
Modular Multiset Rewriting in Focused Linear Logic

Iliano Cervesato and Edmund S. L. Lam
July 2015

CMU-CS-15-117
CMU-CS-QTR-128

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Carnegie Mellon University, Qatar campus.
The author can be reached at iliano@cmu.edu or sllam@qatar.cmu.edu .

Abstract

Traditional multiset rewriting arises from a fragment of polarized linear logic, deriving its semantics from focused
proof search. In recent years, languages based on multiset rewriting have been used for ever more ambitious appli-
cations. As program size grows however, so does the overhead of team-based development and the need for reusing
components. Furthermore, there is a point where keeping a large flat collection of rules becomes impractical. In this
report, we propose a module system for a small logically-motivated rule-based language that subsumes traditional
multiset rewriting. The resulting modules are nothing more than rewrite rules of a specific form, and therefore are
themselves just formulas in logic. Yet, they provide some of the same features found in advanced module systems
such as that of Standard ML, in particular name space separation, support for abstract data types, parametrization by
values and by other modules (functors in ML). Additionally, our modules offer features that are essential for concurrent
programming, for example facilities of sharing private names. This work establishes a foundation for modularity in
rule-based languages and is directly applicable to many languages based on multiset rewriting, most forward-chaining
logic programming languages and many process algebras.

∗ This report was made possible by grant NPRP 09-667-1-100, Effective Programming for Large Distributed Ensembles, from
the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of
the authors.

mailto:iliano@cmu.edu
mailto:sllam@qatar.cmu.edu

Keywords: Multiset Rewriting, Logic Programming, Modularity, Focused Search.

Contents

1 Introduction 1

2 Core Language 3
2.1 Multiset Rewriting with Existentials and Nested Rules . 3

2.1.1 Syntax . 3
2.1.2 Typing . 4
2.1.3 Operational Semantics . 4
2.1.4 Relationship to Other Languages . 8

2.2 Logical Foundations . 9
2.3 Mild Higher-Order Quantification . 10

3 Adding Modularity 13
3.1 Name Space Separation . 13
3.2 Modes . 15
3.3 Abstract Data Types . 16
3.4 Parametric Modules – I . 17
3.5 Sharing Private Names . 19
3.6 Parametric Modules – II . 20

4 Multiset Rewriting with Modules 23

5 Related Work 24

6 Future Work and Conclusions 25

References 26

A Language Summary 29
A.1 Syntax . 29
A.2 Typing . 31
A.3 Typing with Safety Checks . 33
A.4 First-Order Encoding . 36
A.5 Typechecking Modular Programs . 40
A.6 Congruence . 46
A.7 Unfocused Rewriting Semantics . 47
A.8 Focused Rewriting Semantics . 48

B Logical Interpretation 50
B.1 Multiplicative-exponential Intuitionistic Linear Logic . 50
B.2 Focused MEILL . 52
B.3 Interpretation . 54

B.3.1 Translation . 54
B.3.2 Unfocused Transitions . 55
B.3.3 Focused Transitions . 56

i

List of Figures

2.1 Typing Rules for L1 . 5
A.1 Grammar of L1.5 . 30
A.2 Syntax of LM . 45
B.1 Multiplicative Exponential Intuitionistic Linear Logic — MEILL . 51
B.2 Focused Presentation of MEILL . 53

ii

1 Introduction

Rule-based programming, a model of computation by which rules modify a global state by concurrently rewriting
disjoint portions of it, is having a renaissance as a number of domains are finding a use for its declarative and concise
specifications, natural support for concurrency, and relative ease of reasoning. Indeed, special-purpose languages for
security [23], networking [18, 24], robot coordination [2], multicore programming [11], graph programming [12] and
mobile applications [21] have all recently been proposed as extensions of Datalog [16, 5], itself a rule-based database
language founded on forward-chaining proof search. A few general-purpose languages based on this paradigm have
also been proposed, for example the multiset rewriting language GAMMA [3] and more recently CHR [14]. The
asynchronous state transformation model embodied by this paradigm has also been shown to subsume various models
of concurrency [9], in particular multiset rewriting, Petri nets [30], process algebra [34], as well as the rare hybrid
models [36, 8, 13].

As languages gain popularity, the need for modularity increases, since the overhead associated with writing code
grows with program size. Yet, none of the languages just mentioned features a module system, even though some
of them, for example CHR [14] and CoMingle [21], are starting to be used to write sizable applications. Modularity
tames complexity. In traditional programming languages, it addresses the challenges of breaking a large program
into a hierarchy of components with clear interfaces, implementation independence, team-based development, depen-
dency management, code reuse, and separate compilation. These features alone justify extending popular rule-based
languages with a module system.

Programming-in-the-large in a rule-based programming languages brings about additional challenges not typically
found in imperative or functional languages. First, languages such as Datalog [16, 5], CHR [14] and GAMMA [3]
have (like Prolog) a flat name space which gives no protections against accidentally reusing a name. Moreover, each
rule in such a language adds to the definition of the names it contains rather than overriding them (as C does, for
example). Second, these languages (like both C and Prolog) tend to have an open scope, meaning that there is no
support for local definitions or private names. Finally, a rule in these languages can apply as soon as its prerequisites
enter the global state, as opposed to when a procedure is called in a conventional language. This, together with the
pitfalls of concurrency, makes writing correct code of even a moderate size difficult [7]. These challenges make
enriching rule-based languages with a powerful module system all the more urgent if we want them to be used for
large applications.

In this report, we develop a module system for a small rule-based programming language. This language, which we
call L1 , is a fragment of the formalism in [9] and subsumes many languages founded on multiset rewriting, forward-
chaining proof search and process algebra. Moreover, L1 is also a syntactic fragment of intuitionistic linear logic in
that state transitions map to derivable sequents. In fact, the transition rules for each operator of L1 correspond exactly
to the left sequent rules of this logic, and furthermore the notion of a whole-rule rewriting step originates in a focused
presentation of proof search for it [35]. We extend L1 with a mild form of second-order quantification [15] to make
our presentation more succinct (without adding expressiveness). We call this extension L1.5 .

We engineer a module system for L1.5 by observing that certain programming patterns capture characteristic
features of modularity such as hiding implementation details, providing functionalities to client code through a strictly
defined interface, parametricity and the controlled sharing of names. We package these patterns into a handful of
constructs that we provide to the programmer as a syntactic extension of L1.5 we call LM . The module system
of LM support many of the facilities for modular programming found in Standard ML [25, 29], still considered by
many an aspirational gold standard, in particular fine-grained name management and module parametricity (functors).
Furthermore, LM naturally supports idioms such as higher-order functors and recursive modules, which are not found
in [29]. Yet, because the modular constructs of LM are just programming patterns in L1.5 , programs in LM can be
faithfully compiled into L1.5 and thus into L1 . Moreover, since L1 subsumes the model of computation of a variety
of rule-based languages (including those founded on forward-chaining, multiset rewriting and process algebra), it
provides a blueprint for enriching these languages with a powerful, yet lightweight and declarative, module system.

With a few exceptions such as [26], research on modularity for rule-based languages has largely targeted backward-
chaining logic programming [4]. Popular open-source and commercial implementations of Prolog (e.g., SWI Prolog
and SICStus Prolog) do provide facilities for modular programming although not in a declarative fashion. The present

1

work is inspired by several attempts at understanding modularity in richer backward-chaining languages. In particu-
lar [27, 28] defines a module system for λProlog on the basis of this language’s support for embedded implication,
while [1] achieves a form of modularization via a mild form of second-order quantification [15].

The main contributions of this report are thus threefold:

1. We define a language, L1 , that resides in an operational sweet spot between the stricture of traditional rule-based
languages and the freedom of the rewriting reading of intuitionistic linear logic proposed in [9].

2. We engineer a powerful module system on top of this core language with support for name space separation,
parametricity, and controlled name sharing.

3. We show that this module infrastructure is little more than syntactic sugar over the core language L1 , and can
therefore be compiled away.

It is worth repeating that, because a large number of rule-based languages, including forward-chaining logic program-
ming languages such as Datalog and its offshoots, multiset rewriting, as well as many process algebras can be viewed
as linguistic fragments of our core language [9], this work defines a general mechanism for augmenting any of them
with a powerful yet declarative module system. In fact, this work provides a logical foundation of modularity in
rule-based languages in general.

The remainder of this report is organized as follows: in Section 2 we define the core multiset rewriting language
on which we will build our module system, we relate it to more traditional presentations of multiset rewriting, and we
discuss its logical underpinning. In Section 3, we introduce our modular infrastructure through a series of examples,
incrementally developing syntax for it. In Section 4, we collect the language just developed, discuss additional syn-
tactic checks, and explain how to compile it to the core language. We explore related work in Section 5 and outlines
future developments in Section 6. Appendix A summarizes the syntax and semantics of our language and Appendix B
lays down the details of its logical underpinning.

2

2 Core Language

This section develops a small, logically-motivated, rule-based language that will be used throughout the report. This
formalism, a conservative extension of traditional multiset rewriting, will act as the core language in which we write
(non-modular) programs. It is also the language our modular infrastructure will compile into. Section 2.1 defines this
language, Section 2.2 highlights its foundations in linear logic, and Section 2.3 enriches it with a mild extension that
will simplify writing programs in Section 3. As our development is incremental, we collect and organize the definition
of the overall language in Appendix A.

2.1 Multiset Rewriting with Existentials and Nested Rules

Our core formalism is a first-order multiset rewriting language extended with dynamic name generation and support for
nested rewrite rules. As such, it is a fragment of the logically-derived language of ω-multisets studied in [9]. Because
we are interested in writing actual programs, we consider a simply-typed variant. We will refer to the language
discussed in this section as L1 .

We now introduce the syntax of L1 in Section 2.1.1, give typing rules for it in Section 2.1.2, present its operational
semantics in Section 2.1.3, and situate it with respect to other formalisms in Section 2.1.4.

2.1.1 Syntax

The syntax of the language L1 is specified by the following grammar:

Types τ ::= ι | o | τ → τ | τ × τ | >
Terms t ::= x | f t | (t, t) | ()
Atoms A ::= p t

LHS l ::= · | A, l
Rules R ::= l(P | ∀x : ι. R

Programs P ::= · | P, P | A | !A | R | !R | ∃x : τ → ι. P

Our formalism is layered into a language of terms, used for describing entities of interest, and a language of formulas,
used to specify computations.

Terms, written t, are built from other terms by pairing and by applying function symbols, f . The starting point
is either the unit term () or a term variable, generically written x. In examples, we abbreviate f () to just f — they
correspond to the constants of a first-order term language. We classify terms by means of simple types, denoted τ .
We consider two base types, the type of terms themselves, denoted ι, and the type of atoms, denoted o. The type
constructors, products and function types, match the term constructors, with the type of () written >. While this
minimal typing infrastructure is sufficient for the formal development in this report, it can be considerably enriched
with additional type and term constructors — in fact, many of the examples in Section 4 will make use of the type nat
of the unary natural numbers and the associated constructors.

The language of formulas consists of programs, themselves built out of rules and left-hand sides and ultimately
atoms. An atomA is a predicate symbol p applied to a term. As with function symbols, we abbreviate p () in examples
as just p — this is a propositional atom.

Atoms are used to build rules, R, which are the universal closures of rewrite directives of the form l (P . The
left-hand side l is a multiset of atoms, where we write “·” for the empty multiset and “A, l” for the extension of l
with atom A. Considering the operator “,” commutative and associative with unit “·” will simplify our presentation,
although this is not strictly necessary from an operational perspective. The right-hand side P of a rewrite directive is a
multiset of either atoms A, reusable atoms !A, single-use rules R or reusable rules !R. A right-hand side can also have
the form ∃x : τ → ι. P , which, when executed, will have the effect of creating a new function symbol for x of type
τ → ι for use in P . As rules consist of a rewrite directive embedded within a layer of universal quantifiers, generically

∀x1 : τ1. . . .∀xn : τn. (l(P)

3

(with τi equal to ι for the time being), we will occasionally use the notation ∀~x : ~τ . (l → P) where ~x stands for
x1, . . . , xn and ~τ for τ1, . . . , τn.

A program is what we just referred to as a right-hand side. A program is therefore a collection of single-use and
reusable atoms and rules, and of existentially quantified programs.

The quantifiers ∀x : τ.R and ∃x : τ. P are the only binders in L1 (although richer languages could have more).
We adopt the standard definition of free and bound variables (the above operators bind the variable x with scope R
and P , respectively). A term or atom is ground if it does not contain free variables. A rule or program is closed if it
does not contain free variables. Bound variables can be renamed freely as long as they do not induce capture. Given a
syntactic entity O possibly containing a free variable x, we write [t/x]O for the capture-avoiding substitution of term
t for every free occurrence of x in O. As we perform a substitution, we will always be careful that the variable x and
the term t have the same type (which for the time being can only be ι). Given sequences ~x and ~t of variables and terms
of the same length, we denote the simultaneous substitution of every term ti in ~t for the corresponding variable xi in
~x in O as [~t/~x]O. We write θ for a generic substitution ~t/~x and Oθ for its application.

From the above grammar, it is apparent that traditional first-order multiset rewriting is the fragment of L1 where
the right-hand side of a rule is a multiset of atoms (thereby disallowing rules and existentials) and where a program
is a multiset of reusable rules. Maybe more surprisingly, this formalism also subsumes many process algebras: for
example the asynchronous π-calculus corresponds to the restriction where a left-hand side always consists of exactly
one atom (corresponding to a receive action) and where “,” is interpreted as parallel composition. This correspondence
is explored further in Section 2.1.4 and at much greater depth in [9].

2.1.2 Typing

Function and predicate symbols have types τ → ι and τ → o respectively. The symbols in use during execution
together with their type are collected into a signature, denoted Σ. A signature induces a notion of type validity for the
various entities of our language, which is captured by the typing judgments and rules in this section.

As we traverse universal quantifier, the typing rules collect the corresponding variables and their types into a
context, denoted Γ. (Existential variables are treated as fresh function symbols and recorded in the signature during
type checking.) Signatures and contexts are defined as follows:

Signatures Σ ::= · | Σ, f : τ → ι | Σ, p : τ → o
Contexts Γ ::= · | Γ, x : ι

Notice that context variables have type ι and therefore stand for terms.
The typing semantics of L1 is specified by the following judgments:

Terms Γ `Σ t : τ Term t has type τ in Γ and Σ
Atoms Γ `Σ A atom A is a well-typed atom in Γ and Σ
Left-hand sides Γ `Σ l lhs l is a well-typed left-hand side in Γ and Σ
Rules Γ `Σ R rule R is a well-typed rule in Γ and Σ
Programs Γ `Σ P prog P is a well-typed program in Γ and Σ

The fairly conventional rules defining these judgments are given in Figure 2.1.
Valid rewrite directives l (P are subject to the requirement that the free variables in P shall occur in l or

in the left-hand side of an enclosing rule. While this safety requirement is not enforced by the rules in Figure 2.1,
Appendix A.3 defines and extension that does enforce safety.

2.1.3 Operational Semantics

Computation in L1 takes the form of state transitions. A state is a triple Σ.〈Ω ; Π〉 consisting of a collection Ω of
ground atoms and closed rules we call the archive, of a closed program Π, and a signature Σ that accounts for all the
function and predicate symbols in Ω and Π. We emphasize that the program must be closed by writing it as Π rather

4

Terms:
Γ, x : τ `Σ x : τ

Γ `Σ,f :τ→ι t : τ

Γ `Σ,f :τ→ι f t : ι

Γ `Σ t1 : τ1 Γ `Σ t2 : τ2
Γ `Σ (t1, t2) : τ1 × τ2 Γ `Σ () : >

Atoms: Γ `Σ,p:τ→o t : τ

Γ `Σ,p:τ→o p t atom

LHS:
Γ `Σ · lhs

Γ `Σ A atom Γ `Σ l lhs

Γ `Σ A, l lhs

Rules: Γ `Σ l lhs Γ `Σ P prog

Γ `Σ l(P rule

Γ, x : ι `Σ R rule

Γ `Σ ∀x : ι. R rule

Programs:
Γ `Σ · prog

Γ `Σ P1 prog Γ `Σ P2 prog

Γ `Σ P1, P2 prog

Γ `Σ A atom

Γ `Σ A prog

Γ `Σ A atom

Γ `Σ !A prog

Γ `Σ R rule

Γ `Σ R prog

Γ `Σ R rule

Γ `Σ !R prog

Γ `Σ,x:τ→ι P prog

Γ `Σ ∃x : τ → ι. P prog

Figure 2.1: Typing Rules for L1

than P . Archives will be used to store reusable components of the program Π as the computation unfolds in Π itself.
We define archives next, and copy the definition of (closed) programs using this notation for emphasis:

Archives Ω ::= · | Ω, A | Ω, R
State programs Π ::= · | Π,Π | A | !A | R | !R | ∃x : τ → ι. P

State Σ.〈Ω ; Π〉

We will occasionally refer to Π itself as a state when the other components are of secondary concern. When talking
about states, it will be important that “,” be commutative and associative with unit “·”. This induces a notion of
equivalence among states — a congruence indeed when applied to embedded programs. This congruence is examined
in Appendix A.6. Note that all atoms A appearing in both the archive and the program component of a state must
be ground. Furthermore, since rules R are closed and have the form ∀~x : ~τ . (l (P) we will occasionally use the
notation ∀(l(P) with the understanding that the universal quantification is over all the free variables in l(P .

The above definition combines elements of the notion of “state” found in both multiset rewriting and process
algebras. In multiset rewriting, a state is traditionally understood a multiset of ground atoms that carry data (in the
form of terms) on which a separate notion of immutable rules perform computation through rewriting. In process
algebra, the “state” is a collection of processes that interact with each other as the computation takes place. In L1 , we
have both: the ground atoms in Ω and Π act as data while non-atomic state items in them give rise to computation,
like rules in multiset rewriting or processes in process algebra.

We extend the typing infrastructure discussed in the last section with the judgments

Archives `Σ Ω archive Archive Ω is well typed in Σ
States ` Σ.〈Ω ; Π〉 state State Σ.〈Ω ; Π〉 is well typed

5

to describe typing over archives and valid states. A state Σ.〈Ω ; Π〉 is valid if both the archive Ω and the program Π
are well typed in the empty context and Σ, as captured by the following rules:

`Σ · archive
`Σ Ω archive · `Σ A atom

`Σ Ω, A archive

`Σ Ω archive · `Σ R rule

`Σ Ω, R archive

`Σ Ω archive · `Σ Π prog

` Σ.〈Ω ; Π〉 state

We will give two characterizations of the rewriting semantics of L1 . The first interprets each operator in L1 as
an independent state transformation directive. This makes it very close to traditional presentations of linear logic
(see Section 2.2) but the resulting semantics is overly non-deterministic. The second presentation is instead focused
on applying rules fully, and does so by interpreting them as meta-transformations, with the effect of giving a strong
operational flavor to the language and an effective strategy for implementing an interpreter for it. This second charac-
terization accounts for the standard semantics found in many languages based on multiset rewriting, forward chaining
and process transformation. It also has its roots in linear logic, but this time in its focused presentation [22]. These
two characterizations are not equivalent as the latter leads to fewer reachable states. It is however preferable as these
states match the intuition of what is traditionally meant by applying a rewrite rule, leaving out states littered with
half-applied rules. We will examine how this relates to the corresponding presentations of linear logic in Section 2.2.

Unfocused Rewriting Semantics The unfocused evaluation semantics makes use of a step judgment of the form

Σ.〈Ω ; Π〉 7→ Σ′.〈Ω′ ; Π′〉 State Σ.〈Ω ; Π〉 transitions to state Σ′.〈Ω ; Π′〉 in one step

In this semantics, each operator in the language is understood as a directive to carry out one step of computation
in a given state. Therefore, each operator yields one transition rule, given in the following table:

Σ.〈Ω, l1 ; Π, l2, (l1, l2)(P 〉 7→ Σ.〈Ω, l1 ; Π, P 〉
Σ.〈Ω ; Π,∀x : ι. R〉 7→ Σ.〈Ω ; Π, [t/x]R〉 if · `Σ t : ι

Σ.〈Ω ; Π, !A〉 7→ Σ.〈Ω, A ; Π〉
Σ.〈Ω ; Π, !R〉 7→ Σ.〈Ω, R ; Π〉

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 7→ (Σ, x : τ → ι).〈Ω ; Π, P 〉
Σ.〈Ω, R ; Π〉 7→ Σ.〈Ω, R ; Π, R〉

In words,(is a rewrite directive which has the effect of identifying its left-hand side atoms in the surrounding state
and replacing them with the program in its right-hand side. It retrieves reusable atoms from the archive and single-use
atoms from the program component of the state. Notice that the atom in the program side are consumed but atoms
in the archive side are retained and can therefore be used over and over. The operator ∀ is an instantiation directive:
it picks a term of the appropriate type and replaces the bound variable with it. Instead, ! is to all effects a replication
directive: it installs the entity it prefixes in the archive, enabling repeated accesses to atoms by the rewrite directive and
to rules in the last transition, which copies a rule to the program side while retaining the master copy in the archive.
Finally, ∃ is a name generation directive which installs a new symbol of the appropriate type in the state’s signature.

Evaluation steps transform valid states into valid states, a property captured by the following lemma. In particular,
it maintains the invariant that a state is closed.

Lemma 1 (Type preservation) If ` Σ.〈Ω ; Π〉 state and Σ.〈Ω ; Π〉 7→ Σ′.〈Ω′ ; Π′〉, then ` Σ′.〈Ω′ ; Π′〉 state .

Proof The proof proceeds by cases on the step rule applied and then by inversion on the typing derivation. It relies
on state equivalence and the corresponding equivalence it induces over typing derivation. �

We write Σ.〈Ω ; Π〉 7→∗ Σ′.〈Ω′ ; Π′〉 for the reflexive and transitive closure of the above judgment, meaning that
state Σ.〈Ω ; Π〉 transitions to Σ′.〈Ω′ ; Π′〉 in zero or more steps. Naturally, type preservation holds for this iterated
form as well.

6

The rules of this semantics are pleasantly simple as they tease out the specific behavior of each individual language
construct. They are also highly non-deterministic as any of them is applicable whenever the corresponding operator
appears as the top-level constructor of a state element. These transitions stem from the logic interpretation of our
operators, and can in fact be read off directly from the rules of linear logic [9] — see Appendix B.3. This further
supports the orthogonality of our constructs.

Focused Rewriting Semantics By considering each operator in isolation when applying a step, the above semantics
falls short of the expected behavior of a rewriting language. For example, consider the state

(p : ι→ o, q : ι→ o, a : ι, b : ι︸ ︷︷ ︸
Σ

).〈· ; p a, ∀x : ι. p x(q x︸ ︷︷ ︸
Π

〉

From it, the one transition sequence of interest is

Π 7→ p a, (p a(q a) 7→ q a

where we have omitted the signature Σ and the empty archive (which do not change) for clarity. However, nothing
prevents picking the “wrong” instance of x and taking the step

Π 7→ p a, (p b(q b)

from where we cannot proceed further. This second possibility is unsatisfactory as it does not apply the rule fully.
The focused operational semantics makes sure that rules are either fully applied, or not applied at all. It corresponds

to the standard operational semantics of most languages based on multiset rewriting, forward chaining and process
transformation. It also leverages the observation that some of the state transformations associated with individual
operators have the potential to block other currently available transformations, while others do not. In particular,
turning a top-level existential variable into a new name or moving a reusable entity to the archive never preempt other
available transitions.

A closed program without top-level existential quantifiers or reusable items is called stable. We write Π for a state
program Π that is stable. A stable program is therefore defined as follows:

Stable state program Π ::= · empty state
| Π, A atom
| Π, R rule

A stable state has the form Σ.〈Ω ; Π〉.
The focused operational semantics is expressed by the following two judgments:

Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉 Non-stable state Σ.〈Ω ; Π〉 transitions to state Σ′.〈Ω′ ; Π′〉 in one step
Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉 Stable state Σ.〈Ω ; Π〉 transitions to state Σ′.〈Ω′ ; Π′〉 in one step

The first judgment is realized by selecting an existential or reusable program component in Π and processing it by
eliminating the quantifier and creating a new symbol and by moving its immediate subformula to the archive, respec-
tively. By iterating this step, we will reach a stable state in finite time. At this point, the second judgment is applied.
It selects a single-use or a reusable rule from the program or archive part of the state and fully applies it. To fully
apply a rule ∀(l (P), the surrounding state must contain an instance lθ of the left-hand side l. Observe that some
left-hand side atoms are retrieved from the archive and others from the program component of the state. The resulting
state replaces it with the corresponding instance Pθ of the right-hand side P . This state may not be stable as Pθ could
contain existentially quantified and reusable components. The following transitions formalize this insight.

Σ.〈Ω ; Π, !A〉 Z⇒ Σ.〈Ω, A ; Π〉
Σ.〈Ω ; Π, !R〉 Z⇒ Σ.〈Ω, R ; Π〉

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 Z⇒ (Σ, x : τ → ι).〈Ω ; Π, P 〉
Σ.〈Ω, l1θ ; Π, l2θ,∀(l1, l2 (P)〉 Z⇒ Σ.〈Ω, l1θ ; Π, Pθ〉
Σ.〈Ω, l1θ,∀(l1, l2 (P)︸ ︷︷ ︸

Ω∗

; Π, l2θ〉 Z⇒ Σ.〈Ω∗ ; Π, Pθ〉

7

As usual, we write Z⇒∗ and Z⇒∗ for the reflexive and transitive closure of these relations.
Type preservation holds for the base relations and their transitive closure. Furthermore, any transition step achiev-

able in the focused semantics is also achievable in the unfocused semantics, although possibly in more than one step
in the case of rules.

Lemma 2

1. If Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉, then Σ.〈Ω ; Π〉 7→ Σ′.〈Ω′ ; Π′〉.

2. If Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉, then Σ.〈Ω ; Π〉 7→∗ Σ′.〈Ω′ ; Π′〉.

Proof The first part simply uses the isomorphic rule of the unfocused semantics. The second proceeds by induction
on the structure of the selected rule. �

The reverse does not hold, as we saw earlier.
Because rules R are applicable only in stable states, it is typical to follow up such an application with zero or more

transitions of the first kind to reach the next stable state. We writeV for this relation: Σ.〈Ω ; Π〉 V Σ′.〈Ω′ ; Π′〉 is
defined as Σ.〈Ω ; Π〉 Z⇒ Σ.〈Ω1 ; Π1〉 Z⇒∗ Σ′.〈Ω′ ; Π′〉.

2.1.4 Relationship to Other Languages

The language L1 is a syntactic fragment of the formalism of ω-multisets examined in [9] as a logical reconstruction
of multiset rewriting and some forms of process algebra. It instantiates ω-multisets by fixing a language of terms
as discussed earlier, while [9] kept it open-ended (requiring only predicativity). The main restriction concerns the
left-hand side of rules, which in L1 is a multiset of atoms, while in an ω-multiset can be any formula in the language.
This restriction makes implementing rule application in L1 much easier than in the general language, is in line with
all forward logic programming languages we are aware of, and is much more directly supported by a focusing view of
proof search (see Section 2.2). Therefore, L1 occupies a sweet spot between the freewheeling generality of ω-multiset
rewriting and the implementation simplicity of many rule-based languages. Differently from ω-multisets, which are
freely generated from the available connectives, L1 limits the usage of the ! operator to just rules and right-hand
side atoms. These restrictions avoid expressions that are of little use in programming practice (for example doubly
reusable rules !!R or left-hand side atoms of the form !A). We also left out the choice operator of ω-multisets (written
&) because we did not need it in any of the examples in this report. Adding it back is straightforward.

The languageL1 subsumes various rule-based formalisms founded on multiset rewriting, forward proof search and
process algebra as a syntactic fragment. First-order multiset rewriting, as found for example in CHR [14], relies on
rules whose right-hand side is a multiset of atoms and that can be used arbitrarily many times, and therefore correspond
to L1 rules of the form !∀~x. (l1 (l2). Languages such as MSR [6] additionally permit the creation of new symbols
in the right-hand side of a rule, which is supported by L1 rules of the form !∀~x. (l1 (∃~y. l2). Datalog clauses [16, 5]
are written in L1 as !∀~x. (l(!A) while their facts are reusable program atoms as this language monotonically grows
the set of known facts during computation.

As shown in [9], ω-multiset rewriting, and thereforeL1 , also subsumes many formalisms based on process algebra.
Key to doing so is the possibility to nest rules (thereby directly supporting the ability to sequentialize actions), a
facility to create new symbols (which matches channel restriction), and the fact that multiset union is commutative
and associative with unit the empty multiset (thereby accounting for the analogous properties of parallel composition
and the inert process). The asynchronous π-calculus [34] is the fragment of L1 where rule left-hand sides consist of
exactly one atom (corresponding to a receive action — send actions correspond to atoms on the right-hand side of a
rule). Its synchronous variant can be simulated in L1 through a shallow encoding [8].

Our language, like ω-multiset rewriting itself, contains fragments that correspond to both the state transition ap-
proach to specifying concurrent computations (as multiset rewriting and Petri nets for example) and specifications in
the process-algebraic style. It in fact supports hybrid specifications as well, as found in the Join calculus [13] and in
CLF [8, 36].

8

2.2 Logical Foundations

The language L1 , like ω-multisets [9], corresponds exactly to a fragment of intuitionistic linear logic [17]. In fact,
not only can we recognize the constructs of our language among the operators of this logic, but L1 ’s rewriting seman-
tics stem directly from its proof theory. In this section, we outline this correspondence, with a much more detailed
discussion relegated to Appendix B.

The operators “,” and “·”,(, !, ∀ and ∃ ofL1 correspond to the logical constructs⊗, 1,(, !, ∀ and ∃, respectively,
of multiplicative-exponential intuitionistic linear logic (MEILL). Because the left-hand side of a rule in L1 consists
solely of atoms and only rules and atoms are reusable, the actual MEILL formulas our language maps to are similarly
restricted — the exact correspondence is found in Appendix B.3. By comparison, ω-multiset rewriting also includes
additive conjunction, written &, and allows freely combining these operators, which matches exactly the corresponding
logic.

The transitions of the unfocused rewriting semantics ofL1 can be read off directly from the left sequent rules of the
above connectives, for an appropriate presentation of the exponential !. We write the derivability judgment of MEILL
as Γ; ∆ −→Σ ϕ, where ϕ is a formula, the linear context ∆ is a multiset of formulas that can be used exactly once in
a proof of ϕ, while the formulas in the persistent context Γ can be used arbitrarily many times, and Σ is a signature
defined as in L1 — the rules for this judgment are given in Appendix B.1. Consider for example the transition for an
existential L1 program and the left sequent rule ∃L for the existential quantifier:

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 7→ (Σ, x : τ → ι).〈Ω ; Π, P 〉 !
Γ; ∆, ϕ −→Σ,x:τ→ι ψ

Γ; ∆,∃x : τ → ι. ϕ −→Σ ψ
∃L

The antecedent Ω ; Π,∃x : τ → ι. P of the transition corresponds to the contexts Γ; ∆,∃x : τ → ι. ϕ of the rule
conclusion, while its consequent Ω ; (Π, P) matches the contexts of the premise Γ; (∆, ϕ) and the signatures have
been updated in the same way. A similar correspondence applies in all cases, once we account for shared structural
properties of states and sequents. In particular, multiplicative conjunction ⊗ and its unit 1 are the materialization
of the formation operators for the linear context of a sequent, context union and the empty context. This means
that linear contexts can be interpreted as the multiplicative conjunction of their formulas. The interplay between
persistent formulas !ϕ and the persistent context Γ matches the rules for reusable entities in L1 [9]. Altogether, this
correspondence is captured by the following property, proved in [9] and discussed further in Appendix B.3, where
dΩe and dΠe are MEILL contexts corresponding to archive Ω and state program Π, and the formula ∃Σ′. p!Ω′; Π′q
is obtained by taking the multiplicative conjunction of the encodings of the entities in Π′ and in Ω′ (the latter are
embedded within a !) and then prefixing the result with an existential quantification for each declaration in the signature
Σ′.

Theorem 3 (Soundness) If ` Σ.〈Ω ; Π〉 state and Σ.〈Ω ; Π〉 7→ Σ′.〈Ω′ ; Π′〉, then dΩe; dΠe −→Σ ∃Σ′. p!Ω′; Π′q.

This correspondence between the left rules of linear logic and rewriting directives was observed in [9] for the larger
formalism of ω-multiset rewriting.

The transitions of the focused rewriting semantics ofL1 originate from the focused presentation of linear logic [22],
and specifically of MEILL. Focusing is a proof search strategy that alternates two phases: an inversion phase where
invertible sequent rules are applied exhaustively and a chaining phase where it selects a formula (the focus) and de-
composes it maximally using non-invertible rules. Focusing is complete for many logics of interest, in particular for
traditional intuitionistic logic [35] and for linear logic [22], and specifically for MEILL — see Appendix B.2 for a
detailed definition. Transitions of the form Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉 correspond to invertible rules and are handled as
in the unfocused case. Instead, transitions of the form Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉 correspond to the selection of a focus
formula and the consequent chaining phase. Consider for example the transition for a single-use rule ∀(l1, l2 (P).
The derivation snippet below selects a context formula ∀(ϕl1 ⊗ϕl2 (ϕP) of the corresponding form from a sequent
where no invertible rule is applicable (generically written Γ; ∆ =⇒Σ ψ), puts it into focus (indicated as a red box),
and then applies non-invertible rules to it exhaustively. In the transcription of L1 into MEILL, the formulas ϕliθ are
conjunctions of atomic formulas matching liθ, which allows continuing the chaining phase in the left premise of rule
(L into a complete derivation when Γ1 and ∆2 consist exactly of the atoms in l1 and l2, respectively. The transla-
tion ϕP of the program P re-enables an invertible rule and therefore the derivation loses focus in the rightmost open

9

premise.

Σ.〈Ω, l1θ ; Π, l2θ,∀(l1, l2 (P)〉 Z⇒ Σ.〈Ω, l1θ ; Π, Pθ〉 !

· · · Γ,Γ1θ;Aθ =⇒Σ Aθ
atmL

· · · Γ,∆′1θ,Aθ; · =⇒Σ Aθ
atm!L

· · ·
· · ·

Γ,Γ1θ; ∆2θ =⇒Σ ϕl1θ ⊗ ϕl2θ
Γ,Γ1θ; ∆, Pθ =⇒Σ ψ

Γ,Γ1θ; ∆, Pθ =⇒Σ ψ
blurL

Γ,Γ1θ; ∆,∆2θ, (ϕl1 ⊗ ϕl2 (ϕP)θ =⇒Σ ψ
(L

Γ,Γ1θ; ∆,∆2θ, ∀(ϕl1 ⊗ ϕl2 (ϕP) =⇒Σ ψ
∀L(repeated)

Γ,Γ1θ; ∆,∆2θ,∀(ϕl1 ⊗ ϕl2 (ϕP) =⇒Σ ψ
focusL

Reusable L1 rules !∀(l(P) are treated similarly. The correspondence is formalized in the following theorem and
further discussed in Appendix B.3.

Theorem 4 (Soundness) Assume that ` Σ.〈Ω ; Π〉 state .

1. If Π is stable (i.e., Π has the form Π) and Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉, then dΩe; dΠe =⇒Σ ∃Σ′. p!Ω′; Π′q.

2. If Π is not stable and Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉, then dΩe; dΠe =⇒Σ ∃Σ′. p!Ω′; Π′q.

Although the connection between forward chaining languages and focused logic has been pointed out before, a precise
account for a language as rich as L1 is new.

In focused logics, the formula patterns involved in a chaining phase can be viewed as synthetic connectives and
are characterized by well-behaved derived rules. The encoding of a generic L1 rule ∀(l (P) corresponds to such
synthetic connectives, and its transitions map exactly the derived left sequent rule in the focused presentation of
MEILL.

2.3 Mild Higher-Order Quantification

As we prepare to modularize L1 programs, it is convenient to give this language a minor second-order flavor. Doing
so significantly improves code readability with only cosmetic changes to the underlying formalism and its logical
interpretation. In fact, programs in this extended language, that we callL1.5 , are readily transformed intoL1 programs.
In this section, we highlight the extension of L1 into L1.5 .

Second-order variables, written X in L1.5 , allow us to define atoms of the form X t that are parametric in their
predicate. However, we permit these variables to be replaced only with predicate names, which are now legal in-
gredients in terms. The second-order universal quantifier ∀X carries out this substitution by drawing an appropriate
predicate name from the signature. The second-order existential quantifier ∃X extends the signature with new pred-
icate names. This use of second-order entities is closely related to Gabbay and Mathijssen’s “one-and-a-halfth-order
logic” [15]. It comes short of the expressiveness (and complexity) of a traditional second-order infrastructure (which
in our case would permit instantiating a variable X with a parametric program rather than just a predicate name). In
fact, the extended language is no more expressive than L1 . We rely on it as it will simplify our presentation.

The resulting mildly second-order language, L1.5 , extends the grammar of L1 with the following productions:

Terms t ::= . . . | X | p
Atoms A ::= . . . | X t
Rules R ::= . . . | ∀X : τ → o.R

Programs P ::= . . . | ∃X : τ → o. P

We upgrade the typing infrastructure of L1 by allowing second-order variables in the context Γ of the typing
judgment, which is extended as follows:

Γ ::= . . . | Γ, X : τ → o

10

The typing rules for each of the new syntactic forms are given next:

· · ·
Γ, X : τ → o `Σ X : τ → o Γ `Σ,p:τ→o p : τ → o

· · ·
Γ, X : τ → o `Σ t : τ

Γ, X : τ → o `Σ X t atom

· · ·
Γ, X : τ → o `Σ R rule

Γ `Σ ∀X : τ → o.R rule

· · ·
Γ `Σ,X:τ→o P prog

Γ `Σ ∃X : τ → o. P prog

Just like for the first-order case, traversing a universal quantifier adds the bound variable to the context while type-
checking an existential quantifier adds it to the signature. As in L1 , we treat existential variables as if they were
names.

The notions of free and bound variables, ground atoms, closed rules and programs, and substitution carry over
from the first-order case, and so does the safety requirement that a free universal variable in a program position must
appear in an earlier left-hand side. Second-order universal variables are subject to an additional requirement: if a
parametric atom X t with X universally quantified occurs in the left-hand side of a rule, then X must occur in a term
position either in the same left-hand side or in an outer left-hand side. This additional constraint is motivated by the
need to avoid rules such as

!∀X : τ → o.∀x : τ.X x(·
which would blindly delete any atom p t for all p of type τ → o. Instead, we want a rule to be applicable only to
atoms it “knows” something about, by requiring that their predicate name has been passed to it in a “known” atom.
The following rule is instead acceptable:

!∀X : τ → o.∀x : τ. delete all(X), X x(·

as only the predicate names marked to be deleted can trigger this rule. Appendix A.3 presents a variant of the type
system of L1.5 that checks this safety constraint on second-order variables as well as our original safety constraint.

The rewriting semantics of L1.5 extends that of L1 slightly by processing the second-order quantifiers. The notion
of state remains unchanged. The unfocused rewriting semantics is extended with the following two transitions:

Σ.〈Ω ; Π,∀X : τ → o.R〉 7→ Σ.〈Ω ; Π, [p/X]R〉 if p : τ → o in Σ

Σ.〈Ω ; Π,∃X : τ → o. P 〉 7→ (Σ, X : τ → o).〈Ω ; Π, P 〉

Observe that the first rule replaces the second-order order variable X with a predicate symbol from the signature.
The focused transition semantics undergoes a similar extension. It adds a rule to process second-order existential

programs in a non-stable state

Σ.〈Ω ; Π,∃X : τ → o. P 〉 Z⇒ (Σ, X : τ → o).〈Ω ; Π, P 〉

while second-order universal quantifiers are handled in the transitions for rules in the archive and program portions of
the state. These rules stay therefore as in Section 2.1.3.

The properties seen for L1 , in particular type preservation, also hold for L1.5 .

The second-order artifacts of L1.5 are not essential for our development, although they will simplify the discussion
and make it more intuitive. In fact, any program in L1.5 can be transformed into a program in L1 that performs the
same computation. We will now give a (slightly simplified) intuition of the workings of this transformation — a formal
definition can be found in Appendix A.4.

Let P be a program inL1.5 . For every type τ such that the second-order quantifications ∀X : τ → o or ∃X : τ → o
appears in P , define the new predicate symbol pτ : ι× τ → o and collect these predicates into a signature Σ.5. Next,
replace second-order quantifications and variable uses as follows:

11

• ∀X : τ → o. · · ·X t · · · (X) · · · becomes ∀xX : ι. · · · pτ (xX , t) · · · (xX) · · ·

• ∃X : τ → o. · · ·X t · · · (X) · · · becomes ∃xX : ι→ >. · · · pτ (xX (), t) · · · (xX ()) · · ·

In both cases, all uses of the variableX as a predicate name are replaced by pX as shown. Moreover, all occurrences of
X in a term are replaced with the first-order variable xX . Observe that universal and existential second-order variables
are treated differently, due to the distinct typing patterns that universal and existential first-order variables have. For
any predicate name p appearing in signature Σ of a state Σ.〈Ω ; Π〉 as p : τ → o, we define a new constant xp : > → ι
in Σ.5, replace every occurrence of p in a term position in Π with xp () and very atom p t with pτ (xp (), t).

This encoding transforms valid states in L1.5 into valid states in L1 and maps transition steps in L1.5 to transition
steps in L1 . Appendix A.4 spells out the details of the transformation and a formal account of these results.

12

3 Adding Modularity

In this section, we synthesize a module system for L1.5 by examining a number of examples. In each case, we will see
how to write rules in a way as to emulate some characteristic or other of a module system, and then develop syntax
to abstract the resulting linguistic pattern. For readability, types will be grayed out throughout this section. In most
cases, they can indeed be automatically inferred from the way the variables they annotate are used.

3.1 Name Space Separation

Our first goal will be to allow rules, possibly executing concurrently, to make use of the functionalities provided by
a program component without interfering with each other via this component. Those rules will be the client code
and the program component will be the module. Key to avoiding interferences will be to give access to the module
functionalities to each client through a different name.

As our first case study, consider the problem of adding two numbers written in unary — we write z and s(n) for
zero and the successor of n, respectively, and refer to the type of such numerals as nat. Addition is then completely
defined by the single rule

!∀x: nat.∀y: nat. add(s(x), y)(add(x, s(y))

In fact, for any concrete values m and n, inserting the atom add(m,n) in the state triggers a sequence of applications
of this rule that will end in an atom of the form add(z, r), with r the result of adding m and n.1 The way this adding
functionality will typically be used is by having one rule generate the request in its right-hand side and another retrieve
the result in its left-hand side, as in the following code snippet:

∀m: nat.∀n: nat. · · · (· · · , add(n,m)

∀r: nat. add(z, r), · · · (· · ·

Another common usage pattern, more in the flavor of process algebraic specifications, is to embed the second rule in
the right-hand side of the first:

∀m: nat.∀n: nat. · · · (
[
· · · , add(n,m),
∀r: nat. add(z, r), · · · (· · ·

]

While this code achieves the desired effect in this case, it is incorrect whenever there is the possibility of two clients
performing an addition at the same time. In fact, any concurrent execution making use of add will cause an interference
as the clients have no way to sort out which result (r in add(z, r)) is who’s.

One way to obviate to this problem is to include an additional argument in the definition of add to disambiguate
calls. The client code generates a unique identifier using existential quantification and retrieves the result that matches
this identifier. The updated code for add and for the caller is as follows:

!∀x: nat.∀y: nat.∀id : ι. add(id , s(x), y) (add(id , x, s(y))

∀m: nat.∀n: nat. · · · (∃id : ι.

[
· · · , add(id , n,m),
∀r: nat. add(id , z, r), · · · (· · ·

]

While this intervention solves the above concern, it does not prevent a programmer from misusing the predicate add,
either accidentally or intentionally. In fact, she can intercept results (or partial results) with rules of the form

∀x: ι. ∀m: nat.∀n: nat. add(x,m, n)(add(x, z, s(z))

1This is not the only way to implement unary addition using rewrite rules and in fact not the best one. It is good for illustration however.

13

This returns the (typically incorrect) result s(z) to any legitimate caller of this adder. The problems stems from two
facts: first the predicate symbol used internally in the implementation to perform the addition is publicly known, the
second is that terms, even when existentially generated, are not private as they can be matched as just shown.

Both issues can be solved by using a second-order existential quantifier to generate the predicate used to carry out
the addition. The following code snippet fully address the possibility of interferences. Observe that it does so without
polluting the definition of addition with a third argument.

∀m: nat.∀n: nat. · · · (∃add : nat× nat→ o. !∀x: nat.∀y: nat. add(s(x), y) (add(x, s(y)),
· · · , add(n,m),

∀r: nat. add(z, r), · · · (· · ·


The safety constraint on second-order variables prevents our rogue programmer from intercepting the freshly generated
predicate out of thin air. In fact, the rule

∀X: nat× nat→ o.∀m: nat.∀n: nat. X(m,n)(X(z, s(z))

is invalid as X does not appear in a term position in the left-hand side.
While the above approach eliminates the possibility of interferences, it forces every rule that relies on addition

to repeat the same piece of code (the inner reusable rule for addition above). Such code duplication goes against the
spirit of modularity as it prevents code reuse and reduces maintainability. For definitions larger than this minimal case
study, it also clutters the client code thereby diminishing readability.

One approach is to separate out the common code for addition and splice it back just before execution. This is
essentially the solution advocated in [28, 27] as “elaboration”. Achieving it within the model of computation of L1.5

would require significant, and probably ad-hoc, extensions.
A better approach is to provide a public name for the addition functionality, for example through the predicate

name adder, but pass to it the name of the private predicate used by the client code (add). Each client can then
generate a fresh name for it. The definition of addition, triggered by a call to adder, can then be factored out from the
client code. The resulting rules are as follows:

!∀add : nat× nat→ o. adder(add) (
[

!∀x: nat.∀y: nat. add(s(x), y) (add(x, s(y))
]

∀m: nat.∀n: nat. · · · (∃add : nat× nat→ o.

 adder(add),
· · · , add(n,m),
∀r: nat. add(z, r), · · · (· · ·


Observe that, as before, the client generates a fresh name for its private adding predicate (∃add : nat× nat→ o.). It
now passes it to adder, which has the effect of instantiating the rule for addition with the private name add . The client
can then retrieve the result by putting add(z, r) in the left-hand side of an embedded rule like before.

This idea will be the cornerstone of our approach to adding modules to L1.5 . Because it requires that the module
and client code abide by a rather strict format, it will be convenient to provide the programmer with derived syntax.
We will write the exported module (the first line in our last example) as follows:

module adder
provide add : nat× nat→ o

!∀x: nat.∀y: nat. add(s(x), y) (add(x, s(y))
end

Here, the public name adder is used as the name of the module. The names of the exported operations are introduced
by the keyword provide. By isolating the public predicate name adder in a special position (after the keyword

14

module), we can statically preempt one newly-introduced problem with the above definition: that a rogue client
learn the private name via the atom adder(X) in the left-hand side of a rule. We shall disallow predicates used as
module names (here adder) from appearing in the left-hand side of other rules.

We also provide derived syntax for the client code to avoid the tedium of creating a fresh predicate name and using
it properly. The second rule of our example is re-expressed as follows:

∀m: nat.∀n: nat. · · · (A as adder.

[
· · · , A.add(n,m),
∀r: nat. A.add(z, r), · · · (· · ·

]

Here, A is a reference name introduced by the line “A as adder. ”. This syntactic artifact binds A in the right-hand
side of the rule. The name A allows constructing compound predicate names, here A.add , which allow using the
exact same names exported by a module in its provide stanza. Uses of compound names and the as construct are
elaborated into our original code, as we will see in Section 4.

The provide stanza defines the functionalities exported by a module. We can collect these declarations and give
them a name in an interface for the module, which corresponds to the notion of signature in Standard ML. Our ongoing
example leads to the following interface declaration:

interface ADDER
add : nat× nat→ o

end

This gives us a way to provide a name for this interface, here ADDER. The module adder can then be explicitly
annotated with the name of its interface:

module adder:ADDER
provide add : nat× nat→ o

!∀m: nat.∀n: nat. add(s(m), n) (add(m, s(n))
end

As in SML, we could use such annotations to restrict or even replace the provide stanza in the module definition. We
will not explore this possibility further. Interfaces will come handy later. Until then, we will not bother with them.

To summarize what we have achieved so far, we have devised a template to support basic modularity in L1.5 and
we have developed some derived syntax for it. The same module can be used by multiple clients at the same time
without the danger of (intentional or accidental) interferences. Multiple implementations for the same interface are
supported, although our example is still too simple to demonstrate this.

3.2 Modes

In the face of it, our adder module is a bit strange as it requires client code to use an atom of the form add(z, r) to
retrieve the result r of an addition. A better approach is to split add into a predicate add req for issuing an addition
request and a predicate add res for retrieving the result. We can write this directly in L1.5 as the follows:

15

!∀add req : nat× nat→ o.
∀add res: nat→ o.

adder′(add req , add res) ([
!∀x: nat.∀y: nat. add req(s(x), y) (add req(x, s(y))

∀z: nat. add req(z, z) (add res(z)

]
∀m: nat.∀n: nat. · · · (

∃add req : nat× nat→ o.
∃add res: nat→ o.

 adder′(add req , add res),
· · · , add req(n,m),
∀r: nat. add res(r), · · · (· · ·


Now, uses of add req in the left-hand side of client rules would intercept requests, while occurrences of add res on
their right-hand side could inject forged results. We prevent such misuses by augmenting the syntax of modules (and
interfaces) with modes that describe how exported predicates are to be used. The mode in in the provide stanza is
used to check that a (compound) predicate is used only on the left-hand side of a rule, while the mode out forces
usage on the right-hand side only. A declaration without such a marker, for example add in the last section, can be
used freely. Our new adder module is written as follows in the concrete syntax:

module adder′

provide out add req : nat× nat→ o in add res : nat→ o

!∀x: nat.∀y: nat. add req(s(x), y) (add req(x, s(y))
∀z: nat. add req(z, z) (add res(z)

end

and the client code assumes the following concrete form:

∀m: nat.∀n: nat. · · · (A as adder′.

[
· · · , A.add req(n,m),
∀r: nat. A.add res(r), · · · (· · ·

]

3.3 Abstract Data Types

The infrastructure we developed so far already allows us to write modules that implement abstract data types. For
example, the following module (in concrete syntax) implements a simple dictionary with three operations: lookup
(split into a request and a result predicate name), insert and delete. Keys are natural numbers (of type nat) and values
are terms (of type ι).

module dictionary
provide out lookup req : nat→ o in lookup res : nat× ι→ o

out insert : nat× ι→ o
out delete : nat→ o

local data : nat× ι→ o

!∀k: nat.∀v: ι. insert(k, v) (data(k, v)

!∀k: nat.∀v: ι. lookup req(k), data(k, v) (lookup res(k, v), data(k, v)

!∀k: nat.∀v: ι. delete(k), data(k, v) (·
end

The local stanza introduces a name that is used locally within the module. It is elaborated into an existential sur-
rounding the rules defining the module. The L1.5 program corresponding to this module is as follows:

16

∀lookup req : nat→ o.∀lookup res: nat× ι→ o.∀insert : nat× ι→ o.∀delete: nat→ o.

dictionary(lookup req , lookup res, insert , delete) (∃data: nat× ι→ o. !∀k: nat.∀v: ι. insert(k, v) (data(k, v)

!∀k: nat.∀v: ι. lookup req(k), data(k, v) (lookup res(k, v), data(k, v)

!∀k: nat.∀v: ι. delete(k), data(k, v) (·


As a more complex example of abstract data type, the following module implements stacks of natural numbers.

Internally, stacks are linked lists built from the local predicates head(d′′), elem(n, d′, d′′) and empty(d′). Here,
the terms d′ and d′′ implement the links of the linked list by identifying the predecessor and the successor element,
respectively. Such a list will start with the atom head(d0), continue as series of atoms elem(ni, di, di+1) and end with
the atom empty(dn). The code maintains that invariant that links are used exactly this way.

module stack
provide out push : nat→ o

out pop req : o in pop res : nat→ o
out isempty : o
out size req : o in size res : nat→ o

local empty : ι→ o
elem : nat× ι× ι→ o
head : nat× ι→ o

· (∃d: ι. empty(d), head(d)

!∀e: nat. push(e), head(d) (∃d′: ι. elem(e, d′, d), head(d′)

!∀e: nat.∀d: ι. ∀d′: ι. pop req , head(d), elem(e, d, d′) (pop res(e), head(d′)

!∀d: ι. isempty , head(d), empty(d) (head(d), empty(d)

!∀d: ι. size req , head(d) (∃size ′: nat× ι→ o.
head(d), size ′(z, d),[

!∀n: nat.∀e: nat.∀d: ι.∀d′: ι. size ′(n, d), elem(e, d, d′) (elem(e, d, d′), size ′(s(n), d′)
∀n: nat.∀d: ι. size ′(n, d), empty(d) (empty(d), size res(n)

]
end

3.4 Parametric Modules – I

Our next challenge will be to implement a module that provides a functionality to increment a number by n, where n
is a parameter passed when the module is instantiated in the client code. This corresponds to a Standard ML functor
that takes a value as an argument.

Such parametricity can be achieved by simply passing n as an argument to the public predicate used to call the
module, in addition to the predicates for each declaration in its provide stanza. In concrete syntax, we can simply
give n as an argument in our module declaration. Here is an implementation:

17

module increment (n: nat)
provide out incr req : nat→ o in incr res : nat→ o

local add : nat× nat→ o

∀m: nat. incr req(m) (add(m,n)

!∀m: nat.∀n: nat. add(s(m), n) (add(m, s(n))
∀r: nat. add(z, r) (incr res(r)

end

The value m passed as a parameter through the requester incr req(m) is added to n using the same code we wrote for
our adder. The result is returned through the predicate incr res . The above module is written as follows in L1.5 :

∀n: nat.∀incr req : nat→ o.∀incr res: nat→ o. increment(n, incr req , incr res) (

∃add : nat× nat→ o.

 ∀m: nat. incr req(m) (add(m,n)

!∀m: nat.∀n: nat. add(s(m), n) (add(m, s(n))
∀r: nat. add(z, r) (incr res(r)


Although plausible, this code is incorrect as two invocations of incr req within the same left-hand side may cause

internal interferences as the local predicate symbol add is shared: the two calls would not be able to tell which result
is which. The following code corrects this mistake by making add local to each use of incr req .

module increment (n: nat)
provide out incr req : nat→ o in incr res : nat→ o

∀m: nat. incr req(m) (∃add : nat× nat→ o. add(m,n)
!∀m: nat.∀n: nat. add(s(m), n) (add(m, s(n))

∀r: nat. add(z, r) (incr res(r)


end

While correct, this code is a bit silly as it re-implements our adder. An even better solution is use the adder′ module
to perform the addition, as done here:

module increment (n: nat)
provide out incr req : nat→ o in incr res : nat→ o

∀m: nat. incr req(m) (A as adder′.

[
A.add req(m,n),
∀r: nat. A.add res(r) (incr res(r)

]
end

Modules can therefore call each other.
Now, client code would make use of our increment module as follows:

∀m: nat.∀n: nat. · · · (I as increment(n).

[
· · · , I.incr req(m),
∀r: nat. I.incr res(r), · · · (· · ·

]

18

3.5 Sharing Private Names

As our next example, we will implement — and use — a module that provides the functionalities of a reference cell
in a stateful language. This cell is initialized as we instantiate the module (using the approach to parametrization seen
in the last section) and provides private predicates to get the current value of the cell and to set it to a new value. At
this stage, this is easily done by the following code, which relies on the private predicate content to store the content
of the cell.

module cell (v: nat)
provide out get : o in got : nat→ o

out set : nat→ o

local content : nat→ o

· (content(v)

∀v: nat. get , content(v) (got(v), content(v)

∀v: nat.∀v′: nat. set(v′), content(v) (content(v′)
end

Differently from the example in the last section, the fact that content is not local to each invocation of get and set is
a feature as we want all uses of the cell to refer to the same content.

Reference cells are often shared by various subcomputations. One way to do so is to pass the exported predicates
that manipulate them to the subcomputations, after instantiation. In the following example, the client code (first rule)
creates a cell C initialized with the value s(z). It then passes the setter to the second rule through the predicate p and
passes the getter to the third rule through the predicate q. The second rule can only write to the cell (it replaces its
content with z in this example). The third rule can only read the content of the cell (here, it then outputs it through
predicate s).

· (C as cell(s(z)).

[
p(C.set),
q(C.get , C.got)

]
∀write: nat→ o. p(write) (write(z)·[
∀read req : o.

∀read : nat→ o.

]
q(read req , read) (

[
read req ,
∀r: nat. read(r) (s(r)

]

This example shows how the private names obtained through a module invocation can be shared with other rules.
Furthermore this sharing can be selective.

Note that reference cells can be implemented in a much simpler way by exporting the predicate that holds the
content of the cell. This is reminiscent of what we did with our first adder. The code is as follows:

module cell′ (v: nat)
provide content : nat→ o

· (content(v)
end

Now, however, there is no way for the client code to pass distinct capabilities to subcomputations. In the following
code, the first rule passes the compound predicate name C .content to the second and the third rule, thereby giving
both of them read and write access to the cell.

19

· (C as cell′(s(z)).

[
p(C.content),
q(C.content)

]
∀c: nat→ o.
∀v: nat.

[
p(c),
c(v)

]
(c(z)

∀c: nat→ o.
∀v: nat.

[
q(c),
c(v)

]
(s(v)

3.6 Parametric Modules – II

As our last, and most complex, example, we implement two modules for queues. We then use either module to
instantiate a buffer for a producer and a consumer to exchange data.

Queues have just two operations: enqueuing a data item (for us a nat) and dequeuing an item, which we implement
as a pair of request and result predicates. An empty queue is created when a queue module is first invoked. These
operations are specified by the following interface:

interface QUEUE
out enq : nat→ o
out deq req : o in deq : nat→ o

end

We give two implementations of queues. The first one, which we call queue, uses linked lists and is similar to
stacks earlier.

module queue:QUEUE
provide out enq : nat→ o

out deq req : o in deq : nat→ o

local head : ι→ o
tail : ι→ o
data : nat× ι× ι→ o

· (∃d: ι. head(d), tail(d)

!∀e: nat.∀d: ι. ∀d′: ι. enq(e), head(d) (∃d′: ι. data(e, d′, d), head(d′)

!∀e: nat.∀d: ι. ∀d′: ι. deq req , tail(d′), data(e, d, d′) (deq(e), tail(d)
end

Our second implementation relies on a term representation of lists, with private constructors nil and cons .

20

module queue′:QUEUE
provide out enq : nat→ o

out deq req : o in deq : nat→ o

local nil : ι
cons : nat× ι→ ι

q : ι→ o
· (q(nil)

!∀e: nat.∀tail : ι. enq(e), q(tail) (q(cons(e, tail))

!∀e: nat. deq req , q(tail) (

∃last : ι→ o.



q(tail),
q(last(tail)),

∀v: nat. last(cons(v,nil)) (deq(v)

!

∀v: nat.
∀v′: nat.
∀tail : ι.

 last(cons(v, cons(v′, tail))) (last(cons(v′, tail))


end

Observe that both implementations ascribe to the same interface for queues, QUEUE.
Next, we define a producer-consumer module that exports predicates to produce a natural number or to consume it.

In this module, we use a queue as the buffer where the consumer deposits data and the consumer retrieves them from
— in truth, our producer-consumer module does nothing more than map these operations to the underlying enqueuing
and dequeuing facilities.

Now, rather than selecting a priori which implementation of queues to use, we can make producer-consumer
module parametric with respect to the implementation of queues. This corresponds a functor parametrized by a
structure in Standard ML. The resulting code is as follows.

module prodcons(Q:QUEUE)
provide in produce : nat→ o

in consume req : o out consume : nat→ o

· (B as Q .

 !∀e: nat. produce(e) (B.enq(e)

! consume req (

[
B.deq req ,
∀e: nat. B.deq(e) (consume(e)

] 
end

The argument Q of prodcons is the name of a module with interface QUEUE, which gives use a choice between
queue and queue′. The following code chooses queue (arbitrarily), and triggers two producers and three consumers
by passing them the appropriate predicates exported by the module. We also show one such producer (triggered by
predicate p1) which pushes three integers in the buffer, and one consumer (c3) that retrieves two elements.

21

· (B as prodcons(queue).


p1(B.produce),
p2(B.produce),
c1(B.consume req , B.consume)
c2(B.consume req , B.consume)
c3(B.consume req , B.consume)


∀P : nat→ o.

[
p1(P),
P (z), P (s(z)), P (s(s(z)))

]
(·

∀R′: o.
∀R: nat→ o.
∀r1: nat.
∀r2: nat.

 c3(R′, R), R′, R′ (R(r1), R(r2)

· · ·

This example showed how modules can take other modules as arguments, just like Standard ML’s functors. In
fact, our language can do a lot more. For example, a networking module may itself make use of the functionalities
of our producer-consumer module. We may therefore make the networking module parametric with respect to the
specific implementation of the producer-consumer module (of which we showed just one). In ML parlance, this would
be a functor that takes another functor as a parameter — a higher-order functor (something that is available in some
extensions of Standard ML, but not in the official definition [29]). By the same token, nothing prevents us from
defining a module that uses an instance of itself in some of its rules — a recursive module.

22

4 Multiset Rewriting with Modules

The module infrastructure we developed in the previous section had two parts:

1. We introduced some convenience syntax for the programming patterns of L1.5 that realized module definitions
(module . . . end), module instantiations (N as p t. . . .), and the use of exported names (e.g., N.add).

2. We imposed a series of restrictions on where and how predicates could be used (in for left-hand side only,
out for right-hand side only), as well as a correspondence between the names exported by a module and the
compound names used in client code.

We call the extension of L1.5 with both aspects LM . In this section, we describe how the added syntax in (1) can
be compiled away, thereby showing that LM is just syntactic sugar for L1.5 — L1.5 has all the ingredients to write
modular code already. We call this process elaboration. We handle the restrictions in (2) by typechecking LM code,
as a user could violate them even if her code elaborated to a valid L1.5 program. Appendix A.5 describes an extension
of the typing rules of Section 2.1.2 that checks that these restrictions as satisfied at the level of LM . It also summarizes
the syntax of our module language (which is actually more flexible than what we saw in the examples of Section 3).

Once an LM program has been typechecked, it is elaborated into an L1.5 program by compiling the module-
specific constructs into the native syntax of L1.5 . We then execute this L1.5 program. We will now outline how to
elaborate away the two added constructs, module and end. See Appendix A.5 for a precise description.

Recall the general syntax of modules definition has the form:

module p (Σpar)
provide Σexport

local Σlocal

P
end

Module name and parameters (term and predicates)
Exported names
Local predicates and constructors
Module definition — may use predicate names defined externally

What we called the module interface consists of the signature Σexport on the provide stanza. The modes of the
exported predicate names (in and out in Section 3) are irrelevant after type checking — we ignore them. Let Σ∗

denote the tuple of the names declared in signature Σ. Then this construct is elaborated into the following L1.5 rule:

∀Σpar .∀Σexport . p (Σ∗par ,Σ
∗
export)(∃Σlocal . P

where the notation ∀Σ. R prefixes the rule R with one universal quantification for each declaration in Σ, and similarly
for ∃Σ. P .

Next, we handle module instantiation, whose derived syntax, is

N as p t. P

Let Σexport be the interface exported by the module for p, defined as in the previous paragraph. It will be convenient
to express Σexport in the form ~X : ~τ , where the i-th declaration in Σexport is Xi : τi. Then, we elaborate the above
construct as

∃Σexport .

[
p(t, ~X)

[~X/N. ~X]P

]
where [~X/N. ~X]P replaces each occurrence of N.Xi in P with Xi. We implicitly assume that variables are renamed
as to avoid capture.

Elaboration, as just described, transforms a valid LM program into a valid L1.5 program, ready to be executed. In
particular, it removes all compound names of the form N.X .

23

5 Related Work

Programming languages equipped with a module system started appearing in the early 1970s, with Modula-2 [37] and
Standard ML [29] still in use today. Modern languages, from Java to JavaScript, invariably feature a module system of
some sort. The module system of ML [25, 29] is still considered by many the gold standard because of it support for
parametric modules (functors) and fine control on exported functionalities. Extensions, in particular with higher-order
modules are active areas of research. It should be noted however that large amounts of code are still written nowadays
in non-modular languages, in particular in C.

Module research in logic programming has largely targeted languages based on backward search. See [4] for a
comprehensive survey as of the mid-1990s. Several commercial and open-source implementations of Prolog feature
a module system, for example SICStus Prolog and SWI Prolog. Declarative approaches to modularity have been
investigated in relation to extensions of Prolog. In particular [27, 28] bases the module system for λProlog on this
language’s support for embedded implication and universal quantification, in a fashion that resembles our use of
existential quantifiers. Modules are however dynamically spliced into the body of each clause that uses them, and
therefore are not logically separate entities. Abdallah [1] proposes using second-order variables as a declarative support
for procedure calls in a Prolog-like language, achieving a form of modularity along the way. This is closely related to
our use of second-order quantification and to the logic recently investigated in [15]. Several proposals have been made
for introducing modules in dependently-typed backward-chaining languages, for example [32] for LF.

Module systems for languages based on forward logic programming have been few and far between. Cervesato
proposed an ad-hoc module system for the multiset rewriting language MSR [6]. Some languages based on general
rewriting have been extended with a module system, for example Maude [26, 10]. Process algebras [34, 13] still tend
to be used for specification rather than for general programming, yet some research has been done about modularizing
them, especially for assurance purposes [33].

The relationship between logic and rule-based languages has been explored in great depth. Most relevant to the
present work is [9] that shows how the left sequent rules of most connectives of linear logic yield a rewriting behavior
that subsumes traditional multiset rewriting and established models of concurrency such as Petri nets [30] as well
as many process algebras. The unfocused semantics of L1.5 discussed in this report is largely based on a subset of
these operators. The connection between focusing and forward chaining has also been the subject of recent study, for
example in [35].

Forward-chaining logic programming gained prominence in the 1980s with Datalog [16, 5] in the database area.
This paradigm has been having a renaissance of late and has been the basis for languages in the domains of security
and trust management [23], networking [18, 24], robot coordination [2], multicore programming [11], graph pro-
gramming [12] and concurrent specifications [36] just to cite a few. It is also a foundation for the general purpose
programming language CHR [14] and earlier GAMMA [3] as well as CoMingle, a language for mobile application
development [21].

24

6 Future Work and Conclusions

In this report, we developed an advanced module system for L1 , a small rule-based programming language. This
language corresponds to a large fragment of polarized intuitionistic linear logic under a derivation strategy based
on focusing. Modules are rewrite rules of a specific form, which means that not only do they too have a natural
interpretation in logic, but they are also first-class entities in our language. They make use of a mild form of second-
order quantification, which can be compiled to first-order quantification but at the cost of complicating somewhat the
static semantics of our language. Although our module infrastructure is nothing more than normal rules used in a
specific way, they share many of the features found in advanced module systems such as that of Standard ML [25]. In
particular, they enable private names, which in turn support abstract data types, name space separation and other forms
of information hiding. Our modules can be invoked with parameters, both values supplied by a client rule as well
as other modules. This corresponds directly to the notion of functor in Standard ML. Being first-class, higher-order
modules and recursive functors are natively supported. The underlying rewriting model also enables sharing private
names across threads of computation, which is critical for the kind of concurrent settings multiset rewriting is applied
most frequently nowadays [20].

The rewriting language underlying our modular scaffolding is of interest in its own right. Similarly to the language
of ω-multisets [9], it can be viewed as a specific reading of the traditional inference rules for a fragment of linear logic.
It subsumes most multiset rewriting formalisms we are aware of (e.g., [14, 36]), forward logic programming languages
such as Datalog [16, 5] and recent refinements [18, 24, 2, 11, 12], and many process algebras [34, 13]. This entails
that the module infrastructure developed in this report can be applied directly to any of these formalisms.

Our immediate next step will be to implement our module system in the CoMingle system [21]. CoMingle is a
logic programming framework aimed at simplifying the development of applications distributed over multiple Android
devices. It currently relies on the fragment of the language discussed in this report deprived of nested rules. It however
extends this language with multiset comprehensions, which allow atomically manipulating arbitrarily many atoms that
match a pattern, and provides a declarative interface to the underlying Android runtime system. CoMingle programs
are compiled, and one of the most interesting challenges of extending it with modules will be to support separate
compilation, one of the key feature of advanced module systems à la Standard ML.

We also intend to further extend the core language we defined in this report. Here, second-order variables stood
for predicate names only, making them more like the quantifiers of Gabbay and Mathijssen’s “one-and-a-halfth-order
logic” [15]. Although matching in second-order logic is decidable, it is expensive in its most general form [19]. How-
ever, second-order matching also supports features such as reflection and the runtime construction of rules, which are
valuable programming tools. We want to investigate relaxing our current constraint while preserving performance.
Our core language also possesses numerous features found in process algebras, in particular nested actions and the
dynamic creation of names. We expect many of the verification techniques developed for process algebras, for exam-
ple bisimilarity and congruence in the π-calculus [34], can be adapted to our language. This would be particularly
interesting as reasoning about multiset rewriting is usually based on a different set of techniques, often reachability
arguments.

25

References

[1] M.A. Nait Abdallah. Procedures in Horn-Clause Programming. In Ehud Shapiro, editor, Third International
Conference on Logic Programming — ICLP’86, pages 433–447. Springer LNCS 225, 1986.

[2] Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai, and Jason D. Campbell. A
Language for Large Ensembles of Independently Executing Nodes. In 25th International Conference on Logic
Programming — ICLP’09, pages 265–280. Springer LNCS 5649, 2009.

[3] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by Multiset Transformation. Communications of the
ACM, 36(1):98–111, 1993.

[4] Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in Logic Programming. The Journal of Logic
Programming, 19–20(1):443–502, 1994.

[5] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What You Always Wanted to Know About Datalog (And Never
Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, March 1989.

[6] Iliano Cervesato. MSR 2.0: Language Definition and Programming Environment. Technical Report CMU-CS-
11-141, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, November 2011.

[7] Iliano Cervesato. Typed Multiset Rewriting Specifications of Security Protocols. Technical Report CMU-CS-
11-140, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, October 2011.

[8] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A Concurrent Logical Framework II:
Examples and Applications. Technical Report CMU-CS-02-102, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 2003.

[9] Iliano Cervesato and Andre Scedrov. Relating State-Based and Process-Based Concurrency through Linear
Logic. Information & Computation, 207(10):1044–1077, 2009.

[10] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and Carolyn
Talcott. System Modules. In All About Maude — A High-Performance Logical Framework, pages 131–157.
Springer LNCS 4350, 2007.

[11] Flávio Cruz, Michael P. Ashley-Rollman, Seth Copen Goldstein Goldstein, Ricardo Rocha, and Frank Pfenning.
Bottom-Up Logic Programming for Multicores. In V́ıtor Santos Costa, editor, 7th International Workshop on
Declarative Aspects and Applications of Multicore Programming — DAMP’12. ACM Digital Library, January
2012. Short paper.

[12] Flávio Cruz, Ricardo Rocha, Seth Copen Goldstein Goldstein, and Frank Pfenning. A Linear Logic Program-
ming Language for Concurrent Programming over Graph Structures. In 30th International Conference on Logic
Programming — ICLP’14, Vienna, Austria, 2014.

[13] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming. PhD thesis, École Poly-
technique, Palaiseau, 1998. INRIA TU-0556. Also available from http://research.microsoft.com/

˜fournet.

[14] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.

[15] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic. Journal of Logic and Computation,
18(4):521–562, August 2008.

[16] Hervé Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and Databases: A Deductive Approach. ACM
Computing Survey, 16(2):153–185, June 1984.

[17] Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

26

http://research.microsoft.com/~fournet
http://research.microsoft.com/~fournet

[18] Stéphane Grumbach and Fang Wang. Netlog, a Rule-based Language for Distributed Programming. In 12th
International Conference on Practical Aspects of Declarative Languages — PADL’10, pages 88–103. Springer
LNCS 5937, 2010.

[19] Kouichi Hirata, Keizo Yamada, and Masateru Harao. Tractable and Intractable Second-order Matching Problems.
Journal of Symbolic Computation, 37(5):611–628, 2004.

[20] Edmund S.L. Lam and Iliano Cervesato. Optimized Compilation of Multiset Rewriting with Comprehensions.
In Jacque Garrigue, editor, 12th Asian Symposium on Programming Languages and Systems — APLAS’14, pages
19–38, Singapore, 2014. Springer LNCS 8858.

[21] Edmund S.L. Lam, Iliano Cervesato, and Nabeeha Fatima Haque. Comingle: Distributed Logic Programming for
Decentralized Mobile Ensembles. In Tom Holvoet and Mirko Viroli, editors, 17th IFIP International Conference
on Coordination Models and Languages — COORDINATION’15, pages 51–66, Grenoble, France, 2–4 June
2015. Inria, Springer LNCS 9037.

[22] Olivier Laurent, Myriam Quatrini, and Lorenzo Tortora de Falco. Polarized and Focalized Linear and Classical
Proofs. Annals of Pure and Applied Logic, 134(2–3):217–264, July 2005.

[23] Ninghui Li and John C. Mitchell. Datalog with Constraints: A Foundation for Trust-management Languages. In
5th International Conference on Practical Aspects of Declarative Languages — PADL’03, pages 58–73. Springer
LNCS 2562, 2003.

[24] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu
Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking: Language, Execution and Optimiza-
tion. In 2006 ACM SIGMOD International Conference on Management Of Data — SIGMOD’06, pages 97–108.
ACM, 2006.

[25] David MacQueen. Modules for Standard ML. In 1984 ACM Symposium on LISP and Functional Programming
Languages, pages 198–207, 1984.

[26] José Meseguer and Christiano Braga. Modular Rewriting Semantics of Programming Languages. In Charles Rat-
tray, Savitri Maharaj, and Carron Shankland, editors, 10th International Conference on Algebraic Methodology
and Software Technology — AMAST’04, pages 364–378. Springer LNCS 3116, 2004.

[27] Dale Miller. A Logical Analysis of Modules in Logic Programming. Journal of Logic Programming, 6(1-2):79–
108, January 1989.

[28] Dale Miller. A Proposal for Modules in λProlog. In Roy Dyckhoff, editor, 4th Workshop on Extensions to Logic
Programming — ELP’94, pages 206–221. Springer LNCS 798, 1994.

[29] Robin Milner, Robert Harper, David MacQueen, and Mads Tofte. The Definition of Standard ML – Revised. MIT
Press, 1997.

[30] Carl Adam Petri. Fundamentals of a Theory of Asynchronous Information Flow. In Proceedings of IFIP
Congress 62 on Information Processing, pages 386–390, Munich, Germany, 1963. North Holland.

[31] Frank Pfenning. Structural Cut Elimination I. Intuitionistic and Classical Logic. Information and Computation,
157(1/2):84–141, 2000.

[32] Florian Rabe and Carsten Schürmann. A Practical Module System for LF. In James Cheney and Amy Felty,
editors, Proceedings of the Fourth International Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice — LFMTP’09, pages 40–48, Montreal, Canada, 2009.

[33] Sriram Rajamani and Jakob Rehof. A Behavioral Module System for the Pi-Calculus. In Patrick Cousot, editor,
8th International Symposium on Static Analysis — SAS’01, pages 375–394. Springer LNCS 2126, 2001.

27

[34] Davide Sangiorgi and David Walker. The Pi-Calculus — a Theory of Mobile Processes. Cambridge University
Press, 2001.

[35] Robert J. Simmons. Structural Focalization. ACM Transaction in Computational Logic, 15(3):1–33, September
2014.

[36] Kevin Watkins, Frank Pfenning, David Walker, and Iliano Cervesato. Specifying Properties of Concurrent Com-
putations in CLF. In Carsten Schürmann, editor, Fourth Workshop on Logical Frameworks and Meta-languages
— LFM’04, pages 67–87, Cork, Ireland, 2007. ENTCS 199.

[37] Niklaus Wirth. Programming in Modula-2. Springer, 4th edition edition, 1988.

28

A Language Summary

This appendix summarizes the syntax (Appendix A.1), typing and operational semantics of the language L1.5 devel-
oped in this report. We collect the base typing rules of the language, deprived of safety checks, in Appendix A.2 and
enrich them with such checks in Appendix A.3. We show how to translate L1.5 programs back to L1 in Appendix A.4.
The syntax of modular language LM is collected in Appendix A.5 together with typing rules for it. The summary of
the operational semantics of our language starts in Appendix A.6 with a discussion of the underlying notion of congru-
ence, continues in Appendix A.7 with an abstract presentation of its abstract rewriting semantics read off directly from
the rules of the logic operator associated with each operator of L1.5 (see Appendix B), and ends with an operational
semantics which is based on a focused presentation of this logic. Such an operational semantics is an essential step
towards a practical implementation of this rewriting language.

A.1 Syntax

This appendix summarizes the syntax of the our core language L1.5 . The addition that L1.5 brings about with respect
to L1 are highlighted in blue.

The grammar below refers to the following syntactic categories, which are assumed given and distinguishable:

Term variables x
Predicate variables X

Function symbols f
Predicate symbols p

In the typing and evaluation semantics below, we blur the distinction between (term and predicate) variables introduced
by an existential quantifier and (function and predicate) symbols. A more precise definition would instantiate such
variables with new symbols when they are used, but at the cost of notational clutter — we prefer a simpler albeit
slightly imprecise notation to a fully formal description.

The other entities of our language are defined by the grammar in Figure A.1.
In examples, we abbreviated the type > → ι as simply ι. This is the type of a function symbol that does not take

any (proper) argument — a constant. Any signature declaration f : ι is therefore understood as f : > → ι and every
term written f stands for f (). Similarly, we write the type> → o as o— this is the type predicate names and variables
without (proper) argument. A declaration p : o stands therefore for p : > → o and an atom p is shorthand for p () —
these are the propositional atoms.

29

Types τ ::= ι individuals
| o state objects
| τ → τ function type
| τ × τ product type
| > unit type

Terms t ::= x term variables
| f t term constructors
| (t, t) products
| () unit
| X predicate variables
| p predicate names

Atoms A ::= p t atoms
| X t parametric atoms

LHS l ::= · empty left-hand side
| A, l left-hand side extension

Rules R ::= l(P rewrite
| ∀x : ι. R term abstraction
| ∀X : τ → o.R predicate abstraction

Programs P ::= · empty program
| P, P program union
| A atom
| !A reusable atom
| R rule
| !R reusable rule
| ∃x : τ → ι. P new term variable
| ∃X : τ → o. P new predicate variable

Figure A.1: Grammar of L1.5

30

A.2 Typing

This appendix summarizes the typing rules of our core language, without regard for safety constraint checks (which
are the subject of Appendix A.3) or the module syntax (which is given in Appendix A.5).

Typing makes use of signatures and contexts, defined next.

Signatures Σ ::= · empty signature
| Σ, f : τ → ι constructor declaration
| Σ, p : τ → o predicate declaration

Contexts Γ ::= · empty context
| Γ, x : ι term assumption
| Γ, X : τ → o predicate assumption

The typing rules for our language are very conventional. They are as follows.

Terms Γ `Σ t : τ

Γ, x : τ `Σ x : τ

Γ `Σ,f :τ→ι t : τ

Γ `Σ,f :τ→ι f t : ι

Γ `Σ t1 : τ1 Γ `Σ t2 : τ2
Γ `Σ (t1, t2) : τ1 × τ2 Γ `Σ () : >

Γ, X : τ → o `Σ X : τ → o Γ `Σ,p:τ→o p : τ → o

Atoms Γ `Σ A atom

Γ `Σ,p:τ→o t : τ

Γ `Σ,p:τ→o p t atom

Γ, X : τ → o `Σ t : τ

Γ, X : τ → o `Σ X t atom

Rule left-hand-sides Γ `Σ l lhs

Γ `Σ · lhs
Γ `Σ A atom Γ `Σ l lhs

Γ `Σ A, l lhs

Rules Γ `Σ R rule

Γ `Σ l lhs Γ `Σ P prog

Γ `Σ l(P rule

Γ, x : ι `Σ R rule

Γ `Σ ∀x : ι. R rule

Γ, X : τ → o `Σ R rule

Γ `Σ ∀X : τ → o.R rule

Programs Γ `Σ P prog

Γ `Σ · prog
Γ `Σ P1 prog Γ `Σ P2 prog

Γ `Σ P1, P2 prog

Γ `Σ A atom

Γ `Σ A prog

Γ `Σ A atom

Γ `Σ !A prog

Γ `Σ R rule

Γ `Σ R prog

Γ `Σ R rule

Γ `Σ !R prog

Γ `Σ,x:τ→ι P prog

Γ `Σ ∃x : τ → ι. P prog

Γ `Σ,X:τ→o P prog

Γ `Σ ∃X : τ → o. P prog

31

Although evaluation level entities, we also define archives and states and give their typing rules.

Archives Ω ::= · empty archive
| Ω, A reusable atom
| Ω, R reusable rule

States Σ.〈Ω ; Π〉

The typing rules for states amount to requiring that the contained archive and program be valid and closed.

Archives `Σ Ω archive

`Σ · archive
`Σ Ω archive · `Σ A atom

`Σ Ω, A archive

`Σ Ω archive · `Σ R rule

`Σ Ω, R archive

States ` Σ.〈Ω ; Π〉 state

`Σ Ω archive · `Σ Π prog

` Σ.〈Ω ; Π〉 state

32

A.3 Typing with Safety Checks

In this appendix, we refine the typing rules seen in Appendix A.2 to capture the safety constraints on variable occur-
rences in a program.

An atom A in a program is a left-hand side atom (or lhs-atom) if it is introduced by the production l ::= A, l in
the grammar of Appendix A.1. It is a right-hand side atom (a rhs-atom) if it is instead introduced by the productions
P ::= A and P ::= !A. We write AL and AR for a generic lhs- and rhs-atom, respectively. Terms occurring in
a lhs-atom (rhs-atom) are called lhs-terms (rhs-terms, respectively). We write AL[x] to indicate that the variable x
occurs in a term in lhs-atom AL, and similarly for rhs-atoms. We adopt the same notation for predicate variables.

The safety constraints can then be expressed as follows:

1. If a (term or predicate) variable introduced by universal quantification occurs in a rhs-atom, this same variable
must also occur in an earlier lhs-atom.

Pictorially, every occurrence of a rhs-atom AR[x] within the scope of a universal declaration for x shall adhere
to the following template

∀x. · · ·AL[x] · · ·((· · · , AR[x], · · ·) · · ·

The case for a predicate variable X is analogous.

2. If a universal predicate variable X leads a parametric lhs-atom X t, then X must occur in a term position either
in the same left-hand side or in a the left-hand side of an enclosing rule. If the first case, it must be possible to
rearrange this left-hand side so that the term occurrence appears to the left of the X t to avoid circularities such
as X (Y), Y (X).

Pictorially, given any program, it should be possible to reorder its lhs-atoms so that, for every lhs-atom X t
where X is universal, there is another lhs-atom AL[X] so that either AL[X] occurs in the left-hand side of an
outer rule, as in the following template,

∀X. · · ·AL[X] · · ·((· · · , X t, · · ·(· · ·)

or AL[X] occurs to the left of X t in the same left-hand side, as depicted by the following template:

∀X. · · · (· · · , AL[X], · · · , X t, · · ·)(· · ·

We enforce the safety constraints on variables by augmenting the typing judgments in Appendix A.2 with either
one or two constraint sets. A constraint set annotates each universal variable in scope with a marker that indicates
whether this variable has been seen in a lhs-term before. Specifically, x0 indicates that variable x has been declared
(i.e., introduced by means of a universal quantifier) but has not yet appeared in a term in a lhs-atom. Instead, x1

designates x as having been seen in an earlier lhs-atom. The same convention applies for predicate variables.
Constraint sets are therefore defined by the following grammar:

Constraints X ::= · no constraints
| X , x0 unseen term variable
| X , x1 seen term variable
| X , X0 unseen predicate variable
| X , X1 seen predicate variable

The typing judgments seen in Appendix A.2 acquire a new component, a constraint set that tracks the use of
universal variables. The judgments for syntactic objects that appear in a program position (including rule right-hand
sides) are updated differently from the judgments for objects that appear in a left-hand side. Since atoms and terms
can appear in both, they are refined into two versions, one for when they occur in program position (rhs-atoms and
rhs-terms) and a distinct one for when they appear in a left-hand side (lhs-atoms and lhs-terms).

33

Program-side judgments are extended with a single constraint set, which we indicate in red. These judgments are

Γ `Σ t : τ | X Terms (rhs)
Γ `Σ A atom | X Atoms (rhs)
Γ `Σ R rule | X Rules
Γ `Σ P prog | X Programs

In each rule, the constraint set X is extended as the corresponding syntactic object is traversed, going from the con-
clusion to the premises of the rules. The markers of the variables in X are checked in rules where variables are used
(in the judgments for terms and atoms).

Left-hand side judgments are enriched by two constraint sets, which we write as X > X ′ and color in blue. These
judgments are

Γ `Σ t : τ | X > X ′ Terms (lhs)
Γ `Σ A atom | X > X ′ Atoms (lhs)
Γ `Σ l lhs | X > X ′ Left-hand sides

The constraint set X is understood as an input to the judgment while X ′ is its output: X is propagated from the
conclusion to one of the premises of a rule while X ′ flows the other direction, from a premise to the conclusion. The
set X ′ differs from X by the fact that the marker of some variables has been updated from 0 to 1. This takes place
when a variable is encountered within a (left-hand side) term

The updated rules are displayed next, with commentary when needed to clarify the refinement. Here, we take
advantage of the commutativity of “,” and implicitly reorder atoms in a left-hand side as needed to obtain a derivation.
It is not necessary to do so in in program positions. In all cases, we treat existential variables as if they were constants.

Terms (lhs) Γ `Σ t : τ | X > X ′

Γ, x : τ `Σ x : τ | X , x? > X , x1

Γ `Σ,f :τ→ι t : τ | X > X ′

Γ `Σ,f :τ→ι f t : ι | X > X ′

Γ `Σ t1 : τ1 | X > X ′ Γ `Σ t2 : τ2 | X ′ > X ′′

Γ `Σ (t1, t2) : τ1 × τ2 | X > X ′′ Γ `Σ () : > | X > X

Γ, X : τ → o `Σ X : τ → o | X , X? > X , X1 Γ `Σ,p:τ→o p : τ → o | X > X

The rules for term and predicate variables update the marker for that variable to 1, whatever it was before — we write
x? for either x0 or x1 and similarly for predicate variables. The other rules thread the variables sets through. We
arbitrarily proceed from left to right in the case of pairs.

Terms (rhs) Γ `Σ t : τ | X

Γ, x : τ `Σ x : τ | X , x1

Γ `Σ,f :τ→ι t : τ | X
Γ `Σ,f :τ→ι f t : ι | X

Γ `Σ t1 : τ1 | X Γ `Σ t2 : τ2 | X
Γ `Σ (t1, t2) : τ1 × τ2 | X Γ `Σ () : > | X

Γ, X : τ → o `Σ X : τ → o | X , X1 Γ `Σ,p:τ→o p : τ → o | X

The right-hand side rules for term and predicate variables require that these variables have been seen earlier in a
left-hand side, which is witnessed by the marker 1. All other rules thread the constraint set through.

Atoms (lhs) Γ `Σ A atom | X > X ′

Γ `Σ,p:τ→o t : τ | X > X ′

Γ `Σ,p:τ→o p t atom | X > X ′
Γ, X : τ → o `Σ t : τ | X , X1 > X ′

Γ, X : τ → o `Σ X t atom | X , X1 > X ′

34

A predicate variable X introducing a parametric atom on the left-hand side must have been seen earlier within a
left-hand side term, as indicated by the marker X1. Other variables are threaded through.

Atoms (rhs) Γ `Σ A atom | X

Γ `Σ,p:τ→o t : τ | X
Γ `Σ,p:τ→o p t atom | X

Γ, X : τ → o `Σ t : τ | X , X1

Γ, X : τ → o `Σ X t atom | X , X1

Like any right-hand side variable, a predicate variable introducing a parametric atom must have been seen previously
within a left-hand side term.

Rule left-hand-sides Γ `Σ l lhs | X > X ′

Γ `Σ · lhs | X > X
Γ `Σ A atom | X > X ′ Γ `Σ l lhs | X ′ > X ′′

Γ `Σ A, l lhs | X > X ′′

Constraint variables are refined (i.e., some markers 0 are upgraded to 1) going from left to right in a left-hand side.

Rules Γ `Σ R rule | X

Γ `Σ l lhs | X > X ′ Γ `Σ P prog | X ′

Γ `Σ l(P rule | X
Γ, x : ι `Σ R rule | X , x0

Γ `Σ ∀x : ι. R rule | X
Γ, X : τ → o `Σ R rule | X , X0

Γ `Σ ∀X : τ → o.R rule | X

The typing judgment for rules is where a lot of the action takes place. Traversing a universal quantifier installs its
variable in the constraint set in the premise with marker 0. A bare rule of the form l (P is handled by passing the
current constraint set X to the left-hand side l, which will refine it into the constraint set X ′ which is what is passed to
the program part P .

Programs Γ `Σ P prog | X

Γ `Σ · prog | X
Γ `Σ P1 prog | X Γ `Σ P2 prog | X

Γ `Σ P1, P2 prog | X
Γ `Σ A atom | X
Γ `Σ A prog | X

Γ `Σ A atom | X
Γ `Σ !A prog | X

Γ `Σ R rule | X
Γ `Σ R prog | X

Γ `Σ R rule | X
Γ `Σ !R prog | X

Γ `Σ,x:τ→ι P prog | X
Γ `Σ ∃x : τ → ι. P prog | X

Γ `Σ,X:τ→o P prog | X
Γ `Σ ∃X : τ → o. P prog | X

The typing rules for programs simply pass the constraint set in their conclusion to their premise. Note in particular
that existential variables are ignored.

The typing judgment for archives and states remains unchanged, but the rules need to be upgraded to seed their
constituents with an empty constraint set.

Archives `Σ Ω archive

`Σ · archive
`Σ Ω archive · `Σ A atom | ·

`Σ Ω, A archive

`Σ Ω archive · `Σ R rule | ·
`Σ Ω, R archive

States ` Σ.〈Ω ; Π〉 state

`Σ Ω archive · `Σ Π prog | ·
` Σ.〈Ω ; Π〉 state

35

A.4 First-Order Encoding

In this appendix, we formalize the encoding that transforms an L1.5 state into a state in L1 with the same typing and
operational behavior. To do so, we need to extend this encoding to all entities of L1.5 . Intuitively, we will map every
universal second-order variable X : τ → o to a first-order variables xX : ι and replace each parametric atom X t with
the atom pτ (xX , t), where pτ is a predicate name associated with type τ . Occurrences ofX in a term will be translated
to just xX . Existential second-order variablesX are treated slightly differently because existential first-order variables
must have a type of the form τ → ι. Therefore, we will associate to each X a first-order variable xX : > → ι and
proceed as in the universal case, except that wherever we had xX we now have xX ().

The encoding below assumes that predicates occurring within terms are not themselves applied to terms, i.e., that
they have the bare form p rather than p t. This will simplify the presentation. We can always rewrite a program that
makes use of applied predicates by turning the application into a pair. For example, the term f (p t) would be rewritten
as f (p, t). This transformation can be done automatically. A consequence of this simplification is that the type o
cannot appear immediately underneath a product or as the antecedent of a function type, but only in the form τ → o.

As we encounter second-order variables in terms and atoms, we need to know whether they are universal or
existential. We do so by maintaining a set X which marks each variable declaration in scope as universal or existential.
Its structure is defined by means of the following grammar:

Declaration sets X ::= · empty set
| X ,∀X : τ → o universal declaration
| X ,∃X : τ → o existential declaration

We now describe the encoding [O]
]
X of each syntactic entity O in L1.5 , providing commentary as needed.

Terms [t]
]
X = t′ 

[x]
]
X = x

[f t]
]
X = f [t]

]
X

[(t1, t2)]
]
X = ([t1]

]
X , [t2]

]
X)

[()]
]
X = ()

[X t]
]
X ,∀X:τ→o = xX

[X t]
]
X ,∃X:τ→o = xX ()

[p]
]
X = xp ()

Terms are translated homomorphically except for second-order variables and predicate names. A variableX is mapped
to xX if it is universal and to xX () if it is existential. Predicate names can occur in L1.5 terms and are treated as if
they were introduced by an existential quantifier. In fact, we will later associate a function symbol xp : > → ι to each
predicate name p in the signature.

Atoms [A]
]
X = A′ 

[p t]
]
X = p [t]

]
X

[X t]
]
X ,∀X:τ→o = pτ (xX , [t]

]
X ,∀X:τ→o)

[X t]
]
X ,∃X:τ→o = pτ (xX (), [t]

]
X ,∃X:τ→o)

A second-order variable X : τ → o heading a parametric predicate X t is replaced by the predicate pτ associated with
the type τ — we will see how this is done momentarily. We remember X by passing either xX or xX () as the first
argument of pτ .

36

Rule left-hand sides [l]
]
X = l′ {

[·]]X = ·
[A, l]

]
X = [A]

]
X , [l]

]
X

Left-hand sides simply propagates the translation to their constituent atoms.

Rules [R]
]
X = 〈Σ′;R′〉

[l(P]
]
X = 〈Σ′; [l]

]
X (P ′〉 where [P]

]
X = 〈Σ′;P ′〉

[∀x : ι. R]
]
X = 〈Σ′;∀x : ι. R′〉 where [R]

]
X = 〈Σ′;R′〉

[∀X : τ → o.R]
]
X = 〈(Σ′ ∪ pτ : ι× τ ′ → o);∀xX : ι. R′〉 where [R]

]
X ,∀X:τ→o = 〈Σ′;R′〉

Translating a rule diverges from the above pattern because we may need to account for new second-order variables.
The interesting case is that of second-order universal rules ∀X : τ → o.R. The matrix R may make use of X ,
which means that while translating it we need to know that X was introduced universally. Therefore, we extend the
declaration set with a universal marker ∀X : τ → o while doing so. Now, if X heads a parametric predicate X t
inside R, it will get replaced by the predicate pτ associated to τ . We remember which such predicates are needed by
returning a signature Σ′ as an additional output of the translation function. Because the translation of t may replace
some predicate names and variables with terms, the type of pτ is ι × τ ′ → o where τ ′ is the translation of the type
τ , defined later. Note that the predicate name pτ is fixed. Therefore, were the translation of R to turn out another
copy, we shall retain just one. We write Σ ∪ Σ′ for the set union of signatures Σ and Σ′. It keep just one copy of any
common declaration. This differs from the notation “Σ, pτ : ι× τ ′ → o” which α-renames pτ apart from Σ.

Programs [P]
]
X = 〈Σ′;P ′〉

[·]]X = 〈·; ·〉
[P1, P2]

]
X = 〈Σ′1 ∪ Σ′2; (P ′1, P

′
2)〉 where [P1]

]
X = 〈Σ′1;P ′1〉 and [P2]

]
X = 〈Σ′2;P ′2〉

[A]
]
X = 〈·; [A]

]
X 〉

[!A]
]
X = 〈·; ![A]

]
X 〉

[R]
]
X = [R]

]
X

[!R]
]
X = 〈Σ′; !R′〉 where [R]

]
X = 〈Σ′;R′〉

[∃x : τ → ι. P]
]
X = 〈Σ′;∃x : τ] → ι. P ′〉 where [P]

]
X = 〈Σ′;P ′〉

[∃X : τ → o. P]
]
X = 〈(Σ′ ∪ pτ : ι× τ] → o);∃xX : > → ι. P ′〉 where [P]

]
X ,∃X:τ→o = 〈Σ′;P ′〉

The translation of programs follows the template we just saw for rules. This time, the variables are existential.
We now give a translation for types, which is used in the encoding of rules and programs as we saw. We also give

translations for signatures, contexts and archives.

Types τ] = τ ′ 

ι] = ι
o] = ι (unused)

(τ1 → ι)
]

= τ ′1
] → ι

(τ1 → o)
]

= > → ι

(τ1 → τ2)
]

= ι (unused for τ 6= ι and τ 6= o)
(τ1 × τ2)

]
= τ1

] × τ2]
>] = >

37

The type τ translated by τ] will always occur on the left-hand side of function type τ → τ ′. In fact τ ′ can be only ι or
o in L1.5 . Because we restricted predicate name occurrences within terms to be bare, the type o can only appear as the
target of a function type, of the form τ ′ → o. In particular isolated occurrences of o will never be encountered. We
arbitrarily map both unused forms to ι.

Signatures [Σ]
]

= Σ′ 
[·]] = ·

[Σ, f : τ → ι]
]

= [Σ]
]
, f : τ] → ι

[Σ, p : τ → o]
]

= [Σ]
]
, p : τ] → o, xp : > → ι

The translation of signatures bears much in common with what we did for existential variables. Specifically, we
associate to each predicate name p : τ → o not only its natural encoding p : τ] → o but also the function symbol
xp : > → ι in case this predicate name is used in a term (see our encoding of terms above).

Contexts [Γ]
]

= 〈Σ′; Γ′〉
[·]] = 〈·; ·〉

[Γ, x : ι]
]

= 〈Σ′; Γ′, x : ι〉 where [Γ]
]

= 〈Σ′; Γ′〉
[Γ, X : τ → o]

]
= 〈(Σ′ ∪ pτ : ι× τ] → o); Γ′, xX : ι〉 where [Γ]

]
= 〈Σ′; Γ′〉

We encode a predicate variable X : τ → o in a context into a first-order variable xX of type ι, but also define the
signature declaration for pτ , which will account for parametric atoms X t that may make use of X . Therefore, the
translation of a context returns both a signature and another context.

Archives [Ω]
]

= 〈Σ′; Ω′〉
[·]] = 〈·; ·〉

[Ω, A]
]

= 〈Σ′; (Ω′, A])〉 where [Ω]
]

= 〈Σ′; Ω′〉
[Ω, R]

]
= 〈Σ′ ∪ Σ′′; (Ω′, R′)〉 where [Ω]

]
= 〈Σ′; Ω′〉 and [R]

]
· = 〈Σ′′;R′〉

A archive is encoded by collecting the encoding of each constituent. Since the encoding of rules output a signature, so
does the encoding of archives.

The above translation maps a well-typed entity in L1.5 to a similarly well-typed object in L1 . This is formally
expressed by the following property.

Lemma 5 For L1.5 signature Σ and context Γ, let [Σ]
]

= Σ′ and [Γ]
]

= 〈Σ′′; Γ′〉.

1. If Γ `Σ t : τ in L1.5 , then Γ′ `Σ′∪Σ′′ [t : τ]]
]

· in L1 .

2. If Γ `Σ A atom in L1.5 , then Γ′ `Σ′∪Σ′′ [A]
]
· atom in L1 .

3. If Γ `Σ l lhs in L1.5 , then Γ′ `Σ′∪Σ′′ [l]
]
· lhs in L1 .

4. If Γ `Σ R rule in L1.5 , then Γ′ `Σ′∪Σ′′∪Σ′′′ R
′ rule in L1 where [R]

]
· = 〈Σ′′′;R′〉.

5. If Γ `Σ P prog in L1.5 , then Γ′ `Σ′∪Σ′′∪Σ′′′ P
′ prog in L1 where [P]

]
· = 〈Σ′′′;P ′〉.

6. If `Σ Ω archive in L1.5 , then `Σ′∪Σ′′′ Ω′ archive in L1 where [Ω]
]

= 〈Σ′′′; Ω′〉.

38

7. If ` Σ.〈Ω ; Π〉 state in L1.5 , then ` (Σ′ ∪ Σ′′′ ∪ Σ′′′′).〈Ω′ ; Π′〉 state in L1 where [Ω]
]

= 〈Σ′′′; Ω′〉 and
[Π]

]
· = 〈Σ′′′′; Π′〉.

Proof The proof proceeds by mutual induction on the given typing derivations. �

The encoding also maps transitions in L1.5 to transitions in L1 .

Lemma 6 For L1.5 state ΣA.〈ΩA ; ΠA〉, let [ΣA]
]

= Σ′A and [ΩA]
]

= 〈Σ′′A; Ω′A〉 and [ΠA]
]
· = 〈Σ′′′A ; Π′A〉.

Similarly, for L1.5 state ΣB .〈ΩB ; ΠB〉, let [ΣB]
]

= Σ′B and [ΩB]
]

= 〈Σ′′B ; Ω′B〉 and [ΠB]
]
· = 〈Σ′′′B ; Π′B〉.

Let Σ∗A = Σ′A ∪ Σ′′A ∪ Σ′′′A and Σ∗B = Σ′B ∪ Σ′′B ∪ Σ′′′B .
If ` ΣA.〈ΩA ; ΠA〉 state and ΣA.〈ΩA ; ΠA〉 7→ ΣB .〈ΩB ; ΠB〉 in L1.5 , then Σ∗A.〈Ω′A ; Π′A〉 7→ Σ∗B .〈Ω′B ; Π′B〉 in
L1 .

Proof The proof proceeds by cases on the given L1.5 transitions. �

39

A.5 Typechecking Modular Programs

This appendix defines the extension LM of the language L1.5 with the module infrastructure devised in Section 3.
We describe both the syntax of LM and its extended typing semantics, inclusive of mode declarations and checks.
Extensions are shown in blue. Differently from Section 4 and Appendix A.4, we do not compile LM into L1.5 but
handle it head on. Furthermore, we allow the programmer to mix and match the module syntax that characterizes LM
with more basic constructs of L1.5 . For example, she will be able to define a module using the module syntax but
use it without relying on as, and vice versa. We conclude by summarizing the elaboration of LM into L1.5 .

The basic syntactic categories of LM extend those of L1.5 with module reference names N . The overall lexicon is
as follows, where we make the same provisos as for L1.5 in Appendix A.1.

Term variables x
Predicate variables X

Function symbols f
Predicate symbols p
Module references N

The other entities of LM are defined by the grammar in Figure A.2, where all modifications (not just extensions)
are highlighted in blue. These modifications are as follows:

• The type of state objects has been refined into the form oξ to incorporate mode ascriptions for predicate names,
as used in the provide stanza of the examples in Section 3. The type ol refers to the predicate names whose
atoms can only appear in the left-hand side of a rule (except at their definition point) — that’s the marker in,
or stands for predicate names that can occur only on the right-hand side (again, except when being defined) —
that’s the marker out, and o indicates predicate names that can occur anywhere — they correspond to the type
o of L1.5 . We allow mode restrictions on any predicate name, not just the symbols exported by a module.

Given an atom type oξ, we write oξ for the type that flips the restrictions on use. Specifically, ol = or

or = ol

o = o

This is useful as module definitions provide predicates to be used on the left-hand side in client code by produc-
ing them on their right-hand side, and vice versa.

• A predicate variable V is either one of the predicate variable X of L1.5 or a compound predicate variable N.X
where N is a module reference. Either form can be existentially or universally quantified. Similarly, existential
term variables (and later term-level signature declaration) can be either simple or compound names.

• An interface Υ is a multiset of declarations for function and predicate symbols. It is what is exported by a
module. It also corresponds exactly to the signatures of L1.5 . Although they did not appear in any of the
examples in Section 3, term-level symbols can be exported by a module. As we will see, interfaces in LM are
richer.

• Programs are extended with the construct for using a module and the construct for defining one.

The resulting grammar is given in Figure A.2.
We proceed by giving typing rules forLM , as just defined. We update the definition of signature to allow compound

term and predicate names and the definition of context to allow moded, possibly compound, predicate declarations.

40

Compound term variables cannot enter a context.

Signatures Σ ::= · empty signature
| Σ, f : τ → ι constructor declaration
| Σ, N.f : τ → ι compound constructor declaration
| Σ, p : τ → oξ predicate declaration
| Σ, N.p : τ → oξ compound predicate declaration

Contexts Γ ::= · empty context
| Γ, x : ι term assumption
| Γ, V : τ → oξ predicate assumption

The definition of archives and states remains unchanged.
Two extensions to the typing semantics of L1.5 are required. First we need to check that predicate variables are

used according to their mode declaration. This entails providing different rules for atoms occurring on the left- and
right-hand side of a rule. Second, we need to keep track of the modules available for instantiation. To do so, we define
module sets M , which associate the name and interface of each module in scope.

Module set M ::= · empty module set
| M,p : Υ available module

The judgments for terms and states remain unchanged. We update the judgments for atoms, rules and programs as
follows:

Γ `Σ t : τ lhs atom Atoms (left-hand side)
Γ `Σ A rhs atom Atoms (right-hand side)
Γ `Σ R rule |M Rules
Γ `Σ P prog |M > M ′ Programs

When analyzing a program P , the set M represents known modules before examining P while M ′ is the extended
module set after having gone through P . Scope considerations prevent a rule from exporting more modules than it
knows about.

We now give the updated typing rules, highlighting the changes in blue. We comment on changes as required.

Terms Γ `Σ t : τ

Γ, x : τ `Σ x : τ

Γ `Σ,f :τ→ι t : τ

Γ `Σ,f :τ→ι f t : ι

Γ `Σ,N.f :τ→ι t : τ

Γ `Σ,N.f :τ→ι N.f t : ι

Γ `Σ t1 : τ1 Γ `Σ t2 : τ2
Γ `Σ (t1, t2) : τ1 × τ2 Γ `Σ () : > Γ, V : τ → oξ `Σ V : τ → oξ Γ `Σ,p:τ→oξ p : τ → oξ

The rules for terms change only in as much as predicate variables may use compound names and carry modes, and
that we could have compound term constructors in the signature.

Atoms (lhs) Γ `Σ A lhs atom

Γ `Σ,p:τ→ol? t : τ

Γ `Σ,p:τ→ol? p t lhs atom

Γ, V : τ → ol? `Σ t : τ

Γ, V : τ → ol? `Σ V t lhs atom

Here, we write ol? for either type o or ol. Predicate names in a left-hand side atom can be either unrestricted (o) or
defined for left-hand side use only (ol).

41

Atoms (rhs) Γ `Σ A rhs atom

Γ `Σ,p:τ→or? t : τ

Γ `Σ,p:τ→or? p t rhs atom

Γ, V : τ → or? `Σ t : τ

Γ, V : τ → or? `Σ V t rhs atom

Similar considerations apply to right-hand side atoms. Here, or? stands for either o or or.

Rule left-hand-sides Γ `Σ l lhs

Γ `Σ · lhs
Γ `Σ A lhs atom Γ `Σ l lhs

Γ `Σ A, l lhs

Rule left-hand sides are updated only in so far as their constituents are sent to the left-hand side atom judgment.

Rules Γ `Σ R rule |M

Γ `Σ l lhs Γ `Σ P prog |M > M ′

Γ `Σ l(P rule |M
Γ, x : ι `Σ R rule |M
Γ `Σ ∀x : ι. R rule |M

Γ, V : τ → oξ `Σ R rule |M
Γ `Σ ∀V : τ → oξ. R rule |M

Rules are where we first encounter module sets. All they do is to propagate them to the program on the right-hand side
P of a rewriting directive l(P . Note that the module set M ′ that comes back is discarded as the modules defined in
P are not in scope outside of P itself.

Programs Γ `Σ P prog |M > M ′

Γ `Σ · prog |M > M

Γ `Σ P1 prog |M > M ′ Γ `Σ P2 prog |M ′ > M ′′

Γ `Σ P1, P2 prog |M > M ′′

Γ `Σ A rhs atom

Γ `Σ A prog |M > M

Γ `Σ A rhs atom

Γ `Σ !A prog |M > M

Γ `Σ R rule |M
Γ `Σ R prog |M > M

Γ `Σ R rule |M
Γ `Σ !R prog |M > M

Γ `Σ,v:τ→ι P prog |M > M ′

Γ `Σ ∃v : τ → ι. P prog |M > M ′

Γ `Σ,V :τ→oξ P prog |M > M ′

Γ `Σ ∃V : τ → oξ. P prog |M > M ′

Γ `Σ p t lhs atom Γ `Σ,N.Υ P prog |M,p : Υ > M ′

Γ `Σ N as p t. P prog |M,p : Υ > M ′

p : Υpar ×Υexport → or in Σ p not in M Γ,Υpar ,Υexport `Σ,Υlocal
P prog |M,p : Υexport > M ′

Γ `Σ module p(Υpar) provide Υexport local Υlocal P end prog |M > M ′

The typing rules for programs are where most of the action takes place. Notice first that the union P1, P2 of two
programs accumulates modules from left to right. As we understand “,” as being commutative and associative, this
does not force a module to be defined before being used in a strictly lexical sense. Because some ordering of a program
constituents must be picked, it however prevents circularity. Naturally, the empty program and right-hand side atoms
simply return the module set they were handed. The updated version of the remaining rules of L1.5 simply propagate
the sets to and from their premises.

The rules for the new constructs are more interesting. The rule for a module definition

module p(Υpar) provide Υexport local Υlocal P end

42

first checks that the predicate name p (the name of the module) is defined in the signature Σ and that it takes as input
both the parameters Υpar and the module’s interface Υexport . Abusing notation, we write Υpar × Υexport for the
overall product type — for notational simplicity we keep the parameters on the left and the exported symbols on the
right although there is no reason for this. Since a hand-crafted use of this module (i.e., without relying on as) would
make use of it on the right-hand side of a rule, we give p mode or as using it on the left-hand side of a rule (other than
the above module definition) would have the effect of intercepting the instantiation request. Therefore, we require that
p appears in the signature Σ with type Υpar ×Υexport → or. The second premise ensures that module p is defined no
more than once.

The last premise of this rule extends the context with both the parameter declarations Υpar and the inverted
exported declarations Υexport , and the signature with the local declarations Υlocal . We invert the modes of the exported
declarations as the module uses these symbols in the opposite way as a client. The module set that can be used inside
P is extended with p : Υexport , thereby allowing recursive instantiations. Note that this extension will be returned
through M ′.

The rule for the instantiation N as p t. P of a module p with interface Υ, as reported in the incoming module set,
starts by checking the validity of p t as a right-hand side atom. It then extends the signature in which to typecheck P
with the exported symbols Υ prefixed by the module reference name N . This is expressed by the notation N.Υ.

Archives `Σ Ω archive |M

`Σ · archive |M
`Σ Ω archive |M · `Σ A rhs atom

`Σ Ω, A archive |M
`Σ Ω archive |M · `Σ R rule |M

`Σ Ω, R archive |M

The rules for archives pass the module set they are given to any contained LM rule. As we will see next when
examining states, this module set will be empty in this report.

States ` Σ.〈Ω ; Π〉 state

`Σ Ω archive | · · `Σ Π prog | · > M ′

` Σ.〈Ω ; Π〉 state

The rule for states seeds the embedded archive Ω and program Π with an empty module set and discards what the
analysis of Π reports. Note that, were an implementation to provide system modules, this is where they would be
plugged in.

A program in LM is elaborated into an L1.5 program before execution. This means that we can rely on the
operational semantics for this language, as discussed in Section 2.1.3, for running LM programs, without a need to
account for any of the modular infrastructure. The elaboration, adapted from Section 4, is defined as as follows:

• A module declaration
module p(Υpar)
provide Υexport

local Υlocal

P
end

is compiled into the rule
∀Υpar .∀Υexport . p(Υ

∗
par ,Υ

∗
export)(∃Υlocal . P

where the predicate name p is called on the names declared in Υpar and Υexport , dropping the types, something
we express as p(Υ∗par ,Υ

∗
export).

43

• Let p be a module with interface Υ, which we write as ~X : ~τ for convenience — note that ~X may contain term
variables as well as predicate variables. Then, a module instantiation

N as p t. P

is compiled into the program

∃Υ.
[
p (t, ~X),

[~X/N. ~X]/P

]
where [~X/N. ~X]/P replaces each occurrence of the compound nameN.Xi in P withXi, and similarly for term
variables. We implicitly rename variables as required to avoid capture.

Starting with a well-typed LM program without compound predicate names in its signature, this transformation results
in a valid L1.5 program without compound predicate names at all. Mode annotations are dropped altogether.

44

Atom types oξ ::= o unrestricted atom
| ol lhs-only atom
| or rhs-only atom

Types τ ::= ι individuals
| oξ state objects
| τ → τ function type
| τ × τ product type
| > unit type

Interface Υ ::= · empty interface
| Υ, f : τ → ι function symbol
| Υ, p : τ → oξ predicate symbol

Term variables v ::= x simple term variable
| N.x compound term variable

Predicate variables V ::= X simple predicate variable
| N.X compound predicate variable

Terms t ::= v term variables
| f t term constructors
| (t, t) products
| () unit
| V predicate variables
| p predicate names

Atoms A ::= p t atoms
| V t parametric atoms

LHS l ::= · empty left-hand side
| A, l left-hand side extension

Rules R ::= l(P rewrite
| ∀x : ι. R term abstraction
| ∀V : τ → oξ. R predicate abstraction

Programs P ::= · empty program
| P, P program union
| A atom
| !A reusable atom
| R rule
| !R reusable rule
| ∃v : τ → ι. P new term variable
| ∃V : τ → oξ. P new predicate variable
| N as p t. P module instantiation
| module p(Υ)

provide Υ
local Υ
P

end

module definition

Figure A.2: Syntax of LM

45

A.6 Congruence

Throughout this report, we implicitly viewed the operator “,” used to combine left-hand side atoms and (right-hand
side) programs as associative with unit “·” and commutative. This is logically justified as the corresponding operators
in linear logic, ⊗ and 1, have isomorphic properties relative to derivability — see Appendix B.

For the sake of completeness, we spell out these properties in the case of left-hand sides:

l1, (l2, l3) = (l1, l2), l3 associativity
l, · = l unit

l1, l2 = l2, l1 commutativity

Analogous properties apply to programs. These properties form an equivalence relation. Moreover, they apply arbi-
trarily deep within a term and therefore define a congruence.

We also wrote “,” for the operation of extending (and joining) signatures, contexts and state components and “·”
for the empty signature, context, archive and state. Also in these case, “,” is commutative and associative with unit “·”
— this corresponds directly to the often-used conventions for the homonymous formation operators in logic.

The use of “,” as a pairing operator in terms is neither associative nor commutative.

46

A.7 Unfocused Rewriting Semantics

The full set of transitions in the unfocused evaluation semantics is as follows.

Transitions Σ.〈Ω ; Π〉 7→ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω, l1 ; Π, l2, (l1, l2)(P 〉 7→ Σ.〈Ω, l1 ; Π, P 〉
Σ.〈Ω ; Π,∀x : ι. R〉 7→ Σ.〈Ω ; Π, [t/x]R〉 if · `Σ t : ι

Σ.〈Ω ; Π,∀X : τ → o.R〉 7→ Σ.〈Ω ; Π, [p/X]R〉 if p : τ → o in Σ

Σ.〈Ω ; Π, !A〉 7→ Σ.〈Ω, A ; Π〉
Σ.〈Ω ; Π, !R〉 7→ Σ.〈Ω, R ; Π〉

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 7→ (Σ, x : τ → ι).〈Ω ; Π, P 〉
Σ.〈Ω ; Π,∃X : τ → o. P 〉 7→ (Σ, X : τ → o).〈Ω ; Π, P 〉

Σ.〈Ω, R ; Π〉 7→ Σ.〈Ω, R ; Π, R〉

The first three transitions refer to the rules of L1.5 according to the definition in Appendix A.1. The next four handles
the remaining program forms. The last rule transfers a copy of an archived rule to the program part of the state for
further processing. Archived atoms are used in the first rule, which processes rewriting directives. As we will see,
each transition corresponds to the left sequent rule of the corresponding logical operator, as given in Appendix B.1.
Observe that we are implicitly making use of the congruences in Appendix A.6 in the way we organize the starting
state of each transition.

With the partial exception of ! which we decomposed over several rules, these transitions view each operator in
the language as a local state transformation directive. We can make this correspondence tighter by doing away with
the archive component of a state and merging the rules that process ! with the rules that use the resulting program
components. The following presentation does precisely this:

Transitions Σ. 〈Π〉 7→ Σ′. 〈Π′〉

Σ. 〈Π, !(l1), l2, (l1, l2)(P 〉 7→ Σ. 〈Π, !(l1), P 〉
Σ. 〈Π,∀x : ι. R〉 7→ Σ. 〈Π, [t/x]R〉 if · `Σ t : ι

Σ. 〈Π,∀X : τ → o.R〉 7→ Σ. 〈Π, [p/X]R〉 if p : τ → o in Σ

Σ. 〈Π, !R〉 7→ Σ. 〈Π, !R,R〉
Σ. 〈Π,∃x : τ → ι. P 〉 7→ (Σ, x : τ → ι). 〈Π, P 〉

Σ. 〈Π,∃X : τ → o. P 〉 7→ (Σ, X : τ → o). 〈Π, P 〉

where !(l) denotes a portion of the state that consists of zero or more reusable atoms. This presentation is equivalent
to the transitions at the beginning of this section and it too has its roots in linear logic. It is however somewhat harder
to work with. We will not pursue this presentation further.

47

A.8 Focused Rewriting Semantics

The focused operational semantics relies on the notion of a stable state Σ.〈Ω ; Π〉, whose program component Π is
defined as follows:

Stable state program Π ::= · empty state
| Π, A atom
| Π, R rule

The full set of focused transitions is as given next.

Rule transitions Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω, l1θ ; Π, l2θ,∀(l1, l2 (P)〉 Z⇒ Σ.〈Ω, l1θ ; Π, Pθ〉
Σ.〈Ω, l1θ,∀(l1, l2 (P) ; Π, l2θ〉 Z⇒ Σ.〈Ω, l1θ,∀(l1, l2 (P) ; Π, Pθ〉

Stabilizing transitions Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω ; Π′〉

Σ.〈Ω ; Π, !A〉 Z⇒ Σ.〈Ω, A ; Π〉
Σ.〈Ω ; Π, !R〉 Z⇒ Σ.〈Ω, R ; Π〉

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 Z⇒ (Σ, x : τ → ι).〈Ω ; Π, P 〉
Σ.〈Ω ; Π,∃X : τ → o. P 〉 Z⇒ (Σ, X : τ → o).〈Ω ; Π, P 〉

As we will see in Appendix B.2, these transitions stem from the interpretation of L1.5 in focused intuitionistic
logic. As for the unfocused rules, we have implicitly used the congruences in Appendix A.6 in this presentation.

To facilitate the parallel with focused linear logic, it is useful to give a second presentation of the focused opera-
tional semantics of L1.5 , and specifically of the rule transition judgment Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω ; Π′〉. We introduce an
additional rule processing judgment Σ.〈Ω ; Π, R 〉 7→ Σ′.〈Ω ; Π′〉 and define both by inference rules as follows:

Rule selection Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω ; Π, R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω ; Π, R〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω ; Π, R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω, R ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Rule processing Σ.〈Ω ; Π, R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω, l1 ; Π, l2, l1, l2 (P 〉 Z⇒ Σ.〈Ω, l1 ; Π, P 〉

· `Σ t : ι Σ.〈Ω ; Π, [t/x]R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω ; Π, ∀x : ι. R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

(Σ, p : τ → o).〈Ω ; Π, [p/X]R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

(Σ, p : τ → o).〈Ω ; Π, ∀X : τ → o.R 〉 Z⇒ Σ′.〈Ω ; Π′〉

It is easy to show that the transition Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉 at the beginning of this section is achievable if
and only if there is a derivation of Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉 according to the above rules. The rule selection rules
matches closely the focus rules of focused linear logic, while the rule processing rules correspond to the chaining of
appropriate non-invertible rules. This is discussed in further detail in Appendix B.2.

We can go one step further and directly define the judgment Σ.〈Ω ; Π〉V Σ′.〈Ω′ ; Π′〉mentioned in Section 2.1.3.
Recall that this judgment maps stable states to stable states by selecting one rule to apply and then stabilizing the
resulting state. It is realized by the following rules:

48

Stable transition Σ.〈Ω ; Π〉V Σ′.〈Ω′ ; Π′〉

Σ.〈Ω ; Π, R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω ; Π, R〉V Σ′.〈Ω′ ; Π′〉

Σ.〈Ω, R ; Π, R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω, R ; Π〉V S′.〈Ω′ ; Π′〉

Rule processing Σ.〈Ω ; Π, R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω, l1 ; Π, P 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω, l1 ; Π, l2, l1, l2 (P 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

· `Σ t : ι Σ.〈Ω ; Π, [t/x]R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω ; Π, ∀x : ι. R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

(Σ, p : τ → o).〈Ω ; Π, [p/X]R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

(Σ, p : τ → o).〈Ω ; Π, ∀X : τ → o.R 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Stabilization Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω ; Π〉 Z⇒ Σ.〈Ω ; Π〉

Σ.〈Ω, A ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω ; Π, !A〉 Z⇒ Σ′.〈Ω′ ; Π′〉

Σ.〈Ω, R ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω ; Π, !R〉 Z⇒ Σ′.〈Ω′ ; Π′〉

(Σ, x : τ → ι).〈Ω ; Π, P 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω ; Π,∃x : τ → ι. P 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

(Σ, X : τ → o).〈Ω ; Π, P 〉 Z⇒ Σ′.〈Ω′ ; Π′〉
Σ.〈Ω ; Π,∃X : τ → o. P 〉 Z⇒ Σ′.〈Ω′ ; Π′〉

The last four rules corresponds to invertible rules in focused linear logic.

We could simplify the operational semantics of L1.5 even further by observing that the existentials in a program
P can always be brought outward in prenex position (possibly after renaming bound variables). Therefore, every
program P is equivalent to a program of the form ∃Σ. PΠ, !(PΩ), where PΠ is a collection of atoms A and rules R,
and !(PΩ) denotes a similar collection of reusable atoms and rules. Notice that, when closed, PΠ has the form of a
stable state program and PΩ of an archive. This all implies that a rule R matches the template ∀(l(∃Σ. PΠ, !(PΩ)).

Then, the above rules collapse into the following two rules, each of which carries out a single step of execution
that transforms a stable state into another stable state.

Σ.〈Ω, l1θ ; Π, l2θ,∀(l1, l2 (∃Σ′. PΠ, !(PΩ))〉V (Σ,Σ′).〈Ω, l1θ, PΩθ ; Π, PΠθ〉

Σ.〈Ω, l1θ,∀(l1, l2 (∃Σ′. PΠ, !(PΩ))︸ ︷︷ ︸
Ω∗

; Π, l2θ〉V (Σ,Σ′).〈Ω∗, PΩθ ; Π, PΠθ〉

We can rewrite them as state transitions over stable states as follows:

Σ.〈Ω, l1θ ; Π, l2θ,∀(l1, l2 (∃Σ′. PΠ, !(PΩ))〉 V (Σ,Σ′).〈Ω, l1θ, PΩθ ; Π, PΠθ〉
Σ.〈Ω, l1θ,∀(l1, l2 (∃Σ′. PΠ, !(PΩ))︸ ︷︷ ︸

Ω∗

; Π, l2θ〉 V (Σ,Σ′).〈Ω∗, PΩθ ; Π, PΠθ〉

Although possible in this language, this last simplification may not be easily expressible in a larger language, for
example were we to include the choice operator & of [9].

49

B Logical Interpretation

This appendix discusses a fragment of intuitionistic linear logic that is related to the language examined in this report.
Section B.1 defines this fragment, multiplicative-exponential intuitionistic linear logic or MEILL, and shows its tradi-
tional derivation rules. Section B.2 gives a focused presentation. Section B.3 identifies the precise fragment of MEILL
our core language corresponds to and relates its rewriting semantics both to traditional and focused derivability. For
the sake of brevity, we do not distinguish between first- and second-order variables or quantification at the logical
level.

B.1 Multiplicative-exponential Intuitionistic Linear Logic

Multiplicative-exponential intuitionistic linear logic, MEILL for short, is the fragment of intuitionistic linear logic [17]
deprived of additive connectives and units.

Its formulas, denoted ϕ and ψ possibly with subscripts and superscripts, are defined by the following grammar:

Formulas ϕ ::= A | 1 | ϕ⊗ ϕ | ϕ(ϕ | !ϕ | ∀x : τ. ϕ | ∃x : τ. ϕ

Atomic formulas A are constructed as in L1.5 . In particular, symbols wherein are drawn from a signature Σ.
We describe derivability for MEILL in the sequent calculus style using a two-context judgment of the form

Γ; ∆ −→Σ ϕ

where Γ and ∆ are multisets of formulas called the persistent and linear context respectively. A context is defined as
follows:

Contexts ∆ ::= · Empty context
| ∆, ϕ Context extension

We will often use “,” as a context union operator and consider it commutative and associative with unit “·”. In a
sequent Γ; ∆ −→Σ ϕ, the linear context ∆ holds formulas that can be used exactly once in a derivation of ϕ, while
the formulas in the persistent context Γ can be used arbitrarily many times.

The rules defining the above judgment are given in Figure B.1. The cut rules for this language are admissible [31]
and have therefore been omitted. We have grayed out rules for the fragment of MEILL that do not correspond to any
operator in our rewriting language (see Appendix B.3 for details).

Observe that, aside for ⊗ and 1 which play a structural role, only left rules are retained.

50

Γ;ϕ −→Σ ϕ
init

Γ, ϕ; ∆, ϕ −→Σ ψ

Γ, ϕ; ∆ −→Σ ψ
clone

Γ; ∆ −→Σ ψ

Γ; ∆,1 −→Σ ψ
1L

Γ; · −→Σ 1
1R

Γ; ∆, ϕ1, ϕ2 −→Σ ψ

Γ; ∆, ϕ1 ⊗ ϕ2 −→Σ ψ
⊗L

Γ; ∆1 −→Σ ϕ1 Γ; ∆2 −→Σ ϕ2

Γ; ∆1,∆2 −→Σ ϕ1 ⊗ ϕ2
⊗R

Γ; ∆1 −→Σ ϕ1 Γ; ∆2, ϕ2 −→Σ ψ

Γ; ∆1,∆2, ϕ1 (ϕ2 −→Σ ψ
(L

Γ; ∆, ϕ1 −→Σ ϕ2

Γ; ∆ −→Σ ϕ1 (ϕ2
(R

Γ, ϕ; ∆ −→Σ ψ

Γ; ∆, !ϕ −→Σ ψ
!L

Γ; · −→Σ ϕ

∆; · −→Σ !ϕ
!R

· `Σ t : τ Γ; ∆, [t/x]ϕ −→Σ ψ

Γ; ∆,∀x : τ. ϕ −→Σ ψ
∀L

Γ; ∆ −→Σ,x:τ ϕ

Γ; ∆ −→Σ ∀x : τ. ϕ
∀R

Γ; ∆, ϕ −→Σ,x:τ ψ

Γ; ∆,∃x : τ. ϕ −→Σ ψ
∃L

· `Σ t : τ Γ; ∆ −→Σ [t/x]ϕ

Γ; ∆ −→Σ ∃x : τ. ϕ
∃R

Figure B.1: Multiplicative Exponential Intuitionistic Linear Logic — MEILL

51

B.2 Focused MEILL

A focusing presentation of logic hinges on the observation that some sequent rules are invertible, i.e., their application
during proof search can always be “undone”, while other rules are not. Invertible rules can therefore be applied
eagerly and exhaustively until a stable sequent emerges — a sequent where no such rules are applicable. In well-
behaved logics, in particular traditional and linear logic, non-invertible rules can be chained without compromising
completeness. Chaining means that, when applying a non-invertible rule, the next non-invertible rules target just the
by-products in the rule’s premises of the decomposition of the principal formula in its conclusion. Completeness
ensures that this can be carried out for as long as non-invertible rules can be applied to these by-products.

This suggests a proof-search strategy that alternates two phases: an inversion phase where invertible rules are
applied exhaustively. A formula in the resulting stable sequent is then selected as the focus of the search. A chaining
phase applies non-invertible rules to the formula in focus exclusively, putting its immediate subformulas in focus in
its premises. Chaining proceeds until no non-invertible rule is applicable to the formula in focus. At this point, a new
inversion phase begins, and so on until the derivation is completed or a failure is reported. In the latter case, proof
search backtracks to the beginning of the last chaining phase, where it selects another formula and repeats the process.
This approach to proof search is called focusing, and a logic for which it is complete is called focused (every logic for
which chaining is complete is focused).

A focused presentation of linear logic relies on the observation that either the left rules or the right rules of each
logical operator is invertible. This suggests classifying formulas accordingly. Positive formulas ϕ+ have invertible
left rules and negative formulas ϕ− have invertible right rules. One of the most remarkable facts about focusing is that
we can arbitrarily classify atomic formulas as positive or negative without impacting derivability, although the choice
determines the shape of derivations. This classification effectively assigns polarities to each logical operator and to
atoms. This leads to a polarized presentation of logic. A polarized grammar for MEILL is as follows:

Positive formulas ϕ+ ::= A+ | 1 | ϕ⊗ ϕ | !ϕ | ∃x : τ. ϕ
Negative formulas ϕ− ::= A− | ϕ(ϕ | ∀x : τ. ϕ

Formulas ϕ ::= ϕ+ | ϕ−

Forward-chaining search, which is what L1.5 relies on, is obtained by making all atoms positive. This is why we have
grayed out negative atoms in this grammar.

A stable sequent is one where the linear context consists solely of negative formulas or positive atoms, and the
right-hand side is either a positive formula or a negative atom (this latter case does not apply in our setting).

Stable linear context ∆ ::= · | ∆, ϕ− | ∆, A+

Stable right-hand side ψ ::= ϕ+ | A−

A focused presentation of MEILL (and linear logic in general) relies on the following four judgments:

Γ; ∆ =⇒Σ ϕ Generic sequent
Γ; ∆ =⇒Σ ψ Stable sequent
Γ; ∆, ϕ =⇒Σ ψ Left-focused sequent
Γ; ∆ =⇒Σ ψ Right-focused sequent

A generic sequent is subject to the application of invertible rules until a stable sequent is produced. Then, a formula
on either the left or the right is selected as the focus and non-invertible rules are applied to it and its descendant for as
long as possible. The focus is highlighted in red.

These judgments are realized by the rules in Figure B.2, where again we have grayed out rules that do not apply
in our setting. Notice that again, aside from ⊗ and 1, only left rules are retained. Once more, we omit the cut rules,
which are admissible.

The lines marked “focus” and “blur” are where phase alternation takes place. Specifically each of the “focus” rules
selects a formula from a stable sequent to start the chaining phase. The “blur” rules terminate the chaining phase once
no non-invertible rule is applicable to the formula in focus, thereby starting a new inversion phase. Observe that the
above rules maintain the invariant that each focused sequent has exactly one formula in focus.

52

Focus:
Γ; ∆, ϕ− =⇒Σ ψ

Γ; ∆, ϕ− =⇒Σ ψ
focusR

Γ, ϕ; ∆, ϕ =⇒Σ ψ (ϕ not A+)

Γ, ϕ; ∆ =⇒Σ ψ
focus!R

Γ; ∆ =⇒Σ ϕ+

Γ; ∆ =⇒Σ ϕ+
focusR

Γ;A+ =⇒Σ A+
atmL

Γ, A+; · =⇒Σ A+
atm!L

Γ; A− =⇒Σ A−
atmR

Γ; ∆ =⇒Σ ψ

Γ; ∆,1 =⇒Σ ψ
1L

Γ; · =⇒Σ 1
1R

Γ; ∆, ϕ1, ϕ2 =⇒Σ ψ

Γ; ∆, ϕ1 ⊗ ϕ2 =⇒Σ ψ
⊗L

Γ; ∆1 =⇒Σ ϕ1 Γ; ∆2 =⇒Σ ϕ2

Γ; ∆1,∆2 =⇒Σ ϕ1 ⊗ ϕ2

⊗R

Γ; ∆1 =⇒Σ ϕ1 Γ; ∆2, ϕ2 =⇒Σ ψ

Γ; ∆1,∆2, ϕ1 (ϕ2 =⇒Σ ψ
(L

Γ; ∆, ϕ1 =⇒Σ ϕ2

Γ; ∆ =⇒Σ ϕ1 (ϕ2
(R

Γ, ϕ; ∆ =⇒Σ ψ

Γ; ∆, !ϕ =⇒Σ ψ
!L

Γ; · =⇒Σ ϕ

∆; · =⇒Σ !ϕ
!R

· `Σ t : τ Γ; ∆, [t/x]ϕ =⇒Σ ψ

Γ; ∆, ∀x : τ. ϕ =⇒Σ ψ
∀L

Γ; ∆ =⇒Σ,x:τ ϕ

Γ; ∆ =⇒Σ ∀x : τ. ϕ
∀R

Γ; ∆, ϕ =⇒Σ,x:τ ψ

Γ; ∆,∃x : τ. ϕ =⇒Σ ψ
∃L

· `Σ t : τ Γ; ∆ =⇒Σ [t/x]ϕ

Γ; ∆ =⇒Σ ∃x : τ. ϕ
∃R

Blur:
Γ; ∆, ϕ+ =⇒Σ ψ

Γ; ∆, ϕ+ =⇒Σ ψ
blurL

Γ; ∆ =⇒Σ ϕ−

Γ; ∆ =⇒Σ ϕ−
blurR

Figure B.2: Focused Presentation of MEILL

Focusing is sound and complete for intuitionistic linear logic as shown in [22]. Worth mentioning is also the
elegant structural proof in [35] — it applies to traditional rather than linear logic although nothing prevents porting it
to the linear setting.

Theorem 7 (Soundness and Completeness of Focusing) Γ; ∆ −→Σ ψ if and only if Γ; ∆ =⇒Σ ψ.

Proof See [22, 35]. �

Formula templates that, when focused upon, are processed through non-invertible rules only (i.e., that have deriva-
tion stubs consisting of a chain of non-invertible rules) can be viewed as synthetic connectives. This derivation stub
coalesces into derived (non-invertible) rule, a right rule if the chain starts on the right and a left rule if it starts on the
left. It turns out that this formula template can be decomposed by means of invertible rules only when put on the other
side of the sequent. The corresponding derived rule is therefore itself invertible.

53

B.3 Interpretation

In this section, we identify L1.5 as a fragment of MEILL, show that its unfocused rewriting semantics stems from
the traditional derivation rules of MEILL for that fragment, and that its focused transitions are explained by the
corresponding focused rules.

B.3.1 Translation

The rewriting language L1.5 examined in this report corresponds to a fragment of MEILL. AtomsA of L1.5 are exactly
the atomic formulas A of MEILL. The quantifiers, ! and the rewrite directive(are mapped to the identical operators
of linear logic. Multiset union “,” and the empty multiset “·” within a program correspond instead to the tensor ⊗ and
its unit 1.

This correspondence is formalized as follows, where the MEILL formula for program P is denoted pPq, and
similarly for left-hand sides and rules.

Rewriting Logic

LHS p·q = 1
pA, lq = A⊗ plq

Rules pl(Pq = plq (pPq
p∀x: ι. Pq = ∀x: ι. pPq

p∀X: τ → o. Pq = ∀X: τ → o. pPq

Programs p·q = 1
pP1, P2q = pP1q⊗ pP2q
pAq = A
p!Aq = !pAq
pRq = pRq
p!Rq = !pRq

p∃x: τ → ι. Pq = ∃x: τ → ι. pPq
p∃X: τ → o. Pq = ∃X: τ → o. pPq

Here, we have made explicit the distinction between first- and second-order entities in MEILL since we distinguished
them in L1.5 .

This translation identifies a linguistic fragment of MEILL that is given by the following grammar:

LHS ϕl ::= · | A⊗ ϕl
Rules ϕR ::= ϕl(ϕP | ∀x : ι. ϕR

| ∀X : τ → o. ϕR
Programs ϕP ::= · | ϕP ⊗ ϕP | A | !A | ϕR | !ϕR | ∃x : τ → ι. ϕP

| ∃X : τ → o. ϕ

This is nothing more than the grammar of left-hand sides, rules and programs from Appendix A.1 expressed using
MEILL formulas.

We also give an encoding of archives to linear formulas consisting of the conjunction of their constituents, as we
rely on these entities to discuss the correspondence between L1.5 and MEILL.

Rewriting Logic

Archives p·q = 1
pΩ, Aq = pΩq⊗ !A
pΩ, Rq = pΩq⊗ !pRq

Then, given a state Σ.〈Ω ; Π〉, we write ∃Σ. p!Ω; Πq for the MEILL formula ∃Σ. pΩq⊗pΠq obtained by prefixing
the combined translation pΩq⊗ pΠq of Ω and Π with an existential quantifier for every declaration in the signature Σ.

54

Below, we will make use of the following homomorphic mapping of an archive Ω to (persistent) contexts Γ in
MEILL:

Rewriting Logic

Archives d·e = ·
dΩ, Ae = dΩe, A
dΩ, Re = dΩe, dRe

We will also rely on the following non-deterministic encoding of the program component Π of a state Σ.〈Ω ; Π〉 to a
(linear) context ∆:

Rewriting Logic

State programs dP1, P2e = dP1e, dP2e
dP e = pPq

This encoding is non-deterministic as the union (P1, P2) of a two L1.5 programs can be translated either a context that
contains a single formula pP1, P2q or as a context which contains possible more formulas obtained by encoding P1

and P2 in the same way recursively.

B.3.2 Unfocused Transitions

State transition rules inL1.5 correspond to derivable sequents of MEILL, a result that has been proved in a more general
setting in [9]. In fact, each of our transition rules stems from one of the left rules of the operators in Appendix B.1,
possibly helped by some other rules that play a structural role. The transitions for the rewriting quantifiers match
exactly the left rules for the logic quantifiers when read from conclusion to premise. The transition for(stems from
rule(L, relying on the rules for ⊗ and 1 to break the corresponding elements in the state program and rules init and
clone to match each atom within with a corresponding left-hand side atom.

Given a state Σ.〈Ω ; Π〉, the following property is proved as in [9].

Theorem 8 (Soundness) If ` Σ.〈Ω ; Π〉 state and Σ.〈Ω ; Π〉 7→ Σ′.〈Ω′ ; Π′〉, then dΩe; dΠe −→Σ ∃Σ′. p!Ω′; Π′q.

While a formal proof can be found in [9], we now show the derivation snippet that corresponds to each transition. As
we do so, we make implicit use of the left derivation rules for ⊗ and 1 to break dΠe into context formulas that do not
have these connectives as their topmost operator. The mapping between unfocused transitions in L1.5 and derivation
snippets in linear logic is as follows, where the formula ψ in each case is as in the above theorem [9] and we are

55

making implicit uses of the definition of the encodings p−q and d−e.

Σ.〈Ω, l1 ; Π, l2, (l1, l2)(P 〉 7→ Σ.〈Ω, l1 ; Π, P 〉

· · · dΩ, l1e;A −→Σ A · · ·
· · ·

dΩ, l1e; dl2e −→Σ pl1, l2q dΩ, l1e; dΠ, P e −→Σ ψ

dΩ, l1e; dΠ, l2, (l1, l2)(P e −→Σ ψ
(L

Σ.〈Ω ; Π,∀x : ι. R〉 7→ Σ.〈Ω ; Π, [t/x]R〉
if · `Σ t : ι

· `Σ t : ι dΩe; dΠ, [t/x]Re −→Σ ψ

dΩe; dΠ,∀x : ι. Re −→Σ ψ
∀L

Σ.〈Ω ; Π,∀X : τ → o.R〉 7→ Σ.〈Ω ; Π, [p/X]R〉
if p : τ → o in Σ

p : τ → o in Σ dΩe; dΠ, [p/X]Re −→Σ ψ

dΩe; dΠ,∀X : τ → o.Re −→Σ ψ
∀L

Σ.〈Ω ; Π, !A〉 7→ Σ.〈Ω, A ; Π〉
dΩ, Ae; dΠe −→Σ ψ

dΩe; dΠ, !Ae −→Σ ψ
!L

Σ.〈Ω ; Π, !R〉 7→ Σ.〈Ω, R ; Π〉
dΩ, Re; dΠe −→Σ ψ

dΩe; dΠ, !Re −→Σ ψ
!L

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 7→ (Σ, x : τ → ι).〈Ω ; Π, P 〉
dΩe; dΠ, P e −→Σ,x:τ→ι ψ

dΩe; dΠ,∃x : τ → ι. P e −→Σ ψ
∃L

Σ.〈Ω ; Π,∃X : τ → o. P 〉 7→ (Σ, X : τ → o).〈Ω ; Π, P 〉
dΩe; dΠ, P e −→Σ,X:τ→o ψ

dΩe; dΠ,∃X : τ → o. P e −→Σ ψ
∃L

Σ.〈Ω, R ; Π〉 7→ Σ.〈Ω, R ; Π, R〉
dΩ, Re; dΠ, Re −→Σ ψ

dΩ, Re; dΠe −→Σ ψ
clone

The first correspondence, for (, requires some explanation: the derivation on the left branch is completed by us-
ing rules ⊗L and 1L to decompose dl2e into individual atomic formulas in the linear context. Then, rules ⊗R and
1R are applied to break the formula pl1, l2q into atoms. Doing so exhaustively leaves sequents of either the form
dΩ, l1e;A −→Σ A or dΩ, l′1, Ae; · −→Σ A where l1 = l′1, A. The first form is immediately resolved by a use of rule
init, the second prepares for such an application by means of rule clone.

It is worth noting that this proof does not makes use of the grayed out rules from Appendix B.1. However, were
we to replace the initial rule

Γ;ϕ −→Σ ϕ
init with the more canonical

Γ;A −→Σ A
atm

the resulting derivation would need the grayed out rules, in general.
The above soundness theorem holds for the iterated transition relation 7→∗.

B.3.3 Focused Transitions

Accounting for polarities in the translation of L1.5 we just saw, left-hand sides and rules yield negative formulas while
programs map to positive formulas:

LHS ϕ+
l ::= · | A+ ⊗ ϕ+

l

Rules ϕ−R ::= ϕl(ϕ+
P | ∀x : ι. ϕ−R

| ∀X : τ → o. ϕ−R
Programs ϕ+

P ::= · | ϕ+
P ⊗ ϕ

+
P | A+ | !A+ | ϕ−R | !ϕ−R | ∃x : τ → ι. ϕ+

P

| ∃X : τ → o. ϕ

The lone occurrence of ϕ−R in the production for ϕ+
P can be accounted for by rewriting it as ϕ−R ⊗ 1, for example

56

Observe that a program state, which we wrote Π, consists of atoms A+, negative conjunctions ϕ+
P ⊗ ϕ

+
P and units

1 (which can be simplified immediately as the left rules of these operators are invertible), existentials (whose left rules
are also invertible), exponentials (whose left rule is invertible too), and formulas corresponding to either rules ϕ−R or
atoms A+. A stable state corresponds to a stable program: it contains only atoms and the representation of single-use
rules only. This is also the form the persistent context has — it is populated from an archive.

The focused transition rules discussed in Appendix A.8 match focused derivation rules of MEILL in a more
sophisticated way than their unfocused counterpart. The transitions for the existential programs and reusable entities
work in the same way: existential and exponential formulas are positive since the left rule of their operator is invertible.
Rules ∀(l(P) in L1.5 correspond however to negative formulas according to our translations. Therefore they start a
chaining phase which ends when the (translation of) the embedded program P (a positive formula) is processed. The
rewriting transition for L1.5 rules captures exactly this chaining phase. Reusable L1.5 rules are handled similarly, but
their use is introduced by rule focus!L.

The program component Π of a stable state is transformed into a linear context obtained by mapping all occurrences
of “,” and “·” to their identically-denoted context-level operators. Therefore, a stable state is mapped to a context
consisting solely of single-use atoms and rules. It is defined as follows.

Rewriting Logic

Stable state programs d·e = ·
dΠ, Ae = dΠe, A+

dΠ, Re = dΠe, pRq

The above argument is summarized by the following soundness theorem, which distinguishes cases based on
whether the starting state is stable or not (after applying rules ⊗L and 1L exhaustively).

Theorem 9 (Soundness) Assume that ` Σ.〈Ω ; Π〉 state .

1. If Π is stable (i.e., Π has the form Π) and Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉, then dΩe; dΠe =⇒Σ ∃Σ′. p!Ω′; Π′q.

2. If Π is not stable and Σ.〈Ω ; Π〉 Z⇒ Σ′.〈Ω′ ; Π′〉, then dΩe; dΠe =⇒Σ ∃Σ′. p!Ω′; Π′q.

Proof The proof proceeds as in the unfocused case, except for an additional induction on the number of universal
quantifiers appearing in an L1.5 rule. �

It should be observed that the constructed derivation can make use of all the rules of focused linear logic, including the
ones that have been grayed out. This is the reason why focused and unfocused transitions in L1.5 are not equivalent,
despite Theorem 7.

As in the unfocused case, we distill the key elements of the proof by showing how each focused transition in L1.5

57

maps to a focused derivation snippet in MEILL.

Σ.〈Ω, l1θ ; Π, l2θ,∀(l1, l2 (P)〉 Z⇒ Σ.〈Ω, l1θ ; Π, Pθ〉

· · · dΩ, l1θe; dAθe =⇒Σ A+θ
atmL

· · · dΩ, l′1θ,Aθe; · =⇒Σ A+θ
atm!L

· · ·
· · ·

dΩ, l1θe; dl2θe =⇒Σ pl1θ, l2θq

dΩ, l1θe; dΠ, Pθe =⇒Σ ψ

dΩ, l1θe; dΠe, pPθq =⇒Σ ψ
blurL

dΩ, l1θe; dΠ, l2θe, pl1, l2 (Pqθ =⇒Σ ψ
(L

dΩ, l1θe; dΠ, l2θe, p∀(l1, l2 (P)q =⇒Σ ψ
∀L(repeated)

dΩ, l1θe; dΠ, l2θ,∀(l1, l2 (P)e =⇒Σ ψ
focusL

Σ.〈Ω, l1θ,∀(l1, l2 (P)︸ ︷︷ ︸
Ω∗

; Π, l2θ〉 Z⇒ Σ.〈Ω∗ ; Π, Pθ〉

(as above)
dΩ∗e; dΠ, l2θe, p∀(l1, l2 (P)q =⇒Σ ψ

dΩ∗e; dΠ, l2θe =⇒Σ ψ
focus!L

Σ.〈Ω ; Π, !A〉 Z⇒ Σ.〈Ω, A ; Π〉
dΩ, Ae; dΠe =⇒Σ ψ

dΩe; dΠ, !Ae =⇒Σ ψ
clone

Σ.〈Ω ; Π, !R〉 Z⇒ Σ.〈Ω, R ; Π〉
dΩ, Re; dΠe =⇒Σ ψ

dΩe; dΠ, !Re =⇒Σ ψ
clone

Σ.〈Ω ; Π,∃x : τ → ι. P 〉 Z⇒ (Σ, x : τ → ι).〈Ω ; Π, P 〉
dΩe; dΠ, P e =⇒Σ,x:τ→ι ψ

dΩe; dΠ,∃x : τ → ι. P e =⇒Σ ψ
∃L

Σ.〈Ω ; Π,∃X : τ → o. P 〉 Z⇒ (Σ, X : τ → o).〈Ω ; Π, P 〉
dΩe; dΠ, P e =⇒Σ,X:τ→o ψ

dΩe; dΠ,∃X : τ → o. P e =⇒Σ ψ
∃L

Observe how chaining tracks exactly the structure of a L1.5 rule ∀(l (P). Because this pattern is fully handled by
invertible rule when translated to logic, it gives rise to a synthetic connective, whose left rule has the form

dΩ, l1θe; dΠe, pPθq =⇒Σ ψ

dΩ, l1θe; dΠ, l2θe, p∀(l1, l2 (P)q =⇒Σ ψ

which corresponds closely to the focused transition for L1.5 rules. An exact correspondence is obtained by bracketing
it between uses of rules focusL and blurL:

dΩ, l1θe; dΠ, Pθe =⇒Σ ψ

dΩ, l1θe; dΠ, l2θ,∀(l1, l2 (P)e =⇒Σ ψ

The same happens to a reusable rule !∀(l(P) once it has been archived (i.e., inserted in the persistent context using
rule clone on the logic side). Bracketing the above synthetic rule between focus!L and blurL yields the derived rule

dΩ, l1θ,∀(l1, l2 (P)e; dΠ, Pθe =⇒Σ ψ

dΩ, l1θ,∀(l1, l2 (P)e; dΠ, l2θe =⇒Σ ψ

which corresponds exactly to the focused L1.5 transition for reusable rules.
Some of the same comments we made when discussing the unfocused correspondence apply here also. Addition-

ally, the substitution term used for each instance of rule ∀L is exactly what the substitution θ associates to the variable
processed by this rule. The proof of the sequent dΩ, l1θe; dl2θe =⇒Σ pl1θ, l2θq is again interesting. Because the lin-
ear context pl1θq is stable, it does not have occurrences of ⊗ nor 1 (it is a multiset of bare atoms). As a consequence,
this derivation is chained all the way to the applications of rules atmL and atm!L (or 1R if l2 is empty). As earlier, we
wrote l1 as l′1, A in the displayed use of rule atm!L.

58

The same argument can be made starting from the other formulations of the focused transition semantics of L1.5

seen in Appendix A.8. In particular, our second presentation, which decomposed the transitions for single-use and
reusable rules into discrete steps, is essentially isomorphic to the focused left sequent rules for the logical operators
corresponding to each case. Our third presentation, which went from stable state to stable state, combines the chaining
phase of a step with the immediately following inversion phase.

59

	Introduction
	Core Language
	Multiset Rewriting with Existentials and Nested Rules
	Syntax
	Typing
	Operational Semantics
	Relationship to Other Languages

	Logical Foundations
	Mild Higher-Order Quantification

	Adding Modularity
	Name Space Separation
	Modes
	Abstract Data Types
	Parametric Modules – I
	Sharing Private Names
	Parametric Modules – II

	Multiset Rewriting with Modules
	Related Work
	Future Work and Conclusions
	References
	Language Summary
	Syntax
	Typing
	Typing with Safety Checks
	First-Order Encoding
	Typechecking Modular Programs
	Congruence
	Unfocused Rewriting Semantics
	Focused Rewriting Semantics

	Logical Interpretation
	Multiplicative-exponential Intuitionistic Linear Logic
	Focused MEILL
	Interpretation
	Translation
	Unfocused Transitions
	Focused Transitions

