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Abstract

In most modern systems, the memory subsystem is managed and accessed at multiple
diUerent granularities at various resources. The software stack typically accesses data at
a word granularity (typically 4 or 8 bytes). The on-chip caches store data at a cache line
granularity (typically 64 bytes). The commodity oU-chip memory interface is optimized
to fetch data from main memory at a cache line granularity. The main memory capacity
itself is managed at a page granularity using virtual memory (typically 4KB pages with
support for larger super pages). The oU-chip commodity DRAM architecture internally
operates at a row granularity (typically 8KB). In this thesis, we observe that this curse of
multiple granularities results in signiVcant ineXciency in the memory subsystem.

We identify three speciVc problems. First, page-granularity virtual memory unneces-
sarily triggers large memory operations. For instance, with the widely-used copy-on-write
technique, even a single byte update to a virtual page results in a full 4KB copy operation.
Second, with existing oU-chip memory interfaces, to perform any operation, the proces-
sor must Vrst read the source data into the on-chip caches and write the result back to
main memory. For bulk data operations, this model results in a large amount of data
transfer back and forth on the main memory channel. Existing systems are particularly
ineXcient for bulk operations that do not require any computation (e.g., data copy or ini-
tialization). Third, for operations that do not exhibit good spatial locality, e.g., non-unit
strided access patterns, existing cache-line-optimized memory subsystems unnecessarily
fetch values that are not required by the application over the memory channel and store
them in the on-chip cache. All these problems result in high latency, and high (and often
unnecessary) memory bandwidth and energy consumption.

To address these problems, we present a series of techniques in this thesis. First, to
address the ineXciency of existing page-granularity virtual memory systems, we propose
a new framework called page overlays. At a high level, our framework augments the
existing virtual memory framework with the ability to track a new version of a subset of
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cache lines within each virtual page. We show that this simple extension is very powerful
by demonstrating its beneVts on a number of diUerent applications.

Second, we show that the analog operation of DRAM can perform more complex op-
erations than just store data. When combined with the row granularity operation of com-
modity DRAM, we can perform these complex operations eXciently in bulk. SpeciVcally,
we propose RowClone, a mechanism to perform bulk data copy and initialization oper-
ations completely inside DRAM, and Buddy RAM, a mechanism to perform bulk bitwise
logical operations using DRAM. Both these techniques achieve an order-of-magnitude im-
provement in performance and energy-eXciency of the respective operations.

Third, to improve the performance of non-unit strided access patterns, we propose
Gather-Scatter DRAM (GS-DRAM), a technique that exploits the module organization of
commodity DRAM to eUectively gather or scatter values with any power-of-2 strided
access pattern. For these access patterns, GS-DRAM achieves near-ideal bandwidth and
cache utilization, without increasing the latency of fetching data from memory.

Finally, to improve the performance of the protocol to maintain the coherence of dirty
cache blocks, we propose the Dirty-Block Index (DBI), a new way of tracking dirty blocks
in the on-chip caches. In addition to improving the eXciency of bulk data coherence, DBI
has several applications, including high-performance memory scheduling, eXcient cache
lookup bypassing, and enabling heterogeneous ECC for on-chip caches.
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Chapter 1

Introduction

In recent years, energy-eXciency has become a major design factor in systems. This trend
is fueled by the ever-growing use of battery-powered hand-held devices on the one end,
and large-scale data centers on the other end. To ensure high energy-eXciency, all the
resources in a system (e.g., processor, caches, memory) must be used eXciently.

To simplify system design, each resource typically exposes an interface/abstraction to
other resources in the system. Such abstractions allow system designers to adopt newer
technologies to implement a resource withoutmodifying other resources. However, a poor
abstraction to a resource that does not expose all its capabilities can signiVcantly limit the
overall eXciency of the system.

1.1 Focus of This Dissertation: The Memory Subsystem

This dissertation focuses on the eXciency of the memory subsystem. Main memory man-
agement in a modern system has two components: 1) memory mapping (aUects capacity
management, protection, etc.), and 2) memory access (reads, writes, etc.). We observe that
in existing systems, there is a mismatch in the granularity at which memory is mapped and
accessed at diUerent resources, resulting in signiVcant ineXciency. Figure 1.1 shows the
diUerent layers of the system stack and their interaction with diUerent memory resources.

1.1.1 DiUerent Granularities of Data Storage and Access

First, most modern operating systems (OS) ubiquitously use virtual memory [60] to man-
age main memory capacity. To map virtual memory to physical memory, virtual memory

1
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systems use a set of mapping tables called page tables. In order to keep the overhead of
the page tables low, most virtual memory systems typically manage memory at a large
granularity (4KB pages or larger super pages). Second, to access memory, the instruction
set architecture (ISA) exposes a set of load and store instructions to the software stack. To
allow eXcient representation of various data types, such instructions typically allow soft-
ware to access memory at a small granularity (e.g., 4B or 8B words). Third, any memory
request generated by load/store instructions go through a hierarchy of on-chip caches all
the way to the oU-chip main memory. In order to lower the cost of the cache tag stores and
the memory interface, the on-chip caches and the oU-chip memory interface are typically
optimized to store and communicate data at a granularity wider than a single word (e.g.,
64B cache lines). Finally, to reduce cost-per-bit, commodity DRAM architectures internally
operate at a row granularity (typically 8KB). It is clear that data are stored and accessed
at diUerent granularities in diUerent memory resources. We identify three problems that
result from this mismatch in granularity.

1.1.2 The Curse of Multiple Granularities

First, we observe that the page-granularity virtual memory management can result in
unnecessary work. For instance, when using the copy-on-write technique, even a write
to a single byte can trigger a full page copy operation. Second, existing oU-chip memory
interfaces only expose a read-write abstraction to main memory. As a result, to perform
any operation, the processor must read all the source data from main memory and write
back the results to main memory. For operations that involve a large amount of data,
i.e., bulk data operations, this approach results in a large number of data transfers on the
memory channel. Third, many access patterns trigger accesses with poor spatial locality
(e.g., non-unit strided accesses). With existing caches and oU-chip interfaces optimized for
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cache line granularity, such access patterns fetch a large amount of data not required by
the application over the memory channel and store them in the on-chip cache.

All these problems result in high latency, high (and often unnecessary) memory band-
width, and ineXcient cache utilization. As a result, they aUect the performance of not
only the application performing the operations, but also the performance of other co-
running applications. Moreover, as data movement on the memory channel consumes
high energy [57], these operations also lower the overall energy-eXciency of the system.
Chapter 2 motivates these problems in more detail using case studies.

1.2 Related Work

Several prior works have proposed mechanisms to improve memory eXciency. In this
section, we discuss some closely related prior approaches. We group prior works based on
their high level approach and describe their shortcomings.

1.2.1 New Virtual Memory Frameworks

Page-granularity virtual memory hinders eXcient implementation of many techniques
that require tracking memory at a Vne granularity (e.g., Vne-grained memory deduplica-
tion, Vne-grained metadata management). Prior works have proposed new frameworks
to implement such techniques (e.g., HiCAMP [48], Mondrian Memory Protection [236],
architectural support for shadow memory [159, 161, 249, 250, 253]). Unfortunately, these
mechanisms either signiVcantly change the existing virtual memory structure, thereby re-
sulting in high cost, or introduce signiVcant changes solely for a speciVc functionality,
thereby reducing overall value.

1.2.2 Adding Processing Logic Near Memory (DRAM)

One of the primary sources of memory ineXciency in existing systems is the data move-
ment. Data has to travel oU-chip buses and multiple levels of caches before reaching the
CPU. To avoid this data movement, many works (e.g., Logic-in-Memory Computer [209],
NON-VON Database Machine [14], EXECUBE [127], Terasys [78], Intelligent RAM [169],
Active Pages [166], FlexRAM [70, 117], Computational RAM [66], DIVA [61] ) have pro-
posed mechanisms and models to add processing logic close to memory. The idea is to
integrate memory and CPU on the same chip by designing the CPU using the memory
process technology. While the reduced data movement allows these approaches to enable
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low-latency, high-bandwidth, and low-energy data communication, they suUer from two
key shortcomings.

First, this approach of integrating processor on the same chip as memory greatly in-
creases the overall cost of the system. Second, DRAM vendors use a high-density process
to minimize cost-per-bit. Unfortunately, high-density DRAM process is not suitable for
building high-speed logic [169]. As a result, this approach is not suitable for building
a general purpose processor near memory, at least with modern logic and high-density
DRAM technologies.

1.2.3 3D-Stacked DRAM Architectures

Some recent DRAM architectures [6, 107, 145] use 3D-stacking technology to stack multi-
ple DRAM chips on top of the processor chip or a separate logic layer. These architectures
oUer much higher bandwidth to the logic layer compared to traditional oU-chip inter-
faces. This enables an opportunity to oYoad some computation to the logic layer, thereby
improving performance. In fact, many recent works have proposed mechanisms to im-
prove and exploit such architectures (e.g., [20, 21, 24, 28, 68, 69, 74, 75, 82, 90, 95, 135, 153,
218, 244, 255]). Unfortunately, despite enabling higher bandwidth compared to oU-chip
memory, such 3D-stacked architectures are still require data to be transferred outside the
DRAM chip, and hence can be bandwidth-limited. In addition, thermal constraints con-
strain the number of chips that can be stacked, thereby limiting the memory capacity. As
a result, multiple 3D-stacked DRAMs are required to scale to large workloads.

1.2.4 Adding Logic to the Memory Controller

Many prior works have proposed mechanisms to export certain memory operations to the
memory controller with the goal of improving the eXciency of the operation (e.g., Copy
Engine [248] to perform bulk copy or initialization, Impulse [39] to perform gather/scatter
operations, Enhanced Memory Controller [88] to accelerate dependent cache misses). Re-
cent memory technologies which stack DRAM chips on top of a logic layer containing
the memory controller [6, 107] will likely make this approach attractive. Although these
mechanisms deVnitely reduce the pressure on the CPU and on-chip caches, they still have
to go through the cache-line-granularity main memory interface, which is ineXcient to
perform these operations.
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1.2.5 Supporting Fine-grained Memory Accesses in DRAM

A number of works exploit the module-level organization of DRAM to enable eXcient
Vne-grained memory accesses (e.g., Mini-rank [252], Multi-Core DIMM [19], Threaded
memory modules [231], Scatter/Gather DIMMs [38]). These works add logic to the DRAM
module that enables the memory controller to access data from individual chips rather
than the entire module. Unfortunately, such interfaces 1) are much costlier compared to
existing memory interfaces, 2) potentially lower the DRAM bandwidth utilization, and
3) do not alleviate the ineXciency for bulk data operations.

1.2.6 Improving DRAM Latency and Parallelism

A number of prior works have proposed new DRAMmicroarchitectures to either lower the
latency of DRAM access or enable more parallelism within DRAM. Approaches employed
by these works include 1) introducing heterogeneity in access latency inside DRAM for
a low cost (e.g., Tiered-Latency DRAM [137], Asymmetric Banks [204], Dynamic Asym-
metric Subarrays [146], Low-cost Interlinked Subarrays [46]), 2) improving parallelism
within DRAM (e.g., Subarray-level Parallelism [125], parallelizing refreshes [47], Dual-
Port DRAM [138]), 3) exploiting charge characteristics of cells to reduce DRAM latency
(e.g., Multi-clone-row DRAM [49], Charge Cache [89]), 4) reducing the granularity of in-
ternal DRAM operation through microarchitectural changes (e.g., Half-DRAM [246], Sub-
row activation [224]), 5) adding SRAM cache to DRAM chips [93], 6) exploiting variation
in DRAM (e.g., Adaptive Latency DRAM [136], FLY-DRAM [45]), and 7) better refresh
scheduling and refresh reduction (e.g., [29, 77, 104, 119, 122, 144, 163, 175, 211]. While
many of these approaches will improve the performance of various memory operations,
they are still far frommitigating the unnecessary bandwidth consumed by certain memory
operations (e.g., bulk data copy, non-unit strided access).

1.2.7 Reducing Memory Bandwidth Requirements

Many prior works have proposed techniques to reduce memory bandwidth consumption
of applications. Approaches used by these works include 1) data compression (e.g., [65, 170,
171, 172, 173, 222]), 2) value prediction (e.g., [141, 188]), 3) load approximation (e.g., [152,
221]), 4) adaptive granularity memory systems (e.g., [242, 243]), and 5) better caching to
reduce the number of memory requests (e.g., [106, 176, 194]). Some of these techniques re-
quire signiVcant changes to the hardware (e.g., compression, adaptive granularity memory
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systems). Having said that, all these approaches are orthogonal to the techniques proposed
in this dissertation.

1.2.8 Mitigating Contention for Memory Bandwidth

One of the problems that result from bulk data operations is the contention for memory
bandwidth, which can negatively aUect the performance of applications co-running in the
system. A plethora of prior works have proposed mechanisms to mitigate this performance
degradation using better memory request scheduling (e.g., [26, 27, 76, 103, 114, 123, 124,
133, 134, 154, 156, 157, 213, 214, 225, 247]). While these works improve overall system
performance and fairness, they do not fundamentally reduce the bandwidth consumption
of the applications performing the bulk operations.

1.3 Thesis Statement and Overview

Our goal in this thesis is to improve the overall eXciency of the memory subsystem
without signiVcantly modifying existing abstractions and without degrading the perfor-
mance/eXciency of applications that do not use our proposed techniques. Towards this
end, our thesis is that,

we can exploit the diversity in the granularity at which diUerent hardware
resources manage memory to mitigate the ineXciency that arises from that
very diversity. To this end, we propose to augment existing processor and
main memory architectures with some simple, low-cost features that bridge
the gap resulting from the granularity mismatch.

Our proposed techniques are based on two observations. First, modern processors are
capable of tracking data at a cache-line granularity. Therefore, even though memory ca-
pacity is managed at a larger page granularity, using some simple features, it should be
possible to enable more eXcient implementations of Vne-grained memory operations. Sec-
ond, although oU-chip memory interfaces are optimized to access cache lines, we observe
that the commodity memory architecture has the ability to internally operate at both a
bulk row granularity and at a Vne word granularity.

We exploit these observations to propose a new virtual memory framework that en-
ables eXcient Vne-grained memory management, and a series of techniques to exploit the
commodity DRAM architecture to eXciently perform bulk data operations and accelerate
memory operations with low spatial locality.
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1.4 Contributions

This dissertation makes the following contributions.

1. We propose a new virtual memory framework called page overlays that allows mem-
ory to be managed at a sub-page (cache line) granularity. The page overlays frame-
work signiVcantly improves the eXciency of several memory management tech-
niques, e.g., copy-on-write, and super pages. Chapter 3 describes our framework, its
implementation, and applications in detail.

2. We observe that DRAM internally operates at a large, row granularity. Through
simple changes to the DRAM architecture, we propose RowClone, a mechanism that
enables fast and eXcient bulk copy operations completely within DRAM.We exploit
RowClone to accelerate copy-on-write and bulk zeroing, two important primitives
in modern systems. Chapter 5 describes RowClone and its applications in detail.

3. We observe that the analog operation of DRAM has the potential to eXciently per-
form bitwise logical operations. We propose Buddy RAM, a mechanism that exploits
this potential to enable eXcient bulk bitwise operations completely with DRAM.We
demonstrate the performance beneVts of this mechanism using 1) a database bitmap
index library, and 2) an eXcient implementation of a set data structure. Chapter 6
describes Buddy RAM in detail.

4. We observe that commodity DRAM architectures heavily interleave data of a single
cache line across many DRAM devices and multiple arrays within each device. We
propose Gather-Scatter DRAM (GS-DRAM), which exploits this fact to enable the
memory controller to gather or scatter data of common access patterns with near
ideal eXciency. We propose mechanisms that use GS-DRAM to accelerate non-unit
strided access patterns in many important applications, e.g., databases. Chapter 7
describes GS-DRAM and its applications in detail.

5. Our mechanisms to perform operations completely in DRAM require appropriate
dirty cache lines from the on-chip cache to be Wushed. We propose the Dirty-Block
Index (DBI) that signiVcantly improves the eXciency of this Wushing operation.
Chapter 8 describes DBI and several other of its potential applications in detail.



Chapter 2

The Curse of Multiple Granularities

As mentioned in Chapter 1, diUerent memory resources are managed and accessed at
a diUerent granularity — main memory capacity is managed at a page (typically 4KB)
granularity, on-chip caches and oU-chip memory interfaces store and access data at a cache
line (typically 64B) granularity, DRAM internally performs operations at a row granularity
(typically 8KB), and the applications (and CPU) access data at a small word (typically 4B
or 8B) granularity. This mismatch results in a signiVcant ineXciency in the execution of
two important classes of operations: 1) bulk data operations, and 2) operations with low
spatial locality. In this chapter, we discuss the sources of this ineXciency for each of these
operations using one example operation in each class.

2.1 Bulk Data Operations

A bulk data operation is one that involves a large amount of data. In existing systems, to
perform any operation, the corresponding data must Vrst be brought to the CPU L1 cache.
Unfortunately, this model results in high ineXciency for a bulk data operation, especially
if the operation does not involve any computation on the part of the processor (e.g., data
movement). To understand the sources of ineXciency in existing systems, let us consider
the widely-used copy-on-write [79] technique.

2.1.1 The Copy-on-Write Technique

Figure 2.1 shows how the copy-on-write technique works. When the system wants to copy
the data from the virtual page V1 to the virtual page V2, it simply maps the page V2 to

8
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Figure 2.1: The Copy-on-Write technique and shortcomings of existing systems

the same physical page (P1) to which V1 is mapped to. Based on the semantics of virtual
memory, any read access to either virtual page is directed to the same page, ensuring
correct execution. In fact, if neither of the two virtual pages are modiVed after the remap,
the system would have avoided an unnecessary copy operation. However, if one of the
virtual pages, say V2, does receive a write, the system must perform three steps. First, the
operating system must identify a new physical page (P2) from the free page list. Second, it
must copy the data from the original physical page (P1) to the newly identiVed page (P2).
Third, it must remap the virtual page that received the write (V2) to the new physical page
(P2). After these steps are completed, the system can execute the write operation.

2.1.2 Sources of IneXciency in Executing Copy-on-Write

Existing interfaces to manage and access the memory subsystem result in several sources
of ineXciency in completing a copy-on-write operation. First, existing virtual memory
systems manage main memory at a large page granularity. Therefore, even if only a single
byte or word is modiVed in the virtual page V2, the system must allocate and copy a full
physical page. This results in high memory redundancy. Second, the CPU accesses data at
a word or at best a vector register granularity. Existing systems must therefore perform
these copy operations one word or a vector register at a time. This results in high latency
and ineXcient use of the CPU. Third, all the cache lines involved in the copy operation
must be transferred from main memory to the processor caches. These cache line transfers
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result in high memory bandwidth consumption and can potentially cause cache pollution.
Finally, all the data movement between the CPU, caches, and main memory consumes
signiVcant amounts of energy.

Ideally, instead of copying an entire page of data, the system should eliminate all the
redundancy by remapping only the data that is actually modiVed. In a case where the
entire page needs to be copied, the system should all the unnecessary data movement by
performing the copy operation completely in main memory.

2.2 Fine-grained Operations with Low Spatial Locality

As we mentioned in Chapter 1, the on-chip caches and the oU-chip memory interface are
both optimized to store and communicate wide cache lines (e.g., 64B). However, the data
types typically used by applications are much smaller than a cache line. While access
patterns with good spatial locality beneVt from the cache-line-granularity management,
existing systems incur high ineXciency when performing operations with low spatial lo-
cality. SpeciVcally, non-unit strided access patterns are common in several applications,
e.g., databases, scientiVc computing, and graphics. To illustrate the shortcomings of exist-
ing memory interfaces, we use an example of an in-memory database table.

2.2.1 Accessing a Column from a Row-Oriented Database Table

In-memory databases are becoming popular among many applications. A table in such a
database consist of many records (or rows). Each record in turn consists of many Velds
(or columns). Typically, a table is stored either in the row-oriented format or the column-
oriented format. In the row-oriented format or row store, all Velds of a record are stored
together. On the other hand, in the column-oriented format or column store, the values of
each Veld from all records are stored together. Depending on the nature of the query being
performed on the table, one format may be better suited than the other. For example, the
row store is better suited for inserting new records or executing transactions on existing
records. On the other hand, the column store is better suited for executing analytical
queries that aim to extract aggregate information from one or few Velds of many records.

Unfortunately, neither organization is better suited for both transactions and ana-
lytical queries. With the recently growing need for real-time analytics, workloads that
run both transactions and analytics on the same system, referred to as Hybrid Transac-
tion/Analytics Processing or HTAP [17], are becoming important. Accessing a column of
data from a row store results in a strided access pattern.
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Figure 2.2: Accessing a column from a row store

2.2.2 Shortcomings of Strided Access Patterns

Figure 2.2 shows the shortcomings of accessing a column of data from a database table
that is stored as a row store. For ease of explanation, we assume that each record Vts
exactly into a cache line. As shown in the Vgure, each cache line contains only one useful
value. However, since the caches and memory interface in existing systems are heavily
optimized to store and access cache lines, existing systems have to fetch more data than
necessary to complete the strided access operation. In the example shown in the Vgure, the
system has to bring eight times more data than necessary to access a single column from
a row store. This ampliVcation in the amount of data fetched results in several problems.
First, it signiVcantly increases the latency to complete the operation, thereby degrading the
performance of the application. Second, it results in ineXcient use of memory bandwidth
and on-chip cache space. Finally, since diUerent values of the strided access pattern are
stored in diUerent cache lines, it is diXcult to enable SIMD (single instruction multiple
data) optimizations for the computation performing the strided access pattern.

Ideally, the memory system should be able to identify the strided access pattern (either
automatically or with the help of the application), and fetch cache lines from memory that
contain only values from the access pattern. This will eliminate all the ineXciency that
results from the data overfetch and also seamlessly enable SIMD optimizations.
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2.3 Goal of This Dissertation

In this dissertation, our goal is to develop eXcient solutions to address the problems that
result from the mismatch in the granularity of memory management at diUerent resources.
To this end, our approach is to exploit the untapped potential in various hardware struc-
tures by introducing new virtual memory and DRAM abstractions that mitigate the nega-
tive impact of multiple granularities.

SpeciVcally, Vrst, we observe that modern processors can eXciently track data at a
cache line granularity using the on-chip caches. We exploit this to propose a new vir-
tual memory abstraction called Page Overlays to improve the eXciency of many Vne-
grained memory operations. Second, we observe that DRAM technology can be used to
perform a variety of operations rather than just store data. We exploit this potential to de-
sign two mechanisms: RowClone to perform bulk copy and initialization operations inside
DRAM, and Buddy RAM to perform bulk bitwise logical operations using DRAM. Third,
we observe that commodity DRAM modules interleave data across multiple DRAM chips.
We exploit this architecture to design Gather-Scatter DRAM, which eXciently gathers or
scatters data with access patterns that normally exhibit poor spatial locality. Finally, we
propose the Dirty-Block Index, which accelerates the coherence protocol that ensures the
coherence of data between the caches and the main memory.

The rest of the dissertation is organized as follows. Chapter 3 describes our new page
overlay framework. Chapter 4 provides a detailed background on modern DRAM design
and architecture. Chapters 5, 6, and 7 describe RowClone, Buddy RAM, and Gather-Scatter
DRAM, respectively. Chapter 8 describes the Dirty-Block Index. Finally, we conclude the
dissertation and present some relevant future work in Chapter 9.



Chapter 3

Page Overlays

As described in Section 2.1.2, the large page granularity organization of virtual memory
results in signiVcant ineXciency for many operations (e.g., copy-on-write). The source of
this ineXciency is the fact that the large page granularity (e.g., 4KB) ampliVes the amount
of work that needs to be done for simple Vne-granularity operations (e.g., few bytes). Sec-
tion 2.1.2 explains this problem with the example of the copy-on-write technique, wherein
modiVcation of a small amount of data can trigger a full page copy operation. In addition
to copy-on-write, which is widely used in many applications, we observe that the large
page granularity management hinders eXcient implementation of several techniques like
Vne-grained deduplication [48, 83], Vne-grained data protection [235, 236], cache-line-
level compression [65, 112, 172], and Vne-grained metadata management [159, 249].

While managing memory at a Vner granularity than pages enables several techniques
that can signiVcantly boost system performance and eXciency, simply reducing the page
size results in an unacceptable increase in virtual-to-physical mapping table overhead and
TLB pressure. Prior works to address this problem either rely on software techniques [83]
(high performance overhead), propose hardware support speciVc to a particular applica-
tion [159, 200, 249] (low value for cost), or signiVcantly modify the structure of existing
virtual memory [48, 236] (high cost for adoption). In this chapter, we describe our new
virtual memory framework, called page overlays, that enables eXcient implementation of
several Vne-grained memory management techniques.

Originally published as “Page Overlays: An Enhanced Virtual Memory Framework to Enable Fine-grained

Memory Management” in the International Symposium on Computer Architecture, 2015 [195]
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3.1 Page Overlays: Semantics and BeneVts

We Vrst present a detailed overview of the semantics of our proposed virtual memory
framework, page overlays. Then we describe the beneVts of overlays using the example of
copy-on-write. Section 3.4 describes several applications of overlays.

3.1.1 Overview of Semantics of Our Framework

Figure 3.1 shows our proposed virtual memory framework. The Vgure shows a virtual
page mapped to a physical page as in existing frameworks. For ease of explanation, we
assume each page has only four cache lines. As shown in the Vgure, the virtual page is
also mapped to another structure referred to as overlay. There are two aspects to a page
overlay. First, unlike the physical page, which has the same size as the virtual page, the
overlay of a virtual page contains only a subset of cache lines from the page, and hence is
smaller in size than the virtual page. In the example in the Vgure, only two cache lines (C1
and C3) are present in the overlay. Second, when a virtual page has both a physical page
and an overlay mapping, we deVne the access semantics such that any cache line that is
present in the overlay is accessed from there. Only cache lines that are not present in the
overlay are accessed from the physical page. In our example, accesses to C1 and C3 are
mapped to the overlay, and the remaining cache lines are mapped to the physical page.

C4
C3
C2
C1 C4

C3
C2
C1

C3
C1

Virtual
Page

Physical
Page

Overlay

Figure 3.1: Semantics of our proposed framework

3.1.2 Overlay-on-write: A More EXcient Copy-on-write

We described the copy-on-write technique and its shortcomings in detail in Section 2.1.
BrieWy, the copy-on-write technique maps multiple virtual pages that contain the same
data to a single physical page in a read-only mode. When one of the pages receive a
write, the system creates a full copy of the physical page and remaps the virtual page that
received the write to the new physical page in a read-write mode.

Our page overlay framework enables a more eXcient version of the copy-on-write
technique, which does not require a full page copy and hence avoids all associated short-
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Figure 3.2: Overlay-on-Write: A more version of efficient copy-on-write

comings. We refer to this mechanism as overlay-on-write. Figure 3.2 shows how overlay-
on-write works. When multiple virtual pages share the same physical page, the OS explic-
itly indicates to the hardware, through the page tables, that the cache lines of the pages
should be copied-on-write. When one of the pages receives a write, our framework Vrst
creates an overlay that contains only the modiVed cache line. It then maps the overlay to
the virtual page that received the write.

Overlay-on-write has many beneVts over copy-on-write. First, it avoids the need to
copy the entire physical page before the write operation, thereby signiVcantly reducing
the latency on the critical path of execution (as well as the associated increase in memory
bandwidth and energy). Second, it allows the system to eliminate signiVcant redundancy
in the data stored in main memory because only the overlay lines need to be stored,
compared to a full page with copy-on-write. Finally, as we describe in Section 3.3.3, our
design exploits the fact that only a single cache line is remapped from the source physical
page to the overlay to signiVcantly reduce the latency of the remapping operation.

Copy-on-write has a wide variety of applications (e.g., process forking [79], virtual
machine cloning [130], operating system speculation [44, 162, 234], deduplication [229],
software debugging [206], checkpointing [63, 230]). Overlay-on-write, being a faster and
more eXcient alternative to copy-on-write, can signiVcantly beneVt all these applications.

3.1.3 BeneVts of the Overlay Semantics

Our framework oUers two distinct beneVts over the existing virtual memory frameworks.
First, our framework reduces the amount of work that the system has to do, thereby
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improving system performance. For instance, in the overlay-on-write and sparse data
structure (Section 3.4.2) techniques, our framework reduces the amount of data that needs
to be copied/accessed. Second, our framework enables signiVcant reduction in memory
capacity requirements. Each overlay contains only a subset of cache lines from the virtual
page, so the system can reduce overall memory consumption by compactly storing the
overlays in main memory—i.e., for each overlay, store only the cache lines that are actually
present in the overlay. We quantitatively evaluate these beneVts in Section 3.4 using two
techniques and show that our framework is eUective.

3.2 Overview of Design

While our framework imposes simple access semantics, there are several key challenges
to eXciently implement the proposed semantics. In this section, we Vrst discuss these
challenges with an overview of how we address them. We then provide a full overview
of our proposed mechanism that addresses these challenges, thereby enabling a simple,
eXcient, and low-overhead design of our framework.

3.2.1 Challenges in Implementing Page Overlays

Challenge 1: Checking if a cache line is part of the overlay. When the processor needs to
access a virtual address, it must Vrst check if the accessed cache line is part of the overlay.
Since most modern processors use a physically-tagged L1 cache, this check is on the critical
path of the L1 access. To address this challenge, we associate each virtual page with a bit
vector that represents which cache lines from the virtual page are part of the overlay. We
call this bit vector the overlay bit vector (OBitVector). We cache the OBitVector in the
processor TLB, thereby enabling the processor to quickly check if the accessed cache line
is part of the overlay.

Challenge 2: Identifying the physical address of an overlay cache line. If the accessed
cache line is part of the overlay (i.e., it is an overlay cache line), the processor must quickly
determine the physical address of the overlay cache line, as this address is required to
access the L1 cache. The simple approach to address this challenge is to store in the TLB
the base address of the region where the overlay is stored in main memory (we refer to
this region as the overlay store). While this may enable the processor to identify each
overlay cache line with a unique physical address, this approach has three shortcomings
when overlays are stored compactly in main memory.
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First, the overlay store (in main memory) does not contain all the cache lines from the
virtual page. Therefore, the processor must explicitly compute the address of the accessed
overlay cache line. This will delay the L1 access. Second, most modern processors use a
virtually-indexed physically-tagged L1 cache to partially overlap the L1 cache access with
the TLB access. This technique requires the virtual index and the physical index of the
cache line to be the same. However, since the overlay is smaller than the virtual page,
the overlay physical index of a cache line will likely not be the same as the cache line’s
virtual index. As a result, the cache access will have to be delayed until the TLB access
is complete. Finally, inserting a new cache line into an overlay is a relatively complex
operation. Depending on how the overlay is represented in main memory, inserting a new
cache line into an overlay can potentially change the addresses of other cache lines in the
overlay. Handling this scenario requires a likely complex mechanism to ensure that the
tags of these other cache lines are appropriately modiVed.

In our design, we address this challenge by using two diUerent addresses for each
overlay—one to address the processor caches, called the Overlay Address, and another
to address main memory, called the Overlay Memory Store Address. As we will de-
scribe shortly, this dual-address design enables the system to manage the overlay in main
memory independently of how overlay cache lines are addressed in the processor caches,
thereby overcoming the above three shortcomings.

Challenge 3: Ensuring the consistency of the TLBs. In our design, since the TLBs cache
the OBitVector, when a cache line is moved from the physical page to the overlay or vice
versa, any TLB that has cached the mapping for the corresponding virtual page should
update its mapping to reWect the cache line remapping. The naïve approach to addressing
this challenge is to use a TLB shootdown [35, 220], which is expensive [183, 228]. For-
tunately, in the above scenario, the TLB mapping is updated only for a single cache line
(rather than an entire virtual page). We propose a simple mechanism that exploits this fact
and uses the cache coherence protocol to keep the TLBs coherent (Section 3.3.3).

3.2.2 Overview of Our Design

A key aspect of our dual-address design, mentioned above, is that the address to access the
cache (the Overlay Address) is taken from an address space where the size of each overlay
is the same as that of a regular physical page. This enables our design to seamlessly address
Challenge 2 (overlay cache line address computation), without incurring the drawbacks of
the naïve approach to address the challenge (described in Section 3.2.1). The question is,
from what address space is the Overlay Address taken?
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Figure 3.3: Overview of our design. “Direct mapping” indicates that the correspond-
ing mapping is implicit in the source address. OMT = Overlay Mapping Table (Sec-
tion 3.3.2).

Towards answering this question, we observe that only a small fraction of the physical
address space is backed by main memory (DRAM) and a large portion of the physical
address space is unused, even after a portion is consumed for memory-mapped I/O [181]
and other system constructs. We propose to use this unused physical address space for the
overlay cache address and refer to this space as the Overlay Address Space.1

Figure 3.3 shows the overview of our design. There are three address spaces: the
virtual address space, the physical address space, and the main memory address space.
The main memory address space is split between regular physical pages and the Overlay
Memory Store (OMS), a region where the overlays are stored compactly. In our design, to
associate a virtual page with an overlay, the virtual page is Vrst mapped to a full size page
in the overlay address space using a direct mapping without any translation or indirection
(Section 3.3.1). The overlay page is in turn mapped to a location in the OMS using a
mapping table stored in the memory controller (Section 3.3.2). We will describe the Vgure
in more detail in Section 3.3.

1A prior work, the Impulse Memory Controller [39], uses the unused physical address space to communicate
gather/scatter access patterns to the memory controller. The goal of Impulse [39] is diUerent from ours, and
it is diXcult to use the design proposed by Impulse to enable Vne-granularity memory management.
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3.2.3 BeneVts of Our Design

There are three main beneVts of our high-level design. First, our approach makes no
changes to the way the existing VM framework maps virtual pages to physical pages. This
is very important as the system can treat overlays as an inexpensive feature that can be
turned on only when the application beneVts from it. Second, as mentioned before, by
using two distinct addresses for each overlay, our implementation decouples the way the
caches are addressed from the way overlays are stored in main memory. This enables
the system to treat overlay cache accesses very similarly to regular cache accesses, and
consequently requires very few changes to the existing hardware structures (e.g., it works
seamlessly with virtually-indexed physically-tagged caches). Third, as we will describe in
the next section, in our design, the Overlay Memory Store (in main memory) is accessed
only when an access completely misses in the cache hierarchy. This 1) greatly reduces the
number of operations related to managing the OMS, 2) reduces the amount of informa-
tion that needs to be cached in the processor TLBs, and 3) more importantly, enables the
memory controller to completely manage the OMS with minimal interaction with the OS.

3.3 Detailed Design and Implementation

To recap our high-level design (Figure 3.3), each virtual page in the system is mapped
to two entities: 1) a regular physical page, which in turn directly maps to a page in main
memory, and 2) an overlay page in the Overlay Address space (which is not directly backed
by main memory). Each page in this space is in turn mapped to a region in the Overlay
Memory Store, where the overlay is stored compactly. Because our implementation does
not modify the way virtual pages are mapped to regular physical pages, we now focus our
attention on how virtual pages are mapped to overlays.

3.3.1 Virtual-to-Overlay Mapping

The virtual-to-overlay mapping maps a virtual page to a page in the Overlay Address
space. One simple approach to maintain this mapping information is to store it in the page
table and allow the OS to manage the mappings (similar to regular physical pages). How-
ever, this increases the overhead of the mapping table and complicates the OS. We make a
simple observation and impose a constraint that makes the virtual-to-overlay mapping a
direct 1-1 mapping.
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Our observation is that since the Overlay Address space is part of the unused physical
address space, it can be signiVcantly larger than the amount of main memory. To enable
a 1-1 mapping between virtual pages and overlay pages, we impose a simple constraint
wherein no two virtual pages can be mapped to the same overlay page.

Figure 3.4 shows how our design maps a virtual address to the corresponding overlay
address. Our scheme widens the physical address space such that the overlay address cor-
responding to the virtual address vaddr of a process with ID PID is obtained by simply
concatenating an overlay bit (set to 1), PID, and vaddr. Since two virtual pages cannot
share an overlay, when data of a virtual page is copied to another virtual page, the overlay
cache lines of the source page must be copied into the appropriate locations in the des-
tination page. While this approach requires a slightly wider physical address space than
in existing systems, this is a more practical mechanism compared to storing this mapping
explicitly in a separate table, which can lead to much higher storage and management
overheads than our approach. With a 64-bit physical address space and a 48-bit virtual
address space per process, this approach can support 215 diUerent processes.

Overlay Address 1 PID vaddr

Virtual AddressProcess ID

Figure 3.4: Virtual-to-Overlay Mapping. The MSB indicates if the physical address is
part of the Overlay Address space.

Note that a similar approach cannot be used to map virtual pages to physical pages due
to the synonym problem [40], which results from multiple virtual pages being mapped to
the same physical page. However, this problem does not occur with the virtual-to-overlay
mapping because of the constraint we impose: no two virtual pages can map to the same
overlay page. Even with this constraint, our framework enables many applications that
can improve performance and reduce memory capacity requirements (Section 3.4).

3.3.2 Overlay Address Mapping

Overlay cache lines tagged in the Overlay Address space must be mapped into an Overlay
Memory Store location upon eviction. In our design, since there is a 1-1 mapping between
a virtual page and an overlay page, we could potentially store this mapping in the page
table along with the physical page mapping. However, since many pages may not have
an overlay, we store this mapping information in a separate mapping table similar to the
page table. This Overlay Mapping Table (OMT) is maintained and controlled fully by the
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Figure 3.5: Microarchitectural details of our implementation. The main changes (Ê,
Ë and Ì) are described in Section 3.3.3.

memory controller with minimal interaction with the OS. Section 3.3.4 describes Overlay
Memory Store management in detail.

3.3.3 Microarchitecture and Memory Access Operations

Figure 3.5 depicts the details of our design. There are three main changes over the mi-
croarchitecture of current systems. First (Ê in the Vgure), main memory is split into two
regions that store 1) regular physical pages and 2) the Overlay Memory Store (OMS). The
OMS stores both a compact representation of the overlays and the Overlay Mapping Ta-
ble (OMT), which maps each page from the Overlay Address Space to a location in the
Overlay Memory Store. At a high level, each OMT entry contains 1) the OBitVector,
indicating if each cache line within the corresponding page is present in the overlay, and
2) OMSaddr, the location of the overlay in the OMS. Second Ë, we augment the mem-
ory controller with a cache called the OMT Cache, which caches recently accessed entries
from the OMT. Third Ì, because the TLB must determine if an access to a virtual address
should be directed to the corresponding overlay, we extend each TLB entry to store the
OBitVector. While this potentially increases the cost of each TLB miss (as it requires
the OBitVector to be fetched from the OMT), our evaluations (Section 3.4) show that the
performance beneVt of using overlays more than oUsets this additional TLB Vll latency.

To describe the operation of diUerent memory accesses, we use overlay-on-write (Sec-
tion 3.1.2) as an example. Let us assume that two virtual pages (V1 and V2) are mapped to
the same physical page in the copy-on-write mode, with a few cache lines of V2 already
mapped to the overlay. There are three possible operations on V2: 1) a read, 2) a write to a
cache line already in the overlay (simple write), and 3) a write to a cache line not present
in the overlay (overlaying write). We now describe each of these operations in detail.
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Memory Read Operation.

When the page V2 receives a read request, the processor Vrst accesses the TLB with
the corresponding page number (VPN) to retrieve the physical mapping (PPN) and the
OBitVector. It generates the overlay page number (OPN) by concatenating the address
space ID (ASID) of the process and the VPN (as described in Section 3.3.1). Depending on
whether the accessed cache line is present in the overlay (as indicated by the correspond-
ing bit in the OBitVector), the processor uses either the PPN or the OPN to generate the L1
cache tag. If the access misses in the entire cache hierarchy (L1 through last-level cache),
the request is sent to the memory controller. The controller checks if the requested address
is part of the overlay address space by checking the overlay bit in the physical address. If
so, it looks up the overlay store address (OMSaddr) of the corresponding overlay page from
the OMT Cache, and computes the exact location of the requested cache line within main
memory (as described later in Section 3.3.4). It then accesses the cache line from the main
memory and returns the data to the cache hierarchy.

Simple Write Operation.

When the processor receives a write to a cache line already present in the overlay, it simply
has to update the cache line in the overlay. The path of this operation is the same as that
of the read operation, except the cache line is updated after it is read into the L1 cache.

Overlaying Write Operation.

An overlaying write operation is a write to a cache line that is not already present in the
overlay. Since the virtual page is mapped to the regular physical page in the copy-on-
write mode, the corresponding cache line must be remapped to the overlay (based on our
semantics described in Section 3.1.2). We complete the overlaying write in three steps:
1) copy the data of the cache line in the regular physical page (PPN) to the corresponding
cache line in the Overlay Address Space page (OPN), 2) update all the TLBs and the OMT
to indicate that the cache line is mapped to the overlay, and 3) process the write operation.

The Vrst step can be completed in hardware by reading the cache line from the regular
physical page and simply updating the cache tag to correspond to the overlay page number
(or by making an explicit copy of the cache line). Naïvely implementing the second step
will involve a TLB shootdown for the corresponding virtual page. However, we exploit
three simple facts to use the cache coherence network to keep the TLBs and the OMT
coherent: i) the mapping is modiVed only for a single cache line, and not an entire page,
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ii) the overlay page address can be used to uniquely identify the virtual page since no
overlay is shared between virtual pages, and iii) the overlay address is part of the physical
address space and hence, part of the cache coherence network. Based on these facts, we
propose a new cache coherence message called overlaying read exclusive. When a core
receives this request, it checks if its TLB has cached the mapping for the virtual page.
If so, the core simply sets the bit for the corresponding cache line in the OBitVector.
The overlaying read exclusive request is also sent to the memory controller so that it can
update the OBitVector of the corresponding overlay page in the OMT (via the OMT
Cache). Once the remapping operation is complete, the write operation (the third step) is
processed similar to the simple write operation.

Note that after an overlaying write, the corresponding cache line (which we will refer
to as the overlay cache line) is marked dirty. However, unlike copy-on-write, which must
allocate memory before the write operation, our mechanism allocates memory space lazily
upon the eviction of the dirty overlay cache line – signiVcantly improving performance.

Converting an Overlay to a Regular Physical Page.

Depending on the technique for which overlays are used, maintaining an overlay for a
virtual page may be unnecessary after a point. For example, when using overlay-on-write,
if most of the cache lines within a virtual page are modiVed, maintaining them in an
overlay does not provide any advantage. The system may take one of three actions to
promote an overlay to a physical page: The copy-and-commit action is one where the OS
copies the data from the regular physical page to a new physical page and updates the
data of the new physical page with the corresponding data from the overlay. The commit
action updates the data of the regular physical page with the corresponding data from the
overlay. The discard action simply discards the overlay.

While the copy-and-commit action is used with overlay-on-write, the commit and dis-
card actions are used, for example, in the context of speculation, where our mechanism
stores speculative updates in the overlays (Section 3.4.3). After any of these actions, the
system clears the OBitVector of the corresponding virtual page, and frees the overlay
memory store space allocated for the overlay (discussed next in Section 3.3.4).

3.3.4 Managing the Overlay Memory Store

The Overlay Memory Store (OMS) is the region in main memory where all the overlays
are stored. As described in Section 3.3.3, the OMS is accessed only when an overlay access
completely misses in the cache hierarchy. As a result, there are many simple ways to
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manage the OMS. One way is to have a small embedded core on the memory controller
that can run a software routine that manages the OMS (similar mechanisms are supported
in existing systems, e.g., Intel Active Management Technology [97]). Another approach is
to let the memory controller manage the OMS by using a full physical page to store each
overlay. While this approach will forgo the memory capacity beneVt of our framework, it
will still obtain the beneVt of reducing overall work (Section 3.1.3).

In this section, we describe a hardware mechanism that obtains both the work reduc-
tion and the memory capacity reduction beneVts of using overlays. In our mechanism, the
memory controller fully manages the OMS with minimal interaction with the OS. Manag-
ing the OMS has two aspects. First, because each overlay contains only a subset of cache
lines from the virtual page, we need a compact representation for the overlay, such that the
OMS contains only cache lines that are actually present in the overlay. Second, the mem-
ory controller must manage multiple overlays of diUerent sizes. We need a mechanism to
handle such diUerent sizes and the associated free space fragmentation issues. Although
operations that allocate new overlays or relocate existing overlays are slightly complex,
they are triggered only when a dirty overlay cache line is written back to main memory.
Therefore, these operations are rare and are not on the critical path of execution.

Compact Overlay Representation.

One simple approach to compactly maintain the overlays is to store the cache lines in an
overlay in the order in which they appear in the virtual page. While this representation
is simple, if a new cache line is inserted into the overlay before other overlay cache lines,
then the memory controller mustmove such cache lines to create a slot for the inserted line.
This is a read-modify-write operation, which results in signiVcant performance overhead.

We propose an alternative mechanism, in which each overlay is assigned a segment in
the OMS. The overlay is associated with an array of pointers—one pointer for each cache
line in the virtual page. Each pointer either points to the slot within the overlay segment
that contains the cache line or is invalid if the cache line is not present in the overlay. We
store this metadata in a single cache line at the head of the segment. For segments less
than 4KB size, we use 64 5-bit slot pointers and a 32-bit vector indicating the free slots
within a segment—total of 352 bits. For a 4KB segment, we do not store any metadata and
simply store each overlay cache line at an oUset which is same as the oUset of the cache
line within the virtual page. Figure 3.6 shows an overlay segment of size 256B, with only
the Vrst and the fourth cache lines of the virtual page mapped to the overlay.
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Figure 3.6: A 256B overlay segment (can store up to three overlay cache lines from
the virtual page). The first line stores the metadata (array of pointers and the free
bit vector).

Managing Multiple Overlay Sizes.

DiUerent virtual pages may contain overlays of diUerent sizes. The memory controller
must store them eXciently in the available space. To simplify this management, our mech-
anism splits the available overlay space into segments of 5 Vxed sizes: 256B, 512B, 1KB,
2KB, and 4KB. Each overlay is stored in the smallest segment that is large enough to store
the overlay cache lines. When the memory controller requires a segment for a new overlay
or when it wants to migrate an existing overlay to a larger segment, the controller iden-
tiVes a free segment of the required size and updates the OMSaddr of the corresponding
overlay page with the base address of the new segment. Individual cache lines are allo-
cated their slots within the segment as and when they are written back to main memory.

Free Space Management.

To manage the free segments within the Overlay Memory Store, we use a simple linked-
list based approach. For each segment size, the memory controller maintains a memory
location or register that points to a free segment of that size. Each free segment in turn
stores a pointer to another free segment of the same size or an invalid pointer denoting
the end of the list. If the controller runs out of free segments of a particular size, it obtains
a free segment of the next higher size and splits it into two. If the controller runs out of
free 4KB segments, it requests the OS for an additional set of 4KB pages. During system
startup, the OS proactively allocates a chunk of free pages to the memory controller. To
reduce the number of memory operations needed to manage free segments, we use a
grouped-linked-list mechanism, similar to the one used by some Vle systems [201].
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The Overlay Mapping Table (OMT) and the OMT Cache.

The OMTmaps pages from the Overlay Address Space to a speciVc segment in the Overlay
Memory Store. For each page in the Overlay Address Space (i.e., for each OPN), the OMT
contains an entry with the following pieces of information: 1) the OBitVector, indicating
which cache lines are present in the overlay, and 2) the Overlay Memory Store Address
(OMSaddr), pointing to the segment that stores the overlay. To reduce the storage cost of
the OMT, we store it hierarchically, similar to the virtual-to-physical mapping tables. The
memory controller maintains the root address of the hierarchical table in a register.

The OMT Cache stores the following details regarding recently-accessed overlays: the
OBitVector, the OMSaddr, and the overlay segment metadata (stored at the beginning of
the segment). To access a cache line from an overlay, the memory controller consults the
OMT Cache with the overlay page number (OPN). In case of a hit, the controller acquires
the necessary information to locate the cache line in the overlay memory store using the
overlay segment metadata. In case of a miss, the controller performs an OMTwalk (similar
to a page table walk) to look up the corresponding OMT entry, and inserts it in the OMT
Cache. It also reads the overlay segment metadata and caches it in the OMT cache entry.
The controller may modify entries of the OMT, as and when overlays are updated. When
such a modiVed entry is evicted from the OMT Cache, the memory controller updates the
corresponding OMT entry in memory.

3.4 Applications and Evaluations

We describe seven techniques enabled by our framework, and quantitatively evaluate two
of them. For our evaluations, we use memsim [16], an event-driven multi-core simulator
that models out-of-order cores coupled with a DDR3-1066 [110] DRAM simulator. All the
simulated systems use a three-level cache hierarchy with a uniform 64B cache line size.
We do not enforce inclusion in any level of the hierarchy. We use the state-of-the-art
DRRIP cache replacement policy [106] for the last-level cache. All our evaluated systems
use an aggressive multi-stream prefetcher [205] similar to the one implemented in IBM
Power 6 [131]. Table 3.1 lists the main conVguration parameters in detail.

3.4.1 Overlay-on-write

As discussed in Section 3.1.2, overlay-on-write is a more eXcient version of copy-on-
write [79]: when multiple virtual pages share the same physical page in the copy-on-write
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Processor
2.67 GHz, single issue, out-of-order, 64 entry instruction win-
dow, 64B cache lines

TLB 4K pages, 64-entry 4-way associative L1 (1 cycle), 1024-entry
L2 (10 cycles), TLB miss = 1000 cycles

L1 Cache
64KB, 4-way associative, tag/data latency = 1/2 cycles, parallel
tag/data lookup, LRU policy

L2 Cache
512KB, 8-way associative, tag/data latency = 2/8 cycles, parallel
tag/data lookup, LRU policy

Prefetcher
Stream prefetcher [131, 205], monitor L2 misses and prefetch
into L3, 16 entries, degree = 4, distance = 24

L3 Cache
2MB, 16-way associative, tag/data latency = 10/24 cycles, serial
tag/data lookup, DRRIP [106] policy

DRAM Controller
Open row, FR-FCFS drain when full [133], 64-entry write
buUer, 64-entry OMT cache, miss latency = 1000 cycles

DRAM and Bus
DDR3-1066 MHz [110], 1 channel, 1 rank, 8 banks, 8B-wide
data bus, burst length = 8, 8KB row buUer

Table 3.1: Main parameters of our simulated system

mode and one of them receives a write, overlay-on-write simply moves the corresponding
cache line to the overlay and updates the cache line in the overlay.

We compare the performance of overlay-on-write with that of copy-on-write using
the fork [79] system call. fork is a widely-used system call with a number of diUerent
applications including creating new processes, creating stateful threads in multi-threaded
applications, process testing/debugging [52, 53, 206], and OS speculation [44, 162, 234].
Despite its wide applications, fork is one of the most expensive system calls [186]. When
invoked, fork creates a child process with an identical virtual address space as the calling
process. fork marks all the pages of both processes as copy-on-write. As a result, when
any such page receives a write, the copy-on-write mechanism must copy the whole page
and remap the virtual page before it can proceed with the write.

Our evaluation models a scenario where a process is checkpointed at regular intervals
using the fork system call. While we can test the performance of fork with any appli-
cation, we use a subset of benchmarks from the SPEC CPU2006 benchmark suite [55].
Because the number of pages copied depends on the write working set of the application,
we pick benchmarks with three diUerent types of write working sets: 1) benchmarks with
low write working set size, 2) benchmarks for which almost all cache lines within each
modiVed page are updated, and 3) benchmarks for which only a few cache line within
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each modiVed page are updated. We pick Vve benchmarks for each type. For each bench-
mark, we fast forward the execution to its representative portion (determined using Sim-
point [199]), run the benchmark for 200 million instructions (to warm up the caches),
and execute a fork. After the fork, we run the parent process for another 300 million
instructions, while the child process idles.2

Figure 3.7 plots the amount of additional memory consumed by the parent process
using copy-on-write and overlay-on-write for the 300 million instructions after the fork.
Figure 3.8 plots the performance (cycles per instruction) of the two mechanisms during the
same period. We group benchmarks based on their type. We draw three conclusions.
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Figure 3.7: Additional memory consumed after a fork
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Figure 3.8: Performance after a fork (lower is better)

First, benchmarks with low write working set (Type 1) consume very little additional
memory after forking (Figure 3.7). As a result, there is not much diUerence in the perfor-
mance of copy-on-write and that of overlay-on-write (Figure 3.8).
2While 300 million instructions might seem low, several prior works (e.g., [52, 53]) argue for even shorter
checkpoint intervals (10-100 million instructions).
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Second, for benchmarks of Type 2, both mechanisms consume almost the same amount
of additional memory. This is because for these benchmarks, almost all cache lines within
every modiVed page are updated. However, with the exception of cactus, overlay-on-write
signiVcantly improves performance for this type of applications. Our analysis shows that
the performance trends can be explained by the distance in time when cache lines of each
page are updated by the application. When writes to diUerent cache lines within a page
are close in time, copy-on-write performs better than overlay-on-write. This is because
copy-on-write fetches all the blocks of a page with high memory-level parallelism. On
the other hand, when writes to diUerent cache lines within a page are well separated in
time, copy-on-write may 1) unnecessarily pollute the L1 cache with all the cache lines
of the copied page, and 2) increase write bandwidth by generating two writes for each
updated cache line (once when it is copied and again when the application updates the
cache line). Overlay-on-write has neither of these drawbacks, and hence signiVcantly
improves performance over copy-on-write.

Third, for benchmarks of Type 3, overlay-on-write signiVcantly reduces the amount
of additional memory consumed compared to copy-on-write. This is because the write
working set of these applications are spread out in the virtual address space, and copy-
on-write unnecessarily copies cache lines that are actually not updated by the application.
Consequently, overlay-on-write signiVcantly improves performance compared to copy-
on-write for this type of applications.

In summary, overlay-on-write reduces additional memory capacity requirements by
53% and improves performance by 15% compared to copy-on-write. Given the wide appli-
cability of the fork system call, and the copy-on-write technique in general, we believe
overlay-on-write can signiVcantly beneVt a variety of such applications.

3.4.2 Representing Sparse Data Structures

A sparse data structure is one with a signiVcant fraction of zero values, e.g., a sparse ma-
trix. Since only non-zero values typically contribute to computation, prior work developed
many software representations for sparse data structures (e.g., [64, 100]). One popular rep-
resentation of a sparse matrix is the Compressed Sparse Row (CSR) format [100]. To
represent a sparse matrix, CSR stores only the non-zero values in an array, and uses two
arrays of index pointers to identify the location of each non-zero value within the matrix.

While CSR eXciently stores sparse matrices, the additional index pointers maintained
by CSR can result in ineXciency. First, the index pointers lead to signiVcant additional
memory capacity overhead (roughly 1.5 times the number of non-zero values in our
evaluation—each value is 8 bytes, and each index pointer is 4 bytes). Second, any computa-
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tion on the sparse matrix requires additional memory accesses to fetch the index pointers,
which degrades performance.

Our framework enables a very eXcient hardware-based representation for a sparse
data structure: all virtual pages of the data structure map to a zero physical page and each
virtual page is mapped to an overlay that contains only the non-zero cache lines from that
page. To avoid computation over zero cache lines, we propose a new computation model
that enables the software to perform computation only on overlays. When overlays are
used to represent sparse data structures, this model enables the hardware to eXciently
perform a computation only on non-zero cache lines. Because the hardware is aware of
the overlay organization, it can eXciently prefetch the overlay cache lines and hide the
latency of memory accesses signiVcantly.

Our representation stores non-zero data at a cache line granularity. Hence, the per-
formance and memory capacity beneVts of our representation over CSR depends on the
spatial locality of non-zero values within a cache line. To aid our analysis, we deVne a
metric called non-zero value locality (L), as the average number of non-zero values in
each non-zero cache line. On the one hand, when non-zero values have poor locality (L ≈
1), our representation will have to store a signiVcant number of zero values and perform
redundant computation over such values, degrading both memory capacity and perfor-
mance over CSR, which stores and performs computation on only non-zero values. On
the other hand, when non-zero values have high locality (L ≈ 8—e.g., each cache line
stores 8 double-precision Woating point values), our representation is signiVcantly more
eXcient than CSR as it stores signiVcantly less metadata about non-zero values than CSR.
As a result, it outperforms CSR both in terms of memory capacity and performance.

We analyzed this trade-oU using real-world sparse matrices of double-precision Woat-
ing point values obtained from the UF Sparse Matrix Collection [58]. We considered all
matrices with at least 1.5 million non-zero values (87 in total). Figure 3.9 plots the memory
capacity and performance of one iteration of Sparse-Matrix Vector (SpMV) multiplication
of our mechanism normalized to CSR for each of these matrices. The x-axis is sorted in
the increasing order of the L-value of the matrices.

The trends can be explained by looking at the extreme points. On the left extreme,
we have a matrix with L = 1.09 (poisson3Db), i.e., most non-zero cache lines have only
one non-zero value. As a result, our representation consumes 4.83 times more memory
capacity and degrades performance by 70% compared to CSR. On the other extreme is a
matrix with L = 8 (raefsky4), i.e., none of the non-zero cache lines have any zero value.
As a result, our representation is more eXcient, reducing memory capacity by 34%, and
improving performance by 92% compared to CSR.



3.4. APPLICATIONS AND EVALUATIONS 31

Overlay Relative Performance

Overlay Relative Memory Capacity

L < 4.5 L > 4.5

Employ CSR
in this region

Employ Overlays
in this region

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or
m
al
iz
ed

to
C
SR

87 Real World Sparse Matrices

Figure 3.9: SpMV multiplication: Performance of page overlays vs. CSR. L (non-zero
value locality): Average # non-zero values in each non-zero cache line.

Our results indicate that even when a little more than half of the values in each non-
zero cache line are non-zero (L > 4.5), overlays outperform CSR. For 34 of the 87 real-world
matrices, overlays reduce memory capacity by 8% and improve performance by 27% on
average compared to CSR.

In addition to the performance and memory capacity beneVts, our representation has
several other major advantages over CSR (or any other software format). First, CSR is
typically helpful only when the data structure is very sparse. In contrast, our representa-
tion exploits a wider degree of sparsity in the data structure. In fact, our simulations using
randomly-generated sparse matrices with varying levels of sparsity (0% to 100%) show that
our representation outperforms the dense-matrix representation for all sparsity levels—the
performance gap increases linearly with the fraction of zero cache lines in the matrix.
Second, in our framework, dynamically inserting non-zero values into a sparse matrix is
as simple as moving a cache line to the overlay. In contrast, CSR incur a high cost to
insert non-zero values. Finally, our computation model enables the system to seamlessly
use optimized dense matrix codes on top of our representation. CSR, on the other hand,
requires programmers to rewrite algorithms to suit CSR.

Sensitivity to Cache Line Size. So far, we have described the beneVts of using over-
lays using 64B cache lines. However, one can imagine employing our approach at a 4KB
page granularity (i.e., storing only non-zero pages as opposed to non-zero cache lines). To
illustrate the beneVts of Vne-grained management, we compare the memory overhead of
storing the sparse matrices using diUerent cache line sizes (from 16B to 4KB). Figure 3.10
shows the results. The memory overhead for each cache line size is normalized to the ideal
mechanism which stores only the non-zero values. The matrices are sorted in the same
order as in Figure 3.9. We draw two conclusions from the Vgure. First, while storing only
non-zero (4KB) pages may be a practical system to implement using today’s hardware, it
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increases the memory overhead by 53X on average. It would also increase the amount of
computation, resulting in signiVcant performance degradation. Hence, there is signiVcant
beneVt to the Vne-grained memory management enabled by overlays. Second, the results
show that a mechanism using a Vner granularity than 64B can outperform CSR on more
matrices, indicating a direction for future research on sub-block management (e.g., [129]).
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Figure 3.10: Memory overhead of different cache line sizes over “Ideal” that stores
only non-zero values. Circles indicate points where fine-grained management begins
to outperform CSR.

In summary, our overlay-based sparse matrix representation outperforms the state-of-
the-art software representation on many real-world matrices, and consistently better than
page-granularity management. We believe our approach has much wider applicability
than existing representations.

3.4.3 Other Applications of Our Framework

We now describe Vve other applications that can be eXciently implemented on top of our
framework. While prior works have already proposed mechanisms for some of these appli-
cations, our framework either enables a simpler mechanism or enables eXcient hardware
support for mechanisms proposed by prior work. We describe these mechanisms only at a
high level, and defer more detailed explanations to future work.

Fine-grained Deduplication.

Gupta et al. [83] observe that in a system running multiple virtual machines with the
same guest operating system, there are a number of pages that contain mostly same data.
Their analysis shows that exploiting this redundancy can reduce memory capacity require-
ments by 50%. They propose the DiUerence Engine, which stores such similar pages using
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small patches over a common page. However, accessing such patched pages incurs signif-
icant overhead because the OS must apply the patch before retrieving the required data.
Our framework enables a more eXcient implementation of the DiUerence Engine wherein
cache lines that are diUerent from the base page can be stored in overlays, thereby enabling
seamless access to patched pages, while also reducing the overall memory consumption.
Compared to HICAMP [48], a cache line level deduplication mechanism that locates cache
lines based on their content, our framework avoids signiVcant changes to both the existing
virtual memory framework and programming model.

EXcient Checkpointing.

Checkpointing is an important primitive in high performance computing applications
where data structures are checkpointed at regular intervals to avoid restarting long-running
applications from the beginning [33, 63, 230]. However, the frequency and latency of
checkpoints are often limited by the amount of memory data that needs to be written to
the backing store. With our framework, overlays could be used to capture all the updates
between two checkpoints. Only these overlays need to be written to the backing store
to take a new checkpoint, reducing the latency and bandwidth of checkpointing. The
overlays are then committed (Section 3.3.3), so that each checkpoint captures precisely the
delta since the last checkpoint. In contrast to prior works on eXcient checkpointing such
as INDRA [200], ReVive [174], and Sheaved Memory [207], our framework is more Wexi-
ble than INDRA and ReVive (which are tied to recovery from remote attacks) and avoids
the considerable write ampliVcation of Sheaved Memory (which can signiVcantly degrade
overall system performance).

Virtualizing Speculation.

Several hardware-based speculative techniques (e.g., thread-level speculation [203, 208],
transactional memory [54, 92]) have been proposed to improve system performance. Such
techniques maintain speculative updates to memory in the cache. As a result, when a
speculatively-updated cache line is evicted from the cache, these techniques must neces-
sarily declare the speculation as unsuccessful, resulting in a potentially wasted opportu-
nity. In our framework, these techniques can store speculative updates to a virtual page in
the corresponding overlay. The overlay can be committed or discarded based on whether
the speculation succeeds or fails. This approach is not limited by cache capacity and en-
ables potentially unbounded speculation [25].



34 CHAPTER 3. PAGE OVERLAYS

Fine-grained Metadata Management.

Storing Vne-grained (e.g., word granularity) metadata about data has several applica-
tions (e.g., memcheck, taintcheck [227], Vne-grained protection [236], detecting lock viola-
tions [187]). Prior works (e.g., [159, 227, 236, 249]) have proposed frameworks to eXciently
store and manipulate such metadata. However, these mechanisms require hardware sup-
port speciVc to storing and maintaining metadata. In contrast, with our framework, the
system can potentially use overlays for each virtual page to store metadata for the vir-
tual page instead of an alternate version of the data. In other words, the Overlay Address
Space serves as shadow memory for the virtual address space. To access some piece of
data, the application uses the regular load and store instructions. The system would need
new metadata load and metadata store instructions to enable the application to access the
metadata from the overlays.

Flexible Super-pages.

Many modern architectures support super-pages to reduce the number of TLB misses.
In fact, a recent prior work [31] suggests that a single arbitrarily large super-page (di-
rect segment) can signiVcantly reduce TLB misses for large servers. Unfortunately, using
super-pages reduces the Wexibility for the operating system to manage memory and im-
plement techniques like copy-on-write. For example, to our knowledge, there is no system
that shares a super-page across two processes in the copy-on-write mode. This lack of
Wexibility introduces a trade-oU between the beneVt of using super-pages to reduce TLB
misses and the beneVt of using copy-on-write to reduce memory capacity requirements.
Fortunately, with our framework, we can apply overlays at higher-level page table entries
to enable the OS to manage super-pages at a Vner granularity. In short, we envision a
mechanism that divides a super-page into smaller segments (based on the number of bits
available in the OBitVector), and allows the system to potentially remap a segment of
the super-page to the overlays. For example, when a super-page shared between two pro-
cesses receives a write, only the corresponding segment is copied and the corresponding
bit in the OBitVector is set. This approach can similarly be used to have multiple pro-
tection domains within a super-page. Assuming only a few segments within a super-page
will require overlays, this approach can still ensure low TLB misses while enabling more
Wexibility for the OS.
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3.5 Summary

In this chapter, we introduced a new, simple framework that enables Vne-grained memory
management. Our framework augments virtual memory with a concept called overlays.
Each virtual page can be mapped to both a physical page and an overlay. The overlay
contains only a subset of cache lines from the virtual page, and cache lines that are present
in the overlay are accessed from there. We show that our proposed framework, with its
simple access semantics, enables several Vne-grained memory management techniques,
without signiVcantly altering the existing VM framework. We quantitatively demonstrate
the beneVts of our framework with two applications: 1) overlay-on-write, an eXcient
alternative to copy-on-write, and 2) an eXcient hardware representation of sparse data
structures. Our evaluations show that our framework signiVcantly improves performance
and reduces memory capacity requirements for both applications (e.g., 15% performance
improvement and 53% memory capacity reduction, on average, for fork over traditional
copy-on-write). Finally, we discuss Vve other potential applications for the page overlays.



Chapter 4

Understanding DRAM

In the second component of this dissertation, we propose a series of techniques to im-
prove the eXciency of certain key primitives by exploiting the DRAM architecture. In
this chapter, we will describe the modern DRAM architecture and its implementation in
full detail. While we focus our attention primarily on commodity DRAM design (i.e., the
DDRx interface), most DRAM architectures use very similar design approaches and vary
only in higher-level design choices. As a result, our mechanisms, which we describe in the
subsequent chapters, can be easily extended to any DRAM architecture. We now describe
the high-level organization of the memory system.

4.1 High-level Organization of the Memory System

Figure 4.1 shows the organization of the memory subsystem in a modern system. At a high
level, each processor chip consists of one of more oU-chip memory channels. Each memory

Processor Channel 0Channel 1
DRAM Module

Figure 4.1: High-level organization of the memory subsystem
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channel consists of its own set of command, address, and data buses. Depending on the
design of the processor, there can be either an independent memory controller for each
memory channel or a single memory controller for all memory channels. All modules
connected to a channel share the buses of the channel. Each module consists of many
DRAM devices (or chips). Most of this chapter (Section 4.2) is dedicated to describing the
design of a modern DRAM chip. In Section 4.3, we present more details of the module
organization of commodity DRAM.

4.2 DRAM Chip

A modern DRAM chip consists of a hierarchy of structures: DRAM cells, tiles/MATs,
subarrays, and banks. In this section, we will describe the design of a modern DRAM chip
in a bottom-up fashion, starting from a single DRAM cell and its operation.

4.2.1 DRAM Cell and Sense AmpliVer

At the lowest level, DRAM technology uses capacitors to store information. SpeciVcally, it
uses the two extreme states of a capacitor, namely, the empty and the fully charged states
to store a single bit of information. For instance, an empty capacitor can denote a logical
value of 0, and a fully charged capacitor can denote a logical value of 1. Figure 4.2 shows
the two extreme states of a capacitor.

empty
capacitor
(logical 0)

fully charged
capacitor
(logical 1)

Figure 4.2: Two states of a DRAM cell

Unfortunately, the capacitors used for DRAM chips are small, and will get smaller
with each new generation. As a result, the amount of charge that can be stored in the
capacitor, and hence the diUerence between the two states is also very small. In addition,
the capacitor can potentially lose its state after it is accessed. Therefore, to extract the state
of the capacitor, DRAM manufactures use a component called sense ampliVer.

Figure 4.3 shows a sense ampliVer. A sense ampliVer contains two inverters which are
connected together such that the output of one inverter is connected to the input of the
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other and vice versa. The sense ampliVer also has an enable signal that determines if the
inverters are active. When enabled, the sense ampliVer has two stable states, as shown
in Figure 4.4. In both these stable states, each inverter takes a logical value and feeds the
other inverter with the negated input.

enable

top

bottom
Figure 4.3: Sense amplifier

1

0

VDD

1

VDD

0

(logical 0) (logical 1)

Figure 4.4: Stable states of a sense amplifier

Figure 4.5 shows the operation of the sense ampliVer from a disabled state. In the initial
disabled state, we assume that the voltage level of the top terminal (Va) is higher than that
of the bottom terminal (Vb). When the sense ampliVer is enabled in this state, it senses the
diUerence between the two terminals and ampliVes the diUerence until it reaches one of
the stable state (hence the name “sense ampliVer”).

0

Va

Vb

1

VDD

0

Enable sense ampliVer

Va > Vb

Figure 4.5: Operation of the sense amplifier

4.2.2 DRAM Cell Operation: The ACTIVATE-PRECHARGE cycle

DRAM technology uses a simple mechanism that converts the logical state of a capacitor
into a logical state of the sense ampliVer. Data can then be accessed from the sense am-
pliVer (since it is in a stable state). Figure 4.6 shows the connection between a DRAM cell
and the sense ampliVer and the sequence of states involved in converting the cell state to
the sense ampliVer state.
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Figure 4.6: Operation of a DRAM cell and sense amplifier

As shown in the Vgure (state Ê), the capacitor is connected to an access transistor that
acts as a switch between the capacitor and the sense ampliVer. The transistor is controller
by a wire called wordline. The wire that connects the transistor to the top end of the
sense ampliVer is called bitline. In the initial state Ê, the wordline is lowered, the sense
ampliVer is disabled and both ends of the sense ampliVer are maintained at a voltage level
of 1

2
VDD. We assume that the capacitor is initially fully charged (the operation is similar

if the capacitor was empty). This state is referred to as the precharged state. An access
to the cell is triggered by a command called ACTIVATE. Upon receiving an ACTIVATE, the
corresponding wordline is Vrst raised (state Ë). This connects the capacitor to the bitline.
In the ensuing phase called charge sharing (state Ì), charge Wows from the capacitor to the
bitline, raising the voltage level on the bitline (top end of the sense ampliVer) to 1

2
VDD+δ.

After charge sharing, the sense ampliVer is enabled (state Í). The sense ampliVer detects
the diUerence in voltage levels between its two ends and ampliVes the deviation, till it
reaches the stable state where the top end is at VDD (state Î). Since the capacitor is still
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connected to the bitline, the charge on the capacitor is also fully restored. We will shortly
describe how the data can be accessed form the sense ampliVer. However, once the access
to the cell is complete, it is taken back to the original precharged state using the command
called PRECHARGE. Upon receiving a PRECHARGE, the wordline is Vrst lowered, thereby
disconnecting the cell from the sense ampliVer. Then, the two ends of the sense ampliVer
are driven to 1

2
VDD using a precharge unit (not shown in the Vgure for brevity).

4.2.3 DRAM MAT/Tile: The Open Bitline Architecture

The goal of DRAM manufacturers is to maximize the density of the DRAM chips while
adhering to certain latency constraints (described in Section 4.2.6). There are two costly
components in the setup described in the previous section. The Vrst component is the
sense ampliVer itself. Each sense ampliVer is around two orders of magnitude larger than
a single DRAM cell [178]. Second, the state of the wordline is a function of the address
that is currently being accessed. The logic that is necessary to implement this function
(for each cell) is expensive.

In order to reduce the overall cost of these two components, they are shared by many
DRAM cells. SpeciVcally, each sense ampliVer is shared a column of DRAM cells. In other
words, all the cells in a single column are connected to the same bitline. Similarly, each
wordline is shared by a row of DRAM cells. Together, this organization consists of a 2-D
array of DRAM cells connected to a row of sense ampliVers and a column of wordline
drivers. Figure 4.7 shows this organization with a 4× 4 2-D array.

To further reduce the overall cost of the sense ampliVers and the wordline driver, mod-
ern DRAM chips use an architecture called the open bitline architecture. This architecture
exploits two observations. First, the sense ampliVer is wider than the DRAM cells. This
diUerence in width results in a white space near each column of cells. Second, the sense
ampliVer is symmetric. Therefore, cells can also be connected to the bottom part of the
sense ampliVer. Putting together these two observations, we can pack twice as many cells
in the same area using the open bitline architecture, as shown in Figure 4.8;

As shown in the Vgure, a 2-D array of DRAM cells is connected to two rows of sense
ampliVers: one on the top and one on the bottom of the array. While all the cells in a given
row share a common wordline, half the cells in each row are connected to the top row of
sense ampliVers and the remaining half of the cells are connected to the bottom row of
sense ampliVers. This tightly packed structure is called a DRAMMAT/Tile [125, 224, 246].
In a modern DRAM chip, each MAT typically is a 512×512 or 1024×1024 array. Multiple
MATs are grouped together to form a larger structure called a DRAM bank, which we
describe next.
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Figure 4.7: A 2-D array of DRAM cells

4.2.4 DRAM Bank

In most modern commodity DRAM interfaces [110, 111], a DRAM bank is the smallest
structure visible to the memory controller. All commands related to data access are di-
rected to a speciVc bank. Logically, each DRAM bank is a large monolithic structure with
a 2-D array of DRAM cells connected to a single set of sense ampliVers (also referred to
as a row buUer). For example, in a 2Gb DRAM chip with 8 banks, each bank has 215 rows
and each logical row has 8192 DRAM cells. Figure 4.9 shows this logical view of a bank.

In addition to the MAT, the array of sense ampliVers, and the wordline driver, each
bank also consists of some peripheral structures to decode DRAM commands and ad-
dresses, and manage the input/output to the DRAM bank. SpeciVcally, each bank has a
row decoder to decode the row address of row-level commands (e.g., ACTIVATE). Each data
access command (READ and WRITE) accesses only a part of a DRAM row. Such individ-
ual parts are referred to as columns. With each data access command, the address of the
column to be accessed is provided. This address is decoded by the column selection logic.
Depending on which column is selected, the corresponding piece of data is communicated
between the sense ampliVers and the bank I/O logic. The bank I/O logic intern acts as an
interface between the DRAM bank and the chip-level I/O logic.

Although the bank can logically be viewed as a single MAT, building a single MAT
of a very large dimension is practically not feasible as it will require very long bitlines
and wordlines. Therefore, each bank is physically implemented as a 2-D array of DRAM
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Figure 4.8: A DRAM MAT/Tile: The open bitline architecture

MATs. Figure 4.10 shows a physical implementation of the DRAM bank with 4 MATs
arranged in 2 × 2 array. As shown in the Vgure, the output of the global row decoder is
sent to each row of MATs. The bank I/O logic, also known as the global sense ampliVers,
are connected to all the MATs through a set of global bitlines. As shown in the Vgure, each
vertical collection of MATs consists of its own columns selection logic and global bitlines.
One implication of this division is that the data accessed by any command is split equally
across all the MATs in a single row of MATs.

Figure 4.11 shows the zoomed-in version of a DRAM MAT with the surrounding pe-
ripheral logic. SpeciVcally, the Vgure shows how each column selection line selects speciVc
sense ampliVers from a MAT and connects them to the global bitlines. It should be noted
that the width of the global bitlines for each MAT (typically 8/16) is much smaller than
that of the width of the MAT (typically 512/1024).

Each DRAM chip consist of multiple banks as shown in Figure 4.12. All the banks share
the chip’s internal command, address, and data buses. As mentioned before, each bank
operates mostly independently (except for operations that involve the shared buses). The
chip I/O manages the transfer of data to and from the chip’s internal bus to the memory
channel. The width of the chip output (typically 8 bits) is much smaller than the output
width of each bank (typically 64 bits). Any piece of data accessed from a DRAM bank is
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Figure 4.9: DRAM Bank: Logical view

Vrst buUered at the chip I/O and sent out on the memory bus 8 bits at a time. With the
DDR (double data rate) technology, 8 bits are sent out each half cycle. Therefore, it takes
4 cycles to transfer 64 bits of data from a DRAM chip I/O on to the memory channel.

4.2.5 DRAM Commands: Accessing Data from a DRAM Chip

To access a piece of data from a DRAM chip, the memory controller must Vrst identify the
location of the data: the bank ID (B), the row address (R) within the bank, and the column
address (C) within the row. After identifying these pieces of information, accessing the
data involves three steps.

The Vrst step is to issue a PRECHARGE to the bank B. This step prepares the bank for a
data access by ensuring that all the sense ampliVers are in the precharged state (Figure 4.6,
state Ê). No wordline within the bank is raised in this state.

The second step is to activate the row R that contains the data. This step is triggered
by issuing a ACTIVATE to bank B with row address R. Upon receiving this command,
the corresponding bank feeds its global row decoder with the input R. The global row
decoder logic then raises the wordline of the DRAM row corresponding to the address
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Figure 4.10: DRAM Bank: Physical implementation

R and enables the sense ampliVers connected to that row. This triggers the DRAM cell
operation described in Section 4.2.2. At the end of the activate operation the data from the
entire row of DRAM cells is copied to the corresponding array of sense ampliVers.

Finally, the third step is to access the data from the required column. This is done by
issuing a READ or WRITE command to the bank with the column addressC . Upon receiving
a READ or WRITE command, the corresponding address is fed to the column selection logic.
The column selection logic then raises the column selection lines (Figure 4.11) correspond-
ing the address C , thereby connecting those sense ampliVers to the global sense ampliVers
through the global bitlines. For a read access, the global sense ampliVers sense the data
from the MAT’s local sense ampliVers and transfer that data to chip’s internal bus. For
a write access, the global sense ampliVers read the data from the chip’s internal bus and
force the MAT’s local sense ampliVers to the appropriate state.

Not all data accesses require all three steps. SpeciVcally, if the row to be accessed is
already activated in the corresponding bank, then the Vrst two steps can be skipped and
the data can be directly accessed by issuing a READ or WRITE to the bank. For this reason,
the array of sense ampliVers are also referred to as a row buUer, and such an access that
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Figure 4.12: DRAM Chip

skips the Vrst two steps is called a row buUer hit. Similarly, if the bank is already in the
precharged state, then the Vrst step can be skipped. Such an access is referred to as a row
buUer miss. Finally, if a diUerent row is activated within the bank, then all three steps
have to be performed. Such a situation is referred to as a row buUer conWict.

4.2.6 DRAM Timing Constraints

DiUerent operations within DRAM consume diUerent amounts of time. Therefore, after
issuing a command, the memory controller must wait for a suXcient amount of time
before it can issue the next command. Such wait times are managed by what are called
the timing constraints. Timing constraints essentially dictate the minimum amount of
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time between two commands issued to the same bank/rank/channel. Table 4.1 describes
some key timing constraints along with their values for the DDR3-1600 interface.

Name Constraint Description Value (ns)

tRAS ACTIVATE → PRECHARGE
Time taken to complete a row acti-
vation operation in a bank

35

tRCD ACTIVATE → READ/WRITE
Time between an activate command
and column command to a bank

15

tRP PRECHARGE → ACTIVATE
Time taken to complete a precharge
operation in a bank

15

tWR WRITE → PRECHARGE
Time taken to ensure that data is
safely written to the DRAM cells af-
ter a write operation (write recovery)

15

Table 4.1: Key DRAM timing constraints with their values for DDR3-1600

4.3 DRAM Module

As mentioned before, each READ or WRITE command for a single DRAM chip typically
involves only 64 bits. In order to achieve high memory bandwidth, commodity DRAM
modules group several DRAM chips (typically 4 or 8) together to form a rank of DRAM
chips. The idea is to connect all chips of a single rank to the same command and ad-
dress buses, while providing each chip with an independent data bus. In eUect, all the

Chip 0 Chip 1 Chip 2 Chip 3 Chip 4 Chip 5 Chip 6 Chip 7

cmd
addr

data (32 bits)

Figure 4.13: Organization of a DRAM rank
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chips within a rank receive the same commands with same addresses, making the rank a
logically wide DRAM chip. Figure 4.13 shows the logical organization of a DRAM rank.

Most commodity DRAM ranks consist of 8 chips. Therefore, each READ or WRITE
command accesses 64 bytes of data, the typical cache line size in most processors.

4.4 Summary

In this section, we summarize the key takeaways of the DRAM design and operation.

1. To access data from a DRAM cell, DRAM converts the state of the cell into one of
the stable states of the sense ampliVer. The precharged state of the sense ampliVer,
wherein both the bitline and the bitline are charged to a voltage level of 1

2
VDD, is

key to this state transfer, as the DRAM cell is large enough to perturb the voltage
level on the bitline.

2. The DRAM cell is not strong enough to switch the sense ampliVer from one stable
state to another. If a cell is connected to a stable sense ampliVer, the charge on the
cell gets overwritten to reWect the state of the sense ampliVer.

3. In the DRAM cell operation, the Vnal state of the sense ampliVer after the ampliV-
cation phase depends solely on the deviation on the bitline after charge sharing. If
the deviation is positive, the sense ampliVer drives the bitline to VDD. Otherwise, if
the deviation is negative, the sense ampliVer drives the bitline to 0.

4. In commodity DRAM, each ACTIVATE command simultaneously activates an entire
row of DRAM cells. In a single chip, this typically corresponds to 8 Kbits of cells.
Across a rank with 8 chips, each ACTIVATE activates 8 KB of data.

5. In a commodity DRAM module, the data corresponding to each READ or WRITE
is equally distributed across all the chips in a rank. All the chips share the same
command and address bus, while each chip has an independent data bus.

All our mechanisms are built on top of these observations. We will recap these observa-
tions in the respective chapters.



Chapter 5

RowClone

In Section 2.1.2, we described the source of ineXciency in performing a page copy opera-
tion in existing systems. BrieWy, in existing systems, a page copy operation (or any bulk
copy operation) is at best performed one cache line at a time. The operation requires a
large number of cache lines to be transferred back and forth on the main memory chan-
nel. As a result, a bulk copy operation incurs high latency, high bandwidth consumption,
and high energy consumption.

In this chapter, we present RowClone, a mechanism that can perform bulk copy and
initialization operations completely inside DRAM. We show that this approach obviates
the need to transfer large quantities of data on the memory channel, thereby signiVcantly
improving the eXciency of a bulk copy operation. As bulk data initialization (speciVcally
bulk zeroing) can be viewed as a special case of a bulk copy operation, RowClone can be
easily extended to perform such bulk initialization operations with high eXciency.

5.1 The RowClone DRAM Substrate

RowClone consists of two independent mechanisms that exploit several observations about
DRAM organization and operation. Our Vrst mechanism eXciently copies data between
two rows of DRAM cells that share the same set of sense ampliVers (i.e., two rows within
the same subarray). We call this mechanism the Fast Parallel Mode (FPM). Our sec-

Originally published as “RowClone: Fast and Energy-eXcient In-DRAM Bulk Data Copy and Initialization”

in the International Symposium on Microarchitecture, 2013 [192]
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ond mechanism eXciently copies cache lines between two banks within a module in a
pipelined manner. We call this mechanism the Piplines Serial Mode (PSM). Although not
as fast as FPM, PSM has fewer constraints and hence is more generally applicable. We
now describe these two mechanism in detail.

5.1.1 Fast-Parallel Mode

The Fast Parallel Mode (FPM) is based on the following three observations about DRAM.

1. In a commodity DRAM module, each ACTIVATE command transfers data from a
large number of DRAM cells (multiple kilo-bytes) to the corresponding array of
sense ampliVers (Section 4.3).

2. Several rows of DRAM cells share the same set of sense ampliVers (Section 4.2.3).

3. A DRAM cell is not strong enough to Wip the state of the sense ampliVer from one
stable state to another stable state. In other words, if a cell is connected to an already
activated sense ampliVer (or bitline), then the data of the cell gets overwritten with
the data on the sense ampliVer.

While the Vrst two observations are direct implications from the design of commodity
DRAM, the third observation exploits the fact that DRAM cells are large enough to cause
only a small perturbation on the bitline voltage. Figure 5.1 pictorially shows how this
observation can be used to copy data between two cells that share a sense ampliVer.

0
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1
2
VDD

1
2
VDD

1

1

0

1

VDD

0 2

0

1

1

VDD

0 3

ACTIVATE src ACTIVATE dstsrc

dst

Figure 5.1: RowClone: Fast Parallel Mode

The Vgure shows two cells (src and dst) connected to a single sense ampliVer. In
the initial state, we assume that src is fully charged and dst is fully empty, and the
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sense ampliVer is in the precharged state (Ê). In this state, FPM issues an ACTIVATE to
src. At the end of the activation operation, the sense ampliVer moves to a stable state
where the bitline is at a voltage level of VDD and the charge in src is fully restored (Ë).
FPM follows this operation with an ACTIVATE to dst, without an intervening PRECHARGE.
This operation lowers the wordline corresponding to src and raises the wordline of dst,
connecting dst to the bitline. Since the bitline is already fully activated, even though dst
is initially empty, the perturbation caused by the cell is not suXcient to Wip the state of the
bitline. As a result, sense ampliVer continues to drive the bitline to VDD, thereby pushing
dst to a fully charged state (Ì).

It can be shown that regardless of the initial state of src and dst, the above operation
copies the data from src to dst. Given that each ACTIVATE operates on an entire row
of DRAM cells, the above operation can copy multiple kilo bytes of data with just two
back-to-back ACTIVATE operations.

Unfortunately, modern DRAM chips do not allow another ACTIVATE to an already
activated bank – the expected result of such an action is undeVned. This is because a
modern DRAM chip allows at most one row (subarray) within each bank to be activated.
If a bank that already has a row (subarray) activated receives an ACTIVATE to a diUerent
subarray, the currently activated subarray must Vrst be precharged [125].1

To support FPM, we propose the following change to the DRAM chip in the way it
handles back-to-back ACTIVATEs. When an already activated bank receives an ACTIVATE
to a row, the chip processes the command similar to any other ACTIVATE if and only if the
command is to a row that belongs to the currently activated subarray. If the row does not
belong to the currently activated subarray, then the chip takes the action it normally does
with back-to-back ACTIVATEs—e.g., drop it. Since the logic to determine the subarray
corresponding to a row address is already present in today’s chips, implementing FPM
only requires a comparison to check if the row address of an ACTIVATE belongs to the
currently activated subarray, the cost of which is almost negligible.

Summary. To copy data from src to dst within the same subarray, FPM Vrst issues
an ACTIVATE to src. This copies the data from src to the subarray row buUer. FPM then
issues an ACTIVATE to dst. This modiVes the input to the subarray row-decoder from src
to dst and connects the cells of dst row to the row buUer. This, in eUect, copies the data
from the sense ampliVers to the destination row. As we show in Section 5.5.1, with these
two steps, FPM copies a 4KB page of data 11.6x faster and with 74.4x less energy than an
existing system.

1Some DRAM manufacturers design their chips to drop back-to-back ACTIVATEs to the same bank.
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Limitations. FPM has two constraints that limit its general applicability. First, it re-
quires the source and destination rows to be within the same subarray (i.e., share the same
set of sense ampliVers). Second, it cannot partially copy data from one row to another.
Despite these limitations, we show that FPM can be immediately applied to today’s sys-
tems to accelerate two commonly used primitives in modern systems – Copy-on-Write
and Bulk Zeroing (Section 7.3). In the following section, we describe the second mode of
RowClone – the Pipelined Serial Mode (PSM). Although not as fast or energy-eXcient as
FPM, PSM addresses these two limitations of FPM.

5.1.2 Pipelined Serial Mode

The Pipelined Serial Mode eXciently copies data from a source row in one bank to a
destination row in a diUerent bank. PSM exploits the fact that a single internal bus that
is shared across all the banks is used for both read and write operations. This enables the
opportunity to copy an arbitrary quantity of data one cache line at a time from one bank
to another in a pipelined manner.

To copy data from a source row in one bank to a destination row in a diUerent bank,
PSM Vrst activates the corresponding rows in both banks. It then puts the source bank in
the read mode, the destination bank in the write mode, and transfers data one cache line
(corresponding to a column of data—64 bytes) at a time. For this purpose, we propose a
new DRAM command called TRANSFER. The TRANSFER command takes four parameters:
1) source bank index, 2) source column index, 3) destination bank index, and 4) destination
column index. It copies the cache line corresponding to the source column index in the
activated row of the source bank to the cache line corresponding to the destination column
index in the activated row of the destination bank.

Unlike READ/WRITE which interact with the memory channel connecting the processor
and main memory, TRANSFER does not transfer data outside the chip. Figure 5.2 pictorially
compares the operation of the TRANSFER command with that of READ and WRITE. The
dashed lines indicate the data Wow corresponding to the three commands. As shown in
the Vgure, in contrast to the READ or WRITE commands, TRANSFER does not transfer data
from or to the memory channel.

5.1.3 Mechanism for Bulk Data Copy

When the data from a source row (src) needs to be copied to a destination row (dst),
there are three possible cases depending on the location of src and dst: 1) src and dst
are within the same subarray, 2) src and dst are in diUerent banks, 3) src and dst are in
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Figure 5.2: RowClone: Pipelined Serial Mode

diUerent subarrays within the same bank. For case 1 and case 2, RowClone uses FPM and
PSM, respectively, to complete the operation (as described in Sections 5.1.1 and 5.1.2).

For the third case, when src and dst are in diUerent subarrays within the same bank,
one can imagine a mechanism that uses the global bitlines (shared across all subarrays
within a bank – described in [125]) to copy data across the two rows in diUerent sub-
arrays. However, we do not employ such a mechanism for two reasons. First, it is not
possible in today’s DRAM chips to activate multiple subarrays within the same bank si-
multaneously. Second, even if we enable simultaneous activation of multiple subarrays,
as in [125], transferring data from one row buUer to another using the global bitlines re-
quires the bank I/O circuitry to switch between read and write modes for each cache line
transfer. This switching incurs signiVcant latency overhead. To keep our design simple,
for such an intra-bank copy operation, our mechanism uses PSM to Vrst copy the data
from src to a temporary row (tmp) in a diUerent bank. It then uses PSM again to copy the
data back from tmp to dst. The capacity lost due to reserving one row within each bank
is negligible (0.0015% for a bank with 64k rows).

5.1.4 Mechanism for Bulk Data Initialization

Bulk data initialization sets a large block of memory to a speciVc value. To perform this
operation eXciently, our mechanism Vrst initializes a single DRAM row with the corre-
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sponding value. It then uses the appropriate copy mechanism (from Section 5.1.3) to copy
the data to the other rows to be initialized.

Bulk Zeroing (or BuZ), a special case of bulk initialization, is a frequently occurring
operation in today’s systems [113, 240]. To accelerate BuZ, one can reserve one row in
each subarray that is always initialized to zero. By doing so, our mechanism can use FPM
to eXciently BuZ any row in DRAM by copying data from the reserved zero row of the
corresponding subarray into the destination row. The capacity loss of reserving one row
out of 512 rows in each subarray is very modest (0.2%).

While the reserved rows can potentially lead to gaps in the physical address space,
we can use an appropriate memory interleaving technique that maps consecutive rows to
diUerent subarrays. Such a technique ensures that the reserved zero rows are contiguously
located in the physical address space. Note that interleaving techniques commonly used
in today’s systems (e.g., row or cache line interleaving) have this property.

5.2 End-to-end System Design

So far, we described RowClone, a DRAM substrate that can eXciently perform bulk data
copy and initialization. In this section, we describe the changes to the ISA, the proces-
sor microarchitecture, and the operating system that will enable the system to eXciently
exploit the RowClone DRAM substrate.

5.2.1 ISA Support

To enable the software to communicate occurrences of bulk copy and initialization op-
erations to the hardware, we introduce two new instructions to the ISA: memcopy and
meminit. Table 5.1 describes the semantics of these two new instructions. We deliberately
keep the semantics of the instructions simple in order to relieve the software from worry-
ing about microarchitectural aspects of RowClone such as row size, alignment, etc. (dis-
cussed in Section 5.2.2). Note that such instructions are already present in some of the
instructions sets in modern processors – e.g., rep movsd, rep stosb, ermsb in x86 [101]
and mvcl in IBM S/390 [96].

There are three points to note regarding the execution semantics of these operations.
First, the processor does not guarantee atomicity for both memcopy and meminit, but
note that existing systems also do not guarantee atomicity for such operations. There-
fore, the software must take care of atomicity requirements using explicit synchronization.
However, the microarchitectural implementation will ensure that any data in the on-chip
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Instruction Operands Semantics

memcopy src, dst, size Copy size bytes from src to dst
meminit dst, size, val Set size bytes to val at dst

Table 5.1: Semantics of the memcopy and meminit instructions

caches is kept consistent during the execution of these operations (Section 5.2.2). Second,
the processor will handle any page faults during the execution of these operations. Third,
the processor can take interrupts during the execution of these operations.

5.2.2 Processor Microarchitecture Support

The microarchitectural implementation of the new instructions, memcopy and meminit,
has two parts. The Vrst part determines if a particular instance of memcopy or meminit
can be fully/partially accelerated by RowClone. The second part involves the changes
required to the cache coherence protocol to ensure coherence of data in the on-chip caches.
We discuss these parts in this section.

Source/Destination Alignment and Size

For the processor to accelerate a copy/initialization operation using RowClone, the oper-
ation must satisfy certain alignment and size constraints. SpeciVcally, for an operation to
be accelerated by FPM, 1) the source and destination regions should be within the same
subarray, 2) the source and destination regions should be row-aligned, and 3) the opera-
tion should span an entire row. On the other hand, for an operation to be accelerated by
PSM, the source and destination regions should be cache line-aligned and the operation
must span a full cache line.

Upon encountering a memcopy/meminit instruction, the processor divides the region
to be copied/initialized into three portions: 1) row-aligned row-sized portions that can be
accelerated using FPM, 2) cache line-aligned cache line-sized portions that can be acceler-
ated using PSM, and 3) the remaining portions that can be performed by the processor. For
the Vrst two regions, the processor sends appropriate requests to the memory controller
which completes the operations and sends an acknowledgment back to the processor. Since
TRANSFER copies only a single cache line, a bulk copy using PSM can be interleaved with
other commands to memory. The processor completes the operation for the third region
similarly to how it is done in today’s systems. Note that the CPU can oYoad all these
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operations to the memory controller. In such a design, the CPU need not be made aware
of the DRAM organization (e.g., row size and alignment, subarray mapping, etc.).

Managing On-Chip Cache Coherence

RowClone allows the memory controller to directly read/modify data in memory without
going through the on-chip caches. Therefore, to ensure cache coherence, the controller
appropriately handles cache lines from the source and destination regions that may be
present in the caches before issuing the copy/initialization operations to memory.

First, the memory controller writes back any dirty cache line from the source region as
the main memory version of such a cache line is likely stale. Copying the data in-memory
before Wushing such cache lines will lead to stale data being copied to the destination
region. Second, the controller invalidates any cache line (clean or dirty) from the desti-
nation region that is cached in the on-chip caches. This is because after performing the
copy operation, the cached version of these blocks may contain stale data. The controller
already has the ability to perform such Wushes and invalidations to support Direct Mem-
ory Access (DMA) [102]. After performing the necessary Wushes and invalidations, the
memory controller performs the copy/initialization operation. To ensure that cache lines
of the destination region are not cached again by the processor in the meantime, the mem-
ory controller blocks all requests (including prefetches) to the destination region until the
copy or initialization operation is complete.

While performing the Wushes and invalidates as mentioned above will ensure coher-
ence, we propose a modiVed solution to handle dirty cache lines of the source region to
reduce memory bandwidth consumption. When the memory controller identiVes a dirty
cache line belonging to the source region while performing a copy, it creates an in-cache
copy of the source cache line with the tag corresponding to the destination cache line. This
has two beneVts. First, it avoids the additional memory Wush required for the dirty source
cache line. Second and more importantly, the controller does not have to wait for all the
dirty source cache lines to be Wushed before it can perform the copy. In Section 5.5.3, we
will consider another optimization, called RowClone-Zero-Insert, which inserts clean zero
cache lines into the cache to further optimize Bulk Zeroing. This optimization does not
require further changes to our proposed modiVcations to the cache coherence protocol.

Although RowClone requires the controller to manage cache coherence, it does not
aUect memory consistency — i.e., concurrent readers or writers to the source or destination
regions involved in a bulk copy or initialization operation. As mentioned before, such an
operation is not guaranteed to be atomic even in current systems, and the software needs
to perform the operation within a critical section to ensure atomicity.
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5.2.3 Software Support

The minimum support required from the system software is the use of the proposed
memcopy and meminit instructions to indicate bulk data operations to the processor. Al-
though one can have a working system with just this support, maximum latency and
energy beneVts can be obtained if the hardware is able to accelerate most copy opera-
tions using FPM rather than PSM. Increasing the likelihood of the use of the FPM mode
requires further support from the operating system (OS) on two aspects: 1) page mapping,
and 2) granularity of copy/initialization.

Subarray-Aware Page Mapping

The use of FPM requires the source row and the destination row of a copy operation to be
within the same subarray. Therefore, to maximize the use of FPM, the OS page mapping
algorithm should be aware of subarrays so that it can allocate a destination page of a
copy operation in the same subarray as the source page. More speciVcally, the OS should
have knowledge of which pages map to the same subarray in DRAM. We propose that
DRAM expose this information to software using the small EEPROM that already exists
in today’s DRAM modules. This EEPROM, called the Serial Presence Detect (SPD) [109],
stores information about the DRAM chips that is read by the memory controller at system
bootup. Exposing the subarray mapping information will require only a few additional
bytes to communicate the bits of the physical address that map to the subarray index.2

Once the OS has the mapping information between physical pages and subarrays, it
maintains multiple pools of free pages, one pool for each subarray. When the OS allocates
the destination page for a copy operation (e.g., for a Copy-on-Write operation), it chooses
the page from the same pool (subarray) as the source page. Note that this approach does
not require contiguous pages to be placed within the same subarray. As mentioned before,
commonly used memory interleaving techniques spread out contiguous pages across as
many banks/subarrays as possible to improve parallelism. Therefore, both the source and
destination of a bulk copy operation can be spread out across many subarrays.

2To increase DRAM yield, DRAM manufacturers design chips with spare rows that can be mapped to
faulty rows [94]. Our mechanism can work with this technique by either requiring that each faulty row
is remapped to a spare row within the same subarray, or exposing the location of all faulty rows to the
memory controller so that it can use PSM to copy data across such rows.
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Granularity of Copy/Initialization

The second aspect that aUects the use of FPM is the granularity at which data is copied or
initialized. FPM has a minimum granularity at which it can copy or initialize data. There
are two factors that aUect this minimum granularity: 1) the size of each DRAM row, and
2) the memory interleaving employed by the controller.

First, FPM copies all the data of the source row to the destination row (across the entire
DIMM). Therefore, the minimum granularity of copy using FPM is at least the size of
the row. Second, to extract maximum bandwidth, some memory interleaving techniques
map consecutive cache lines to diUerent memory channels in the system. Therefore, to
copy/initialize a contiguous region of data with such interleaving strategies, FPM must
perform the copy operation in each channel. The minimum amount of data copied by
FPM in such a scenario is the product of the row size and the number of channels.

To maximize the likelihood of using FPM, the system or application software must en-
sure that the region of data copied (initialized) using the memcopy (meminit) instructions
is at least as large as this minimum granularity. For this purpose, we propose to expose
this minimum granularity to the software through a special register, which we call the
Minimum Copy Granularity Register (MCGR). On system bootup, the memory controller
initializes the MCGR based on the row size and the memory interleaving strategy, which
can later be used by the OS for eUectively exploiting RowClone. Note that some previously
proposed techniques such as sub-wordline activation [224] or mini-rank [231, 252] can be
combined with RowClone to reduce the minimum copy granularity, further increasing the
opportunity to use FPM.

5.3 Applications

RowClone can be used to accelerate any bulk copy and initialization operation to improve
both system performance and energy eXciency. In this paper, we quantitatively evaluate
the eXcacy of RowClone by using it to accelerate two primitives widely used by modern
system software: 1) Copy-on-Write and 2) Bulk Zeroing. We now describe these primitives
followed by several applications that frequently trigger them.

5.3.1 Primitives Accelerated by RowClone

Copy-on-Write (CoW) is a technique used by most modern operating systems (OS) to post-
pone an expensive copy operation until it is actually needed. When data of one virtual
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page needs to be copied to another, instead of creating a copy, the OS points both virtual
pages to the same physical page (source) and marks the page as read-only. In the future,
when one of the sharers attempts to write to the page, the OS allocates a new physical
page (destination) for the writer and copies the contents of the source page to the newly
allocated page. Fortunately, prior to allocating the destination page, the OS already knows
the location of the source physical page. Therefore, it can ensure that the destination is
allocated in the same subarray as the source, thereby enabling the processor to use FPM
to perform the copy.

Bulk Zeroing (BuZ) is an operation where a large block of memory is zeroed out. As
mentioned in Section 5.1.4, our mechanism maintains a reserved row that is fully initial-
ized to zero in each subarray. For each row in the destination region to be zeroed out,
the processor uses FPM to copy the data from the reserved zero-row of the corresponding
subarray to the destination row.

5.3.2 Applications that Use CoW/BuZ

We now describe seven example applications or use-cases that extensively use the CoW or
BuZ operations. Note that these are just a small number of example scenarios that incur a
large number of copy and initialization operations.

Process Forking. fork is a frequently-used system call in modern operating systems
(OS). When a process (parent) calls fork, it creates a new process (child) with the exact
same memory image and execution state as the parent. This semantics of fork makes
it useful for diUerent scenarios. Common uses of the fork system call are to 1) create
new processes, and 2) create stateful threads from a single parent thread in multi-threaded
programs. One main limitation of fork is that it results in a CoW operation whenever
the child/parent updates a shared page. Hence, despite its wide usage, as a result of the
large number of copy operations triggered by fork, it remains one of the most expensive
system calls in terms of memory performance [186].

Initializing Large Data Structures. Initializing large data structures often triggers Bulk
Zeroing. In fact, many managed languages (e.g., C#, Java, PHP) require zero initialization
of variables to ensure memory safety [240]. In such cases, to reduce the overhead of
zeroing, memory is zeroed-out in bulk.

Secure Deallocation. Most operating systems (e.g., Linux [36], Windows [185], Mac
OS X [202]) zero out pages newly allocated to a process. This is done to prevent malicious
processes from gaining access to the data that previously belonged to other processes or
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the kernel itself. Not doing so can potentially lead to security vulnerabilities, as shown by
prior works [50, 62, 85, 87].

Process Checkpointing. Checkpointing is an operation during which a consistent ver-
sion of a process state is backed-up, so that the process can be restored from that state
in the future. This checkpoint-restore primitive is useful in many cases including high-
performance computing servers [33], software debugging with reduced overhead [206],
hardware-level fault and bug tolerance mechanisms [52, 53], and speculative OS opti-
mizations to improve performance [44, 234]. However, to ensure that the checkpoint is
consistent (i.e., the original process does not update data while the checkpointing is in
progress), the pages of the process are marked with copy-on-write. As a result, check-
pointing often results in a large number of CoW operations.

Virtual Machine Cloning/Deduplication. Virtual machine (VM) cloning [130] is a tech-
nique to signiVcantly reduce the startup cost of VMs in a cloud computing server. Sim-
ilarly, deduplication is a technique employed by modern hypervisors [229] to reduce the
overall memory capacity requirements of VMs. With this technique, diUerent VMs share
physical pages that contain the same data. Similar to forking, both these operations likely
result in a large number of CoW operations for pages shared across VMs.

Page Migration. Bank conWicts, i.e., concurrent requests to diUerent rows within the
same bank, typically result in reduced row buUer hit rate and hence degrade both system
performance and energy eXciency. Prior work [217] proposed techniques to mitigate bank
conWicts using page migration. The PSM mode of RowClone can be used in conjunction
with such techniques to 1) signiVcantly reduce the migration latency and 2) make the
migrations more energy-eXcient.

CPU-GPU Communication. In many current and future processors, the GPU is or is
expected to be integrated on the same chip with the CPU. Even in such systems where
the CPU and GPU share the same oU-chip memory, the oU-chip memory is partitioned
between the two devices. As a consequence, whenever a CPU program wants to oYoad
some computation to the GPU, it has to copy all the necessary data from the CPU address
space to the GPU address space [105]. When the GPU computation is Vnished, all the
data needs to be copied back to the CPU address space. This copying involves a signiV-
cant overhead. By spreading out the GPU address space over all subarrays and mapping
the application data appropriately, RowClone can signiVcantly speed up these copy op-
erations. Note that communication between diUerent processors and accelerators in a
heterogeneous System-on-a-chip (SoC) is done similarly to the CPU-GPU communication
and can also be accelerated by RowClone.
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We now quantitatively compare RowClone to existing systems and show that Row-
Clone signiVcantly improves both system performance and energy eXciency.

5.4 Methodology

Simulation. Our evaluations use an in-house cycle-level multi-core simulator along with a
cycle-accurate command-level DDR3 DRAM simulator. The multi-core simulator models
out-of-order cores, each with a private last-level cache.3 We integrate RowClone into the
simulator at the command-level. We use DDR3 DRAM timing constraints [110] to calcu-
late the latency of diUerent operations. Since TRANSFER operates similarly to READ/WRITE,
we assume TRANSFER to have the same latency as READ/WRITE. For our energy evaluations,
we use DRAM energy/power models from Rambus [178] and Micron [151]. Although, in
DDR3 DRAM, a row corresponds to 8KB across a rank, we assume a minimum in-DRAM
copy granularity (Section 5.2.3) of 4KB – same as the page size used by the operating sys-
tem (Debian Linux) in our evaluations. For this purpose, we model a DRAM module with
512-byte rows per chip (4KB across a rank). Table 5.2 speciVes the major parameters used
for our simulations.

Component Parameters

Processor 1–8 cores, OoO 128-entry window, 3-wide issue, 8 MSHRs/core

Last-level Cache 1MB per core, private, 64-byte cache line, 16-way associative

Memory Controller One per channel, 64-entry read queue, 64-entry write queue

Memory System DDR3-1066 (8-8-8) [110], 2 channels, 1 rank/channel, 8 banks/rank

Table 5.2: Configuration of the simulated system

Workloads. We evaluate the beneVts of RowClone using 1) a case study of the fork sys-
tem call, an important operation used by modern operating systems, 2) six copy and ini-
tialization intensive benchmarks: bootup, compile, forkbench, memcached [8], mysql [9],
and shell (Section 5.5.3 describes these benchmarks), and 3) a wide variety of multi-
core workloads comprising the copy/initialization intensive applications running along-
side memory-intensive applications from the SPEC CPU2006 benchmark suite [55]. Note
that benchmarks such as SPEC CPU2006, which predominantly stress the CPU, typically

3Since our mechanism primarily aUects oU-chip memory traXc, we expect our results and conclusions to be
similar with shared caches as well.
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use a small number of page copy and initialization operations and therefore would serve
as poor individual evaluation benchmarks for RowClone.

We collected instruction traces for our workloads using Bochs [3], a full-system x86-
64 emulator, running a GNU/Linux system. We modify the kernel’s implementation of
page copy/initialization to use the memcopy and meminit instructions and mark these
instructions in our traces.4 We collect 1-billion instruction traces of the representative
portions of these workloads. We use the instruction throughput (IPC) metric to measure
single-core performance. We evaluate multi-core runs using the weighted speedup metric,
a widely-used measure of system throughput for multi-programmed workloads [67], as
well as Vve other performance/fairness/bandwidth/energy metrics, as shown in Table 5.7.

5.5 Evaluations

In this section, we quantitatively evaluate the beneVts of RowClone. We Vrst analyze
the raw latency and energy improvement enabled by the DRAM substrate to accelerate a
single 4KB copy and 4KB zeroing operation (Section 5.5.1). We then discuss the results of
our evaluation of RowClone using fork (Section 5.5.2) and six copy/initialization intensive
applications (Section 5.5.3). Section 5.5.4 presents our analysis of RowClone on multi-core
systems and Section 5.5.5 provides quantitative comparisons to memory controller based
DMA engines.

5.5.1 Latency and Energy Analysis

Figure 5.3 shows the sequence of commands issued by the baseline, FPM and PSM (inter-
bank) to perform a 4KB copy operation. The Vgure also shows the overall latency incurred
by each of these mechanisms, assuming DDR3-1066 timing constraints. Note that a 4KB
copy involves copying 64 64B cache lines. For ease of analysis, only for this section, we
assume that no cache line from the source or the destination region are cached in the on-
chip caches. While the baseline serially reads each cache line individually from the source
page and writes it back individually to the destination page, FPM parallelizes the copy
operation of all the cache lines by using the large internal bandwidth available within
a subarray. PSM, on the other hand, uses the new TRANSFER command to overlap the
latency of the read and write operations involved in the page copy.

4For our fork benchmark (described in Section 5.5.2), we used the Wind River Simics full system simula-
tor [13] to collect the traces.
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ACT s R1 R2 ...‖ ... R64 PRE ACT d W1 W2 ...‖ ... W64 PRE

1046ns

ACT s ACT d PRE

90ns

ACT s ACT d Tr1 Tr2 ...‖ ... Tr64 PRE PRE

540ns

Baseline

FPM

PSM (Inter-bank)

time

ACT s — ACTIVATE source, ACT d — ACTIVATE destination
R — READ, W — WRITE, Tr — TRANSFER, PRE — PRECHARGE

Figure 5.3: Command sequence and latency for Baseline, FPM, and Inter-bank PSM
for a 4KB copy operation. Intra-bank PSM simply repeats the operations for Inter-
bank PSM twice (source row to temporary row and temporary row to destination
row). The figure is not drawn to scale.

Table 5.3 shows the reduction in latency and energy consumption due to our mecha-
nisms for diUerent cases of 4KB copy and zeroing operations. To be fair to the baseline,
the results include only the energy consumed by the DRAM and the DRAM channel. We
draw two conclusions from our results.

Mechanism

Absolute Reduction
Memory Memory

Latency Energy Latency Energy
(ns) (µJ)

C
op

y

Baseline 1046 3.6 1.00x 1.0x
FPM 90 0.04 11.62x 74.4x

Inter-Bank - PSM 540 1.1 1.93x 3.2x
Intra-Bank - PSM 1050 2.5 0.99x 1.5x

Z
er
o Baseline 546 2.0 1.00x 1.0x

FPM 90 0.05 6.06x 41.5x

Table 5.3: DRAM latency and memory energy reductions due to RowClone

First, FPM signiVcantly improves both the latency and the energy consumed by bulk
operations — 11.6x and 6x reduction in latency of 4KB copy and zeroing, and 74.4x and
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41.5x reduction in memory energy of 4KB copy and zeroing. Second, although PSM does
not provide as much beneVt as FPM, it still reduces the latency and energy of a 4KB inter-
bank copy by 1.9x and 3.2x, while providing a more generally applicable mechanism.

When an on-chip cache is employed, any line cached from the source or destination
page can be served at a lower latency than accessing main memory. As a result, in such
systems, the baseline will incur a lower latency to perform a bulk copy or initialization
compared to a system without on-chip caches. However, as we show in the following
sections (5.5.2–5.5.4), even in the presence of on-chip caching, the raw latency/energy im-
provement due to RowClone translates to signiVcant improvements in both overall system
performance and energy eXciency.

5.5.2 The fork System Call

As mentioned in Section 5.3.2, fork is one of the most expensive yet frequently-used sys-
tem calls in modern systems [186]. Since fork triggers a large number of CoW operations
(as a result of updates to shared pages from the parent or child process), RowClone can
signiVcantly improve the performance of fork.

The performance of fork depends on two parameters: 1) the size of the address space
used by the parent—which determines how much data may potentially have to be copied,
and 2) the number of pages updated after the fork operation by either the parent or
the child—which determines how much data is actually copied. To exercise these two
parameters, we create a microbenchmark, forkbench, which Vrst creates an array of size
S and initializes the array with random values. It then forks itself. The child process
updatesN random pages (by updating a cache line within each page) and exits; the parent
process waits for the child process to complete before exiting itself.

As such, we expect the number of copy operations to depend on N—the number of
pages copied. Therefore, one may expect RowClone’s performance beneVts to be pro-
portional to N . However, an application’s performance typically depends on the overall
memory access rate [215], and RowClone can only improve performance by reducing the
memory access rate due to copy operations. As a result, we expect the performance im-
provement due to RowClone to primarily depend on the fraction of memory traXc (total
bytes transferred over the memory channel) generated by copy operations. We refer to
this fraction as FMTC—Fraction of Memory TraXc due to Copies.

Figure 5.4 plots FMTC of forkbench for diUerent values of S (64MB and 128MB) and
N (2 to 16k) in the baseline system. As the Vgure shows, for both values of S , FMTC
increases with increasing N . This is expected as a higher N (more pages updated by the
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child) leads to more CoW operations. However, because of the presence of other read/write
operations (e.g., during the initialization phase of the parent), for a given value of N ,
FMTC is larger for S = 64MB compared to S = 128MB. Depending on the value of S and
N , anywhere between 14% to 66% of the memory traXc arises from copy operations. This
shows that accelerating copy operations using RowClone has the potential to signiVcantly
improve the performance of the fork operation.
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Figure 5.4: FMTC of forkbench for varying S and N
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Figure 5.5: Performance improvement due to RowClone for forkbench with different
values of S and N

Figure 5.5 plots the performance (IPC) of FPM and PSM for forkbench, normalized
to that of the baseline system. We draw two conclusions from the Vgure. First, FPM
improves the performance of forkbench for both values of S and most values of N .
The peak performance improvement is 2.2x for N = 16k (30% on average across all data
points). As expected, the improvement of FPM increases as the number of pages updated
increases. The trend in performance improvement of FPM is similar to that of FMTC
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(Figure 5.4), conVrming our hypothesis that FPM’s performance improvement primarily
depends on FMTC. Second, PSM does not provide considerable performance improvement
over the baseline. This is because the large on-chip cache in the baseline system buUers
the writebacks generated by the copy operations. These writebacks are Wushed to memory
at a later point without further delaying the copy operation. As a result, PSM, which just
overlaps the read and write operations involved in the copy, does not improve latency
signiVcantly in the presence of a large on-chip cache. On the other hand, FPM, by copying
all cache lines from the source row to destination in parallel, signiVcantly reduces the
latency compared to the baseline (which still needs to read the source blocks from main
memory), resulting in high performance improvement.

Figure 5.6 shows the reduction in DRAM energy consumption (considering both the
DRAM and the memory channel) of FPM and PSM modes of RowClone compared to
that of the baseline for forkbench with S = 64MB. Similar to performance, the overall
DRAM energy consumption also depends on the total memory access rate. As a result,
RowClone’s potential to reduce DRAM energy depends on the fraction of memory traXc
generated by copy operations. In fact, our results also show that the DRAM energy reduc-
tion due to FPM and PSM correlate well with FMTC (Figure 5.4). By eXciently performing
the copy operations, FPM reduces DRAM energy consumption by up to 80% (average 50%,
across all data points). Similar to FPM, the energy reduction of PSM also increases with
increasing N with a maximum reduction of 9% for N=16k.
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Figure 5.6: Comparison of DRAM energy consumption of different mechanisms for
forkbench (S = 64MB)

In a system that is agnostic to RowClone, we expect the performance improvement
and energy reduction of RowClone to be in between that of FPM and PSM. By making the
system software aware of RowClone (Section 5.2.3), we can approximate the maximum
performance and energy beneVts by increasing the likelihood of the use of FPM.
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5.5.3 Copy/Initialization Intensive Applications

In this section, we analyze the beneVts of RowClone on six copy/initialization intensive
applications, including one instance of the forkbench described in the previous section.
Table 5.4 describes these applications.

Name Description

bootup A phase booting up the Debian operating system.

compile The compilation phase from the GNU C compiler (while running cc1).

forkbench An instance of the forkbench described in Section 5.5.2 with S = 64MB and N = 1k.

mcached
Memcached [8], a memory object caching system, a phase inserting many key-value
pairs into the memcache.

mysql MySQL [9], an on-disk database system, a phase loading the sample employeedb

shell
A Unix shell script running ‘Vnd’ on a directory tree with ‘ls’ on each sub-directory
(involves Vlesystem accesses and spawning new processes).

Table 5.4: Copy/Initialization-intensive benchmarks

Figure 5.7 plots the fraction of memory traXc due to copy, initialization, and regular
read/write operations for the six applications. For these applications, between 10% and
80% of the memory traXc is generated by copy and initialization operations.
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Figure 5.7: Fraction of memory traffic due to read, write, copy and initialization

Figure 5.8 compares the IPC of the baseline with that of RowClone and a variant of
RowClone, RowClone-ZI (described shortly). The RowClone-based initialization mecha-
nism slightly degrades performance for the applications which have a negligible number
of copy operations (mcached, compile, and mysql).
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Further analysis indicated that, for these applications, although the operating system
zeroes out any newly allocated page, the application typically accesses almost all cache
lines of a page immediately after the page is zeroed out. There are two phases: 1) the phase
when the OS zeroes out the page, and 2) the phase when the application accesses the cache
lines of the page. While the baseline incurs cache misses during phase 1, RowClone, as a
result of performing the zeroing operation completely in memory, incurs cache misses in
phase 2. However, the baseline zeroing operation is heavily optimized for memory-level
parallelism (MLP) [155, 158]. In contrast, the cache misses in phase 2 have low MLP. As a
result, incurring the same misses in Phase 2 (as with RowClone) causes higher overall stall
time for the application (because the latencies for the misses are serialized) than incurring
them in Phase 1 (as in the baseline), resulting in RowClone’s performance degradation
compared to the baseline.

To address this problem, we introduce a variant of RowClone, RowClone-Zero-Insert
(RowClone-ZI). RowClone-ZI not only zeroes out a page in DRAM but it also inserts a
zero cache line into the processor cache corresponding to each cache line in the page
that is zeroed out. By doing so, RowClone-ZI avoids the cache misses during both phase 1
(zeroing operation) and phase 2 (when the application accesses the cache lines of the zeroed
page). As a result, it improves performance for all benchmarks, notably forkbench (by
66%) and shell (by 40%), compared to the baseline.
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Figure 5.8: Performance improvement of RowClone and RowClone-ZI. Value on top
indicates percentage improvement of RowClone-ZI over baseline.

Table 5.5 shows the percentage reduction in DRAM energy and memory bandwidth
consumption with RowClone and RowClone-ZI compared to the baseline. While Row-
Clone signiVcantly reduces both energy and memory bandwidth consumption for bootup,
forkbench and shell, it has negligible impact on both metrics for the remaining three
benchmarks. The lack of energy and bandwidth beneVts in these three applications is due
to serial execution caused by the the cache misses incurred when the processor accesses
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the zeroed out pages (i.e., phase 2, as described above), which also leads to performance
degradation in these workloads (as also described above). RowClone-ZI, which eliminates
the cache misses in phase 2, signiVcantly reduces energy consumption (between 15% to
69%) and memory bandwidth consumption (between 16% and 81%) for all benchmarks
compared to the baseline. We conclude that RowClone-ZI can eUectively improve perfor-
mance, memory energy, and memory bandwidth eXciency in page copy and initialization
intensive single-core workloads.

Application
Energy Reduction Bandwidth Reduction

RowClone +ZI RowClone +ZI

bootup 39% 40% 49% 52%

compile -2% 32% 2% 47%

forkbench 69% 69% 60% 60%

mcached 0% 15% 0% 16%

mysql -1% 17% 0% 21%

shell 68% 67% 81% 81%

Table 5.5: DRAM energy and bandwidth reduction due to RowClone and RowClone-ZI
(indicated as +ZI)

5.5.4 Multi-core Evaluations

As RowClone performs bulk data operations completely within DRAM, it signiVcantly
reduces the memory bandwidth consumed by these operations. As a result, RowClone
can beneVt other applications running concurrently on the same system. We evaluate this
beneVt of RowClone by running our copy/initialization-intensive applications alongside
memory-intensive applications from the SPEC CPU2006 benchmark suite [55] (i.e., those
applications with last-level cache MPKI greater than 1). Table 5.6 lists the set of applica-
tions used for our multi-programmed workloads.

We generate multi-programmed workloads for 2-core, 4-core and 8-core systems. In
each workload, half of the cores run copy/initialization-intensive benchmarks and the re-
maining cores run memory-intensive SPEC benchmarks. Benchmarks from each category
are chosen at random.

Figure 5.9 plots the performance improvement due to RowClone and RowClone-ZI
for the 50 4-core workloads we evaluated (sorted based on the performance improvement
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Copy/Initialization-intensive benchmarks
bootup, compile, forkbench, mcached, mysql, shell

Memory-intensive benchmarks from SPEC CPU2006
bzip2, gcc, mcf, milc, zeusmp, gromacs, cactusADM, leslie3d, namd, gobmk, dealII,
soplex, hmmer, sjeng, GemsFDTD, libquantum, h264ref, lbm, omnetpp, astar, wrf,
sphinx3, xalancbmk

Table 5.6: List of benchmarks used for multi-core evaluation

due to RowClone-ZI). Two conclusions are in order. First, although RowClone degrades
performance of certain 4-core workloads (with compile, mcached ormysql benchmarks), it
signiVcantly improves performance for all other workloads (by 10% across all workloads).
Second, like in our single-core evaluations (Section 5.5.3), RowClone-ZI eliminates the
performance degradation due to RowClone and consistently outperforms both the baseline
and RowClone for all workloads (20% on average).
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Figure 5.9: System performance improvement of RowClone for 4-core workloads

Table 5.7 shows the number of workloads and six metrics that evaluate the perfor-
mance, fairness, memory bandwidth and energy eXciency improvement due to RowClone
compared to the baseline for systems with 2, 4, and 8 cores. For all three systems, Row-
Clone signiVcantly outperforms the baseline on all metrics.

To provide more insight into the beneVts of RowClone on multi-core systems, we
classify our copy/initialization-intensive benchmarks into two categories: 1) Moderately
copy/initialization-intensive (compile,mcached, andmysql) and highly copy/initialization-
intensive (bootup, forkbench, and shell). Figure 5.10 shows the average improvement
in weighted speedup for the diUerent multi-core workloads, categorized based on the
number of highly copy/initialization-intensive benchmarks. As the trends indicate, the
performance improvement increases with increasing number of such benchmarks for all
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Number of Cores 2 4 8

Number of Workloads 138 50 40

Weighted Speedup [67] Improvement 15% 20% 27%

Instruction Throughput Improvement 14% 15% 25%

Harmonic Speedup [147] Improvement 13% 16% 29%

Maximum Slowdown [123, 124] Reduction 6% 12% 23%

Memory Bandwidth/Instruction [205] Reduction 29% 27% 28%

Memory Energy/Instruction Reduction 19% 17% 17%

Table 5.7: Multi-core performance, fairness, bandwidth, and energy

three multi-core systems, indicating the eUectiveness of RowClone in accelerating bulk
copy/initialization operations.
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Figure 5.10: Effect of increasing copy/initialization intensity

We conclude that RowClone is an eUective mechanism to improve system perfor-
mance, energy eXciency and bandwidth eXciency of future, bandwidth-constrained multi-
core systems.

5.5.5 Memory-Controller-based DMA

One alternative way to perform a bulk data operation is to use the memory controller
to complete the operation using the regular DRAM interface (similar to some prior ap-
proaches [113, 248]). We refer to this approach as the memory-controller-based DMA
(MC-DMA). MC-DMA can potentially avoid the cache pollution caused by inserting blocks
(involved in the copy/initialization) unnecessarily into the caches. However, it still re-
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quires data to be transferred over the memory bus. Hence, it suUers from the large la-
tency, bandwidth, and energy consumption associated with the data transfer. Because the
applications used in our evaluations do not suUer from cache pollution, we expect the MC-
DMA to perform comparably or worse than the baseline. In fact, our evaluations show
that MC-DMA degrades performance compared to our baseline by 2% on average for the
six copy/initialization intensive applications (16% compared to RowClone). In addition,
the MC-DMA does not conserve any DRAM energy, unlike RowClone.

5.6 Summary

In this chapter, we introduced RowClone, a technique for exporting bulk data copy and
initialization operations to DRAM. Our fastest mechanism copies an entire row of data
between rows that share a row buUer, with very few changes to the DRAM architec-
ture, while leading to signiVcant reduction in the latency and energy of performing bulk
copy/initialization. We also propose a more Wexible mechanism that uses the internal
bus of a chip to copy data between diUerent banks within a chip. Our evaluations using
copy and initialization intensive applications show that RowClone can signiVcantly reduce
memory bandwidth consumption for both single-core and multi-core systems (by 28% on
average for 8-core systems), resulting in signiVcant system performance improvement and
memory energy reduction (27% and 17%, on average, for 8-core systems).

We conclude that our approach of performing bulk copy and initialization completely
in DRAM is eUective in improving both system performance and energy eXciency for
future, bandwidth-constrained, multi-core systems. We hope that greatly reducing the
bandwidth, energy and performance cost of bulk data copy and initialization can lead to
new and easier ways of writing applications that would otherwise need to be designed to
avoid bulk data copy and initialization operations.



Chapter 6

Buddy RAM

In the line of research aiming to identify primitives that can be eXciently performed inside
DRAM, the second mechanism we explore in this thesis is one that can perform bitwise
logical operations completely inside DRAM. Our mechanism uses the internal analog op-
eration of DRAM to eXciently perform bitwise operations. For this reason, we call our
mechanism Buddy RAM or Bitwise-ops Using DRAM (BU-D-RAM).

Bitwise operations are an important component of modern day programming. They
have a wide variety of applications, and can often replace arithmetic operations with more
eXcient algorithms [126, 232]. In fact, many modern processors provide support for accel-
erating a variety of bitwise operations (e.g., Intel Advance Vector eXtensions [98]).

We focus our attention on bitwise operations on large amounts of input data. We refer
to such operations as bulk bitwise operations. Many applications trigger such bulk bitwise
operations. For example, in databases, bitmap indices [41, 164] can be more eXcient than
commonly-used B-trees for performing range queries and joins [5, 41, 238]. In fact, bitmap
indices are supported by many real-world implementations (e.g., Redis [10], Fastbit [5]).
Improving the throughput of bitwise operations can boost the performance of such bitmap
indices and many other primitives (e.g., string matching, bulk hashing).

As bitwise operations are computationally inexpensive, in existing systems, the through-
put of bulk bitwise operations is limited by the available memory bandwidth. This is be-
cause, to perform a bulk bitwise operation, existing systems must Vrst read the source data
from main memory into the processor caches. After performing the operation at the pro-

A part of this chapter is originally published as “Fast Bulk Bitwise AND and OR in DRAM” in IEEE Computer

Architecture Letters, 2015 [191]
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cessor, they may have to write the result back to main memory. As a result, this approach
requires a large amount of data to be transferred back and forth on the memory channel,
resulting in high latency, bandwidth, and energy consumption.

Our mechanism, Buddy RAM, consist of two components: one to perform bitwise
AND/OR operations (Buddy-AND/OR), and the second component to perform bitwise
NOT operations (Buddy-NOT). Both components heavily exploit the operation of the sense
ampliVer and the DRAM cells (described in Section 4.2.2). In the following sections, we
Vrst provide an overview of both these mechanisms, followed by a detailed implemen-
tation of Buddy that requires minimal changes to the internal design and the external
interface of commodity DRAM.

6.1 Buddy-AND/OR

As described in Section 4.2.2, when a DRAM cell is connected to a bitline precharged
to 1

2
VDD, the cell induces a deviation on the bitline, and the deviation is ampliVed by

the sense ampliVer. Buddy-AND/OR exploits the following fact about the DRAM cell
operation.

The Vnal state of the bitline after ampliVcation is determined solely by the
deviation on the bitline after the charge sharing phase (after state Ì in Fig-
ure 4.6). If the deviation is positive (i.e., towards VDD), the bitline is ampliVed
to VDD. Otherwise, if the deviation is negative (i.e., towards 0), the bitline is
ampliVed to 0.

6.1.1 Triple-Row Activation

Buddy-AND/OR simultaneously connects three cells as opposed to a single cell to a sense
ampliVer. When three cells are connected to the bitline, the deviation of the bitline after
charge sharing is determined by the majority value of the three cells. SpeciVcally, if at
least two cells are initially in the charged state, the eUective voltage level of the three cells
is at least 2

3
VDD. This results in a positive deviation on the bitline. On the other hand, if at

most one cell is initially in the charged state, the eUective voltage level of the three cells is
at most 1

3
VDD. This results in a negative deviation on the bitline voltage. As a result, the

Vnal state of the bitline is determined by the logical majority value of the three cells.

Figure 6.1 shows an example of activating three cells simultaneously. In the Vgure, we
assume that two of the three cells are initially in the charged state and the third cell is in
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Figure 6.1: Triple-row activation

the empty state Ê. When the wordlines of all the three cells are raised simultaneously Ë,
charge sharing results in a positive deviation on the bitline.

More generally, if the cell’s capacitance is Cc, the the bitline’s is Cb, and if k of the
three cells are initially in the charged state, based on the charge sharing principles [118],
the deviation δ on the bitline voltage level is given by,

δ =
k.Cc.VDD + Cb.

1
2
VDD

3Cc + Cb

− 1

2
VDD

=
(2k − 3)Cc

6Cc + 2Cb

VDD (6.1)

From the above equation, it is clear that δ is positive for k = 2, 3, and δ is negative for
k = 0, 1. Therefore, after ampliVcation, the Vnal voltage level on the bitline is VDD for
k = 2, 3 and 0 for k = 0, 1.

If A, B, and C represent the logical values of the three cells, then the Vnal state of the
bitline is AB + BC + CA (i.e., at least two of the values should be 1 for the Vnal state
to be 1). Importantly, using simple boolean algebra, this expression can be rewritten as
C(A + B) + C(AB). In other words, if the initial state of C is 1, then the Vnal state of
the bitline is a bitwise OR of A and B. Otherwise, if the initial state of C is 0, then the
Vnal state of the bitline is a bitwise AND of A and B. Therefore, by controlling the value
of the cell C, we can execute a bitwise AND or bitwise OR operation of the remaining two
cells using the sense ampliVer. Due to the regular bulk operation of cells in DRAM, this
approach naturally extends to an entire row of DRAM cells and sense ampliVers, enabling
a multi-kilobyte-wide bitwise AND/OR operation.1

1Note that the triple-row activation by itself can be useful to implement a bitwise majority primitive. How-
ever, we do not explore this path in this thesis.
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6.1.2 Challenges

There are two challenges in our approach. First, Equation 6.1 assumes that the cells in-
volved in the triple-row activation are either fully charged or fully empty. However,
DRAM cells leak charge over time. Therefore, the triple-row activation may not oper-
ate as expected. This problem may be exacerbated by process variation in DRAM cells.
Second, as shown in Figure 6.1 (state Ì), at the end of the triple-row activation, the data
in all the three cells are overwritten with the Vnal state of the bitline. In other words, our
approach overwrites the source data with the Vnal value. In the following sections, we
propose a simple implementation that addresses these challenges.

6.1.3 Overview of Implementation of Buddy-AND/OR

To ensure that the source data does not get modiVed, our mechanism Vrst copies the data
from the two source rows to two reserved temporary rows (T1 and T2). Depending on
the operation to be performed (AND or OR), our mechanism initializes a third reserved
temporary row T3 to (0 or 1). It then simultaneously activates the three rows T1, T2, and
T3. It Vnally copies the result to the destination row. For example, to perform a bitwise
AND of two rows A and B and store the result in row R, our mechanism performs the
following steps.

1. Copy data of row A to row T1
2. Copy data of row B to row T2
3. Initialize row T3 to 0
4. Activate rows T1, T2, and T3 simultaneously
5. Copy data of row T1 to row R

While the above mechanism is simple, the copy operations, if performed naively, will
nullify the beneVts of our mechanism. Fortunately, we can use RowClone (described in
Chapter 5), to perform row-to-row copy operations quickly and eXciently within DRAM.
To recap, RowClone consists of two techniques. The Vrst technique, RowClone-FPM (Fast
Parallel Mode), which is the fastest and the most eXcient, copies data within a subarray by
issuing two back-to-back ACTIVATEs to the source row and the destination row, without an
intervening PRECHARGE. The second technique, RowClone-PSM (Pipelined Serial Mode),
eXciently copies data between two banks by using the shared internal bus to overlap the
read to the source bank with the write to the destination bank.

With RowClone, all three copy operations (Steps 1, 2, and 5) and the initialization
operation (Step 3) can be performed eXciently within DRAM. To use RowClone for the
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initialization operation, we reserve two additional rows, C0 and C1. C0 is pre-initialized
to 0 and C1 is pre-initialized to 1. Depending on the operation to be performed, our
mechanism uses RowClone to copy either C0 or C1 to T3. Furthermore, to maximize the
use of RowClone-FPM, we reserve Vve rows in each subarray to serve as the temporary
rows (T1, T2, and T3) and the control rows (C0 and C1).

In the best case, when all the three rows involved in the operation (A, B, and R) are in
the same subarray, our mechanism can use RowClone-FPM for all copy and initialization
operations. However, if the three rows are in diUerent banks/subarrays, some of the three
copy operations have to use RowClone-PSM. In the worst case, when all three copy op-
erations have to use RowClone-PSM, our approach will consume higher latency than the
baseline. However, when only one or two RowClone-PSM operations are required, our
mechanism will be faster and more energy-eXcient than existing systems. As our goal in
this paper is to demonstrate the power of our approach, in the rest of the paper, we will
focus our attention on the case when all rows involved in the bitwise operation are in the
same subarray.

6.1.4 Reliability of Our Mechanism

While our mechanism trivially addresses the second challenge (modiVcation of the source
data), it also addresses the Vrst challenge (DRAM cell leakage). This is because, in our
approach, the source (and the control) data are copied to the rows T1, T2 and T3 just
before the triple-row activation. Each copy operation takes much less than 1 µs, which is
Vve orders of magnitude less than the typical refresh interval (64 ms). Consequently, the
cells involved in the triple-row activation are very close to the fully refreshed state before
the operation, thereby ensuring reliable operation of the triple-row activation. Having said
that, an important aspect of our mechanism is that a chip that fails the tests for triple-row
activation (e.g., due to process variation) can still be used as a regular DRAM chip. As
a result, our approach is likely to have little impact on the overall yield of DRAM chips,
which is a major concern for manufacturers.

6.2 Buddy-NOT

Buddy-NOT exploits the fact that the sense ampliVer itself consists of two inverters and
the following observation about the sense ampliVer operation.
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At the end of the sense ampliVcation process, while the bitline voltage reWects
the logical value of the cell, the voltage level of the bitline corresponds to the
negation of the logical value of the cell.

6.2.1 Dual-Contact Cell

Our high-level idea is to transfer the data on the bitline to a cell that can be connected to
the bitline. For this purpose, we introduce a special DRAM cell called dual-contact cell. A
dual-contact cell (DCC) is a DRAM cell with two transistors and one capacitor. For each
DCC, one transistor connects the DCC to the bitline and the other transistor connects the
DCC to the bitline. Each of the two transistors is controlled by a diUerent wordline. We
refer to the wordline that controls the connection between the DCC and the bitline as
the d-wordline (or data wordline). We refer to the wordline that controls the connection
between the DCC and the bitline as the n-wordline (or negation wordline). Figure 6.2
shows one DCC connected to a sense ampliVer. In our mechanism, we use two DCCs for
each sense ampliVer, one on each side of the sense ampliVer.

d-wordline

n-wordline

sense
ampliVer

enable

bi
tl
in
e

bitline

Figure 6.2: A dual-contact cell connected to both ends of a sense amplifier

6.2.2 Exploiting the Dual-Contact Cell

Since the DCC is connected to both the bitline and the bitline, we can use a RowClone-
like mechanism to transfer the negation of some source data on to the DCC using the
n-wordline. The negated data can be transferred to the bitline by activating the d-wordline
of the DCC, and can then be copied to the destination cells using RowClone.

Figure 6.3 shows the sequence of steps involved in transferring the negation of a source
cell on to the DCC. The Vgure shows a source cell and a DCC connected to the same sense
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ampliVer Ê. Our mechanism Vrst activates the source cell Ë. At the end of the activation
process, the bitline is driven to the data corresponding to the source cell, VDD in this case
Ì. More importantly, for the purpose of our mechanism, the bitline is driven to 0. In this
state, our mechanism activates the n-wordline, enabling the transistor that connects the
DCC to the bitline Í. Since the bitline is already at a stable voltage level of 0, it overwrites
the value in the cell with 0, essentially copying the negation of the source data into the
DCC. After this step, the negated data can be eXciently copied into the destination cell
using RowClone. Section 6.3.3 describes the sequence of commands required to perform a
bitwise NOT.
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Figure 6.3: Bitwise NOT using a dual-contact cell

6.3 Implementation and Hardware Cost

Besides the addition of a dual-contact cell on either side of each sense ampliVer, Buddy
primarily relies on diUerent variants and sequences of row activations to perform bulk
bitwise operations. As a result, the main changes to the DRAM chip introduced by Buddy
are to the row decoding logic. While the operation of Buddy-NOT is similar to a regular
cell operation, Buddy-AND/OR requires three rows to be activated simultaneously. Ac-
tivating three arbitrary rows within a subarray 1) requires the memory controller to Vrst
communicate the three addresses to DRAM, and 2) requires DRAM to simultaneously de-
code the three addresses. Both of these requirements incur huge cost, i.e., wide address
buses and three full row decoders to decode the three addresses simultaneously.

In this work, we propose an implementation with much lower cost. At a high level, we
reserve a small fraction of row addresses within each subarray for triple-row activation.
Our mechanism maps each reserved address to a pre-deVned set of three wordlines instead
of one. With this approach, the memory controller can perform a triple-row activation by
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issuing an ACTIVATE with a single row address. We now describe how we exploit certain
properties of Buddy to realize this implementation.

6.3.1 Row Address Grouping

Before performing the triple-row activation, our mechanism copies the source data and
the control data to three temporary rows (Section 6.1.3). If we choose these temporary
rows at design time, then these rows can be controlled using a separate small row decoder.
To exploit this idea, we divide the space of row addresses within each subarray into three
distinct groups (B, C, and D), as shown in Figure 6.4.

Sense AmpliVers

... 1006 rows ...

small B-group
row decoder

regular
row decoder

B12

C-group
(2 rows)
C0,C1

B-group
(8 rows)

T0,T1,T2,T3
DCC0,DCC0
DCC1,DCC1

D-group

Figure 6.4: Logical subarray address grouping. As an example, the figure shows how
the B-group row decoder simultaneously activates rows T0, T1, and T2 (highlighted in
thick lines), with a single address B12.

The B-group (or the bitwise group) corresponds to rows that are used to perform the
bitwise operations. This group contains 16 addresses that map to 8 physical wordlines.
Four of the eight wordlines are the d-and-n-wordlines that control the two rows of dual-
contact cells. We will refer to the d-wordlines of the two rows as DCC0 and DCC1, and the
corresponding n-wordlines as DCC0 and DCC1. The remaining four wordlines control four
temporary rows of DRAM cells that will be used by various bitwise operations. We refer
to these rows as T0—T3. While some B-group addresses activate individual wordlines,
others activate multiple wordlines simultaneously. Table 6.1 lists the mapping between
the 16 addresses and the wordlines. Addresses B0—B7 individually activate one of the 8
physical wordlines. Addresses B12—B15 activate three wordlines simultaneously. These
addresses will be used by the memory controller to trigger bitwise AND or OR operations.
Finally, addresses B8—B11 activate two wordlines. As we will show in the next section,
these addresses will be used to copy the result of an operation simultaneously to two rows
(e.g., zero out two rows simultaneously).

The C-group (or the control group) contains the rows that store the pre-initialized
values for controlling the bitwise AND/OR operations. SpeciVcally, this group contains
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Addr. Wordline(s)

B0 T0
B1 T1
B2 T2
B3 T3
B4 DCC0
B5 DCC0
B6 DCC1
B7 DCC1

Addr. Wordline(s)

B8 DCC0, T0
B9 DCC1, T1
B10 T2, T3
B11 T0, T3
B12 T0, T1, T2
B13 T1, T2, T3
B14 DCC0, T1, T2
B15 DCC1, T0, T3

Table 6.1: Mapping of B-group addresses

only two addresses: C0 and C1. The rows corresponding to C0 and C1 are initialized to
all-zeros and all-ones, respectively.

The D-group (or the data group) corresponds to the rows that store regular user data.
This group contains all the addresses in the space of row addresses that are neither in the
B-group nor in the C-group. SpeciVcally, if each subarray contains 1024 rows, then the
D-group contains 1006 addresses, labeled D0—D1005.

With these diUerent address groups, the memory controller can simply use the exist-
ing command interface and use the ACTIVATE commands to communicate all variants of
the command to the DRAM chips. Depending on the address group, the DRAM chips can
internally process the activate command appropriately, e.g., perform a triple-row activa-
tion. For instance, by just issuing an ACTIVATE to address B12, the memory controller can
simultaneously activate rows T0, T1, and T2, as illustrated in Figure 6.4.

6.3.2 Split Row Decoder

Our idea of split row decoder splits the row decoder into two parts. The Vrst part controls
addresses from only the B-group, and the second part controls addresses from the C-group
and the D-group (as shown in Figure 6.4). There are two beneVts to this approach. First,
the complexity of activating multiple wordlines is restricted to the small decoder that
controls only the B-group. In fact, this decoder takes only a 4-bit input (16 addresses) and
generates a 8-bit output (8 wordlines). In contrast, as described in the beginning of this
section, a naive mechanism to simultaneously activate three arbitrary rows incurs high
cost. Second, as we will describe in Section 6.3.3, the memory controller must perform
several back-to-back ACTIVATEs to execute various bitwise operations. In a majority of
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cases, the two rows involved in each back-to-back ACTIVATEs are controlled by diUerent
decoders. This enables an opportunity to overlap the two ACTIVATEs, thereby signiVcantly
reducing their latency. We describe this optimization in detail in Section 6.3.4. Although
the groups of addresses and the corresponding row decoders are logically split, the physical
implementation can use a single large decoder with the wordlines from diUerent groups
interleaved, if necessary.

6.3.3 Executing Bitwise Ops: The AAP Primitive

To execute each bitwise operations, the memory controller must send a sequence of com-
mands. For example, to perform the bitwise NOT operation, Dk = not Di, the memory
controller sends the following sequence of commands.

1. ACTIVATE Di ; Activate the source row
2. ACTIVATE B5 ; Activate the n-wordline of DCC0
3. PRECHARGE
4. ACTIVATE B4 ; Activate the d-wordline of DCC0
5. ACTIVATE Dk ; Activate the destination row
6. PRECHARGE

Step 1 transfers the data from the source row to the array of sense ampliVers. Step 2
activates the n-wordline of one of the DCCs, which connects the dual-contact cells to the
corresponding bitlines. As a result, this step stores the negation of the source cells into
the corresponding DCC row (as described in Figure 6.3). After the precharge operation in
Step 3, Step 4 activates the d-wordline of the DCC row, transferring the negation of the
source data on to the bitlines. Finally, Step 5 activates the destination row. Since the sense
ampliVers are already activated, this step copies the data on the bitlines, i.e., the negation
of the source data, to the destination row. Step 6 completes the negation operation by
precharging the bank.

If we observe the negation operation, it consists of two steps of ACTIVATE-ACTIVATE-
PRECHARGE operations. We refer to this sequence of operations as the AAP primitive. Each
AAP takes two addresses as input. AAP (row1, row2) corresponds to the following se-
quence of commands:

ACTIVATE row1; ACTIVATE row2; PRECHARGE;

With the AAP primitive, the not operation, Dk = not Di, can be rewritten as,

1. AAP (Di, B5) ; DCC = not Di
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2. AAP (B4, Dk) ; Dk = DCC

In fact, we observe that all the bitwise operations mainly involve a sequence of AAP
operations. Sometimes, they require a regular ACTIVATE followed by a PRECHARGE oper-
ation. We will use AP to refer to such operations. Figure 6.5 shows the sequence of steps
taken by the memory controller to execute seven bitwise operations: not, and, or, nand,
nor, xor, and xnor. Each step is annotated with the logical result of performing the step.

AAP (Di, B5) ; DCC = not Di
AAP (B4, Dk) ; Dk = DCC

AAP (Di, B0) ; T0 = Di
AAP (Dj, B1) ; T1 = Dj
AAP (C0, B2) ; T2 = 0
AAP (B12, Dk) ; Dk = T0 and T1

AAP (Di, B0) ; T0 = Di
AAP (Dj, B1) ; T1 = Dj
AAP (C1, B2) ; T2 = 1
AAP (B12, Dk) ; Dk = T0 or T1

AAP (Di, B0) ; T0 = Di
AAP (Dj, B1) ; T1 = Dj
AAP (C0, B2) ; T2 = 0
AAP (B12, B5) ; DCC = not (T0 and T1)
AAP (B4, Dk) ; Dk = DCC

AAP (Di, B0) ; T0 = Di
AAP (Dj, B1) ; T1 = Dj
AAP (C1, B2) ; T2 = 1
AAP (B12, B5) ; DCC = not (T0 or T1)
AAP (B4, Dk) ; Dk = DCC

AAP (Di, B8) ; DCC0 = not Di, T0 = Di
AAP (Dj, B9) ; DCC1 = not Dj, T1 = Dj
AAP (C0, B10) ; T2 = T3 = 1
AP (B14) ; T1 = DCC0 or T1
AP (B15) ; T0 = DCC1 or T0

AAP (C1, B2) ; T2 = 0
AAP (B12, Dk) ; Dk = T0 and T1

AAP (Di, B8) ; DCC0 = not Di, T0 = Di
AAP (Dj, B9) ; DCC1 = not Dj, T1 = Dj
AAP (C0, B10) ; T2 = T3 = 0
AP (B14) ; T1 = DCC0 and T1
AP (B15) ; T0 = DCC1 and T0

AAP (C1, B2) ; T2 = 1
AAP (B12, Dk) ; Dk = T0 or T1

Dk = not Di

Dk = Di and Dj

Dk = Di or Dj

Dk = Di nand Dj

Dk = Di nor Dj

Dk = Di xor Dj

Dk = Di xnor Dj

Figure 6.5: Command sequences for different bitwise operations

As an illustration, let us consider the and operation, Dk = Di and Dj. The Vrst step
(AAP (Di, B0)) Vrst activates the source row Di, followed by the temporary row T0
(which corresponds to address B0). As a result, this operation copies the data of Di to the
temporary row T0. Similarly, the second step (AAP (Dj, B1)) copies the data of the source
row Dj to the temporary row T1, and the third step AAP (C0, B2) copies the data of the
control row “0” to the temporary row T2. Finally, the last step (AAP (B12, Dk)) Vrst issues
an ACTIVATE to address B12. As described in Table 6.1 and illustrated in Figure 6.4, this
command simultaneously activates the rows T0, T1, and T2, resulting in a and operation of
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the values of rows T0 and T1. As this command is immediately followed by an ACTIVATE
to Dk, the result of the and operation is copied to the destination row Dk.

6.3.4 Accelerating the AAP Primitive

It is clear from Figure 6.5 that the latency of executing any bitwise operation using Buddy
depends on the latency of executing the AAP primitive. The latency of the AAP primitive
in turn depends on the latency of the ACTIVATE and the PRECHARGE operations. In the
following discussion, we assume DDR3-1600 (8-8-8) timing parameters [108]. For these
parameters, the latency of an ACTIVATE operation is tRAS = 35 ns, and the latency of a
PRECHARGE operation is tRP = 10 ns.

Naive Execution of AAP.

The naive approach is to perform the three operations involved in AAP serially one after
the other. Using this simple approach, the latency of the AAP operation is 2tRAS + tRP
= 80 ns. While Buddy outperforms existing systems even with this naive approach, we
exploit some properties of AAP to further reduce its latency.

Shortening the Second ACTIVATE.

We observe that the second ACTIVATE operation is issued when the bank is already ac-
tivated. As a result, this ACTIVATE does not require the full sense-ampliVcation process,
which is the dominant source of the latency of an ACTIVATE. In fact, the second ACTIVATE
of an AAP only requires the corresponding wordline to be raised, and the bitline data to
overwrite the cell data. We introduce a new timing parameter called tWL, to capture the
latency of these steps. With this optimization, the latency of AAP is tRAS + tWL + tRP.

Overlapping the Two ACTIVATEs.

For all the bitwise operations (Figure 6.5), with the exception of one AAP each in nand
and nor, exactly one of the two ACTIVATEs in each AAP is to a B-group address. Since
the wordlines in B-group are controlled by a diUerent row decoder (Section 6.3.2), we can
overlap the two ACTIVATEs of the AAP primitive. More precisely, if the second ACTIVATE
is issued after the Vrst activation has suXciently progressed, the sense ampliVers will force
the data of the second row to the result of the Vrst activation. This operation is similar
to the inter-segment copy operation in Tiered-Latency DRAM [137] (Section 4.4). Based
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on SPICE simulations, the latency of the executing both the ACTIVATEs is 4 ns larger than
tRAS. Therefore, with this optimization, the latency of AAP is tRAS + 4 ns + tRP = 49 ns.

6.3.5 DRAM Chip and Controller Cost

Buddy has three main sources of cost to the DRAM chip. First, Buddy requires changes to
the row decoding logic. SpeciVcally, the row decoding logic must distinguish between the
B-group addresses and the remaining addresses. Within the B-group, it must implement
the mapping between the addresses and the wordlines described in Table 6.1. As described
in Section 6.3.1, the B-group contains only 16 addresses that are mapped to 8 wordlines.
As a result, we expect the complexity of the changes to the row decoding logic to be low.

The second source of cost is the design and implementation of the dual-contact cells
(DCCs). In our design, each sense ampliVer has only one DCC on each side, and each DCC
has two wordlines associated with it. Consequently, there is enough space to implement
the second transistor that connects the DCC to the corresponding bitline. In terms of area,
the cost of each DCC is roughly equivalent to two regular DRAM cells. As a result, we
can view each row of DCCs as two rows of regular DRAM cells.

The third source of cost is the capacity lost as a result of reserving the rows in the
B-group and C-group. The rows in these groups are reserved for the memory controller
to perform bitwise operations and cannot be used to store application data (Section 6.3.1).
Our proposed implementation of Buddy reserves 18 addresses in each subarray for the two
groups. For a typical subarray size of 1024 rows, the loss in memory capacity is ≈1%.

On the controller side, Buddy requires the memory controller to 1) store information
about diUerent address groups, 2) track the timing for diUerent variants of the ACTIVATE
(with or without the optimizations), and 3) track the status of diUerent on-going bitwise
operations. While scheduling diUerent requests, the controller 1) adheres to power con-
straints like tFAW which limit the number of full row activations during a given time
window, and 2) can interleave the multiple AAP commands to perform a bitwise oper-
ation with other requests from diUerent applications. We believe this modest increase
in the DRAM chip/controller complexity and capacity cost is negligible compared to the
improvement in throughput and performance enabled by Buddy.

6.4 End-to-end System Support

We envision two distinct ways of integrating Buddy with the rest of the system. The Vrst
way is a loose integration, where Buddy is treated as an accelerator (similar to a GPU). The
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second way is a much tighter integration, where Buddy is supported by the main memory.
In this section, we discuss these two ways along with their pros and cons in detail.

6.4.1 Buddy as an Accelerator

Treating Buddy as an accelerator, similar to a GPU, is probably the simplest way of inte-
grating Buddy into a system. In this approach, the manufacturer of Buddy RAM designs
the accelerator that can be plugged into the system as a separate device (e.g., PCIe). While
this mechanism requires communication between the CPU and the Buddy accelerator,
there are beneVts to this approach that lower the cost of integration. First, a single man-
ufacturer can design both the DRAM and the memory controller (which is not true about
commodity DRAM). Second, the details of the data mapping to suit Buddy can be hidden
behind the device driver, which can expose a simple-to-use API to the applications.

6.4.2 Integrating Buddy with System Main Memory

A tighter integration of Buddy with the system main memory requires support from dif-
ferent layers of the system stack, which we discuss below.

ISA Support

For the processor to exploit Buddy, it must be able to identify and export instances of bulk
bitwise operations to the memory controller. To enable this, we introduce new instructions
that will allow software to directly communicate instances of bulk bitwise operations to
the processor. Each new instruction takes the following form:

bop dst, src1, [src2], size

where bop is the bitwise operation to be performed, dst is the address of the destina-
tion, src1 and src2 correspond to the addresses of the source, and size denotes the length
of the vectors on which the bitwise operations have to be performed. The microarchitec-
tural implementation of these instructions will determine whether each instance of these
instructions can be accelerated using Buddy.

Implementing the New Buddy Instructions.

The microarchitectural implementation of the new instructions will determine whether
each instance can be accelerated using Buddy. Buddy imposes two constraints on the data
it operates on. First, both the source data and the destination data should be within the
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same subarray. Second, all Buddy operations are performed on an entire row of data. As
a result, the source and destination data should be row-aligned and the operation should
span at least an entire row. The microarchitecture ensures that these constraints are sat-
isVed before performing the Buddy operations. SpeciVcally, if the source and destination
rows are not in the same subarray, the processor can either 1) use RowClone-PSM [192]
to copy the data into the same subarray, or 2) execute the operation using the CPU. This
choice can be dynamically made depending on the number of RowClone-PSM operations
required and the memory bandwidth contention. If the processor cannot ensure data align-
ment, or if the size of the operation is smaller than the DRAM row size, it can execute the
operations using the CPU. However, with careful application design and operating sys-
tem support, the system can maximize the use of Buddy to extract its performance and
eXciency beneVts.

Maintaining On-chip Cache Coherence.

Buddy directly reads/modiVes data in main memory. As a result, we need a mechanism to
ensure the coherence of data present in the on-chip caches. SpeciVcally, before performing
any Buddy operation, the memory controller must Vrst Wush any dirty cache lines from
the source rows and invalidate any cache lines from destination rows. While Wushing the
dirty cache lines of the source rows is on the critical path of any Buddy operation, we
can speed up using the Dirty-Block Index (described in Chapter 8). In contrast, the cache
lines of the destination rows can be invalidated in parallel with the Buddy operation. The
mechanism required to maintain cache coherence introduces a small performance over-
head. However, for applications with large amounts of data, since the cache contains only
a small fraction of the data, the performance beneVts of our mechanism signiVcantly out-
weigh the overhead of maintaining coherence, resulting in a net gain in both performance
and eXciency.

Software Support

The minimum support that Buddy requires from software is for the application to use the
new Buddy instructions to communicate the occurrences of bulk bitwise operations to the
processor. However, with careful memory allocation support from the operating system,
the application can maximize the beneVts it can extract from Buddy. SpeciVcally, the OS
must allocate pages that are likely to be involved in a bitwise operation such that 1) they
are row-aligned, and 2) belong to the same subarray. Note that the OS can still interleave
the pages of a single data structure to multiple subarrays. Implementing this support,
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requires the OS to be aware of the subarray mapping, i.e., determine if two physical pages
belong to the same subarray or not. The OS must extract this information from the DRAM
modules with the help of the memory controller.

6.5 Analysis of Throughput & Energy

In this section, we compare the raw throughput and energy of performing bulk bitwise
operations of Buddy to an Intel Skylake Core i7 processor using Advanced Vector eXten-
sions [98]. The system contains a per-core 32 KB L1 cache and 256 KB L2 cache, and a
shared 8 MB L3 cache. The oU-chip memory consists of 2 DDR3-2133 memory channels
with 8GB of memory on each channel. We run a simple microbenchmark that performs
each bitwise operation on one or two vectors and stores the result in a result vector. We
vary the size of the vector, and for each size we measure the throughput of performing
each operation with 1, 2, and 4 cores.

Figure 6.6 plots the results of this experiment for bitwise AND/OR operations. The
x-axis shows the size of the vector, and the y-axis plots the corresponding throughput (in
terms of GB/s of computed result) for the Skylake system with 1, 2, and 4 cores, and Buddy
with 1 or 2 DRAM banks.
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Figure 6.6: Comparison of throughput of AND/OR operations

First, for each core count, the throughput of the Skylake drops with increasing size
of the vector. This is expected as the working set will stop Vtting in diUerent levels of
the on-chip cache as we move to the right on the x-axis. Second, as long the working
set Vts in some level of on-chip cache, running the operation with more cores provides
higher throughput. Third, when the working set stops Vtting in the on-chip caches (>
8MB per vector), the throughput with diUerent core counts is roughly the same (5.8 GB/s
of computed result). This is because, at this point, the throughput of the operation is
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strictly limited by the available memory bandwidth. Finally, for working sets larger than
the cache size, Buddy signiVcantly outperforms the baseline system. Even using only one
bank, Buddy achieves a throughput of 38.92 GB/s, 6.7X better than the baseline. As mod-
ern DRAM chips have abundant bank-level parallelism, Buddy can achieve much higher
throughput by using more banks (e.g., 26.8X better throughput with 4 banks, compared
to the baseline). In fact, while the throughput of bitwise operations in existing systems
is limited by the memory bandwidth, the throughput enabled by Buddy scales with the
number of banks in the system.

Table 6.2 shows the throughput and energy results diUerent bitwise operations for the
32MB input. We estimate energy for DDR3-1333 using the Rambus power model [178].
Our energy numbers only include the DRAM and channel energy, and does not include
the energy spent at the CPU and caches. For Buddy, some activate operations have rise
multiple wordlines and hence will consume higher energy. To account for this, we increase
the energy of the activate operation by 22% for each additional wordline raised. As a result,
a triple-row activation will consume 44% more energy than a regular activation.

Operation
Throughput (GB/s) Energy (nJ)

Base Buddy (↑) Base Buddy (↓)
not 7.7 77.8 10.1X 749.6 12.6 59.5X

and/or 5.8 38.9 6.7X 1102.8 25.1 43.9X
nand/nor 5.8 31.1 5.3X 1102.8 31.4 35.1X
xor/xnor 5.8 22.2 3.8X 1102.8 44.0 25.1X

Table 6.2: Comparison of throughput and energy for various groups of bitwise op-
erations. (↑) and (↓) respectively indicate the factor improvement and reduction in
throughput and energy of Buddy (1 bank) over the baseline (Base).

In summary, across all bitwise operations, Buddy reduces energy consumption by at
least 25.1X and up to 59.5X compared to the baseline, and with just one bank, Buddy
improves the throughput by at least 3.8X and up to 10.1X compared to the baseline. In the
following section, we demonstrate the beneVts of Buddy in some real-world applications.

6.6 EUect on Real-world Applications

To demonstrate the beneVts of Buddy on real-world applications, we implement Buddy
in the Gem5 [34] simulator. We implement the new Buddy instructions using the pseudo
instruction framework in Gem5. We simulate an out-of-order, 4 GHz processor with 32
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KB L1 D-cache and I-cache, with a shared 2 MB L2 cache. All caches use a 64B cache
line size. We model a 1-channel, 1-rank, DDR4-2400 main memory. In Section 6.6.1, we
Vrst show that Buddy can signiVcantly improve the performance of an in-memory bitmap
index. In Section 6.6.2, we show that Buddy generally makes bitmaps more attractive for
various set operations compared to traditional red-black trees. In Section 7.3.3, we discuss
other potential applications that can beneVt from Buddy.

6.6.1 Bitmap Indices

Bitmap indices are an alternative to traditional B-tree indices for databases. Compared to
B-trees, bitmap indices can 1) consume less space, and 2) improve performance of certain
queries. There are several real-world implementations of bitmap indices for databases (e.g.,
Oracle [165], Redis [10], Fastbit [5], rlite [11]). Several real applications (e.g., Spool [12],
Belly [1], bitmapist [2], Audience Insights [59]) use bitmap indices for fast analytics.

Bitmap indices rely on fast bitwise operations on large bit vectors to achieve high
performance. Therefore, Buddy can accelerate operations on bitmap indices, thereby im-
proving overall application performance.

To demonstrate this beneVt, we use the following workload representative of many ap-
plications. The application uses bitmap indices to track users’ characteristics (e.g., gender,
premium) and activities (e.g., did the user log in to the website on day ’X’?) for m users.
The applications then uses bitwise operations on these bitmaps to answer several diUerent
queries. Our workload runs the following query: “How many unique users were active
every week for the past n weeks? and How many premium users were active each of the
past n weeks?” Executing this query requires 6n bitwise or, 2n-1 bitwise and, and n+1
bitcount operations.

The size of each bitmap (and hence each bitwise operation) depends on the number
of users. For instance, a reasonably large application that has 8 million users will require
each bitmap to be around 1 MB. Hence, these operations can easily be accelerated using
Buddy (the bitcount operations are performed by the CPU). Figure 6.7 shows the execution
time of the baseline and Buddy for the above experiment for various values ofm (number
of users) and n (number of days).

We draw two conclusions. First, as each query has O(n) bitwise operations and each
bitwise operation takesO(m) time, the execution time of the query increases with increas-
ing value mn. Second, Buddy signiVcantly reduces the query execution time by 6X (on
average) compared to the baseline.
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Figure 6.7: Performance of Buddy for bitmap indices

While we demonstrate the beneVts of Buddy using one query, as all bitmap index
queries involve several bitwise operations, Buddy will provide similar performance bene-
Vts for any application using bitmap indices.

6.6.2 Bit Vectors vs. Red-Black Trees

A set data structure is widely used in many algorithms. Many libraries (e.g., C++ Standard
Template Library [4]), use red-black trees [81] (RB-trees) to implement a set. While RB-
trees are eXcient when the domain of elements is very large, when the domain is limited, a
set can be implemented using a bit vector. Bit vectors oUer constant time insert and lookup
as opposed to RB-trees, which consume O(log n) time for both operations. However, with
bit vectors, set operations like union, intersection, and diUerence have to operate on the
entire bit vector, regardless of whether the elements are actually present in the set. As a
result, for these operations, depending on the number of elements actually present in each
set, bit vectors may outperform or perform worse than a RB-trees. With support for fast
bulk bitwise operations, we show that Buddy signiVcantly shifts the trade-oU spectrum in
favor of bit vectors.

To demonstrate this, we compare the performance of union, intersection, and diUer-
ence operations using three implementations: RB-tree, bit vectors with SSE optimization
(Bitset), and bit vectors with Buddy. We run a microbenchmark that performs each op-
eration on 15 sets and stores the result in an output set. Each set can contain elements
between 1 and 524288 (219). Therefore, the bit vector approaches requires 64 KB to rep-
resent each set. For each operation, we vary the number of elements present in the input
sets. Figure 6.8 shows the results of this experiment. The Vgure plots the execution time
for each implementation normalized to RB-tree.
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Figure 6.8: Comparison between RB-Tree, Bitset, and Buddy

We draw three conclusions. First, by enabling much higher throughput for bitwise
operations, Buddy outperforms the baseline bitset on all the experiments. Second, as ex-
pected, when the number of elements in each set is very small (16 out of 524288), RB-Tree
performs better than the bit vector based implementations. Third, even when each set
contains only 1024 (out of 524288) elements, Buddy signiVcantly outperforms RB-Tree.

In summary, by performing bulk bitwise operations eXciently and with much higher
throughput compared to existing systems, Buddy makes a bit-vector-based implementa-
tion of a set more attractive in scenarios where red-black trees previously outperformed
bit vectors.

6.6.3 Other Applications

Cryptography.

Many encryption algorithms in cryptography heavily use bitwise operations (e.g., XOR) [86,
148, 223]. The Buddy support for fast and eXcient bitwise operations can i) boost the per-
formance of existing encryption algorithms, and ii) enable new encryption algorithms with
high throughput and eXciency.
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DNA Sequence Mapping.

DNA sequence mapping has become an important problem, with applications in person-
alized medicine. Most algorithms [189] rely on identifying the locations where a small
DNA sub-string occurs in the reference gnome. As the reference gnome is large, a number
of pre-processing algorithms [139, 184, 233, 239] have been proposed to speedup this op-
eration. Based on a prior work [179], we believe bit vectors with support for fast bitwise
operations using Buddy can enable an eXcient Vltering mechanism.

Approximate Statistics.

Certain large systems employ probabilistic data structures to improve the eXciency of
maintaining statistics [37]. Many such structures (e.g., Bloom Vlters) rely on bitwise op-
erations to achieve high eXciency. By improving the throughput of bitwise operations,
Buddy can further improve the eXciency of such data structures, and potentially enable
the design of new data structures in this space.

6.7 Related Work

There are several prior works that aim to enable eXcient computation near memory. In
this section, we qualitatively compare Buddy to these prior works.

Some recent patents [22, 23] from Mikamonu describe an architecture that employs a
DRAM organization with 3T-1C cells and additional logic to perform NAND/NOR oper-
ations on the data inside DRAM. While this architecture can perform bitwise operations
inside DRAM, it incurs signiVcant additional cost to the DRAM array due to the extra
transistors, and hence reduces overall memory density/capacity. In contrast, Buddy ex-
ploits existing DRAM operation to perform bitwise operations eXciently inside DRAM.
As a result, it incurs much lower cost compared to the Mikamonu architecture.

One of the primary sources of memory ineXciency in existing systems is data move-
ment. Data has to travel oU-chip buses and multiple levels of caches before reaching the
CPU. To avoid this data movement, many works (e.g., NON-VON Database Machine [14],
DIVA [61], Terasys [78], Computational RAM [66], FlexRAM [70, 117], EXECUBE [127],
Active Pages [166], Intelligent RAM [169], Logic-in-Memory Computer [209]) have pro-
posed mechanisms and models to add processing logic close to memory. The idea is to
integrate memory and CPU on the same chip by designing the CPU using the memory
process technology. While the reduced data movement allows these approaches to enable
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low-latency, high-bandwidth, and low-energy data communication, they suUer from two
key shortcomings. First, this approach of integrating processor on the same chip as mem-
ory signiVcantly deviates from existing designs, and as a result, increases the overall cost
of the system. Second, DRAM vendors use a high-density process to minimize cost-per-
bit. Unfortunately, high-density DRAM process is not suitable for building high-speed
logic [169]. As a result, this approach is not suitable for building a general purpose pro-
cessor near memory. In contrast, we restrict our focus to bitwise operations, and propose
a mechanism to perform them eXciently inside DRAM with low cost.

Some recent DRAM architectures [6, 107, 145] use 3D-stacking technology to stack
multiple DRAM chips on top of the processor chip or a separate logic layer. These archi-
tectures oUer much higher bandwidth to the logic layer compared to traditional oU-chip
interfaces. This enables an opportunity to oYoad some computation to the logic layer,
thereby improving performance. In fact, many recent works have proposed mechanisms
to improve and exploit such architectures (e.g., [20, 21, 24, 28, 68, 69, 74, 75, 82, 90, 95,
135, 153, 218, 244, 255]). Unfortunately, despite enabling higher bandwidth compared to
oU-chip memory, such 3D-stacked architectures are still require data to be transferred out-
side the DRAM chip, and hence can be bandwidth-limited. However, since Buddy can be
integrated easily with such architectures, we believe the logic layer in such 3D architec-
tures should be used to implement more complex operations, while Buddy can be used to
eXciently implement bitwise logical operations at low cost.

6.8 Summary

In this chapter, we introduced Buddy, a new DRAM substrate that performs row-wide
bitwise operations using DRAM technology. SpeciVcally, we proposed two component
mechanisms. First, we showed that simultaneous activation of three DRAM rows that
are connected to the same set of sense ampliVers can be used to eXciently perform bit-
wise AND/OR operations. Second, we showed that the inverters present in each sense
ampliVer can be used to eXciently implement bitwise NOT operations. With these two
mechanisms, Buddy can perform any bulk bitwise logical operation quickly and eXciently
within DRAM. Our evaluations show that Buddy enables an order-of-magnitude improve-
ment in the throughput of bitwise operations. This improvement directly translates to
signiVcant performance improvement in the evaluated real-world applications. Buddy is
generally applicable to any memory architecture that uses DRAM technology, and we be-
lieve that the support for fast and eXcient bulk bitwise operations can enable better design
of applications that result in large improvements in performance and eXciency.



Chapter 7

Gather-Scatter DRAM

In this chapter, we shift our focus to the problem of non-unit strided access patterns. As
described in Section 2.2.1, such access patterns present themselves in many important ap-
plications such as in-memory databases, scientiVc computation, etc. As illustrated in that
section, non-unit strided access patterns exhibit low spatial locality. In existing memory
systems that are optimized to access and store wide cache lines, such access patterns result
in high ineXciency.

The problem presents itself at two levels. First, commodity DRAM modules are de-
signed to supply wide contiguous cache lines. As a result, the cache lines fetched by the
memory controller are only partially useful—i.e., they contain many values that do not
belong to the strided access pattern. This results in both high latency and wasted memory
bandwidth. Second, modern caches are optimized to store cache lines. Consequently, even
the caches have to store values that do not belong to the strided access. While this results
in ineXcient use of the on-chip cache space, this also negatively aUects SIMD optimiza-
tions on strided data. The application must Vrst gather (using software or hardware) the
values of the strided access in a single vector register before it can perform any SIMD
operation. Unfortunately, this gather involves multiple physical cache lines, and hence is
a long-latency operation.

Given the importance of strided access patterns, several prior works (e.g., Impulse [39,
245], Adaptive/Dynamic Granularity Memory Systems [242, 243]) have proposed solutions
to improve the performance of strided accesses. Unfortunately, prior works [39, 242, 243]

Originally published as “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Lo-

cality of Non-unit Strided Accesses” in the International Symposium on Microarchitecture, 2015 [193]
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require the oU-chip memory interface to support Vne-grained memory accesses [18, 19, 38,
231, 252] and, in some cases, a sectored cache [142, 197]. These approaches signiVcantly
increase the cost of the memory interface and the cache tag store, and potentially lower
the utilization of oU-chip memory bandwidth and on-chip cache space. We discuss these
prior works in more detail in Section 7.5.

Our goal is to design a mechanism that 1) improves the performance (cache hit rate
and memory bandwidth consumption) of strided accesses, and 2) works with commodity
DRAM modules and traditional non-sectored caches with very few changes. To this end,
we Vrst restrict our focus to power-of-2 strided access patterns and propose the Gather-
Scatter DRAM (GS-DRAM), a substrate that allows the memory controller to gather or
scatter data with any power-of-2 stride eXciently with very few changes to the DRAM
module. In the following sections, we describe GS-DRAM in detail.

7.1 The Gather-Scatter DRAM

For the purpose of understanding the problems in existing systems and understanding
the challenges in designing in GS-DRAM, we use the following database example. The
database consists of a single table with four Velds. We assume that each tuple of the
database Vts in a cache line. Figure 7.1 illustrates the two problems of accessing just the
Vrst Veld of the table. As shown in the Vgure, this query results in high latency, and wasted
bandwidth and cache space.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1. High Latency. Each
line contains only one useful
value. The gather requires

four times more cache lines.

2. Unnecessary
Bandwidth & Cache
Space. Each cache line
brings data not needed by
the application.

Field 1 (shaded boxes).
Data accessed by the query.

Cache Line
(tuple)

Figure 7.1: Problems in accessing the first field (shaded boxes) from a table in a
cache-line-optimized memory system. The box “ij” corresponds to the jth field of the
ith tuple.

Our goal is to design a DRAM substrate that will enable the processor to access a Veld
of the table (stored in tuple-major order) across all tuples, without incurring the penalties



96 CHAPTER 7. GATHER-SCATTER DRAM

of existing interfaces. More speciVcally, if the memory controller wants to read the Vrst
Veld of the Vrst four tuples of the table, it must be able to issue a single command that
fetches the following gathered cache line: 00 10 20 30 . At the same time, the controller
must be able to read a tuple from memory (e.g., 00 01 02 03 ) with a single command.

Our mechanism is based on the fact that modern DRAM modules consist of many
DRAM chips. As described in Section 4.3, to achieve high bandwidth, multiple chips are
grouped together to form a rank, and all chips within a rank operate in unison. Our idea
is to enable the controller to access multiple values from a strided access from diUerent
chips within the rank with a single command. However, there are two challenges in
implementing this idea. For the purpose of describing the challenges and our mechanism,
we assume that each rank consist of four DRAM chips. However, GS-DRAM is general
and can be extended to any rank with power-of-2 number of DRAM chips.

7.1.1 Challenges in Designing GS-DRAM

Figure 7.2 shows the two challenges. We assume that the Vrst four tuples of the table
are stored from the beginning of a DRAM row. Since each tuple maps to a single cache
line, the data of each tuple is split across all four chips. The mapping between diUerent
segments of the cache line and the chips is controlled by the memory controller. Based on
the mapping scheme described in Section 4.3, the ith 8 bytes of each cache line (i.e., the ith

Veld of each tuple) is mapped to the ith chip.

Challenge 1: Reducing chip conWicts. The simple mapping mechanism maps the Vrst
Veld of all the tuples to Chip 0. Since each chip can send out only one Veld (8 bytes) per
READ operation, gathering the Vrst Veld of the four tuples will necessarily require four
READs. In a general scenario, diUerent pieces of data that are required by a strided access
pattern will be mapped to diUerent chips. When two such pieces of data are mapped to
the same chip, it results in what we call a chip conWict. Chip conWicts increase the number
of READs required to gather all the values of a strided access pattern. Therefore, we have
to map the data structure to the chips in a manner that minimizes the number of chip
conWicts for target access patterns.

Challenge 2: Communicating the access pattern to the module. As shown in Figure 7.2,
when a column command is sent to a rank, all the chips select the same column from
the activated row and send out the data. If the memory controller needs to access the Vrst
tuple of the table and the Vrst Veld of the four tuples each with a single READ operation, we
need to break this constraint and allow the memory controller to potentially read diUerent
columns from diUerent chips using a single READ command. One naive way of achieving
this Wexibility is to use multiple address buses, one for each chip. Unfortunately, this
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Figure 7.2: The two challenges in designing GS-DRAM.

approach is very costly as it signiVcantly increases the pin count of the memory channel.
Therefore, we need a simple and low cost mechanism to allow the memory controller to
eXciently communicate diUerent access patterns to the DRAM module.

In the following sections, we propose a simple mechanism to address the above chal-
lenges with speciVc focus on power-of-2 strided access patterns. While non-power-of-2
strides (e.g., odd strides) pose some additional challenges (e.g., alignment), a similar ap-
proach can be used to support non-power-of-2 strides as well.

7.1.2 Column ID-based Data ShuYing

To address challenge 1, i.e., to minimize chip conWicts, the memory controller must employ
a mapping scheme that distributes data of each cache line to diUerent DRAM chips with
the following three goals. First, the mapping scheme should be able to minimize chip
conWicts for a number of access patterns. Second, the memory controller must be able to
succinctly communicate an access pattern along with a column command to the DRAM
module. Third, once the diUerent parts of the cache line are read from diUerent chips, the
memory controller must be able to quickly assemble the cache line. Unfortunately, these
goals are conWicting.

While a simple mapping scheme enables the controller to assemble a cache line by
concatenating the data received from diUerent chips, this scheme incurs a large number of
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chip conWicts for many frequently occurring access patterns (e.g., any power-of-2 stride >
1). On the other hand, pseudo-random mapping schemes [180] potentially incur a small
number of conWicts for almost any access pattern. Unfortunately, such pseudo-random
mapping schemes have two shortcomings. First, for any cache line access, the memory
controller must compute which column of data to access from each chip and communicate
this information to the chips along with the column command. With a pseudo random
interleaving, this communication may require a separate address bus for each chip, which
would signiVcantly increase the cost of the memory channel. Second, after reading the
data, the memory controller must spend more time assembling the cache line, increasing
the overall latency of the READ operation.

We propose a simple column ID-based data shuYingmechanism that achieves a sweet
spot by restricting our focus to power-of-2 strided access patterns. Our shuYing mecha-
nism is similar to a butterWy network [56], and is implemented in the memory controller.
To map the data of the cache line with column address C to diUerent chips, the mem-
ory controller inspects the n least signiVcant bits (LSB) of C . Based on these n bits, the
controller uses n stages of shuYing. Figure 7.3 shows an example of a 2-stage shuYing
mechanism. In Stage 1 (Figure 7.3), if the LSB is set, our mechanism groups adjacent 8-
byte values in the cache line into pairs and swaps the values within each pair. In Stage 2
(Figure 7.3), if the second LSB is set, our mechanism groups the 8-byte values in the cache
line into quadruplets, and swaps the adjacent pairs of values. The mechanism proceeds
similarly into the higher levels, doubling the size of the group of values swapped in each
higher stage. The shuYing mechanism can be enabled only for those data structures that
require our mechanism. Section 7.2.3 discusses this in more detail.

With this simple multi-stage shuYing mechanism, the memory controller can map
data to DRAM chips such that any power-of-2 strided access pattern incurs minimal chip
conWicts for values within a single DRAM row.

7.1.3 Pattern ID: Low-cost Column Translation

The second challenge is to enable the memory controller to Wexibly access diUerent column
addresses from diUerent DRAM chips using a single READ command. To this end, we
propose a mechanism wherein the controller associates a pattern ID with each access
pattern. It provides this pattern ID with each column command. Each DRAM chip then
independently computes a new column address based on 1) the issued column address,
2) the chip ID, and 3) the pattern ID. We refer to this mechanism as column translation.

Figure 7.4 shows the column translation logic for a single chip. As shown in the Vg-
ure, our mechanism requires only two bitwise operations per chip to compute the new
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Figure 7.3: 2-stage shuffling mechanism that maps different 8-byte values within a
cache line to a DRAM chip. For each mux, 0 selects the vertical input, and 1 selects
the cross input.

column address. More speciVcally, the output column address for each chip is given by
(Chip ID & Pattern ID) ⊕ Column ID, where Column ID is the column address pro-
vided by the memory controller. In addition to the logic to perform these simple bitwise
operations, our mechanism requires 1) a register per chip to store the chip ID, and 2) a mul-
tiplexer to enable the address translation only for column commands. While our column
translation logic can be combined with the column selection logic already present within
each chip, our mechanism can also be implemented within the DRAM module with no
changes to the DRAM chips.

Combining this pattern-ID-based column translation mechanism with the column-ID-
based data shuYing mechanism, the memory controller can gather or scatter any power-
of-two strided access pattern with no waste in memory bandwidth.

7.1.4 GS-DRAM: Putting It All Together

Figure 7.5 shows the full overview of our GS-DRAM substrate. The Vgure shows how
the Vrst four tuples of our example table are mapped to the DRAM chips using our data
shuYing mechanism. The Vrst tuple (column ID = 0) undergoes no shuYing as the two
LSBs of the column ID are both 0 (see Figure 7.3). For the second tuple (column ID = 1),
the adjacent values within each pairs of values are swapped (Figure 7.3, Stage 1). Similarly,
for the third tuple (column ID = 2), adjacent pair of values are swapped (Figure 7.3, Stage
2). For the fourth tuple (column ID = 3), since the two LSBs of the column ID are both 1,
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Figure 7.4: Column Translation Logic (CTL). Each chip has its own CTL. The CTL
can be implemented in the DRAM module (as shown in Figure 7.5). Each logic gate
performs a bitwise operation of the input values.

both stages of the shuYing scheme are enabled (Figure 7.3, Stages 1 and 2). As shown in
shaded boxes in Figure 7.5, the Vrst Veld of the four tuples (i.e., 00 10 20 30 ) are mapped to
diUerent chips, allowing the memory controller to read them with a single READ command.
The same is true for the other Velds of the table as well (e.g., 01 11 21 31 )

The Vgure also shows the per-chip column translation logic. To read a speciVc tuple
from the table, the memory controller simply issues a READ command with pattern ID =
0 and an appropriate column address. For example, when the memory controller issues
the READ for column ID 2 and pattern 0, the four chips return the data corresponding to
the columns (2 2 2 2), which is the data in the third tuple of the table (i.e., 22 23 20 21 ).
In other words, pattern ID 0 allows the memory controller to perform the default read
operation. Hence, we refer to pattern ID 0 as the default pattern.

On the other hand, if the memory controller issues a READ for column ID 0 and pattern
3, the four chips return the data corresponding to columns (0 1 2 3), which precisely maps
to the Vrst Veld of the table. Similarly, the other Velds of the Vrst four tuples can be read
from the database by varying the column ID with pattern 3.

7.1.5 GS-DRAM Parameters

GS-DRAM has three main parameters: 1) the number of chips in each module, 2) the
number of shuYing stages in the data shuYing mechanism, and 3) the number of bits of
pattern ID. While the number of chips determines the size of each cache line, the other
two parameters determine the set of access patterns that can be eXciently gathered by
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GS-DRAM. We use the term GS-DRAMc,s,p to denote a GS-DRAM with c chips, s stages
of shuYing, and p bits of pattern ID.

Figure 7.6 shows all cache lines that can be gathered by GS-DRAM4,2,2, with the four
possible patterns for column IDs 0 through 3. For each pattern ID and column ID combina-
tion, the Vgure shows the index of the four values within the row buUer that are retrieved
from the DRAM module. As shown, pattern 0 retrieves contiguous values. Pattern 1 re-
trieves every other value (stride = 2). Pattern 2 has a dual stride of (1,7). Pattern 3 retrieves
every 4th value (stride = 4). In general, pattern 2k − 1 gathers data with a stride 2k.

While we showed a use case for pattern 3 (in our example), we envision use-cases
for other patterns as well. Pattern 1, for instance, can be useful for data structures like
key-value stores. Assuming an 8-byte key and an 8-byte value, the cache line (Patt 0,
Col 0) corresponds to the Vrst two key-value pairs. However the cache line (Patt 1,
Col 0) corresponds to the Vrst four keys, and (Patt 1, Col 1) corresponds to the Vrst
four values. Similarly, pattern 2 can be use to fetch odd-even pairs of Velds from a data
structure where each object has 8 Velds.

Our mechanism is general. For instance, with GS-DRAM8,3,3 (i.e., 8 chips, 3 shuYing
stages, and 3-bit pattern ID), the memory controller can access data with seven diUerent
patterns. Section 7.4 discusses other simple extensions to our approach to enable more
Vne-grained gather access patterns, and larger strides.
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Figure 7.6: Cache lines gathered by GS-DRAM4,2,2 for all patterns for column IDs
0–3. Each circle contains the index of the 8-byte value inside the logical row buffer.

7.1.6 Ease of Implementing GS-DRAM

In Section 7.3, we will show that GS-DRAM has compelling performance and energy ben-
eVts compared to existing DRAM interfaces. These beneVts are augmented by the fact
that GS-DRAM is simple to implement. First, our data shuYing mechanism is simple and
has low latency. Each stage involves only data swapping and takes at most one processor
cycle. Our evaluations use GS-DRAM8,3,3, thereby incurring 3 cycles of additional latency
to shuYe/unshuYe data for each DRAM write/read. Second, for GS-DRAM∗,∗,p, the col-
umn translation logic requires only two p-bit bitwise operations, a p-bit register to store
the chip ID, and a p-bit multiplexer. In fact, this mechanism can be implemented as part
of the DRAM module without any changes to the DRAM chips themselves. Finally, third,
GS-DRAM requires the memory controller to communicate only k bits of pattern ID to the
DRAM module, adding only a few pins to each channel. In fact, the column command in
existing DDR DRAM interfaces already has a few spare address pins that can potentially
be used by the memory controller to communicate the pattern ID (e.g., DDR4 has two
spare address pins for column commands [111]).

7.2 End-to-end System Design

In this section, we discuss the support required from the rest of the system stack to exploit
the GS-DRAM substrate. We propose a mechanism that leverages support from diUerent
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layers of the system stack to exploit GS-DRAM: 1) on-chip caches, 2) the instruction set
architecture, and 3) software. It is also possible for the processor to dynamically identify
diUerent access patterns present in an application and exploit GS-DRAM to accelerate
such patterns transparently to the application. As our goal in this work is to demonstrate
the beneVts of GS-DRAM, we leave the design of such an automatic mechanism for future
work. The following sections assume a GS-DRAM∗,∗,p, i.e., a p-bit pattern ID.

7.2.1 On-Chip Cache Support

Our mechanism introduces two problems with respect to on-chip cache management.
First, when the memory controller gathers a cache line from a non-zero pattern ID, the
values in the cache line are not contiguously stored in physical memory. For instance, in
our example (Figure 7.1), although the controller can fetch the Vrst Veld of the Vrst four
tuples of the table with a single READ, the Vrst Veld of the table is not stored contiguously
in physical memory. Second, two cache lines belonging to diUerent patterns may have a
partial overlap. In our example (Figure 7.1), if the memory controller reads the Vrst tuple
(pattern ID = 0, column ID = 0) and the Vrst Veld of the Vrst four tuples (pattern ID = 3,
column ID = 0), the two resulting cache lines have a common value (the Vrst Veld of the
Vrst tuple, i.e., 00 ).

One simple way to avoid these problems is to store the individual values of the gath-
ered data in diUerent physical cache lines by employing a sectored cache [142] (for exam-
ple). However, with the oU-chip interface to DRAM operating at a wider-than-sector (i.e., a
full cache line) granularity, such a design will increase the complexity of the cache-DRAM
interface. For example, writebacks may require read-modify-writes as the processor may
not have the entire cache line. More importantly, a mechanism that does not store the
gathered values in the same cache line cannot extract the full beneVts of SIMD optimiza-
tions because values that are required by a single SIMD operation would now be stored in
multiple physical cache lines. Therefore, we propose a simple mechanism that stores each
gathered cache line from DRAM in a single physical cache line in the on-chip cache. Our
mechanism has two aspects.

1. Identifying non-contiguous cache lines. When a non-contiguous cache line is
stored in the cache, the cache controller needs a mechanism to identify the cache line. We
observe that, in our proposed system, each cache line can be uniquely identiVed using the
cache line address and the pattern ID with which it was fetched from DRAM. Therefore,
we extend each cache line tag in the cache tag store with p additional bits to store the
pattern ID of the corresponding cache line.
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2. Maintaining cache coherence. The presence of overlapping cache lines has two
implications on coherence. First, before fetching a cache line from DRAM, the controller
must check if there are any dirty cache lines in the cache which have a partial overlap
with the cache line being fetched. Second, when a value is modiVed by the processor, in
addition to invalidating the modiVed cache line from the other caches, the processor must
also invalidate all other cache lines that contain the value that is being modiVed. With a
number of diUerent available patterns, this operation can be a complex and costly.

Fortunately, we observe that many applications that use strided accesses require only
two pattern IDs per data structure, the default pattern and one other pattern ID. Thus, as a
trade-oU to simplify cache coherence, we restrict each data structure to use only the zero
pattern and one other pattern ID. To implement this constraint, we associate each virtual
page with an additional p-bit pattern ID. Any access to a cache line within the page can
use either the zero pattern or the page’s pattern ID. If multiple virtual pages are mapped
to the same physical page, the OS must ensure that the same alternate pattern ID is used
for all mappings.

Before fetching a cache line from DRAM with a pattern, the memory controller must
only look for dirty cache lines from the other pattern. Since all these cache lines belong
to the same DRAM row, this operation is fast and can be accelerated using simple struc-
tures like the Dirty-Block Index (described in Chapter 8 of this thesis). Similarly, when
the processor needs to modify a shared cache line, our mechanism piggybacks the other
pattern ID of the page along with the read-exclusive coherence request. Each cache con-
troller then locally invalidates the cache lines from the other pattern ID that overlap with
the cache line being modiVed. For GS-DRAMc,∗,∗, our mechanism requires c additional
invalidations for each read-exclusive request.

7.2.2 Instruction Set Architecture Support

To enable software to communicate strided access patterns to the processor, we introduce
a new variant of the load and store instructions, called pattload and pattstore, that
allow the code to specify the pattern ID. These instructions takes the following form:

pattload reg, addr, patt
pattstore reg, addr, patt

where reg is the source or destination register (depending on the instruction type), addr
is the address of the data, and patt is the pattern ID.

To execute a pattload or pattstore, the processor Vrst splits the addr Veld into two
parts: the cache line address (caddr), and the oUset within the cache line (offset). Then
the processor sends out a request for the cache line with address-pattern combination
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(caddr, patt). If the cache line is present in the on-chip cache, it is sent to the processor.
Otherwise, the request reaches the memory controller. The memory controller identiVes
the row address and the column address from caddr and issues a READ command for a
cache line with pattern ID patt. If the memory controller interleaves cache lines across
multiple channels (or ranks), then it must access the corresponding cache line within each
channel (or rank) and interleave the data from diUerent channels appropriately before
obtaining the required cache line. The cache line is then stored in the on-chip cache and
is also sent to the processor. After receiving the cache line, the processor reads or updates
the data at the offset to or from the destination or source register (reg).

Note that architectures like x86 allow instructions to directly operate on memory by
using diUerent addressing modes to specify memory operands [7]. For such architectures,
common addressing modes may be augmented with a pattern ID Veld, or instruction pre-
Vxes may be employed to specify the pattern.

7.2.3 System and Application Software Support

Our mechanism requires two pieces of information from the software for each data struc-
ture: 1) whether the data structure requires the memory controller to use the shuYing
mechanism (Section 7.1.2) (we refer to this as the shuYe Wag), and 2) the alternate pattern
ID (Section 7.1.3) with which the application will access the data structure. To enable the
application to specify this information, we propose a new variant of the malloc system
call, called pattmalloc, which includes two additional parameters: the shuYe Wag, and
the pattern ID. When the OS allocates virtual pages for a pattmalloc, it also updates the
page tables with the shuYe Wag and the alternate pattern ID for those pages.

Once the data structure is allocated with pattmalloc, the application can use the
pattload or pattstore instruction to access the data structure eXciently with both the
zero pattern and the alternate access pattern. While we can envision automating this
process using a compiler optimization, we do not explore that path in this thesis. Figure 7.7
shows an example piece of code before and after our optimization. The original code (line
5) allocates an array of 512 objects (each object with eight 8-byte Velds) and computes the
sum of the Vrst Veld of all the objects (lines 8 and 9). The Vgure highlights the key beneVt
of our approach.

In the program without our optimization (Figure 7.7, left), each iteration of the loop
(line 9) fetches a diUerent cache line. As a result, the entire loop accesses 512 diUerent
cache lines. On the other hand, with our optimization (Figure 7.7, right), the program Vrst
allocates memory for the array using pattmalloc (line 5), with the shuYe Wag enabled
and an alternate pattern ID = 7 (i.e., stride of 8). The program then breaks the loop into
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1. struct Obj {
2. int64 field[8];
3. };
4. ...
5. arr = malloc(512 * sizeof(Obj));
6. ...
7. int64 sum = 0;
8. for (int i = 0; i < 512; i ++)

9. sum += arr[i].field[0];

1. struct Obj {
2. int64 field[8];
3. };
4. ...
5. arr = pattmalloc(512 * sizeof(Obj), SHUFFLE, 7 );
6. ...
7. int64 sum = 0;
8. for (int i = 0; i < 512; i += 8)

9. for (int j = 0; j < 8; j ++)
10. pattload r1, arr[i] + 8*j, 7
11. sum += r1

Before Optimization

After Optimization

One cache line
for each Veld

One cache line
for eight Velds

Enable shuYing
for arr

Pattern 7 gathers a
stride of 8

Access cache line
with stride of 8

Figure 7.7: Example code without and with our optimization.

two parts. Each iteration of the outer loop (line 8) fetches a single strided cache line that
contains only values from the Vrst Veld. The loop skips the other Velds (i += 8). The inner
loop (lines 9-11) iterates over values within each strided cache line. In the Vrst iteration
of the inner loop, the pattload instruction with pattern ID 7 fetches a cache line with a
stride of 8. As a result, the remaining seven iterations of the inner loop result in cache
hits. Consequently, with our optimization, the entire loop accesses only 64 cache lines.
As we will show in our evaluations, this reduction in the number of accessed cache lines
directly translates to reduction in latency, bandwidth consumption, and cache capacity
consumption, thereby improving overall performance.
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7.2.4 Hardware Cost

In this section, we quantify the changes required byGS-DRAM, speciVcallyGS-DRAM8,3,3

(Section 7.1.5), to various hardware components. On the DRAM side, Vrst, our mechanism
requires the addition of the column translation logic (CTL) for each DRAM chip. Each
CTL requires a 3-bit register for the Chip ID, a 3-bit bitwise AND gate, a 3-bit bitwise
XOR gate and a 3-bit bitwise multiplexer. Even for a commodity DRAM module with 8
chips, the overall cost is roughly 72 logic gates and 24 bits of register storage, which is
negligible compared to the logic already present in a DRAM module. Second, our mech-
anism requires a few additional pins on the DRAM interface to communicate the pattern
ID. However, existing DRAM interfaces already have some spare address bits, which can
be used to communicate part of the pattern ID. Using this approach, a 3-bit pattern ID
requires only one additional pin for DDR4 [111].

On the processor side, Vrst, our mechanism requires the controller to implement the
shuYing logic. Second, our mechanism augments each cache tag entry with the pattern
ID. Each page table entry and TLB entry stores the shuYe Wag and the alternate pattern ID
for the corresponding page (Section 7.2.1). For a 3-bit pattern ID, the cost of this addition
is less than 0.6% of the cache size. Finally, the processor must implement the pattload
and pattstore instructions, and the state machine for invalidating additional cache lines
on read-exclusive coherence requests. The operation of pattload/pattstore is not very
diUerent from that of a regular load/store instruction. Therefore, we expect the imple-
mentation of these new instructions to be simple. Similarly, on a write, our mechanism
has to check only eight cache lines (for GS-DRAM with 8 chips) for possible overlap with
the modiVed cache line. Therefore, we expect the invalidation state machine to be rela-
tively simple. Note that a similar state machine has been used to keep data coherent in a
virtually-indexed physically-tagged cache in the presence of synonyms [15].

7.3 Applications and Evaluations

To quantitatively evaluate the beneVts of GS-DRAM, we implement our framework in the
Gem5 simulator [34], on top of the x86 architecture. We implement the pattload in-
struction by modifying the behavior of the prefetch instruction to gather with a speciVc
pattern into either the rax register (8 bytes) or the xmm0 register (16 bytes). None of our
evaluated applications required the pattstore instruction. Table 7.1 lists the main pa-
rameters of the simulated system. All caches uniformly use 64-byte cache lines. While we
envision several applications to beneVt from our framework, in this section, we primarily
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discuss and evaluate two applications: 1) an in-memory database workload, and 2) general
matrix-matrix multiplication workload.

Processor 1-2 cores, x86, in-order, 4 GHz

L1-D Cache Private, 32 KB, 8-way associative, LRU policy

L1-I Cache Private, 32 KB, 8-way associative, LRU policy

L2 Cache Shared, 2 MB, 8-way associative, LRU policy

Memory DDR3-1600, 1 channel, 1 rank, 8 banks

Open row, FR-FCFS [182, 256], GS-DRAM8,3,3

Table 7.1: Main parameters of the simulated system.

7.3.1 In-Memory Databases

In-memory databases (IMDB) (e.g., [80, 116, 198]) provide signiVcantly higher perfor-
mance than traditional disk-oriented databases. Similar to any other database, an IMDB
may support two kinds of queries: transactions, which access many Velds from a few
tuples, and analytics, which access one or few Velds from many tuples. As a result, the
storage model used for the database tables heavily impacts the performance of transac-
tions and analytical queries. While a row-oriented organization (row store) is better for
transactions, a column-oriented organization [210] (column store) is better for analytics.
Increasing need for both fast transactions and fast real-time analytics has given rise to a
new workload referred to as Hybrid Transaction/Analytical Processing (HTAP) [17]. In an
HTAP workload, both transactions and analytical queries are run on the same version of
the database. Unfortunately, neither the row store nor the column store provides the best
performance for both transactions and analytics.

With our GS-DRAM framework, each database table can be stored as a row store
in memory, but can be accessed at high performance both in the row-oriented access
pattern and the Veld-oriented access pattern.1 Therefore, we expect GS-DRAM to pro-
vide the best of both row and column layouts for both kinds of queries. We demonstrate
this potential beneVt by comparing the performance of GS-DRAM with both a row store
layout (Row Store) and a column store layout (Column Store) on three workloads: 1) a
transaction-only workload, 2) an analytics-only workload, and 3) an HTAP workload. For

1GS-DRAM requires the database to be structured (i.e., not have any variable length Velds). This is Vne for
most high-performance IMDBs as they handle variable length Velds using Vxed size pointers for fast data
retrieval [84, 150]. GS-DRAM will perform at least as well as the baseline for unstructured databases.
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our experiments, we assume an IMDB with a single table with one million tuples and no
use of compression. Each tuple contains eight 8-byte Velds, and Vts exactly in a 64B cache
line. (Our mechanism naturally extends to any table with power-of-2 tuple size.)

Transaction workload. For this workload, each transaction operates on a randomly-
chosen tuple. All transactions access i, j, and k Velds of the tuple in the read-only, write-
only, and read-write mode, respectively. Figure 7.8 compares the performance (execution
time) of GS-DRAM, Row Store, and Column Store on the transaction workload for vari-
ous values of i, j, and k (x-axis). The workloads are sorted based on the total number of
Velds accessed by each transaction. For each mechanism, the Vgure plots the execution
time for running 10000 transactions.
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Figure 7.8: Transaction Workload Performance: Execution time for 10000 transac-
tions. The x-axis indicates the number of read-only, write-only, and read-write fields
for each workload.

We draw three conclusions. First, as each transaction accesses only one tuple, it ac-
cesses only one cache line. Therefore, the performance of Row Store is almost the same
regardless of the number of Velds read/written by each transaction. Second, the perfor-
mance of Column Store is worse than that of Row Store, and decreases with increasing
number of Velds. This is because Column Store accesses a diUerent cache line for each
Veld of a tuple accessed by a transaction, thereby causing a large number of memory ac-
cesses. Finally, as expected, GS-DRAM performs as well as Row Store and 3X (on average)
better than Column Store for the transactions workload.

Analytics workload. For this workload, we measure the time taken to run a query
that computes the sum of k columns from the table. Figure 7.9 compares the performance
of the three mechanisms on the analytics workload for k = 1 and k = 2. The Vgure
shows the performance of each mechanism without and with prefetching. We use a PC-
based stride prefetcher [30] (with prefetching degree of 4 [205]) that prefetches data into
the L2 cache. We draw several conclusions from the results.
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Figure 7.9: Analytics Workload Performance: Execution time for running an analytics
query on 1 or 2 columns (without and with prefetching).

First, prefetching signiVcantly improves the performance of all three mechanisms for
both queries. This is expected as the analytics query has a uniform stride for all mech-
anisms, which can be easily detected by the prefetcher. Second, the performance of
Row Store is roughly the same for both queries. This is because each tuple of the ta-
ble Vts in a single cache line and hence, the number of memory accesses for Row Store
is the same for both queries (with and without prefetching). Third, the execution time of
Column Store increases with more Velds. This is expected as Column Store needs to fetch
more cache lines when accessing more Velds from the table. Regardless, Column Store
signiVcantly outperforms Row Store for both queries, as it causes far fewer cache line
fetches compared to Row Store. Finally, GS-DRAM, by gathering the columns from the
table as eXciently as Column Store, performs similarly to Column Store and signiVcantly
better than Row Store both without and with prefetching (2X on average).

HTAP workload. For this workload, we run one analytics thread and one transactions
thread concurrently on the same system operating on the same table. The analytics thread
computes the sum of a single column, whereas the transactions thread runs transactions
(on randomly chosen tuples with one read-only and one write-only Veld). The transaction
thread runs until the analytics thread completes. We measure 1) the time taken to complete
the analytics query, and 2) the throughput of the transactions thread. Figures 7.10a and
7.10b plot these results, without and with prefetching.

First, for analytics, prefetching signiVcantly improves performance for all three mech-
anisms. GS-DRAM performs as well as Column Store. Second, for transactions, we Vnd
that GS-DRAM not only outperforms Column Store, in terms of transaction throughput,
but it also performs better than Row Store. We traced this eUect back to inter-thread con-
tention for main memory bandwidth, a well-studied problem (e.g., [76, 123, 124, 156, 157,
213]). The FR-FCFS [182, 256] memory scheduler prioritizes requests that hit in the row
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Figure 7.10: HTAP (without and with prefetching) (transactions: 1 read-only, 1 write-
only field; analytics: 1 column)

buUer. With Row Store, the analytics thread accesses all the cache lines in a DRAM row,
thereby starving requests of the transaction thread to the same bank (similar to a memory
performance hog program described in [154]). In contrast, by fetching just the required
Veld, GS-DRAM accesses 8 times fewer cache lines per row. As a result, it stalls the trans-
action thread for much smaller amount of time, leading to higher transaction throughput
than Row Store. The problem becomes worse for Row Store with prefetching, since the
prefetcher makes the analytics thread run even faster, thereby consuming a larger fraction
of the memory bandwidth.

Energy. We use McPAT [140] and DRAMPower [42, 43] (integrated with Gem5 [34])
to estimate the processor and DRAM energy consumption of the three mechanisms. Our
evaluations show that, for transactions, GS-DRAM consumes similar energy to Row Store
and 2.1X lower than Column Store. For analytics (with prefetching enabled), GS-DRAM
consumes similar energy to Column Store and 2.4X lower energy (4X without prefetch-
ing) than Row Store. (As diUerent mechanisms perform diUerent amounts of work for
the HTAP workload, we do not compare energy for this workload.) The energy beneVts
of GS-DRAM over prior approaches come from 1) lower overall processor energy con-
sumption due to reduced execution time, and 2) lower DRAM energy consumption due to
signiVcantly fewer memory accesses.

Figure 7.11 summarizes the performance and energy beneVts of GS-DRAM compared
to Row Store and Column Store for the transactions and the analytics workloads. We
conclude that GS-DRAM provides the best of both the layouts.
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Figure 7.11: Summary of performance and energy consumption for the transactions
and analytics workloads

7.3.2 ScientiVc Computation: GEMM

General Matrix-Matrix (GEMM) multiplication is an important kernel in many scientiVc
computations. When two n×nmatrices A and B are multiplied, the matrix A is accessed
in the row-major order, whereas the matrix B is accessed in the column-major order. If
both matrices are stored in row-major order, a naive algorithm will result in poor spatial
locality for accesses to B. To mitigate this problem, matrix libraries use two techniques.
First, they split each matrix into smaller tiles, converting the reuses of matrix values into
L1 cache hits. Second, they use SIMD instructions to speed up each vector dot product
involved in the operation.

Unfortunately, even after tiling, values of a column of matrix B are stored in diUerent
cache lines. As a result, to exploit SIMD, the software must gather the values of a column
into a SIMD register. In contrast, GS-DRAM can read each tile of the matrix in the column-
major order into the L1 cache such that each cache line contains values gathered from one
column. As a result, GS-DRAM naturally enables SIMD operations, without requiring the
software to gather data into SIMD registers.

Figure 7.12 plots the performance of GEMM with GS-DRAM and with the best tiled
version normalized to a non-tiled version for diUerent sizes (n) of the input matrices.
We draw two conclusions. First, as the size of the matrices increases, tiling provides
signiVcant performance improvement by eliminating many memory references. Second,
by seamlessly enabling SIMD operations, GS-DRAM improves the performance of GEMM
multiplication by 10% on average compared to the best tiled baseline. Note that GS-DRAM
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Figure 7.12: GEMM Multiplication: Performance of GS-DRAM and the best tiled-
version (normalized to a non-tiled baseline). Values on top indicate percentage re-
duction in execution time of GS-DRAM compared to tiling.

achieves 10% improvement over a heavily-optimized tiled baseline that spends most of its
time in the L1 cache.

7.3.3 Other Applications

We envision GS-DRAM to beneVt many other applications like key-value stores, graph
processing, and graphics. Key-value stores have two main operations: insert and lookup.
The insert operation beneVts from both the key and value being in the same cache line.
On the other hand, the lookup operation beneVts from accessing a cache line that contains
only keys. Similarly, in graph processing, operations that update individual nodes in the
graph have diUerent access patterns than those that traverse the graph. In graphics, mul-
tiple pieces of information (e.g., RGB values of pixels) may be packed into small objects.
DiUerent operations may access multiple values within an object or a single value across a
large number of objects. The diUerent access patterns exhibited by these applications have
a regular stride and can beneVt signiVcantly from GS-DRAM.

7.4 Extensions to GS-DRAM

In this section, we describe three simple extensions to GS-DRAM: 1) programmable shuf-
Wing, 2) wider pattern IDs, and 3) intra-chip column translation. These extensions (to-
gether or individually) allow GS-DRAM to 1) express more patterns (e.g., larger strides),
2) gather or scatter data at a granularity smaller than 8 bytes, and 3) enable ECC support.
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7.4.1 Programmable ShuYing

Although our shuYing mechanism uses the least signiVcant bits of the column ID to con-
trol the shuYing stages, there are two simple ways of explicitly controlling which shuYing
stages are active. First, we can use a shuYe mask to disable some stages. For example,
the shuYe mask 10 disables swapping of adjacent values (Figure 7.3, Stage 1). Second,
instead of using the least signiVcant bits to control the shuYing stages, we can choose
diUerent combinations of bits (e.g., XOR of multiple sets of bits [71, 226]). To enable pro-
grammable shuYing, we add another parameter to GS-DRAM called the shuYing func-
tion, f . For GS-DRAMc,s,p,f , the function f takes a column ID as input and generates an
n-bit value that is used as the control input to the n shuYing stages. The function f can
be application-speciVc, thereby optimizing GS-DRAM for each application.

7.4.2 Wider Pattern IDs

Although a wide pattern ID comes at additional cost, using a wider pattern ID allows the
memory controller to express more access patterns. However, the column translation logic
(CTL) performs a bitwise AND of the chip ID and the pattern ID to create a modiVer for
the column address. As a result, even if we use a wide pattern ID, a small chip ID disables
the higher order bits of the pattern ID. SpeciVcally, for GS-DRAMc,∗,p, if p > log c, the
CTL uses only the least signiVcant log c bits of the pattern ID. To enable wider pattern
IDs, we propose to simply widen the chip ID used by the CTL by repeating the physical
chip ID multiple times. For instance, with 8 chips and a 6-bit pattern ID, the chip ID used
by CTL for chip 3 will be 011-011 (i.e., 011 repeated twice). With this simple extension,
GS-DRAM can enable more access patterns (e.g., larger strides).

7.4.3 Intra-Chip Column Translation

Although we have assumed that each DRAM bank has a single wide row-buUer, in reality,
each DRAM bank is a 2-D collection of multiple small tiles or MATs [125, 224, 246]. Similar
to how each chip within a rank contributes 64 bits to each cache line, each tile contributes
equally to the 64 bits of data supplied by each chip. We can use the column translation
logic within each DRAM chip to select diUerent columns from diUerent tiles for a single
READ or WRITE. This mechanism has two beneVts. First, with the support for intra-chip
column translation, we can gather access patterns at a granularity smaller than 8 bytes.
Second, with DIMMs that support ECC, GS-DRAM may incur additional bandwidth to
read all the required ECC values for non-zero patterns. However, if we use a chip that
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supports intra-chip column selection for ECC, accesses with non-zero patterns can gather
the data from the eight data chips and gather the ECC from the eight tiles within the ECC
chip, thereby seamlessly supporting ECC for all access patterns.

7.5 Prior Work

Carter et al. [39] propose Impulse, a mechanism to export gather operations to the memory
controller. In their system, applications specify a gather mapping to the memory controller
(with the help of the OS). To perform a gather access, the controller assembles a cache line
with only the values required by the access pattern and sends the cache line to the pro-
cessor, thereby reducing the bandwidth between the memory controller and the processor.
Impulse has two shortcomings. First, with commodity DRAM modules, which are opti-
mized for accessing cache lines, Impulse cannot mitigate the wasted memory bandwidth
consumption between the memory controller and DRAM. Impulse requires a memory in-
terface that supports Vne-grained accesses (e.g., [18, 19, 38, 231, 252]), which signiVcantly
increases the system cost. Second, Impulse punts the problem of maintaining cache co-
herence to software. In contrast, GS-DRAM 1) works with commodity modules with very
few changes, and 2) provides coherence of gathered cache lines transparent to software.

Yoon et al. [242, 243] propose the Dynamic Granularity Memory System (DGMS), a
memory interface that allows the memory controller to dynamically change the granu-
larity of memory accesses in order to avoid unnecessary data transfers for accesses with
low spatial locality. Similar to Impulse, DGMS requires a memory interface that supports
Vne-grained memory accesses (e.g., [18, 19, 38, 231, 252]) and a sectored cache [142, 197].
In contrast, GS-DRAM works with commodity DRAM modules and conventionally-used
non-sectored caches with very few changes.

Prior works (e.g., [30, 72, 73, 160, 167, 205]) propose prefetching for strided accesses.
While prefetching reduces the latency of such accesses, it does not avoid the waste in
memory bandwidth and cache space. He et al. [91] propose a model to analyze the perfor-
mance of gather-scatter accesses on a GPU. To improve cache locality, their model splits
gather-scatter loops into multiple passes such that each pass performs only accesses from
a small group of values that Vt in the cache. This mechanism works only when multiple
values are actually reused by the application. In contrast, GS-DRAM fetches only useful
values from DRAM, thereby achieving better memory bandwidth and cache utilization.
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7.6 Summary

In this chapter, we introduced Gather-Scatter DRAM, a low-cost substrate that enables
the memory controller to eXciently gather or scatter data with diUerent non-unit strided
access patterns. Our mechanism exploits the fact that multiple DRAM chips contribute to
each cache line access. GS-DRAM maps values accessed by diUerent strided patterns to
diUerent chips, and uses a per-chip column translation logic to access data with diUerent
patterns using signiVcantly fewer memory accesses than existing DRAM interfaces. Our
framework requires no changes to commodity DRAM chips, and very few changes to the
DRAM module, the memory interface, and the processor architecture. Our evaluations
show that GS-DRAM provides the best of both the row store and the column store layouts
for a number of in-memory database workloads, and outperforms the best tiled layout on a
well-optimized matrix-matrix multiplication workload. Our framework can beneVt many
other modern data-intensive applications like key-value stores and graph processing. We
conclude that the GS-DRAM framework is a simple and eUective way to improve the
performance of non-unit strided and gather/scatter memory accesses.



Chapter 8

The Dirty-Block Index

In the previous three chapters, we described three mechanisms that oYoad some key
application-level primitives to DRAM. As described in the respective chapters, these mech-
anisms directly read/modify data in DRAM. As a result, they require the cache coherence
protocol to maintain the coherence of the data stored in the on-chip caches. SpeciVcally,
for an in-DRAM operation, the protocol must carry out two steps. First, any dirty cache
line that is directly read in DRAM should be Wushed to DRAM before the operation. Sec-
ond, any cache line that is modiVed in DRAM should be invalidated from the caches.

While the second step can be performed in parallel with the in-DRAM operation, the
Vrst step, i.e., Wushing the dirty cache lines of the source data, is on the critical path of
performing the in-DRAM operation. In this chapter, we describe Dirty-Block Index, a new
way of tracking dirty blocks that can speed up Wushing dirty blocks of a DRAM row.

8.1 DRAM-Aware Writeback

We conceived of the Dirty-Block Index based on a previously proposed optimization called
DRAM-Aware Writeback. In this section, we Vrst provide a brief background on dirty
blocks and the interaction between the last-level cache and the memory controller. We
then describe the optimization.

Originally published as “The Dirty-Block Index” in the International Symposium on Computer Architecture,

2014 [190]
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8.1.1 Background on Dirty Block Management

Most modern high-performance systems use a writeback last-level cache. When a cache
block is modiVed by the CPU, it is marked dirty in the cache. For this purpose, each tag
entry is associated with a dirty bit, which indicates if the block corresponding to the tag
entry is dirty. When a block is evicted, if its dirty bit is set, then the cache sends the block
to the memory controller to be written back to the main memory.

The memory controller periodically writes back dirty blocks to their locations in main
memory. While such writes can be interleaved with read requests at a Vne granularity,
their is a penalty to switching the memory channel between the read and write modes.
As a result, most memory controllers buUer the writebacks from the last-level cache in
a write buUer. During this period, which we refer to as the read phase, the memory
controller only serves read requests. When the write buUer is close to becoming full, the
memory controller stops serving read requests and starts Wushing out the write buUer
to main memory until the write buUer is close to empty. We refer to this phase as the
writeback phase. The memory controller then switches back to serving read requests.
This policy is referred to as drain-when-full [133].

8.1.2 DRAM-AwareWriteback: ImprovingWrite Row BuUer Locality

In existing systems, the sequence with which dirty blocks are evicted from the cache de-
pends on primarily on the cache replacement policy. As observed by two prior works [133,
212], this approach can Vll the write buUer with dirty blocks from many diUerent rows in
DRAM. As a result, the writeback phase exhibits poor DRAM row buUer locality. How-
ever, there could be other dirty blocks in the cache which belong to the same DRAM row
as those in the write buUer.

DRAM-Aware Writeback (DAWB) is a simple solution to counter this problem. The
idea is to writeback dirty blocks of the same DRAM row together so as to improve the
row buUer locality of the writeback phase. This could reduce the time consumed by the
writeback phase, thereby allowing the memory controller to switch to the read phase
sooner. To implement this idea, whenever a dirty block is evicted from the cache, DAWB
checks if there are any other dirty blocks in the cache that belong to the same DRAM row.
If such blocks exist, DAWB simply writes the contents of those blocks to main memory
and marks them as clean (i.e., clears their dirty bits). Evaluations show that this simple
optimization can signiVcantly improve the performance of many applications.
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8.1.3 IneXciency in Implementing DAWB

Implementing DAWB with existing cache organizations requires the cache to lookup each
block of a DRAM row and determine if the block is dirty. In a modern system with typical
DRAM row buUer size of 8KB and a cache block size of 64B, this operations requires 128
cache lookups. With caches getting larger and more cores sharing the cache, these lookups
consume high latency and also add to the contention for the tag store. To add to the
problem, many of these cache blocks may not be dirty to begin with, making the lookups
for those blocks unnecessary.

Ideally, as part of the DAWB optimization, the tag store should be looked up only for
those blocks from the DRAM row that are actually dirty. In other words, the cache must
be able to eXciently identify the list of all cache blocks of a given DRAM row (or region)
that are dirty. This will not only enable a more eXcient implementation of the DAWB
optimization, but also address the cache coherence problem described in the beginning of
this chapter.

8.2 The Dirty-Block Index

In our proposed system, we remove the dirty bits from the tag store and organize them
diUerently in a separate structure called the Dirty-Block Index (DBI). At a high level, DBI
organizes the dirty bit information such that the dirty bits of all the blocks of a DRAM
row are stored together.

8.2.1 DBI Structure and Semantics

Figure 8.1 compares the conventional tag store with a tag store augmented with a DBI. In
the conventional organization (shown in Figure 8.1a), each tag entry contains a dirty bit
that indicates whether the corresponding block is dirty or not. For example, to indicate
that a block B is dirty, the dirty bit of the corresponding tag entry is set.

In contrast, in a cache augmented with a DBI (Figure 8.1b), the dirty bits are removed
from the main tag store and organized diUerently in the DBI. The organization of DBI is
simple. It consists of multiple entries. Each entry corresponds to some row in DRAM—
identiVed using a row tag present in each entry. Each DBI entry contains a dirty bit vector
that indicates if each block in the corresponding DRAM row is dirty or not.

DBI Semantics. A block in the cache is dirty if and only if the DBI contains a valid
entry for the DRAM row that contains the block and the bit corresponding to the block in



120 CHAPTER 8. THE DIRTY-BLOCK INDEX

Tag Entry

Tag Store

1 1 B

Valid Bit Dirty Bit Cache Block Tag

(a) Conventional cache tag store

Tag Entry

Tag Store

1 B

Valid Bit Cache Block Tag

DBI Entry

Dirty Block Index

1 R 0 1 0 0

Valid Bit Row Tag
(log2 # rows
in DRAM)

Dirty Bit Vector
(# of blocks in
a DRAM row)

(b) Cache tag store augmented with a DBI

Figure 8.1: Comparison between conventional cache and a cache with DBI.

the bit vector of that DBI entry is set. For example, assuming that block B is the second
block of DRAM row R, to indicate that block B is dirty, the DBI contains a valid entry for
DRAM row R, with the second bit of the corresponding bit vector set.

Note that the key diUerence between the DBI and the conventional tag store is the
logical organization of the dirty bit information. While some processors store the dirty
bit information in a separate physical structure, the logical organization of the dirty bit
information is same as the main tag store.

8.2.2 DBI Operation

Figure 8.2 pictorially describes the operation of a cache augmented with a DBI. The focus
of this work is on the on-chip last-level cache (LLC). Therefore, for ease of explanation,
we assume that the cache does not receive any sub-block writes and any dirty block in the
cache is a result of a writeback generated by the previous level of cache.1 There are four
possible operations, which we describe in detail below.

1Sub-block writes typically occur in the primary L1 cache where writes are at a word-granularity, or at a
cache which uses a larger block size than the previous level of cache. The DBI operation described in this
paper can be easily extended to caches with sub-block writes.
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Figure 8.2: Operation of a cache with DBI

Read Access to the Cache

The addition of DBI does not change the path of a read access in any way. On a read
access, the cache simply looks up the block in the tag store and returns the data on a cache
hit. Otherwise, it forwards the access to the memory controller.

Writeback Request to the Cache

In a system with multiple levels of on-chip cache, the LLC will receive a writeback request
when a dirty block is evicted from the previous level of cache. Upon receiving such a
writeback request, the cache performs two actions (as shown in Figure 8.2). First, it inserts
the block into the cache if it is not already present. This may result in a cache block
eviction (discussed in Section 8.2.2). If the block is already present in the cache, the cache
just updates the data store (not shown in the Vgure) with the new data. Second, the
cache updates the DBI to indicate that the written-back block is dirty. If the DBI already
has an entry for the DRAM row that contains the block, the cache simply sets the bit
corresponding to the block in that DBI entry. Otherwise, the cache inserts a new entry
into the DBI for the DRAM row containing the block and with the bit corresponding to
the block set. Inserting a new entry into the DBI may require an existing DBI entry to be
evicted. Section 8.2.2 discusses how the cache handles such a DBI eviction.

Cache Eviction

When a block is evicted from the cache, it has to be written back to main memory if it is
dirty. Upon a cache block eviction, the cache consults the DBI to determine if the block is
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dirty. If so, it Vrst generates a writeback request for the block and sends it to the memory
controller. It then updates the DBI to indicate that the block is no longer dirty—done by
simply resetting the bit corresponding to the block in the bit vector of the DBI entry. If the
evicted block is the last dirty block in the corresponding DBI entry, the cache invalidates
the DBI entry so that the entry can be used to store the dirty block information of some
other DRAM row.

DBI Eviction

The last operation in a cache augmented with a DBI is a DBI eviction. Similar to the
cache, since the DBI has limited space, it can only track the dirty block information for a
limited number of DRAM rows. As a result, inserting a new DBI entry (on a writeback
request, discussed in Section 8.2.2) may require evicting an existing DBI entry. We call
this event a DBI eviction. The DBI entry to be evicted is decided by the DBI replacement
policy (discussed in Section 8.3.3). When an entry is evicted from the DBI, all the blocks
indicated as dirty by the entry should be written back to main memory. This is because,
once the entry is evicted, the DBI can no longer maintain the dirty status of those blocks.
Therefore, not writing them back to memory will likely lead to incorrect execution, as the
version of those blocks in memory is stale. Although a DBI eviction may require evicting
many dirty blocks, with a small buUer to keep track of the evicted DBI entry (until all of
its blocks are written back to memory), the DBI eviction can be interleaved with other
demand requests. Note that on a DBI eviction, the corresponding cache blocks need not
be evicted—they only need to be transitioned from the dirty state to clean state.

8.2.3 Cache Coherence Protocols

Many cache coherence protocols implicitly store the dirty status of cache blocks in the
cache coherence states. For example, in the MESI protocol [168], the M (modiVed) state
indicates that the block is dirty. In the improved MOESI protocol [219], both M (modiVed)
and O (Owner) states indicate that the block is dirty. To adapt such protocols to work
with DBI, we propose to split the cache coherence states into multiple pairs—each pair
containing a state that indicates the block is dirty and the non-dirty version of the same
state. For example, we split the MOESI protocol into three parts: (M, E), (O, S) and (I). We
can use a single bit to then distinguish between the two states in each pair. This bit will
be stored in the DBI.
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8.3 DBI Design Choices

The DBI design space can be deVned using three key parameters: 1) DBI size, 2) DBI granu-
larity and 3) DBI replacement policy.2 These parameters determine the eUectiveness of the
three optimizations discussed in the previous section. We now discuss these parameters
and their trade-oUs in detail.

8.3.1 DBI Size

The DBI size refers to the cumulative number of blocks tracked by all the entries in the
DBI. For ease of analysis across systems with diUerent cache sizes, we represent the DBI
size as the ratio of the cumulative number of blocks tracked by the DBI and the number
of blocks tracked by the cache tag store. We denote this ratio using α. For example, for
a 1MB cache with a 64B block size (16k blocks), a DBI of size α = 1/2 enables the DBI to
track 8k blocks.

The DBI size presents a trade-oU between the size of write working set (set of fre-
quently written blocks) that can be captured by the DBI, and the area, latency, and power
cost of the DBI. A large DBI has two beneVts: 1) it can track a larger write working set,
thereby reducing the writeback bandwidth demand, and 2) it gives more time for a DBI
entry to accumulate writebacks to a DRAM row, thereby better exploiting the AWB opti-
mization. However, a large DBI comes at a higher area, latency and power cost. On the
other hand, a smaller DBI incurs lower area, latency and power cost. This has two bene-
Vts: 1) lower latency in the critical path for the CLB optimization and 2) ECC storage for
fewer dirty blocks. However, a small DBI limits the number of dirty blocks in the cache
and thus, result in premature DBI evictions, reducing the potential to generate aggressive
writebacks. It can also potentially lead to thrashing if the write working set is signiVcantly
larger than the number of blocks tracked by the small DBI.

8.3.2 DBI Granularity

The DBI granularity refers to the number of blocks tracked by a single DBI entry. Although
our discussion in Section 8.2 suggests that this is same as the number of blocks in each
DRAM row, we can design the DBI to track fewer blocks in each entry. For example, for
a system with DRAM row of size 8KB and cache block of size 64B, a natural choice for

2DBI is also a set-associative structure and has a Vxed associativity. However, we do not discuss the DBI
associativity in detail as its trade-oUs are similar to any other set-associative structure.
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the DBI granularity is 8KB/64B = 128. Instead, we can design a DBI entry to track only 64
blocks, i.e. one half of a DRAM row.

The DBI granularity presents another trade-oU between the amount of locality that
can be extracted during the writeback phase (using the AWB optimization) and the size of
write working set that can be captured using the DBI. A large granularity leads to better
potential for exploiting the AWB optimization. However, if writes have low spatial locality,
a large granularity will result in ineXcient use of the DBI space, potentially leading to
write working set thrashing.

8.3.3 DBI Replacement Policy

The DBI replacement policy determines which entry is evicted on a DBI eviction, described
in Section 8.2.2. A DBI eviction only writes back the dirty blocks of the corresponding
DRAM row to main memory, and does not evict the blocks themselves from the cache.
Therefore, a DBI eviction does not aUect the latency of future read requests for the cor-
responding blocks. However, if the previous cache level generates a writeback request for
a block written back due to a DBI eviction, the block will have to be written back again,
leading to an additional write to main memory. Therefore, the goal of the DBI replacement
policy is to ensure that blocks are not prematurely written back to main memory.

The ideal DBI replacement policy is to evict the entry that has a writeback request
farthest into the future. However, similar to Belady’s optimal replacement policy [32],
this ideal policy is impractical to implement in real systems. We evaluated Vve practical
replacement policies for DBI: 1) Least Recently Written (LRW)—similar to the LRU pol-
icy for caches, 2) LRW with Bimodal Insertion Policy [176], 3) Rewrite-interval prediction
policy—similar to the RRIP policy for caches [106], 4) Max-Dirty—entry with the max-
imum number of dirty blocks, 5) Min-Dirty—entry with the minimum number of dirty
blocks. We Vnd that the LRW policy works comparably or better than the other policies.

8.4 Bulk Data Coherence with DBI

As mentioned in Section 8.2, we conceived of DBI to primarily improve the performance
of the DRAM-Aware Writeback optimization. However, we identiVed several other po-
tential use cases for DBI, and quantitatively evaluated three such optimizations (including
DRAM-aware Writeback). Since these optimizations are not directly related to this thesis,
we only provide a brief summary of the evaluated optimizations and the results in Sec-
tion 8.5. We direct the reader to our paper published in ISCA 2014 [190] for more details.
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In this section, we describe how DBI can be used to improve the performance of certain
cache coherence protocol operations, speciVcally Wushing bulk data.

8.4.1 Checking If a Block is Dirty

As described in Section 8.2, in the cache organization used in existing systems, the cache
needs to perform a full tag store lookup to check if a block is dirty. Due to the large
size and associativity of the last-level cache, the latency of this lookup is typically several
processor cycles. In contrast, in a cache augmented with DBI, the cache only needs to
perform a single DBI lookup to check if a block is dirty. Based on our evaluations, even
with just 64 DBI entries (in comparison to 16384 entries in the main tag store), the cache
with DBI outperforms the conventional cache organization. As a result, checking if a block
is dirty is signiVcantly cheaper with the DBI organization.

This fast lookup for the dirty bit information can already make many coherence pro-
tocol operations in multi-socket systems more eXcient. SpeciVcally, when a processor
wants to read a cache line, it has to Vrst check if any of the other processors contain
a dirty version of the cache line. With the DBI, this operation is more eXcient than in
existing systems. However, the major beneVt of DBI is in accelerating bulk data Wushing.

8.4.2 Accelerating Bulk Data Flushing

In many scenarios, the memory controller must check if a set of blocks belonging to a
region is dirty in the on-chip cache. For instance, in Direct Memory Access, the memory
controller may send data to an I/O device by directly reading the data from memory. Since
these operations typically happen in bulk, the memory controller may have to get all cache
lines in an entire page (for example) that are dirty in the on-chip cache. In fact, all the
DRAM-related mechanisms described in the previous three chapters of this thesis require
an eXcient implementation of this primitive.

With a cache augmented DBI, this primitive can be implemented with just a single DBI
lookup. When the memory controller wants to extract all the dirty cache lines of a region,
it looks up the DBI with the DBI tag for the corresponding region, and extracts the dirty
bit vector, which indicates which blocks within the region are dirty in the cache. If the size
of the region is larger than the segment tracked by each DBI entry, the memory controller
must perform multiple lookups. However, with the DBI, 1) the memory controller has
to perform 64X or 128X (depending on the DBI granularity) fewer lookups compared to
conventional cache organization, 2) each DBI lookup is cheaper than a tag store lookup,
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and 3) the cache can lookup and Wush only blocks that are actually dirty. With these
beneVts, DBI can perform Wush data in bulk much faster than existing organizations.

8.5 Summary of Optimizations and Evaluations

In this section, we provide a brief summary of the optimizations enabled by DBI and
the corresponding evaluation. We refer the reader to our ISCA paper [190] for more de-
tails. We speciVcally evaluate the following three optimizations in detail: 1) DRAM-aware
writeback, 2) cache lookup bypass, and 3) heterogeneous ECC.

8.5.1 Optimizations

EXcient DRAM-aware Writeback

This is the optimization we described brieWy in Section 8.2. The key idea is to cluster
writebacks to dirty blocks of individual DRAM rows with the goal of maximizing the
write row buUer hit rate. Implementing this optimization with DBI is straightforward.
When a block is evicted from the cache, the DBI tells the cache whether the block is dirty
or not. In addition, the bit vector in the corresponding DBI entry also tells the cache
the list of all other dirty blocks in the corresponding DRAM row (assuming that each
region in the DBI corresponds to a DRAM row). The cache can then selectively lookup
only those dirty blocks and write them back to main memory. This is signiVcantly more
eXcient than the implementation with the block-oriented organization. The best case
for DBI is when no other block from the corresponding DRAM row is dirty. In this case,
current implementations will have to look up every block in the DRAM row unnecessarily,
whereas DBI will perform zero additional lookups.

Bypassing Cache Lookups

The idea behind this optimization is simple: If an access is likely to miss in the cache, then
we can avoid the tag lookup for the access, reducing both latency and energy consumption
of the access. In this optimization, the cache is augmented with a miss predictor which
can eXciently predict if an access will hit or miss in the cache. If an access is predicted
to miss, then the request is directly sent to main memory. The main challenge with this
optimization is that an access to a dirty block should not be bypassed. This restricts the
range of miss predictors as the predictor cannot falsely predict that an access will miss in
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the cache [149]. Fortunately, with the DBI, when an access is predicted to miss, the cache
can Vrst consult the DBI to ensure that the block is not dirty before bypassing the tag
lookup. As a result, DBI enables very aggressive miss predictors (e.g., bypass all accesses
of an application [115]).

Reducing ECC Overhead

The Vnal optimization is again based on a simple idea: clean blocks need only error de-
tection; only dirty blocks need strong error correction. Several prior works have propose
mechanisms to exploit this observation to reduce the ECC overhead. However, they re-
quire complex mechanisms to handle the case when an error is detected on a dirty block
(e.g., [241]). In our proposed organization, since DBI tracks dirty blocks, it is suXcient to
store ECC only for the blocks tracked by DBI. With the previously discussed optimizations,
we Vnd that the DBI can get away with tracking far fewer blocks than the main cache. As
a result, DBI can seamlessly reduce the ECC area overhead (8% reduction in overall cache
area).

8.5.2 Summary of Results

We refer the reader to our paper for full details on our methodology. Figure 8.3 brieWy
summarizes the comparison between DBI (with the Vrst two optimizations, DRAM-aware
writeback and cache lookup bypass) and the best previous mechanism, DRAM-aware
writeback [133] (DAWB). As a result of proactively writing back blocks to main memory,
both mechanisms increase the number of memory writes. However, for a small increase in
the number of writes, both mechanisms signiVcantly improve the write row hit rate, and
hence also performance compared to the baseline. However, the key diUerence between

Baseline DAWB DBI

0.5
1.0
1.5
2.0
2.5
3.0

Memory Writes Write Row Hits Tag Lookups 8-Core Perf.

Figure 8.3: Summary of Performance Results. The first three metrics are normalized
to the Baseline.
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DAWB and DBI is that DAWB almost doubles the number of tag lookups, whereas with
both optimizations, DBI actually reduces the number of tag lookups by 14% compared to
the baseline. As a result, DBI improves performance by 6% compared to DAWB (31% over
baseline) across 120 workloads in an 8-core system with 16MB shared cache.

8.6 Summary

In this chapter, we introduced the Dirty-Block Index (DBI), a structure that aids the cache
in eXciently responding to queries regarding dirty blocks. SpeciVcally, DBI can quickly
list all dirty blocks that belong to a contiguous region and, in general, check if a block is
dirty more eXciently than existing cache organization. To achieve this, our mechanism
removes the dirty bits from the on-chip tag store and organizes them at a large region (e.g.,
DRAM row) granularity in the DBI. DBI can be used to accelerate the coherence protocol
that ensures the coherence of data between the on-chip caches and main memory in our
in-DRAM mechanisms. We described three other concrete use cases for the DBI that can
improve the performance and energy-eXciency of the memory subsystem in general, and
reduce the ECC overhead for on-chip caches. This approach is an eUective way of enabling
several other optimizations at diUerent levels of caches by organizing the DBI to cater to
the write patterns of each cache level. We believe this approach can be extended to more
eXciently organize other metadata in caches (e.g., cache coherence states), enabling more
optimizations to improve performance and power-eXciency.



Chapter 9

Conclusions & Future Work

In modern systems, diUerent resources of the memory subsystem store and access data
at diUerent granularities. SpeciVcally, virtual memory manages main memory capacity
at a (large) page granularity; the oU-chip memory interface access data from memory at
a cache line granularity; on-chip caches typically store and access data at a cache line
granularity; applications typically access data at a (small) word granularity. We observe
that this mismatch in granularities results in signiVcant ineXciency for many memory
operations. In Chapter 2, we demonstrate this ineXciency using two example operations:
copy-on-write and non-unit strided access.

9.1 Contributions of This Dissertation

In this dissertation, we propose Vve distinct mechanisms to address the ineXciency prob-
lem at various structures. First, we observe that page-granularity management of main
memory capacity can result in signiVcant ineXciency in implementing many memory
management techniques. In Chapter 3, we describe page overlays, a new framework
which augments the existing virtual memory framework with a structure called overlays.
In short, an overlay of a virtual page tracks a newer version of a subset of segments from
within the page. We show that this simple framework is very powerful and enables many
applications. We quantitatively evaluate page overlays with two mechanisms: overlay-on-
write, a more eXcient version of the widely-used copy-on-write technique, and an eXcient
hardware-based representation for sparse data structures.

Second, we show that the internal organization and operation of a DRAM chip can
be used to transfer data quickly and eXciently from one location to another. Exploiting
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this observation, in Chapter 5, we describe RowClone, a mechanism to perform bulk copy
and initialization operations completely inside DRAM. RowClone reduces the latency and
energy of performing a bulk copy operation by 11X and 74X, respectively, compared to
commodity DRAM interface. Our evaluations show that this reduction signiVcantly im-
proves the performance of copy and initialization intensive applications.

Third, we show that the analog operation of DRAM and the inverters present in the
sense ampliVer can be used to perform bitwise logical operations completely inside DRAM.
In Chapter 6, we describe Buddy RAM, a mechanism to perform bulk bitwise logical oper-
ations using DRAM. Buddy improves the throughput of various bitwise logical operations
by between 3.8X (for bitwise XOR) and 10.1X (for bitwise NOT) compared to a multi-
core CPU, and reduces the energy consumption of the respective operations by 25.1X and
59.5X. We demonstrate the beneVts of Buddy by using it to improve the performance of
set operations and in-memory bitmap indices.

Fourth, we show that the multi-chip module organization of oU-chip memory can
be used to eXciently gather or scatter data with strided access patterns. In Chapter 7,
we describe Gather-Scatter DRAM (GS-DRAM), a mechanism that achieves near-ideal
bandwidth utilization for any power-of-2 strided access pattern. We implement an in-
memory database on top of GS-DRAM and show that GS-DRAM gets the best of both a
row store layout and column store layout on a transactions workload, analytics workload,
and a hybrid transactions and analytics workload.

Finally, in Chapter 8, we introduce the Dirty-Block Index, a mechanism to improve the
eXciency of the coherence protocol that ensures the coherence of data across the on-chip
caches and main memory. DBI eXciently tracks spatially-collocated dirty blocks, and has
several applications in addition to more eXcient data coherence, e.g., eXcient memory
writeback, eXcient cache lookup bypass, and reducing cache ECC overhead.

9.2 Future Research Directions

This dissertation opens up several avenues for research. In this section, we describe six
speciVc directions in which the ideas and approaches proposed in this thesis can be ex-
tended to other problems to improve the performance and eXciency of various systems.

9.2.1 Extending Overlays to Superpages

In Chapter 3, we described and evaluated the beneVts of our page overlays mechanism for
regular 4KB pages. We believe that our mechanism can be easily extended to superpages,
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which are predominantly used by many modern operating systems. The primary bene-
Vt of using superpages is to increase TLB reach and thereby reduce overall TLB misses.
However, we observe that superpages are ineUective for reducing memory redundancy.

To understand this, let us consider the scenario when multiple virtual superpages are
mapped to the same physical page in the copy-on-write mode (as a result of cloning a pro-
cess or a virtual machine). In this state, if any of the virtual superpages receives a write,
the operating system has two options: 1) allocate a new superpage and copy all the data
from the old superpage to the newly allocated superpage, and 2) break the virtual super-
page that received the write and copy only the 4KB page that was modiVed. While the
former approach enables low TLB misses, it results in signiVcant redundancy in memory.
On the other hand, while the latter approach reduces memory redundancy, it sacriVces the
TLB miss reduction beneVts of using a super page.

Extending overlays to superpages will allow the operating systems to track small mod-
iVcations to a superpage using an overlay. As a result, our approach can potentially get
both the TLB miss reduction beneVts of having a superpage mapping and the memory
redundancy beneVts by using the overlays to track modiVcations.

9.2.2 Using Overlays to Store and Operate on Metadata

In the page overlays mechanism described in Chapter 3, we used overlays to track a newer
version of data for each virtual page. Alternatively, each overlay can be used to store
metadata for the corresponding virtual page instead of a newer version of the data. Since
the hardware is aware of overlays, it can provide an eXcient abstraction to the software for
maintaining metadata for various applications, e.g., memory error checking, security. We
believe using overlays to maintain metadata can also enable new and eXcient computation
models, e.g., update-triggered computation.

9.2.3 EXciently Performing Reduction and Shift Operations in DRAM

In Chapters 5 and 6, we described mechanisms to perform bulk copy, initialization, and
bitwise logical operations completely inside DRAM. These set of operations will enable the
memory controller to perform some primitive level of bitwise computation completely in-
side DRAM. However, these mechanisms lack support for two operations that are required
by many applications: 1) data reduction, and 2) bit shifting.

First, RowClone and Buddy operate at a row-buUer granularity. As a result, to perform
any kind of reduction within the row buUer (e.g., bit counting, accumulation), the data
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must be read into the processor. Providing support for such operations in DRAM will
further reduce the amount of bandwidth consumed by many queries. While GS-DRAM
(Chapter 7) enables a simple form of reduction (i.e., selection), further research is required
to enable support for more complex reduction operations.

Second, many applications, such as encryption algorithms in cryptography, heavily
rely on bit shifting operations. Enabling support for bit shifting in DRAM can greatly
improve the performance of such algorithms. However, there are two main challenges in
enabling support for bit shifting in DRAM. First, we need to design a low-cost DRAM
substrate that can support moving data between multiple bitlines. Given the rigid design
of modern DRAM chips, this can be diXcult and tricky, especially when we need support
for multiple shifts. Second, the physical address space is heavily interleaved on the DRAM
hierarchy [120, 143]). As a result, bits that are adjacent in the physical address space may
not map to adjacent bitlines in DRAM, adding complexity to the data mapping mechanism.

9.2.4 Designing EXcient ECC Mechanisms for Buddy/GS-DRAM

Most server memory modules use error correction codes (ECC) to protect their data. While
RowClone works with such ECC schemes without any changes, Buddy (Chapter 6) and
GS-DRAM (Chapter 7) can break existing ECC mechanisms. Designing low-cost ECC
mechanisms that work with Buddy and GS-DRAMwill be critical to their adoption. While
Section 7.4 already describes a simple way of extending GS-DRAM to support ECC, such
a mechanism will work only with a simple SECDED ECC mechanism. Further research is
required to design mechanisms that will 1) enable GS-DRAM with stronger ECC schemes
and 2) provide low-cost ECC support for Buddy.

9.2.5 Extending In-Memory Computation to Non-Volatile Memories

Recently, many new non-volatile memory technologies (e.g., phase change memory [132,
177, 237, 254], STT MRAM [51, 121, 128, 251]) have emerged as a scalable alternative to
DRAM. In fact, Intel has recently announced a real product [99] based on a non-volatile
memory technology. These new technologies are expected to have better scalability prop-
erties than DRAM. In future systems, while we expect DRAM to still play some role, bulk
of the data may actually be stored in non-volatile memory. This raises a natural question:
can we extend our in-memory data movement and computation techniques to the new
non-volatile memory technologies? Answering this question requires a thorough under-
standing of these new technologies (i.e., how they store data at the lowest level, what is
the architecture used to package them, etc.).
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9.2.6 Extending DBI to Other Caches and Metadata

In Chapter 8, we described the Dirty-Block Index (DBI), which reorganizes the way dirty
blocks are tracked (i.e., the dirty bits are stored) to enable the cache to eXciently respond to
queries related to dirty blocks. In addition to the dirty bit, the on-chip cache stores several
other pieces of metadata, e.g., valid bit, coherence state, and ECC, for each cache block. In
existing caches, all this information is stored in the tag entry of the corresponding block.
As a result, a query for any metadata requires a full tag store lookup. Similar to the dirty
bits, these other pieces of metadata can potentially be organized to suit the queries for
each one, rather than organizing them the way the tag stores do it today.

9.3 Summary

In this dissertation, we highlighted the ineXciency problem that results from the diUer-
ent granularities at which diUerent memory resources (e.g., caches, DRAM) are managed
and accessed. We presented techniques that bridge this granularity mismatch for several
important memory operations: a new virtual memory framework that enables memory
capacity management at sub-page granularity (Page Overlays), techniques to use DRAM
to do more than just store data (RowClone, Buddy RAM, and Gather-Scatter DRAM), and
a simple hardware structure for more eXcient management of dirty blocks (Dirty-Block
Index). As we discussed in Section 9.2, these works open up many avenues for new re-
search that can result in techniques to enable even higher eXciency.



Other Works of the Author

During the course of my Ph.D., I had the opportunity to collaborate many of my fellow
graduate students. These projects were not only helpful in keeping my morale up, espe-
cially during the initial years of my Ph.D., but also helped me in learning about DRAM (an
important aspect of this dissertation). In this chapter, I would like to acknowledge these
projects and also my early works on caching, which kick started my Ph.D.

My interest in DRAMwas triggered mywork on subarray-level parallelism (SALP) [125]
in collaboration with Yoongu Kim. Since then, I have contributed to a number of projects
on low-latency DRAM architectures with Donghyuk Lee (Tiered-Latency DRAM [137]
and Adaptive-Latency DRAM [136]), and Hasan Hassan (Charge Cache [89]). These works
focus on improving DRAM performance by either increasing parallelism or lowering la-
tency through low-cost modiVcations to the DRAM interface and/or microarchitecture.

In collaboration with Gennady Pekhimenko, I have worked on designing techniques
to support data compression in a modern memory hierarchy. Two contributions have
resulted from this work: 1) Base-Delta Immediate Compression [173], an eUective data
compression algorithm for on-chip caches, and 2) Linearly Compressed Pages [172], a
low-cost framework for storing compressed data in main memory.

In collaboration with Lavanya Subramanian, I have worked on techniques to quantify
and mitigate slowdown in a multi-core system running multi-programmed workloads.
This line of work started with MISE [215], a mechanism to estimate slowdown induced by
contention for memory bandwidth. Later, we extended this with Application Slowdown
Model [216], mechanism that accounts for contention for on-chip cache capacity. Finally,
we propose the Blacklisting Memory Scheduler [213, 214], a simple memory scheduling
algorithm to achieve high performance and fairness with low complexity.

Finally, in the early years of my Ph.D., I have worked on techniques to improve on-
chip cache utilization using 1) the Evicted-Address Filter [194], an improved cache in-
sertion policy to address pollution and thrashing, and 2) ICP [196], a mechanism that
better integrates caching policy for prefetched blocks. We have released memsim [16], the
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simulator that we developed as part of the EAF work. The simulator code can be found
in github (github.com/CMU-SAFARI/memsim). memsim has since been used for many
works [172, 173, 190, 196].
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