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Abstract

Although compression has been widely used for decades to reduce file sizes (thereby con-
serving storage capacity and network bandwidth when transferring files), there has been
limited use of hardware-based compression within modern memory hierarchies of com-
modity systems. Why not? Especially as programs become increasingly data-intensive,
the capacity and bandwidth within the memory hierarchy (including caches, main mem-
ory, and their associated interconnects) have already become increasingly important bot-
tlenecks. If hardware-based data compression could be applied successfully to the memory
hierarchy, it could potentially relieve pressure on these bottlenecks by increasing effective
capacity, increasing effective bandwidth, and even reducing energy consumption.

In this thesis, we describe a new, practical approach to integrating hardware-based data
compression within the memory hierarchy, including on-chip caches, main memory, and
both on-chip and off-chip interconnects. This new approach is fast, simple, and effective
in saving storage space. A key insight in our approach is that access time (including de-
compression latency) is critical in modern memory hierarchies. By combining inexpensive
hardware support with modest OS support, our holistic approach to compression achieves
substantial improvements in performance and energy efficiency across the memory hierar-
chy. Using this new approach, we make several major contributions in this thesis.

First, we propose a new compression algorithm, Base-Delta-Immediate Compression
(B∆I), that achieves high compression ratio with very low compression/decompression
latency. B∆I exploits the existing low dynamic range of values present in many cache
lines to compress them to smaller sizes using Base+Delta encoding.

Second, we observe that the compressed size of a cache block can be indicative of its
reuse. We use this observation to develop a new cache insertion policy for compressed
caches, the Size-based Insertion Policy (SIP), which uses the size of a compressed block
as one of the metrics to predict its potential future reuse.

Third, we propose a new main memory compression framework, Linearly Compressed
Pages (LCP), that significanly reduces the complexity and power cost of supporting main
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memory compression. We demonstrate that any compression algorithm can be adapted to
fit the requirements of LCP, and that LCP can be efficiently integrated with the existing
cache compression designs, avoiding extra compression/decompression.

Finally, in addition to exploring compression-related issues and enabling practical so-
lutions in modern CPU systems, we discover new problems in realizing hardware-based
compression for GPU-based systems and develop new solutions to solve these problems.
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Chapter 1

Introduction

The recent Big Data revolution has had a transformative effect on many areas of science
and technology [169]. Indeed, a key factor that has made Cloud Computing attractive is the
ability to perform computation near these massive data sets. As we look toward the future,
where our ability to capture detailed data streams from our environment is only expected
to increase, it seems clear that many important computations will operate on increasingly
larger data set sizes.

Unfortunately, data-intensive computing creates significant challenges for system de-
signers. In particular, the large volume and flow of data places significant stress on the
capacity and bandwidth across the many layers that comprise modern memory hierarchies,
thereby making it difficult to deliver high performance at low cost with minimal energy
consumption.

1.1 Focus of This Dissertation: Efficiency of the Memory
Hierarchy

This dissertation focuses on performance and energy efficiency of the modern memory
hierarchies. We observe that existing systems have significant redundancy in the data (i)
stored in the memory hierarchies (e.g., main memory, on-chip caches) and (ii) transferred
across existing communication channels (e.g., off-chip bus and on-chip interconnect). Fig-
ure 1.1 shows parts of the system stack where we aim to apply data compression (in red/-
dark).

In this dissertation, we first propose a simple and fast yet efficient compression algo-
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Figure 1.1: Data compression from the core to the main memory.

rithm that is suitable for on-chip cache compression. This algorithm solves one of the
key challenges for cache compression: achieving low decompression latency, which is on
the critical path of the execution. Then, we show that compressed cache block size is a
new important factor when making cache replacement decisions that helps to outperform
state-of-the-art cache replacement mechanisms.

We then propose a new design for main memory compression that solves a key chal-
lenge in realizing data compression in main memory: the disparity between how the data is
stored (i.e., at a page granularity) and how it is accessed (i.e., at a cache line granularity).

Finally, we show that bandwidth compression—both on-chip and off-chip—can be ef-
ficient in providing high effective bandwidth in the context of modern GPUs (with more
than a hundred real applications evaluated). At the same time, we find that there is a new
important problem with bandwidth compression that makes it potentially energy inefficient
– the significant increase in the number of bit toggles (i.e., the number of transitions be-
tween zeros and ones) that leads to an increase in dynamic energy. We provide an efficient
solution to this problem.

1.1.1 A Compelling Possibility: Compressing Data throughout the
Full Memory Hierarchy

At first glance, data compression may seem like an obvious approach to reducing the neg-
ative impacts of processing large amounts of data. In theory, if data compression could
effectively reduce the size of the data without introducing significant overheads, it would
relieve pressure on both the capacity of the various layers of the memory hierarchy (in-
cluding caches, DRAM, non-volatile memory technologies, etc.) as well as the bandwidth
of the communication channels (including memory buses, etc.) that transfer data between
these layers. This in turn would allow system designers to avoid over-provisioning these
resources, since they could deliver performance more efficiently as a function of system
cost and/or power budget. Perhaps surprisingly, although forms of data compression have
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been used for many years to reduce file system storage requirements (e.g., by using gzip
to compress files), there has been little to no use of compression within modern memory
hierarchies.1 Why not?

1.1.2 Why Traditional Data Compression Is Ineffective for Modern
Memory Systems

Traditional file compression algorithms such as Lempel-Ziv [268] achieve high compres-
sion ratios by scanning through the file from the beginning, building up a dictionary of
common character sequences (which is stored within the compressed file and used for
decompression). In the context of storing files on disk, variations of Lempel-Ziv have
been very popular because files are often accessed as sequential streams, and because the
large decompression latencies are considered to be acceptable given that (i) disk accesses
are already slow, and (ii) saving as much disk space as possible is typically a very high
priority.

In contrast to accessing compressed files on disk, two things are fundamentally dif-
ferent when a processor accesses data (via loads and stores) within its memory hierarchy:
(i) latency is extremely critical, and (ii) data is commonly accessed randomly (rather than
sequentially). Because processor performance is so sensitive to memory access latency,
it is critical that the decompression latency must be as small as possible when accessing
compressed data within the memory hierarchy. Otherwise, system designers and users
will quickly become disenchanted with memory compression if it costs them significant
performance. Ideally, if decompression latency is small enough, compression within the
memory hierarchy should actually improve performance by improving cache hit rates and
reducing bandwidth-related stalls. The fact that main memory is randomly accessed cre-
ates additional challenges, including locating (as well as decompressing) arbitrary blocks
of data efficiently, plus achieving significant compression ratios without being able to use
Lempel-Ziv’s approach of building up dictionaries over large access streams.

1.2 Related Work

Several prior works have proposed different mechanisms to improve the efficiency of the
memory hierarchy to provide (i) higher capacity, (ii) higher bandwidth, (iii) lower latency,

1The only real exception that we are aware of is IBM’s MXT technology [3], which was shipped in
commercial products roughly 10 years ago, but which has not become widely adopted.
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and (iv) higher energy efficiency. In this section, we summarize some of the approaches
that are related to our work. We summarize those works based on their high-level insight
and compare them with the mechanisms proposed in this thesis.

1.2.1 3D-Stacked DRAM Architectures

One of the major limitations of the existing DRAM-based memories is their limited off-
chip bandwidth. One way to overcome this limitation is by vertically stacking multiple
DRAM chips that provide wider IO interfaces, and hence increase the available off-chip
bandwidth to improve performance. Many recent works have proposed designs and ar-
chitectures based on this idea (e.g., [101, 99, 99, 131, 84, 86]) to get higher off-chip
bandwidth, or to utilize 3D-stacked memory’s higher capacity as a cache (e.g., [28, 150,
151, 250]). These designs are largely orthogonal to the ideas proposed in this thesis, and
hence can be used together.

1.2.2 In-Memory Computing

Processing in memory (PIM) has been previously (e.g., [222, 215, 121, 69, 59, 174, 172,
110, 65]) and more recently (e.g., [207, 208, 206, 30, 82, 76, 175, 75, 144, 62]) explored to
perform computation near the data to reduce the off-chip bandwidth bottleneck improving
both the performance and energy efficiency. More recently the idea of PIM have been
actively explored again in the context of 3D-stacked memory (e.g., [7, 8, 9, 19, 63, 67,
135, 228, 68, 81, 30, 175]). These prior works might require (i) programmer effort to
map regular computation and data to PIM, or (ii) significant increase in the overall cost
of the system and/or cost-per-bit of the modern DRAM. The mechanisms proposed in this
dissertation are also applicable to systems that perform in-memory computation.

1.2.3 Improving DRAM Performance

Many prior works look at different ways to improve the efficiency of modern DRAM
architectures by either reducing the average access latency (e.g., [134, 133, 207, 155,
35]) or enable higher parallelism within the DRAM itself (e.g., [120, 34]). The ap-
proaches used by these work include (i) exploiting DRAM heterogeneity (e.g., Tiered-
Latency DRAM [134]), Dynamic Asymmetric Subarray [152], Low-Cost Interlinked Sub-
arrays [33]), (ii) improving DRAM parallelism [120, 34], (iii) exploiting variation in
DRAM latency (e.g., Adaptive Latency DRAM [133], ChargeCache [77]), (iv) smarter
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refresh and scheduling mechanisms (e.g., [92, 147, 34, 191, 146, 240]), and (v) more intel-
ligent memory scheduling and partitioning algorithms (e.g., [165, 164, 119, 118, 56, 129,
224, 238, 225, 226, 162, 44, 17, 128, 106, 18, 130, 167, 266]). Many of these techniques
can significantly improve DRAM performance (in terms of latency and energy efficiency),
but are not capable of providing higher effective off-chip bandwidth or higher effective
DRAM capacity by exploiting the existing redundancy in the data itself. The ideas in this
dissertation can be exploited in conjunction with many of these techniques, e.g., intelligent
memory scheduling.

1.2.4 Fine-grain Memory Organization and Deduplication

Several different proposals aim to improve memory performance by changing its page-
granularity organization (e.g., fine-grain memory deduplication [40], fine-grain virtual
page management [210]). The proposed frameworks usually require significant changes
to the existing virtual page organization that frequently leads to a significant increase in
the cost. The techniques proposed in this thesis are much less radical in the way they
affect the higher levels of the systems stack. The key difference with the deduplication
approach [40] is that data redundancy is exploited at a much finer granularity (e.g., 1–4
byte vs. 16–64 byte), hence much higher compression ratios are possible for many appli-
cations. Our techniques are complementary to fine-grain virtual page management works
(e.g., [210]).

1.2.5 Data Compression for Graphics

Data compression is a widely used technique in the specialized area of texture compres-
sion [227, 2, 223] used in modern GPUs. These approaches have several major limita-
tions. First, compressed textures are usually read-only that is not acceptable for many
applications. Second, compression/decompression latency is quite significant that limits
applicability of these algorithms to latency-insensitive applications. Our work is targeted
towards more general-purpose workloads where it is difficult to customize the compres-
sion algorithm to very specialized characteristics found in graphics processing.

1.2.6 Software-based Data Compression

Several mechanisms were proposed to perform memory compression in software (e.g., in
the compiler [124], in the operating system [246]) for various modern operating systems
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(e.g., Linux [71], MacOS [14], Windows [66], AIX [90]). While these techniques can be
quite efficient in reducing applications’ memory footprint, their major limitation is very
slow (usually software-based) decompression. This limits these mechanisms to compress-
ing only “cold” pages (e.g., swap pages).

1.2.7 Code Compression

Compression was successfully applied not only to the application data, but also to the code
itself [122, 137, 42, 140, 41, 136, 139, 13, 252, 60, 247]. The primary goal in these works
was usually to reduce the program footprint (especially in the context of embedded de-
vices).The reduced footprint can allow for more instructions to be stored in the instruction
caches, and hence reduce the number of instruction cache misses, which, in turn, improves
performance. In this dissertation, we do not specialize for code compression. Instead, our
goal is to enable general data compression. Hence, the key difference between these prior
works on code compression with the designs proposed in this dissertation is in the com-
pression algorithms themselves: code compression algorithms are usually significantly
tuned for a specific input – instructions, and usually not effective for data compression.

1.2.8 Hardware-based Data Compression

Hardware-based data compression received some attention in the past (e.g., [256, 3, 10, 45,
38, 57]), but unfortunately proposed general-purpose designs were not practical either due
to unacceptable compression/decompression latency or high design complexity and high
overhead to support variable size blocks after compression. In this thesis, we will show
how to overcome these challenges in several practical designs across the whole memory
hierarchy. We will provide comprehensive quantitative comparisons to multiple previous
state-of-the-art works on hardware-based data compression (e.g., [10, 38, 54, 256, 57, 3]).

1.3 Thesis Statement: Fast and Simple Compression
throughout the Memory Hierarchy

The key insight in our approach is that (i) decompression latency and (ii) simplicity of
design are far more critical than compression ratio when designing a compression scheme
that is effective for modern memory systems (in contrast to traditional file compression
techniques aimed at disk storage). We have identified simple and effective mechanisms
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for compressing data in on-chip caches (e.g., by exploiting narrow dynamic ranges) and
in main memory (e.g., by adopting a common compression ratio for all cache blocks within
a page) that achieve significant compression ratios (roughly a factor of two in most cases)
while adding minimal access latency overhead [185, 183, 181, 177]. The simplicity of our
proposed mechanisms enables elegant solutions for dealing with the practical challenges
of how on-chip caches and main memories are organized in modern systems.

The ultimate goal of this research is to validate the following thesis:

It is possible to develop a new set of designs for data compression within
modern memory hierarchies that are fast enough, simple enough, and ef-
fective enough in saving storage space and consumed bandwidth such that
the resulting improvements in performance, cost, and energy efficiency will
make such compression designs attractive to implement in future systems.

The hope is to achieve this goal through the following new mechanism:

Data compression hardware (along with appropriate operating system sup-
port) that (i) efficiently achieves significant compression ratios with negligible
latencies for locating and decompressing data, and (ii) enables the seamless
transfer of compressed data between all memory hierarchy layers.

As a result of this, future computer systems would be better suited to the increasingly
data-intensive workloads of the future.

1.4 Contributions

This dissertation makes the following contributions.

1. We propose a new compression algorithm (B∆I) that achieves a high compression
ratio. B∆I exploits the existing low dynamic range of values present in many cache
lines to compress them to smaller sizes using Base+Delta encoding. B∆I yields it-
self to a very low latency decompression pipeline (requiring only a masked vector
addition). To our knowledge, no prior work achieved such low latency decompres-
sion at high compression ratio. Chapter 3 describes B∆I implementation and its
evaluation in more detail.

2. We observe that the compressed size of a cache block can be indicative of its reuse.
We use this observation to develop a new cache insertion policy for compressed
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caches, the Size-based Insertion Policy (SIP), which uses the size of a compressed
block as one of the metrics to predict its potential future reuse. We introduce a
new compressed cache replacement policy, Minimal-Value Eviction (MVE), which
assigns a value to each cache block based on both its size and its reuse and replaces
the set of blocks with the smallest value. Both policies are generally applicable to
different compressed cache designs (both with local and global replacement) and can
be used with different compression algorithms. Chapter 4 describes our proposed
design, Compression-Aware Management Policies (CAMP = MVE + SIP) in detail.

3. We propose a new compression framework (LCP) that solves the problem of effi-
ciently computing the physical address of a compressed cache line in main mem-
ory with much lower complexity and power consumption than prior proposals. We
demonstrate that any compression algorithm can be adapted to fit the requirements
of LCP, and that LCP can be efficiently integrated with existing cache compres-
sion designs (Chapter 7), avoiding extra compression/decompression. Chapter 5
provides detailed implementation and evaluation of this framework.

4. We observe that hardware-based bandwidth compression applied to on-chip/off-chip
communication interfaces poses a new challenge for system designers: a potentially
significant increase in the bit toggle count as a result of data compression. Without
proper care, this increase can lead to significant energy overheads when transfer-
ring compressed data that was not accounted for in prior works. We propose a set
of new mechanisms to address this new challenge: Energy Control and Metadata
Consolidation. We provide a detailed analysis and evaluation of a large spectrum of
GPU applications that justify (i) the usefulness of data compression for bandwidth
compression in many real applications, (ii) as well as the existence of the bit toggle
problem for bandwidth compression, and (iii) effectiveness of our new mechanisms
to address bit toggle problem, in Chapter 6.
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Chapter 2

Key Challenges for Hardware-Based
Memory Compression

There are two major factors that limit the current use of data compression in modern
memory hierarchies: (i) the increase in access latency due to compression/decompression
and (ii) supporting variable data size after compression. In this chapter, we discuss these
major factors and how they affect the possibility of applying data compression at different
levels of the memory hierarchy.

2.1 Compression and Decompression Latency

2.1.1 Cache Compression

In order to make cache compression practical, we have to answer the following key ques-
tion: what is the right compression algorithm for an on-chip memory hierarchy?

The conventional wisdom is usually to aim for the highest possible compression ra-
tio. This is usually achieved by using existing software-based compression algorithms
that work by finding common subsets of data and storing them only once (i.e., dictionary-
based compression), and then simplifying these algorithms so that they can be imple-
mented in hardware. Instead of following this conventional path, another option is to
prioritize simplicity of the compression algorithm over its efficiency (i.e., compression ra-
tio). In summary, the major challenge is to balance the compression/decompression speed
(decompression latency is especially important, because it is on the execution critical path)
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and simplicity (no complex or costly hardware changes), while still being effective (having
good compression ratio) in saving storage space.

2.1.2 Main Memory

For main memory, compression/decompression latency is still an important factor, but
there is definitely more headroom to play with, since typical memory accesses can take
hundreds of processor cycles. Similar to on-chip caches, decompression lays on the critical
path of the execution, and hence is the top priority in selecting a proper compression algo-
rithm. Prior attempts to use existing software-based algorithms (e.g., Lempel-Ziv [268])
were not successful [3], because even optimized versions of these algorithms for hardware
had decompression latencies of 64 or more cycles.

2.1.3 On-Chip/Off-chip Buses

Data compression is not only effective in providing higher capacity, it can also provide
higher effective bandwidth when applied to communication channels. We call this effect
bandwidth compression. For major memory communication channels (e.g., on-chip/off-
chip buses), compression and decompression are usually equally important, since both of
them are directly added to the data transfer latency: compression latency (before sending
the data), and decompression latency (after the data is received). Hence, the challenge is
to properly balance both of these latencies without sacrificing the compression ratio.

It is possible to avoid some of these overheads, by storing and transferring the data
in compressed form. For example, if the main memory already stores compressed data,
then there is no need to compress it again before transferring it to the on-chip caches, etc.
In a holistic approach, where compression is applied across many layers of the memory
hierarchy (e.g., on-chip caches and main memory), it is possible that there is almost no
overhead for bandwidth compression since both the source and the destination can store
data in the same compressed form.

2.2 Quickly Locating Compressed Data

While compression improves effective capacity and bandwidth, one challenge is due to the
fact that it generates data blocks in variable sizes. It poses several challenges, and one of
those challenges is the ability to quickly locate the compressed data. In the uncompressed
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memory organization, finding a certain cache line within a memory page is usually trivial:
cache line offset within a physical page is the same as the cache line offset within the
virtual page. Unfortunately, compression adds yet another layer of indirection, where
cache line offsets can vary significantly within a physical page, depending on compressed
sizes of the previous cache lines on the same page.

For main memory, this means that we either need to store the offsets of all cache lines
somewhere (either on-chip or in a different memory page) or continuously compute those
offsets (multiple additions of the previous cache line sizes/offsets) from some metadata
(which still needs to be stored somewhere). Both options can lead to (i) significant energy
and latency overheads and (ii) can significantly complicate the final design [3]. It is impor-
tant to mention that this challenge affects only main memory compression because of the
disparity in how the data is stored (e.g., 4KB page granularity) and how it is accessed (e.g.,
64B cache line granularity). This is usually not an issue for compressed cache organiza-
tions where tags and actual cache blocks utilize simple mapping algorithms. Similarly,
it is not a problem for transferring compressed data over on-chip/off-chip communica-
tion channels, where data is usually transferred in small chunks (e.g., 16B flits in on-chip
interconnects).

2.3 Fragmentation

Another challenge posed by the variable size blocks after compression is data fragmen-
tation. For on-chip caches, the key issue is that after the compressed block is stored in
the data store, it has a fixed size, and then it is immediately followed by another cache
block (except for the last block). The problem arises when this compressed cache line is
updated with new data. In that case, the cache line might not be compressed to the same
size as it was before, and hence there is not enough space to simply store the new data for
this cache block without moving data around. For a naı̈ve compressed cache implementa-
tion, this could lead to significant energy waste and design complexity when shuffling data
around after cache writebacks.

For main memory, there can be two types of fragmentation: page level and cache
line level. Page level fragmentation happens due to the fact that it is hard to support a
completely flexible page size after compression, because this would severely complicate
the OS memory management process. Hence, in most realistic designs (e.g., [57]) only
certain page sizes are possible (e.g., 1KB, 2KB and 4KB). This means that for every page
that is not compressed to exactly one of these sizes, its physical size would be rounded
up to the closest size that can fit this page. Cache line level fragmentation happens due to
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the fact that many designs limit the number of compressed sizes for cache lines within a
particular page to reduce the amount of metadata to track per cache line. Similar to page-
level fragmentation, this means that many cache lines could be padded to align with the
smallest acceptable compressed block size that fits them.

2.4 Supporting Variable Size after Compression

The variable-sized nature of compression output causes significant challenges for on-
chip/off-chip communication channels. For example, off-chip DRAM buses are usually
optimized to transfer one cache line (e.g., 64 bytes) at a time. There is no easy mechanism
(without changes to the existing DRAM) to transfer smaller number of bytes faster. There
are some exceptions with GPU-oriented memories (e.g., GDDR5 [88]) where cache lines
are typically larger (128 bytes) and data buses are more narrow (32 bytes): hence every
cache line is transferred in four pieces, and data compression with compression ratios up
to 4× is possible without major changes to DRAM. On-chip interconnects usually transfer
cache lines in several data chunks called flits. In this case, compression ratio also limited
by the granularity of the flits.

2.5 Data Changes after Compression

Data compression inevitably changes the data itself, and, unfortunately, sometimes these
changes can lead to significant energy overhead. There are several reasons for this. First,
in every particular case, it actually matters whether a 0 or 1 is transferred or stored. For
example, for the on-chip interconnect, that just transferred a 0 bit, transferring another 0
over the same pin that has just transferred a 0 is almost free in terms of energy, while
transferring 1 would cost additional energy. Hence, higher number of switches on the
interconnect wire (called bit toggles) negatively affects energy efficiency of data commu-
nication. Second, modern programming languages and compilers tend to store data in a
regular fashion such that data is usually nicely aligned at a 4/8-byte granularity. This also
nicely aligns with how the data is then transferred over communication channels (e.g., 16-
byte alignment for many modern on-chip networks). This means that many similar bits
are kept being transferred over the same pins, reducing the energy cost of data transfers.
Unfortunately, data compression frequently breaks this unspoken assumption about “nice”
data alignment, thereby significantly increasing the total number of bit toggles, and hence,
increasing the energy of on-chip data transfers.
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2.6 Summary of Our Proposal

In this dissertation, we aim to develop efficient solutions to overcome the described chal-
lenges.

To this end, we first propose a simple and fast yet efficient compression algorithm that
is suitable for on-chip cache compression (Chapter 3). This algorithm solves one of the
key challenges for cache compression: achieving low decompression latency (which is on
the critical path of the execution) while maintaining high compression ratio. Our algorithm
is based on the observation that many cache lines have data with a low dynamic range, and
hence can be represented efficiently using base-delta encoding. We demonstrate the effi-
ciency of the algorithm inspired by this observation (called Base-Delta-Immediate Com-
pression) and the corresponding compressed cache design.

Second, we show that compressed block size is a new piece of information to be con-
sidered when making cache management decisions in a compressed (or even an uncom-
pressed) cache. Including this new piece of information helps to outperform state-of-
the-art cache management mechanisms. To this end, we introduce Compression-Aware
Management Policies described in Chapter 4.

Third, we propose a new design for main memory compression, called Linearly Com-
pressed Pages (Chapter 5). This mechanism solves a key challenge in realizing data
compression in main memory – the disparity between how the data is stored (i.e. page
granularity), and how it is accessed (i.e. cache line granularity).

Fourth, we show that bandwidth compression, both on-chip and off-chip, can be effi-
cient in providing high effective bandwidth increase in the context of modern GPUs. Im-
portantly, we discover that there is a new problem with bandwidth compression that makes
compression potentially energy inefficient – number of bit toggles (i.e. the number of tran-
sitions between zeros and ones) increases significantly with compression, which leads to
an increase in dynamic energy. This problem was completely overlooked by the prior work
on bandwidth compression. We propose several potential solutions to this problem using
our new Energy Control mechanisms (Chapter 6).
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Chapter 3

Base-Delta-Immediate Compression

3.1 Introduction

To mitigate the latency and bandwidth limitations of accessing main memory, modern mi-
croprocessors contain multi-level on-chip cache hierarchies. While caches have a number
of design parameters and there is a large body of work on using cache hierarchies more
effectively (e.g., [72, 96, 190, 194, 209, 211, 212, 192, 189, 107, 108, 235]), one key prop-
erty of a cache that has a major impact on performance, die area, and power consumption
is its capacity. The decision of how large to make a given cache involves tradeoffs: while
larger caches often result in fewer cache misses, this potential benefit comes at the cost of
a longer access latency and increased area and power consumption.

As we look toward the future with an increasing number of on-chip cores, the issue of
providing sufficient capacity in shared L2 and L3 caches becomes increasingly challeng-
ing. Simply scaling cache capacities linearly with the number of cores may be a waste of
both chip area and power. On the other hand, reducing the L2 and L3 cache sizes may
result in excessive off-chip cache misses, which are especially costly in terms of latency
and precious off-chip bandwidth.

One way to potentially achieve the performance benefits of larger cache capacity with-
out suffering all disadvantages is to exploit data compression [10, 64, 73, 74, 256, 264].
Data compression has been successfully adopted in a number of different contexts in mod-
ern computer systems [83, 268] as a way to conserve storage capacity and/or data band-

Originally published as “Base-Delta-Immediate Compression: Practical Data Compression for On-
Chip Caches”in the 21st International Conference on Parallel Architectures and Compilation Techniques,
2012 [185].

15



width (e.g., downloading compressed files over the Internet [214] or compressing main
memory [3]). However, it has not been adopted by modern commodity microprocessors
as a way to increase effective cache capacity. Why not?

The ideal cache compression technique would be fast, simple, and effective in saving
storage space. Clearly, the resulting compression ratio should be large enough to provide
a significant upside, and the hardware complexity of implementing the scheme should be
low enough that its area and power overheads do not offset its benefits. Perhaps the biggest
stumbling block to the adoption of cache compression in commercial microprocessors,
however, is decompression latency. Unlike cache compression, which takes place in the
background upon a cache fill (after the critical word is supplied), cache decompression is
on the critical path of a cache hit, where minimizing latency is extremely important for
performance. In fact, because L1 cache hit times are of utmost importance, we only con-
sider compression of the L2 caches and beyond in this study (even though our algorithm
could be applied to any cache).

Because the three goals of having fast, simple, and effective cache compression are
at odds with each other (e.g., a very simple scheme may yield too small a compression
ratio, or a scheme with a very high compression ratio may be too slow, etc.), the challenge
is to find the right balance between these goals. Although several cache compression
techniques have been proposed in the past [10, 38, 53, 73, 256], they suffer from either a
small compression ratio [53, 256], high hardware complexity [73], or large decompression
latency [10, 38, 73, 256]. To achieve significant compression ratios while minimizing
hardware complexity and decompression latency, we propose a new cache compression
technique called Base-Delta-Immediate (B∆I) compression.

3.1.1 Our Approach: B∆I Compression

The key observation behind Base-Delta-Immediate (B∆I) compression is that, for many
cache lines, the data values stored within the line have a low dynamic range: i.e., the rela-
tive difference between values is small. In such cases, the cache line can be represented in
a compact form using a common base value plus an array of relative differences (“deltas”),
whose combined size is much smaller than the original cache line. (Hence the “base” and
“delta” portions of our scheme’s name).

We refer to the case with a single arbitrary base as Base+Delta (B+∆) compression,
and this is at the heart of all of our designs. To increase the likelihood of being able to
compress a cache line, however, it is also possible to have multiple bases. In fact, our
results show that for the workloads we studied, the best option is to have two bases, where
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one base is always zero. (The deltas relative to zero can be thought of as small immediate
values, which explains the last word in the name of our B∆I compression scheme.) Using
these two base values (zero and something else), our scheme can efficiently compress
cache lines containing a mixture of two separate dynamic ranges: one centered around an
arbitrary value chosen from the actual contents of the cache line (e.g., pointer values), and
one close to zero (e.g., small integer values). Such mixtures from two dynamic ranges are
commonly found (e.g., in pointer-linked data structures), as we will discuss later.

As demonstrated later in this chapter, B∆I compression offers the following advan-
tages: (i) a high compression ratio since it can exploit a number of frequently-observed
patterns in cache data (as shown using examples from real applications and validated in our
experiments); (ii) low decompression latency since decompressing a cache line requires
only a simple masked vector addition; and (iii) relatively modest hardware overhead and
implementation complexity, since both the compression and decompression algorithms in-
volve only simple vector addition, subtraction, and comparison operations.

3.2 Background and Motivation

Data compression is a powerful technique for storing large amounts of data in a smaller
space. Applying data compression to an on-chip cache can potentially allow the cache to
store more cache lines in compressed form than it could have if the cache lines were not
compressed. As a result, a compressed cache has the potential to provide the benefits of a
larger cache at the area and the power of a smaller cache.

Prior work [10, 256, 57] has observed that there is a significant amount of redundancy
in the data accessed by real-world applications. There are multiple patterns that lead to
such redundancy. We summarize the most common of such patterns below.

Zeros: Zero is by far the most frequently seen value in application data [23, 57, 256].
There are various reasons for this. For example, zero is most commonly used to initialize
data, to represent NULL pointers or false boolean values, and to represent sparse matrices
(in dense form). In fact, a majority of the compression schemes proposed for compressing
memory data either base their design fully around zeros [57, 53, 93, 244], or treat zero as
a special case [10, 246, 264].

Repeated Values: A large contiguous region of memory may contain a single value
repeated multiple times [205]. This pattern is widely present in applications that use a
common initial value for a large array, or in multimedia applications where a large num-
ber of adjacent pixels have the same color. Such a repeated value pattern can be easily
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Characteristics Compressible data patterns

Decomp. Lat. Complex. C. Ratio Zeros Rep. Val. Narrow LDR

ZCA [53] Low Low Low 4 5 5 5

FVC [256] High High Modest 4 Partly 5 5

FPC [10] High High High 4 4 4 5

B∆I Low Modest High 4 4 4 4

Table 3.1: Qualitative comparison of B∆I with prior work. LDR: Low dynamic range.
Bold font indicates desirable characteristics.

compressed to significantly reduce storage requirements. Simplicity, frequent occurrence
in memory, and high compression ratio make repeated values an attractive target for a
special consideration in data compression [10].

Narrow Values: A narrow value is a small value stored using a large data type: e.g.,
a one-byte value stored as a four-byte integer. Narrow values appear commonly in appli-
cation data due to over-provisioning or data alignment. Programmers typically provision
the data types in various data structures for the worst case even though a majority of the
values may fit in a smaller data type. For example, storing a table of counters requires the
data type to be provisioned to accommodate the maximum possible value for the counters.
However, it can be the case that the maximum possible counter value needs four bytes,
while one byte might be enough to store the majority of the counter values. Optimizing
such data structures in software for the common case necessitates significant overhead in
code, thereby increasing program complexity and programmer effort to ensure correctness.
Therefore, most programmers over-provision data type sizes. As a result, narrow values
present themselves in many applications, and are exploited by different compression tech-
niques [10, 246, 94].

Other Patterns: There are a few other common data patterns that do not fall into any
of the above three classes: a table of pointers that point to different locations in the same
memory region, an image with low color gradient, etc. Such data can also be compressed
using simple techniques and has been exploited by some prior proposals for main memory
compression [246] and image compression [227].

In this work, we make two observations. First, we find that the above described patterns
are widely present in many applications (SPEC CPU benchmark suites, and some server
applications, e.g., Apache, TPC-H). Figure 3.1 plots the percentage of cache lines that
can be compressed using different patterns.1 As the figure shows, on average, 43% of all

1The methodology used in this and other experiments is described in Section 3.7. We use a 2MB L2
cache unless otherwise stated.
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cache lines belonging to these applications can be compressed. This shows that there is
significant opportunity to exploit data compression to improve on-chip cache performance.
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Figure 3.1: Percentage of cache lines with different data patterns in a 2MB L2 cache.
“Other Patterns” includes “Narrow Values”.

Second, and more importantly, we observe that all the above commonly occurring
patterns fall under the general notion of low dynamic range – a set of values where the
differences between the values is much smaller than the values themselves. Unlike prior
work, which has attempted to exploit each of these special patterns individually for cache
compression [10, 256] or main memory compression [57, 246], our goal is to exploit the
general case of values with low dynamic range to build a simple yet effective compression
technique.

Summary comparison: Our resulting mechanism, base-delta-immediate (B∆I) com-
pression, strikes a sweet-spot in the tradeoff between decompression latency (Decomp. Lat.),
hardware complexity of the implementation (Complex.), and compression ratio (C. Ratio),
as shown in Table 3.1. The table qualitatively compares B∆I with three state-of-the-art
mechanisms: ZCA [53], which does zero-value compression, Frequent Value Compres-
sion (FVC) [256], and Frequent Pattern Compression (FPC) [10]. (These mechanisms are
described in detail in Section 3.6.) It also summarizes which data patterns (zeros, repeated
values, narrow values, and other low dynamic range patterns) are compressible with each
mechanism. For modest complexity, B∆I is the only design to achieve both low decom-
pression latency and high compression ratio.

We now explain the design and rationale for our scheme in two parts. In Section 3.3,
we start by discussing the core of our scheme, which is Base+Delta (B+∆) compression.
Building upon B+∆, we then discuss our full-blown B∆I compression scheme (with mul-
tiple bases) in Section 3.4.
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3.3 Base + Delta Encoding: Basic Idea

We propose a new cache compression mechanism, Base+Delta (B+∆) compression, which
unlike prior work [10, 53, 256], looks for compression opportunities at a cache line granu-
larity – i.e., B+∆ either compresses the entire cache line or stores the entire cache line in
uncompressed format. The key observation behind B+∆ is that many cache lines contain
data with low dynamic range. As a result, the differences between the words within such a
cache line can be represented using fewer bytes than required to represent the words them-
selves. We exploit this observation to represent a cache line with low dynamic range using
a common base and an array of deltas (differences between values within the cache line
and the common base). Since the deltas require fewer bytes than the values themselves,
the combined size of the base and the array of deltas can be much smaller than the size of
the original uncompressed cache line.

The fact that some values can be represented in base+delta form has been observed by
others, and used for different purposes: e.g. texture compression in GPUs [227] and also
to save bandwidth on CPU buses by transferring only deltas from a common base [64].
To our knowledge, no previous work examined the use of base+delta representation to
improve on-chip cache utilization in a general-purpose processor.

To evaluate the applicability of the B+∆ compression technique for a large number
of applications, we conducted a study that compares the effective compression ratio (i.e.,
effective cache size increase, see Section 3.7 for a full definition) of B+∆ against a sim-
ple technique that compresses two common data patterns (zeros and repeated values2).
Figure 3.2 shows the results of this study for a 2MB L2 cache with 64-byte cache lines
for applications in the SPEC CPU2006 benchmark suite, database and web-server work-
loads (see Section 3.7 for methodology details). We assume a design where a compression
scheme can store up to twice as many tags for compressed cache lines than the number of
cache lines stored in the uncompressed baseline cache (Section 3.5 describes a practical
mechanism that achieves this by using twice the number of tags).3 As the figure shows, for
a number of applications, B+∆ provides significantly higher compression ratio (1.4X on
average) than using the simple compression technique. However, there are some bench-
marks for which B+∆ provides very little or no benefit (e.g., libquantum, lbm, and mcf ).
We will address this problem with a new compression technique called B∆I in Section 3.4.

2Zero compression compresses an all-zero cache line into a bit that just indicates that the cache line is
all-zero. Repeated value compression checks if a cache line has the same 1/2/4/8 byte value repeated. If so,
it compresses the cache line to the corresponding value.

3This assumption of twice as many tags as the baseline is true for all compressed cache designs, except
in Section 3.8.3.
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We first provide examples from real applications to show why B+∆ works.
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Figure 3.2: Effective compression ratio with different value patterns

3.3.1 Why Does B+∆ Work?

B+∆ works because of: (1) regularity in the way data is allocated in the memory (similar
data values and types grouped together), and (2) low dynamic range of cache/memory
data. The first reason is typically true due to the common usage of arrays to represent
large pieces of data in applications. The second reason is usually caused either by the
nature of computation, e.g., sparse matrices or streaming applications; or by inefficiency
(over-provisioning) of data types used by many applications, e.g., 4-byte integer type used
to represent values that usually need only 1 byte. We have carefully examined different
common data patterns in applications that lead to B+∆ representation and summarize our
observations in two examples.

Figures 3.3 and 3.4 show the compression of two 32-byte4 cache lines from the ap-
plications h264ref and perlbench using B+∆. The first example from h264ref shows a
cache line with a set of narrow values stored as 4-byte integers. As Figure 3.3 indicates,
in this case, the cache line can be represented using a single 4-byte base value, 0, and an
array of eight 1-byte differences. As a result, the entire cache line data can be represented
using 12 bytes instead of 32 bytes, saving 20 bytes of the originally used space. Figure 3.4
shows a similar phenomenon where nearby pointers are stored in the same cache line for
the perlbench application.

4We use 32-byte cache lines in our examples to save space. 64-byte cache lines were used in all evalua-
tions (see Section 3.7).
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0x00000000 0x0000000B 0x00000003 0x00000001 0x00000004 0x00000000 0x00000003 0x00000004

0x00000000
Base

4 bytes

0x00 0x0B 0x03 0x01 0x04 0x00 0x03 Saved Space0x04

32-byte Uncompressed Cache Line

12-byte Compressed Cache Line
20 bytes

4 bytes

4 bytes 1 byte 1 byte

Figure 3.3: Cache line from h264ref compressed with B+∆

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 0xC04039E0 0xC04039E8 0xC04039F0 0xC04039F8

0xC04039C0
Base

4 bytes

0x00 0x08 0x10 0x18 0x20 0x28 0x30 Saved Space0x38

32-byte Uncompressed Cache Line

12-byte Compressed Cache Line
20 bytes

4 bytes

4 bytes 1 byte 1 byte

Figure 3.4: Cache line from perlbench compressed with B+∆

We now describe more precisely the compression and decompression algorithms that
lay at the heart of the B+∆ compression mechanism.

3.3.2 Compression Algorithm

The B+∆ compression algorithm views a cache line as a set of fixed-size values i.e., 8
8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line. It then determines if the
set of values can be represented in a more compact form as a base value with a set of
differences from the base value. For analysis, let us assume that the cache line size is C
bytes, the size of each value in the set is k bytes and the set of values to be compressed is
S = (v1, v2, ..., vn), where n = C

k
. The goal of the compression algorithm is to determine

the value of the base, B∗ and the size of values in the set, k, that provide maximum
compressibility. Once B∗ and k are determined, the output of the compression algorithm
is {k,B∗,∆ = (∆1,∆2, ...,∆n)}, where ∆i = B∗ − vi ∀i ∈ {1, .., n}.

Observation 1: The cache line is compressible only if
∀i,max(size(∆i)) < k, where size(∆i) is the smallest number of bytes that is needed to
store ∆i.
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In other words, for the cache line to be compressible, the number of bytes required
to represent the differences must be strictly less than the number of bytes required to
represent the values themselves.

Observation 2: To determine the value of B∗, either the value of min(S) or max(S)
needs to be found.

The reasoning, where max(S)/min(S) are the maximum and minimum values in the
cache line, is based on the observation that the values in the cache line are bounded by
min(S) and max(S). And, hence, the optimum value for B∗ should be between min(S)
and max(S). In fact, the optimum can be reached only for min(S), max(S), or exactly in
between them. Any other value of B∗ can only increase the number of bytes required to
represent the differences.

Given a cache line, the optimal version of the B+∆ compression algorithm needs to
determine two parameters: (1) k, the size of each value in S, and (2) B∗, the optimum base
value that gives the best possible compression for the chosen value of k.

Determining k. Note that the value of k determines how the cache line is viewed by
the compression algorithm – i.e., it defines the set of values that are used for compression.
Choosing a single value of k for all cache lines will significantly reduce the opportunity
of compression. To understand why this is the case, consider two cache lines, one repre-
senting a table of 4-byte pointers pointing to some memory region (similar to Figure 3.4)
and the other representing an array of narrow values stored as 2-byte integers. For the first
cache line, the likely best value of k is 4, as dividing the cache line into a set of of values
with a different k might lead to an increase in dynamic range and reduce the possibility of
compression. Similarly, the likely best value of k for the second cache line is 2.

Therefore, to increase the opportunity for compression by catering to multiple patterns,
our compression algorithm attempts to compress a cache line using three different potential
values of k simultaneously: 2, 4, and 8. The cache line is then compressed using the value
that provides the maximum compression rate or not compressed at all.5

Determining B∗. For each possible value of k ∈ {2, 4, 8}, the cache line is split into
values of size k and the best value for the base, B∗ can be determined using Observation 2.
However, computing B∗ in this manner requires computing the maximum or the minimum
of the set of values, which adds logic complexity and significantly increases the latency of
compression.

To avoid compression latency increase and reduce hardware complexity, we decide to

5 We restrict our search to these three values as almost all basic data types supported by various program-
ming languages have one of these three sizes.
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use the first value from the set of values as an approximation for the B∗. For a compressible
cache line with a low dynamic range, we find that choosing the first value as the base
instead of computing the optimum base value reduces the average compression ratio only
by 0.4%.

3.3.3 Decompression Algorithm

To decompress a compressed cache line, the B+∆ decompression algorithm needs to take
the base value B∗ and an array of differences ∆ = ∆1,∆2, ...,∆n, and generate the corre-
sponding set of values S = (v1, v2, ..., vn). The value vi is simply given by vi = B∗ + ∆i.
As a result, the values in the cache line can be computed in parallel using a SIMD-style
vector adder. Consequently, the entire cache line can be decompressed in the amount of
time it takes to do an integer vector addition, using a set of simple adders.

3.4 B∆I Compression

3.4.1 Why Could Multiple Bases Help?

Although B+∆ proves to be generally applicable for many applications, it is clear that
not every cache line can be represented in this form, and, as a result, some benchmarks
do not have a high compression ratio, e.g., mcf. One common reason why this happens
is that some of these applications can mix data of different types in the same cache line,
e.g., structures of pointers and 1-byte integers. This suggests that if we apply B+∆ with
multiple bases, we can improve compressibility for some of these applications.

Figure 3.5 shows a 32-byte cache line from mcf that is not compressible with a single
base using B+∆, because there is no single base value that effectively compresses this
cache line. At the same time, it is clear that if we use two bases, this cache line can be
easily compressed using a similar compression technique as in the B+∆ algorithm with
one base. As a result, the entire cache line data can be represented using 19 bytes: 8 bytes
for two bases (0x00000000 and 0x09A40178), 5 bytes for five 1-byte deltas from the
first base, and 6 bytes for three 2-byte deltas from the second base. This effectively saves
13 bytes of the 32-byte line.

As we can see, multiple bases can help compress more cache lines, but, unfortunately,
more bases can increase overhead (due to storage of the bases), and hence decrease ef-
fective compression ratio that can be achieved with one base. So, it is natural to ask how
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0x00000000 0x09A40178 0x0000000B 0x00000001 0x09A4A838 0x0000000A 0x0000000B 0x09A4C2F0

0x09A40178
Base1

4 bytes

0x00 0x0000 0x0B 0x01 0xA6C0 0x0A Saved Space0x0B

32-byte Uncompressed Cache Line

19-byte Compressed Cache Line
13 bytes

4 bytes

4 bytes 1 byte 2 bytes

0xC178

2 bytes

0x00000000

Base2

4 bytes

Figure 3.5: Cache line from mcf compressed by B+∆ (two bases)

many bases are optimal for B+∆ compression?

In order to answer this question, we conduct an experiment where we evaluate the ef-
fective compression ratio with different numbers of bases (selected suboptimally using a
greedy algorithm). Figure 3.6 shows the results of this experiment. The “0” base bar cor-
responds to a mechanism that compresses only simple patterns (zero and repeated values).
These patterns are simple to compress and common enough, so we can handle them easily
and efficiently without using B+∆, e.g., a cache line of only zeros compressed to just one
byte for any number of bases. We assume this optimization for all bars in Figure 3.6.6
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Figure 3.6: Effective compression ratio with different number of bases. “0” corresponds
to zero and repeated value compression.

Results in Figure 3.6 show that the empirically optimal number of bases in terms of
6If we do not assume this optimization, compression with multiple bases will have very low compression

ratio for such common simple patterns.
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effective compression ratio is 2, with some benchmarks having optimums also at one or
three bases. The key conclusion is that B+∆ with two bases significantly outperforms
B+∆ with one base (compression ratio of 1.51 vs. 1.40 on average), suggesting that it
is worth considering for implementation. Note that having more than two bases does not
provide additional improvement in compression ratio for these workloads, because the
overhead of storing more bases is higher than the benefit of compressing more cache lines.

Unfortunately, B+∆ with two bases has a serious drawback: the necessity of finding
a second base. The search for a second arbitrary base value (even a sub-optimal one) can
add significant complexity to the compression hardware. This opens the question of how
to find two base values efficiently. We next propose a mechanism that can get the benefit
of compression with two bases with minimal complexity.

3.4.2 B∆I: Refining B+∆ with Two Bases and Minimal Complexity

Results from Section 3.4.1 suggest that the optimal (on average) number of bases to use
is two, but having an additional base has the significant shortcoming described above. We
observe that setting the second base to zero gains most of the benefit of having an arbitrary
second base value. Why is this the case?

Most of the time when data of different types are mixed in the same cache line, the
cause is an aggregate data type: e.g., a structure (struct in C). In many cases, this
leads to the mixing of wide values with low dynamic range (e.g., pointers) with narrow
values (e.g., small integers). A first arbitrary base helps to compress wide values with low
dynamic range using base+delta encoding, while a second zero base is efficient enough to
compress narrow values separately from wide values. Based on this observation, we refine
the idea of B+∆ by adding an additional implicit base that is always set to zero. We call
this refinement Base-Delta-Immediate or B∆I compression.

There is a tradeoff involved in using B∆I instead of B+∆ with two arbitrary bases.
B∆I uses an implicit zero base as the second base, and, hence, it has less storage over-
head, which means potentially higher average compression ratio for cache lines that are
compressible with both techniques. B+∆ with two general bases uses more storage to
store an arbitrary second base value, but can compress more cache lines because the base
can be any value. As such, the compression ratio can potentially be better with either
mechanism, depending on the compressibility pattern of cache lines. In order to evalu-
ate this tradeoff, we compare in Figure 3.7 the effective compression ratio of B∆I, B+∆
with two arbitrary bases, and three prior approaches: ZCA [53] (zero-based compression),
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Figure 3.7: Compression ratio comparison of different algorithms: ZCA [53], FVC [256],
FPC [10], B+∆ (two arbitrary bases), and B∆I. Results are obtained on a cache with twice
the tags to accommodate more cache lines in the same data space as an uncompressed
cache.

FVC [256], and FPC [10].7

Although there are cases where B+∆ with two bases is better — e.g., leslie3d and
bzip2 — on average, B∆I performs slightly better than B+∆ in terms of compression ra-
tio (1.53 vs. 1.51). We can also see that both mechanisms are better than the previously
proposed FVC mechanism [256], and competitive in terms of compression ratio with a
more complex FPC compression mechanism. Taking into an account that B+∆ with two
bases is also a more complex mechanism than B∆I, we conclude that our cache compres-
sion design should be based on the refined idea of B∆I.

Now we will describe the design and operation of a cache that implements our B∆I
compression algorithm.

7All mechanisms are covered in detail in Section 3.6. We provide a comparison of their compression
ratios here to give a demonstration of BDI’s relative effectiveness and to justify it as a viable compression
mechanism.
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3.5 B∆I: Design and Operation

3.5.1 Design

Compression and Decompression. We now describe the detailed design of the corre-
sponding compression and decompression logic.8 The compression logic consists of eight
distinct compressor units: six units for different base sizes (8, 4 and 2 bytes) and ∆ sizes
(4, 2 and 1 bytes), and two units for zero and repeated value compression (Figure 3.8). Ev-
ery compressor unit takes a cache line as an input, and outputs whether or not this cache
line can be compressed with this unit. If it can be, the unit outputs the compressed cache
line. The compressor selection logic is used to determine a set of compressor units that
can compress this cache line. If multiple compression options are available for the cache
line (e.g., 8-byte base 1-byte ∆ and zero compression), the selection logic chooses the one
with the smallest compressed cache line size. Note that all potential compressed sizes are
known statically and described in Table 3.2. All compressor units can operate in parallel.
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1-byte-Δ
CU 
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CU 
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Figure 3.8: Compressor design. CU: Compressor unit.

Figure 3.9 describes the organization of the 8-byte-base 1-byte-∆ compressor unit for

8For simplicity, we start with presenting the compression and decompression logic for B+∆. Com-
pression for B∆I requires one more step, where elements are checked to be compressed with zero base;
decompression logic only requires additional selector logic to decide which base should be used in the addi-
tion. We describe the differences between B∆I and B+∆ designs later in this section.
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a 32-byte cache line. The compressor “views” this cache line as a set of four 8-byte
elements (V0, V1, V2, V3), and in the first step, computes the difference between the base
element and all other elements. Recall that the base (B0) is set to the first value (V0), as we
describe in Section 3.3. The resulting difference values (∆0,∆1,∆2,∆3) are then checked
to see whether their first 7 bytes are all zeros or ones (1-byte sign extension check). If
so, the resulting cache line can be stored as the base value B0 and the set of differences
∆0,∆1,∆2,∆3, where each ∆i requires only 1 byte. The compressed cache line size in
this case is 12 bytes instead of the original 32 bytes. If the 1-byte sign extension check
returns false (i.e., at least one ∆i cannot be represented using 1 byte), then the compressor
unit cannot compress this cache line. The organization of all other compressor units is
similar. This compression design can be potentially optimized, especially if hardware
complexity is more critical than latency, e.g., all 8-byte-base value compression units can
be united into one to avoid partial logic duplication.

Name Base ∆ Size Enc. Name Base ∆ Size Enc.

Zeros 1 0 1/1 0000 Rep.Values 8 0 8/8 0001

Base8-∆1 8 1 12/16 0010 Base8-∆2 8 2 16/24 0011

Base8-∆4 8 4 24/40 0100 Base4-∆1 4 1 12/20 0101

Base4-∆2 4 2 20/36 0110 Base2-∆1 2 1 18/34 0111

NoCompr. N/A N/A 32/64 1111

Table 3.2: B∆I encoding. All sizes are in bytes. Compressed sizes (in bytes) are given for
32-/64-byte cache lines.

Figure 3.10 shows the latency-critical decompression logic. Its organization is sim-
ple: for a compressed cache line that consists of a base value B0 and a set of differences
∆0,∆1,∆2, ∆3, only additions of the base to the differences are performed to obtain the
uncompressed cache line. Such decompression will take as long as the latency of an adder,
and allows the B∆I cache to perform decompression very quickly.

B∆I Cache Organization. In order to obtain the benefits of compression, the con-
ventional cache design requires certain changes. Cache compression potentially allows
more cache lines to be stored in the same data storage than a conventional uncompressed
cache. But, in order to access these additional compressed cache lines, we need a way to
address them. One way to achieve this is to have more tags [10], e.g., twice as many,9 than
the number we have in a conventional cache of the same size and associativity. We can

9We describe an implementation with the number of tags doubled and evaluate sensitivity to the number
of tags in Section 3.8.
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Figure 3.10: Decompressor design

then use these additional tags as pointers to more data elements in the corresponding data
storage.

Figure 3.11 shows the required changes in the cache design. The conventional 2-way
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cache with 32-byte cache lines (shown on the top) has a tag store with two tags per set,
and a data store with two 32-byte cache lines per set. Every tag directly maps to the
corresponding piece of the data storage. In the B∆I design (at the bottom), we have twice
as many tags (four in this example), and every tag also has 4 additional bits to represent
whether or not the line is compressed, and if it is, what compression type is used (see
“Encoding” in Table 3.2). The data storage remains the same in size as before (2×32
= 64 bytes), but it is separated into smaller fixed-size segments (e.g., 8 bytes in size in
Figure 3.11). Every tag stores the starting segment (e.g., Tag2 stores segment S2) and the
encoding for the cache block. By knowing the encoding we can easily know the number
of segments used by the cache block.

... ... ... ... ... ... ...
... ............ .........

... ............ ......

......

Conventional 2-way cache with 32-byte lines
Tag Storage:

Set0 ...
Way0

Data Storage:

32 bytes

BΔI cache: 4-way tag storage, 8-byte segmented data storage 

...
Way1

Tag0 Tag1Set1

... ...SetN

......

Set0 ...
Way0

...
Way1

Data0 Data1Set1

... ...SetN

......
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Set0 ...
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...
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Tag0 Tag1Set1

... ...SetN

......
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Tag2 Tag3

... ...

Way2 Way3

C Compression encoding bits

Data Storage:

8 bytes

Set0

Segments:
...
S0Set1

SetN

S1 S2 S3 S4 S5 S6 S7

...

Tag2 points to S2 , uses 3 segments: 
S2 – S4

Figure 3.11: B∆I vs. conventional cache organization. Number of tags is doubled, com-
pression encoding bits are added to every tag, data storage is the same in size, but parti-
tioned into segments.

Storage Cost Analysis. This cache organization potentially allows storing twice as
many cache lines in the same data storage, because the number of tags in a set is doubled.
As a result, it requires modest increase in the tag store size (similar to some other designs
[11, 72, 195]. We analyze the storage overhead in terms of raw additional bits in Table 3.3
for a baseline 16-way 2MB cache. We have also used CACTI 5.3 [229] to estimate the
additional latency and area cost of our proposed cache organization, using parameters for
the 32nm technology node. Cache access latency increases by 1-2 cycles (depending on
cache size) for a 4GHz processor. On-chip cache area increases by 2.3%, but this increase
is small compared to the 137% increase in area, which occurs if we double both the tag
store and the data store size (by doubling the associativity).10

Cache Eviction Policy. In a compressed cache, there are two cases under which mul-
tiple cache lines may need to be evicted because evicting a single cache line (i.e., the LRU
one in a cache that uses the LRU replacement policy) may not create enough space for
the incoming or modified cache line. First, when a new cache line (compressed or un-
compressed) is inserted into the cache. Second, when a cache line already in the cache is

10As we show in Section 3.8, B∆I with our proposed cache organization achieves performance that is
within 1-2% of a cache that has double the tag and data store size.
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Baseline B∆I

Size of tag-store entry 21 bits 32 bits (+4–encoding, +7–segment pointer)

Size of data-store entry 512 bits 512 bits

Number of tag-store entries 32768 65536

Number of data-store entries 32768 32768

Tag-store size 84kB 256kB

Total (data-store+tag-store) size 2132kB 2294kB

Table 3.3: Storage cost analysis for 2MB 16-way L2 cache, assuming 64-byte cache lines,
8-byte segments, and 36 bits for address space.

modified such that its new size is larger than its old size. In both cases, we propose to use
a slightly modified version of the LRU replacement policy wherein the cache evicts mul-
tiple LRU cache lines to create enough space for the incoming or modified cache line.11

such a policy can increase the latency of eviction, it has negligible effect on performance
as evictions are off the critical path of execution. Note that more effective replacement
policies that take into account compressed cache line sizes are possible – e.g., a policy that
does not evict a zero cache line unless there is a need for space in the tag store. We leave
the study of such policies for future work.

B∆I Design Specifics. So far, we described the common part in the designs of both
B+∆ and B∆I. However, there are some specific differences between these two designs.

First, B∆I compression happens (off the critical path) in two steps (vs. only one step
for B+∆). For a fixed ∆ size, Step 1 attempts to compress all elements using an implicit
base of zero. Step 2 tries to compress those elements that were not compressed in Step 1.
The first uncompressible element of Step 1 is chosen as the base for Step 2. The compres-
sion step stores a bit mask, 1-bit per element indicating whether or not the corresponding
base is zero. Note that we keep the size of ∆ (1, 2, or 4 bytes) the same for both bases.

Second, B∆I decompression is implemented as a masked addition of the base (chosen
in Step 2) to the array of differences. The elements to which the base is added depends on
the bit-mask stored in the compression step.

11On average, 5.2% of all insertions or writebacks into the cache resulted in the eviction of multiple cache
lines in our workloads.
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3.5.2 Operation

We propose using our B∆I design at cache levels higher than L1 (e.g., L2 and L3). While
it is possible to compress data in the L1 cache [256], doing so will increase the critical path
of latency-sensitive L1 cache hits. This can result in significant performance degradation
for applications that do not benefit from compression.

We now describe how a B∆I cache fits into a system with a 2-level cache hierarchy
(L1, L2 and main memory) with the L2 cache compressed using B∆I – note that the only
changes are to the L2 cache. We assume all caches use the writeback policy. There are
four scenarios related to the compressed L2 cache operation: 1) an L2 cache hit, 2) an L2
cache miss, 3) a writeback from L1 to L2, and 4) a writeback from L2 to memory.

First, on an L2 hit, the corresponding cache line is sent to the L1 cache. If the line is
compressed, it is first decompressed before it is sent to the L1 cache. Second, on an L2
miss, the corresponding cache line is brought from memory and is sent to the L1 cache.
In this case, the line is also compressed and inserted into the L2 cache. Third, when a line
is written back from L1 to L2, it is first compressed. If an old copy of the line is already
present in the L2 cache, the old (stale) copy is invalidated. The new compressed cache line
is then inserted into the L2 cache. Fourth, when a line is written back from L2 cache to
memory, it is decompressed before it is sent to the memory controller. In both second and
third scenarios, potentially multiple cache lines might be evicted from the L2 cache based
on the cache eviction policy described in Section 3.5.1.

3.6 Related Work

Multiple previous works investigated the possibility of using compression for on-chip
caches [264, 10, 53, 93, 72, 38] and/or memory [246, 3, 57]. All proposed designs have dif-
ferent tradeoffs between compression ratio, decompression/compression latency and hard-
ware complexity. The spectrum of proposed algorithms ranges from general-purpose com-
pression schemes e.g., the Lempel-Ziv algorithm [268], to specific pattern-based schemes,
e.g., zero values [53, 93] and frequent values [256].

The fundamental difference between B∆I and previous cache compression mecha-
nisms is that whereas prior techniques compress data at word granularity – i.e., each word
within a cache line is compressed separately, B∆I compresses data at cache-line granu-
larity – i.e., all the words within a cache line are compressed using the same encoding
or all the words within a cache line are stored uncompressed. As a result, B∆I provides
two major advantages. First, the decompression of all words in the same cache line can

33



be performed in parallel (using a masked vector addition), since the starting point of each
word is known in the compressed cache line. In contrast, compressing each word within
a cache line separately, as in prior works, typically serializes decompression as different
words can be compressed to different sizes, making the starting point of each word in the
compressed cache line dependent on the previous word. Second, B∆I exploits correla-
tion across words within a cache line, which can lead to a better compression ratio – e.g.,
when cache line consists of an array of pointers. Prior works do not exploit this corre-
lation as they compress words individually. As already summarized in Table 1, different
prior works suffer from one or more of the following shortcomings, which B∆I alleviates:
1) high decompression latency, 2) low effective compression ratio, and 3) high hardware
complexity. We now describe the prior designs in more detail.

3.6.1 Zero-based Designs

Dusser et al. [53] propose Zero-Content Augmented (ZCA) cache design where a conven-
tional cache is augmented with a specialized cache to represent zero cache lines. Decom-
pression and compression latencies as well as hardware complexity for the ZCA cache
design are low. However, only applications that operate on a large number of zero cache
lines can benefit from this design. In our experiments, only 6 out of 24 applications have
enough zero data to benefit from ZCA (Figure 3.7), leading to relatively small performance
improvements (as we show in Section 3.8).

Islam and Stenström [93] observe that 18% of the dynamic loads actually access zero
data, and propose a cache design called Zero-Value Canceling where these loads can be
serviced faster. Again, this can improve performance only for applications with substantial
amounts of zero data. Our proposal is more general than these designs that are based only
on zero values.

3.6.2 Frequent Value Compression

Zhang et al. [264] observe that a majority of values read or written by memory operations
come from a small set of frequently occurring values. Based on this observation, they
propose a compression technique [256] that encodes frequent values present in cache lines
with fewer bits. They apply this technique to a direct-mapped L1 cache wherein each entry
in the cache can store either one uncompressed line or two compressed lines.

Frequent value compression (FVC) has three major drawbacks. First, since FVC can
only compress frequent values, it cannot exploit other commonly found patterns, e.g., nar-
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row values or stride patterns in application data. As a result, it does not provide a high
degree of compression for most applications as shown in Section 3.8. Second, FVC com-
presses only the frequent values, while other values stay uncompressed. Decompression
of such a cache line requires sequential processing of every element (because the begin-
ning of the next element can be determined only after the previous element is processed),
significantly increasing the latency of decompression, which is undesirable. Third, the
proposed mechanism requires profiling to identify the frequent values within an applica-
tion. Our quantitative results in Section 3.8 shows that B∆I outperforms FVC due to these
reasons.

3.6.3 Pattern-Based Compression Techniques

Alameldeen and Wood [10] propose frequent pattern compression (FPC) that exploits the
observation that a majority of words fall under one of a few compressible patterns, e.g.,
if the upper 16 bits of a 32-bit word are all zeros or are all ones, all bytes in a 4-byte
word are the same. FPC defines a set of these patterns [11] and then uses them to encode
applicable words with fewer bits of data. For compressing a cache line, FPC first divides
the cache line into 32-bit words and checks if each word falls under one of seven frequently
occurring patterns. Each compressed cache line contains the pattern encoding for all the
words within the cache line followed by the additional data required to decompress each
word.

The same authors propose a compressed cache design [10] based on FPC which allows
the cache to store two times more compressed lines than uncompressed lines, effectively
doubling the cache size when all lines are compressed. For this purpose, they maintain
twice as many tag entries as there are data entries. Similar to frequent value compression,
frequent pattern compression also requires serial decompression of the cache line, because
every word can be compressed or decompressed. To mitigate the decompression latency
of FPC, the authors design a five-cycle decompression pipeline [11]. They also propose
an adaptive scheme which avoids compressing data if the decompression latency nullifies
the benefits of compression.

Chen et al. [38] propose a pattern-based compression mechanism (called C-Pack) with
several new features: (1) multiple cache lines can be compressed into one, (2) multiple
words can be compressed in parallel; but parallel decompression is not possible. Although
the C-Pack design is more practical than FPC, it still has a high decompression latency (8
cycles due to serial decompression), and its average compression ratio is lower than that
of FPC.
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3.6.4 Follow-up Work

Publication of this work [185] inspired several new proposals for hardware-oriented com-
pression algorithms [16, 15, 168, 117], and new compressed cache designs [203, 200, 202].
Most of these works aim for higher compression ratios, but this happens at the cost of much
higher compression/decompression latency. This is why some of these works [168, 117]
are proposed in the context of modern GPUs that are much more tolerant to increase in
memory latency.

3.7 Evaluation Methodology

We use an in-house, event-driven 32-bit x86 simulator whose front-end is based on Sim-
ics [154]. All configurations have either a two- or three-level cache hierarchy, with private
L1D caches. Major simulation parameters are provided in Table 3.4. All caches uniformly
use a 64B cache block size and LRU policy for replacement. All cache latencies were de-
termined using CACTI [229] (assuming a 4GHz frequency), and provided in Table 3.5. We
also checked that these latencies match the existing last level cache implementations from
Intel and AMD, when properly scaled to the corresponding frequency.12 For evaluations,
we use benchmarks from the SPEC CPU2006 suite [217], three TPC-H queries [232], and
an Apache web server (shown in Table 3.6, whose detailed description is in Section 3.8).
All results are collected by running a representative portion of the benchmarks for 1 billion
instructions.

Processor 1–4 cores, 4GHz, x86 in-order

L1-D cache 32kB, 64B cache-line, 2-way, 1 cycle

L2 caches 0.5–16 MB, 64B cache-line, 16-way

L3 caches 2–16 MB, 64B cache-line, 16-way

Memory 300 cycle latency

Table 3.4: Major parameters of the simulated system

Metrics. We measure performance of our benchmarks using IPC (instruction per cy-
cle), effective compression ratio (effective cache size increase, e.g., 1.5 for 2MB cache
means effective size of 3MB), and MPKI (misses per kilo instruction). For multi-programmed
workloads we use the weighted speedup [216, 61] as the performance metric: (

∑
i
IPCshared

i

IPCalone
i

).

12Intel Xeon X5570 (Nehalem) 2.993GHz, 8MB L3 - 35 cycles [160]; AMD Opteron 2.8GHz, 1MB L2 -
13 cycles [37].
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Size Latency Size Latency Size Latency

512kB 15 1MB 21 2MB 27

4MB 34 8MB 41 16MB 48

Table 3.5: Cache hit latencies used in simulations (in cycles). B∆I caches have +1 cycle
for 0.5–4MB (+2 cycle for others) on a hit/miss due to larger tag stores, and +1 cycle for
decompression.

For bandwidth consumption we use BPKI (bytes transferred over bus per thousand instruc-
tions [218]).

Effective compression ratio for all mechanisms is computed without meta-data over-
head. We add all meta-data to the tag storage, e.g., for B∆I, we add four bits to encode the
compression scheme, and a bit mask to differentiate between two bases. We include these
in the tag overhead, which was evaluated in Section 3.5. Our comparisons are fair, because
we do not include this overhead in compression ratios of previous works we compare to.
In fact, the meta-data overhead is higher for FPC (3 bits for each word).

We conducted a study to see applications’ performance sensitivity to the increased L2
cache size (from 512kB to 16 MB). Our results show that there are benchmarks that are
almost insensitive (IPC improvement less than 5% with 32x increase in cache size) to the
size of the L2 cache: dealII, povray, calculix, gamess, namd, milc, and perlbench. This
typically means that their working sets mostly fit into the L1D cache, leaving almost no
potential for any L2/L3/memory optimization. Therefore, we do not present data for these
applications, although we verified that our mechanism does not affect their performance.

Parameters of Evaluated Schemes. For FPC, we used a decompression latency of 5
cycles, and a segment size of 1 byte (as for B∆I) to get the highest compression ratio as
described in [11]. For FVC, we used static profiling for 100k instructions to find the 7
most frequent values as described in [256], and a decompression latency of 5 cycles. For
ZCA and B∆I, we used a decompression latency of 1 cycle.

We also evaluated B∆I with higher decompression latencies (2-5 cycles). B∆I con-
tinues to provide better performance, because for most applications it provides a better
overall compression ratio than prior mechanisms. When decompression latency of B∆I
increases from 1 to 5 cycles, performance degrades by 0.74%.

Internal Fragmentation. In our simulations, we assumed that before every insertion,
we can shift segments properly to avoid fragmentation (implementable, but might be in-
efficient). We believe this is reasonable, because insertion happens off the critical path of
the execution. Previous work [10] adopted this assumption, and we treated all schemes
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equally in our evaluation. Several more recent works [203, 200, 202] (after this work was
published) looked at more efficient ways of handling fragmentation.

Cat. Name Comp. Ratio Sens. Name Comp. Ratio Sens. Name Comp. Ratio Sens.

LCLS
gromacs 1.43 / L L hmmer 1.03 / L L lbm 1.00 / L L

leslie3d 1.41 / L L sphinx 1.10 / L L tpch17 1.18 / L L

libquantum 1.25 / L L wrf 1.01 / L L

HCLS
apache 1.60 / H L zeusmp 1.99 / H L gcc 1.99 / H L

gobmk 1.99 / H L sjeng 1.50 / H L tpch2 1.54 / H L

tpch6 1.93 / H L GemsFDTD 1.99 / H L cactusADM 1.97 / H L

HCHS
astar 1.74 / H H bzip2 1.60 / H H mcf 1.52 / H H

omnetpp 1.58 / H H soplex 1.99 / H H h264ref 1.52 / H H

xalancbmk 1.61 / H H

Table 3.6: Benchmark characteristics and categories: Comp. Ratio (effective compression
ratio for 2MB B∆I L2) and Sens. (cache size sensitivity). Sensitivity is the ratio of
improvement in performance by going from 512kB to 2MB L2 (L - low (≤ 1.10) , H -
high (> 1.10)). For compression ratio: L - low (≤ 1.50), H - high (> 1.50). Cat. means
category based on compression ratio and sensitivity.

3.8 Results & Analysis

3.8.1 Single-core Results

Figure 3.14(a) shows the performance improvement of our proposed B∆I design over the
baseline cache design for various cache sizes, normalized to the performance of a 512KB
baseline design. The results are averaged across all benchmarks. Figure 3.14(b) plots the
corresponding results for MPKI also normalized to a 512KB baseline design. Several ob-
servations are in-order. First, the B∆I cache significantly outperforms the baseline cache
for all cache sizes. By storing cache lines in compressed form, the B∆I cache is able
to effectively store more cache lines and thereby significantly reduce the cache miss rate
(as shown in Figure 3.14(b)). Second, in most cases, B∆I achieves the performance im-
provement of doubling the cache size. In fact, the 2MB B∆I cache performs better than
the 4MB baseline cache. This is because, B∆I increases the effective cache size with-
out significantly increasing the access latency of the data storage. Third, the performance
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improvement of B∆I cache decreases with increasing cache size. This is expected be-
cause, as cache size increases, the working set of more benchmarks start fitting into the
cache. Therefore, storing the cache lines in compressed format has increasingly less ben-
efit. Based on our results, we conclude that B∆I is an effective compression mechanism
to significantly improve single-core performance, and can provide the benefits of doubling
the cache size without incurring the area and latency penalties associated with a cache of
twice the size.
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Figure 3.14: Performance of B∆I with different cache sizes. Percentages show improve-
ment over the baseline cache (same size).

3.8.2 Multi-core Results

When the working set of an application fits into the cache, the application will not benefit
significantly from compression even though its data might have high redundancy. How-
ever, when such an application is running concurrently with another cache-sensitive ap-
plication in a multi-core system, storing its cache lines in compressed format will create
additional cache space for storing the data of the cache-sensitive application, potentially
leading to significant overall performance improvement.

To study this effect, we classify our benchmarks into four categories based on their
compressibility using B∆I (low (LC) or high (HC)) and cache sensitivity (low (LS) or high
(HS)). Table 3.6 shows the sensitivity and compressibility of different benchmarks along
with the criteria used for classification. None of the benchmarks used in our evaluation fall
into the low-compressibility high-sensitivity (LCHS) category. We generate six different
categories of 2-core workloads (20 in each category) by randomly choosing benchmarks
with different characteristics (LCLS, HCLS and HCHS).
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Figure 3.15 shows the performance improvement provided by four different compres-
sion schemes, namely, ZCA, FVC, FPC, and B∆I, over a 2MB baseline cache design for
different workload categories. We draw three major conclusions.
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Figure 3.15: Normalized weighted speedup for 2MB L2 cache, 2-cores. Percentages show
improvement over the baseline uncompressed cache.

First, B∆I outperforms all prior approaches for all workload categories. Overall, B∆I
improves system performance by 9.5% compared to the baseline cache design.

Second, as we mentioned in the beginning of this section, even though an application
with highly compressible data may not itself benefit from compression (HCLS), it can
enable opportunities for performance improvement for the co-running application. This
effect is clearly visible in the figure. When at least one benchmark is sensitive to cache
space, the performance improvement of B∆I increases with increasing compressibility of
the co-running benchmark (as observed by examining the bars labeled as High Sensitiv-
ity). B∆I provides the highest improvement (18%) when both benchmarks in a workload
are highly compressible and highly sensitive to cache space (HCHS-HCHS). As the figure
shows, the performance improvement is not as significant when neither benchmark is sen-
sitive to cache space irrespective of their compressibility (as observed by examining the
bars labeled Low Sensitivity).

Third, although FPC provides a degree of compression similar to B∆I for most bench-
marks (as we showed in Section 3.4.2, Figure 3.7) its performance improvement is lower
than B∆I for all workload categories. This is because FPC has a more complex decom-
pression algorithm with higher decompression latency compared to B∆I. On the other
hand, for high sensitivity workloads, neither ZCA nor FVC is as competitive as FPC or

40



B∆I in the HCLS-HCHS category. This is because both ZCA and FVC have a signifi-
cantly lower degree of compression compared to B∆I. However, a number of benchmarks
in the HCLS category (cactusADM, gcc, gobmk, zeusmp, and GemsFDTD) have high oc-
currences of zero in their data. Therefore, ZCA and FVC are able to compress most of
the cache lines of these benchmarks, thereby creating additional space for the co-running
HCHS application.

We conducted a similar experiment with 100 4-core workloads with different com-
pressibility and sensitivity characteristics. We observed trends similar to the 2-core re-
sults presented above. On average, B∆I improves performance by 11.2% for the 4-core
workloads and it outperforms all previous techniques. We conclude that B∆I, with its
high compressibility and low decompression latency, outperforms other state-of-the-art
compression techniques for both 2-core and 4-core workloads, likely making it a more
competitive candidate for adoption in modern multi-core processors.

We summarize B∆I performance improvement against the baseline 2MB L2 cache
(without compression) and other mechanisms in Table 3.7.

Cores No Compression ZCA FVC FPC

1 5.1% 4.1% 2.1% 1.0%

2 9.5% 5.7% 3.1% 1.2%

4 11.2% 5.6% 3.2% 1.3%

Table 3.7: Average performance improvement of B∆I over other mechanisms: No Com-
pression, ZCA, FVC, and FPC.

3.8.3 Effect on Cache Capacity

Our proposed B∆I cache design aims to provide the benefits of increasing the cache size
while not incurring the increased latency of a larger data storage. To decouple the benefits
of compression using B∆I from the benefits of reduced latency compared to a larger cache,
we perform the following study. We compare the performance of the baseline cache design
and the B∆I cache design by progressively doubling the cache size by doubling the cache
associativity. We fix the latency of accessing all caches.

Figure 3.16 shows the results of this experiment. With the same access latency for all
caches, we expect the performance of the B∆I cache (with twice the number of tags as the
baseline) to be strictly between the baseline cache of the same size (lower limit) and the
baseline cache of double the size (upper limit, also reflected in our results). However, with
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close B∆I gets to the performance of the cache with twice the size (upper limit).

its high degree of compression, the B∆I cache’s performance comes close to the perfor-
mance of the twice as-large baseline cache design for most benchmarks (e.g., h264ref and
zeusmp). On average, the performance improvement due to the B∆I cache is within 1.3%
– 2.3% of the improvement provided by a twice as-large baseline cache. We conclude that
our B∆I implementation (with twice the number of tags as the baseline) achieves perfor-
mance improvement close to its upper bound potential performance of a cache twice the
size of the baseline.

For an application with highly compressible data, the compression ratio of the B∆I
cache is limited by the number of additional tags used in its design. Figure 3.17 shows the
effect of varying the number of tags (from 2× to 64× the number of tags in the baseline
cache) on compression ratio for a 2MB cache. As the figure shows, for most benchmarks,
except soplex, cactusADM, zeusmp, and GemsFDTD, having more than twice as many tags
as the baseline cache does not improve the compression ratio. The improved compression
ratio for the four benchmarks is primarily due to the large number of zeros and repeated
values present in their data. At the same time, having more tags does not benefit a majority
of the benchmarks and also incurs higher storage cost and access latency. Therefore, we
conclude that these improvements likely do not justify the use of more than 2X the tags in
the B∆I cache design compared to the baseline cache.
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Figure 3.17: Effective compression ratio vs. number of tags

3.8.4 Effect on Bandwidth

In a system with a 3-level cache hierarchy, where both the L2 and the L3 caches store
cache lines in compressed format, there is an opportunity to compress the traffic between
the two caches. This has two benefits: (1) it can lead to reduced latency of communication
between the two caches, and hence, improved system performance, and (2) it can lower
the dynamic power consumption of the processor as it communicates less data between the
two caches [103]. Figure 3.18 shows the reduction in L2-L3 bandwidth (in terms of bytes
per kilo instruction) due to B∆I compression. We observe that the potential bandwidth
reduction with B∆I is as high as 53X (for GemsFDTD), and 2.31X on average. We con-
clude that B∆I can not only increase the effective cache size, but it can also significantly
decrease the on-chip traffic.

3.8.5 Detailed Comparison with Prior Work

To compare the performance of B∆I against state-of-the-art cache compression tech-
niques, we conducted a set of studies and evaluated IPC, MPKI, and effective compression
ratio (Figure 3.7) for single core workloads, and weighted speedup (Figure 3.15) for two-
and four-core workloads.

Figure 3.19 shows the improvement in IPC using different compression mechanisms
over a 2MB baseline cache in a single-core system. As the figure shows, B∆I outperforms
all prior approaches for most of the benchmarks. For benchmarks that do not benefit from
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compression (e.g, leslie3d, GemsFDTD, and hmmer), all compression schemes degrade
performance compared to the baseline. However, B∆I has the lowest performance degra-
dation with its low 1-cycle decompression latency, and never degrades performance by
more than 1%. On the other hand, FVC and FPC degrade performance by as much as 3.1%
due to their relatively high 5-cycle decompression latency. We also observe that B∆I and
FPC considerably reduce MPKI compared to ZCA and FVC, especially for benchmarks
with more complex data patterns like h264ref, bzip2, xalancbmk, hmmer, and mcf (not
shown due to space limitations).
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Based on our results, we conclude that B∆I, with its low decompression latency and
high degree of compression, provides the best performance compared to all examined
compression mechanisms.

3.9 Summary

In this chapter, we presented B∆I, a new and simple, yet efficient hardware cache com-
pression technique that provides high effective cache capacity increase and system per-
formance improvement compared to three state-of-the-art cache compression techniques.
B∆I achieves these benefits by exploiting the low dynamic range of in-cache data and rep-
resenting cache lines in the form of two base values (with one implicit base equal to zero)
and an array of differences from these base values. We provide insights into why B∆I
compression is effective via examples of existing in-cache data patterns from real pro-
grams. B∆I’s key advantage over previously proposed cache compression mechanisms is
its ability to have low decompression latency (due to parallel decompression) while still
having a high average compression ratio.

We describe the design and operation of a cache that can utilize B∆I compression with
relatively modest hardware overhead. Our extensive evaluations across a variety of work-
loads and system configurations show that B∆I compression in an L2 cache can improve
system performance for both single-core (8.1%) and multi-core workloads (9.5% / 11.2%
for two/four cores), outperforming three state-of-the-art cache compression mechanisms.
In many workloads, the performance benefit of using B∆I compression is close to the per-
formance benefit of doubling the L2/L3 cache size. In summary, we conclude that B∆I is
an efficient and low-latency data compression substrate for on-chip caches in both single-
and multi-core systems.
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Chapter 4

Compression-Aware Cache
Management

4.1 Introduction

Off-chip main memory latency and bandwidth are major performance bottlenecks in mod-
ern systems. Multiple levels of on-chip caches are used to hide the memory latency and
reduce off-chip memory bandwidth demand. Efficient utilization of cache space and con-
sequently better performance is dependent upon the ability of the cache replacement pol-
icy to identify and retain useful data. Replacement policies, ranging from traditional (e.g.,
[49, 26]) to state-of-the-art (e.g., [192, 96, 209, 115, 114, 190]), work using a combination
of eviction (identifies the block to be removed from the cache), insertion (manages the
initial block priority), and promotion (changes the block priority over time) mechanisms.
In replacement policies proposed for conventional cache organizations, these mechanisms
usually work by considering only the locality of the cache blocks.

A promising approach to improving effective cache capacity is to use cache compres-
sion (e.g., [256, 20, 10, 38, 73, 185, 203, 16]). In compressed caches, data compression
algorithms, e.g., Frequent Pattern Compression (FPC) [11], Base-Delta-Immediate Com-
pression (BDI) [185], and Frequent Value Compression [256], are used to achieve higher
effective capacity (storing more blocks of data) and to decrease off-chip bandwidth con-
sumption compared to traditional organizations without compression. This compression
generates variable-size cache blocks, with larger blocks consuming more cache space than

Originally published as “Exploiting Compressed Block Size as an Indicator of Future Reuse” in the 21st
International Symposium on High Performance Computer Architecture, 2015 [181].
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smaller blocks. However, most cache management policies in these compressed cache de-
signs do not use block size in cache management decisions [256, 10, 38, 73, 185, 203, 16].
Only one recent work—ECM [20]—uses the block size information, but its effective-
ness is limited by its coarse-grained (big vs. small) view of block size. The need
to consider size along with temporal locality is well known in the context of web
caches [199, 58, 4, 39, 21], but proposed solutions rely on a recency list of all objects
in the web cache [4] or consider frequency of object accesses [39] and are usually pro-
hibitively expensive to implement in hardware for use with on-chip caches.

In this chapter, we propose a Compression-Aware Management Policy (CAMP) that
takes into account compressed cache block size along with temporal locality to improve
the performance of compressed caches. Compared to prior work (ECM [20]), our policies
first use a finer-grained accounting for compressed block size and an optimization-based
approach for eviction decisions. Second and more importantly, we find that size is not
only a measure of the cost of retaining a given block in the cache, as previous works
considered [20], but it is sometimes also an indicator of block reuse. CAMP contains two
key components, Minimal-Value Eviction (MVE) and Size-based Insertion Policy (SIP),
which significantly improve the quality of replacement decisions in compressed caches
(see Section 4.6 for a comprehensive analysis) at a modest hardware cost.

Minimal-Value Eviction (MVE). MVE is based on the observation that one should
evict an uncompressed block with good locality to make/retain room for a set of smaller
compressed blocks of the same total size, even if those blocks individually have less lo-
cality, as long as the set of blocks collectively provides more hits cumulatively. A special
case of this is that when two blocks have similar locality characteristics, it is preferable
to evict the larger cache block. MVE measures the value of each block as a combination
of its locality properties and size. When an eviction is required (to make space for a new
block), MVE picks the block with the least value as the victim.

Size-based Insertion Policy (SIP). SIP is based on our new observation that the com-
pressed size of a cache block can sometimes be used as an indicator of its reuse character-
istics. This is because elements belonging to the same data structure and having the same
access characteristics are sometimes (but not always) compressed to the same size—e.g.,
in bzip2 [217], a compressed block of 34 bytes (with BDI compression [185]) likely be-
longs to one particular array with narrow values (e.g., small values stored in large data
types) as we show in Section 4.2.3—and these structures more often than not have a spe-
cific pattern of access and/or reuse distance.

By dynamically inserting blocks of different sizes with either high priority—e.g., in the
most-recently-used position for the LRU policy (ensuring blocks stay in cache longer)—or
low priority—e.g., in the least-recently-used position for the LRU policy (ensuring blocks
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get evicted quickly unless reused shortly)—SIP learns the reuse characteristics associated
with various compressed block sizes and, if such an association exists, uses this informa-
tion to maximize the hit ratio.
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Figure 4.1: Example demonstrating downside of not including block size information in
replacement decisions.

As demonstrated later in this chapter, CAMP (a combination of MVE and SIP) works
with both traditional compressed cache designs and compressed caches having decoupled
tag and data stores (e.g., V-Way Cache [195] and Indirect Index Cache [72, 73]). It is gen-
eral enough to be used with different compression mechanisms and requires only modest
hardware changes. Compared to prior work, CAMP provides better performance, more
efficient cache utilization, reduced off-chip bandwidth consumption, and an overall reduc-
tion in the memory subsystem energy requirements.

In summary, we make the following major contributions:

• We make the observation that the compressed size of a cache block can be indicative
of its reuse. We use this observation to develop a new cache insertion policy for
compressed caches, the Size-based Insertion Policy (SIP), which uses the size of a
compressed block as one of the metrics to predict its potential future reuse.

• We introduce a new compressed cache replacement policy, Minimal-Value Eviction
(MVE), which assigns a value to each cache block based on both its size and its
reuse and replaces the set of blocks with the least value.

• We demonstrate that both policies are generally applicable to different compressed
cache designs (both with local and global replacement) and can be used with differ-
ent compression algorithms (FPC [10] and BDI [185]).

• We qualitatively and quantitatively compare CAMP (SIP + MVE) to the conven-
tional LRU policy and three state-of-the-art cache management policies: two size-
oblivious policies (RRIP [96] and a policy used in V-Way [195]) and the recent
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ECM [20]. We observe that CAMP (and its global variant G-CAMP) can consid-
erably (i) improve performance (by 4.9%/9.0%/10.2% on average in single-/two-
/four-core workload evaluations and up to 20.1%), (ii) decrease off-chip bandwidth
consumption (by 8.7% in single-core), and (iii) decrease memory subsystem energy
consumption (by 7.2% in single-core) on average for memory intensive workloads
when compared with the best prior mechanism.

4.2 Motivating Observations

Cache compression [256, 20, 10, 38, 73, 185, 203, 16] is a powerful mechanism that in-
creases effective cache capacity and decreases off-chip bandwidth consumption.1 In this
section, we show that cache compression adds an additional dimension to cache manage-
ment policy decisions – the compressed block size (or simply the size), which plays an
important role in building more efficient management policies. We do this in three steps.

4.2.1 Size Matters

In compressed caches, one should design replacement policies that take into account com-
pressed cache block size along with locality to identify victim blocks, because such poli-
cies can outperform existing policies that rely only on locality. In fact, Belady’s optimal
algorithm [26] that relies only on locality (using perfect knowledge to evict the block that
will be accessed furthest in the future) is sub-optimal in the context of compressed caches
with variable-size cache blocks. Figure 4.1 demonstrates one possible example of such
a scenario. In this figure, we assume that cache blocks are one of two sizes: (i) uncom-
pressed 64-byte blocks (blocks X and Y) and (ii) compressed 32-byte blocks (blocks A, B,
and C). We assume the cache capacity is 160 bytes. Initially (see Ê), the cache contains
four blocks: three compressed (A, B, C) and one uncompressed (Y). Consider the se-
quence of memory requests X, A, Y, B, C, B, Y, and A (see Ë). In this case, after a request
for X, Belady’s algorithm (based on locality) evicts blocks B and C (to create 64 bytes of
free space) that will be accessed furthest into the future. Over the next four accesses, this
results in two misses (B and C) and two hits (A and Y).

In contrast, a size-aware replacement policy can detect that it might be better to retain
a set of smaller compressed cache blocks that receive more hits cumulatively than a single

1 Data compression can be also effective in increasing the size of the main memory [57, 179, 184] and
reducing the off-chip memory bandwidth/energy consumption [184, 213].
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large (potentially uncompressed) cache block with better locality. For the access pattern
discussed above, a size-aware replacement policy makes the decision to retain B and C
and evict Y to make space for X (see Ì). As a result, the cache experiences three hits
(A, B, and C) and only one miss (Y) and hence outperforms Belady’s optimal algorithm.2

We conclude that using block size information in a compressed cache can lead to better
replacement decisions.

4.2.2 Size Varies

Figure 4.2 shows the distribution of compressed cache block sizes3 for a set of represen-
tative workloads given a 2MB cache employing the Base-Delta-Immediate (BDI) [185]
cache compression algorithm (our results with the FPC [10] compression algorithm show
similar trends). Even though the size of a compressed block is determined by the compres-
sion algorithm, under both designs, compressed cache block sizes can vary significantly,
both (i) within a single application (i.e., intra-application) such as in astar, povray, and
gcc and (ii) between applications (i.e., inter-application) such as between h264ref and wrf.
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Figure 4.2: Compressed block size distribution for representative applications with the
BDI [185] compression algorithm.

Size variation within an application suggests that size-aware replacement policies
could be effective for individual single-core workloads. Intra-application variation ex-
ists because applications have data that belong to different common compressible patterns

2Later (see Í), when there are three requests to blocks B, Y, and A (all three hits), the final cache state
becomes the same as the initial one. Hence, this example can represent steady state within a loop.

3Section 4.5 describes the details of our evaluation methodology for this and other experiments.
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(e.g., zeros, repeated values, and narrow values [185]) and as a result end up with a mix of
compressed cache block sizes. In a system with multiple cores and shared caches, inter-
application variation suggests that even if an application has a single dominant compressed
cache block size (e.g., lbm, h264ref and wrf ), running these applications together on dif-
ferent cores will result in the shared cache experiencing a mix of compressed cache block
sizes. Hence, size-aware management of compressed caches can be even more important
for efficient cache utilization in multi-core systems (as we demonstrate quantitatively in
Section 4.6.2).

4.2.3 Size Can Indicate Reuse

We observe that elements belonging to the same data structure (within an application)
sometimes lead to cache blocks that compress to the same size. This observation provides
a new opportunity: using the compressed size of a cache block as an indicator of data reuse
of the block.

Intuition. We first briefly provide intuition on why there can be a relationship between
compressed size and the reuse characteristics of the cache block. As past work has shown,
an application’s key data structures are typically accessed in a regular fashion, with each
data structure having an identifiable access pattern [5]. This regularity in accesses to a data
structure can lead to a dominant reuse distance [51] range for the cache blocks belonging
to the data structure.4 The same data structure can also have a dominant compressed
cache block size, i.e., a majority of the cache blocks containing the data structure can be
compressed to one or a few particular sizes (e.g., due to narrow or sparse values stored in
the elements of an array). For such a data structure, the compressed cache block size can
therefore be a good indicator of the reuse behavior of the cache blocks. In fact, different
data structures can have different dominant compressed block sizes and different dominant
reuse distances; in such cases, the compressed block size serves as a type of signature
indicating the reuse pattern of a data structure’s cache blocks.

Example to Support the Intuition. To illustrate the connection between compressed
block size and reuse behavior of data structures intuitively, Figure 4.3 presents an example
loosely based on some of the data structures we observed in soplex. There are three data
structures in this example: (i) array A[N ] of integer indexes that are smaller than value
M (well-compressible with BDI [185] to 20-byte cache blocks), (ii) small array B[16] of
floating point coefficients (incompressible, 64-byte cache blocks), and (iii) sparse matrix

4Some prior works (e.g., [78, 112, 186, 234]) captured this regularity by learning the relationship between
the instruction address and the reuse distance.
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int A[N]; // small indices: narrow values
double B[16]; // FP coefficients: incompressible
double C[M][N];// sparse matrix: many zero values
for (int i=0; i<N; i++) {

int tmp = A[i];
for (int j=0; j<N; j++) {

sum += B[(i+j)%16] * C[tmp][j];
}

}

Figure 4.3: Code example: size and reuse distance relationship.

C[M ][N ] with the main data (very compressible zero values, many 1-byte cache blocks).
These data structures not only have different compressed block sizes, but also different
reuse distances. Accesses to cache blocks for array A occur only once every iteration of
the outer loop (long reuse distance). Accesses to cache blocks for array B occur roughly
every 16th iteration of the inner loop (short reuse distance). Finally, the reuse distance of
array C is usually long, although it is dependent on what indexes are currently stored in
array A[i]. Hence, this example shows that compressed block size can indicate the reuse
distance of a cache block: 20-byte blocks (from A) usually have long reuse distance, 64-
byte blocks (from B) usually have short reuse distance, and 1-byte blocks (from C) usually
have long reuse distance. If a cache learns this relationship, it can prioritize 64-byte blocks
over 20-byte and 1-byte blocks in its management policy. As we show in Section 4.3.3,
our SIP policy learns exactly this kind of relationship, leading to significant performance
improvements for several applications (including soplex), as shown in Section 4.6.1.5

Quantitative Evidence. To verify the relationship between block size and reuse, we
have analyzed 23 memory-intensive applications’ memory access traces (applications de-
scribed in Section 4.5). For every cache block within an application, we computed the
average distance (measured in memory requests) between the time this block was inserted
into the compressed cache and the time when it was reused next. We then accumulate
this reuse distance information for all different block sizes, where the size of a block is
determined with the BDI [185] compression algorithm.

Figures 4.4(a)–4.4(f) show the results of this analysis for nine representative applica-
tions from our workload pool (our methodology is described in Section 4.5). In five of
these applications (bzip2, sphinx3, soplex, tpch6, gcc), compressed block size is an indi-
cator of reuse distance (in other words, it can be used to distinguish blocks with different

5Note that our overall proposal also accounts for the size of the block, e.g., that a 64-byte block takes up
more space in the cache than a 20-byte or 1-byte block, via the use of MVE policy (Section 4.3.2).
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(b) sphinx3
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(c) soplex

0

500

1000

1500

2000

1 8 16 20 24 34  36 40 64

R
eu

se
 D

is
ta

nc
e

(#
 o

f m
em

or
y 

ac
ce

ss
es

)

(d) tpch6
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(e) gcc
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Figure 4.4: Plots demonstrate the relationship between the compressed block size and
reuse distance. Dark red circles correspond to the most frequent reuse distances for every
size. The first five workloads ((a)–(e)) have some relation between size and reuse, while
the last one (f) do not show that size is indicative of reuse.

reuse distances). In one of the applications (mcf ), it is not. Each graph is a scatter plot
that shows the reuse distance distribution experienced by various compressed cache block
sizes in these applications. There are nine possible compressed block sizes (based on the
description from the BDI work [185]). The size of each circle is proportional to the rel-
ative frequency of blocks of a particular size that exhibit a specified reuse distance. The
dark red circles indicate the most frequent reuse distances (up to three) for every size.

We make three major observations from these figures. First, there are many applica-
tions where block size is an indicator of reuse distance (Figure 4.4(a)–4.4(f)). For instance,
in bzip2 (Figure 4.4(a)), a large number of cache blocks are 8, 36, or 64 (uncompressed)
bytes and have a short reuse distance of less than 1000. In contrast, a significant number
of blocks are 34 bytes and have a large reuse distance of greater than 5000. This indicates
that the 34-byte blocks can be deprioritized by the cache when running bzip2 to improve
performance. Similarly, in sphinx3, tpch6, and soplex (Figures 4.4(b)–4.4(d)), a signifi-
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cant number of blocks are compressed to 1-byte with a long reuse distance of around 1000,
whereas most of the blocks of other sizes have very short reuse distances of less than 100.
In general, we observe that data from 15 out of 23 of our evaluated applications show that
block size is indicative of reuse [180]. This suggests that a compressed block size can be
used as an indicator of future block reuse which in turn can be used to prioritize blocks
of certain sizes (Section 4.3.3), improving application performance (e.g., see the effect on
soplex in Section 4.6.1).

Second, there are some applications where block size does not have a relationship with
reuse distance of the block (e.g., mcf ). For example, in mcf (Figure 4.4(f)), almost all
blocks, regardless of their size, have reuse distances around 1500. This means that block
size is less effective as an indicator of reuse for such applications (and the mechanism
we describe in Section 4.3.3 effectively avoids using block size in cache management
decisions for such applications).

Third, for applications where block size is indicative of reuse, there is usually not a
coarse-grained way to distinguish between block sizes that are indicative of different reuse
distances. In other words, simply dividing the blocks into big or small blocks, as done
in ECM [20], is not enough to identify the different reuse behavior of blocks of different
sizes. The distinction between block sizes should be done at a finer granularity. This is ev-
ident for bzip2 (Figure 4.4(a)): while 8, 36, and 64-byte blocks have short reuse distances,
a significant fraction of the 34-byte blocks have very long reuse distances (between 5000
and 6000). Hence, there is no single block size threshold that would successfully distin-
guish blocks with high reuse from those with low reuse. Data from other applications (e.g.,
soplex, gcc) similarly support this.

We briefly discuss why compressed size is sometimes not indicative of reuse behavior.
First, data stored in the data structure might be different, so multiple compressed sizes
are possible with the same reuse pattern (e.g., for mcf ). In this case, blocks of different
sizes are equally important for the cache. Second, blocks with the same size(s) can have
multiple different reuse patterns/distances (e.g., for milc and gromacs). In this case, size
might not provide useful information to improve cache utilization, because blocks of the
same size can be of very different importance.

4.3 CAMP: Design and Implementation

Our proposed Compression-Aware Management Policy (CAMP) consists of two com-
ponents: Minimal-Value Eviction (MVE) and Size-based Insertion Policy (SIP). These
mechanisms assume a compressed cache structure where the compressed block size is
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available to the hardware making the insertion and replacement decisions. Without the
loss of generality, we assume that the tag-store contains double the number of tags and is
decoupled from the data-store to allow higher effective capacity (as proposed in several
prior works [10, 185, 38]). We also propose Global CAMP (or G-CAMP), an adaptation
of CAMP for a cache with a global replacement policy.

In this section, we first provide the background information needed to understand some
of our mechanisms (Section 4.3.1). Then, we describe the design and implementation of
each mechanism in depth (Sections 4.3.2-4.3.4). We detail the implementation of our G-
CAMP mechanism assuming the structure proposed for the V-Way cache [195]. None of
the mechanisms require extensive hardware changes on top of the baseline compressed
cache designs (both local and global, see Section 4.3.5 for an overhead analysis).

4.3.1 Background

Multiple size-oblivious cache management mechanisms (e.g., [192, 96, 209, 115, 114])
were proposed to improve the performance of conventional on-chip caches (without com-
pression). Among them, we select RRIP [96] as both a comparison point in our evaluations
and as a predictor of future re-reference in some of our algorithms (see Section 4.3.2). This
selection is motivated both by the simplicity of the algorithm and its state-of-the-art per-
formance (as shown in [96]).

RRIP. Re-Reference Interval Prediction (RRIP) [96] uses an M -bit saturating counter
per cache block as a Re-Reference Prediction Value (RRPV ) to predict the block’s re-
reference distance. The key idea behind RRIP is to prioritize the blocks with lower pre-
dicted re-reference distance, as these blocks have higher expectation of near-future reuse.
Blocks are inserted with a long re-reference interval prediction (RRPV = 2M − 2). On
a cache miss, the victim block is a block with a predicted distant re-reference interval
(RRPV = 2M − 1). If there is no such block, the RRPV of all blocks is incremented by
one and the process repeats until a victim is found. On a cache hit, the RRPV of a block
is set to zero (near-immediate re-reference interval). Dynamic RRIP (DRRIP) uses set
dueling [192, 190] to select between the aforementioned policy (referred to as SRRIP) and
one that inserts blocks with a short re-reference interval prediction with high probability
and inserts blocks with a long re-reference interval prediction with low probability.

V-Way. The Variable-Way, or V-Way [195], cache is a set-associative cache with a de-
coupled tag- and data-store. The goal of V-Way is two-fold: providing flexible (variable)
associativity together with a global replacement across the entire data store. A defining
characteristic is that there are more tag-entries than data-entries. Forward and backward
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pointers are maintained in the tag- and data-store to link the entries. This design enables
associativity to effectively vary on a per-set basis by increasing the number of tag-store
entries relative to data-store entries. Another benefit is the implementation of a global
replacement policy, which is able to choose data-victims from anywhere in the data-store.
This is in contrast to a traditional local replacement policy, e.g., [49, 96], which consid-
ers data-store entries only within a single set as possible victims. The particular global
replacement policy described in [195] (called Reuse Replacement) consists of a Reuse
Counter Table (RCT) with a counter for each data-store entry. Victim selection is done by
starting at a pointer (PTR) to an entry in the RCT and searching for the first counter equal
to zero, decrementing each counter while searching, and wrapping around if necessary.
A block is inserted with an RCT counter equal to zero. On a hit, the RCT counter for
the block is incremented. We use the V-Way design as a foundation for all of our global
mechanisms (described in Section 4.3.4).

4.3.2 Minimal-Value Eviction (MVE)

The key observation in our MVE policy is that evicting one or more important blocks
of larger compressed size may be more beneficial than evicting several more compress-
ible, less important blocks (see Section 4.2). The idea behind MVE is that each block
has a value to the cache. This value is a function of two key parameters: (i) the likeli-
hood of future re-reference and (ii) the compressed block size. For a given <prediction
of re-reference, compressed block size> tuple, MVE associates a value with the block.
Intuitively, a block with higher likelihood of re-reference is more valuable than a block
with lower likelihood of re-reference and is assigned a higher value. Similarly, a more
compressible block is more valuable than a less compressible block because it takes up
fewer segments in the data-store, potentially allowing for the caching of additional useful
blocks. The block with the least value in the associativity set is chosen as the next vic-
tim for replacement—sometimes multiple blocks need to be evicted to make room for the
newly inserted block.

In our implementation of MVE, the value Vi of a cache block i is computed as Vi =
pi/si, where si is the compressed block size of block i and pi is a predictor of re-reference,
such that a larger value of pi denotes block i is more important and is predicted to be re-
referenced sooner in the future. This function matches our intuition and is monotonically
increasing with respect to the prediction of re-reference and monotonically decreasing
with respect to the size. We have considered other functions with these properties (i.e., a
weighted linear sum), but found the difference in performance to be negligible.
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Our mechanism estimates pi using RRIP6 [96] as the predictor of future re-reference
due to its simple hardware implementation and state-of-the-art stand-alone performance.7

As described in Section 4.3.1, RRIP maintains a re-reference prediction value (RRPV) for
each cache block which predicts the re-reference distance. Since a larger RRPV denotes a
longer predicted re-reference interval, we compute pi as pi = (RRPVMAX +1−RRPVi).
Therefore, a block with a predicted short re-reference interval has more value than a com-
parable block with a predicted long re-reference interval. pi cannot be zero, because Vi

would lose dependence on si and become size-oblivious.

Depending on the state of the cache, there are two primary conditions in which a victim
block must be selected: (i) the data-store has space for the block to be inserted, but all tags
are valid in the tag-directory, or (ii) the data-store does not have space for the block to
be inserted (an invalid tag may or may not exist in the tag-directory). In the first case
where the data-store is not at capacity, MVE relies solely on the predictor of re-reference
or conventional replacement policy, such as RRIP. For the second case, the valid blocks
within the set are compared based on Vi and the set of blocks with the least value is evicted
to accommodate the block requiring insertion.

MVE likely remains off the critical path, but to simplify the microarchitecture, we
eliminate division in the calculation of Vi by bucketing block sizes such that si is always
a power of two, allowing a simple right-shift operation instead of floating point division.
For the purposes of calculating Vi, si = 2 for blocks of size 0B – 7B, si = 4 for blocks of
size 8B – 15B, si = 8 for blocks of size 16B – 31B, and so on. The most complex step,
comparing blocks by value, can be achieved with a fixed multi-cycle parallel comparison.

4.3.3 Size-based Insertion Policy (SIP)

The key observation behind SIP is that sometimes there is a relation between cache block
reuse distance and compressed block size (as shown in Section 4.2.3). SIP exploits this
observation and inserts blocks of certain sizes with higher priority if doing so reduces the
cache miss rate. Altering the priority of blocks of certain sizes with short or long reuse
distances helps to ensure that more important blocks stay in the cache.

At run-time, SIP dynamically detects the set of sizes that, when inserted with higher
priority, reduce the number of misses relative to a size-oblivious insertion policy. SIP uses

6Specifically, the version of RRIP that our mechanism uses is SRRIP. We experimented with DRRIP, but
found it offered little performance improvement for our mechanisms compared to the additional complexity.
All of our evaluations assume an RRPV width M = 3.

7Other alternatives considered (e.g., [209]) provide only a binary value.
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Figure 4.5: Set selection during training and decision of best insertion policy based on
difference in miss rate in MTD/ATD.

a simple mechanism based on dynamic set sampling [192] to make the prioritization deci-
sion for various compressed sizes. It selects the best-performing policy among competing
policies during a periodic training phase and applies that policy during steady state. The
observation in dynamic set sampling is that sampling makes it possible to choose the better
policy with only a relatively small number of sets selected from the Main Tag Directory
(MTD) to have a corresponding set in an Auxiliary Tag Directory (ATD) participating in
a tournament. Only the MTD is coupled with the data-store; the ATD is only for de-
ciding which block size(s) should be inserted with high priority. Therefore, there are no
performance degradations due to our sampling during training.

Let m be the minimum number of sets that need to be sampled so that dynamic set
sampling can determine the best policy with high probability and n be the number of com-
pressible block sizes possible with the compression scheme (e.g., 8B, 16B, 20B, ..., 64B).
In SIP, the ATD contains m · n sets, m for each of the n sizes. As shown in Figure 4.3.3,
each set in the ATD is assigned one of the n sizes. The insertion policy in these sets of the
ATD differs from the insertion policy in the MTD in that the assigned size is prioritized.
For the example in Figure 4.3.3, there are only two possible block sizes. Sets A and F
in the ATD prioritize insertions of 8-byte blocks (e.g., by increasing pi). Sets D and I
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prioritize the insertion of 64-byte blocks. Sets B, C, E, G, and H are not sampled in the
ATD.

When a set in the MTD that has a corresponding set in the ATD receives a miss, a
counter CTRi is incremented, where i is a size corresponding to the prioritized size in the
corresponding ATD set. When an ATD set receives a miss, it decrements CTRi for the
size associated with the policy this set is helping decide. Figure 4.3.3 shows the decision
of the output of CTR64B.

For each of the possible compressed block sizes, a decision is made independently
based on the result of the counter. If CTRi is negative, prioritizing blocks of size i is
negatively affecting miss rate (e.g., the insertion policy in the MTD resulted in fewer
misses than the insertion policy in the ATD). Therefore, SIP does not prioritize blocks of
size i. Likewise, if CTRi is positive, prioritizing insertion of blocks of size i is reducing
the miss rate and SIP inserts size i blocks with high priority for best performance. For n
different sizes, there are 2n possible insertion schemes and any may be chosen by SIP.

For simplicity and to reduce power consumption, the dynamic set sampling occurs dur-
ing a periodic training phase8 at which time the insertion policy of the MTD is unaffected
by SIP. At the conclusion of the training phase, a steady state is entered and the MTD
adopts the chosen policies and prioritizes the insertion of blocks of sizes for which CTR
was positive during training.

SIP is general enough to be applicable to many replacement policies (e.g., LRU, RRIP,
etc). In some cases (e.g., LRU), it is more effective to try inserting blocks with lower
priority (e.g., LRU position) instead of higher priority as proposed above. We evaluate SIP
with RRIP where blocks by default are inserted with a predicted long re-reference interval
(RRPV = 2M − 2). Therefore, in the ATD sets, the appropriate sizes are prioritized
and inserted with a predicted short re-reference interval (RRPV = 0). For a 2MB cache
with 2048 sets, we create an ATD with 32 sets for each of 8 possible block sizes. For
simplicity, in our implementation we limit the number of sizes to eight by bucketing the
sizes into eight size bins (i.e., bin one consists of sizes 0 – 8B, bin two consists of sizes 9
– 16B,. . . , and bin eight consists of sizes 57 – 64B).

4.3.4 CAMP for the V-Way Cache

In addition to being an effective mechanism for the traditional compressed cache with a lo-
cal replacement policy, the key ideas behind CAMP are even more effective when applied

8In our evaluations, we perform training for 10% of the time. For example, for 100 million cycles every
1 billion cycles.

60



tag0 tag1 tag2

... ... ...

... ... ...

status tag fptr comp

tag3

...

...
data0 data1

... ...

... ...

...

R0

64 bytes

v+s rptr

R1 R2 R3

1 2 3

4

8 bytes

Figure 4.6: V-Way + compression cache design.

to a cache with a decoupled tag- and data-store and a global replacement policy, where the
pool of potential candidates for replacement is much larger. In this work, we apply these
ideas to the V-Way cache [195] (described in Section 4.3.1) with its decoupled tag- and
data-store that increase the effectiveness of replacement algorithms. To demonstrate this
effectiveness, we propose Global SIP (or G-SIP) and Global MVE (or G-MVE). Together,
we combine these into Global CAMP (or G-CAMP).

V-Way cache + compression. The V-Way cache [195] design can be enhanced with
compression in four main steps (as shown in Figure 4.6). First, the tag entries need to be
extended with the encoding bits to represent a particular compression scheme used for a
cache block (e.g., 4 bits for BDI [185], see Ê). The number of tags is already doubled in
the V-Way cache. Second, the data store needs to be split into multiple segments to get
the benefit of compression (e.g., 8-byte segments, see Ë). As in [185], every cache block
after compression consists of multiple adjacent segments. Third, the reverse pointers (Rn)
that are used to perform the replacement need to track not only the validity (v bit) but also
the size of each block after compression (measured in the number of 8-byte segments, Ì).
This simplifies the replacement policies, because there is no need to access the tags to
find block sizes. Fourth, we double the number of reverse pointers per set, so that we can
exploit the capacity benefits from compression (Í).

For a 2MB V-Way-based L2 cache with 64-byte cache blocks, the sizes of the fptr and
rptr pointers are 15 (log2

2MB
64B

) and 16 (log2
2∗2MB

64B
) bits respectively. After compression

is applied and assuming 8-byte segments, fptr would increase by 3 bits to a total size of
18 bits.9 A single validity bit that was used in V-Way cache is now enhanced to 3 bits to
represent 7 different sizes of the cache blocks after compression with BDI as well as the
validity itself.

G-MVE. As in MVE, G-MVE uses a value function to calculate the value of blocks.
The changes required are in (i) computing pi and (ii) selecting a pool of blocks from
the large pool of replacement options to consider for one global replacement decision. To

9Fptr and rptr pointers can be reduced in size (by 3 bits) by using regioning (as described later in Sec-
tion 4.3.4).
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compute pi, we propose using the reuse counters from the Reuse Replacement policy [195]
as a predictor of future re-reference. As in the Reuse Replacement policy [195] (see Sec-
tion 4.3.1), each data-store entry has a counter. On insertion, a block’s counter is set to
zero. On a hit, the block’s counter is incremented by one indicating its reuse.

For the second change, we implement global replacement by maintaining a pointer
(PTR) to a reuse counter entry. Starting at the entry PTR points to, the reuse counters of
64 valid data entries are scanned, decrementing each non-zero counter by one (as in the
Reuse Replacement policy). The 64 blocks are assigned a value, Vi, and the least-valued
block(s) are evicted to accommodate the incoming block. 64 blocks are chosen because it
guarantees both an upper bound on latency and that evicting all 64 blocks (i.e., all highly
compressed blocks) in the worst case will vacate enough data-store space for the incoming
block.

A few applications (i.e., xalancbmk [217]) have a majority of blocks of very similar
sizes that primarily belong to two size bins of adjacent sizes. When considering 64 such
blocks, certain blocks in the smaller size bin can essentially be “stuck” in the cache (i.e.,
there is only a very small probability these blocks will be chosen as victim, because a block
with the same prediction of re-reference that belongs in the larger size bin is present and
will be chosen). This results from the microarchitectural simplifications and approximate
nature of the value function and can cause performance degradations in a few cases. We
address this shortcoming later in this section.

G-SIP. Dynamic set sampling (used by SIP) motivates that only a select number of sets
are required to be sampled to estimate the performance of competing policies [192]. How-
ever, this assumption does not hold in a cache with global replacement, because evictions
are not limited to the set in which a cache miss occurs and this interferes with sampling.
For the V-Way cache, we propose instead a mechanism inspired by set dueling [190] to
select the optimal insertion policy.

To apply set dueling to G-SIP, we need to divide the data-store into n (where n is small;
in our evaluations n = 8) equal regions. Instead of considering all blocks within the data-
store, the replacement policy considers only the blocks within a particular region. This
still allows considerably more replacement options than a traditional cache structure. We
observe that this division also simplifies the V-Way cache design with negligible impact
on performance.10

During a training phase, each region is assigned a compressed block size to prioritize
on insertion. Figure 4.3.4 shows this assignment for a simple cache with three regions
and two block sizes, 8-byte and 64-byte. The third region is designated as a baseline

10G-MVE supports regions by simply maintaining one PTR per region.
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Figure 4.7: Set selection during training and update of counters on misses to each region.

(or control) region in which no blocks are inserted with higher priority. When a miss
occurs within a region, the CTR counter is incremented for that region. For example, in
Figure 4.3.4, a miss to set A, B, or C increments CTR8B. Likewise, a miss to set G, H, or I
increments CTRbase and so on. At the end of the training phase, the region CTR counters
are compared (see Figure 4.3.4). If CTRi < CTRbase, blocks of size i are inserted with
higher priority in steady state in all regions. Therefore, G-SIP detects at runtime the sizes
that reduce the miss rate when inserted with higher priority than other blocks.

In our implementation, we have divided the data-store into eight regions.11 This num-
ber can be adjusted based on cache size. Because one region is designated as the baseline
region, we bin the possible block sizes into seven bins and assign one range of sizes to
each region. During the training phase, sizes within this range are inserted with higher
priority. The training duration and frequency are as in SIP. Because training is short and
infrequent, possible performance losses due to set dueling are limited.

G-CAMP. G-MVE and G-SIP complement each other and can be easily integrated into
one comprehensive replacement policy referred to as G-CAMP. We make one improve-
ment over the simple combination of these two orthogonal policies to further improve
performance in the few cases where G-MVE degrades performance. During the training
phase of G-SIP, we designate a region in which we insert blocks with simple Reuse Re-

11We conducted an experiment varying the number of regions (and therefore the number of distinct size
bins considered) from 4 to 64 and found having 8 regions performed best.
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placement instead of G-MVE. At the end of the training phase, the CTR for this region is
compared with the control region and if fewer misses were incurred, G-MVE is disabled
in all regions at the steady state. In G-MVE-friendly applications, it remains enabled.

4.3.5 Overhead and Complexity Analysis

Table 4.1 shows the storage cost of six cache designs: baseline uncompressed cache, BDI
compressed cache with LRU, V-Way with and without compression, as well as CAMP
and G-CAMP. On top of our reference cache with BDI and LRU (2384kB), MVE does
not add any additional metadata and the dynamic set sampling in SIP increases the cache
size in bits by only 1.5% (total CAMP size: 2420kB). Adding BDI compression to V-Way
cache with 2x tags and 8 regions increases cache size from 2458kB to 2556kB. G-MVE/G-
SIP/G-CAMP do not add further metadata (with the exception of eight 16-bit counters for
set-dueling in G-SIP/G-CAMP). In addition, none of the proposed mechanisms are on
the critical path of the execution and the logic is reasonably modest to implement (e.g.,
comparisons of CTRs). We conclude that the complexity and storage overhead of CAMP
are modest.

Base BDI CAMP V-Way V-Way+C G-CAMP
tag-entry(bits) 21 35([185]) 35 36 a 40 e 40
data-entry(bits) 512 512 512 528 b 544 f 544

# tag entries 32768 65536 73728 c 65536 65536 65536
# data entries 32768 32768 32768 32768 32768 32768
tag-store (kB) 86 287 323 295 328 328
data-store (kB) 2097 2097 2097 2163 2228 2228

other 0 0 8*16 d 0 0 8*16

total (kB) 2183 2384 2420 2458 2556 2556

Table 4.1: Storage overhead of different mechanisms for a 2MB L2 cache. “V-Way+C”
means V-Way with compression.

a+15 forward ptr; b +16 reverse ptr; c+1/8 set sampling in SIP; dCTR’s in SIP; e +4 for comp. encoding;
f +32 (2 reverse ptrs per data entry, 13 bits each, and 2 extended validity bits, 3 bits each)

4.4 Qualitative Comparison with Prior Work

4.4.1 Size-Aware Management in On-Chip Caches

Baek et al. propose Effective Capacity Maximizer (ECM) [20]. This mechanism employs
size-aware insertion and replacement policies for an on-chip compressed cache. Unlike
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size-oblivious DRRIP [96] on which it is built, ECM inserts big blocks with lower priority
than small blocks. The threshold for what is considered a “big” block is determined dy-
namically at runtime using an equation derived from heuristics and based on the current
effective capacity and physical memory usage. During replacement, the biggest block in
the eviction pool is selected as the victim.

ECM is the first size-aware policy employed for compressed on-chip caches. We find
that this approach has several shortcomings and underperforms relative to our proposed
mechanisms (as we show in Section 4.6). First, the threshold scheme employed by ECM
is coarse-grained and, especially in multi-core workloads where a greater diversity of block
sizes exists across workloads, considering more sizes (as CAMP does) yields better per-
formance. Second, ECM’s mechanism does not consider the relation between block reuse
and size, whereas CAMP exploits the new observation that block size and reuse can some-
times be related. Third, due to ECM’s complex threshold definition, it is unclear how to
generalize ECM to a cache with global replacement, where size-aware replacement poli-
cies demonstrate highest benefit (as shown in Section 4.6). In contrast, CAMP is easily
adapted to work with such caches.

Recently, Sardashti and Wood propose the decoupled compressed cache (DCC) de-
sign [203] that exploits both locality and decoupled sectored cache design to avoid recom-
paction (and partially fragmentation) overhead in the previous compressed cache designs.
The DCC design is largely orthogonal to the compression mechanisms proposed in this
work and can be used in cojunction with them.

4.4.2 Size-Aware Management in Web Caches

Prior works in web caches have proposed many management strategies that consider ob-
ject size, e.g., variable document size. ElAarag and Romano [199, 58] provide one of the
most comprehensive surveys. While these proposed techniques serve the same high-level
purpose as a management policy for an on-chip cache (e.g., making an informed decision
on the optimal victim), they do so in a much different environment. Many proposed mech-
anisms rely on a recency list of all objects in the cache (e.g., [4]) or consider frequency
of object access (e.g., [39]), which are prohibitively expensive techniques for an on-chip
cache. In addition, these techniques do not consider a higher density of information that
comes with the smaller blocks after compression. This higher density can lead to a higher
importance of the smaller blocks for the cache, which was mostly ignored in these prior
mechanisms.

Some prior works (e.g., [21, 32]) proposed function-based replacement policies that
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calculate the value of an object much like our proposed MVE policy. In particular, Bahn
et al. [21] proposed a mechanism where the value of a block is computed as the divi-
sion of re-reference probability and the relative cost of fetching by size. Similar to other
function-based techniques, however, these inputs cannot efficiently be computed or stored
in hardware. Our proposed technique does not suffer from this problem and requires only
simple metrics already built into on-chip caches.

4.5 Methodology

We use an in-house, event-driven 32-bit x86 simulator [156] whose front-end is based on
Simics [154]. All configurations have a two-level cache hierarchy, with private L1 caches
and a shared, inclusive L2 cache. Table 4.2 provides major simulation parameters. All
caches uniformly use a 64B cache block size. All cache latencies were determined us-
ing CACTI [229] (assuming a 4GHz frequency). We also checked that these latencies
match the existing last-level cache implementations from Intel and AMD, when properly
scaled to the corresponding frequency.12 For single-core and multi-core evaluations, we
use benchmarks from the SPEC CPU2006 suite [217], two TPC-H queries [232], and an
Apache web server. All results are collected by running a representative portion (based
on PinPoints [173]) of the benchmarks for 1 billion instructions. We build our energy
model based on McPAT [143], CACTI [229], and on RTL of BDI [185] synthesized with
Synopsys Design Compiler with a 65nm library (to evaluate the energy of compression/de-
compression with BDI).

4.5.1 Evaluation Metrics

We measure performance of our benchmarks using IPC (instruction per cycle), effective
compression ratio (effective increase in L2 cache size without meta-data overhead, e.g.,
1.5 for 2MB cache means effective size of 3MB), and MPKI (misses per kilo instruction).
For multi-programmed workloads we use weighted speedup [216, 61] as the performance
metric.

12Intel Xeon X5570 (Nehalem) 2.993GHz, 8MB L3 - 35 cycles [160]; AMD Opteron 2.8GHz, 1MB L2 -
13 cycles [37].
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Processor 1–4 cores, 4GHz, x86 in-order
L1-D cache 32KB, 64B cache-line, 2-way, 1 cycle, uncompressed
L2 caches 1–16 MB, 64B cache-line, 16-way, 15–48 cycles
Memory 300-cycle latency, 32 MSHRs

Table 4.2: Major parameters of the simulated system.

4.5.2 Energy

We measure the memory subsystem energy, which includes the static and dynamic energy
consumed by L1 and L2 caches, memory transfers, and DRAM, as well as the energy of
BDI’s compressor/decompressor units. Energy results are normalized to the energy of the
baseline system with a 2MB compressed cache and an LRU replacement policy. BDI was
fully implemented in Verilog and synthesized to create some of the energy results used in
building our power model. The area overhead of the compression and decompression logic
is 0.014 mm2 (combined). Decompression power is 7.4 mW, and compression power is
20.59 mW on average.

Our results show that there are benchmarks that are almost insensitive (IPC improve-
ment is less than 5% with 32x increase in cache size) to the size of the L2 cache: dealII,
povray, calculix, gamess, namd. This typically means that their working sets mostly fit
into the L1D cache, leaving almost no potential for any L2/memory optimization. There-
fore, we do not present data in detail for these applications, although we verified that our
mechanism does not affect their performance.

4.5.3 Parameters of Evaluated Schemes

For FPC (BDI), we used a decompression latency of 5 cycles [11] (1 cycle [185]), respec-
tively. We use a segment size of 1 byte for both designs to get the highest compression
ratio as described in [11, 185], and an 8-byte segment size for V-Way-based designs. As in
prior works [10, 185], we assume double the number of tags compared to the conventional
uncompressed cache (and hence the compression ratio cannot be larger than 2.0).
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Figure 4.8: Performance of our local replacement policies vs. RRIP and ECM, normalized
to LRU.
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Figure 4.9: Performance of our global replacement policies vs. RRIP and V-Way, normal-
ized to LRU.

4.6 Results and Analysis

4.6.1 Single-core Results

Effect on Performance

Figures 4.8 and 4.9 show the performance improvement of our proposed cache manage-
ment policies over the baseline design with a 2MB compressed13 L2 cache and an LRU
replacement policy. Figure 4.8 compares the performance of CAMP’s local version (and
its components: MVE and SIP) over (i) the conventional LRU policy [49], (ii) the state-of-
the-art size-oblivious RRIP policy [96], and (iii) the recently proposed ECM policy [20].
Figure 4.9 provides the same comparison for G-CAMP (with its components: G-MVE and
G-SIP) over (i) LRU, (ii) RRIP, and (iii) V-Way design [195]. Both figures are normal-
ized to the performance of a BDI-cache with LRU replacement. Table 4.3 summarizes our
performance results. Several observations are in order.

13Unless otherwise stated, we use 2MB BDI [185] compressed cache design.
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Mechanism LRU RRIP ECM

MVE 6.3%/-10.7% 0.9%/-2.7% 0.4%/-3.0%

SIP 7.1%/-10.9% 1.8%/-3.1% 1.3%/-3.3%

CAMP 8.1%/-13.3% 2.7%/-5.6% 2.1%/-5.9%

Mechanism LRU RRIP ECM V-Way

G-MVE 8.7%/-15.3% 3.2%/-7.8% 2.7%/-8.0% 0.1%/-0.9%

G-SIP 11.2%/-17.5% 5.6%/-10.2% 5.0%/-10.4% 2.3%/-3.3%

G-CAMP 14.0%/-21.9% 8.3%/-15.1% 7.7%/-15.3% 4.9%/-8.7%

Table 4.3: Performance (IPC) / Miss rate (MPKI) comparison between our cache man-
agement policies and prior works, 2MB L2 cache. All numbers are pairwise percentage
improvements over the corresponding comparison points and averaged across fourteen
memory-intensive applications.

First, our G-CAMP and CAMP policies outperform all prior designs: LRU (by 14.0%
and 8.1%), RRIP (by 8.3% and 2.7%), and ECM (by 7.7% and 2.1%) on average across
fourteen memory-intensive applications (GMeanIntense, with MPKI > 5). These per-
formance improvements come from both components in our design, which significantly
decrease applications’ miss rates (shown in Table 4.3). For example, MVE and G-MVE
are the primary sources of improvements in astar, sphinx3 and mcf, while SIP is effec-
tive in soplex and GemsFDTD. Note that if we examine all applications, then G-CAMP
outperforms LRU, RRIP and ECM by 8.9%, 5.4% and 5.1% (on average).

Second, our analysis reveals that the primary reasons why CAMP/G-CAMP outper-
forms ECM are: (i) ECM’s coarse-grain view of the size (only large vs. small blocks are
differentiated), (ii) ECM’s difficulty in identifying the right threshold for an application.
For example, in soplex, ECM defines every block that is smaller than or equal to 16 bytes
as a small block and prioritizes it (based on ECM’s threshold formula). This partially helps
to improve performance for some important blocks of size 1 and 16, but our SIP mecha-
nism additionally identifies that it is even more important to prioritize blocks of size 20 (a
significant fraction of such blocks have short reuse distance as we show in Section 4.2.3).
This in turn leads to much better performance in soplex by using CAMP (and G-CAMP).

Third, in many applications, G-MVE significantly improves performance (e.g., soplex
and sphinx3), but there are some noticeable exceptions (e.g., xalancbmk). Section 4.3.4
describes the main reason for this problem. Our final mechanism (G-CAMP), where we
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use set dueling [190] to dynamically detect such situations and disable G-MVE (for these
cases only) avoids this problem. As a result, our G-CAMP policy gets the best of G-MVE
when it is effective and avoids degradations otherwise.

Fourth, global replacement policies (e.g., G-CAMP) are more effective in exploiting
the opportunities provided by the compressed block size. G-CAMP not only outperforms
local replacement policies (e.g., RRIP), but also global designs like V-Way (by 3.6% on
average across all applications and by 4.9% across memory intensive applications).

We summarize the performance gains and the decrease in the cache miss rate (MPKI)
for all our policies in Table 4.3. Based on our results, we conclude that our proposed
cache management policies (G-CAMP and CAMP) are not only effective in delivering
performance on top of the existing cache designs with LRU replacement policy, but also
provide significant improvement over state-of-the-art mechanisms.

Sensitivity to the Cache Size

The performance benefits of our policies are significant across a variety of different sys-
tems with different cache sizes.

Figure 4.10 shows the performance of designs where (i) L2 cache size varies from
1MB to 16MB, and (ii) the replacement policies also vary: LRU, RRIP, ECM, V-Way,
CAMP, and G-CAMP.14 Two observations are in order.
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Figure 4.10: Performance with 1M – 16MB L2 caches.

14All results are normalized to the performance of the 1MB compressed L2 cache with LRU replacement
policy. Cache access latency is modeled and adjusted appropriately for increasing cache size, using CACTI.
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First, G-CAMP outperforms all prior approaches for all corresponding cache sizes.
The performance improvement varies from 5.3% for a 1MB L2 cache to as much as 15.2%
for an 8MB L2 cache. CAMP also outperforms all local replacement designs (LRU and
RRIP).

Second, the effect of having size-aware cache management policies like G-CAMP, in
many cases, leads to performance that is better than that of a twice-as-large cache with the
conventional LRU policy (e.g, 4MB G-CAMP outperforms 8MB LRU). In some cases
(e.g., 8MB), G-CAMP performance is better than that of a twice-as-large cache with
any other replacement policy. We conclude that our management policies are efficient
in achieving the performance of higher-capacity last-level cache without making the cache
physically larger.

Effect on Energy

By decreasing the number of transfers between LLC and DRAM, our management policies
also improve the energy consumption of the whole main memory hierarchy. Figure 7.3
shows this effect on the memory subsystem energy for two of our mechanisms (CAMP
and G-CAMP) and three state-of-the-art mechanisms: (i) RRIP, (ii) ECM, and (iii) V-Way.
Two observations are in order.
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Figure 4.11: Effect on memory subsystem energy.

First, as expected, G-CAMP is the most effective in decreasing energy consumption
due to the highest decrease in MPKI (described in Table 4.3). The total reduction in
energy consumption is 15.1% on average for memory-intensive workloads (11.8% for all
applications) relative to the baseline system and 7.2% relative to the best prior mechanism.
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We conclude that our cache management policies are more effective in decreasing the
energy consumption of the memory subsystem than previously-proposed mechanisms.

Second, applications that benefit the most are usually the same applications that also
have the highest performance improvement and the highest decrease in off-chip traffic,
e.g., soplex and mcf. At the same time, there are a few exceptions, like perlbench, that
demonstrate significant reduction in energy consumed by the memory subsystem, but do
not show significant performance improvement (as shown in Figures 4.8 and 4.9). For
these applications, the main memory subsystem is usually not a performance bottleneck
due to the relatively small working set sizes that fit into the 2MB L2 cache and hence the
relative improvements in the main memory subsystem might not have noticeable effects
on the overall system performance.

Effect on Cache Capacity

We expect that size-aware cache management policies increase the effective cache capacity
by increasing the effective compression ratio. Figure 4.12 aims to verify this expectation
by showing the average compression ratios for applications in our workload pool (both the
overall average and the average for memory-intensive applications). We make two major
observations.

First, as expected, our size-aware mechanisms (CAMP/G-CAMP) significantly im-
prove effective compression ratio over corresponding size-oblivious mechanisms (RRIP
and V-Way) – by 16.1% and 14.5% (on average across all applications). The primary rea-
son for this is that RRIP and V-Way are designed to be aggressive in prioritizing blocks
with potentially higher reuse (better locality). This aggressiveness leads to an even lower
average compression ratio than that of the baseline LRU design (but still higher perfor-
mance shown in Section 4.6.1). Second, both CAMP and G-CAMP outperform ECM by
6.6% and 6.7% on average across all applications for reasons explained in Section 4.4.
We conclude that our policies achieve the highest effective cache ratio compression in the
cache compared to the other three state-of-the-art mechanisms.

Comparison with Uncompressed Cache

Note that the overhead of using a compressed cache design is mostly due to the increased
number of tags (e.g, 7.6% for BDI [185]). If the same number of bits (or even a larger
number, e.g., 10%) is spent on having a larger L2 cache (i.e., a 2.2MB uncompressed
L2 cache with RRIP replacement), we find that the performance is 2.8% lower than the
performance of the baseline system with 2MB compressed L2 and LRU replacement, and
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Figure 4.12: Effect on compression ratio with a 2MB L2 cache.

12.1% lower than the performance of the system with the 2MB L2 cache and G-CAMP
policy. We conclude that using a compressed cache with CAMP provides a reasonable
tradeoff in complexity for significantly higher performance.

4.6.2 Multi-core Results

We classify our applications into two distinct categories (homogeneous and heterogeneous)
based on the distributions of the compressed sizes that they have. A homogeneous appli-
cation is expected to have very few different compressed sizes for its data (when stored in
the LLC). A heterogeneous application, on the other hand, has many different sizes. To
formalize this classification, we first collect the access counts for different sizes for every
application. Then, we mark the size with the highest access count as a “peak” and scale
all other access counts with respect to this peak’s access count. If a certain size within an
application has over 10% of the peak access count, it is also marked as a peak. The total
number of peaks is our measure of the application’s heterogeneity with respect to block
size. If the application’s number of peaks exceeds two, we classify it as heterogeneous (or
simply Hetero). Otherwise, the application is considered to be homogeneous (or simply
Homo). This classification matches our intuition that applications that have only one or
two common sizes (e.g., one size for uncompressed blocks and one size for most of the
compressed blocks) should be considered homogeneous. These two classes enable us to
construct three different 2-core workload groups: (i) Homo-Homo, (ii) Homo-Hetero, and
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(iii) Hetero-Hetero. We generate 20 2-core workloads per group (60 total) by randomly
selecting applications from different categories.

Figures 4.13(a) and 4.13(b) show the performance improvement provided by all CAMP
designs as well as previously proposed designs: (i) RRIP, (ii) ECM, and (iii) V-Way over
a 2MB baseline compressed cache design with LRU replacement. We draw three major
conclusions.
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Figure 4.13: Normalized weighted speedup, 2-cores with 2MB L2.

First, both G-CAMP and CAMP outperform all prior approaches in all categories.
Overall, G-CAMP improves system performance by 11.3%/7.8%/6.8% over LRU/R-
RIP/ECM (CAMP improves by 5.9%/2.5%/1.6% over the same designs). The effect on
system fairness, i.e., maximum slowdown [119, 118, 46, 55, 239] by our mechanisms is
negligible.

Second, the more heterogeneity present, the higher the performance improvement with
our size-aware management policies. This effect is clearly visible in both figures, and es-
pecially for global replacement policies in Figure 4.13(b). G-CAMP achieves the highest
improvement (15.9% over LRU and 10.0% over RRIP) when both applications are hetero-
geneous, and hence there are more opportunities in size-aware replacement.

Third, when comparing relative performance of MVE vs. SIP from Figure 4.13(a)
and the similar pair of G-MVE vs. G-SIP from Figure 4.13(b), we notice that in the
first pair the relative performance is almost the same, while in the second pair G-MVE is
significantly better than G-SIP. The primary reason for this difference is that G-MVE can
get more benefit from global cache replacement, because it can easily exploit size variation
between different sets. At the same time, G-SIP gets its performance improvement from
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the relation between the size and corresponding data reuse, which does not significantly
change between local and global replacement.

We conducted a similar experiment15 with 30 4-core workloads and observe similar
trends to the 2-core results presented above. G-CAMP outperforms the best prior mecha-
nism by 8.8% on average across all workloads (by 10.2% across memory-intensive work-
loads).

4.6.3 Sensitivity to the Compression Algorithm

So far, we have presented results only for caches that use BDI compression [185], but
as described in Section 4.2, our proposed cache management policies are applicable to
different compression algorithms. We verify this by applying our mechanisms to a com-
pressed cache design based on the FPC [10] compression algorithm. Compared to an FPC-
compressed cache with LRU replacement, CAMP and G-CAMP improve performance of
memory-intensive applications by 7.8% and 10.3% respectively. We conclude that our
cache management policies are effective for different compression designs where they de-
liver the highest overall performance when compared to the state-of-the-art mechanisms.

4.6.4 SIP with Uncompressed Cache

Our SIP policy can be applied to a cache without a compressed data-store, while still using
knowledge of a block’s compressibility as an indicator of reuse. We evaluate such a design
to isolate the “reuse prediction” benefit of SIP independently of its benefits related to cache
compression. Our single-/two-core evaluations of G-SIP show a 2.2%/3.1% performance
improvement over an uncompressed LRU cache design, and a 1.3%/1.2% performance im-
provement over the state-of-the-art PC-based cache management mechanism [251] (eval-
uated as comparison to a state-of-the-art “reuse predictor”).16 We conclude that using
compressibility as an indicator of future reuse can improve the performance of even un-
compressed caches.

15We increased the LLC size to 4MB to provide the same core to cache capacity ratio as with 2-cores.
16 In contrast to [251], SIP does not require a special hardware table and tracking of PC with cache blocks.
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4.7 Summary

In this chapter, we presented Compression-Aware Management Policies (CAMP) – a set
of new and simple, yet efficient size-aware replacement policies for compressed on-chip
caches. CAMP improves system performance and energy efficiency compared to three
state-of-the-art cache replacement mechanisms. Our policies are based on two key ob-
servations. First, we show that direct incorporation of the compressed cache block size
into replacement decisions can be a basis for a more efficient replacement policy. Sec-
ond, we find that the compressed block size can be used as an indicator of a block’s
future reuse in some applications. Our extensive evaluations show that CAMP, applied
to modern last-level-caches (LLC), improves performance by 4.9%/9.0%/10.2% (on av-
erage for memory-intensive workloads) for single-core/two-/four-core workloads over the
best state-of-the-art replacement mechanisms we evaluated. We conclude that CAMP is
an efficient and low-complexity management policy for compressed caches in both single-
and multi-core systems. We also hope that our observation that compressed block size
indicates reuse behavior could be useful in other contexts.
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Chapter 5

Main Memory Compression: Linearly
Compressed Pages

5.1 Introduction

Main memory, commonly implemented using DRAM technology, is a critical resource
in modern systems. To avoid the devastating performance loss resulting from frequent
page faults, main memory capacity must be sufficiently provisioned to prevent the target
workload’s working set from overflowing into the orders-of-magnitude-slower backing
store (e.g., hard disk or flash).

Unfortunately, the required minimum memory capacity is expected to increase in the
future due to two major trends: (i) applications are generally becoming more data-intensive
with increasing working set sizes, and (ii) with more cores integrated onto the same chip,
more applications are running concurrently on the system, thereby increasing the aggre-
gate working set size. Simply scaling up main memory capacity at a commensurate rate is
unattractive for two reasons: (i) DRAM already constitutes a significant portion of the sys-
tem’s cost and power budget [138, 153, 163], and (ii) for signal integrity reasons, today’s
high frequency memory channels prevent many DRAM modules from being connected to
the same channel [109], effectively limiting the maximum amount of DRAM in a system
unless one resorts to expensive off-chip signaling buffers [43].

If its potential could be realized in practice, data compression would be a very attrac-
tive approach to effectively increase main memory capacity without requiring significant

Originally published as “Linearly Compressed Pages: A Low Complexity, Low Latency Main Memory
Compression Framework” in the 46th International Symposium on Microarchitecture, 2013 [184].
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increases in cost or power, because a compressed piece of data can be stored in a smaller
amount of physical memory. Further, such compression could be hidden from application
(and most system1) software by materializing the uncompressed data as it is brought into
the processor cache. Building upon the observation that there is significant redundancy in
in-memory data, previous work has proposed a variety of techniques for compressing data
in caches [256, 10, 11, 264, 185, 73, 38] and in main memory [3, 57, 246, 52, 48].

5.1.1 Shortcomings of Prior Approaches

A key stumbling block to making data compression practical is that decompression lies on
the critical path of accessing any compressed data. Sophisticated compression algorithms,
such as Lempel-Ziv and Huffman encoding [268, 83], typically achieve high compres-
sion ratios at the expense of large decompression latencies that can significantly degrade
performance. To counter this problem, prior work [264, 11, 185] on cache compression
proposed specialized compression algorithms that exploit regular patterns present in in-
memory data, and showed that such specialized algorithms have reasonable compression
ratios compared to more complex algorithms while incurring much lower decompression
latencies.

While promising, applying compression algorithms, sophisticated or simpler, to com-
press data stored in main memory requires first overcoming the following three challenges.
First, main memory compression complicates memory management, because the operat-
ing system has to map fixed-size virtual pages to variable-size physical pages. Second,
because modern processors employ on-chip caches with tags derived from the physical
address to avoid aliasing between different cache lines (as physical addresses are unique,
while virtual addresses are not), the cache tagging logic needs to be modified in light of
memory compression to take the main memory address computation off the critical path
of latency-critical L1 cache accesses. Third, in contrast with normal virtual-to-physical
address translation, the physical page offset of a cache line is often different from the
corresponding virtual page offset, because compressed physical cache lines are smaller
than their corresponding virtual cache lines. In fact, the location of a compressed cache
line in a physical page in main memory depends upon the sizes of the compressed cache
lines that come before it in that same physical page. As a result, accessing a cache line
within a compressed page in main memory requires an additional layer of address com-
putation to compute the location of the cache line in main memory (which we will call the

1We assume that main memory compression is made visible to the memory management functions of
the operating system (OS). In Section 5.2.3, we discuss the drawbacks of a design that makes main memory
compression mostly transparent to the OS [3].
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main memory address). This additional main memory address computation not only adds
complexity and cost to the system, but it can also increase the latency of accessing main
memory (e.g., it requires up to 22 integer addition operations in one prior design for main
memory compression [57]), which in turn can degrade system performance.

While simple solutions exist for these first two challenges (as we describe later in Sec-
tion 5.4), prior attempts to mitigate the performance degradation of the third challenge
are either costly or inefficient [3, 57]. One approach (IBM MXT [3]) aims to reduce the
number of main memory accesses, the cause of long-latency main memory address compu-
tation, by adding a large (32MB) uncompressed cache managed at the granularity at which
blocks are compressed (1KB). If locality is present in the program, this approach can avoid
the latency penalty of main memory address computations to access compressed data. Un-
fortunately, its benefit comes at a significant additional area and energy cost, and the ap-
proach is ineffective for accesses that miss in the large cache. A second approach [57]
aims to hide the latency of main memory address computation by speculatively comput-
ing the main memory address of every last-level cache request in parallel with the cache
access (i.e., before it is known whether or not the request needs to access main memory).
While this approach can effectively reduce the performance impact of main memory ad-
dress computation, it wastes a significant amount of energy (as we show in Section 5.7.3)
because many accesses to the last-level cache do not result in an access to main memory.

5.1.2 Our Approach: Linearly Compressed Pages

We aim to build a main memory compression framework that neither incurs the latency
penalty for memory accesses nor requires power-inefficient hardware. Our goals are: (i)
having low complexity and low latency (especially when performing memory address
computation for a cache line within a compressed page), (ii) being compatible with com-
pression employed in on-chip caches (thereby minimizing the number of compressions/de-
compressions performed), and (iii) supporting compression algorithms with high compres-
sion ratios.

To this end, we propose a new approach to compress pages, which we call Linearly
Compressed Pages (LCP). The key idea of LCP is to compress all of the cache lines within
a given page to the same size. Doing so simplifies the computation of the physical address
of the cache line, because the page offset is simply the product of the index of the cache
line and the compressed cache line size (i.e., it can be calculated using a simple shift
operation). Based on this idea, a target compressed cache line size is determined for each
page. Cache lines that cannot be compressed to the target size for its page are called
exceptions. All exceptions, along with the metadata required to locate them, are stored
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separately in the same compressed page. If a page requires more space in compressed form
than in uncompressed form, then this page is not compressed. The page table indicates the
form in which the page is stored.

The LCP framework can be used with any compression algorithm. We adapt two
previously proposed compression algorithms (Frequent Pattern Compression (FPC) [10]
and Base-Delta-Immediate Compression (BDI) [185]) to fit the requirements of LCP, and
show that the resulting designs can significantly improve effective main memory capacity
on a wide variety of workloads.

Note that, throughout this chapter, we assume that compressed cache lines are de-
compressed before being placed in the processor caches. LCP may be combined with
compressed cache designs by storing compressed lines in the higher-level caches (as
in [10, 185]), but the techniques are largely orthogonal, and for clarity, we present an
LCP design where only main memory is compressed.2

An additional, potential benefit of compressing data in main memory, which has not
been fully explored by prior work on main memory compression, is memory bandwidth
reduction. When data are stored in compressed format in main memory, multiple consecu-
tive compressed cache lines can be retrieved at the cost of accessing a single uncompressed
cache line. Given the increasing demand on main memory bandwidth, such a mechanism
can significantly reduce the memory bandwidth requirement of applications, especially
those with high spatial locality. Prior works on bandwidth compression [230, 255, 204] as-
sumed efficient variable-length off-chip data transfers that are hard to achieve with general-
purpose DRAM (e.g., DDR3 [159]). We propose a mechanism that enables the memory
controller to retrieve multiple consecutive cache lines with a single access to DRAM,
with negligible additional cost. Evaluations show that our mechanism provides significant
bandwidth savings, leading to improved system performance.

In summary, we make the following contributions:

• We propose a new main memory compression framework—Linearly Compressed
Pages (LCP)—that solves the problem of efficiently computing the physical address
of a compressed cache line in main memory with much lower cost and complexity
than prior proposals. We also demonstrate that any compression algorithm can be
adapted to fit the requirements of LCP.

• We evaluate our design with two state-of-the-art compression algorithms (FPC [10]
and BDI [185]), and observe that it can significantly increase the effective main
memory capacity (by 69% on average).

2We show the results from combining main memory and cache compression in our technical report [179].
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• We evaluate the benefits of transferring compressed cache lines over the bus between
DRAM and the memory controller and observe that it can considerably reduce mem-
ory bandwidth consumption (24% on average), and improve overall performance by
6.1%/13.9%/10.7% for single-/two-/four-core workloads, relative to a system with-
out main memory compression. LCP also decreases the energy consumed by the
main memory subsystem (9.5% on average over the best prior mechanism).

5.2 Background on Main Memory Compression

Data compression is widely used in storage structures to increase the effective capac-
ity and bandwidth without significantly increasing the system cost and power consump-
tion. One primary downside of compression is that the compressed data must be decom-
pressed before it can be used. Therefore, for latency-critical applications, using complex
dictionary-based compression algorithms [268] significantly degrades performance due to
their high decompression latencies. Thus, prior work on compression of in-memory data
has proposed simpler algorithms with low decompression latencies and reasonably high
compression ratios, as discussed next.

5.2.1 Compressing In-Memory Data

Several studies [264, 11, 185, 10] have shown that in-memory data has exploitable patterns
that allow for simpler compression techniques. Frequent value compression (FVC) [264]
is based on the observation that an application’s working set is often dominated by a small
set of values. FVC exploits this observation by encoding such frequently-occurring 4-byte
values with fewer bits. Frequent pattern compression (FPC) [11] shows that a majority of
words (4-byte elements) in memory fall under a few frequently occurring patterns. FPC
compresses individual words within a cache line by encoding the frequently occurring
patterns with fewer bits. Base-Delta-Immediate (BDI) compression [185] observes that,
in many cases, words co-located in memory have small differences in their values. BDI
compression encodes a cache line as a base-value and an array of differences that represent
the deviation either from the base-value or from zero (for small values) for each word.
These three low-latency compression algorithms have been proposed for on-chip caches,
but can be adapted for use as part of the main memory compression framework proposed
in this chapter.
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5.2.2 Challenges in Memory Compression

LCP leverages the fixed-size memory pages of modern systems for the basic units of com-
pression. However, three challenges arise from the fact that different pages (and cache
lines within a page) compress to different sizes depending on data compressibility.

Challenge 1: Main Memory Page Mapping. Irregular page sizes in main memory
complicate the memory management module of the operating system for two reasons (as
shown in Figure 5.1). First, the operating system needs to allow mappings between the
fixed-size virtual pages presented to software and the variable-size physical pages stored
in main memory. Second, the operating system must implement mechanisms to efficiently
handle fragmentation in main memory.
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Figure 5.1: Main Memory Page Mapping Challenge

Challenge 2: Physical Address Tag Computation. On-chip caches (including L1
caches) typically employ tags derived from the physical address of the cache line to avoid
aliasing, and in such systems, every cache access requires the physical address of the
corresponding cache line to be computed. Hence, because the main memory addresses of
the compressed cache lines differ from the nominal physical addresses of those lines, care
must be taken that the computation of cache line tag does not lengthen the critical path of
latency-critical L1 cache accesses.

Challenge 3: Cache Line Address Computation. When main memory is com-
pressed, different cache lines within a page can be compressed to different sizes. The
main memory address of a cache line is therefore dependent on the sizes of the compressed
cache lines that come before it in the page. As a result, the processor (or the memory con-
troller) must explicitly compute the location of a cache line within a compressed main
memory page before accessing it (Figure 5.2), e.g., as in [57]. This computation not only
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increases complexity, but can also lengthen the critical path of accessing the cache line
from both the main memory and the physically addressed cache. Note that systems that do
not employ main memory compression do not suffer from this problem because the offset
of a cache line within the physical page is the same as the offset of the cache line within
the corresponding virtual page.

LN-1· · · L1 L2Uncompressed Page

0 64 128 (N-1)×64Address Offset

L0

Cache Line (64B)

Compressed Page LN-1· · · L1 L2

? ? ?

L0

0Address Offset

Figure 5.2: Cache Line Address Computation Challenge

As will be seen shortly, while prior research efforts have considered subsets of these
challenges, this work is the first design that provides a holistic solution to all three chal-
lenges, particularly Challenge 3, with low latency and low (hardware and software) com-
plexity.

5.2.3 Prior Work on Memory Compression

Of the many prior works on using compression for main memory (e.g., [3, 57, 246, 111,
48, 52, 204]), two in particular are the most closely related to the design proposed in this
chapter, because both of them are mostly hardware designs. We describe these two designs
along with their shortcomings.

Tremaine et al. [233] proposed a memory controller design, Pinnacle, based on IBM’s
Memory Extension Technology (MXT) [3] that employed Lempel-Ziv compression [268]
to manage main memory. To address the three challenges described above, Pinnacle em-
ploys two techniques. First, Pinnacle internally uses a 32MB last level cache managed at
a 1KB granularity, same as the granularity at which blocks are compressed. This cache
reduces the number of accesses to main memory by exploiting locality in access patterns,
thereby reducing the performance degradation due to the address computation (Challenge
3). However, there are several drawbacks to this technique: (i) such a large cache adds
significant area and energy costs to the memory controller, (ii) the approach requires the
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main memory address computation logic to be present and used when an access misses in
the 32MB cache, and (iii) if caching is not effective (e.g., due to lack of locality or larger-
than-cache working set sizes), this approach cannot reduce the performance degradation
due to main memory address computation. Second, to avoid complex changes to the op-
erating system and on-chip cache-tagging logic, Pinnacle introduces a real address space
between the virtual and physical address spaces. The real address space is uncompressed
and is twice the size of the actual available physical memory. The operating system maps
virtual pages to same-size pages in the real address space, which addresses Challenge 1.
On-chip caches are tagged using the real address (instead of the physical address, which
is dependent on compressibility), which effectively solves Challenge 2. On a miss in the
32MB cache, Pinnacle maps the corresponding real address to the physical address of the
compressed block in main memory, using a memory-resident mapping-table managed by
the memory controller. Following this, Pinnacle retrieves the compressed block from main
memory, performs decompression and sends the data back to the processor. Clearly, the
additional access to the memory-resident mapping table on every cache miss significantly
increases the main memory access latency. In addition to this, Pinnacle’s decompression
latency, which is on the critical path of a memory access, is 64 processor cycles.

Ekman and Stenström [57] proposed a main memory compression design to address
the drawbacks of MXT. In their design, the operating system maps the uncompressed vir-
tual address space directly to a compressed physical address space. To compress pages,
they use a variant of the Frequent Pattern Compression technique [10, 11], which has
a much smaller decompression latency (5 cycles) than the Lempel-Ziv compression in
Pinnacle (64 cycles). To avoid the long latency of a cache line’s main memory address
computation (Challenge 3), their design overlaps this computation with the last-level (L2)
cache access. For this purpose, their design extends the page table entries to store the com-
pressed sizes of all the lines within the page. This information is loaded into a hardware
structure called the Block Size Table (BST). On an L1 cache miss, the BST is accessed in
parallel with the L2 cache to compute the exact main memory address of the corresponding
cache line. While the proposed mechanism reduces the latency penalty of accessing com-
pressed blocks by overlapping main memory address computation with L2 cache access,
the main memory address computation is performed on every L2 cache access (as opposed
to only on L2 cache misses in LCP). This leads to significant wasted work and additional
power consumption. Even though BST has the same number of entries as the translation
lookaside buffer (TLB), its size is at least twice that of the TLB [57]. This adds to the
complexity and power consumption of the system significantly. To address Challenge 1,
the operating system uses multiple pools of fixed-size physical pages. This reduces the
complexity of managing physical pages at a fine granularity. Ekman and Stenstrom [57]
do not address Challenge 2.
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In summary, prior work on hardware-based main memory compression mitigate the
performance degradation due to the main memory address computation problem (Chal-
lenge 3) by either adding large hardware structures that consume significant area and
power [3] or by using techniques that require energy-inefficient hardware and lead to
wasted energy [57].

5.3 Linearly Compressed Pages

In this section, we provide the basic idea and a brief overview of our proposal, Linearly
Compressed Pages (LCP), which overcomes the aforementioned shortcomings of prior
proposals. Further details will follow in Section 5.4.

5.3.1 LCP: Basic Idea

The main shortcoming of prior approaches to main memory compression is that different
cache lines within a physical page can be compressed to different sizes based on the com-
pression scheme. As a result, the location of a compressed cache line within a physical
page depends on the sizes of all the compressed cache lines before it in the same page.
This requires the memory controller to explicitly perform this complex calculation (or
cache the mapping in a large, energy-inefficient structure) in order to access the line.

To address this shortcoming, we propose a new approach to compressing pages, called
the Linearly Compressed Page (LCP). The key idea of LCP is to use a fixed size for com-
pressed cache lines within a given page (alleviating the complex and long-latency main
memory address calculation problem that arises due to variable-size cache lines), and yet
still enable a page to be compressed even if not all cache lines within the page can be
compressed to that fixed size (enabling high compression ratios).

Because all the cache lines within a given page are compressed to the same size, the
location of a compressed cache line within the page is simply the product of the index
of the cache line within the page and the size of the compressed cache line—essentially
a linear scaling using the index of the cache line (hence the name Linearly Compressed
Page). LCP greatly simplifies the task of computing a cache line’s main memory address.
For example, if all cache lines within a page are compressed to 16 bytes, the byte offset
of the third cache line (index within the page is 2) from the start of the physical page is
16× 2 = 32, if the line is compressed. This computation can be implemented as a simple
shift operation.
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Figure 5.3: Organization of a Linearly Compressed Page

Figure 5.3 shows the organization of an example Linearly Compressed Page, based
on the ideas described above. In this example, we assume that a virtual page is 4KB, an
uncompressed cache line is 64B, and the target compressed cache line size is 16B.

As shown in the figure, the LCP contains three distinct regions. The first region, the
compressed data region, contains a 16-byte slot for each cache line in the virtual page. If
a cache line is compressible, the corresponding slot stores the compressed version of the
cache line. However, if the cache line is not compressible, the corresponding slot is as-
sumed to contain invalid data. In our design, we refer to such an incompressible cache line
as an “exception”. The second region, metadata, contains all the necessary information
to identify and locate the exceptions of a page. We provide more details on what exactly
is stored in the metadata region in Section 5.4.2. The third region, the exception storage,
is the place where all the exceptions of the LCP are stored in their uncompressed form.
Our LCP design allows the exception storage to contain unused space. In other words,
not all entries in the exception storage may store valid exceptions. As we will describe in
Section 5.4, this enables the memory controller to use the unused space for storing future
exceptions, and also simplifies the operating system page management mechanism.

Next, we will provide a brief overview of the main memory compression framework
we build using LCP.
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5.3.2 LCP Operation

Our LCP-based main memory compression framework consists of components that handle
three key issues: (i) page compression, (ii) cache line reads from main memory, and (iii)
cache line writebacks into main memory. Figure 5.4 shows the high-level design and
operation.
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Figure 5.4: Memory request flow

Page Compression. When a page is accessed for the first time from disk, the operat-
ing system (with the help of the memory controller) first determines whether the page is
compressible using the compression algorithm employed by the framework (described in
Section 5.4.7). If the page is compressible, the OS allocates a physical page of appropriate
size and stores the compressed page (LCP) in the corresponding location. It also updates
the relevant portions of the corresponding page table mapping to indicate (i) whether the
page is compressed, and if so, (ii) the compression scheme used to compress the page
(details in Section 5.4.1).

Cache Line Read. When the memory controller receives a read request for a cache
line within an LCP, it must find and decompress the data. Multiple design solutions are
possible to perform this task efficiently. A naı̈ve way of reading a cache line from an
LCP would require at least two accesses to the corresponding page in main memory. First,
the memory controller accesses the metadata in the LCP to determine whether the cache
line is stored in the compressed format. Second, based on the result, the controller either
(i) accesses the cache line from the compressed data region and decompresses it, or (ii)
accesses it uncompressed from the exception storage.

To avoid two accesses to main memory, we propose two optimizations that enable the
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controller to retrieve the cache line with the latency of just one main memory access in
the common case. First, we add a small metadata (MD) cache to the memory controller
that caches the metadata of the recently accessed LCPs—the controller avoids the first
main memory access to the metadata in cases when the metadata is present in the MD
cache. Second, in cases when the metadata is not present in the metadata cache, the
controller speculatively assumes that the cache line is stored in the compressed format and
first accesses the data corresponding to the cache line from the compressed data region.
The controller then overlaps the latency of the cache line decompression with the access
to the metadata of the LCP. In the common case, when the speculation is correct (i.e., the
cache line is actually stored in the compressed format), this approach significantly reduces
the latency of serving the read request. In the case of a misspeculation (uncommon case),
the memory controller issues another request to retrieve the cache line from the exception
storage.

Cache Line Writeback. If the memory controller receives a request for a cache line
writeback, it then attempts to compress the cache line using the compression scheme as-
sociated with the corresponding LCP. Depending on the original state of the cache line
(compressible or incompressible), there are four different possibilities: the cache line (1)
was compressed and stays compressed, (2) was uncompressed and stays uncompressed,
(3) was uncompressed but becomes compressed, and (4) was compressed but becomes
uncompressed. In the first two cases, the memory controller simply overwrites the old
data with the new data at the same location associated with the cache line. In case 3,
the memory controller frees the exception storage slot for the cache line and writes the
compressible data in the compressed data region of the LCP. (Section 5.4.2 provides more
details on how the exception storage is managed.) In case 4, the memory controller checks
whether there is enough space in the exception storage region to store the uncompressed
cache line. If so, it stores the cache line in an available slot in the region. If there are no free
exception storage slots in the exception storage region of the page, the memory controller
traps to the operating system, which migrates the page to a new location (which can also
involve page recompression). In both cases 3 and 4, the memory controller appropriately
modifies the LCP metadata associated with the cache line’s page.

Note that in the case of an LLC writeback to main memory (and assuming that TLB
information is not available at the LLC), the cache tag entry is augmented with the same
bits that are used to augment page table entries. Cache compression mechanisms, e.g.,
FPC [10] and BDI [185], already have the corresponding bits for encoding, so that the
tag size overhead is minimal when main memory compression is used together with cache
compression.
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5.4 Detailed Design

In this section, we provide a detailed description of LCP, along with the changes to the
memory controller, operating system and on-chip cache tagging logic. In the process, we
explain how our proposed design addresses each of the three challenges (Section 5.2.2).

5.4.1 Page Table Entry Extension

To keep track of virtual pages that are stored in compressed format in main memory,
the page table entries need to be extended to store information related to compression
(Figure 5.5). In addition to the information already maintained in the page table entries
(such as the base address for a corresponding physical page, p-base), each virtual page
in the system is associated with the following pieces of metadata: (i) c-bit, a bit that
indicates if the page is mapped to a compressed physical page (LCP), (ii) c-type, a field
that indicates the compression scheme used to compress the page, (iii) c-size, a field
that indicates the size of the LCP, and (iv) c-base, a p-base extension that enables
LCPs to start at an address not aligned with the virtual page size. The number of bits
required to store c-type, c-size and c-base depends on the exact implementation of
the framework. In the implementation we evaluate, we assume 3 bits for c-type (allowing
8 possible different compression encodings), 2 bits for c-size (4 possible page sizes:
512B, 1KB, 2KB, 4KB), and 3 bits for c-base (at most eight 512B compressed pages
can fit into a 4KB uncompressed slot). Note that existing systems usually have enough
unused bits (up to 15 bits in Intel x86-64 systems [91]) in their PTE entries that can be
used by LCP without increasing the PTE size.
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Figure 5.5: Page table entry extension.

When a virtual page is compressed (the c-bit is set), all the compressible cache lines
within the page are compressed to the same size, say C∗. The value of C∗ is uniquely
determined by the compression scheme used to compress the page, i.e., the c-type (Sec-
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tion 5.4.7 discusses determining the c-type for a page). We next describe the LCP orga-
nization in more detail.

5.4.2 LCP Organization

We will discuss each of an LCP’s three regions in turn. We begin by defining the following
symbols: V is the virtual page size of the system (e.g., 4KB); C is the uncompressed cache
line size (e.g., 64B);3 n = V

C is the number of cache lines per virtual page (e.g., 64); and
M is the size of LCP’s metadata region. In addition, on a per-page basis, we define P to
be the compressed physical page size; C∗ to be the compressed cache line size; and navail

to be the number of slots available for exceptions.

Compressed Data Region

The compressed data region is a contiguous array of n slots each of size C∗. Each one
of the n cache lines in the virtual page is mapped to one of the slots, irrespective of
whether the cache line is compressible or not. Therefore, the size of the compressed
data region is nC∗. This organization simplifies the computation required to determine
the main memory address for the compressed slot corresponding to a cache line. More
specifically, the address of the compressed slot for the ith cache line can be computed as
p-base+m-size∗c-base+(i−1)C∗, where the first two terms correspond to the start of
the LCP (m-size equals to the minimum page size, 512B in our implementation) and the
third indicates the offset within the LCP of the ith compressed slot (see Figure 5.6). Thus,
computing the main memory address of a compressed cache line requires one multiplica-
tion (can be implemented as a shift) and two additions independent of i (fixed latency).
This computation requires a lower latency and simpler hardware than prior approaches
(e.g., up to 22 additions in the design proposed in [57]), thereby efficiently addressing
Challenge 3 (cache line address computation).

3 Large pages (e.g., 4MB or 1GB) can be supported with LCP through minor modifications that include
scaling the corresponding sizes of the metadata and compressed data regions. The exception area metadata
keeps the exception index for every cache line on a compressed page. This metadata can be partitioned into
multiple 64-byte cache lines that can be handled similar to 4KB pages. The exact “metadata partition” can
be easily identified based on the cache line index within a page.
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Figure 5.6: Physical memory layout with the LCP framework.

Metadata Region

The metadata region of an LCP contains two parts (Figure 5.7). The first part stores two
pieces of information for each cache line in the virtual page: (i) a bit indicating whether
the cache line is incompressible, i.e., whether the cache line is an exception, e-bit, and
(ii) the index of the cache line in the exception storage, e-index. If the e-bit is set for a
cache line, then the corresponding cache line is stored uncompressed in location e-index
in the exception storage. The second part of the metadata region is a valid bit (v-bit)
vector to track the state of the slots in the exception storage. If a v-bit is set, it indicates
that the corresponding slot in the exception storage is used by some uncompressed cache
line within the page.

The size of the first part depends on the size of e-index, which in turn depends on
the number of exceptions allowed per page. Because the number of exceptions cannot
exceed the number of cache lines in the page (n), we will need at most 1 + dlog2 ne bits
for each cache line in the first part of the metadata. For the same reason, we will need at
most n bits in the bit vector in the second part of the metadata. Therefore, the size of the
metadata region is given byM = n(1 + dlog2 ne) + n bits. Since n is fixed for the entire
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Figure 5.7: Metadata region, when n = 64.

system, the size of the metadata region (M) is the same for all compressed pages (64B in
our implementation).

Exception Storage Region

The third region, the exception storage, is the place where all incompressible
cache lines of the page are stored. If a cache line is present in the location
e-index in the exception storage, its main memory address can be computed as:
p-base + m-size ∗ c-base + nC∗ +M + e-indexC. The number of slots available
in the exception storage (navail) is dictated by the size of the compressed physical page
allocated by the operating system for the corresponding LCP. The following equation
expresses the relation between the physical page size (P), the compressed cache line size
(C∗) that is determined by c-type, and the number of available slots in the exception
storage (navail):

navail = b(P − (nC∗ +M))/Cc (5.1)

As mentioned before, the metadata region contains a bit vector that is used to manage the
exception storage. When the memory controller assigns an exception slot to an incom-
pressible cache line, it sets the corresponding bit in the bit vector to indicate that the slot
is no longer free. If the cache line later becomes compressible and no longer requires the
exception slot, the memory controller resets the corresponding bit in the bit vector. In
the next section, we describe the operating system memory management policy that deter-
mines the physical page size (P) allocated for an LCP, and hence, the number of available
exception slots (navail).
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5.4.3 Operating System Memory Management

The first challenge related to main memory compression is to provide operating system
support for managing variable-size compressed physical pages – i.e., LCPs. Depending
on the compression scheme employed by the framework, different LCPs may be of differ-
ent sizes. Allowing LCPs of arbitrary sizes would require the OS to keep track of main
memory at a very fine granularity. It could also lead to fragmentation across the entire main
memory at a fine granularity. As a result, the OS would need to maintain large amounts
of metadata to maintain the locations of individual pages and the free space, which would
also lead to increased complexity.

To avoid this problem, our mechanism allows the OS to manage main memory using
a fixed number of pre-determined physical page sizes – e.g., 512B, 1KB, 2KB, 4KB (a
similar approach was proposed in [27] to address the memory allocation problem). For
each one of the chosen sizes, the OS maintains a pool of allocated pages and a pool of
free pages. When a page is compressed for the first time or recompressed due to overflow
(described in Section 5.4.6), the OS chooses the smallest available physical page size that
fits the compressed page. For example, if a page is compressed to 768B, then the OS
allocates a physical page of size 1KB. For a page with a given size, the available number
of exceptions for the page, navail, can be determined using Equation 5.1.

5.4.4 Changes to the Cache Tagging Logic

As mentioned in Section 5.2.2, modern systems employ physically-tagged caches to avoid
aliasing problems. However, in a system that employs main memory compression, using
the physical (main memory) address to tag cache lines puts the main memory address com-
putation on the critical path of L1 cache access (Challenge 2). To address this challenge,
we modify the cache tagging logic to use the tuple <physical page base address, cache line
index within the page> for tagging cache lines. This tuple maps to a unique cache line in
the system, and hence avoids aliasing problems without requiring the exact main memory
address to be computed. The additional index bits are stored within the cache line tag.

5.4.5 Changes to the Memory Controller

In addition to the changes to the memory controller operation described in Section 5.3.2,
our LCP-based framework requires two hardware structures to be added to the memory
controller: (i) a small metadata cache to accelerate main memory lookups in LCP, and (ii)
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compression/decompression hardware to perform the compression and decompression of
cache lines.

Metadata Cache

As described in Section 5.3.2, a small metadata cache in the memory controller enables
our approach, in the common case, to retrieve a compressed cache block in a single main
memory access. This cache stores the metadata region of recently accessed LCPs so that
the metadata for subsequent accesses to such recently-accessed LCPs can be retrieved di-
rectly from the cache. In our study, we find that a small 512-entry metadata cache (32KB4)
can service 88% of the metadata accesses on average across all our workloads. Some ap-
plications have lower hit rate, especially sjeng and astar [217]. An analysis of these appli-
cations reveals that their memory accesses exhibit very low locality. As a result, we also
observed a low TLB hit rate for these applications. Because TLB misses are costlier than
MD cache misses (the former requires multiple memory accesses), the low MD cache hit
rate does not lead to significant performance degradation for these applications.

We expect the MD cache power to be much lower than the power consumed by other
on-chip structures (e.g., L1 caches), because the MD cache is accessed much less fre-
quently (hits in any on-chip cache do not lead to an access to the MD cache).

Compression/Decompression Hardware

Depending on the compression scheme employed with our LCP-based framework, the
memory controller should be equipped with the hardware necessary to compress and de-
compress cache lines using the corresponding scheme. Although our framework does
not impose any restrictions on the nature of the compression algorithm, it is desirable
to have compression schemes that have low complexity and decompression latency –
e.g., Frequent Pattern Compression (FPC) [10] and Base-Delta-Immediate Compression
(BDI) [185]. In Section 5.4.7, we provide more details on how to adapt any compression
algorithm to fit the requirements of LCP and also the specific changes we made to FPC
and BDI as case studies of compression algorithms that we adapted to the LCP framework.

4We evaluated the sensitivity of performance to MD cache size and find that 32KB is the smallest size
that enables our design to avoid most of the performance loss due to additional metadata accesses.
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5.4.6 Handling Page Overflows

As described in Section 5.3.2, when a cache line is written back to main memory, the
cache line may switch from being compressible to being incompressible. When this hap-
pens, the memory controller should explicitly find a slot in the exception storage for the
uncompressed cache line. However, it is possible that all the slots in the exception storage
are already used by other exceptions in the LCP. We call this scenario a page overflow. A
page overflow increases the size of the LCP and leads to one of two scenarios: (i) the LCP
still requires a physical page size that is smaller than the uncompressed virtual page size
(type-1 page overflow), and (ii) the LCP now requires a physical page size that is larger
than the uncompressed virtual page size (type-2 page overflow).

Type-1 page overflow simply requires the operating system to migrate the LCP to a
physical page of larger size (without recompression). The OS first allocates a new page
and copies the data from the old location to the new location. It then modifies the mapping
for the virtual page to point to the new location. While in transition, the page is locked,
so any memory request to this page is delayed. In our evaluations, we stall the application
for 20,000 cycles5 when a type-1 overflow occurs; we also find that (on average) type-1
overflows happen less than once per two million instructions. We vary this latency between
10,000–100,000 cycles and observe that the benefits of our framework (e.g., bandwidth
compression) far outweigh the overhead due to type-1 overflows.

In a type-2 page overflow, the size of the LCP exceeds the uncompressed virtual page
size. Therefore, the OS attempts to recompress the page, possibly using a different encod-
ing (c-type). Depending on whether the page is compressible or not, the OS allocates a
new physical page to fit the LCP or the uncompressed page, and migrates the data to the
new location. The OS also appropriately modifies the c-bit, c-type and the c-base in
the corresponding page table entry. Clearly, a type-2 overflow requires more work from
the OS than a type-1 overflow. However, we expect page overflows of type-2 to occur
rarely. In fact, we never observed a type-2 overflow in our evaluations.

5 To fetch a 4KB page, we need to access 64 cache lines (64 bytes each). In the worst case, this will
lead to 64 accesses to main memory, most of which are likely to be DRAM row-buffer hits. Since a row-
buffer hit takes 7.5ns, the total time to fetch the page is 495ns. On the other hand, the latency penalty of
two context-switches (into the OS and out of the OS) is around 4us [142]. Overall, a type-1 overflow takes
around 4.5us. For a 4.4Ghz or slower processor, this is less than 20,000 cycles.
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Avoiding Recursive Page Faults

There are two types of pages that require special consideration: (i) pages that keep internal
OS data structures, e.g., pages containing information required to handle page faults, and
(ii) shared data pages that have more than one page table entry (PTE) mapping to the same
physical page. Compressing pages of the first type can potentially lead to recursive page
fault handling. The problem can be avoided if the OS sets a special do not compress bit,
e.g., as a part of the page compression encoding, so that the memory controller does not
compress these pages. The second type of pages (shared pages) require consistency across
multiple page table entries, such that when one PTE’s compression information changes,
the second entry is updated as well. There are two possible solutions to this problem. First,
as with the first type of pages, these pages can be marked as do not compress. Second, the
OS could maintain consistency of the shared PTEs by performing multiple synchronous
PTE updates (with accompanying TLB shootdowns). While the second solution can poten-
tially lead to better average compressibility, the first solution (used in our implementation)
is simpler and requires minimal changes inside the OS.

Another situation that can potentially lead to a recursive fault is the eviction of dirty
cache lines from the LLC to DRAM due to some page overflow handling that leads to
another overflow. In order to solve this problem, we assume that the memory controller
has a small dedicated portion of the main memory that is used as a scratchpad to store
cache lines needed to perform page overflow handling. Dirty cache lines that are evicted
from LLC to DRAM due to OS overflow handling are stored in this buffer space. The
OS is responsible to minimize the memory footprint of the overflow handler. Note that
this situation is expected to be very rare in practice, because even a single overflow is
infrequent.

Handling Special Cases

There are several types of scenarios that require special attention: (i) rapid changes in
compressibility (e.g., highly compressed page overwritten with non-compressible data),
(ii) multiple back-to-back page overflows. The first scenario leads to the increase in the
number of page overflows that are costly and time-consuming. This situation is common
when the page is initialized with some values (frequently zero values), and then after
some period of time multiple updates (e.g., writebacks) bring completely different data
into this page. For zero pages the solution is simply not storing them at all - only one
bit in TLB buffer, until there are not enough writebacks happen to these page to estimate
its compressibility. For other pages, especially the ones that are allocated (e.g., through
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malloc), but never been updated, we also delay compression until there is not enough
evidence that this page can be successfully compressed. These simple optimizations allow
us to avoid major sources of the page overflows.

The second scenario, while possible in practice, was extremely rare in our experiments.
Nevertheless, one possible solution we consider to this problem, is to detect the situations
like this, and when the number of back to back page overflows exceeds certain threshold,
start to decompress this applications’ data in the background to avoid further overflows.

5.4.7 Compression Algorithms

Our LCP-based main memory compression framework can be employed with any com-
pression algorithm. In this section, we describe how to adapt a generic compression al-
gorithm to fit the requirements of the LCP framework. Subsequently, we describe how to
adapt the two compression algorithms used in our evaluation.

Adapting a Compression Algorithm to Fit LCP

Every compression scheme is associated with a compression function, fc, and a decom-
pression function, fd. To compress a virtual page into the corresponding LCP using the
compression scheme, the memory controller carries out three steps. In the first step, the
controller compresses every cache line in the page using fc and feeds the sizes of each
compressed cache line to the second step. In the second step, the controller computes the
total compressed page size (compressed data + metadata + exceptions, using the formulas
from Section 5.4.2) for each of a fixed set of target compressed cache line sizes and selects
a target compressed cache line size C∗ that minimizes the overall LCP size. In the third and
final step, the memory controller classifies any cache line whose compressed size is less
than or equal to the target size as compressible and all other cache lines as incompressible
(exceptions). The memory controller uses this classification to generate the corresponding
LCP based on the organization described in Section 5.3.1.

To decompress a compressed cache line of the page, the memory controller reads the
fixed-target-sized compressed data and feeds it to the hardware implementation of function
fd.
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FPC and BDI Compression Algorithms

Although any compression algorithm can be employed with our framework using the ap-
proach described above, it is desirable to use compression algorithms that have low com-
plexity hardware implementation and low decompression latency, so that the overall com-
plexity and latency of the design are minimized. For this reason, we adapt to fit our LCP
framework two state-of-the-art compression algorithms that achieve such design points in
the context of compressing in-cache data: (i) Frequent Pattern Compression [10], and (ii)
Base-Delta-Immediate Compression [185].

Frequent Pattern Compression (FPC) is based on the observation that a majority of the
words accessed by applications fall under a small set of frequently occurring patterns [11].
FPC compresses each cache line one word at a time. Therefore, the final compressed size
of a cache line is dependent on the individual words within the cache line. To minimize
the time to perform the compression search procedure described in Section 5.4.7, we limit
the search to four different target cache line sizes: 16B, 21B, 32B and 44B (similar to the
fixed sizes used in [57]).

Base-Delta-Immediate (BDI) Compression is based on the observation that in most
cases, words co-located in memory have small differences in their values, a property re-
ferred to as low dynamic range [185]. BDI encodes cache lines with such low dynamic
range using a base value and an array of differences (∆s) of words within the cache line
from either the base value or from zero. The size of the final compressed cache line de-
pends only on the size of the base and the size of the ∆s. To employ BDI within our
framework, the memory controller attempts to compress a page with different versions
of the Base-Delta encoding as described by Pekhimenko et al. [185] and then chooses
the combination that minimizes the final compressed page size (according to the search
procedure in Section 5.4.7).

5.5 LCP Optimizations

In this section, we describe two simple optimizations to our proposed LCP-based frame-
work: (i) memory bandwidth reduction via compressed cache lines, and (ii) exploiting
zero pages and cache lines for higher bandwidth utilization.
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5.5.1 Enabling Memory Bandwidth Reduction

One potential benefit of main memory compression that has not been examined in detail by
prior work on memory compression is bandwidth reduction.6 When cache lines are stored
in compressed format in main memory, multiple consecutive compressed cache lines can
be retrieved at the cost of retrieving a single uncompressed cache line. For example,
when cache lines of a page are compressed to 1/4 their original size, four compressed
cache lines can be retrieved at the cost of a single uncompressed cache line access. This
can significantly reduce the bandwidth requirements of applications, especially those with
good spatial locality. We propose two mechanisms that exploit this idea.

In the first mechanism, when the memory controller needs to access a cache line in
the compressed data region of LCP, it obtains the data from multiple consecutive com-
pressed slots (which add up to the size of an uncompressed cache line). However, some
of the cache lines that are retrieved in this manner may not be valid. To determine if an
additionally-fetched cache line is valid or not, the memory controller consults the metadata
corresponding to the LCP. If a cache line is not valid, then the corresponding data is not
decompressed. Otherwise, the cache line is decompressed and then stored in the cache.

The second mechanism is an improvement over the first mechanism, where the mem-
ory controller additionally predicts if the additionally-fetched cache lines are useful for
the application. For this purpose, the memory controller uses hints from a multi-stride
prefetcher [89]. In this mechanism, if the stride prefetcher suggests that an additionally-
fetched cache line is part of a useful stream, then the memory controller stores that cache
line in the cache. This approach has the potential to prevent cache lines that are not useful
from polluting the cache. Section 5.7.5 shows the effect of this approach on both perfor-
mance and bandwidth consumption.

Note that prior work [64, 255, 230, 204] assumed that when a cache line is compressed,
only the compressed amount of data can be transferred over the DRAM bus, thereby free-
ing the bus for the future accesses. Unfortunately, modern DRAM chips are optimized for
full cache block accesses [259], so they would need to be modified to support such smaller
granularity transfers. Our proposal does not require modifications to DRAM itself or the
use of specialized DRAM such as GDDR3 [87].

6Prior work [64, 255, 230, 204] looked at the possibility of using compression for bandwidth reduction
between the memory controller and DRAM. While significant reduction in bandwidth consumption is re-
ported, prior work achieve this reduction either at the cost of increased memory access latency [64, 255, 230],
as they have to both compress and decompress a cache line for every request, or based on a specialized main
memory design [204], e.g., GDDR3 [87].
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CPU Processor 1–4 cores, 4GHz, x86 in-order

CPU L1-D cache 32KB, 64B cache-line, 2-way, 1 cycle

CPU L2 cache 2 MB, 64B cache-line, 16-way, 20 cycles

Main memory 2 GB, 4 Banks, 8 KB row buffers,
1 memory channel, DDR3-1066 [159]

LCP Design Type-1 Overflow Penalty: 20,000 cycles

Table 5.1: Major Parameters of the Simulated Systems.

5.5.2 Zero Pages and Zero Cache Lines

Prior work [53, 256, 10, 57, 185] observed that in-memory data contains a significant
number of zeros at two granularities: all-zero pages and all-zero cache lines. Because
this pattern is quite common, we propose two changes to the LCP framework to more
efficiently compress such occurrences of zeros. First, one value of the page compression
encoding (e.g., c-type of 0) is reserved to indicate that the entire page is zero. When
accessing data from a page with c-type = 0, the processor can avoid any LLC or DRAM
access by simply zeroing out the allocated cache line in the L1-cache. Second, to compress
all-zero cache lines more efficiently, we can add another bit per cache line to the first part
of the LCP metadata. This bit, which we call the z-bit, indicates if the corresponding
cache line is zero. Using this approach, the memory controller does not require any main
memory access to retrieve a cache line with the z-bit set (assuming a metadata cache
hit).

5.6 Methodology

Our evaluations use an in-house, event-driven 32-bit x86 simulator whose front-end is
based on Simics [154]. All configurations have private L1 caches and shared L2 caches.
Major simulation parameters are provided in Table 5.1. We use benchmarks from the
SPEC CPU2006 suite [217], four TPC-H/TPC-C queries [232], and an Apache web server.
All results are collected by running a representative portion (based on PinPoints [173])
of the benchmarks for 1 billion instructions. We build our energy model based on Mc-
Pat [143], CACTI [229], C-Pack [38], and the Synopsys Design Compiler with 65nm
library (to evaluate the energy of compression/decompression with BDI and address cal-
culation in [57]).

Metrics. We measure the performance of our benchmarks using IPC (instruction per
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cycle) and effective compression ratio (effective DRAM size increase, e.g., a compression
ratio of 1.5 for 2GB DRAM means that the compression scheme achieves the size benefits
of a 3GB DRAM). For multi-programmed workloads we use the weighted speedup [216]
performance metric: (

∑
i
IPCshared

i

IPCalone
i

). For bandwidth consumption we use BPKI (bytes
transferred over bus per thousand instructions [218]).

Parameters of the Evaluated Schemes. As reported in the respective previous works,
we used a decompression latency of 5 cycles for FPC and 1 cycle for BDI.

5.7 Results

In our experiments for both single-core and multi-core systems, we compare five different
designs that employ different main memory compression strategies (frameworks) and dif-
ferent compression algorithms: (i) Baseline system with no compression, (ii) robust main
memory compression (RMC-FPC) [57], (iii) and (iv) LCP framework with both FPC and
BDI compression algorithms (LCP-FPC and LCP-BDI), and (v) MXT [3]. Note that it is
fundamentally possible to build a RMC-BDI design as well, but we found that it leads to
either low energy efficiency (due to an increase in the BST metadata table entry size [57]
with many more encodings in BDI) or low compression ratio (when the number of encod-
ings is artificially decreased). Hence, for brevity, we exclude this potential design from
our experiments.

In addition, we evaluate two hypothetical designs: Zero Page Compression (ZPC) and
Lempel-Ziv (LZ)7 to show some practical upper bounds on main memory compression.
Table 7.1 summarizes all the designs.

5.7.1 Effect on DRAM Capacity

Figure 5.8 compares the compression ratio of all the designs described in Table 7.1. We
draw two major conclusions. First, as expected, MXT, which employs the complex LZ
algorithm, has the highest average compression ratio (2.30) of all practical designs and
performs closely to our idealized LZ implementation (2.60). At the same time, LCP-BDI
provides a reasonably high compression ratio (1.62 on average), outperforming RMC-
FPC (1.59), and LCP-FPC (1.52). (Note that LCP could be used with both BDI and FPC

7Our implementation of LZ performs compression at 4KB page-granularity and serves as an idealized
upper bound for the in-memory compression ratio. In contrast, MXT employs Lempel-Ziv at 1KB granular-
ity.
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Name Framework Compression Algorithm

Baseline None None

RMC-FPC RMC [57] FPC [10]

LCP-FPC LCP FPC [10]

LCP-BDI LCP BDI [185]

MXT MXT [3] Lempel-Ziv [268]

ZPC None Zero Page Compression

LZ None Lempel-Ziv [268]

Table 5.2: List of evaluated designs.

algorithms together, and the average compression ratio in this case is as high as 1.69.)

Second, while the average compression ratio of ZPC is relatively low (1.29), it greatly
improves the effective memory capacity for a number of applications (e.g., GemsFDTD,
zeusmp, and cactusADM). This justifies our design decision of handling zero pages at
the TLB-entry level. We conclude that our LCP framework achieves the goal of high
compression ratio.
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Figure 5.8: Main memory compression ratio.

Distribution of Compressed Pages

The primary reason why applications have different compression ratios is the redundancy
difference in their data. This leads to the situation where every application has its own dis-
tribution of compressed pages with different sizes (0B, 512B, 1KB, 2KB, 4KB). Figure 5.9
shows these distributions for the applications in our study when using the LCP-BDI design.
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As we can see, the percentage of memory pages of every size in fact significantly varies be-
tween the applications, leading to different compression ratios (shown in Figure 5.8). For
example, cactusADM has a high compression ratio due to many 0B and 512B pages (there
is a significant number of zero cache lines in its data), while astar and h264ref get most
of their compression with 2KB pages due to cache lines with low dynamic range [185].

Compression Ratio over Time

To estimate the efficiency of LCP-based compression over time, we conduct an experiment
where we measure the compression ratios of our applications every 100 million instruc-
tions (for a total period of 5 billion instructions). The key observation we make is that the
compression ratio for most of the applications is stable over time (the difference between
the highest and the lowest ratio is within 10%). Figure 5.10 shows all notable outliers from
this observation: astar, cactusADM, h264ref, and zeusmp. Even for these applications, the
compression ratio stays relatively constant for a long period of time, although there are
some noticeable fluctuations in compression ratio (e.g., for astar at around 4 billion in-
structions, for cactusADM at around 500M instructions). We attribute this behavior to a
phase change within an application that sometimes leads to changes in the applications’
data. Fortunately, these cases are infrequent and do not have a noticeable effect on the ap-
plication’s performance (as we describe in Section 5.7.2). We conclude that the capacity
benefits provided by the LCP-based frameworks are usually stable over long periods of
time.
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Figure 5.9: Compressed page size distribution with LCP-BDI.
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5.7.2 Effect on Performance

Main memory compression can improve performance in two major ways: (i) reduced
memory bandwidth requirements, which can enable less contention on the main memory
bus, an increasingly important bottleneck in systems, and (ii) reduced memory footprint,
which can reduce long-latency disk accesses. We evaluate the performance improvement
due to memory bandwidth reduction (including our optimizations for compressing zero
values described in Section 5.5.2) in Sections 5.7.2 and 5.7.2. We also evaluate the de-
crease in page faults in Section 5.7.2.

Single-Core Results

Figure 7.1 shows the performance of single-core workloads using three key evaluated
designs (RMC-FPC, LCP-FPC, and LCP-BDI) normalized to the Baseline. Compared
against an uncompressed system (Baseline), the LCP-based designs (LCP-BDI and LCP-
FPC) improve performance by 6.1%/5.2% and also outperform RMC-FPC.8 We conclude
that our LCP framework is effective in improving performance by compressing main mem-
ory.

Note that LCP-FPC outperforms RMC-FPC (on average) despite having a slightly
lower compression ratio. This is mostly due to the lower overhead when accessing meta-

8Note that in order to provide a fair comparison, we enhanced the RMC-FPC approach with the same
optimizations we did for LCP, e.g., bandwidth compression. The original RMC-FPC design reported an
average degradation in performance [57].

104



0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

ap
ac

h
e

as
ta

r
b

zi
p

2
ca

ct
u

sA
D

M
ca

lc
u

lix
d

e
al

II
ga

m
es

s
gc

c
G

em
sF

D
TD

go
b

m
k

gr
o

m
ac

s
h

2
6

4
re

f
h

m
m

er
lb

m
le

sl
ie

3
d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d
o

m
n

et
p

p
p

er
lb

en
ch

p
o

vr
ay

sj
e

n
g

so
p

le
x

sp
h

in
x3

tp
cc

tp
ch

1
7

tp
ch

2
tp

ch
6

w
rf

xa
la

n
cb

m
k

ze
u

sm
p

G
eo

M
ea

n

N
o

rm
al

iz
e

d
 IP

C RMC‐FPC

LCP‐FPC

LCP‐BDI

1.68

Figure 5.11: Performance comparison (IPC) of different compressed designs for the
single-core system.

data information (RMC-FPC needs two memory accesses to different main memory pages
in the case of a BST table miss, while LCP-based framework performs two accesses to the
same main memory page that can be pipelined). This is especially noticeable in several
applications, e.g., astar, milc, and xalancbmk that have low metadata table (BST) hit rates
(LCP can also degrade performance for these applications). We conclude that our LCP
framework is more effective in improving performance than RMC [57].

Multi-Core Results

When the system has a single core, the memory bandwidth pressure may not be large
enough to take full advantage of the bandwidth benefits of main memory compression.
However, in a multi-core system where multiple applications are running concurrently,
savings in bandwidth (reduced number of memory bus transfers) may significantly in-
crease the overall system performance.

To study this effect, we conducted experiments using 100 randomly generated multi-
programmed mixes of applications (for both 2-core and 4-core workloads). Our results
show that the bandwidth benefits of memory compression are indeed more pronounced for
multi-core workloads. Using our LCP-based design, LCP-BDI, the average performance
improvement (normalized to the performance of the Baseline system without compres-
sion) is 13.9% for 2-core workloads and 10.7% for 4-core workloads. We summarize our
multi-core performance results in Figure 5.12.
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We also vary the last-level cache size (1MB – 16MB) for both single core and multi-
core systems across all evaluated workloads. We find that LCP-based designs outperform
the Baseline across all evaluated systems (average performance improvement for single-
core varies from 5.1% to 13.4%), even when the L2 cache size of the system is as large as
16MB.
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Figure 5.12: Average performance improvement (weighted speedup).
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Figure 5.13: Number of page faults (normalized to Baseline with 256MB).

Effect on the Number of Page Faults

Modern systems are usually designed such that concurrently-running applications have
enough main memory to avoid most of the potential capacity page faults. At the same time,
if the applications’ total working set size exceeds the main memory capacity, the increased
number of page faults can significantly affect performance. To study the effect of the LCP-
based framework (LCP-BDI) on the number of page faults, we evaluate twenty randomly
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generated 16-core multiprogrammed mixes of applications from our benchmark set. We
also vary the main memory capacity from 256MB to 1GB (larger memories usually lead
to almost no page faults for these workload simulations). Our results (Figure 5.13) show
that the LCP-based framework (LCP-BDI) can decrease the number of page faults by 21%
on average (for 1GB DRAM) when compared with the Baseline design with no compres-
sion. We conclude that the LCP-based framework can significantly decrease the number
of page faults, and hence improve system performance beyond the benefits it provides due
to reduced bandwidth.

5.7.3 Effect on Bus Bandwidth and Memory Subsystem Energy

When DRAM pages are compressed, the traffic between the LLC and DRAM can be re-
duced. This can have two positive effects: (i) reduction in the average latency of memory
accesses, which can lead to improvement in the overall system performance, and (ii) de-
crease in the bus energy consumption due to the decrease in the number of transfers.

Figure 7.2 shows the reduction in main memory bandwidth between LLC and DRAM
(in terms of bytes per kilo-instruction, normalized to the Baseline system with no com-
pression) using different compression designs. The key observation we make from this
figure is that there is a strong correlation between bandwidth compression and perfor-
mance improvement (Figure 7.1). Applications that show a significant reduction in band-
width consumption (e.g., GemsFDTD, cactusADM, soplex, zeusmp, leslie3d, and the four
tpc queries) also see large performance improvements. There are some noticeable excep-
tions to this observation, e.g., h264ref, wrf and bzip2. Although the memory bus traffic is
compressible in these applications, main memory bandwidth is not the bottleneck for their
performance.

Figure 5.15 shows the reduction in memory subsystem energy of three systems that
employ main memory compression—RMC-FPC, LCP-FPC, and LCP-BDI—normalized
to the energy of Baseline. The memory subsystem energy includes the static and dynamic
energy consumed by caches, TLBs, memory transfers, and DRAM, plus the energy of
additional components due to main memory compression: BST [57], MD cache, address
calculation, compressor/decompressor units. Two observations are in order.

First, our LCP-based designs (LCP-BDI and LCP-FPC) improve the memory subsys-
tem energy by 5.2% / 3.4% on average over the Baseline design with no compression, and
by 11.3% / 9.5% over the state-of-the-art design (RMC-FPC) based on [57]. This is es-
pecially noticeable for bandwidth-limited applications, e.g., zeusmp and cactusADM. We
conclude that our framework for main memory compression enables significant energy
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Figure 5.14: Effect of different main memory compression schemes on memory band-
width.
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Figure 5.15: Effect of different main memory compression schemes on memory subsystem
energy.

savings, mostly due to the decrease in bandwidth consumption.

Second, RMC-FPC consumes significantly more energy than Baseline (6.1% more en-
ergy on average, as high as 21.7% for dealII). The primary reason for this energy consump-
tion increase is the physical address calculation that RMC-FPC speculatively performs on
every L1 cache miss (to avoid increasing the memory latency due to complex address cal-
culations). The second reason is the frequent (every L1 miss) accesses to the BST table
(described in Section 5.2) that holds the address calculation information.

Note that other factors, e.g., compression/decompression energy overheads or different
compression ratios, are not the reasons for this energy consumption increase. LCP-FPC
uses the same compression algorithm as RMC-FPC (and even has a slightly lower com-
pression ratio), but does not increase energy consumption—in fact, LCP-FPC improves
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the energy consumption due to its decrease in consumed bandwidth. We conclude that our
LCP-based framework is a more energy-efficient main memory compression framework
than previously proposed designs such as RMC-FPC.

5.7.4 Analysis of LCP Parameters

Analysis of Page Overflows

As described in Section 5.4.6, page overflows can stall an application for a considerable
duration. As we mentioned in that section, we did not encounter any type-2 overflows (the
more severe type) in our simulations. Figure 5.16 shows the number of type-1 overflows
per instruction. The y-axis uses a log-scale as the number of overflows per instruction is
very small. As the figure shows, on average, less than one type-1 overflow occurs every
one million instructions. Although such overflows are more frequent for some applications
(e.g., soplex and the three tpch queries), our evaluations show that this does not degrade
performance in spite of adding a 20,000 cycle penalty for each type-1 page overflow.9

In fact, these applications gain significant performance from our LCP design. The main
reason for this is that the performance benefits of bandwidth reduction far outweigh the
performance degradation due to type-1 overflows. We conclude that page overflows do not
prevent the proposed LCP framework from providing good overall performance.
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Figure 5.16: Type-1 page overflows for different applications.

9We varied the type-1 overflow latency from 10,000 to 100,000 cycles and found that the impact on
performance was negligible as we varied the latency. Prior work on main memory compression [57] also
used 10,000 to 100,000 cycle range for such overflows.
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Number of Exceptions

The number of exceptions (uncompressed cache lines) in the LCP framework is critical for
two reasons. First, it determines the size of the physical page required to store the LCP. The
higher the number of exceptions, the larger the required physical page size. Second, it can
affect an application’s performance as exceptions require three main memory accesses on
an MD cache miss (Section 5.3.2). We studied the average number of exceptions (across
all compressed pages) for each application. Figure 5.17 shows the results of these studies.

The number of exceptions varies from as low as 0.02/page for GemsFDTD to as high
as 29.2/page in milc (17.3/page on average). The average number of exceptions has a
visible impact on the compression ratio of applications (Figure 5.8). An application with
a high compression ratio also has relatively few exceptions per page. Note that we do
not restrict the number of exceptions in an LCP. As long as an LCP fits into a physical
page not larger than the uncompressed page size (i.e., 4KB in our system), it will be
stored in compressed form irrespective of how large the number of exceptions is. This
is why applications like milc have a large number of exceptions per page. We note that
better performance is potentially achievable by either statically or dynamically limiting
the number of exceptions per page—a complete evaluation of the design space is a part of
our future work.
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Figure 5.17: Average number of exceptions per compressed page for different applications.

5.7.5 Comparison to Stride Prefetching

Our LCP-based framework improves performance due to its ability to transfer multiple
compressed cache lines using a single memory request. Because this benefit resembles
that of prefetching cache lines into the LLC, we compare our LCP-based design to a sys-
tem that employs a stride prefetcher implemented as described in [89]. Figures 5.18 and
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5.19 compare the performance and bandwidth consumption of three systems: (i) one that
employs stride prefetching, (ii) one that employs LCP-BDI, and (iii) one that employs
LCP-BDI along with hints from a prefetcher to avoid cache pollution due to bandwidth
compression (Section 5.5.1). Two conclusions are in order.

First, our LCP-based designs (second and third bars) are competitive with the more
general stride prefetcher for all but a few applications (e.g., libquantum). The primary rea-
son is that a stride prefetcher can sometimes increase the memory bandwidth consumption
of an application due to inaccurate prefetch requests. On the other hand, LCP obtains the
benefits of prefetching without increasing (in fact, while significantly reducing) memory
bandwidth consumption.

Second, the effect of using prefetcher hints to avoid cache pollution is not significant.
The reason for this is that our systems employ a large, highly-associative LLC (2MB 16-
way) which is less susceptible to cache pollution. Evicting the LRU lines from such a
cache has little effect on performance, but we did observe the benefits of this mechanism
on multi-core systems with shared caches (up to 5% performance improvement for some
two-core workload mixes—not shown).
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Figure 5.18: Performance comparison with stride prefetching, and using prefetcher hints
with the LCP-framework.

5.8 Summary

Data compression is a promising technique to increase the effective main memory capac-
ity without significantly increasing cost and power consumption. As we described in this
chapter, the primary challenge in incorporating compression in main memory is to devise
a mechanism that can efficiently compute the main memory address of a cache line with-
out significantly adding complexity, cost, or latency. Prior approaches to addressing this
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Figure 5.19: Bandwidth comparison with stride prefetching.

challenge are either relatively costly or energy inefficient.

We proposed a new main memory compression framework, called Linearly Com-
pressed Pages (LCP), to address this problem. The two key ideas of LCP are to use a
fixed size for compressed cache lines within a page (which simplifies main memory ad-
dress computation) and to enable a page to be compressed even if some cache lines within
the page are incompressible (which enables high compression ratios). We showed that any
compression algorithm can be adapted to fit the requirements of our LCP-based frame-
work.

We evaluated the LCP-based framework using two state-of-the-art compression al-
gorithms (Frequent Pattern Compression and Base-Delta-Immediate Compression) and
showed that it can significantly increase effective memory capacity (by 69%) and reduce
page fault rate (by 23%). We showed that storing compressed data in main memory can
also enable the memory controller to reduce memory bandwidth consumption (by 24%),
leading to significant performance and energy improvements on a wide variety of single-
core and multi-core systems with different cache sizes. Based on our results, we conclude
that the proposed LCP-based framework provides an effective approach for designing low-
complexity and low-latency compressed main memory.
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Chapter 6

Toggle-Aware Bandwidth Compression

6.1 Introduction

Modern data-intensive computing forces system designers to deliver good system
performance under multiple constraints: shrinking power and energy envelopes (power
wall), increasing memory latency (memory latency wall), and scarce and expensive band-
width resources (bandwidth wall). While many different techniques have been proposed
to address these issues, these techniques often offer a trade-off that improves one con-
straint at the cost of another. Ideally, system architects would like to improve one or
more of these system parameters, e.g., on-chip and off-chip1 bandwidth consumption,
while simultaneously avoiding negative effects on other key parameters, such as overall
system cost, energy, and latency characteristics. One potential way of addressing mul-
tiple constraints is to employ dedicated hardware-based data compression mechanisms
(e.g., [256, 10, 38, 185, 16]) across different data links in the system. Compression ex-
ploits the high data redundancy observed in many modern applications [185, 203, 16, 242]
and can be used to improve both capacity (e.g., of caches, DRAM, non-volatile memo-
ries [256, 10, 38, 185, 16, 184, 213, 181, 242, 265]) and bandwidth utilization (e.g., of
on-chip and off-chip interconnects [46, 12, 230, 204, 184, 213, 242]). Several recent
works focus on bandwidth compression to decrease memory traffic by transmitting data in

Originally published as “Toggle-Aware Bandwidth Compression for GPUs” in the 22nd International
Symposium on High Performance Computer Architecture, 2016 [177], and as “Toggle-Aware Compression
for GPUs” in Computer Architecture Letters, 2015 [176].

1Communication channel between the last-level cache and main memory.
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a compressed form in both CPUs [184, 230, 12] and GPUs [204, 184, 242], which results
in better system performance and energy consumption. Bandwidth compression proves to
be particularly effective in GPUs because they are often bottlenecked by memory band-
width [166, 104, 105, 262, 242, 175, 81, 106]. GPU applications also exhibit high degrees
of data redundancy [204, 184, 242], leading to good compression ratios. While data com-
pression can dramatically reduce the number of bit symbols that must be transmitted across
a link, compression also carries two well-known overheads: (1) latency, energy, and area
overhead of the compression/decompression hardware [10, 185]; and (2) the complexity
and cost to support variable data sizes [73, 203, 184, 213]. Prior work has addressed so-
lutions to both of these problems. For example, Base-Delta-Immediate compression [185]
provides a low-latency, low-energy hardware-based compression algorithm. Decoupled
and Skewed Compressed Caches [203, 201] provide a mechanism to efficiently manage
data recompaction and fragmentation in compressed caches.

6.1.1 Compression & Communication Energy

In this chapter, we make a new observation that there is yet another important problem
with data compression that must be addressed to implement energy-efficient communica-
tion: transferring data in compressed form (as opposed to uncompressed form) leads to
a significant increase in the number of bit toggles, i.e., the number of wires that switch
from 0 to 1 or 1 to 0. An increase in bit toggle count causes higher switching activi-
ties [236, 25, 29] of wires, leading to higher dynamic energy being consumed by on-chip
or off-chip interconnects. The bit toggle count increases for two reasons. First, the com-
pressed data has a higher per-bit entropy because the same amount of information is now
stored in fewer bits (the “randomness” of a single bit grows). Second, the variable-size
nature of compressed data, which can negatively affect the word/flit data alignment in
hardware. Thus, in contrast to the common wisdom that bandwidth compression saves
energy (when it is effective), our key observation reveals a new trade-off: energy savings
obtained by reducing bandwidth versus energy loss due to higher switching energy during
compressed data transfers. This observation and the corresponding trade-off are the key
contributions of this work.

To understand (1) how applicable general-purpose data compression is for real GPU
applications, and (2) the severity of the problem, we use six compression algorithms to an-
alyze 221 discrete and mobile graphics application traces from a major GPU vendor and
21 open-source, general-purpose GPU applications. Our analysis shows that although off-
chip bandwidth compression achieves a significant compression ratio (e.g., more than 47%
average effective bandwidth increase with C-Pack [38] across mobile GPU applications),
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it also greatly increases the bit toggle count (e.g., 2.2× average corresponding increase).
This effect can significantly increase the energy dissipated in the on-chip/off-chip inter-
connects, which constitute a significant portion of the memory subsystem energy.

6.1.2 Toggle-Aware Compression

In this work, we develop two new techniques that make bandwidth compression for on-
chip/off-chip buses more energy-efficient by limiting the overall increase in compression-
related bit toggles. Energy Control (EC) decides whether to send data in compressed or
uncompressed form, based on a model that accounts for the compression ratio, the increase
in bit toggles, and current bandwidth utilization. The key insight is that this decision can
be made in a fine-grained manner (e.g., for every cache line), using a simple model to
approximate the commonly-used Energy × Delay and Energy × Delay2 metrics. In
this model, Energy is directly proportional to the bit toggle count; Delay is inversely
proportional to the compression ratio and directly proportional to the bandwidth utiliza-
tion. Our second technique, Metadata Consolidation (MC), reduces the negative effects of
scattering the metadata across a compressed cache line, which happens with many existing
compression algorithms [10, 38]. Instead, MC consolidates compression-related metadata
in a contiguous fashion.

Our toggle-aware compression mechanisms are generic and applicable to different
compression algorithms (e.g., Frequent Pattern Compression (FPC) [10] and Base-Delta-
Immediate (BDI) compression [185]), different communication channels (on-chip/off-
chip buses), and different architectures (e.g., GPUs, CPUs, and hardware accelerators).
We demonstrate that these mechanisms are mostly orthogonal to different data encoding
schemes also used to minimize the bit toggle count (e.g., Data Bus Inversion [221]), and
hence can be used together with them to enhance the energy efficiency of interconnects.

Our extensive evaluation shows that our proposed mechanisms can significantly reduce
the negative effect of bit toggling increase (in some cases the 2.2× increase in bit toggle
count is completely eliminated), while preserving most of the benefits of data compression
when it is useful – hence the reduction in performance benefits from compression is usually
within 1%. This efficient trade-off leads to the reduction in (i) the DRAM energy that is
as high as 28.1% for some applications (8.3% average reduction), and (ii) the total system
energy (at most 8.9%, 2.1% on average). Moreover, we can dramatically reduce the energy
cost to support data compression over the on-chip interconnect. For example, our toggle-
aware compression mechanisms can reduce the original 2.1× increase in consumed energy
with C-Pack compression algorithm to much more acceptable 1.1× increase.
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6.2 Background

Data compression is a powerful mechanism that exploits the existing redundancy in the
applications’ data to relax capacity and bandwidth requirements for many modern systems.
Hardware-based data compression was explored in the context of on-chip caches [256, 10,
38, 185, 203, 16] and main memory [3, 230, 57, 184, 213], but mostly for CPU-oriented
applications. Several prior works [230, 184, 204, 213, 242? ] looked at the specifics of
memory bandwidth compression, where it is very critical to decide where and when to
perform compression and decompression.

While these works looked at energy/power benefits of bandwidth compression, the
overhead of compression was limited to the overhead of compression/decompression logic
and the overhead of the newly proposed mechanisms/designs. To the best of our knowl-
edge, this is the first work that looks at energy implications of compression on the data
transferred over on-chip/off-chip buses. Depending on the type of the communication
channel the data bits transferred have different effect on the energy spent on communica-
tion. We summarize this effect for three major communication channel types.

On-chip Interconnect. For the full-swing on-chip interconnects, one of the dominant
factors that defines the energy cost of a single data transfer (commonly called a flit) is the
activity factor—the number of bit toggles on the wires (communication channel switchings
from 0 to 1 or from 1 to 0). The bit toggle count for a particular flit depends on both the
current flit’s data and on the data that was just sent over the same wires. Several prior
works [221, 29, 263, 236, 25] looked at more energy-efficient data communication in the
context of on-chip interconnects [29] where the number of bit toggles can be reduced.
The key difference between our work and these prior works is that we aim to address the
specific effect of increase (sometimes a dramatic increase, see Section 6.3) in bit toggle
count due to data compression. Our proposed mechanisms (described in Section 6.4) are
mostly orthogonal to these prior mechanisms and can be used in parallel with them to
achieve even larger energy savings in data transfers.

DRAM bus. In the case of DRAM (e.g., GDDR5 [98]), the energy attributed to the
actual data transfer is usually less than the background and activate energy, but still signif-
icant (16% on average based on our estimation with the Micron power calculator [158]).
The second major distinction between on-chip and off-chip buses, is the definition of bit
toggles. In case of DRAM, bit toggles are defined as the number of zero bits. Reducing the
number of signal lines driving a low level (zero bit) results in reduced power dissipation
in the termination resistors and output drivers [98]. To reduce the number of zero bits,
techniques like DBI (data-bus-inversion) are usually used. For example, DBI is the part of
the standard for GDDR5 [98] and DDR4 [97]. As we will show later in Section 6.3, these
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techniques are not effective enough to handle the significant increase in bit toggles due to
data compression.

PCIe and SATA. For SATA and PCIe, data is transmitted in a serial fashion at much
higher frequencies than typical parallel bus interfaces. Under these conditions, bit toggles
impose different design considerations and implications. Data is transmitted across these
buses without an accompanying clock signal which means that the transmitted bits need to
be synchronized with a clock signal by the receiver. This clock recovery requires frequent
bit toggles to prevent loss in information. In addition, it is desirable that the running
disparity—which is the difference in the number of one and zero bits transmitted—be
minimized. This condition is referred to as DC balance and prevents distortion in the
signal. Data is typically scrambled using encodings like the 8b/10b encoding [245] to
balance the number of ones and zeros while ensuring frequent transitions. These encodings
have high overhead in terms of the amount of additional data transmitted but obscure any
difference in bit transitions with compressed or uncompressed data. As the result, we
do not expect further compression or toggle-rate reduction techniques to apply well to
interfaces like SATA and PCIe.

Summary. With on-chip interconnect, any bit transitions increase the energy ex-
pended during data transfers. In the case of DRAM, energy spent during data transfers
increases with an increase in zero bits. Data compression exacerbates the energy expen-
diture in both these channels. For PCIe and SATA, data is scrambled before transmission
and this obscures any impact of data compression and hence, our proposed mechanisms
are not applicable to these channels.

6.3 Motivation and Analysis

In this work, we examine the use of six compression algorithms for bandwidth com-
pression in GPU applications, taking into account bit toggles: (i) FPC (Frequent Pattern
Compression) [10]; (ii) BDI (Base-Delta-Immediate Compression) [185]; (iii) BDI+FPC
(combined FPC and BDI) [184]; (iv) LZSS (Lempel-Ziv compression) [268, 3]; (v) Fi-
bonacci (a graphics-specific compression algorithm) [187]; and (vi) C-Pack [38]. All of
these compression algorithms explore different forms of redundancy in memory data. For
example, FPC and C-Pack algorithms look for different static patterns in data (e.g., high
order bits are zeros or the word consists of repeated bytes). At the same time, C-Pack
allows partial matching with some locally defined dictionary entries that usually gives it
better coverage than FPC. In contrast, the BDI algorithm is based on the observation
that the whole cache line of data can be commonly represented as a set of one or two
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Figure 6.1: Effective bandwidth compression ratios for various GPU applications and
compression algorithms (higher bars are better).

bases and the deltas from these bases. This allows compression of some cache lines much
more efficiently than FPC and even C-Pack, but potentially leads to lower coverage. For
completeness of our compression algorithms analysis, we also examine the well-known
software-based mechanism called LZSS, and the recently proposed graphics-oriented Fi-
bonacci algorithm.

To ensure our conclusions are practically applicable, we analyze both the real GPU ap-
plications (both discrete and mobile ones) with actual data sets provided by a major GPU
vendor and open-sourced GPU computing applications [170, 36, 79, 31]. The primary dif-
ference is that discrete applications have more single and double precision floating point
data, mobile applications have more integers, and open-source applications are in between.
Figure 6.1 shows the potential of these six compression algorithms in terms of effective
bandwidth increase, averaged across all applications. These results exclude simple data
patterns (e.g., zero cache lines) that are already handled by modern GPUs efficiently, and
assume practical boundaries on bandwidth compression ratios (e.g., for on-chip intercon-
nect, the highest possible compression ratio is 4.0, because the minimum flit size is 32
bytes while the uncompressed packet size is 128 bytes).

First, for the 167 discrete GPU applications (left side of Figure 6.1), all algorithms
provide substantial increase in available bandwidth (25%–44% on average for different
compression algorithms). It is especially interesting that simple compression algorithms
are very competitive with the more complex GPU-oriented Fibonacci algorithm and the
software-based Lempel-Ziv algorithm [268]. Second, for the 54 mobile GPU applications
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(middle part of Figure 6.1), bandwidth benefits are even more pronounced (reaching up
to 57% on average with the Fibonacci algorithm). Third, for the 21 open-sourced GPU
computing applications the bandwidth benefits are the highest (as high as 72% on average
with the Fibonacci and BDI+FPC algorithms). Overall, we conclude that existing com-
pression algorithms (including simple, general-purpose ones) can be effective in providing
high on-chip/off-chip bandwidth compression for GPU compute applications.

Unfortunately, the benefits of compression come with additional costs. Two overheads
of compression are well-known: (i) additional data processing due to compression/de-
compression, and (ii) hardware changes due to transfer variable-length cache lines. While
these two problems are significant, multiple compression algorithms [10, 256, 185, 53]
have been proposed to minimize the overheads of data compression/decompression. Sev-
eral designs [213, 204, 184, 242] integrate bandwidth compression into existing memory
hierarchies. In this work, we identify a new challenge with data compression that needs to
be addressed: the increase in the total number of bit toggles as a result of compression.

On-chip data communication energy is directly proportional to the number of bit tog-
gles on the communication channel [236, 25, 29], due to the charging and discharging of
the channel wire capacitance with each toggle. Data compression may increase or decrease
the bit toggle count on the communication channel for any given data. As a result, energy
consumed for moving this data can change. Figure 6.2 shows the increase in bit toggle
count for all GPU applications in our workload pool with the six compression algorithms
over a baseline that employs zero line compression (as this is already efficiently done in
modern GPUs). The total number of bit toggles is computed such that it already includes
the positive effects of compression (i.e., the decrease in the total number of bits sent due
to compression).

We make two observations. First, all compression algorithms consistently increase the
bit toggle count. The effect is significant yet smaller (12%–20% increase) in discrete ap-
plications, mostly because they include floating-point data, which already has high toggle
rates (31% on average across discrete applications) and is less amenable to compression.
This increase in bit toggle count happens even though we transfer less data due to com-
pression. If this effect would be only due to the higher density of information per bit, we
would expect the increase in the bit toggle rate (the relative percentage of bit toggles per
data transfer), but not in the bit toggle count (the total number of bit toggles).

Second, the increase in bit toggle count is more dramatic for mobile and open-sourced
applications (right two-thirds of Figure 6.2), exceeding 2× in four cases.2 For all types of

2The FPC algorithm is not as effective in compressing mobile application data in our pool, and hence
does not greatly affect bit toggle count.
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Figure 6.2: Bit toggle count increase due to compression.

applications, the increase in bit toggle count can lead to significant increase in the dynamic
energy consumption of the communication channels.

We study the relationship between the achieved compression ratio and the resultant
increase in bit toggle count. Figure 6.3 shows the compression ratio and the normalized bit
toggle count of each discrete GPU application after compression with the FPC algorithm.3

Clearly, there is a positive correlation between the compression ratio and the increase in
bit toggle count, although it is not a simple direct correlation—higher compression ratio
does not necessarily means higher increase in bit toggle count. To make things worse, the
behaviour might change within an application due to phase and data patterns changes.

We draw two major conclusions from this study. First, it strongly suggests that suc-
cessful compression may lead to increased dynamic energy dissipation by on-chip/off-chip
communication channels due to increased toggle counts. Second, these results show that
any efficient solution for this problem should probably be dynamic in its nature to adopt
for data pattern changes during applications execution.

To understand the toggle increase phenomenon, we examined several example cache
lines where bit toggle count increases significantly after compression. Figures 6.4 and 6.5
show one of these cache lines with and without compression (FPC), assuming 8-byte flits.

Without compression, the example cache line in Figure 6.4, which consists of 8-byte
data elements (4-byte indices and 4-byte pointers) has a very low number of toggles (2
toggles per 8-byte flit). This low number of bit toggles is due to the favourable alignment

3We observe similarly-shaped curves for other compression algorithms.
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Figure 6.3: Normalized bit toggle count vs. compression ratio (with the FPC algorithm)
for each of the discrete GPU applications.

of the uncompressed data with the boundaries of flits (i.e., transfer granularity in the on-
chip interconnect). With compression, the toggle count of the same cache line increases
significantly, as shown in Figure 6.5 (e.g., 31 toggles for a pair of 8-byte flits in this ex-
ample). This increase is due to two major reasons. First, because compression removes
zero bits from narrow values, the resulting higher per-bit entropy leads to higher “random-
ness” in data and, thus, a larger toggle count. Second, compression negatively affects the
alignment of data both at the byte granularity (narrow values replaced with shorter 2-byte
versions) and bit granularity (due to the 3-bit metadata storage; e.g., 0x5 is the encoding
metadata used to indicate narrow values for the FPC algorithm).

6.4 Toggle-aware Compression

6.4.1 Energy vs. Performance Trade-off

Data compression can reduce energy consumption and improve performance by reducing
communication bandwidth demands. At the same time, data compression can potentially
lead to significantly higher energy consumption due to increased bit toggle count. To prop-
erly evaluate this trade-off, we examine commonly-used metrics like Energy×Delay and
Energy × Delay2 [70]. We estimate these metrics with a simple model, which helps to
make compression-related performance/energy trade-offs. We define the Energy of a sin-
gle data transfer to be proportional to the bit toggle count associated with it. Similarly,
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Figure 6.4: Bit toggles without compression.
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Figure 6.5: Bit toggles after compression.

Delay is defined to be inversely proportional to performance, which we assume is pro-
portional to bandwidth reduction (i.e., compression ratio) and bandwidth utilization. The
intuition behind this heuristic is that compression ratio reflects on how much additional
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bandwidth we can get, while bandwidth utilization shows how useful this additional band-
width is in improving performance. Based on the observations above, we develop two
techniques to enable toggle-aware compression to reduce the negative effects of increased
bit toggle count.

6.4.2 Energy Control (EC)

We propose a generic Energy Control (EC) mechanism that can be applied along with
any current (or future) compression algorithm.4 It aims to achieve high compression ratio
while minimizing the bit toggle count. As shown in Figure 6.6, the Energy Control mecha-
nism uses a generic decision function that considers (i) the bit toggle count for transmitting
the original data (T0), (ii) the bit toggle count for transmitting the data in compressed form
(T1), (iii) compression ratio (CR), (iv) current bandwidth utilization (BU ), and possibly
other metrics of interest that can be gathered and analyzed dynamically to decide whether
to transmit the data compressed or uncompressed. Using this approach, it is possible to
achieve a desirable trade-off between overall bandwidth reduction and increase/decrease
in communication energy. The decision function that compares the compression ratio (A)
and toggle ratio (B) can be linear (A × B > 1, based on Energy ×Delay) or quadratic
(A×B2 > 1, based on Energy ×Delay2).5 Specifically, when the bandwidth utilization
(BU ) is very high (e.g., BU > 50%), we incorporate it into our decision function by multi-
plying the compression ratio with 1

1−BU
, hence allocating more weight to the compression

ratio. Since the data patterns during application execution could change drastically, we
expect our mechanism to be applied dynamically (either per cache line or a per region of
execution) rather than statically for the whole application execution.

6.4.3 Metadata Consolidation

Traditional energy-oblivious compression algorithms are not optimized to minimize the
bit toggle count. Most of these algorithms [38, 10, 187] have distributed metadata to
efficiently track the redundancy in data, e.g., several bits per word to represent the current
pattern used for encoding. These metadata bits can significantly increase the bit toggle
count as they shift the potentially good alignment between different words within a cache
line (Section 6.3). It is possible to enhance these compression algorithms (e.g., FPC and C-
Pack) such that the increase in bit toggle count would be less after compression is applied.

4In this work, we assume that only memory bandwidth is compressed, while on-chip caches and main
memory still store data in uncompressed form.

5We also find a specific coefficient in the relative weight between Energy and Delay empirically.
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Figure 6.6: Energy Control decision mechanism.

Metadata Consolidation (MC) is a new technique that aims to achieve this. The key idea
of MC is to consolidate compression-related metadata into a single contiguous metadata
block instead of storing (or, scattering) such metadata in a fine-grained fashion, e.g., on a
per-word basis. We can locate this single metadata block either before or after the actual
compressed data (this can increase decompression latency since the decompressor needs
to know the metadata). The major benefit of MC is that it eliminates misalignment at the
bit granularity. In cases where a cache line has a majority of similar patterns, a significant
portion of the toggle count increase can be avoided.

Figure 6.7 shows an example cache line compressed with the FPC algorithm, with and
without MC. We assume 4-byte flits. Without MC, the bit toggle count between the first
two flits is 18 (due to per-word metadata insertion). With MC, the corresponding bit toggle
count is only 2, showing the effectiveness of MC in reducing bit toggles.
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Figure 6.7: Bit toggle count w/o and with Metadata Consolidation.

6.5 EC Architecture

In this work, we assume a system where global on-chip network and main memory com-
munication channels are augmented with compressor and decompressor units as described
in Figure 6.8 and Figure 6.9. While it is possible to store data in the compressed form as
well (e.g., to improve the capacity of on-chip caches [256, 10, 185, 38, 203, 16]), the cor-
responding changes come with potentially significant hardware complexity that we would
like to avoid in our design. We first attempt to compress the data traffic coming in and out
of the channel with one (or a few) compression algorithms. The results of the compression,
both the compressed cache line size and data, are then forwarded to the Energy Control
(EC) logic that is described in detail in Section 6.4. EC decides whether it is beneficial to
send data in the compressed or uncompressed form, after which the data is transferred over
the communication channel. It is then decompressed if needed at the other end, and the
data flow proceeds normally. In the case of main memory bus compression (Figure 6.9),
additional EC and compressor/decompressor logic can be implemented in the already ex-
isting base-layer die assuming stacked memory organization [100, 85], or in the additional
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layer between DRAM and the main memory bus. Alternatively, the data can be stored in
the compressed form but without any capacity benefits [204, 213].
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Figure 6.8: System overview with interconnect compression and EC.
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Figure 6.9: System overview with off-chip bus compression and EC.

6.5.1 Toggle Computation for On-Chip Interconnect

As described in Section 6.4, our proposed mechanism, EC, aims to decrease the negative
effect of data compression on bit toggling while preserving most of the compression bene-
fits. GPU on-chip communication is performed via exchanging packets at a cache line size
granularity. But the physical width of the on-chip interconnect channels is usually several
times smaller than the size of a cache line (e.g., 32-byte wide channels for 128-byte cache
lines). As a result, the communication packet is divided into multiple flits that are stored
at the transmission queue buffer before being transmitted over the communication chan-
nel in a sequential manner. Our approach adds a simple bit toggle computation logic that
computes the bit toggle count across flits awaiting transmission. This logic consists of a
flit-wide array of XORs and a tree-adder to compute the hamming distance, the number
of bits that are different, between two flits. We perform this computation for both com-
pressed and uncompressed data, and the results are then fed to the EC decision function
(as described in Figure 6.6). This computation can be done sequentially while reusing
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the transition queue buffers to store intermediate compressed or uncompressed flits, or in
parallel with the addition of some dedicated flit buffers (to reduce the latency overhead).
In this work we assume the second approach.

6.5.2 Toggle Computation for DRAM

For modern DRAMs [98, 97] the bit toggle definition is different from the definition we
used for on-chip interconnects. As we described in Section 6.2, in the context of main
memory bus what matters is the number of zero bits per data transfer. This defines how we
compute the toggle count for DRAM transfers by simply counting the zero bits—which is
known as the hamming weight or the population count of the inverted value. The differ-
ence in defining the toggle count also leads to the fact that the current toggle count does
not depend on the previous data, which means that no additional buffering is required to
perform the computation.

6.5.3 EC and Data Bus Inversion

Modern communication channels use different techniques to minimize (and sometimes to
maximize) the bit toggle count to reduce the energy consumption or/and preserve signal in-
tegrity. We now briefly summarize two major techniques used in existing on-chip/off-chip
interconnects: Data Bus Inversion and Data Scrambling, and their effect on our proposed
EC mechanism.

Data Bus Inversion

Data Bus Inversion is an encoding technique proposed to reduce the power consumption
in data channels. Two commonly used DBI algorithms include Bus invert coding [221]
and Limited-weight coding [219, 220]. Bus invert coding places an upper-bound on the
number of bit flips while transmitting data along a channel. Consider a set of N bit lines
transmitting data in parallel. If the Hamming distance between the previous and current
data value being transmitted exceeds N/2, the data is transmitted in the inverted form. This
limits the number of bit flips to N/2. To preserve correctness, an additional bit line carries
the inverted status of each data tranmission. By reducing the number of bit flips, Bus invert
coding reduces the switching power associated with charging and discharging of bit lines.

Limited weight coding is a DBI technique that helps reduce power when one of the
two different bus states is more dissipative than the other. The algorithm only observes the
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current state of data. It decides to invert or leave the data inverted based on the goal of
minimizing either the number of zeros or ones being transmitted.

Implementing Bus invert coding requires much the same circuitry for toggle count
determination in the proposed EC mechanism. Here, hardware logic is required to compute
the XOR between the different prior and current data at a fixed granularity. The Hamming
distance is then computed by summing the number of 1’s using a simple adder. Similar
logic is required to compute the toggle count for compressed versus uncompressed data in
the Energy Control mechanism. We expect that both EC and DBI can efficiently coexist.
After compression is applied, we first apply DBI (to minimize the bit toggles), and after
that we apply EC mechanism to evaluate the tradeoff between the compression ratio and
the bit toggle count.

Data Scrambling

To minimize the signal distortion, some modern DRAM designs [102, 161] use a data
scrambling technique that aims to minimize the running data disparity, i.e., the difference
between the number of 0s and 1s, in the transmitted data. One way to “randomize” the
bits is by XORing them with a pseudo-random values generated at boot time [161]. While
techniques like data scrambling can potentially decrease signal distortion, they also in-
crease the dynamic energy of DRAM data transfers. This approach also contradicts what
several designs aimed to achieve by using DBI for GDDR5 [98] and DDR4 [97], since
the bits become much more random. In addition, using pseudo-random data scrambling
techniques can be motivated by the existence of certain pathological data patterns [161],
where signal integrity requires much lower operational frequency. At the same time, those
patterns can usually be handled well with data compression algorithms that can provide
the appropriate data transformation to avoid repetitive failures at a certain frequency. For
the rest of this chapter, we assume GDDR5 memory without scrambling.

6.5.4 Complexity Estimation

Toggle count computation is the main hardware addition introduced by the EC mechanism.
We modeled and synthesized the toggle-computational block in Verilog. Our results show
that the required logic can be performed in an energy-efficient way (4pJ per 128-byte cache
line with 32-byte flits for 65nm process6).

6This is significantly lower than the corresponding energy for compression and decompression [213].
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6.6 Methodology

In our work, we analyze two distinct groups of applications. First, a group of 221 ap-
plications from a major GPU vendor in the form of memory traces with real application
data. This group consists of two subgroups: discrete applications (e.g., HPC workloads,
general-purpose applications, physics etc.) and mobile applications. As there is no ex-
isting simulator that can run these traces for cycle-accurate simulation, we use them to
demonstrate (i) the benefits of compression on a large pool of existing applications oper-
ating on real data, and (ii) the existence of the toggle count increase problem. Second, we
use 21 open-sourced GPU computing applications derived from CUDA SDK [170] (BFS,
CONS, JPEG, LPS, MUM, RAY, SLA, TRA), Rodinia [36] (hs, nw), Mars [79] (KM, MM,
PVC, PVR, SS), and Lonestar [31] (bfs, bh, mst, sp, sssp) suites.

We evaluate the performance of our proposed mechanisms with the second group of
applications using GPGPU-Sim 3.2.2 [22] cycle-accurate simulator. Table 6.1 provides
all the details of the simulated system. Additionally, we use GPUWattch [141] for energy
analysis with proper modifications to reflect bit-toggling effect. We run all applications
to completion or 1 billion instructions (whichever comes first). Our evaluation in Sec-
tion 6.7 demonstrates detailed results for applications that exhibit at least 10% bandwidth
compressibility.

Evaluated Metrics. We present Instruction per Cycle (IPC) as the primary perfor-
mance metric. In addition, we also use average bandwidth utilization defined as the frac-
tion of total DRAM cycles that the DRAM data bus is busy, and compression ratio defined
as the effective bandwidth increase. For both on-chip interconnect and DRAM we assume
the highest possible compression ratio of 4.0. For on-chip interconnect, this is because
we assume a flit size of 32 bytes for a 128-byte packet. For DRAM, there are multiple
ways of achieving the desired flexibility in data transfers: (i) increasing the size of a cache
line (from 128 bytes to 256 bytes), (ii) using sub-ranking as was proposed for DDR3 in
MemZip [213], (iii) transferring multiple compressed cache lines instead of one uncom-
pressed line as in LCP design [184], and (iv) any combination of the first three approaches.
Existing GPUs (e.g., GeForce FX series) are known to support 4:1 data compression [1].

6.7 Evaluation

We present our results for two communication channels described above: (i) off-chip
DRAM bus and (ii) on-chip interconnect. We exclude LZSS compression algorithm from
our detailed evaluation since its hardware implementation is not practical with hundreds
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System Overview 15 SMs, 32 threads/warp, 6 memory channels

Shader Core Config 1.4GHz, GTO scheduler [198], 2 schedulers/SM

Resources / SM 48 warps/SM, 32K registers, 32KB Shared Mem.

L1 Cache 16KB, 4-way associative, LRU

L2 Cache 768KB, 16-way associative, LRU

Interconnect 1 crossbar/direction (15 SMs, 6 MCs), 1.4GHz

Memory Model 177.4GB/s BW, 6 GDDR5 Memory Controllers,
FR-FCFS scheduling, 16 banks/MC

GDDR5 Timing [98] tCL = 12, tRP = 12, tRC = 40, tRAS = 28,
tRCD = 12, tRRD = 6, tCLDR = 5, tWR = 12

Table 6.1: Major Parameters of the Simulated Systems.

of cycles of compression/decompression latency [3].

6.7.1 DRAM Bus Results

Effect on Toggles and Compression Ratio

We analyze the effectiveness of the proposed EC optimization by examining how it affects
both the number of toggles (Figure 6.10) and the compression ratio (Figure 6.11) for five
compression algorithms. In both figures, results are averaged across all applications within
the corresponding application subgroup and normalized to the baseline design with no
compression. Unless specified otherwise, we use the EC mechanism with the decision
function based on the Energy ×Delay2 metric using our model from Section 6.4.2. We
make two observations from these figures.
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Figure 6.10: Effect of Energy Control on the number of toggles on DRAM bus.
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Figure 6.11: Effective DRAM bandwidth increase for different applications.

First, we observe that EC can effectively reduce the overhead in terms of toggle count
for both discrete and mobile GPU applications (Figure 6.10). For discrete GPU applica-
tions, the toggle reduction varies from 6% to 16% on average, and the toggle increase due
to compression is almost completely eliminated in the case of the Fibonacci compression
algorithm. For mobile GPU applications, the reduction is as high as 51% on average for
the BDI+FPC compression algorithm (more than 32× reduction in extra bit toggles), with
only a modest reduction7 in compression ratio.

Second, the reduction in compression ratio with EC is usually minimal. For example,
in discrete GPU applications, this reduction for the BDI+FPC algorithm is only 0.7% on
average (Figure 6.11). For mobile and open-sourced GPU applications, the reduction in
compression ratio is more noticeable (e.g., 9.8% on average for Fibonacci with mobile
applications), which is still a very attractive trade-off since the 2.2× growth in the number
of toggles is practically eliminated. We conclude that EC offers an effective way to control
the energy efficiency of data compression for DRAM by applying it only when it provides
a high compression ratio with only a small increase in the number of toggles.

While the average numbers presented express the general effect of the EC mechanism
on both the number of toggles and compression ratio, it is also interesting to see how
the results vary for individual applications. To perform this deeper analysis, we pick one
compression algorithm (C-Pack), and a single subgroup of applications (Open-Sourced),
and show the effect of compression with and without EC on the toggle count (Figure 6.12)

7Compression ratio reduces because EC decides to transfer some compressible lines in the uncompressed
form.
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and compression ratio (Figure 6.13). We also study two versions of the EC mechanism: (i)
EC1 which uses the Energy×Delay metric and (ii) EC2 which uses the Energy×Delay2

metric. We make three major observations from these figures.
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Figure 6.12: Effect of Energy Control with C-Pack compression algorithm on the number
of DRAM toggles.
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Figure 6.13: Effective DRAM bandwidth increase with C-Pack algorithm.

First, both the increase in bit toggle count and compression ratio vary significantly for
different applications. For example, bfs from the Lonestar application suite has a very
high compression ratio of more than 2.5×, but its increase in toggle count is relatively
small (only 17% for baseline C-Pack compression without EC mechanism). In contrast,
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PageViewRank application from the Mars application suite has more than 10× increase in
toggles with 1.6× compression ratio. This is because different data is affected differently
by data compression. There can be cases where the overall toggle count is lower than in
the uncompressed baseline even without EC mechanism (e.g., LPS).

Second, for most of the applications in our workload pool, the proposed mechanisms
(EC1 and EC2) can significantly reduce the bit toggle count while retaining most of the
benefits of compression. For example, for heartwall we reduce the bit toggle count with
our EC2 mechanism from 2.5× to 1.8× by only sacrificing 8% of the compression ratio
(from 1.83× to 1.75×). This could significantly reduce the bit toggling energy overhead
with C-Pack algorithm while preserving most of the bandwidth (and hence potentially
performance) benefits.

Third, as expected, EC1 is more aggressive in disabling compression, because it
weights bit toggles and compression ratio equally in the trade-off, while in the EC2 mech-
anism, compression ratio has higher value (squared in the formula) than bit toggle count.
Hence, for many of our applications (e.g., bfs, mst, Kmeans, nw, etc.) we see a gradual
reduction in toggles, with corresponding small reduction in compression ratio, when mov-
ing from baseline to EC1 and then EC2. This means that depending on the application
characteristics, we have multiple options with varying aggressiveness to trade-off bit tog-
gle count with compression ratio. As we will show in the next section, we can achieve
these trade-offs with minimal effect on performance.

Effect on Performance

While previous results show that EC1 and EC2 mechanisms are very effective in trading
off bit toggle count with compression ratio, it is still important to understand how much
this trade-off “costs” in actual performance. This is especially important for the DRAM,
that is commonly one of the major bottlenecks in GPU applications performance, and
hence even a minor degradation in compression ratio can potentially lead to a noticeable
degradation in performance and overall energy consumption. Figure 6.14 shows this effect
on performance for both EC1 and EC2 mechanisms in comparison to a baseline employing
compression with C-Pack. We make two observations here.

First, our proposed mechanisms (EC1 and EC2) usually have minimal negative impact
on the applications’ performance. The baseline mechanism (Without EC) provides 11.5%
average performance improvement, while the least aggressive EC2 mechanism reduces
performance benefits by only 0.7%, and the EC1 mechanism - by 2.0%. This is signif-
icantly smaller than the corresponding loss in compression ratio (shown in Figure 6.13).
The primary reason is a successful trade-off between compression ratio, toggles and per-
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Figure 6.14: Speedup with C-Pack compression algorithm.

formance. Both EC mechanisms consider current DRAM bandwidth utilization, and only
trade-off compression when it is unlikely to hurt performance.

Second, while there are applications (e.g., MatrixMul) where we could lose up to 6%
performance using the most aggressive mechanism (EC1), this is absolutely justified be-
cause we also reduce the bit toggle count from almost 10× to about 7×. It is hard to avoid
any degradation in performance for such applications since they are severely bandwidth-
limited, and any loss in compression ratio is conspicuous in performance. If such perfor-
mance degradation is unacceptable, then a less aggressive version of the EC mechanism,
EC2, can be used. Overall, we conclude that our proposed mechanisms EC1 and EC2 are
both very effective in preserving most of the performance benefit that comes from data
compression while significantly reducing the negative effect of bit toggling increase (and
hence reducing the energy overhead).

Effect on DRAM and System Energy

Figure 6.15 shows the effect of C-Pack compression algorithm on the DRAM energy con-
sumption with and without energy control (normalized to the energy consumption of the
uncompressed baseline). These results include the overhead of the compression/decom-
pression hardware [38] and our mechanism (Section 6.5.4). and We make two observations
from the figure. First, as expected, many applications significantly reduce their DRAM
energy consumption (e.g., SLA, TRA, heartwall, nw). For example, for TRA, the 28.1% re-
duction in the DRAM energy (8.9% reduction in the total energy) is the direct cause of the
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significant reduction in the bit toggle count (from 2.4× to 1.1× as shown in Figure 6.12).
Overall, the DRAM energy is reduced by 8.3% for both EC1 and EC2. As DRAM energy
constitutes on average 28.8% out of total system energy (ranging from 7.9% to 58.3%),
and the decrease in performance is less than 1%, this leads to a total system energy reduc-
tion of 2.1% on average across applications using EC1/EC2 mechanisms.
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Figure 6.15: Effect on the DRAM energy with C-Pack compression algorithm.

Second, many applications that have significant growth in their bit toggle count due to
compression (e.g., MatrixMul and PageViewRank) are also very sensitive to the available
DRAM bandwidth. Therefore to provide any energy savings for these applications, it is
very important to dynamically monitor their current bandwidth utilization. We observe
that without the integration of current bandwidth utilization metric into our mechanisms
(described in Section 6.4.2), even a minor reduction in compression ratio for these applica-
tions could lead to a severe degradation in performance, and system energy. We conclude
that our proposed mechanisms can efficiently trade off compression ratio and bit toggle
count to improve both the DRAM and overall system energy.

6.7.2 On-Chip Interconnect Results

Effect on Toggles and Compression Ratio

Similar to the off-chip bus, we evaluate the effect of five compression algorithms on tog-
gle count and compression ratio for the on-chip interconnect (Figure 6.16 and Figure 6.17
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correspondingly) using GPGPU-sim and open-sourced applications as described in Sec-
tion 6.6. We make three major observations from these figures.
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Figure 6.16: Effect of Energy Control on the number of toggles in on-chip interconnect.
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Figure 6.17: Effect of Energy Control on compression ratio in on-chip interconnect.

First, the most noticeable difference when compared with the DRAM bus is that the
increase in bit toggle count is not as significant for all compression algorithms. It still in-
creases for all but one algorithm (Fibonacci), but we observe steep increases in bit toggle
count (e.g., around 60%) only for FPC and C-Pack algorithms. The reason for this be-
haviour is two fold. First, the on-chip data working set is different from that of the off-chip
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working set for some applications, and hence these data sets have different characteristics.
Second, we define bit toggles differently for these two channels (see Section 6.2).

Second, despite the variation in how different compression algorithms affect the bit
toggle count, both of our proposed mechanisms are effective in reducing the bit toggle
count (e.g., from 1.6× to 0.9× with C-Pack). Moreover, both mechanisms, EC1 and
EC2, preserve most of the compression ratio achieved by C-Pack algorithm. Therefore,
we conclude that our proposed mechanisms are effective in reducing bit toggles for both
on-chip interconnect and off-chip buses.

Third, in contrast to our evaluation of the DRAM bus, our results with interconnect
show that for all but one algorithm (C-Pack), both EC1 and EC2 are almost equally ef-
fective in reducing the bit toggle count while preserving the compression ratio. This
means that in the case of on-chip interconnect, there is no need to use more aggressive
decision functions to trade-off bit toggles with compression ratio, because the EC2 mech-
anism—the less aggressive of the two—already provides most of the benefits.

Finally, while the overall achieved compression ratio is slightly lower than in case of
DRAM, we still observe impressive compression ratios in on-chip interconnect, reaching
up to 1.6× on average across all open-sourced applications. While DRAM bandwidth tra-
ditionally is a primary performance bottleneck for many applications, on-chip interconnect
is usually designed such that its bandwidth will not be the primary performance limiter.
Therefore the achieved compression ratio in case of on-chip interconnect is expected to
translate directly into overall area and silicon cost reduction assuming fewer ports, wires
and switches are required to provide the same effective bandwidth. Alternatively, the
compression ratio can be translated into lower power and energy assuming lower clock
frequency can be applied due to lower bandwidth demands from on-chip interconnect.

Effect on Performance and Interconnect Energy

While it is clear that both EC1 and EC2 are effective in reducing the bit toggle count, it is
important to understand how they affect performance and interconnect energy in our sim-
ulated system. Figure 6.18 shows the effect of both proposed techniques on performance
(normalized to the performance of the uncompressed baseline). The key takeaway from
this figure is that for all compression algorithms, both EC1 and EC2 are within less than
1% of the performance of the designs without the energy control mechanisms. There are
two reasons for this. First, both EC1 and EC2 are effective in deciding when compression
is useful to improve performance and when it is not. Second, the on-chip interconnect is
less of a bottleneck in our example configuration than the off-chip bus, hence disabling
compression in some cases has smaller impact on the overall performance.
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Figure 6.18: Effect of Energy Control on performance when compression is applied to
on-chip interconnect.

Figure 6.19 shows the effect of data compression and bit toggling on the energy con-
sumed by the on-chip interconnect (results are normalized to the energy of the uncom-
pressed interconnect). As expected, compression algorithms that have higher bit toggle
count, have much higher energy cost to support data compression, because bit toggling is
the dominant part of the on-chip interconnect energy consumption. From this figure, we
observe that our proposed mechanisms, EC1 and EC2, are both effective in reducing the
energy overhead. The most notable reduction is for C-Pack algorithm, where we reduce
the overhead from 2.1× to just 1.1×.

Overall, we conclude that our mechanisms are effective in reducing the energy over-
heads related to increased bit toggling due to compression, while preserving most of the
bandwidth and performance benefits achieved through compression.

6.7.3 Effect of Metadata Consolidation

Metadata Consolidation (MC) is able to reduce the bit-level misalignment for several com-
pression algorithms (currently implemented for FPC and C-Pack compression algorithms).
We observe additional toggle reduction on the DRAM bus from applying MC (over EC2)
of 3.2% and 2.9% for FPC and C-Pack respectively across applications in the discrete and
mobile subgroups. Even though MC can mitigate some negative effects of bit-level mis-
alignment after compression, it is not effective in cases where data values within the cache
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Figure 6.19: Effect of Energy Control on on-chip interconnect energy.

line are compressed to different sizes. These variable sizes frequently lead to misalign-
ment at the byte granularity. While it is possible to insert some amount of padding into
the compressed line to reduce the misalignment, this would counteract the primary goal of
compression to minimize data size.
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Figure 6.20: Effect of Metadata Consolidation on DRAM bit toggle count with FPC com-
pression algorithm.

We also conducted an experiment with open-sourced applications where we compare
the impact of MC and EC separately, as well as together, for the FPC compression al-
gorithm. We observe similar results with the C-Pack compression algorithm. Figure 6.20
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lead to two observations. First, when EC is not employed, MC can substantially reduce the
bit toggle count, from 1.93× to 1.66× on average. Hence, in the case when the hardware
changes related to EC implementation are undesirable, MC can be used to avoid some of
the increase in the bit toggle count. Second, when energy control is employed (see EC2
and MC+EC2), the additional reduction in bit toggle count is relatively small. This means
that EC2 mechanism can cover most of the benefits that MC can provide. In summary,
we conclude that MC mechanism can be effective in reducing the bit toggle count when
energy control is not used. It does not require significant hardware changes other than the
minor modifications in the compression algorithm itself. At the same time, in the presence
of energy control mechanism, the additional effect of MC in toggle reduction is marginal.

6.8 Related Work

To the best of our knowledge, this is the first work that (i) identifies increased bit toggle
count in communication channels as a major drawback in enabling efficient data compres-
sion in modern systems, (ii) evaluates the impact and causes for this inefficiency in modern
GPU architectures for different channels across multiple compression algorithms, and (iii)
proposes and extensively evaluates different mechanisms to mitigate this effect to improve
overall energy efficiency. We first discuss prior works that propose more energy efficient
designs for DRAM, interconnects and mechanisms for energy efficient data communica-
tion in on-chip/off-chip buses and other communication channels. We then discuss prior
work that aims to address different challenges in efficiently applying data compression.

Low Power DRAM and Interconnects. A wide range of previous works propose
mechanisms and architectures to enable more energy-efficient operation of DRAM. Exam-
ples of these proposals include activating fewer bitlines [237], using shorter bitlines [134],
more intelligent refresh policies [147, 149, 171, 6, 116, 191, 113], dynamic voltage and
frequency scaling [47] and better management of data placement [267, 145, 148]. In the
case of interconnects, Balasubramonian et al. [24] propose a hybrid interconnect compris-
ing wires with different latency, bandwidth, and power characteristics for better perfor-
mance and energy efficiency. Previous works also propose different schemes to enable
and exploit low-swing interconnects [263, 236, 25] where reduced voltage swings during
signalling enables better energy efficiency. These works do not consider energy efficiency
in the context of data compression and are usually data-oblivious, hence the proposed solu-
tions can not alleviate the negative impact of increased toggle rates with data compression.

Energy Efficient Encoding Schemes. Data Bus Inversion (DBI) is an encoding tech-
nique proposed to enable energy efficient data communication. Widely used DBI algo-
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rithms include bus invert coding [221] and limited-weight coding [219, 220] which selec-
tively invert all the bits within a fixed granularity to either reduce the number of bit flips
along the communication channel or reduce the frequency of either 0’s or 1’s when trans-
mitting data. Recently, DESC [29] was proposed in the context of on-chip interconnects
to reduce power consumption by representing information by the delay between two con-
secutive pulses on a set of wires, thereby reducing the number of bit toggles. Jacobvitz et
al. [95] applied coset coding to reduce the number of bit flips while writing to memory by
mapping each dataword into a larger space of potential encodings. These encoding tech-
niques do not tackle the excessive bit toggle count generated by data compression and are
largely orthogonal to the our proposed mechanisms for toggle-aware data compression.

Efficient Data Compression. Several prior works [230, 12, 204, 184, 213, 3]
study main memory and cache compression with several different compression algo-
rithms [10, 185, 38, 203, 16]. These works exploit the capacity and bandwidth benefits
of data compression to enable higher performance and energy efficiency. These prior
works primarily tackle improving compression ratios, reducing the performance/energy
overheads of processing data for compression/decompression, or propose more efficient
architectural designs to integrate data compression. These works address different chal-
lenges in data compression and are orthogonal to our proposed toggle-aware compression
mechanisms. To the best of our knowledge, this is the first work to study the energy im-
plications of transferring compressed data over different on-chip/off-chip channels.

6.9 Summary

We observe that data compression, while very effective in improving bandwidth efficiency
in GPUs, can greatly increase the bit toggle count in the on-chip/off-chip interconnect.
Based on this new observation, we develop two new toggle-aware compression techniques
to reduce bit toggle count while preserving most of the bandwidth reduction benefits of
compression. Our evaluations across six compression algorithms and 242 workloads show
that these techniques are effective as they greatly reduce the bit toggle count while re-
taining most of the bandwidth reduction advantages of compression. We conclude that
toggle-awareness is an important consideration in data compression mechanisms for mod-
ern GPUs (and likely CPUs as well), and encourage future work to develop new solutions
for it.
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Chapter 7

Putting It All Together

In the previous chapters, we analyzed hardware-based data compression on a per layer ba-
sis; i.e., as applied to only main memory, only cache, or only interconnect. In this chapter,
we focus on issues that arise when combining data compression applied to multiple layers
of the memory system at the same time in a single design.

In the context of modern GPUs, on-chip cache capacity is usually not the bottleneck.
Instead, the bottleneck for most of our GPGPU applications is the off-chip bandwidth. In
addition, all of our GPU workloads have working set sizes that are too small to benefit from
main memory compression, and their compression ratios are very close to those of the cor-
responding off-chip compression ratios (since most of the data has little reuse/locality and
most of the data in these GPGPU applications is frequently accessed only once). Hence
there is little benefit in separately evaluating main memory compression and bandwidth
compression for the GPGPU applications that were available to us.

Thus, the focus of this chapter is on combining cache compression and main memory
compression for modern CPUs.

7.1 Main Memory + Cache Compression

We now show how main memory compression can be efficiently combined with cache
compression with two compression algorithms: FPC [10] and BDI [185].
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7.1.1 Effect on Performance

Main memory compression (including the LCP-based designs we introduced in Section
5) can improve performance in two major ways: 1) reducing memory footprint can re-
duce long-latency disk accesses, 2) reducing memory bandwidth requirements can enable
less contention on the main memory bus, which is an increasingly important bottleneck
in systems. In our evaluations, we do not take into account the former benefit as we do
not model disk accesses (i.e., we assume that the uncompressed working set fits entirely in
memory). However, we do evaluate the performance improvement due to memory band-
width reduction (including our optimizations for compressing zero values). Evaluations
using our LCP framework show that the performance gains due to the bandwidth reduc-
tion more than compensate for the slight increase in memory access latency due to memory
compression. In contrast, cache compression (as we introduced it in Section 3) improves
performance by reducing the number of main memory accesses, which is also an important
bottleneck in many systems today.

In our experiments, we compare eight different schemes that employ compression ei-
ther in the last-level cache, main memory, or both. Table 7.1 describes the eight schemes.
Each scheme is named (X, Y) where X defines the cache compression mechanism (if any)
and Y defines the memory compression mechanism the scheme uses.

No. Label Description
1 (None, None) Baseline with no compression
2 (FPC, None) or FPC-Cache LLC compression using FPC [10]
3 (BDI, None) or BDI-Cache LLC compression using BDI [185]
4 (None, FPC) or FPC-Memory Main memory compression (Ekman and Stenstrom [57])
5 (None, LCP-BDI) or LCP-BDI Main memory compression using LCP framework with BDI [184]
6 (FPC, FPC) Designs 2 and 4 combined
7 (BDI, LCP-BDI) Designs 3 and 5 combined
8 (BDI, LCP-BDI+FPC-Fixed) Design 3 combined with LCP-framework using BDI+FPC-Fixed

Table 7.1: List of evaluated designs.

Figure 7.1 shows the performance of single-core workloads using all our evaluated
designs, normalized to the baseline (None, None). We draw two major conclusions from
the figure.

First, the performance improvement of combined LLC and DRAM compression is
greater than that of LLC-only or DRAM-only compression alone. For example, LCP-
BDI improves performance by 6.1%, whereas (BDI, LCP-BDI) improves performance
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Figure 7.1: Performance comparison (IPC) of different compressed designs.

by 9.5%. Intuitively, this is due to the orthogonality of the benefits provided by cache
compression (which retains more cache lines that otherwise would have been evicted) and
DRAM compression (which brings in more cache lines that would otherwise have required
separate memory transfers on the main memory bus). We conclude that main memory and
cache compression frameworks integrate well and complement each other.

Second, a high compression ratio does not always imply an improvement in perfor-
mance. For example, while GemsFDTD is an application with a highly compressible
working set in both the cache and DRAM, its performance does not improve with LLC-
only compression schemes (due to the extra decompression latency), but improves sig-
nificantly with DRAM-only compression schemes. In contrast, LLC-only compression is
beneficial for omnetpp, whereas DRAM-only compression is not. This difference across
applications can be explained by the difference in their memory access patterns. We ob-
serve that when temporal locality is critical for the performance of an application (e.g.,
omnetpp and xalancbmk), then cache compression schemes are typically more helpful.
On the other hand, when applications have high spatial locality and less temporal local-
ity (e.g., GemsFDTD has an overwhelmingly streaming access pattern with little reuse),
they benefit significantly from the bandwidth compression provided by the LCP-based
schemes. Hence, if the goal is to improve performance of a wide variety of applications,
which may have a mix of temporal and spatial locality, our results suggest that employing
both memory and cache compression using our LCP-based designs are the best option. We
conclude that combined LLC and DRAM compression that takes advantage of our main
memory compression framework improves the performance of a wide variety of applica-
tions.
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7.1.2 Effect on Bus Bandwidth

When cache blocks and DRAM pages are compressed, the traffic between the LLC and
DRAM can also be compressed. This can have multiple positive effects: i) reduction in
the average latency of memory accesses, which can lead to improvement in the overall
system performance, ii) decrease in the bus energy consumption due to the decrease in the
number of transfers.

Figure 7.2 shows the reduction in main memory bandwidth between LLC and DRAM
(in terms of bytes per kiloinstruction, normalized to a system with no compression) using
different compression designs. Two major observations are in order.
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Figure 7.2: Effect of cache and main memory compression on memory bandwidth.

First, DRAM compression schemes are more effective in reducing bandwidth usage
than cache compression schemes. This is because cache-only compression schemes reduce
bandwidth consumption by reducing the number of LLC misses but they cannot reduce
the bandwidth required to transfer a cache line from main memory. Overall, combined
cache-DRAM compression schemes such as (FPC, FPC) and (BDI, LCP-BDI+FPC-fixed)
decrease bandwidth consumption by more than 46%, by combining the reduction in both
LLC misses and bandwidth required to transfer each cache line.

Second, there is a strong correlation between bandwidth compression and performance
improvement (Figure 7.1). Applications that show a significant reduction in bandwidth
consumption (e.g., GemsFDFD, cactusADM, soplex, zeusmp, leslie3d, tpc*) also see large
performance improvements. There are some noticeable exceptions to this observation,
e.g., h264ref, wrf and bzip2. Although the memory bus traffic is compressible in these
applications, main memory bandwidth is not the bottleneck for their performance.
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7.1.3 Effect on Energy

By reducing the number of data transfers on the memory bus, a compressed cache and
main memory design also reduces the energy consumption of the memory bus. Figure 7.3
shows the reduction in consumed energy1 by the main memory bus with different compres-
sion designs. We observe that DRAM compression designs outperform cache compression
designs, and LCP-based designs provide higher reductions than previous mechanisms for
main memory compression. The largest energy reduction, 33% on average, is achieved
by combined cache compression and LCP-based main memory compression mechanisms,
i.e., (BDI, LCP-BDI) and (BDI, LCP-BDI+FPC-fixed). Even though we do not evaluate
full system energy due to simulation infrastructure limitations, such a large reduction in
main memory bus energy consumption can have a significant impact on the overall sys-
tem energy, especially for memory-bandwidth-intensive applications. We conclude that
our framework for main memory compression can enable significant energy savings, es-
pecially when compression is applied in both the last level cache and main memory.
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Figure 7.3: Effect of cache and main memory compression on DRAM bus energy.

1Normalized to the energy of the baseline system with no compression.
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Chapter 8

Conclusions and Future Work

Memory hierarchies play a significant role in the performance and energy efficiency of
many modern systems, from mobile devices to data centers and supercomputers. Unfor-
tunately, the limited resources of these memory hierarchies are not always utilized effi-
ciently. One of these sources of inefficiency is redundancy in the data that is stored and
transferred. We observe that this redundancy can be efficiently explored using hardware-
based data compression. In Chapter 2, we described what are the key challenges against
making hardware-based data compression practical across major layers of the memory
hierarchy: caches, main memory, and on-chip/off-chip buses.

In this dissertation, we proposed three major sets of solution to make hardware-based
data compression efficient and practical in the context of all three layers of the memory
hierarchy. First, we observed that a simple and fast, yet efficient compression algorithm
can make data compression practical even for on-chip caches. In Chapter 3, we described
such an algorithm, called Base-Delta-Immediate Compression, and a corresponding on-
chip cache design to support data compression. The performance benefits observed are
on-par with the performance benefits of doubling the cache size. Then, in Chapter 4,
we showed that compressed block size can be sometimes indicative of data reuse and
can be efficiently used as a new dimension in cache management decisions. The perfor-
mance benefits of our proposed compression-aware mechanism which takes into account
compressed block size in making cache replacement and insertion decisions, results in
performance on-par with that provided by doubling the cache size. Overall, both cache
compression and compression-aware replacement policies using compressed block size
deliver performance on par with that of a conventional cache with 4× capacity.

Second, we proposed a new main memory compression framework, called Linearly
Compressed Pages (LCP), that can provide low-overhead support for data compression in
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memory with different compression algorithms, to achieve higher effective memory ca-
pacity (69% on average) and higher off-chip bandwidth (24% on average). LCP improves
performance by 6%/14%/11% for single-/two-/four-core workloads, relative to a system
without main memory compression.

Third, we observed that there is a high potential for bandwidth compression for mod-
ern GPGPU applications. However, in order to realize this potential in an energy efficient
manner, a new problem—the significant increase in bit flips (bit toggles) due to com-
pressed data transfers on the interconnect—needs to be properly addressed. This increase
is so high that it can lead to a 2.1× average increase in the consumed energy by the on-
chip communication channel. We showed two major potential solutions to this problem,
called Energy Control and Metadata Consolidation, which can preserve most of the bene-
fits of compression without significant increase in energy consumption due to the bit toggle
problem.

8.1 Future Work Directions

This dissertation on data compression significantly advances this subfield of computer
architecture, but as it commonly happens, also highlights some completely new problems
and opportunities. We conclude our dissertation by describing three such opportunities.

8.1.1 Compiler-Assisted Data Compression

One problem is the dependence of the existing compression algorithms on how the ap-
plication data structures are mapped to main memory and on-chip caches (as we show
in Chapter 3). For example, if pointer-like values are allocated side by side, they have
a higher chance to be compressed well with BDI compression algorithm, but putting to-
gether (e.g., in the same cache line) a pointer and a boolean value would obviously lead
to higher dynamic range, and hence lower compressibility. The latter frequently happens
when arrays or lists of structs are defined in the program with different types mixed to-
gether. For applications with such data types, we want to allocate objects such that the
spatial locality of similar-valued members is preserved. More precisely, we would like to
split an object up into respective members and allocate space for those members based on
what kinds of values they hold. These decisions of splitting and allocation may be made
during compile time or runtime, depending on the implementation. Compression ratio im-
proves from using members with similar value-types that are pooled (allocated) together
and our preliminary studies already show a significant potential of such an approach. We
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aim to extend this idea to improve the compressibility of main memory pages that suffer
from mixing data of very different types.

8.1.2 Data Compression for Non-Volatile Memories

LCP [184] main memory compression design was built on top of commodity DRAM
main memory, but data compression is fundamentally independent of the technology
that was used to build main memory. In our work, we aim to investigate the po-
tential of extending LCP to other emerging non-volatile memory technologies (e.g.,
PCM [188, 125, 127, 126, 261, 249, 197], STT-MRAM [80, 123], RRAM [248]) and
hybrid memory technologies (e.g., [157, 260, 50, 193, 196]). We expect that longer ac-
cess/write latencies of these emerging memory technologies will allow the system designs
to use more aggressive compression algorithms, and hence the capacity benefits of LCP-
based designs can increase even further.

8.1.3 New Efficient Representations for Big Data

Many modern applications, such as machine learning applications, applications from the
bioinformatics field, modern databases etc., operate on data sets that significantly exceed
the available main memory. At the same time, these applications do not always require the
full precision or accuracy in computation, as their input data are already significantly im-
precise or noisy. In our future work, we would like to investigate the potential of partially
replacing the accesses to the huge data sets in these applications with the accesses to their
much smaller representations or signatures. The key idea is to build a lower-resolution
representation of the data set, keep it up-to-date in main memory, and refer to it when
information to this data set is missing in the main memory. We then dynamically monitor
whether the application meets its desired quality of output, and update the aggressiveness
of our speculation accordingly. Our related work in recovery-free value prediction using
approximate loads [231, 258, 257] hints that this can be significant promise toward this
direction of research.
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Other Works of This Author

I have been actively involved in research projects outside the scope of my thesis.

Systems. I worked on web search systems for mobile phones where users’ interest in
certain trending events can be predicted and efficiently prefetched to extend the phone’s
battery life [182]. Previously, I also worked on improving the compile time of existing
compilers with machine learning techniques that can predict which optimizations are ac-
tually useful for performance [178].

Main Memory. In collaboration with Vivek Seshadri, I proposed several ways of
better utilizing existing DRAM-based main memories: (i) fast bulk data operations like
copying and memory initialization using RowClone [207], and (ii) an enhanced virtual
memory framework that enables fine-grained memory management [210]. In collabora-
tion with Donghyuk Lee, I worked on (i) reducing the latency of existing DRAM memo-
ries [133], and (ii) increasing the bandwidth available for existing (and future) 3D stacking
designs [132]. In collaboration with Hasan Hassan, I also worked on reducing DRAM
latency by exploiting our new observation that many DRAM rows can be accessed signif-
icantly faster since they have sufficient amount of charge left [77]. In collaboration with
Kevin Chang, I investigated the potential of reducing different DRAM timing parameters
to decrease its latency and their effect on the error rate [35].

GPUs. In collaboration with Nandita Vijaykumar, I worked on new ways of utilizing
existing GPU resources through flexible data compression [242, 243] and virtualization
with oversubscription [241].

Bioinformatics. In collaboration with Hongyi Xin, I worked on new filters for align-
ment in genome read mapping [253], and techniques to find the optimal seeds for a partic-
ular read in the genome mapping process [254].

Approximate Computing. Together with my collaborators from Georgia Tech,
I worked on rollback-free value prediction mechanisms for both CPUs [231] and
GPUs [257, 258].
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