaceNet’s triplet loss as defined in Section 2.2 so the network provides an embedding on the unit
hypersphere and Euclidean distance represents similarity.

Figure 6 shows how we train networks. We map unique images from a single network into
triplets. The gradient of the triplet loss is backpropagated back through the mapping to the unique
images. In each mini-batch, we sample at most P images per person from Q people in the dataset
and send all M ≈ PQ images through the network in a single forward pass on the GPU to get M
embeddings. We currently use P = 20 and Q = 15. We take all anchor-positive pairs to obtain
N = Q

(
P
2

)
triplets. We compute the triplet loss and map the derivative back through to the original

image in a backwards network pass. If a negative image is not found within the α margin2 for a
given anchor-positive pair, we do not use it.

Appendix B provides a description of our original network training technique that takes an
order of magnitude longer than the one presented here.

2The α margin is defined in Appendix A.
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Technique Accuracy
Human-level (cropped) [KBBN09] 0.9753

Eigenfaces (no outside data) [TP91]3 0.6002± 0.0079
FaceNet [SKP15] 0.9964± 0.009

DeepFace-ensemble [TYRW14] 0.9735± 0.0025
OpenFace (ours) 0.9292± 0.0134

Figure 7: LFW accuracies and example image pairs.

4 Evaluation
Our evaluation studies OpenFace’s accuracy and performance in comparison to other face recog-
nition techniques. The LFW dataset [HRBLM07] is a standard benchmark in face recognition
research and Section 4.1 presents OpenFace’s accuracy on the LFW verification experiment. Sec-
tion 4.2 presents a new classification benchmark using the LFW dataset for transient mobile sce-
narios.

All experiments in this section use the nn4.small2.v1 OpenFace model described in Appendix C.
The identities in our neural network training data does not overlap with the LFW identities.

4.1 LFW Verification
The LFW verification experiment [HRBLM07] predicts whether pairs of images are of the same
person. Figure 7 shows example pairs and accuracies. The LFW has 13,233 images from 5,750
people and this experiment provides 6,000 pairs broken into ten folds.

The accuracy in the restricted protocol is obtained by averaging the accuracy of ten experi-
ments. The data is separated into ten equally-sized folds and each experiment trains on nine folds
and computes the accuracy on remaining testing fold. The OpenFace results are obtained by com-
puting the squared Euclidean distance on the pairs and labeling pairs under a threshold as being the
same person and above the threshold as different people. The best threshold on the training folds
is used as the threshold on the remaining fold. In nine out of ten experiments, the best threshold
is 0.99. Figure 7 compares OpenFace’s accuracy with other techniques. Unlike the modern deep
neural network-based techniques, the Eigenfaces result uses no outside data.

The verification threshold can be varied and plotted as an (receiver operating characteristic)
ROC curve as shown in Figure 8. The ROC curve shows the tradeoffs between the TPR and FPR.
The perfect ROC curve would have a TPR of 1 everywhere, which is where todays state-of-the-art
industry techniques are nearly at. The area under the curve (AUC) is the probability the classifier
will rank randomly chosen faces of the same person higher than randomly chosen faces of different
people. Every curve is an average of the curves obtained from thresholding each fold of data. The
OpenFace folds are included to illustrate the variability of these experiments. The OpenBR curve

3Result is from http://vis-www.cs.umass.edu/lfw/results.html#eigenfaces
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Figure 8: ROC curve on the LFW benchmark with area under the curve (AUC) values.

is from their LFW script4 and the others are from the LFW results page. Kumar et al. [KBBN09]
provides human-level performance results. The cropped version crops LFW images around the
faces in the images to reduce contextual information. The FaceNet curve has not been released.

These results show that OpenFace’s accuracy is close to to the accuracy of state-of-the-art deep
learning techniques.

4.2 LFW Classification
Many scenarios using face recognition involve classifying who a person is, not just if two faces are
the same. This section presents an experiment that measures the classification accuracies on a sub-
set of LFW images. We present results comparing OpenCV’s [B+00] face recognition techniques
(eigenfaces [TP91], fisherfaces [BHK97], and Local Binary Pattern Histograms (LBPH) [AHP04])
to OpenFace’s.

Figure 9 overviews the experiment setup. Person i corresponds to the person in the LFW with
the ith most images. Then, 20 images are sampled from the first N people. If 20 images aren’t
provided of a person, all of their images are used. Next, the sampled data is split randomly ten
times by putting 90% of the images in the training set and 10% of the images in the testing set. The
random number seed should be initialized to the same value for sampling different experiments. A

4https://github.com/biometrics/openbr/blob/v1.1.0/scripts/
evalFaceRecognition-LFW.sh
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Figure 9: Overview of the LFW classification accuracy and performance benchmark.

classifier is trained on the training set and the accuracy is obtained from predicting the identities in
the testing set.

Measuring the runtime performance of training classifiers and predicting who new images be-
long to is an important consideration for mobility. On wearable devices, the performance of pre-
dicting who a face belongs to is important so there isn’t a noticeable lag when a user looks at
another person. Face detection isn’t included as part of the prediction time in our analysis be-
cause it is the same between all techniques. The prediction time includes the preprocessing and
prediction times.

Users may also want to add or remove identities from their recognition system for transient
scenarios. This benchmark studies how long it takes to re-train a classifier. We assume the face
and identity data is data that has already been collected and pre-processed and that the user has the
ability to choose a subset of identities to classify. The training time only reflects the time to train
the classifier.

All of OpenCV’s techniques have the same interface. The preprocessing converts the image a
grayscale. OpenFace’s preprocessing in this context means the affine transformation for alignment
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followed by the neural network forward pass for the 128-dimensional representation. OpenFace
classification uses a linear SVM with a regularization weight of 1, which consistently performs the
same or better than other regularization weights and RBF kernels.

Figure 10 presents our experimental results from classifying between 10 and 100 people on
an 8-core Intel Xeon E5-1630 v3 @ 3.70GHz CPU with OpenBLAS and a NVIDIA Tesla K40
GPU. Figure 10a shows that adding more people decreases the accuracy and that OpenFace always
has the highest accuracy by a large margin. Figure 10b shows that adding more people increases
the training time. OpenFace’s SVM consistently has the fastest training time. Only one result
for OpenFace is shown here because the numbers do not include the neural network representa-
tion preprocessing time and the SVM library only uses the CPU. Figure 10c shows the per-image
prediction times. The execution time of eigenfaces, fisherfaces, and LBPH slightly increase as
more faces are added while OpenFace’s prediction time remains constant. OpenFace’s predic-
tion involves a neural network forward pass that takes substantially more time than the PCA and
histogram-based techniques. Executing on a GPU instead of a CPU offers slight performance
improvements.

5 Conclusion
This paper presents OpenFace, a face recognition library. OpenFace is open sourced under the
Apache 2.0 license and can be obtained from http://cmusatyalab.github.io/openface/.
We trained a network on the largest datasets available for research, which is one order of magnitude
smaller than DeepFace [TYRW14] and two orders of magnitude smaller than FaceNet [SKP15],
the state-of-the-art private datasets that have been published. We show competitive accuracy and
performance results on the LFW verification benchmark despite our smaller training dataset. We
introduce a LFW classification benchmark and show competitive performance results on it.

We intend to maintain OpenFace as a library that stays updated with the latest deep neural
network architectures and technologies for face recognition.
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(a) Classification accuracy.

(b) Training times.

(c) Per-image prediction times.

Figure 10: Accuracy and performance comparisons between OpenFace and prior non-proprietary
face recognition implementations (from OpenCV).
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A FaceNet’s Triplet Loss Formulation
This section presents the FaceNet [SKP15] triplet loss formulation. Let fΘ(I) be a neural network parame-
terized by Θ that maps an image I onto a unit hypersphere of dimension m. A triplet consists of an anchor
image a, a positive image of the same person p, and a negative image of a different person n. To achieve
the clustering illustrated in Figure 3, the distance between the anchor and positive should be less than the
distance between the anchor and negative. Adding a threshold α, all triplets should satisfy

||fΘ(a)− fΘ(p)||22 + α < ||fΘ(a)− fΘ(n)||22,

where ||z||22 =
∑

i z
2
i is the squared Euclidean norm of z. The loss function to make triplets meet this

condition is
L(a, p, n) =

[
||fΘ(a)− fΘ(p)||22 + α− ||fΘ(a)− fΘ(n)||22

]
+
,

where [z]+ = max{0, z}. In this paper we use α = 0.2 and m = 128 as suggested in the FaceNet paper.
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Figure 11: Original (suboptimal) OpenFace triplet loss training technique.

B Original (Sub-Optimal) Network Training Technique
Our original attempt at training a network used an architecture similar to training Siamese networks [BBB+93].
Figure 11 illustrates how we used three separate neural networks with shared weights that process triplets.
The gradient of the loss function can be taken with respect to the anchors, positives, and negatives and back-
propagated separately through each network. After training is done, a single network can be taken and used
for prediction because the weights are shared.

While using three separate networks is straightforward, duplicate images are inefficiently processed
multiple times. We can only send 100 triplets through three networks at a time on our Tesla K40 GPU with
12GB of memory. In each mini-batch, suppose we sample 20 images per person from 15 people in the
dataset. Selecting every combination of 2 images from each person for the anchor and positive images and
then selecting a negative from the remaining images gives 15

(
20
2

)
= 2850 triplets. This requires 29 forward

and backward passes to process 100 triplets at a time, even though there are only 300 unique images. In
attempt to remove redundant images, our original technique randomly selects two images from each person
for the anchor and positive.

Section 3.2 presents our current training technique that improves the time to train networks by an order
of magnitude.
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Table 1: The OpenFace nn4.small2 network definition.

type output size #1×1 #3×3
reduce

#3×3 #5×5
reduce

#5×5 pool proj

conv1 (7× 7× 3, 2) 48× 48× 64

max pool + norm 24× 24× 64 m 3× 3, 2
inception (2) 24× 24× 192 64 192
norm + max pool 12× 12× 192 m 3× 3, 2
inception (3a) 12× 12× 256 64 96 128 16 32 m, 32p
inception (3b) 12× 12× 320 64 96 128 32 64 `2, 64p
inception (3c) 6× 6× 640 128 256,2 32 64,2 m 3× 3, 2
inception (4a) 6× 6× 640 256 96 192 32 64 `2, 128p
inception (4e) 3× 3× 1024 160 256,2 64 128,2 m 3× 3, 2
inception (5a) 3× 3× 736 256 96 384 `2, 96p
inception (5b) 3× 3× 736 256 96 384 m, 96p
avg pool 736

linear 128

`2 normalization 128

C OpenFace’s Neural Network Definition
Table 1 shows our nn4.small2 neural network model, which is a version of the nn4 model from FaceNet
[SKP15] hand-tuned to have less parameters. We include it here for completeness and reproducibility. Each
row is a layer in the neural network and the last six columns indicate the parameters of pooling or the
inception layers from [SLJ+15]. Dimensionality reductions to N dimensions after pooling is denoted with
“Np”. The normalization is local response normalization. OpenFace’s full definition of the nn4.small2
model, in addition to FaceNet’s nn2 and nn4 models, is publicly available at:
https://github.com/cmusatyalab/openface/tree/master/models/openface
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