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Abstract
In this thesis I present a scalable approach to distribution-to-distribution

regression on large, multi-dimensional datasets. The basic algorithm is demon-
strated on 1-dimensional toy data, then modified for efficiency and scalabil-
ity. Key enhancements include parallel computation of non-parametric esti-
mators and the use of a ball tree to support efficient nearest-neighbor search
in high dimension. I then explore the ability of this technique to compute
the final states of cosmological N-body simulations. An existing method
uses cosmological perturbation theory to rapidly approximate the evolution
of simulations; I attempt to learn the unknown function from the approxi-
mate to the true distributions, thereby exploiting the speed of perturbative
approximation while still approaching the accuracy of a true N-body simu-
lation. I investigate whether it is possible to train the algorithm on O(1) sim-
ulations that have been run both exactly and approximately, thereby making
it possible to quickly generate many more final simulation states via regres-
sion.
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Chapter 1

Introduction

In statistics, a traditional regression model relates some dependent variables Y to a

function f of some independent “feature” variables X and perhaps some unknown pa-

rameters β: Y ≈ f(X, β). Here, X and Y are typically vectors with real-valued compo-

nents. However, the domain to which regression methods can be applied has begun to

expand. In particular, there has been growing interest in performing regression on or

between infinite-dimensional domains, such as the space of probability distributions.

Recent efforts in this direction include regression from a probability distribution to a

real-valued scalar response [1] and from one probability distribution to another [7].

The work by [7], especially, opens up an interesting new domain of real-world prob-

lems to which regression analysis may be applied. Their algorithm makes only weak

assumptions about the nature of the input and output distributions, so its potential

applications are wide-ranging. Indeed, they demonstrate an implementation on both

synthetic and real data. However, the algorithm as presented in [7] is most suitable

for applications in which there is an abundant amount of training data and the size of

each training sample is small. In some real scenarios, the difficulties involved in making

training samples may be the motivation for using regression in the first place. Indeed,

the samples may be computationally expensive both to generate and to manipulate. In
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this case, the algorithm suffers from two basic problems: first, there may not be enough

training data in order to make accurate predictions for new input instances; and second,

the computations involved in the algorithm may be insufficiently efficient to justify its

use.

Consider one promising scientific domain in which this kind of algorithm may be

useful, namely the simulation of cosmic structure. Cosmologists use N-body simula-

tions to study the formation of galaxies, measure cosmological parameters, constrain

the properties of dark matter, and assist with other key areas of research. Though in-

valuable, these simulations can be very computationally expensive to make, and it is

generally necessary to sacrifice quality for quantity in order to make enough simula-

tions to derive meaningful statistics.

One way of computing a fast but approximate final simulation state is by using

cosmological perturbation theory. Without going into detail here (see Chapter 5 for a

brief technical overview of the theory), perturbation theory offers a way to approximate

the evolution of a cosmological system to greater and greater accuracy by computing

successively higher-order terms. When only, say, first- and second-order terms are in-

cluded, the computation is typically much faster than the equivalent N-body simula-

tion.

In one sense, perturbative methods clearly compete with machine learning in this

domain: they offer a fast, controllably approximate alternative to running a full simula-

tion. At the same time, however, they may contribute an alternative source of training

data for machine learning algorithms. That is, suppose you need a large number of sim-

ulations run. You could run a few of them to completion, both exactly using N-body

simulation, and approximately using perturbative theory. The density distributions in

the exact final simulation states may be regarded as an unknown function of the distri-

butions in the approximate final states.
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Approximate Simulation of the 
Universe, P0Initial condition of the Universe

Full Simulation of the Universe, 
Q0

Distribution-to-
distribution regression

Approximate 
evolution of Universe

O(10)
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Exact evolution of the Universe

O(100,000) CPU seconds

O(10)
sec

Figure 1.1: Comparison between the intended DTDR application and ordinary N-body

simulation. Image courtesy of Professor Shirley Ho.

Now suppose machine learning, specifically distribution-to-distribution regression,

could be used to determine that function after training on only a few of the simulations.

If this worked well enough, you could run approximate versions of the remaining sim-

ulations, then use the approximate final states as input to the regression algorithm. The

regressor could then estimate the final states that would have resulted from running the

approximated simulations to completion as N-body simulations. That is, once the re-

gressor had been “trained” on enough examples of approximate and exact simulations,

it could be used to produce many more final simulation states relatively cheaply from

their initial conditions, with the perturbative approximation as an intermediate step.

Indeed, this is the approach to simulation regression that I will pursue in this thesis.

The hope, at illustrated in Figure 1.1, is that the regression step can be performed about
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as fast as the perturbative approximation, so that the computation is much faster than

comparatively brute-force N-body simulation.

If machine learning could be used to efficiently generate final, high-resolution sim-

ulations from initial conditions, a large body of research would be enabled or enhanced

as a result. However, only a few high-resolution simulations may reasonably be run to

completion for use as training data, and each simulation dataset is quite large, consist-

ing of perhaps hundreds of millions or even billions of particles. It is therefore necessary

to work with a scaled version of the algorithm in this domain, if this kind of regression

approach is to be useful. I will pursue one such approach to scaling, with some associ-

ated algorithmic optimizations, and analyze its effectiveness on simulation data.

In this thesis, I explain the original algorithm from [7], as well as the related math-

ematics, in Chapter 2. In Chapter 3, I recreate the success of the original algorithm on

the 1D toy example in [7]. I introduce and justify certain modifications that allow for a

more efficient implementation. I then develop a scaled version of the algorithm, suit-

able for applications involving much larger, higher-dimensional datasets, in Chapter 4.

This necessitates some discussion of implementation details with regards to managing

and performing computations efficiently on large training samples. I demonstrate the

effectiveness of the scaled version on datasets from N-body simulations of dark mat-

ter in Chapter 5. Finally, I conclude the thesis with some discussion of the domains to

which both versions of the algorithm may reasonably be applied.
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Chapter 2

Original Algorithm

The approach taken in [7] may be understood by analogy to regression between real-

valued scalars: given a number of training examples of the form (x, y), where x and

y are both scalar values related by a function f(x) = y, the goal is to estimate g(x0)

for some arbitrary value x0 that likely does not appear in the training set. Often, a

linear smoother is used as a nonparametric estimator for g. Intuitively, those values of

Y corresponding to X instances close to x0 should yield a better approximation to its

true function value y0. So we could estimate y0 as f̂(x0) =
∑

iw(xi− x0)y(xi), where the

index ranges over all the training examples, and the weighting function w gives greater

weight to training examples more “similar” to x0.

The proposed algorithm works similarly, with a few key distinctions. In particu-

lar, rather than a query scalar x0, we have a query distribution P0. In practice, we

do not observe P0 directly; rather, we observe it indirectly through a sample X0 =

{X01, . . . , X0n0}
iid∼ P0. Using samples taken from the input and output distributions,

we can estimate their pdfs; we can then estimate the pdf f(p0) with a linear smoother of

the form:
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f̂(p̂0) =
M∑
i=1

q̂iW (P̂i, P̂0) (2.1)

Here, P̂0 is the estimator of P0 obtained from the sample X0.

Figure 2.1: Graphical overview of the structure of the data. The training data consists

of M input-output pairs, each of which is considered to be a sample from an unknown

probability density function. The goal is to learn the function f in order to compute

f(X0) for a test instance X0.

Recall that we do not directly observe the output densities qi = f(pi); rather, in each

case, we must work with a finite sample drawn from qi. This concept is illustrated in

Figure 2.1, taken from [7]. Note the structure of the data: each training instance consists

of two samples, Xi and Yi, drawn from unknown distributions P̂i and Q̂i, respectively.
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Since the true distributions that gave rise to the training data are unknown, it is

necessary to infer some estimate of qi from each sample. This can be done in a nonpara-

metric way using an orthogonal series estimator (see e.g. [12], [6]), which allows you to

build an arbitrary distribution out of some set of basis functions.

Orthogonal series density estimation is simplest to understand in a single dimen-

sion. Suppose we have a random variable X whose range is restricted to [0, 1]. Suppose

also that the probability density f ofX is square integrable. Then, given some orthonor-

mal basis {φj}, f may be approximated to arbitrary accuracy by a partial sum of the

form

fJ(x) :=
J∑
j=0

θjφj(x), 0 ≤ x ≤ 1 (2.2)

where

θj =

∫ 1

0

φj(x)f(x)dx. (2.3)

Figure 2.2: Cosine basis functions φj for j = 0, 1, 2, and 3.
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For instance, {φj} could be the cosine basis: {φ0(x) = 1, φj(x) =
√

2 cos(πjx), j =

1, 2, . . . }. Indeed, this is the basis I use throughout the project; the first few functions

are shown in Figure 2.2. The parameter J is known as the cutoff, and in this case, the

coefficient θj is called the jth Fourier coefficient of f . Now, we automatically know the

value of the 0th coefficient: θ0 =
∫ 1

0
f(x)dx = P (X ∈ [0, 1]) = 1, since [0, 1] is the range

of the variable X . For the remaining coefficients, note that

θj =

∫ 1

0

f(x)φj(x)dx = E{φj(X)}. (2.4)

That is, since each of the coefficients is simply an expectation value, we may estimate

each one via the sample mean estimator:

ˆ
θj =

1

n

n∑
l=1

φj(Xl). (2.5)

Now suppose we are dealing more generally with a multi-dimensional output dis-

tribution q defined on the unit hypercube; i.e. the domain of the output distribution,

Λl ⊆ Rl, and Λ = [0, 1].

Then, given an orthonormal basis {φi}i∈Z, the tensor product {φα
α∈Zl
} of that basis

serves as an orthonormal basis for L2(Λl), the space of square-integrable functions on

Λl, where:

φα = Πl
i=1φαi(xi), x ∈ Λl (2.6)

In other words, ∀α, γ ∈ Zl, the inner product 〈φα, φγ〉 = Iα=γ , where I is the unit

matrix.

Then, the output distribution q may be expressed as

q(x) =
∑
α∈Zl

aα(Q)φα(x) (2.7)
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where

aα(Q) = 〈φα, q〉 =

∫
Λl
φα(z)dQ(z) ∈ R. (2.8)

Given estimators for each q̃i, the estimator q̂0 = f̂(p̃0) may be expressed as:

q̂0(x) = [f̂(p̃0)](x) =
M∑
i=1

q̃i(x)W (P̃i, P̃0) (2.9)

=
M∑
i=1

(∑
α∈At

aα(Q̂i)φα(x)

)
W (P̃i, P̃0) (2.10)

=
∑
α∈At

(
M∑
i=1

aα(Q̂i)W (P̃i, P̃0)

)
φα(x) (2.11)

=
∑
α∈At

âαφα(x) (2.12)

where âα =
∑M

i=1 aα(Q̂i)W (P̃i, P̃0) and the weights W (P̃i, P̃0) are obtained by kernel

smoothing:

W (P̃i, P̃0) =


K(

D(P̃i,P̃0)

b
)∑M

j=1K(
D(P̃j ,P̃0)

b
)
, if

∑M
j=1K(

D(P̃j ,P̃0)

b
) > 0.

0, otherwise.

(2.13)

Here, D is a metric, K is a kernel function, and b is a bandwidth parameter equal to

the sum of the distances from any test input distribution to all the training test distribu-

tions. Note that the bandwidth effectively normalizes D(P̃i, P̃0), controls the degree of

smoothing, and affects whether the input to K is between 0 and 1, which is especially

significant if K is only defined on that interval. In [7], D is taken to be the L1 distance,

D(P̃i, P̃0) = ‖p̃0 − p̃i‖1 =
∫
|p̃0(x)− p̃i(x)|dx (which is indeed defined only on [0,1]), and

the regression weights are computed using the triangle kernel: (1 − |x|)+. The kernel

function is strictly decreasing on the positive x-axis, so more similar training examples

(i.e. with lower distances to a test input) are weighted higher.

9
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Chapter 3

1D Implementation and Experiments

3.1 Toy Data

I will now demonstrate an implementation of the algorithm just described on synthetic,

1-dimensional data drawn from distributions defined on [0, 1]. I used distributions of

the same form as used in [7], and I learned the same function, namely reflection about a

vertical axis at x = 0.5. To create each input/output pair, I first drew µ1, µ2 ∼ Unif[0, 1]

and σ1, σ2 ∼ Unif[.05, .1]. Then the input p(x) and output q(x) were defined as follows:

p(x) =
1

2
g(x;µ1, σ1) +

1

2
g(x;µ2, σ2) (3.1)

q(x) =
1

2
g(x; 1− µ1, σ1) +

1

2
g(x; 1− µ2, σ2) (3.2)

Here, g(x) is the truncated normal pdf on [0, 1]:

g(x;µ, σ) =
1
σ
φ(x−µ

σ
)

Φ(1−µ
σ

)− Φ(−µ
σ

)
(3.3)

where φ and Φ refer to the standard normal pdf and cdf, respectively. See Figure 3.1

for an example of an input/output distribution pair.
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Figure 3.1: An example input (blue) and output (green) distribution pair with µ1 = .3,

µ2 = .6, σ1 = .05, σ2 = .07.

In each experiment, I generated M training instances of the form (pi, qi). Then for

each pair, I drew a sample Xi from pi and a sample Yi from qi, where both samples

consisted of η points: |Xi| = |Yi| = η. Since both M and η have the same impact on

the L2 error [7], for convenience, I held M = η. I fit each sample by computing the first

T coefficients of a Fourier series approximation (see Figure ??). I retained 10% of the

training instances for cross-validation of the bandwidth, which is chosen from a hard-

coded set of representative values. Finally, I generated another .10M testing instances

in the same manner, and I computed estimators for the testing output distributions

according to the prescription in Chapter 2.
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Figure 3.2: Figure (a) shows an example distribution with µ1 = .3, µ2 = .6, σ1 = .05, σ2 =

.07 (blue curve). Normalized sample of 1000 points drawn from the distribution (red

histogram). Figure (b) shows the same sample from (a), shown with 20-term orthogonal

series density estimator of the parent distribution (black curve).

3.2 Modifications to the Original Algorithm

Here I introduce some immediate modifications to the original algorithm, indepen-

dently of any effort at scaling. These changes are, for the most part, relatively minor,

and should only serve to make the algorithm more efficient in practice. They do antici-

pate some challenges associated with the scaled algorithm, which will be addressed in

greater detail in the next section.

Now, recall that the original version of the algorithm defined the “distance” between

two distribution in terms of the L1 norm. However, the L1 norm is an integral of an

absolute value, so in practice, this requires computing a numerical integral for each

pair of distributions. This is quite inefficient, especially when done to a desirable accu-

racy. It is possible to use the L2 norm instead without corrupting any of the proofs in

[7], and indeed, this turns out to be preferable for several reasons. In particular, note

that the L2 distance simplifies to a sum of squared differences of the coefficients c, i.e.
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D(P̃i, P̃0) = ‖p̃0− p̃i‖2
2 =

∑
j(c0,j − ci,j)2. This makes it possible to work directly with the

coefficients rather than actually building the nonparametric estimator functions, and in

testing it speeds up the computation of pairwise distances by a factor of ∼ 10, 000. I

have also used the L2 distance as an error metric when choosing the bandwidth: the

bandwidth that yields the lowest average L2 distance between the predicted and ap-

proximate distributions for the cross-validation instances is selected for regression on

the test set. Ultimately, the performance on the test set is also measured in terms of the

L2 distance.

Similarly, the use of the triangle kernel was not essential to the original algorithm;

any kernel would do. Among the disadvantages of the triangle kernel is that it requires

checking whether each input lies in the range [0,1]; if not, the kernel output must be

set to 0. If you try to force the inputs into that range via the bandwidth, you risk over-

smoothing your estimator, which may have achieved a lower cross-validated error for

an even smaller bandwidth. Consequently, I have worked instead with the Gaussian

(RBF) Kernel, K(x) = e−x
2/2, which is defined for all non-negative x.

Another inhibiting factor in the speed of the algorithm, even on small datasets, is

the need to consider every training instance when regressing on a single test instance.

Certainly, for most datasets, the vast majority of the training instances will be quite

dissimilar to a given test instance, so their impact on the quality of the regression will

be minimal. For this reason, it makes sense to consider only the K nearest neighbors of

a test instance, i.e. the K most similar training instances, during the regression phase.

Unlike the previous modifications, this change has a potential to impact the accuracy of

the algorithm in favor of speeding it up. Consequently, the performance implications

will be examined carefully in the next section.
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3.3 Free Parameters and Performance

Since training data consists of samples from distributions rather than distributions them-

selves, there is necessarily some approximation inherent to their representation. In-

creasing the number of terms T in the nonparametric estimator improves the accuracy

of that approximation at the cost of slowing the computation somewhat. However, it’s

clear that the number of samples available from each distribution also limits the accu-

racy to which it can be approximated, so past a certain point, adding more terms to the

nonparametric estimator should yield no further benefit.

This effect can be seen in Figure 3.3. In particular, when the number of samples is

small (e.g. 100), a high value of T causes visible overfitting. In general, a reasonable

value of T may be ascertained empirically. But formally, the optimal T value minimizes

the unbiased risk, given by:

Ĵ(T ) =
1

n− 1

T∑
j=1

[
2

n

n∑
i=1

φ2
j(Xi)− (n+ 1)ĉ2

j

]
(3.4)

It’s worth noting that increasing T past a certain point may simultaneously waste

computational effort and cause overfitting, especially for small sample size. This could

be avoided by determining T via cross-validation, alongside the bandwidth, although

this would require testing a grid of (T, b) values and would therefore be inefficient

relative to the expected gains in performance. So instead, as a rule of thumb, I let

T = 5 log(x), where x is the number of samples taken from the distribution. This rule

was used to determine the cutoff values of T in Figure 3.3.

While the exact value of Ĵ(T ) will naturally vary with the particular sample in-

volved, this rule tends to hold up well when Ĵ(T ) is explicitly calculated for a toy

sample. Consider the curve in Figure 3.4, for example, which shows that Ĵ is mini-

mized at or above the recommended value of T (N). Conveniently, this sort of plot can

still be made when the samples, coefficients, etc. have more than one dimension, i.e.
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(a) 100 Samples; Tcut=10
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(b) 1,000 Samples; Tcut=15
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(c) 10,000 Samples; Tcut=20
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(d) 100,000 Samples; Tcut=25

Figure 3.3: Samples from distribution with µ1 = .3, µ2 = .6, σ1 = .05, σ2 = .07. Curves

shown use T values from 0 through 40. In each image, the curve from a cutoff value Tcut

is shown in dashed black; curves with smaller values of T are in blue, and those with

larger values are in red.
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Figure 3.4: Ĵ(T ) for a set of 1,000 samples. The rule-of-thumb cutoff value of T , i.e.

5 log(1000) = 15, is indicated with the vertical blue line.

when plots in the style of Figure 3.3 are no longer useful. That is, Ĵ can still be used

to determine a reasonable number of coefficients in the higher-dimensional case, a fact

that will be exploited in Section 5.

Once the bandwidth and T are chosen, it remains to set the value of K, i.e. the

number of nearest neighbors to use during regression. There’s little theoretical motive

for choosing one value of K over another; in general, an appropriate balance between

efficiency and accuracy must be found empirically. Indeed, since there may be relatively

few training instances quite similar to a given test instance, good testing performance

may be achievable even with a surprisingly small value of K.

In fact, in some cases, there may be a training instance so similar to a test instance

that even with K = 1, the regressed output is already quite close to the (approximate)

true output distribution. In part, this reflects the quality and abundance of the training

17



data; if, for example, there were fewer training instances, it would be reasonable to ex-

pect some unusual features in the regressed distribution for very small K. In any case,

for this example, bringing K to 10 smoothes out the tails of the distribution a bit; how-

ever, the improvements gained by bringing K from 10 to 10,000 appear to be minimal.

1 2 3 4 5 6 7 8 9 10

K
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Figure 3.5: Average test error over 100 test instances, using training data withM = 1000,

η = 1000. For comparison, the average test error using K = 1000 (all the training data) is

indicated in blue.

This intuition can be confirmed by studying how the average L2 test error varies

with K. The results of experiments on toy data with M = 1000, η = 1000 are shown in

Figure 3.5. It’s clear that even for small K, around 5 or 6, the test error is competitive

with that achieved by using all of the training data. However, finding these neighbors

by brute-force, e.g. by sorting all the training instances by their distance to a given test

instance and selecting the first K, is computationally expensive. Suppose the number of

test instances we wish to regress on is φ ×M , for some constant fraction φ of the size

18



of the training data. Then we must sort all M training instances for each test instance,

for a total runtime of O(M2 log(M)). For large datasets, this is completely infeasible, so

efficient KNN will be addressed in the next section as part of the scaled algorithm.
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Chapter 4

Scaled Algorithm

In this section I begin to make use of 6-dimensional data, in certain places, either to com-

pare with 1-dimensional data or to demonstrate how some component of the algorithm

scales with the number of dimensions involved. While the 6-dimensional data is taken

from N-body simulations, its content is not important at this stage, and it is included

only for illustrative purposes. The precise nature of the scientific data will be elaborated

upon more fully in Chapter 6.

4.1 Coefficient Computation in Many Dimensions

Recall that for square-integrable densities defined in D dimensions, each basis function

is indexed by a vector α of length D. In particular, in 6 dimensions,

φα = Π6
i=1φαi(xi) (4.1)

where the functions φ are 1-dimensional basis functions as described previously.

For concreteness, here is an example: fitting a sample to 3rd degree would require

basis functions indexed from α = [1, 1, 1, 1, 1, 1] to α = [3, 3, 3, 3, 3, 3]. This estimator

would include intermediate terms indexed by e.g. α = [3, 2, 1, 1, 3, 3], where in this
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case φα = φ[3,2,1,1,3,3](~x) = φ3(x1)φ2(x2)φ1(x3)φ1(x4)φ3(x5)φ3(x6). Note that the coefficient

corresponding to a given φα is, as before, given by the average value of φα on all the

samples being fit.
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Figure 4.1: Timing curve for Fourier estimator computation on a sample of 100 6-

dimensional particles.

In order to fit a sample to an estimator of degree T , it is now necessary to allow each

element of α to range between 0 and T . Hence, an estimator of degree T involves T 6

terms, i.e. the number of terms (and hence coefficients that must be computed) scales

exponentially with the degree of the estimator. This is immediately problematic for data

of even so few as 6 dimensions. Consider, for example, the timing curve in Figure 4.1.

Here, coefficients are being computed for a mere 100 samples from some 6-dimensional

distribution. Note that for a degree-5 estimator, the number of terms is already 56 =

15, 625, requiring O(10) seconds to compute. It’s evident not only that this computation

could benefit from some degree of parallelization, but indeed, that it demands it, as the
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next subsection will address.
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Figure 4.2: Ĵ(T ) for a set of ∼25,000 3-dimensional samples.

It is reasonable to question how many of these terms must actually be computed;

after all, on 1-dimensional data, empirical measurement of Ĵ indicated that only a few

coefficients were actually needed. Intuitively, however, the degree of the estimator is a

better indicator of its quality than the absolute number of terms. Indeed, similar experi-

ments on multi-dimensional data, e.g. 4.2, indicate a need for degrees in the range O(1)

to O(10), similar to the absolute number of coefficients needed for 1-dimensional data.

4.2 Parallelization

Although a nearest-neighbors tree must, if desired, be constructed sequentially, the

computation of the nonparametric coefficients is inherently highly parallel. Indeed,

dividing this task between workers in a pool of processes can significantly reduce the
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amount of time needed for the training phase. Here I will describe some experiments

performed on 1-dimensional data that illustrate the advantage of parallelization relative

to a naive, sequential computation.
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Figure 4.3: Timing curve for parallel coefficient fitting, with different numbers of pro-

cesses, on a set of 1000 1-dimensional training samples. For comparison, the sequential

time is indicated with a horizontal line.

For moderately-sized 1-dimensional datasets, the advantage is principally due to

the map structure of the parallel computation, rather than the number of workers. This

can be seen in 4.3, which refers to a daset with 1000 training instances. In general,

using more processes speeds up the computation, as expected. Though past a certain

point, using more processes on a dataset of this size simply introduces more overhead,

which roughly balances any increase in efficiency gained from further subdividing the

problem. Indeed, the gains past ∼ 20 processes are essentially negligible.

The advantage of parallelization on 1-dimensional datasets with a broader range of

sizes is clearly reflected in 4.4. Indeed, the speedup factor, i.e. the ratio of the sequential

to the parallel runtime, is generally on the order of 10-15 across all measured dataset

sizes.
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Figure 4.4: Timing curves for parallel coefficient fitting, using a fixed number of pro-

cesses (20), on 1-dimensional datasets of different sizes. The sequential curve is shown

in black; the parallel curve is shown in red.

Note that in-line timing of parallel code tended to give misleading results. Conse-

quently, all these timings were taken with the built in unix time command, called on a

custom script, to determine the real time taken to perform the fits. The cross-validation

step was omitted, and the overhead of acquiring the data was separately timed and

subtracted out.

4.3 KNN in Many Dimensions

4.3.1 Overview

As previously mentioned, one way to potentially reduce the regression time is to iden-

tify some constant number K of nearest neighbors for a given test instance and include

only those in the regression. The trouble with this approach is that KNN becomes ineffi-

cient when the search is over high-dimensional spaces. In this case, the dimensionality

25



of the search space is the number of coefficients being used to estimate the densities

nonparametrically. The total number of coefficients scales with DT , where D is the di-

mensionality of the data and T is the degree of the estimators.

Note that KNN is, in practice, typically considered inadvisable for search space di-

mensionality larger than ∼ 20. However, we will have to consider somewhat higher-

dimensional search spaces to keep the exercise nontrivial for D = 6, since the only

degree that yields fewer than 20 coefficients is T = 1, which gives a degenerate estima-

tor (all coefficients are 1). Fortunately, as we will see, in the cosmological application of

interest here, similarity along 3 of the axes is far more significant than similarity along

the other 3. Therefore, it is not necessarily a waste of time to experiment with KNN in

this case.

The aim of this exercise will be to determine, for a given data dimensionality D,

the range of parameters for which KNN offers a net gain in efficiency. That is, given

some number M of training instances and some constant fraction, e.g. .10M , of test

instances, when is the total time needed to train on the training instances and regress on

the test instances reduced by introducing the extra step of building a KNN-supporting

data structure? The boundary is, in general, a function of the dimensionality of the data

itself, as well as the accuracy to which it needs to be estimated in order to yield good

performance during the test phase.

There are several space-partitioning data structures that support KNN search in

many dimensions. These include KD-trees, cover trees, and ball trees. Building a KD-

tree using sorted data takes O(kn log n) time, where k is the dimensionality of the data,

and retrieval of a constant number of nearest neighbors can then be done in O(log n)

time. In principle, a cover tree can be constructed asymptotically more quickly, in

time O(c6 log n), where c is the expansion constant of the dataset. The trouble is that

c depends on the dimensionality of the data, so this advantage disappears for high-
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dimensional data. Likewise retrieval of a nearest neighbor, which takes O(η log n) time,

depends on the dimensionality of the data through a constant η; therefore, cover trees

are, in general, less suitable than KD-trees for high-dimensional applications.

In contrast, a ball tree is a more viable alternative to a KD-tree, especially when the

data is high-dimensional. Its construction can be somewhat slower than that of a KD-

tree, but retrieval times are more robust to dimensionality. That is, as the dimension

D of the data grows, the average retrieval time of a nearest neighbor from a ball tree

continues to scale with O(D log n). For a KD-tree, this only holds for small D; for large

enough D, the retrieval time approaches O(Dn) and may even become slower than

brute-force. For these reasons, I’ve opted to work with ball trees while exploring KNN

approaches to regression.

4.3.2 Ball Tree Experiments

The basic structure of these experiments will be as follows: first, I will consider some

dimension from 1 to 6. I will pick a fixed number of training samplesM large enough to

constitute a meaningful problem. Then, I will consider varying values of the estimator

degree T , keeping in mind considerations of Ĵ described previously, up through some

value that causes the number of coefficients to exceed 20, i.e. such that the efficiency of

ball tree operations is compromised. For each value of T , I will train on M samples and

regress on a test set of size .10M , either by building a ball tree and computing KNN for a

small, fixed value of K, or by regressing using all of the training data. I will measure the

time required to build the tree and regress with KNN and compare it to the time needed

to regress using all the data. Thus in each case I will determine a range of parameters

for which it makes sense to use KNN rather than complete regression.

Let’s begin in 1 dimension, with 900 training samples and 100 test samples; it’s clear

in light of previous experiments that the problem is well-defined at this scale. In this
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case, the number of coefficients exactly equals T . Although I’ve shown that you don’t re-

ally need more than 15 coefficients for this value ofM , I’ll consider T up to 20 in order to

better represent the performance of the tree. Furthermore, as previously demonstrated,

the KNN error is essentially negligible for K ≥ 5, so any improvements in efficiency do

not sacrifice accuracy.
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Figure 4.5: Timing curves for regression upon 100 1-dimensional training instances with

100 samples each. Full regression shown in red; KNN regression with 5 nearest neigh-

bors shown in black.

The 1-dimensional results are shown in Figure 4.5. For simplicity, all the calculations

have been done sequentially. Here it’s evident that KNN offers a significant advantage

during regression, as the runtime is decreased by a factor of approximately 2 across all

values of T. The advantage ratio decreases slightly with T, but the absolute difference in

runtime actually increases somewhat.

Now consider the same test in 2 dimensions, again using 900 training samples and
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Figure 4.6: Timing curves for regression upon 100 2-dimensional training instances with

100 samples each. Full regression shown in red; KNN regression with 10 nearest neigh-

bors shown in black.

100 test samples. Here we suppose that the number of nearest neighbors might need

to be moderately larger, so let K be 10. We also consider a smaller range of T values,

up to and including 10; note that the actual number of coefficients is as high as 210 =

100.The resulting timing curve is shown in Figure 4.6, where the advantage of the KNN

approach is clear. Indeed, the advantage is retained, though somewhat less, even for

unreasonably large values of K (not shown).

In general, these experiments validate the use of a KNN approach, even for multi-

dimensional datasets. However, it’s worth keeping in mind that for an arbitrary ap-

plication, the relative efficiency of KNN vs. full regression may still depend on the

parameter ranges involved.
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4.4 Preprocessing and Binning High-Dimensional Data

In order to apply the methodologies described to real data, a certain amount of prepro-

cessing is required. The simplest requirement is that the data lie in the unit hypercube.

In general, this can be accomplished simply by scanning once through the entire dataset,

computing the ranges of the various components, and normalizing appropriately. In

the specific case of 6-dimensional N-body simulation data, the ranges of the position

variables will prove to be more meaningful than the velocity ranges, since, unlike the

velocities, they are set by the box size of the simulation itself. Indeed, when using only

the positions to cluster particles into training samples, it is only necessary to normalize

the positions.

Similarly, binning the particles is more physically meaningful when the bins are de-

termined by spatial rather than velocity information. For this reason, binning will be

performed only along the positional axes. For a given bin size b (scaled to lie between

0 and 1), the binning defines (X
b

)(Y
b
)(Z

b
) cubes, where X , Y , and Z are the ranges of

the three spatial dimensions in the simulation box. Each cube claims some number of

particles and constitutes a single training instance. Given any such cube in an approx-

imate simulation, i.e. a nonparametric estimation of its density, the goal is to compute

the density (in all 6 dimensions) of the corresponding cube in the exact simulation.

Once the normalization has been applied to the spatial dimensions, the binning logic

is actually rather simple, and it requires only a single pass through the data. The ranges

that define the boundaries of each spatial cube are well-defined, i.e. each bin may be

identified by a 3-dimensional index. So while scanning through the data, each particle

may be assigned in memory to its bin. Once this process is complete, this bins may

be processed immediately or written to disc in any order, since there is no ordering

imposed on training data. Note that for nb bins (each of size b), this procedure takes

time O(nbDN) on N particles, where D is the number of dimensions being considered
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in the binning.

Although nb and D may be regarded as constants, such that the total preprocess-

ing time is linear in the number of particles, it could nontheless become inefficient for

high D or, especially, if nb is made to be too large. Reducing the size of the bins does

tend to reduce their resolution, however, since it reduces η, the number of samples per

training instance. This offers an additional motivation to keep the number of bins from

becoming too high. On the other hand, if the number of bins is too low, the number of

training instances M becomes low, which either reduces the accuracy of the regression

or demands that more computationally intensive simulations be run to completion in

order to provide additional training data.

It seems that a reasonable strategy, in general, is to choose a bin size that maintains

a balance between M and η. This may be estimated by supposing that the particles are

distributed in a roughly even fashion across the simulation. For example, let there be N

particles to be binned across 3 dimensions, as is the case with the N-body data. A bin

size nb defines n3
b bins (M ), each of which is expected to hold about N

nb3
particles (η). So a

good guess for nb is that which sets M = η, i.e. nb6 = N , or nb = 6
√
N . More generally, of

course, this reasoning suggests using nb = 2D
√
N to bin N particles across D dimensions.

Indeed, this is the default binning rule in my code, although the bin may also be chosen

by hand in case there is some motivation to do so.

In practice, the plausibility of this binning scheme for a given dataset may be judged

by looking at the resulting distribution of bin densities. If the distribution is roughly

uniform, i.e. if most of the bins have about the average number of samples, then the

binning reasoning applies. If the distribution is highly nonuniform, however, it may be

necessary to use smaller bins, or possibly an adaptive scheme that uses smaller bins in

denser regions of the data.
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Chapter 5

Scaled Application: Dark Matter

N-body Simulations

5.1 A Brief Introduction to Cosmology

The ΛCDM model is the simplest parametrization of the Big Bang cosmological model

that is broadly consistent with observation. The name of the theory indicates its two

principal components: Λ refers to a cosmological constant, i.e. the energy density or

Dark Energy of the vacuum, and CDM stands for Cold Dark Matter (to be explained

in further detail shortly). The model also posits an inflationary epoch, a period of ex-

tremely rapid universal expansion that took place shortly after the Big Bang. ΛCDM has

successfully predicted a wide variety of observations related to the cosmological back-

ground radiation, large scale structure, gravitational lensing, and other critical areas of

cosmology [8]. As a result, ΛCDM has reached the status of a paradigm, and it is often

referred to as the standard model of cosmology.

Dark matter is a hypothetical form of matter proposed to account for a wide vari-

ety of cosmological observations that seem to imply the presence of “missing mass.” It

is called dark because it interacts weakly, if at all, through electromagnetism. Since it
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does not emit or absorb light like ordinary matter, its distribution must be inferred from

its gravitational effects on that matter. There exists a large body of indirect evidence

for dark matter drawn from studies of galactic rotation, galactic mergers, gravitational

lensing, the cosmic microwave background radiation, baryon acoustic oscillations, the

lyman-alpha forest, and other cosmological phenomena (see [3] for an overview). How-

ever, to date there has been no accepted direct detection of a dark matter particle.

There are many competing theories for the composition and properties of dark mat-

ter. It is generally accepted that most cosmological observations can be most simply

explained within ΛCDM by assuming that dark matter is “cold.” This means that the

dark matter particles move slowly (subrelativistically), or equivalently that their free-

streaming length is small relative to the size of a protogalaxy. Generally speaking, it

is otherwise difficult to explain key observational evidence, such as the formation of

large-scale structure (see e.g. [4]).

The dark matter itself may consist of one or several components with similar prop-

erties. Popular candidates include Weakly Interacting Massive Particles (WIMPs) and

axions, both of which are hypothetical but whose existence is independently motivated

by theory (see again [3], as well as [9] for a additional, less formal discussion of dark

matter candidates). In any case, for purposes of modeling and simulating structure for-

mation, the dark matter “particle” is generally treated as a single entity with uniform

properties. Note also that the actual particles in a dark matter simulation are typically

much more massive than the actual theoretical mass of e.g. a WIMP. The intention of

simulation studies is to gain insight into the process of structure formation at some im-

perfect level of resolution.
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5.2 Cosmological N-body Simulations

The N-body problem is, essentially, an unsolved problem in computational physics. The

question is: given N “bodies” (or particles) acting under the mutual influence of grav-

ity, what are their trajectories as a function of time? While no exact solution is known,

approximate solutions are valuable in a variety of domains of physics, particularly cos-

mology, since the evolution of many cosmological systems is based in gravitational in-

teraction. In particular, dark matter interacts either exclusively or predominantly under

the influence of gravity, and its interactions define the structure of galaxies and other

large scale structure.

Computationally, an N-body simulation approximates the evolution of a system of

particles under gravity in the following manner: at each timestep, the collective in-

fluence on each particle of every other particle is computed; then, their positions and

velocities are updated accordingly. This kind of simulation makes it possible to study

the formation of non-linear structure under gravity, and, as such, it has wide-ranging

applications. Cosmological systems modeled well by N-body simulations include star

clusters, galaxy filaments, planetary systems, and environments dominated by dark

matter. In particular, the evolution of dark matter-dominated systems has been studied

via simulations on universal, halo (galactic), and sub-halo scales.

There exist a variety of techniques to assist in the efficiency of an N-body compu-

tation. Most of these concentrate on the task of quickly locating the particles spatially

near to a given particle so that only non-negligible forces are calculated. This tends to

greatly reduce the number of pairwise interactions that must be computed. Tree-based

methods, e.g. those used by a BarnesHut simulation, may be used to distinguish near

from far neighbors, thereby limiting the number of explicitly computed pairwise inter-

actions. Alternatively, particle mesh methods may be used to partition a simulation into

density bins. The latter option reduces the problem from a computation on particles to
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a computation on relatively fewer grid points, and it enables the use of highly efficient

Fourier transform techniques.

Note that there is also a class of methods to deal with cases in which (Newtonian)

gravity is the principal, but not the exclusive, interaction in a physical system. For ex-

ample, there are ways to compensate for relativistic effects that can arise in comoving

coordinate systems. It is also sometimes necessary to introduce nongravitational correc-

tions into N-body simulations. For instance, there is ongoing work to account for e.g.

baryonic effects in dark matter-dominated systems. In particular, the effect of baryons

may have a nontrivial effect in the formation of galactic structure, especially galactic

cores. Such considerations are beyond the scope of this project and are mentioned only

for completeness; in this work, the simulation data will be taken from pure N-body

simulations of cold dark matter.

5.3 Cosmological Perturbation Theory

An N-body simulation as described above models matter as a collection of discrete par-

ticles. Structure is seen to arise as the particles move under the influence of mutual

Newtonian gravitational interactions. Cosmological perturbation theory is an alterna-

tive model of the same process that offers a different way to think about - and compute

- structure formation.

The basic idea is to treat the universe as a Minkowski space-time filled with incom-

pressible hydrodynamic matter. That is, the actual matter content of the universe is

regarded as an incompressible fluid having the equation of state p = 0. In this model,

small inhomogeneities can arise due to thermal fluctuations in the matter. A small, local

overdensity will start to attract nearby matter according to Newtonian gravitation; over

time, this process eventually gives rise to structure formation.

More formally, the state of the matter is given by its energy density ρ(x, t). When
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an inhomogeneity δρ arises at some point in space, it attracts surrounding matter in

proportion to δρ, in accordance with Newton’s second law. That is, in the absence of

background expansion,

δ̈ρ ∼ Gδρ (5.1)

where G is the universal gravitational constant.

Consider first the (unrealistic) case in which perturbative fluctuations evolve in a

non-expanding space-time. Matter can be regarded to be a perfect fluid defined by

its energy density ρ, pressure p, fluid velocity v, and entropy density S. Gravity is

provided by a Newtonian gravitational well φ. The system is governed by the following

hydrodynamical equations:

ρ̇+∇p · (ρv) = 0 (5.2)

v̇ + (v · ∇p)v +
1

ρ
∇pp+∇pφ = 0 (5.3)

∇2
pφ = 4πGρ (5.4)

Ṡ + (v · ∇p)S = 0 (5.5)

p = p(ρ, S) (5.6)

These are the continuity equation, the Euler force equation, the Poisson equation of

Newtonian gravity, entropy conservation, and the equation of state of matter, respec-

tively. Note that comoving coordinates are implied unless otherwise indicated with a

subscript p, which refers to physical coordinates. All derivatives are taken with respect

to time.

The background values of these variables are the background energy density ρ0, the

background pressure p0, a vanishing (0) background velocity, a constant gravitational

potential φ0, and a constant entropy density S0. The response of the system to small
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perturbations may be ascertained by adding a separate perturbation to the background

value of each variable, plugging them into the hydrodynamic equations, and neglecting

higher-order terms. That is, let:

ρ = ρ0 + δρ (5.7)

v = δv (5.8)

p = p0 + δp (5.9)

φ = φ0 + δφ (5.10)

S = S0 + δS (5.11)

Putting these variables into the hydronamic equations, linearizing, and combining

the resulting first-order equations yields differential equations for the energy density

fluctuation δρ and the entropy perturbation δS:

δ̈ρ− c2
s∇2

pδρ− 4πGρ0δρ = σ∇2
pδS (5.12)

˙δS = 0 (5.13)

Here, cs refers to the speed of sound in the fluid: c2
s = ( δp

δρ
)|s. Together with σ, it

describes the equation of state:

δp = c2
sδρ+ σδS (5.14)

The analysis continues by noting that since the equations are linear, it is possible to

work in Fourier space; most notably, each Fourier component δρk(t) of the fluctuation

field δρ(x, t) =
∫
eik·xδρk(t) evolves independently. This treatment can be expanded

to account for the case in which space-time is expanding, i.e. when the fluid has a

background velocity
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v0 = H(t)x =
ȧ

a
x (5.15)

corresponding to the Hubble flow, where the variable a refers to the fact that physical

distances are scaled as r = a(t)x. The calculation may also be done more generally for

a relativistic system. I refer the interested reader to pedagical overviews available on

the web, especially [10] and [11], from which this explanation is partially derived. Note

that simulations typically use linear or second-order Newtonian perturbative theory

with expansion.

5.4 Dark Matter Datasets

5.4.1 Properties and Parameters

The key attributes of an N-body simulation are the physical length L of the simulation

in each dimension and the number of particles N it resolves. A large-scale cosmological

N-body simulation also necessarily assumes values for certain cosmological parame-

ters. For example, a simulation modeled according ΛCDM must assume values of the

matter density (Ωm), dark energy density (ΩΛ), baryon density (Ωb), Hubble constant

(H0), fluctuation amplitude at 8h1 Mpc (σ8), and scalar spectral index (ns).

The particular N-body simulation used in this work was generated with the param-

eters given in 5.4.1. The meaning and significance of the various parameters are elabo-

rated on briefly below:

1. Ωm refers to the total matter density, i.e. both dark matter and baryonic (ordi-

nary, non-dark) matter. Baryonic matter comprises only about 17% of the total matter

content of the universe (Ωb = .17Ωm); the rest is dark matter. The total matter density

is in turn dominated by the dark energy density ΩΛ, which contributes almost 3/4ths
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L 1000 Mpc/h

N 230

Ωm 0.27

ΩΛ 0.73

Ωb 0.045

H0 70 km/s/Mpc

σ8 0.80

ns 0.96

w -1

Table 5.1: Key simulation parameters.

of the total mass-energy density of the universe [2]. That total mass-energy is given by

Ωtot = Ωm + Ωrel + ΩΛ, where Ωrel is a much smaller component consisting of the ef-

fective mass density of relativistic particles (i.e. photons and neutrinos). Interestingly,

the measured value of Ωtot is very close to the critical density 1 at which the Universe

would expand forever [2].

2. Hubble’s constant H0 describes the expansion rate of the universe. It appears in

Hubble’s law, v = H0D: H0 is the constant of proportionality between a galaxy’s reces-

sion velocity v and its proper distance D.

3. σ8 gives the amplitude of mass fluctuations, i.e. the anisotropy of the distribution

of mass, on a useful scale.

4. A power spectrum P (k) describes the power of primodial mass variations as a

function of spatial scale. According to many inflationary models, the scalar component
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follows a power law Ps(k) ∝ kns−1, where k is the wavenumber of the fluctuations, and

ns is referred to as the scalar spectral index.

5. w, which refers to the dark energy equation of state, is defined as the ratio of pres-

sure p that dark energy puts on the universe to the energy per unit volume ρ: w = p/ρ.

Setting w = −1 corresponds to assuming a model with a true, i.e. non-time-varying,

cosmological constant.

Note also the scale of the simulation: the side length L is 1000 Mpc/h, where a

typical intergalactic distance is on the order of 50 Mpc/h; that is, this is a large-scale

simulation resolving many galaxies.

5.4.2 Binning Considerations

By the binning rule provided in the previous chapter, this dataset offers 6
√

(230) = 32, 768

training instances, with an average of 32,768 particles per bin. These numbers suggest

a generous amount of well-defined training data; however, various complications may

arise in practice. For example, if the particles are highly clustered, there may be many

empty bins and relatively fewer bins containing many particles. In that case it might be

difficult to learn the desired function, since the number of informative training samples

would be lower than expected.

Another potential problem is a misalignment between structure in the approximate

vs. the true simulation. If the spatial offset between corresponding structures is too

great, then the same structure (for example, a galaxy or filament) might fall into different

bins. If corresponding structures are not grouped together in the training data, the

algorithm cannot reasonably be expected to learn the desired mapping.

In order to guard against potential problems of this nature, I think it is informative
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(a) N-body dataset
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(b) Perturbative dataset

Figure 5.1: Distribution of particle counts per bin when the simulations are partitioned

spatially into 125 equally-sized cubes.
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Figure 5.2: Particle counts for corresponding bins in the exact (black) and approximate

(red) datasets.
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to bin all the available training data, at least on a coarse scale. For this application I

have defined 5 divisions along each spatial dimension, for a total of 125 3D bins, and

counted the number of particles that fall into each bin for both the approximate and

the true simulation. The results, shown in Fig. 5.4.2 and 5.2, show that at least on this

large scale, the density profiles of the simulations are quite similar. Furthermore, the

majority of the bins have a similar number of particles, which indicates that the particle

distribution is roughly even throughout the simulation. These features of the data are

encouraging, although it remains to examine the simulation more closely on a smaller

scale, as I will do in the next section.

5.4.3 A Closer Look

It is also informative to isolate a smaller, contiguous region of the simulation and ex-

amine it more closely in both the approximate and exact datasets. For this exercise I

divided each spatial axis into 17 pieces, for a total of 4,913 3D bins, and selected a bin

with relatively abundant structure. In the exact simulation, this bin contains 9,024,511

particles; the corresponding bin in the approximate simulation contains 9,167,451 par-

ticles. The side lengths of the cube are large enough to accommodate a large amount

of structure; however, the number of particles is a factor of ∼ 100 smaller than the en-

tire simulation, which makes more detailed calculations possible within a reasonable

amount of time.

One way to visualize this data is to examine “slices” defined by further binning the

data along some axis. In Fig. 5.3, I show the top and bottom slices given by subdividing

the data into 100 bins along the z-axis. The basic resemblance between the approximate

and the exact data is clear, although some differences are also evident. In particular, the

N-body data tends to show small substructure not evident in the approximate data.

This effect is perhaps more evident in a scatter plot, as in Fig. 5.4. It’s also easier
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(a) N-body dataset: bottom slice
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(b) Perturbative dataset: bottom slice
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(c) N-body dataset: top slice
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(d) Perturbative dataset: top slice

Figure 5.3: Corresponding slices from example bin.
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(a) N-body dataset: top slice
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(b) Perturbative dataset: top slice

Figure 5.4: Alternate, scatter-plot view of top slice of example bin.

to see that even the low-density regions typically contain some particles. That is, while

much of the volume of the data has a relatively low density, it would have to be binned

quite finely in order for most of the bins to be entirely empty.
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(b) Perturbative dataset

Figure 5.5: Distribution of particle counts per bin when the example bin is partitioned

into 3,375 smaller bins.

It also seems that at this scale, the particles are fairly clustered; that is, there are large

regions of low particle density. Indeed, consider binning this data “optimally,” i.e. so
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that the number of bins roughly matches the average number of particles per bin. With

15 divisions per axis, there are 3,375 bins, with an average of about 2674 (exact) and 3341

(approx) particles each. Assigning particles according to this binning scheme gives the

density distributions in Fig. 5.5. Note that these are similar, but not identical. Although

there are plenty of high-density bins to work with, more bins fall into the lowest-density

category than any other. Still, only about 2.7 and 1.4 percent of the bins are truly empty

in the exact and approximate datasets, respectively.

5.5 Targeting the DTDR Strategy

There was a previous effort by a machine learning graduate student at Carnegie Mel-

lon to use distribution-to-distribution regression on similar simulation data. There, the

approach was somewhat different: the idea was to map the simulations from one point

in time to another, and there was no use of approximate simulations. Experiments us-

ing one billion-year time intervals were never successful; in fact, the algorithm seemed

unable even to learn the identity distribution.

There are various reasons that this strategy might not work well for real simulation

data. First of all, the binning is necessarily unphysical, and each bin is considered in-

dependently of the others. After a billion years, many particles would tend to cross bin

boundaries, yet the algorithm has no way to capture this behavior. Consider also that

a regressor trained in this way on all 6 dimensions would tend to map bins with fast-

moving particles to emptier bins, since the particles would leave the frame. This kind

of effect could lead to widespread violation of mass conservation in the regressor’s pre-

dictions, even if the algorithm learned the function well.

Independently of these considerations, the problems with the identity distribution

point to additional issues. For example, learning this kind of function in 6 dimensions

might require prohibitive amounts of training data, or a large number of parametric
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coefficients may be necessary in order to represent the bin densities in sufficient detail.

The bins might have been too small or too large for the algorithm to work well. Further-

more, the billion-year time intervals may have been too large to expect a consistently

learnable function from one time slice to the next.

In any case, I expect that even if the identity mapping had been successfully learned,

mapping across time slices would ultimately have been difficult for the reasons men-

tioned above. Consequently, I have tried a different approach, namely mapping from

approximate to true distributions. Although this mapping is not a priori guaranteed

to be well-defined, it minimizes the problems with movement accross bin boundaries,

since the training inputs and outputs are from the same point in time. These considera-

tions point to a more general need to target DTDR to the application at hand, especially

when determining how to bin the data and what function to try to learn.

5.6 The Identity Distribution

One key test of the viability of this algorithm is its ability to learn the identity distribu-

tion in multiple dimensions. That is, given multi-dimensional data, is it possible to learn

the mapping from that data to itself? Clearly this task must be possible if more com-

plex functions are to be learned. Indeed, the function that maps approximate to exact

N-body simulations, if it exists, should not be too different from the identity function.

It’s evident that the algorithm can learn the identity function in 1 dimension, since

it’s able to learn the reflection function. On the other hand, Ĵ tests indicate that a

large number of coefficients are already needed to model 3-dimensional data, let alone

higher-dimensional data, to nontrivial accuracy. Also, as I will argue in the next section,

the 6-dimensional simulation data nonetheless lends itself naturally to a 3-dimensional

treatment. Consequently, I concentrate my efforts on 3-dimensional data.

I begin by considering a cube-shaped subset from an exact (N-body) simulation. I
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partition it into cubes of length ∼ 1 Mpc/h along each side, and I retain those bins that

contain at least 5 particles. This yields a set of ∼ 300 training instances, averaging ∼ 70

particles each. Here, the test sets are 10% as long as the train sets. As shown in Figure

5.6, at this scale, the average test error decreases with the number of training samples, as

expected. Note that for this data size, increasing the value of T past 3 causes overfitting

and decreased performance, i.e. larger and more erratic errors, though for T < 3 (not

shown), the distributions are not well modeled.

However, for the experiments in 5.7, the drop in the error is so sudden that it cannot

obviously be attributed to increasing the size of the training set. And in the largest

experiments in 5.8, the correlation between training set size and test error is even less

clear. This may be for any number of reasons: for example, the number of training

samples and the number of particles per sample may simply be insufficient, especially

for the larger experiments. Since the computation already takes several hours at the

high end of this scale, this would suggest that the method is too slow to be useful for

this data. Alternatively, T may be too small for the larger experiments, although again,

increasing T would increase the computation time. Another possibility is that this data

set does not present sufficient variety in order for the identity function to be learned.

This hypothesis could be tested by generating artificial data in many dimensions in

order to test the minimum quality and quantity of data needed to learn the identity

function.

5.7 Regression

Recall the key features of the simulation datasets suggesting that regression might be

possible between them: first, the distribution of particles is fairly even across 3D po-

sition bins for both the N-body (Figure 5.4.3) and perturbative (Figure 5.4.2) datasets.

This partially justifies the use of a symmetric i.e. non-adaptive binning scheme.

48



0 50 100 150 200 250

Number of Training Instances
0

20

40

60

80

100

120

140

160

180

A
vg

.
L

2
T

es
t

E
rr

or

(a) T = 3

0 50 100 150 200 250

Number of Training Instances
0

20

40

60

80

100

120

140

160

180

A
vg

.
L

2
T

es
t

E
rr

or

(b) T = 4

0 50 100 150 200 250

Number of Training Instances
0

20

40

60

80

100

120

140

160

180

A
vg

.
L

2
T

es
t

E
rr

or

(c) T = 5

Figure 5.6: Average test error as a function of training data size for 3-dimensional posi-

tional data from an exact (N-body) dark matter simulation. Average particles per train-

ing instance: ∼ 70; Minimum particles per training instance: 5
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Figure 5.7: Average test error as a function of training data size for 3-dimensional posi-

tional data from an exact (N-body) dark matter simulation. Average particles per train-

ing instance: ∼ 1500; Minimum particles per training instance: 50
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Figure 5.8: Average test error as a function of training data size for 3-dimensional posi-

tional data from an exact (N-body) dark matter simulation. Average particles per train-

ing instance: ∼ 5000; Minimum particles per training instance: 50
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Furthermore, corresponding bins in the same datasets tend to have similar particle

counts, as shown in Figure 5.2. This suggests that there is minimal shifting of particles

across bin boundaries from the input to the output data. In other words, the bound-

ary effects that might result from trying to map simulations from one point in time to

another should not arise here, because there is little interaction between adjacent bins,

which further justifies treating them independently of one another.

However, in the absence of conclusive results in the identity experiments, it seems

unlikely that regression should perform well on this data. Indeed, regressing from the

approximate to the N-body data, using the same bins as in the identity experiments,

yields similar though non-identical results (see Figures 5.9, 5.10, 5.11). Note that here,

the error is being computed only for the positional dimensions, i.e. the dimensions

involved in the binning. However, it would be interesting to learn whether position-

defined bins could also predict velocity information.

52



0 50 100 150 200 250 300 350

Number of Training Instances
0

20

40

60

80

100

120

140

160

180

A
vg

.
L

2
T

es
t

E
rr

or

(a) T = 3

0 50 100 150 200 250 300 350

Number of Training Instances
0

20

40

60

80

100

120

140

160

180

A
vg

.
L

2
T

es
t

E
rr

or

(b) T = 4

0 50 100 150 200 250 300 350

Number of Training Instances
0

20

40

60

80

100

120

140

160

180

A
vg

.
L

2
T

es
t

E
rr

or

(c) T = 5

Figure 5.9: Average test error as a function of training data size when mapping from

perturbative to N-body data. Average particles per training instance: ∼ 70; Minimum

particles per training instance: 5
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Figure 5.10: Average test error as a function of training data size when mapping from

perturbative to N-body data. Average particles per training instance: ∼ 1500; Minimum

particles per training instance: 50
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Figure 5.11: Average test error as a function of training data size when mapping from

perturbative to N-body data. Average particles per training instance: ∼ 5000; Minimum

particles per training instance: 50
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Chapter 6

Conclusions

Distribution-to-distribution regression has been proven effective on low-dimensional

data, and scaling efforts have brought its use on higher-dimensional data solidly into

the realm of possibility. However, the initial application results are fundamentally in-

conclusive and call for additional large-scale experiments. Further work with multi-

dimensional artificial data should be helpful in establishing baseline performance and

training requirements for the scaled algorithm. There are also a number of modifications

that might be helpful for simulation-style datasets, such as adaptive binning schemes

that might better capture large-scale structure, or an alternative metric of the algorithm’s

performance; for instance, a Hessian matrix might represent the similarity of two simu-

lation datasets more meaningfully than the L2 norm. In any case, it remains to be seen

whether this kind of method can be used to make the generation of large simulation

datasets practical.
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Appendix A

Python Implementation of DTDR

A.1 Overview

The complete source code for this project is available online at https://github.com/

alklein/MSCS_Thesis. Note that the full simulation files are large and are therefore

not included, so to run the exact experiments described in this thesis, it is necessary to

request those files. The principal DTDR tools are not specific to those files, however,

and may also be applied to new data.

The key components of the code are described in its README (Figure A.1). For

further details on the individual libraries and scripts, please refer to the headers and

comments in the files themselves.

A.2 Availability on AutonLab

The complete project, including simulation files, is also available on CMU’s Auton clus-

ter. Members of the CMU community with Auton access can find the project in my

home directory on lov4. The steps for access, for me, are as follows:

1. ssh andreakl@lop1.autonlab.org
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Figure A.1: README.md

2. ssh lov4

3. cd /home/scratch/andreakl

Note that as of Dec. 2013, Auton does not support graphics, so all imports to pylab

should be commented out, and no attempt should be made to generate plots.

In order to make use of the scientific computing libraries, it is also necessary to use

the python version specified at the head of the scripts. For this reason, permissions must

60



be set to execute each script. E.g., for a script called script.py, you must first type:

chmod +x script.py

Then you can execute the script directly:

./script.py
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