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Abstract

Many problems in formal verification of digital hardware circuits and

other finite-state systems are naturally expressed in the language of quan-

tified boolean formulas (QBF). This thesis presents advancements in

techniques for QBF solvers that enable verification of larger and more

complex systems.

Most of the existing work on QBF solvers has required that formulas

be converted into prenex conjunctive normal form (CNF). However, the

Tseitin transformation (which is used to convert a formula to CNF) is

asymmetric between the two quantifier types. In particular, it introduces

new existentially quantified variables, but not universally quantified vari-

ables. It turns out that this makes it harder for QBF solvers to detect

when a formula has become true (but not when a formula has become

false) under an assignment.

We present a technique using ghost variables that handles non-CNF

QBF formulas using a symmetric alternative to the Tseitin transforma-

tion. We introduce sequent learning, a reformulation and generalization

of clause/cube learning. With sequent learning, we can handle non-prenex

formulas. Whereas clause/cube learning only allows learning when the

whole input formula becomes true or false, sequent learning allows us to

learn when a quantified subformula becomes true or false.

Almost all QBF research so far has focused on closed formulas, i.e.,

formulas without any free variables. Closed QBF formulas evaluate to

either true or false. Sequent learning lets us extend existing QBF tech-

niques to handle open formulas, which contain free variables. A solution

to an open QBF formula is a quantifier-free formula that is logically

equivalent to the original formula. For example, a solution to the open

QBF formula ∃x. (x ∧ y) ∨ z is the formula y ∨ z.

The final part of this thesis discusses an approach to QBF that uses

Counterexample-Guided Abstraction Refinement (CEGAR) to partially

expand quantifier blocks. The approach recursively solves QBF instances

with multiple quantifier alternations. Experimental results show that the

recursive CEGAR-based approach outperforms existing types of solvers

on many publicly-available benchmark families. In addition, we present

a method of combining the CEGAR technique with a DPLL-based solver

and show that it improves the DPLL solver on many benchmarks.
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Chapter 1

Introduction

Many problems in formal verification (among other areas) are naturally expressed

in the language of Quantified Boolean Formulas (QBF). QBF is an extension of

propositional logic in which boolean variables can be quantified. Syntactically, we

consider QBF formulas described by the following grammar:

x ::= boolean variable

Q ::= ∃
∣∣ ∀

φ ::= x
∣∣ φ ∧ φ

∣∣ φ ∨ φ
∣∣ ¬φ

∣∣ true
∣∣ false

Φ ::= φ
∣∣ Φ ∧ Φ

∣∣ Φ ∨ Φ
∣∣ Qx. Φ

Note that in the above grammar, quantifiers cannot occur within the scope of a

negation; this requirement is imposed to simplify matters. Also, we require that all

occurrences of a variable have the same binding (if any). For example, x∧∃x. (y∧x)

is disallowed, because the first occurence of x is free but the last occurrence is bound

by an existential quantifier.

A QBF instance is closed iff every occurrence of every variable is bound by a

quantifier. If not all variables are bound by quantifiers, the QBF formula is said to

be open. In chapters 2 and 4, we will consider open QBF; in all other chapters, we
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will only consider closed instances.

A literal is a variable or its negation. For a literal `, var(`) denotes the variable

in `, i.e., if x is a variable, then var(¬x) = var(x) = x.

A clause is a disjunction of literals. A boolean formula in conjunctive normal

form (CNF) is a conjunction of clauses.

A cube is a conjunction of literals. A boolean formula in disjunctive normal form

(DNF) is a disjunction of cubes.

Assignments. In this thesis document, when we use the term “assignment”, we

mean a mapping of variables to boolean values. For example, the assignment {(x, true)}

maps the variable x to the boolean value true.

A total assignment to a set of variables V maps every variable in V to a boolean

value. A partial assignment to V maps a subset of the variables in V to boolean

values. For example, if V = {x, y}, then the assignment {(x, true)} is a partial

assignment to V , and the assignment {(x, true), (y, false)} is a total assignment to V .

For convenience, we identify an assignment π with the set of literals made true

by π. For example, we identify the assignment {(e1, true), (u2, false)} with the set

{e1,¬u2}. We write “vars(π)” to denote the set of variables assigned by π.

Quantifier Order. In the context of a QBF formula such as ∀x.∃y. φ, where the

quantifier of a variable y occurs inside the scope of the quantifier of a variable x, and

the quantifier type of x is different from the quantifier type of y, we say that y is

downstream of x. Likewise, we say that x is upstream of y. We say that a variable

is outermost under an assignment π iff it is not downstream of any unassigned

variables. For example, for the QBF formula ∃e1.∀u2.∃e3. φ, under the assignment

π = {e1}, the variable u2 is outermost (because e1, the only variable upstream of

u2, is assigned under π), but e3 is not outermost (because it is downstream of the

2



unassigned variable u2).

The terms downstream, upstream, and outermost can also be applied to literals.

We say that a literal `1 is downstream (or resp. upstream) of a literal `2 iff var(`1)

is downstream (or resp. upstream) of var(`2). A literal ` is outermost if var(`) is

outermost.

Prenex Form. A formula is in prenex form iff it has the form (Q1X1...QnXn. φ),

where φ is quantifier-free. We say that Q1X1...QnXn is the quantifier prefix and

that φ is the matrix.

Definition 1.1 (Substitution). Let Φ be a formula, and let π be a partial assign-

ment, i.e., an assignment that maps some of the variables in Φ to boolean values

(true, false). Recall that we require that all occurrences of a variable have the same

binding (if any). I.e., unlike first-order logic, we do not allow a variable in Φ to be

quantified more than once, and we do not allow a variable to have both free occur-

rences and bound occurrences. With this in mind, we define “Φ|π” to be the result

of the following: For every assigned variable x, we replace all occurrences of x in Φ

with the assigned value of x (and delete the quantifier of x, if any). Formally:

x|π =





true if (x, true) ∈ π

false if (x, false) ∈ π

x otherwise

(Qx.Φ)|π =





Φ|π if x ∈ vars(π)

Qx. (Φ|π) otherwise

(¬Φ)|π = ¬(Φ|π)

(Φ1 ∧ Φ2)|π = (Φ1|π) ∧ (Φ2|π)

(Φ1 ∨ Φ2)|π = (Φ1|π) ∨ (Φ2|π)

(r ? ψ1 : ψ2)|π = r|π ? ψ1|π : ψ2|π

The notation “r ? ψ1 : ψ2” denotes an if-then-else construct; it is not part of our
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QBF grammar, but it will be used in Chapter 4 in quantifier-free formulas. An

assignment π is said to satisfy a formula Φ iff Φ|π evaluates to true.

Semantics. Semantically, boolean quantifiers are defined as follows:

• Universal quantifier: ∀x.Φ = Φ|{x} ∧ Φ|{¬x}

• Existential quantifier: ∃x.Φ = Φ|{x} ∨ Φ|{¬x}

Lemma 1.1. Given a formula Φ and an assignment π, if an existential (or respec-

tively universal) literal ` is outermost in Φ under π, and Φ|π ∪ {`} evaluates to true

(resp. false), then Φ|π also evaluates to true (resp. false).

Example. Consider the formula Φ = ∀u.∃e. (e∧ u)∨ (¬e∧¬u) and the assignment

π = {u}. Then e is outermost in Φ under π, and Φ|π ∪ {e} = true, so Φ|π = true.

QBF as a Game. A closed prenex QBF formula Φ can be viewed as a game between

an existential player (Player ∃) and a universal player (Player ∀):

� Existentially quantified variables are owned by Player ∃.

� Universally quantified variables are owned by Player ∀.

� On each turn of the game, the owner of an outermost unassigned variable

assigns it a value.

� The goal of Player ∃ is to make Φ be true.

� The goal of Player ∀ is to make Φ be false.

� A player owns a literal ` if the player owns var(`).

The above definition of goals and the below definition of optimal-strategy assignment

were chosen to ensure the following: If π is an assignment produced by both players

following an optimal strategy, then Φ|π evaluates to the same truth value as Φ.

Definition 1.2 (Optimal-Strategy Assignment). We inductively define the set

of optimal-strategy assignments for Φ as follows:

4



1. The empty assignment is an optimal-strategy assignment for Φ.

2. If π is an optimal-strategy assignment for Φ, and

a literal ` is outermost in Φ under π, and

Φ|π ∪ {`} evaluates to the same truth value as Φ|π,

then π ∪ {`} is an optimal-strategy assignment for Φ.

For example:

� Consider the formula Φ = ∃e.∀u. e ∨ u. The assignment {e} is an optimal-

strategy assignment, because Φ evaluates to true and so does Φ|{e}. The as-

signment {¬e} is not an optimal-strategy assignment, because Φ|{¬e} evaluates

to false while Φ evaluates to true.

� Consider the formula Φ = ∀u.∃e. u ∧ (¬u ∨ e). The assignment {¬u} is an

optimal-strategy assignment, because Φ evaluates to false and so does Φ|{¬u}.

The assignment {u} is not an optimal-strategy assignment, because Φ|{u} eval-

uates to true while Φ evaluates to false.

� Consider the formula Φ = ∀u.∃e. (e ∧ u) ∨ (¬e ∧ ¬u). Both {u} and {¬u} are

optimal-strategy assignments.

As the above examples illustrate, if the existential player can make the formula true,

then he must do so in order to play an optimal strategy as defined above. This

observation is stated more precisely in the following lemma:

Lemma 1.2. If π is an optimal-strategy assignment for a formula Φ, and

1. an existential literal ` is outermost under π, and

2. Φ|π ∪ {`} evaluates to true, and

3. Φ|π ∪ {¬`} evaluates to false,

then π ∪ {`} is an optimal-strategy assignment but π ∪ {¬`} is not.

Proof. By premises 1 and 2, and Lemma 1.1, Φ|π evaluates to true. The conclusion
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of the lemma follows from the definition of optimal-strategy assignment .

A similar lemma can be proved from the universal player.

Gate variables. We label each conjunction and disjunction with a gate variable. If

a formula φ is labelled by a gate variable g, then ¬φ is labelled by ¬g. The variables

originally in the formulas are called “input variables”, as distinct from gate variables.

Definition 1.3 (Winning and losing under an input assignment). Let Φ be

a closed QBF formula and let π be an partial assignment to the input variables (i.e.,

π does not assign any gate variables).

� We say “Player ∃ wins Φ under π” iff Φ|π = true.

� We say “Player ∃ loses Φ under π” iff Φ|π = false.

� We say “Player ∀ wins Φ under π” iff Φ|π = false.

� We say “Player ∀ loses Φ under π” iff Φ|π = true.

Definition 1.4 (Disjoint Assignments). Two assignments π1 and π2 are said to be

disjoint iff vars(π1) is disjoint from vars(π2).

Quantifier Blocks. The prefix of a prenex instance is divided into quantifier blocks,

each of which is a subsequence ∀x1 . . . ∀xn or respectively ∃x1 . . . ∃xn, which we de-

note by ∀X or respectively ∃X, where X = {x1, ..., xn}.

SAT Solvers

A QBF formula in which all variables are existentially quantified is essentially a SAT

problem. Many modern QBF solvers use techniques that were first developed for

SAT solvers, so it is instructive to briefly consider SAT solvers before considering

QBF in full generality. Almost all modern SAT solvers use a variant of the DPLL
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algorithm [19]. This algorithm uses a backtracking search. It requires that the

formula be tranformed into conjunctive normal form (CNF), which is done using the

Tseitin tranformation (described in Section 2.1 on page 10).

In the DPLL algorithm, the solver picks a variable in the input formula and

arbitrarily assigns it a boolean value (true or false), simplifying the formula under

the assignment. This assignment is called a decision. The solver then performs unit

propagation: If the formula has a unit clause (a clause with exactly one literal), then

the solver assigns that literal true and simplifies the formula under that assignment.

Unit propagation is repeated until there are no more unit clauses. If a satisfying

assignment (i.e., an assignment that makes the formula true) is discovered, the solver

returns true. If a falsifying assignment is discovered, the solver backtracks, undoing

its decisions. High-level pseudocode of the DPLL algorithm is shown in Fig. 1.1.

For example, consider the formula (x1 ∨x2 ∨x3)∧ (x1 ∨¬x3)∧ (¬x1 ∨x2). Under

the decision x3 = true, the formula becomes: (true) ∧ (x1) ∧ (¬x1 ∨ x2). The clause

(x1) is a unit clause, so x1 = true is forced by unit propagation. Then the formula

simplifies to the unit clause (x2). Unit propagation forces x2 = true, and the formula

becomes true.

Great improvements to SAT solvers have been made beginning in the mid-1990s.

GRASP [56] introduced a powerful form of conflict analysis that enables (1) non-

chronological backtracking, allowing the solver to avoid considering unfruitful as-

function Solve(φ) {

φ := Propagate(φ);
if (φ = true) {return true;}

if (φ = false) {return false;}

x := (pick a variable in φ);
return (Solve(φ[x/true]) or Solve(φ[x/false]));

}

Figure 1.1: DPLL pseudocode; φ[x/c] denotes syntactic substitution of c for x in φ.
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signments, and (2) learning of additional implied clauses, which enables the solver to

discover more implied literals via unit propagation. When unit propagation forces a

literal to be assigned a certain value, GRASP records the set of literals responsible.

When a conflict is discovered (i.e., when the formula simplifies to false), GRASP uses

this information to derive a new clause. The learned clause is logically redundant,

but it enables unit propagation to be more effective. Another major breakthrough

is the two watched literals scheme introduced by Chaff [48]. SAT solvers spend most

of their time doing unit propagation, and the watched-literals scheme makes unit

propagation significantly more efficient.
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Chapter 2

Sequent Learning and Gate

Literals in QBF

Most early QBF solvers have used conjunctive normal form (CNF). Although CNF

works well for SAT solvers, it hinders the work of QBF solvers by impeding the

ability to detect and learn from satisfying assignments. In fact, as we will see in

Section 2.1, there is a family of formulas that are trivially satisfiable but whose CNF

translations were experimentally found to require exponential time (in the number

of variables) for existing CNF solvers.

Various techniques have been proposed for avoiding the drawbacks of a CNF

encoding. Sabharwal et al. have developed a QBF modeling approach based a game-

theoretic view of QBF [52]. Ansotegui et al. have investigated the use of indicator

variables [1]. Lintao Zhang has investigated dual CNF-DNF representations in which

a boolean formula is transformed into both a CNF formula (produced by the Tseitin

transformation) and a DNF formula (produced by the Tseitin transformation on the

negation of the formula) [60]. A prenex circuit-based DPLL solver with “don’t care”

reasoning and clause/cube learning has been developed by Goultiaeva, Iverson, and
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Bacchus [33]. Non-clausal techniques using symbolic quantifier expansion (rather

than DPLL) have been developed by Lonsing and Biere [43] and by Pigorsch and

Scholl [50]. Non-clausal representations have also been investigated in the context of

SAT solvers [22, 35, 57].

This chapter presents the ghost variable and sequent learning approach for non-

CNF formulas that was presented in [40] and further developed in [39]. Experimental

results are presented in the next chapter. A dual propagation technique similar to

ghost variables was independently and contemporaneously developed in [31].

2.1 Tseitin Transformation Harmful in QBF

The Tseitin transformation [58] is the usual way of converting a formula into CNF.

In the Tseitin transformation, all the gate variables (i.e., Tseitin variables) are ex-

istentially quantified in the innermost quantification block and clauses are added

to equate each gate variable with the subformula that it represents. For example,

consider the formula:
Φin = ∃e. ∀u. (e ∧ u)︸ ︷︷ ︸

g1

∨¬e

︸ ︷︷ ︸
g2

This formula is converted to:

Φ′in = ∃e.∀u. ∃g1.∃g2. g2 ∧ (g1 ⇔ (e ∧ u)) ∧
(g2 ⇔ (g1 ∨ ¬e))

(2.1)

The biconditionals defining the gate variables are converted to clauses as follows:

(g1 ⇔ (e ∧ u))

= ((e ∧ u)⇒ g1) ∧ (g1 ⇒ (e ∧ u))

= (¬(e ∧ u) ∨ g1) ∧ (¬g1 ∨ (e ∧ u))

= (¬e ∨ ¬u ∨ g1) ∧ (¬g1 ∨ e) ∧ (¬g1 ∨ u)

10



Note that the Tseitin transformation is asymmetric between the existential and uni-

versal players: In the resulting CNF formula, the gate variables are existentially

quantified, so the existential player (but not the universal player) loses if a gate vari-

able is assigned inconsistently with the subformula that it represents. For example,

in Equation 2.1, if e|π = false and g1|π = true, then the existential player loses Φ′in

under π. This asymmetry can be harmful to QBF solvers. For example, consider the

QBF

∀X. ∃y. y ∨ ψ(X)︸ ︷︷ ︸
g1

(2.2)

This formula is trivially true. A winning move for the existential player is to make

y be true, which immediately makes the matrix of the formula true, regardless of ψ.

Under the Tseitin transformation, Equation 2.2 becomes:

∀X. ∃y.∃{g1, ..., gn}. (y ∨ g1) ∧ (clauses equating gate variables)

Setting y to be true no longer immediately makes the matrix true. Instead, an

assignment might need to include the gate variables and the universal variables X in

order to satisfy the matrix. This makes it much harder to detect when the existential

player has won. Experimental results [1, 60] indicate that purely CNF-based QBF

solvers would, in the worst case, require time exponential in the number of variables

in X to solve the CNF formula, even though the original problem (before translation

to CNF) is trivial.
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2.2 Ghost Variables

We employ ghost variables to provide a modification of the Tseitin transformation

that is symmetric between the two players. The idea of using a symmetric transfor-

mation was first explored in [60], which performed the Tseitin transformation twice:

once on the input formula, and once on its negation.

For each gate variable g, we introduce two ghost variables : an existentially quan-

tified variable g∃ and a universally quantified variable g∀. We say that g∃ and g∀

represent the formula labeled by g. Ghost variables are considered to be downstream

of all input variables.1

We now introduce a semantics with ghost variables for the game formulation

of QBF. As in the Tseitin transformation, the existential player should lose if an

existential ghost variable g∃ is assigned a different value than the subformula that

it represents. Additionally, the universal player should lose if an universal ghost

variable g∀ is assigned a different value than the subformula that it represents.

For clarity, it should be noted that, if an assignment π includes a ghost variable

gQ that represents a formula φg, then performing substitution under π does not

necessarily substitute φg with the assigned value of gQ. For example, if gQ1 represents

x∧ y and π = {gQ1 }, then (x∧ y)|π evaluates to (x∧ y). Only variables that actually

occur in a formula (as opposed to ghost variables that merely label parts of the

formula) are substituted with their assigned values. In this thesis, we never consider

formulas (other than single literals) in which ghost variables occur as actual variables

(as opposed to mere labels).

1Let Xlast be the innermost quantification block of the original formula. As an implementation
optimization, ghost variables belonging to the owner of Xlast can be considered to be at the same
quantification level as Xlast (rather than being downstream of this block).
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Definition 2.1 (Consistent assignment to ghost literal). Given a quantifier

type Q ∈ {∃,∀} and an assignment π, we say a ghost literal gQ is assigned consis-

tently under π iff gQ|π = (the formula represented by gQ)|π. We say a ghost literal

gQ is assigned inconsistently under π iff gQ|π = ¬(the formula represented by gQ)|π.

For example, if gQ1 represents x∧y, then gQ1 is assigned consistently under {¬gQ1 ,¬x},

while it assigned inconsistently under {¬gQ1 , x, y}. Under {¬gQ1 }, gQ1 is not said to

be either consistently or inconsistently assigned.

Definition 2.2 (Winning under a total assignment). Given a formula Φ, a

quantifier type Q ∈ {∃,∀}, and an assignment π to all the input variables and a

subset of the ghost variables, we say “Player Q wins Φ under π” iff both of the

following conditions hold true:

• Φ|π =





true if Q is ∃

false if Q is ∀

• Every ghost variable owned by Q in vars(π) is assigned consistently.

(Intuitively, a winning player’s ghost variables must “respect the encoding”).

For example, if Φ = ∃e.∀u. (e ∧ u) and g labels (e ∧ u) then neither player wins Φ

under {¬e, u, g∀,¬g∃}. The existential player fails to win because Φ|π = false, and the

universal player fails to win because the ghost variable g∀ is assigned inconsistently

(since g∀|π = true but the formula represented by g∀ (i.e., the conjunction e ∧ u)

evaluates to false).

Note that Definition 2.2 extends Definition 1.3 (on page 6) to cover assignments

that have ghost variables. When the assignment π is restricted to being a total

assignment to input variables (and no ghost variables), then the two definitions of

“win” are equivalent.

13



Definition 2.3 (Losing under an assignment). Given a formula Φ and an as-

signment π, we define the phrase “Player Q loses Φ under π” recursively. We say

“Player Q loses Φ under π” iff either:

1. Player Q does not win Φ under π and every input variable is assigned by π, or

2. there is an outermost unassigned input variable x such that either:

(a) Player Q loses Φ under both π ∪ {(x, true)} and π ∪ {(x, false)}, or

(b) Q’s opponent owns x and Player Q loses Φ under either π ∪ {(x, true)} or

π ∪ {(x, false)}.

For example, consider a formula Φ = ∃e. z ∧ e, where z is a free variable. Then:

� Player ∃ loses Φ under {¬z,¬e}, by subpart 1 of Definition 2.3.

� Player ∃ loses Φ under {¬z}, by subpart 2(a) of Definition 2.3.

� Player ∀ loses Φ under {z}, by subpart 2(b) of Definition 2.3.

� Neither player can be said to lose Φ under the empty assignment.

Note that Definition 2.3 is consistent with Definition 1.3. Now let us make a few

general observations about when a player loses under an arbitrary partial assignment.

Observation 2.1. If Φ|π = true, then Player ∀ loses Φ under π.

Observation 2.2. If Φ|π = false, then Player ∃ loses Φ under π.

Observation 2.3. If a ghost variable owned byQ in vars(π) is assigned inconsistently

under π, then Player Q loses Φ under π.

Observation 2.4. If Player Q loses Φ under the assignment π ∪ {`}, where ` is

owned by the opponent of Q (and ¬` 6∈ π)2, then Player Q loses Φ under π. For

example, consider Φ = ∃e.∀x. e∧ x. Player ∃ loses Φ under the assignment {¬x}, so

Observation 2.4 indicates that Player ∃ also loses Φ under the empty assignment.

2If ¬` ∈ π, then π ∪ {`} wouldn’t be an assignment.

14



2.3 Game-State Sequents

In this section, we introduce game-state learning, a reformulation of clause/cube

learning. For closed prenex instances, the game-state formulation is isomorphic to

clause/cube learning; the differences are merely cosmetic. However, the game-state

formulation is more convenient to extend to the non-prenex case and to formulas

with free variables.

To motivate the definition of our sequents, we start by reviewing certain aspects

of clause learning. Suppose the input formula Φin is a prenex CNF QBF whose

first clause is (e1 ∨ e3 ∨ u4 ∨ e5). Under an assignment π, if all the literals in the

clause are false, then clearly Φin|π is false. Moreover, if, under π, all the clause’s

existential literals are assigned false and none of the clause’s universal literals are

assigned true (i.e., they may either be assigned false or be unassigned), as depicted

in Figure 2.1, then Φin|π is false, since the universal player can win by making all

the universal literals in the clause false. (To show that a formula with a universal

quantifier evaluates to false, we need only show that it evaluates to false under one

assignment to the universally quantified variables.)

∃e1∃e3∀u4∃e5. ( e1︸︷︷︸
false

∨ e3︸︷︷︸
false

∨ u4︸︷︷︸
false or

unassigned

∨ e5︸︷︷︸
false

) ∧ . . .

Figure 2.1: Universal player can win by making u4 be false.

As shown in [61], when a QBF clause learning algorithm with long-distance resolution

is applied to

∃e1∃e3∀u4∃e5∃e7. (e1 ∨ e3 ∨ u4 ∨ e5) ∧ (e1 ∨ ¬e3 ∨ ¬u4 ∨ e7) ∧ ... (2.3)

15



it can yield the tautological learned clause (e1∨u4∨¬u4∨e5∨e7). Note that this clause

is tautological (i.e., always true) because it contains the complementary literals u4

and ¬u4. Although counter-intuitive, the algorithm in [61] allows this learned clause

to be soundly interpreted in the same way as a non-tautological clause: Under an

assignment π, if all the clause’s existential literals are assigned false and none of the

clause’s universal literals are assigned true, then Φin|π is false.

Learned cubes are similar: Under an assignment π, if all the cube’s universal liter-

als are assigned true and none of the cube’s existential literals are assigned false, then

Φin|π is true. With game-state learning, we explicitly separate the “must be true”

literals from the “may be either true or unassigned” literals. Instead of writing a cube

(e1∨u2∨¬e3), we will write a game-state sequent : 〈{u2}, {e1,¬e3}〉 |= (∀ loses Φin).

Now we will formally define game-state specifiers and sequents.

Definition 2.4 (Game-State Specifier, Match). A game-state specifier is a pair

〈Lnow, Lfut〉 consisting of two sets of literals, Lnow and Lfut. We say that 〈Lnow, Lfut〉

matches an assignment π iff:

1. for every literal ` in Lnow, `|π = true, and

2. for every literal ` in Lfut, `|π 6= false (i.e., either `|π = true or var(`) 6∈ vars(π)).

For example, 〈{u}, {e}〉 matches the assignments {u} and {u, e} (because both con-

ditions in Definition 2.4 are satisfied), but does not match the empty assignment

(because condition 1 fails) or {u,¬e} (because condition 2 fails).

Note that, for any literal `, if {`,¬`} ⊆ Lfut, then 〈Lnow, Lfut〉 matches an assign-

ment π only if π doesn’t assign `. The intuition behind the names “Lnow” and “Lfut”

is as follows: Under the game formulation of QBF, the assignment π can be thought

of as a state of the game, and π matches 〈Lnow, Lfut〉 iff every literal in Lnow is already

true in the game and, for every literal ` in Lfut, it is possible that ` can be true in a
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future state of the game.

Definition 2.5 (Game Sequent). The sequent “〈Lnow, Lfut〉 |= (Q loses Φ)” means

“Player Q loses Φ under all assignments that match 〈Lnow, Lfut〉.”

As an example, let Φ be the following formula:

∀u.∃e. (e ∨ ¬u) ∧ (u ∨ ¬e) ∧
g3︷ ︸︸ ︷

(x1 ∨ e) (2.4)

Note that sequent 〈{u}, {e}〉 |= (∀ loses Φ) holds true: in any assignment π that

matches it, Φ|π = true. However, 〈{u},∅〉 |= (∀ loses Φ) does not hold true: it

matches the assignment {u,¬e}, under which Player ∀ does not lose Φ. Finally,

〈{g∀3}, {e,¬e}〉 |= (∀ loses Φ) holds true. Let us consider why Player ∀ loses Φ under

the assignment {g∀3}. The free variable x1 is the outermost unassigned variable, so

under Definition 2.3, Player ∀ loses under {g∀3} iff Player ∀ loses under both {g∀3 , x1}

and {g∀3 ,¬x1}. Under {g∀3 , x1}, Player ∀ loses because Φ|{g∀3 , x1} evaluates to true.

Under {g∀3 ,¬x1}, Player ∀ loses because e is owned by the opponent of Player ∀ and

g∀3 is assigned inconsistently under {g∀3 ,¬x1,¬e}.

With sequent learning, instead of having clause and cube databases, we maintain

a sequent database. It turns out that whenever we learn a new game-state sequent

for a closed prenex instance, the literals owned by the winner all go in Lfut, and the

literals owned by the loser go in Lnow. The relationship between game-state sequents

and learned clauses/cubes (for prenex instances) is as follows.

A learned clause (`1∨...∨`n) is equivalent to the sequent 〈Lnow, Lfut〉 |= (∃ loses Φin)

where Lnow contains all the existential literals from {¬`1, ...,¬`n}, and Lfut contains

all the universal literals from {¬`1, ...,¬`n}. Note that the literals from the clause

occur negated in the sequent. For example, for the QBF in Equation 2.3, the clause

(e1 ∨ u4 ∨¬u4 ∨ e5 ∨ e7) is equivalent to 〈{¬e1,¬e5,¬e7}, {u4,¬u4}〉 |= (∃ loses Φin).
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Likewise, a learned cube (`1 ∧ ...∧ `n) is equivalent to 〈Lnow, Lfut〉 |= (∀ loses Φin)

where Lnow contains all the universal literals from {`1, ..., `n}, and Lfut contains all

the existential literals from {`1, ..., `n}. Unlike the case for clauses, the literals in a

cube do not get negated for the corresponding sequent.

2.4 Algorithm

In this section, we consider only closed QBF. The top-level algorithm, shown in

Figure 2.2, is based on the well-known DPLL algorithm, except that sequents are used

instead of clauses. Similar to how SAT solvers maintain a clause database (i.e., a set of

clauses whose conjunction is equisatisfiable with the original input formula Φin), our

solver maintains a sequent database. A SAT solver’s clause database is initialized to

contain exactly the set of clauses produced by the Tseitin transformation of the input

formula Φin into CNF. Likewise, our sequent database is initialized (§ 2.4.1) to contain

a set of sequents analogous to the clauses produced by the Tseitin transformation.

In the loop on lines 4–7, the solver chooses an outermost unassigned literal (which

might be a ghost literal if the optimization in Footnote 1 on page 12 is used), adds it

1. initialize_sequent_database();

2. πcur := ∅; Propagate();

3. while (true) {

4. while (πcur doesn’t match any database sequent) {

5. DecideLit();

6. Propagate();

7. }

8. Learn();

9. if (learned seq has form 〈∅, Lfut〉 |= (Q loses Φin)) return Q;
10. Backtrack();

11. Propagate();

12. }

Figure 2.2: Top-Level Algorithm. Details have been omitted for sake of clarity.
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to πcur, and performs boolean constraint propagation (BCP). BCP may add further

literals to πcur, as described in detail in § 2.4.4; such literals are referred to as forced

literals , in distinction to the literals added by DecideLit, which are referred to as

decision literals . The stopping condition for the loop is when the current assignment

matches a sequent already in the database. (The analogous stopping condition for

a SAT solver would be when a clause is falsified.) When this stopping condition is

met, the solver performs an analysis similar to that of clause learning [56] to learn

a new sequent (line 8). If the Lnow component of the learned sequent is empty, then

the solver has reached the final answer, which it returns (line 9). Otherwise, the

solver backtracks to the earliest decision level at which the newly learned sequent

will trigger a forced literal in BCP. (The learning algorithm guarantees that this is

possible.) The solver then performs BCP (line 11) and returns to line 4.

In BCP, a literal owned by Q is forced by a sequent if the sequent indicates that

Q needs to make ` true to avoid losing. Learned sequents prevent the solver from

re-exploring parts of the search space that it has already seen, so that the solver is

continuously making progress in exploring the search space, thereby guaranteeing it

would eventually terminate (given enough time and memory).

The solver maintains a list of assigned literals in the order in which they were

assigned; this list is referred to as the trail [20]. Given a decision literal `d, we say

that all literals that appear in the trail after `d but before any other decision literal

belong to the same decision level as `d.

For prenex formulas without free variables, the algorithm described here is op-

erationally very similar to standard DPLL QBF solvers, except that Lnow and Lfut

do not need to be explicitly separated, since Lnow always consists exactly of all the

loser’s literals. However, for formulas with free variables, it is necessary to explicitly

record which literals belong in Lnow and which in Lfut.
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2.4.1 Initial Sequents

We initialize the sequent database to contain a set of initial sequents , which corre-

spond to the clauses produced by the Tseitin transformation of the input formula

Φin. The set of initial sequents must be sufficient to ensure the loop on line 4–

6 of Figure 2.2 (which adds unassigned literals to the current assignment until it

matches a sequent in the database) operates properly. That is, for every possible

total assignment π, there must be at least one sequent that matches π.

First, let us consider a total assignment π in which both players assign all their

ghost variables consistently (Definition 2.1). In order to handle this case, we generate

the following two initial sequents, where gin is the label of the input formula Φin:

〈{¬g∃in},∅〉 |= (∃ loses Φin) and 〈{g∀in},∅〉 |= (∀ loses Φin).

Since all ghost variables are assigned consistently in π, it follows that, for each

gate g, g∃|π must equal g∀|π, since both g∃ and g∀ must each be assigned the same

value as the formula that g labels. In particular, g∃in|π must be equal to g∀in|π, so π

must match exactly one of the two above initial sequents.

Now let us consider a total assignment π in which at least one player assigns

a ghost variable inconsistently. In order to handle this case, we generate a set of

initial sequents for every conjunction and disjunction in Φin. Let g∗ be the label of

an arbitrary conjunction in Φin of the form
(
x1 ∧ ... ∧ xn ∧ φ1︸︷︷︸

g1

∧ ... ∧ φm︸︷︷︸
gm

)

where x1 through xn are input literals. The following initial sequents are produced

from this conjunction for each Q ∈ {∃,∀}:

1. 〈{gQ∗ , ¬xi},∅〉 |= (Q loses Φin) for i ∈ {1, ..., n}

2. 〈{gQ∗ , ¬gQi },∅〉 |= (Q loses Φin) for i ∈ {1, ...,m}

3. 〈{¬gQ∗ , x1, ..., xn, g
Q
1 , ..., g

Q
m},∅〉 |= (Q loses Φin)
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Note that if π is an assignment such that (1) the ghost variable gQ∗ is inconsistently

assigned under π and (2) no proper subformula of the formula represented by gQ∗

is labelled by a inconsistently-assigned ghost variable (owned by Q), then π must

match one of the above-listed initial sequents.

2.4.2 Normalization of Initial Sequents

Note that all the initial sequents have the form 〈Lnow, Lfut〉 |= (Q loses Φ) where

Lfut = ∅. We normalize these sequents by moving all literals owned by Q’s opponent

from Lnow to Lfut. For example, given the QBF Φin = ∃e.∀u. φ, an initial sequent

〈{e, u},∅〉 |= (∃ loses Φin) would be normalized to 〈{e}, {u}〉 |= (∃ loses Φin). The

soundness of this normalization is justified by the following inference rule:

The opponent of Q owns `, and ¬` 6∈ Lfut

The quantifier of ` is inside Φ

〈Lnow ∪ {`}, Lfut〉 |= (Q loses Φ)

〈Lnow, Lfut ∪ {`}〉 |= (Q loses Φ)

To prove the above inference rule, we consider an arbitrary assignment π that matches

〈Lnow, Lfut ∪ {`}〉, assume that the premises of inference rule hold true, and prove

that Player Q loses under π:

1. π matches 〈Lnow, Lfut ∪ {`}〉 (by assumption).

2. π ∪ {`} matches 〈Lnow ∪ {`}, Lfut〉 (using the premise that ¬` 6∈ Lfut).

3. Q loses Φ under π ∪ {`} (by the premise 〈Lnow ∪ {`}, Lfut〉 |= (Q loses Φ)).

4. Q loses Φ under π (by Observation 2.4 on page 14).

21



2.4.3 Properties of Sequents in Database

After the initial sequents have been normalized (as described in § 2.4.2), the solver

maintains the following invariant for all sequents in the sequent database, including

sequents added to the database as a result of learning (§ 2.4.5). In any sequent of

the form 〈Lnow, Lfut〉 |= (Q loses Φin):

1. Every literal in Lnow is owned by Q.

2. Every literal in Lfut is owned by the opponent of Q.

2.4.4 Propagation

The Propagate procedure is similar to unit propagation for SAT solvers. Consider

a sequent 〈Lnow, Lfut〉 |= (Q loses Φin) in the sequent database. If, under πcur,

1. there is exactly one unassigned literal ` in Lnow, and

2. no literals in Lnow ∪ Lfut are assigned false, and

3. ` is not downstream of any unassigned literals in Lfut,

then ¬` is forced — it is added to the current assignment πcur. The sequent that

forced ¬` is called the antecedent of ¬`. In regard to the 3rd condition, if an unas-

signed literal r in Lfut is upstream of `, then r should get assigned before `, and if

r gets assigned false, then ` shouldn’t get forced at all by the sequent. Propaga-

tion ensures that the solver never re-explores areas of the search space for which it

already knows the answer, ensuring continuous progress and eventual termination.

Note that, in light of the property of sequents discussed in § 2.4.3, a sequent of the

form 〈Lnow, Lfut〉 |= (Q loses Φin) can force a literal only if the literal is owned by Q;

it cannot force a literal owned by Q’s opponent.
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We employ a variant of the watched-literals rule designed for SAT solvers [48]

and adapted for QBF solvers [24]. For each sequent 〈Lnow, Lfut〉 |= (Φ ⇔ ψ), we

watch two literals in Lnow and one literal in Lfut.

2.4.5 Learning

In the top-level algorithm in Figure 2.2, the solver performs learning (line 8) after the

current assignment πcur matches a sequent in the database. The learning procedure

is based on the clause learning introduced for SAT by Silva and Sakallah in [56]

and adapted for QBF by Zhang and Malik in [61, 62] using long-distance resolution.

It should be noted that not all modern QBF solvers use long-distance resolution.

DepQBF [44] uses a slightly different learning technique developed in [28, 29] (and

further developed in [45]) that avoids long-distance resolution.

We use inference rules shown in Figure 2.4 to add new sequents to the sequent

database. These rules, in their Lnow components, resemble the resolution rule used in

SAT (i.e., from (A∨ r)∧ (¬r∨B) infer A∨B). The learning algorithm ensures that

the solver remembers the parts of the search space for which it has already found an

answer. This, together with propagation, ensures that solver eventually covers all

the necessary search space and terminates.

The learning procedure, shown in Figure 2.3, works as follows. Let seq be the

database sequent that matches the current assignment πcur. Let r be the literal in the

Lnow component of seq that was most recently added to πcur (i.e., the latest one in the

trail). Note that r must be a forced literal (as opposed to a decision literal), because

only an outermost unassigned literal can be picked as a decision literal, but if r was

outermost immediately before it added to πcur, then no unassigned literal in the Lfut

component of seq was upstream of r, so seq would have forced ¬r in accordance with

§ 2.4.4. We use the inference rules in Figure 2.4 to infer a new sequent from seq and
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func Learn() {

seq := (the database sequent that matches πcur);
do {

r := (the most recently assigned literal in seq.Lnow)
seq := Resolve(seq, antecedent[r], r);

} until (seq.Lnow = ∅ or has good UIP(seq));

return seq;

} Figure 2.3: Procedure for learning new sequents

Resolving on a literal r owned by Player Q:

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Q loses Φin)

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2 )

r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φin)

Figure 2.4: Resolution-like inference rule.
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the antecedent of r (i.e., the sequent that forced r). This is referred to as resolving

due to the similarity of the inference rules to the clause resolution rule. We stop and

return the newly inferred sequent if it has a “good” unique implication point (UIP)

[62], i.e., if there is a literal ` in the Lnow component such that

1. Every literal in (Lnow \ {`}) belongs to an earlier decision level than `,

2. Every literal in Lfut upstream of ` belongs to a decision level earlier than `.

3. If seq has the form 〈Lnow, Lfut〉 |= (Q loses Φin), then the decision variable of

the decision level of ` is not owned by the opponent of Q.

Otherwise, we resolve the sequent with the antecedent of the most recently assigned

literal in its Lnow component, and continue this process until the stopping conditions

above are met or Lnow is empty. Note that if the most recently assigned literal in

Lnow is a decision literal, then it is a good UIP.

2.4.6 Justification of inference rules

The inference rule in Figure 2.4 is analogous to long-distance resolution [61] and its

soundness can be proved by similar methods (e.g., [3]). We give a proof in Section 4.7.
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Chapter 3

Non-Prenex Formulas

3.1 Introduction

Requiring that formulas be in prenex form simplifies the construction of a QBF

solver. However, it can also be harmful, because it artificially limits the order in

which variables can be branched on. For example, consider the following formula:

(∃e1.∀u2. φ1) ∧ (∃e3.∀u4. φ2) (3.1)

Recall that a DPLL QBF solver can only pick an outermost unassigned variable

to branch on. Once e1 is assigned, both u2 and e3 are outermost unassigned vari-

ables in the above formula. However, if the formula is prenexed, then only one of

these two can be an outermost unassigned variable. If then formula is prenexed as

(∃e1.∀u2.∃e3.∀u4. φ1 ∧ φ2), then u2 would be an outermost variable (once e1 is as-

signed). If it is prenexed as (∃e1.∃e3.∀u2.∀u4. φ1∧φ2), then e3 would be an outermost

variable. In general, in a prenex formula, it is impossible for both an existential vari-

able and a universal variable to simultaneously be outermost unassigned variables.
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How does restricting the branching order hurt QBF solvers? One way is that

it frustrates decision heuristics such as VSIDS [48]. VSIDS tries to branch first on

variables that have been directly relevant to recent conflicts (and therefore likely to

relevant to conflicts in the near future). However, if the most relevant variables are

not outermost, then the solver must first branch on the outermost variables, even

if they are unlikely to be relevant to producing conflicts. After each such variable

is branched on, BCP must be performed, wasting a great deal of computation time

that could have been avoided if the solver were able to branch on only those variables

that would actually be relevant.

Previous research in non-prenex DPLL-based QBF solving by Egly, Seidl,

and Woltran [21] introduced a technique that employs dependency-directed (non-

chronological) backtracking, but without learning or sharing of subformulas.

Giunchiglia et al. have developed a technique for exploiting tree-like quantifier pre-

fixes [26]. Lonsing and Biere have introduced dependency schemes that are more

general than tree-like prefixes [44].

This chapter presents the non-prenex approach of [40], which allows learning to be

applied to individual quantified subformulas instead of only the entire input formula.

Most existing DPLL-based QBF solvers perform clause/cube learning. However,

traditional clause/cube learning was designed for prenex QBF instances, and it is not

optimal for (or even directly applicable to) non-prenex QBF instances. In Chapter 2,

we reformulated clause/cube learning as sequent learning with ghost variables . In

this chapter, we will extend it to the non-prenex case. Experimental results indicate

that our approach can beat other state-of-the-art solvers on fixed-point computation

instances of the type found in the tipfixpoint benchmark family.
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3.2 Preliminaries

We label each conjunction and disjunction of the input QBF with a gate variable, as

illustrated in Figure 3.1. In addition, quantified subformulas are also labeled with

gate variables. Unlike quantifier-free subformulas, each labelled quantified subfor-

mula is only allowed to occur once in the input formula Φin; this follows from the

requirement that each variable can be bound by a quantifier at most once in the

input formula.

∃e10

[
[∃e11 ∀u21

g1︷ ︸︸ ︷
(e10 ∧ e11 ∧ u21) ]︸ ︷︷ ︸
g′1

∧ [∀u22 ∃e30

g2︷ ︸︸ ︷
(e10 ∧ u22 ∧ e30) ]︸ ︷︷ ︸
g′2

]

Figure 3.1: Example QBF instance with gate labels.

The term “gate variable” arises from the circuit representation of a propositional

formula, in which a gate variable labels a logic gate.

Let “Φin” denote the formula that the QBF solver is given as input. We impose

the following restriction on Φin: Every variable in Φin must be quantified exactly

once, and no variable may occur free (i.e., outside the scope of its quantifier). The

variables that occur in Φin are said to be input variables. An input assignment is

an assignment in which every assigned variable is an input variable (as opposed to a

gate variable). We say that a gate literal g is upstream of an input literal y iff every

variable that occurs in the subformula represented by g is upstream of y.

For non-prenex instances, we say that each quantifier-prefixed subformula (e.g.,

g′1 and g′2 in Figure 3.1) is a subgame. We say that two subgames are independent iff

they have no unassigned variables in common. For example, in Figure 3.1, after e10

is assigned a value, the two subgames g′1 and g′2 become independent of each other,
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and the variables e11 and u22 become outermost unassigned variables.

3.3 Algorithm

An overview of the top-level solver algorithm is provided in Figure 3.2. Initially,

the current assignment πcur is empty. For non-prenex instances, if/when the input

formula Φin (as simplified under the current assignment) becomes partitioned into

independent subgames, we may temporarily target in on one such independent sub-

game and ignore the others; the subgame being targetted is referred to as TargFmla.

On each iteration of the main loop, we first test to see if we know who wins TargFmla

under the current assignment. There are two cases:

� If the winner of TargFmla is unknown, then we call DecideLit, which picks an

unassigned input variable (from the first available quantifier block in the prefix

of TargFmla) and assigns it a value in πcur. If there are no more unassigned

variables in the quantifier prefix of the current TargFmla, then we pick a new

TargFmla from among the unassigned immediate subformulas of TargFmla and

try again. After adding a new literal to πcur, we call Propagate to perform

boolean constraint propagation (BCP).

� If the winner is known, then we call Learn to learn a new game-state se-

quent, adding it to the database. If the new game-state sequent reveals which

player wins Φin under the empty assignment, then we return with our final

answer. Otherwise, we backtrack. We follow the well-known non-chronological

backtracking technique, with the addition that we must also undo changes to

TargFmla as appropriate. (That is, if we backtrack to the beginning of the

kth decision level, then we must restore TargFmla to the value that it held

at the beginning of the kth decision level. For this purpose, we maintain an
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array UndoTarg that maps each decision level to the value of TargFmla to be

restored.) After backtracking, the newly-learned game-state sequent will force

a literal, so we call Propagate to perform BCP.

1. initialize_sequent_database();

2. πcur := ∅; TargFmla := Φin; Propagate();

3. while (true) {

4. while (πcur doesn’t match any database sequent for TargFmla) {

5. DecideLit(); // Picks new TargFmla if necessary.
6. Propagate();

7. }

8. Learn();

9. if (learned seq has form 〈∅, Lfut〉 |= (Q loses Φin)) return Q;
10. Backtrack();

11. Propagate();

12. }

Figure 3.2: Overview of top-level solver algorithm.

3.3.1 Propagation

The Propagate procedure is similar to that of Section 2.4.4. Conceptually, we ex-

amine each learned game-state sequent seq of the form 〈Lnow, Lfut〉 |= (Q loses Φb)

where Φb is a subformula of TargFmla. Let gb be the gate variable that labels Φb. If,

under the current assignment πcur,

1. there is exactly one unassigned literal ` in Lnow, and

2. no literals in Lnow ∪ Lfut are assigned false, and

3. ` is not downstream of any unassigned literals in Lfut, and

4. either (a) the quantifier of ` is within Φb, or

(b) πcur contains gQb (if Q = ∃) or ¬gQb (if Q = ∀),
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then ¬` is forced — it is added to the current assignment πcur. The first three rules

are the same as for the prenex case (Section 2.4.4). The 4th rule deals with subgames.

If all literals in Lnow are true and none of the literals in Lfut are assigned false,

then πcur matches seq, so Q loses Φb under the current assignment. There are two

subcases to consider:

1. If Φb = TargFmla, then we know who wins TargFmla under the current assign-

ment, so we stop propagation and return to the top-level procedure (Figure 3.2).

2. If Φb 6= TargFmla, then the ghost variables g∃b and g∀b are forced to be false (if

Q=∃) or true (if Q=∀).

3.3.2 Learning

In addition to the inference rule from the previous chapter, we have another inference

rule that relates subgames with their parent games, shown in Figure 3.3.

3.4 Experimental Results

We implemented the ghost-variables technique from the previous chapter and the

non-prenex learning technique from this chapter in a solver which we call GhostQ.

We performed an experimental comparison to other solvers that were state-of-the-art

at the time that the original version of GhostQ was finished.

We ran GhostQ on the non-CNF instances from QBFLIB on 2.66 GHz machine

with a timeout of 300 seconds. For comparison we show the results for CirQit

published in [33] (which were conducted on a 2.8 GHz machine with a timeout of

1200 seconds). As shown in Table 3.1, GhostQ performs better than CirQit on
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Table 3.1: Comparison between GhostQ and CirQit.

Family inst. GhostQ CirQit

Seidl 150 150 (1606 s) 147 (2281 s)
assertion 120 12 (141 s) 3 (1 s)
consistency 10 0 (0 s) 0 (0 s)
counter 45 40 (370 s) 39 (1315 s)
dme 11 11 (13 s) 10 (15 s)
possibility 120 14 (274 s) 10 (1707 s)
ring 20 18 (28 s) 15 (60 s)
semaphore 16 16 (4 s) 16 (7 s)

Total 492 261 (2435 s) 240 (5389 s)

Table 3.2: Comparison between GhostQ and Qube.

Family inst. GhostQ Qube

bbox-01x 450 171 (133 s) 341 (1192 s)
bbox design 28 19 (256 s) 28 (15 s)
bmc 132 43 (266 s) 49 (239 s)
k 61 42 (355 s) 13 (55 s)
s 10 10 (1 s) 10 (5 s)
tipdiam 85 72 (143 s) 60 (235 s)
tipfixpoint 196 165 (503 s) 100 (543 s)
sort net 53 0 (0 s) 19 (176 s)
all other 121 9 (38 s) 23 (227 s)

Total 1136 531 (1695 s) 643 (2687 s)

Table 3.3: Comparison between GhostQ and Non-DPLL Solvers.
Timeout 60 s Timeout 600 s

Family inst. GhostQ Quantor sKizzo GhostQ AIGsolve

bbox-01x 450 171 130 166 178 173
bbox design 28 19 0 0 22 23
bmc 132 43 106 83 51 30
k 61 42 37 47 51 56
s 10 10 8 8 10 10
tipdiam 85 72 23 35 72 77
tipfixpoint 196 165 8 25 170 133
sort net 53 0 27 1 0 0
all other 121 9 49 31 17 35

Total 1136 531 388 396 571 537

In Tables 1–2, we give the number of instances solved and the time needed to solve
them. (Times shown do not include time spent trying to solve instances where the
solver timed out.) In Table 3, we give the number of instances solved.
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Resolving on a literal r owned by Player Q:

The quantifier type of r is Q

The quantifier of r is in Φb

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φb)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Q loses Φb)

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2 )

r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φb)

Subgame Rule

The quantifier type of r is Q

Φb is a subgame of Φa

〈Lnow
1 , Lfut

1 〉 |= (Q loses Φb)

〈Lnow
2 ∪ {±gb}, Lfut

2 〉 |= (Q loses Φa)

The label of Φb is gb, and “±gb” denotes gb (if Q = ∀) or ¬gb (if Q = ∃)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φa)

Figure 3.3: Inference rules

every benchmark family except consistency. The ring and semaphore families

consist of prenex instances. The other families are non-prenex, so our solver took

advantage of its ability to perform non-prenex game-state learning. During testing

of our solver, it was noted that non-prenex learning was especially helpful on the

dme family. (The dme family instances were originally given in prenex form, but we

pushed the quantifiers inward as a preprocessing step. The unprenexing time was

about 0.8 seconds per instance and is included in our solver’s total time shown in

the table.)

We compared GhostQ to the state-of-the-art solvers Qube 6.6 [26], Quantor

34



3.0 [8], and sKizzo 0.8.2 [5]. We ran these solvers on the prenex CNF track of the

QBFLIB QBFEVAL 2007 benchmarks [49] on a 2.66 GHz machine, with a time limit

of 60 seconds and a memory limit of 1 GB. The results are shown in Tables 3.2 and

3.3. On these benchmarks, GhostQ outperformed the state-of-the-art CNF solvers

on the k, tipdiam, and tipfixpoint families. We also show the results for AIGsolve

published in [50], but these numbers are not directly comparable because they were

obtained on a different machine and with a timeout of 600 s.

For the CNF benchmarks, we wrote a script to reverse-engineer the QDIMACS

file to circuit form and convert it to our solver’s input format. (This is similar to the

technique in [50] and [32], but we also looked for “if-then-else” gates of the form g =

(x ? y : z).) Of the four other solvers shown in Tables 3.2 and 3.3, Qube is the only

other DPLL-based solver, so it is most similar to our solver. Our experimental results

show that GhostQ does better than Qube on the tipdiam and tipfixpoint families

(which concern diameter and fixpoint calculations for model checking problems on

the TIP benchmarks) and on the k family.

The use of ghost literals can help GhostQ in two ways: (1) By treating the

gate literals symmetrically instead of treating them as belonging to the existential

player, we can more readily detect when the input formula is satisfied and we can

learn more powerful cubes; (2) By using universal ghost literals, we have a more

powerful propagation procedure for the universal input literals. (We did not perform

unprenexing on any of the originally-CNF benchmarks, so our use of non-prenex

learning doesn’t improve performance here.) To further investigate, we turned off

downward propagation of universal ghost literals; on most families the effect was

negligible, but on tipfixpoint we solved only 149 instances instead of 165.
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3.5 Future Work

Samulowitz and Bacchus [53] discovered a technique for dynamically partitioning a

QBF problem into independent subproblems. It may be worthwhile to investigate

whether a similar technique can allow allow dynamic unprenexing of QBF problems.

This would allow our non-prenex technique to be applied to a much greater extent.
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Chapter 4

Open QBF

4.1 Introduction

In recent years, significant effort has been invested in developing efficient solvers for

Quantified Boolean Formulas (QBFs). So far this effort has been almost exclusively

directed at solving closed formulas — formulas where each variable is either exis-

tentially or universally quantified. However, in a number of interesting applications

(such as symbolic model checking and automatic synthesis of a boolean reactive sys-

tem from a formal specification), one needs to consider open formulas, i.e., formulas

with free (unquantified) variables. A solution to such a QBF is a formula equivalent

to the given one but containing no quantifiers and using only those variables that

appear free in the given formula. For example, a solution to the open QBF formula

∃x. (x ∧ y) ∨ z is the formula y ∨ z.

This chapter shows how DPLL-based closed-QBF solvers can be extended to solve

QBFs with free variables. In Chapter 2, it was shown how clause/cube learning for

DPLL-based QBF solvers can be reformulated in terms of sequents and extended to

non-CNF formulas. This technique uses ghost variables to handle non-CNF formulas
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function solve(Φ) {

if (Φ has no free variables) {return closed_qbf_solve(Φ);}
x := (a free variable in Φ);
return ite(x, solve(Φ with x substituted with True),

solve(Φ with x substituted with False));
}

Figure 4.1: Naive algorithm. The notation “ite(x, φ1, φ2)” denotes a formula with
an if-then-else construct that is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2).

in a manner that is symmetric between the existential and universal quantifiers. We

show that this sequent-based technique can be naturally extended to handle QBFs

with free variables.

A näıve way to recursively solve an open QBF Φ is shown in Figure 4.1. Roughly,

we Shannon-expand on the free variables until we’re left with only closed-QBF prob-

lems, which are then handed to a closed-QBF solver. As an example, consider the

formula (∃x. x ∧ y), with one free variable, y. Substituting y with true in Φ yields

(∃x. x); this formula is given to a closed-QBF solver, which yields true. Substitut-

ing y with false in Φ immediately yields false. So, our final answer is the formula

(y ? true : false), which simplifies to y. In general, if the free variables are always

branched on in the same order, then the algorithm effectively builds an ordered bi-

nary decision diagram (OBDD) [13], assuming that the ite function is memoized

and performs appropriate simplification.

The above-described näıve algorithm suffers from many inefficiencies. In terms of

branching behavior, it is similar to the DPLL algorithm, but it lacks non-chronological

bracktracking and an equivalent of clause learning. The main contribution of this

chapter is to show how an existing closed-QBF algorithm can be modified to di-

rectly handle formulas with free variables by extending the existing techniques for

non-chronological backtracking and clause/cube/sequent learning.
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4.2 Preliminaries

Grammar. We consider prenex formulas of the form Q1X1...QnXn. φ, where Qi ∈

{∃,∀} and φ is quantifier-free and represented as a DAG. The logical connectives

allowed in φ are conjunction, disjunction, and negation. We say that Q1X1...QnXn

is the quantifier prefix and that φ is the matrix.

Quantifier Order. We extend the notion of downsteam/upstream to cover free

variables. As in previous chapters, in a formula where the quantifier of a variable

y occurs inside the scope of the quantifier of a variable x (e.g., ∀x.∃y. φ), and the

quantifier type of x is different from the quantifier type of y, we say that y is down-

stream of x. All quantified variables in a formula are considered downstream of all

free variables in the formula. In the context of an assignment π, we say that a vari-

able is an outermost unassigned variable iff it is not downstream of any variables

unassigned by π.

4.2.1 Sequents with Free Variables

In Section 2.3, we introduced sequents that indicate if a player loses a formula Φ.

Now, we will generalize sequents so that they can indicate that Φ evaluates to a

quantifier-free formula involving the free variables. To do this, we first introduce a

logical semantics for QBF with ghost variables. Given a formula Φ and an assignment

π that assigns all the input variables, we want the semantic evaluation JΦKπ to have

the following properties:

1. JΦKπ = true iff the existential player wins Φ under π.

2. JΦKπ = false iff the universal player wins Φ under π.
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Note that the above properties cannot be satisfied in a two-valued logic if both players

lose Φ under π. So, we use a three-valued logic with a third value dontcare. We call

it “don’t care” because we are interested in the outcome of the game when both

players make the best possible moves, but if both players fail to win, then clearly at

least one of the players failed to make the best possible moves. In our three-valued

logic, a conjunction of boolean values evaluates to false if any conjunct is false, and

otherwise it evaluates to dontcare if any conjunct is dontcare. Likewise, a disjunction

of boolean values evaluates to true if any disjunct is true, and otherwise it evaluates

to dontcare if any disjunct is dontcare. The negation of dontcare is dontcare. In a

truth table:

x y x ∧ y x ∨ y

true dontcare dontcare true

false dontcare false dontcare

dontcare true dontcare true

dontcare false false dontcare

dontcare dontcare dontcare dontcare

For convenience in defining semantics with free variables, we assume that the formula

is prepended with a dummy “quantifier” block for free variables. For example, the

formula (∃e. e∧ z) becomes (Fz.∃e. e∧ z), where F denotes the dummy “quantifier”

for free variables.

Definition 4.1 (Semantics with Free Variables). Given an assignment π and a for-

mula Φ, we define JΦKπ recursively. If Φ contains free variables unassigned by π,

then JΦKπ is a formula in terms of these free variables.

� Base case: If π assigns all the input variables and a subset of the ghost

variables, we define JΦKπ as follows:
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JΦKπ :=





true if Player ∃ wins Φ under π (definition 2.2 on page 13)

false if Player ∀ wins Φ under π (definition 2.2 on page 13)

dontcare if both players lose Φ under π (definition 2.3 on page 13)

� Recursive case: If π assigns only a proper subset of the input variables, we

define JΦKπ as follows:

JQx.ΦKπ = JΦKπ if Q ∈ {∃,∀,F} and x ∈ vars(π)

J∃x.ΦKπ = JΦK(π ∪ {x}) ∨ JΦK(π ∪ {¬x}) if x 6∈ vars(π)

J∀x.ΦKπ = JΦK(π ∪ {x}) ∧ JΦK(π ∪ {¬x}) if x 6∈ vars(π)

JFx.ΦKπ = x ? JΦK(π ∪ {x}) : JΦK(π ∪ {¬x}) if x 6∈ vars(π)

The notation “x ? φ1 : φ2” denotes a formula with an if-then-else ternary operator;

the formula is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2). Note that the branching

on the free variables here is similar to the Shannon expansion [54].

Remark. Do we really need to add the dummy blocks for free variables and have

the rule for JFx.ΦKπ in Definition 4.1? Yes, because if π contains a ghost literal gQ

that represents a formula containing variables free in Φ, then it doesn’t make sense

to ask if gQ is assigned consistently under π unless all the variables in the formula

represented by gQ are assigned by π.

Definition 4.2. Given x ∈ {true, false, dontcare} and y ∈ {true, false, dontcare}, we

define the relation “
∗≡ ” as follows: x

∗≡ y is true iff either x= y or x= dontcare.

Note that the relation is not symmetrical between x and y. (It is defined this way

to simplify the proof of Lemma 4.8 on page 57.) As a truth table:
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x y x
∗≡ y

true true true

true false false

false true false

false false true

true dontcare false

false dontcare false

dontcare true true

dontcare false true

dontcare dontcare true

Given two formulas ψ1 and ψ2, we write ψ1
∗
= ψ2 iff the formula ψ1

∗≡ ψ2 is valid

(true under all assignments to its free variables). We write ψ1 6∗= ψ2 iff ψ1
∗
= ψ2

doesn’t hold true. (Note that ψ1 = ψ2 implies ψ1
∗
= ψ2, and ψ1 6∗= ψ2 implies

ψ1 6= ψ2.)

Definition 4.3 (Repeat of Definition 2.4 on page 16). A game-state specifier

is a pair 〈Lnow, Lfut〉 consisting of two sets of literals, Lnow and Lfut. We say that

〈Lnow, Lfut〉 matches an assignment π iff:

1. for every literal ` in Lnow, `|π = true, and

2. for every literal ` in Lfut, `|π 6= false (i.e., either `|π = true or var(`) 6∈ vars(π)).

Definition 4.4 (Free Sequent). Consider a QBF Φ and a propositional formula ψ

that contains only variables free in Φ. The sequent “〈Lnow, Lfut〉 |= (Φ⇔ ψ)” means

“JΦKπ
∗
= ψ|π holds true for all assignments π that match 〈Lnow, Lfut〉”.

Definition 4.5. An assignment π is a counterexample to 〈Lnow, Lfut〉 |= (Φ⇔ ψ) iff

JΦKπ 6∗= ψ|π and π matches 〈Lnow, Lfut〉.

Remark. A sequent holds true iff there is no counterexample to it.
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Example. Let Φ = ∃e.
g1︷ ︸︸ ︷

(e ∧ z), and let seq be the sequent 〈∅,∅〉 |= (Φ ⇔ z). The

assignment π1 = {¬e} is a counterexample to seq because JΦKπ1 = false but z|π1 = z.

The assignment π2 = {¬e, g∀1} is not a counterexample, because JΦKπ2 = dontcare.

Remark. The sequent definitions in Definitions 4.4 and 2.5 are related as follows:

• “〈Lnow, Lfut〉 |= (∃ loses Φ)” means the same as “〈Lnow, Lfut〉 |= (Φ⇔ false)”.

• “〈Lnow, Lfut〉 |= (∀ loses Φ)” means the same as “〈Lnow, Lfut〉 |= (Φ⇔ true)”.

We treat a game sequent as interchangeable with the corresponding free sequent.

Sequents of the form 〈Lnow, Lfut〉 |= (Φ⇔ ψ) extend clause/cube learning by allowing

ψ to be a formula (in terms of the variables free in Φ) in addition to the constants

true and false. This enables handling of formulas with free variables.

4.3 Algorithm

The top-level algorithm, shown in Figure 4.2, is the same as for closed QBF (Fig-

ure 2.2 on page 18) except for a minor change on line 9. As in closed QBF, when the

current assignment matches a sequent in the database, the solver performs learning

1. initialize_sequent_database();

2. πcur := ∅; Propagate();

3. while (true) {

4. while (πcur doesn’t match any database sequent) {

5. DecideLit();

6. Propagate();

7. }

8. Learn();

9. if (learned seq has form 〈∅, Lfut〉 |= (Φin ⇔ ψ)) return ψ;
10. Backtrack();

11. Propagate();

12. }

Figure 4.2: Top-Level Algorithm. Details have been omitted for sake of clarity.
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and backtracks to the earliest decision level at which the newly learned sequent will

trigger a forced literal in BCP. In particular, free variables can be forced. The in-

tuition behind forcing free variables is to prevent the solver from re-exploring parts

of the search space that it has already seen, so that the solver is continuously mak-

ing progress in exploring the search space, thereby guaranteeing it would eventually

terminate (given enough time and memory).

In a (normalized) sequent for a closed prenex formula, all the loser’s literals always

belong in Lnow and all of the winner’s literals always belong in Lfut. That means that

the Lnow and Lfut components do not need to be explicitly separated. That is, it

is possible to store them intermingled in a single undifferentiated set of variables,

without explicitly storing which variables belong in which component, because this

information can be unambiguously reconstructed. However, for formulas with free

variables, it is necessary to explicitly record which literals belong in Lnow and which

in Lfut. If the ψ component of the sequent is a formula with free variables, then there

is no “winner” or “loser” of the sequent, so the Lnow and Lfut component cannot be

reconstructed from a single undifferentiated set of variables.

4.3.1 Properties of Sequents in Database

After the initial sequents have been normalized (as described in § 2.4.2), the solver

maintains the following invariants for all sequents in the sequent database, including

sequents added to the database as a result of learning (§ 4.3.3):

1. In a sequent of the form 〈Lnow, Lfut〉 |= (Q loses Φin):

(a) Every literal in Lnow either is owned by Q or is free in Φin.

(b) Every literal in Lfut is owned by the opponent of Q.

There is no corresponding property for sequents in which the ψ component is not a

boolean constant.
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4.3.2 Propagation

The Propagate procedure is similar to that of closed-QBF. Consider a sequent

〈Lnow, Lfut〉 |= (Φin ⇔ ψ) in the sequent database. If, under πcur,

1. there is exactly one unassigned literal ` in Lnow, and

2. no literals in Lnow ∪ Lfut are assigned false, and

3. ` is not downstream of any unassigned literals in Lfut or ψ, and

4. all variables in ψ are unassigned,

then ¬` is forced — it is added to the current assignment πcur. The first two condi-

tions above are the same as for closed QBF (Section 2.4.4). In the 3rd condition, we

add the condition that ` be downstream of all unassigned literal in ψ. This, together

with the new 4th condition, ensures that a quantified variable can be forced only by

a sequent whose ψ component is a boolean constant. (It may be noted that, instead

of making these two changes to the propagation rules, we could achieve the same

effect by adding both polarities of every variable in ψ to Lfut. In fact, this is how the

solver is actually implemented.)

It is instructive to consider how the propagation rules apply in light of the prop-

erties of sequents discussed in § 4.3.1:

1. A sequent of the form 〈Lnow, Lfut〉 |= (Q loses Φin) can force a literal that is

either owned byQ or free in Φin; it cannot force a literal owned byQ’s opponent.

If ` is owned by Q, then the reason for forcing ¬` is intuitive: the only way

for Q to avoid losing is to add ¬` to the current assignment. If ` is free in Φin,

then ¬` is forced because the value of JΦinKπcur ∪ {`} is already known and the

solver shouldn’t re-explore that same area of the search space.

2. A sequent of the form 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), where ψ contains free variables,
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can only force a literal that is free in Φin. Although Lnow can contain literals

owned by Player ∃ and Player ∀, such literals cannot be forced by the sequent.

To prove this, we consider two cases: either there exists a variable v that occurs

in ψ and is assigned by πcur, or all variables that occur ψ are left unassigned by

πcur. If there is variable v in ψ that is assigned by πcur, then the 4th condition

of propagation fails. If there is a variable v in ψ that is left unassigned by πcur,

then the 3rd condition of propagation fails, since every quantified variable is

downstream of free variable v.

We employ the same variant of the watched-literals rule as in Chapter 2. For each

sequent 〈Lnow, Lfut〉 |= (Φ⇔ ψ), we watch two literals in Lnow and one literal in Lfut.

4.3.3 Learning

The learning algorithm from § 2.4.5 (page 23) has been carefully formulated so that

it applies unchanged to open QBF except for the addition of resolution-like rules for

free variables. The new inference rules are shown in Figure 4.3. In Figure 4.4, we

give an example of several successive applications of the resolution rules.

4.3.4 Justification of inference rules

Proofs of the inference rules in Figure 4.3 are provided in Section 4.7. Theorem 4.1 in

Figure 4.3 is analogous to long-distance resolution [61] and can be proved by similar

methods (e.g., [3]). Intuitively, if the current assignment matches 〈Lnow
1 ∪Lnow

2 , Lfut
1 ∪

Lfut
2 〉, then the opponent of Q can make Q lose Φin by assigning true to all the literals

in Lfut
1 that are upstream of r. This forces Q to assign r = false to avoid matching

the first sequent in the premise of the inference rule, but assigning r = false makes

the current assignment match the second sequent in the premise.
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Theorem 4.1 (Resolving on a literal r owned by Player Q, case 1).

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Q loses Φin)

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2 )

r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φin)

Theorem 4.2 (Resolving on a literal r owned by Player Q, case 2).

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ)

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2 )

r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {¬r}〉 |= (Φin ⇔ ψ)

Theorem 4.3 (Resolving on a variable r that is free in Φin).

Literal r is free

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φin ⇔ ψ1)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ2)

r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Φin ⇔ (r ? ψ1 : ψ2))

Figure 4.3: Resolution-like inference rules.
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∃e3. (i1 ∧ e3)︸ ︷︷ ︸
g5

∨ (i2 ∧ ¬e3)︸ ︷︷ ︸
g4

1. Start: 〈{¬i1,¬i2}, {}〉 |= (Φin ⇔ false)

2. Resolve ¬i1 via 〈{i1,¬g∀5}, {e3}〉 |= (Φin ⇔ true)

Result: 〈{¬i2,¬g∀5}, {e3}〉 |= (Φin ⇔ i1)

3. Resolve ¬i2 via 〈{i2,¬g∀4}, {¬e3}〉 |= (Φin ⇔ true)

Result: 〈{¬g∀5 ,¬g∀4}, {e3,¬e3}〉 |= (Φin ⇔ (i1 ∨ i2))

4. Resolve ¬g∀4 via 〈{g∀4}, {}〉 |= (Φin ⇔ true)

Result: 〈{¬g∀5}, {e3,¬e3,¬g∀4}〉 |= (Φin ⇔ (i1 ∨ i2))

5. Resolve ¬g∀5 via 〈{g∀5}, {}〉 |= (Φin ⇔ true)

Result: 〈{}, {e3,¬e3,¬g∀4 ,¬g∀5}〉 |= (Φin ⇔ (i1 ∨ i2))

Figure 4.4: Example: applications of the resolution rules.

If the current assignment πcur matches the sequent in the conclusion of Theo-

rem 4.2, there are two possibilities. For simplicity, assume that πcur assigns all free

variables and that neither Lfut
1 nor Lfut

2 contains any free literals (since, proven in

Lemma 4.11 on page 60, free literals can be removed from Lfut). If Q loses ψ under

πcur, then the situation is similar to first inference rule. If the opponent of Q loses

ψ under πcur, then Q can make his opponent lose Φin by assigning r = false, thereby

making the current assignment match the second sequent of the premise.

For Theorem 4.3, we don’t need a condition about r not being downstream of

other literals, since no free variable is downstream of any variable.
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4.4 Experimental Results

We extended the existing closed-QBF solver GhostQ [40] to implement the tech-

niques described in this paper. For comparison, we used the solvers and benchmarks

from [4].1 The benchmarks concern the automatic synthesis of a simple hardware

load-balancer from a set of formal specifications. The benchmarks contain multiple

alternations of quantifiers and are derived from problems involving the automatic

synthesis of a reactive system from a formal specification. The experimental results

were obtained on Intel Xeon 5160 3-GHz machines with 4 GB of memory. The time

limit was 800 seconds and the memory limit was 2 GB.

There are three solvers from [4], each with a different form of the output: CDNF

(a conjunction of DNFs), CNF, and DNF. We will refer to these solvers as “Learner”

(CNDF), “Learner-C” (CNF), and “Learner-D” (DNF). Figure 4.5 compares these

three solvers with GhostQ on the “hard” benchmarks (those that not all four solvers

could solve within 10 seconds). As can be seen on the figure, GhostQ solved about

1600 of these benchmarks, Learner-C solved about 1400, and Learner-D and Learner

each solved about 1200. GhostQ solved 223 instances that Learner-C couldn’t solve,

while Learner-C solved 16 instances that GhostQ couldn’t solve. GhostQ solved 375

instances that neither Learner-DNF nor Learner could solver, while there were only

2 instances that either Learner-DNF or Learner could solve but GhostQ couldn’t.

One possible explanation of why GhostQ performs better than Learner-C is that

Learner-C splits the open-QBF problem into multiple closed-QBF problems and uses

a closed-QBF solver as an opaque black-box, so that information learned in one run

of the QBF solver is not available in later runs. In contrast, GhostQ has a single

1The results do not exactly match the results reported in [4] because we did not preprocess the
QDIMACS input files. We found that sometimes the output of the preprocessor was not logically
equivalent to its input. With the unpreprocessed inputs, the output formulas produced by the
learner family of solvers were always logically equivalent to the output formulas of GhostQ.
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learned-sequent database that is used for the entire duration of the solving process.

Figure 4.6 shows a comparison of the size of the output formulas for GhostQ and

Learner-C, indicating that the GhostQ formulas are often significantly larger. The

size is computed as 1 plus the number of edges in the DAG representation of the

formula, not counting negations, and after certain simplifications (e.g., (x ? y : false)

is simplified to x ∧ y). For example, the size of the formula x is 1, the size of ¬x is

also 1, and the size of x ∧ y is 3.

For additional experimental validation, we compared solver performance on the

benchmarks from the 2010 Hardware Model Checking Competition (HWMCC’10).

In particular, the solvers were tasked with finding the set of states reachable in exactly

one step from the initial state. The machines, time limit, and memory limit were

the same as for the load-balancer benchmarks above. GhostQ solved 570 instances

(including 48 instances that Learner-C couldn’t solve), while Learner-C solved 534

instances (including 12 instances that GhostQ couldn’t solve). Figure 4.7 shows how

many benchmarks were able to be solved within smaller per-instance time limits;

this data is plotted in Figure 4.8.

We also compared GhostQ to the BDD method of NuSMV [14, 15], using the same

HWMCC’10 task. NuSMV was instructed to compute one-step forward reachability

by using the “-df” option and the specification “SPEC AX FALSE”. These experi-

ments were performed on a 2.66 GHz machine with a time limit of 120 seconds and

a memory limit of 2 GB. GhostQ solved 564 instances (including 186 instances that

NuSMV couldn’t solve), while NuSMV solved 387 instances (including 9 instances

that GhostQ couldn’t solve).
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Time Learner-C GhostQ

3 sec 204 502

10 sec 268 547

30 sec 363 563

100 sec 458 568

300 sec 526 568

800 sec 534 570

Figure 4.7: Number of HWMCC’10 benchmarks solved
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Figure 4.8: Cactus plot for HWMCC’10 benchmarks
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4.5 Related Work

Ken McMillan [46] proposed a method to use SAT solvers to perform quantifier

elimination on formulas of the form ∃~x. φ, generating CNF output. This problem

(i.e, given a formula ∃~x. φ, return a logically equivalent quantifier-free CNF formula)

has received attention recently. Brauer, King, and Kriener [12] designed an algo-

rithm that combines model enumeration with prime implicant generation. Goldberg

and Manolios [30] developed a method based on dependency sequents ; experimen-

tal results show that it works very well on forward and backward reachability on

the Hardware Model Checking Competition benchmarks. For QBFs with arbitrary

quantifier prefixes, the only other work of which we are aware is that of Becker,

Ehlers, Lewis, and Marin [4], which uses computational learning to generate CNF,

DNF, or CDNF formulas, and that of Benedetti and Mangassarian [7], which adapts

sKizzo [6] for open QBF. The use of SAT solvers to build unordered BDDs [59] and

OBDDs [34] has also been investigated.

4.6 Future Work

In practice, the output formulas produced by our solver tended to fairly large in com-

parison to equivalent CNF representations. Unordered BDDs can often be larger than

equivalent OBDDs, since logically equivalent subformulas can have multiple distinct

representations in an unordered BDD, unlike in an OBDD. In many cases, converting

our unordered BDD to an OBDD decreased the size of the formula. Although the

BDDs produced by GhostQ are necessarily unordered due to unit propagation, as

future work it may be desirable to investigate ways to reduce the size of the formula.

53



4.7 Soundness of Inference Rules

In this section, we shall prove that the inferences rules in Figure 4.3 on page 47 are

sound. First, we need to prove several preliminary lemmas.

Lemma 4.1. Consider an assignment π to a formula Φ. If r is an outermost unas-

signed variable (i.e., r is not downstream of any variables unassigned by π), then

JΦKπ =





JΦK(π ∪ {r}) ∨ JΦK(π ∪ {¬r}) if r is existential

JΦK(π ∪ {r}) ∧ JΦK(π ∪ {¬r}) if r is universal

r ? JΦK(π ∪ {r}) : JΦK(π ∪ {¬r}) if r is free

Proof. Follows from Definition 4.1 (on pages 40–41).

Example. Consider the formula Φ = ∃e1.∀u2.∃e3. (e1 ∧ u2)∨ e3 and the assignment

π = {¬u2}. Then e3 is outermost, so: JΦKπ = JΦK(π ∪ {e3}) ∨ JΦK(π ∪ {¬e3}).

Lemma 4.2. Consider a formula Φ and disjoint assignments π1 and π2, where

π2 contains only variables that are free in Φ. Then (Φ|π1)|π2 = Φ|π1∪π2, and

(JΦKπ1)|π2 = JΦKπ1∪π2.

Proof. By structural induction on Φ, using Definition 1.1 (on page 3) and Defini-

tion 4.1 (on pages 40–41).

Definition 4.6 (Free-Total). In the context of a QBF Φ, an assignment is said to

be free-total if it assigns all the free variables in Φ. Note that if π is free-total, then

JΦKπ must evaluate to true, false, or dontcare (i.e., it cannot evaluate to a formula

containing free variables).

Example. In the context of ∃e.(z1∧ z2∧ e), the assignment {¬z1, z2, e} is free-total,

whereas the assignment {¬z1, e} is not free-total.
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Lemma 4.3. Consider a sequent seq of the form 〈Lnow, Lfut〉 |= (Φ⇔ ψ) where Lfut

has no free variables. Then there exists a counterexample (Definition 4.5 on page 42)

to seq iff there exists a free-total counterexample to seq .

Proof of Lemma 4.3. One direction of the “iff” is trivial. For the other direction,

we assume that there exists a counterexample π to seq and must show that there

exists a free-total counterexample.

1. Lfut has no variables that are free in Φ. (assumption)

2. π is a counterexample to seq (assumption)

3. π matches 〈Lnow, Lfut〉 (step 2 and Definition 4.5 on page 42)

4. JΦKπ 6∗= ψ|π (step 2 and Definition 4.5)

5. Let V be the set of free variables that are not assigned by π.

6. There exists an assignment πext to V such that (JΦKπ)|πext 6∗= (ψ|π)|πext

(steps 5, 4, Definition 4.2)

7. π ∪πext is free-total (steps 5, 6, Definition 4.6)

8. JΦKπ∪πext 6∗= ψ|π∪πext (step 6, Lemma 4.2)

9. π ∪πext matches 〈Lnow, Lfut〉 (steps 1, 3, 6)

10. π ∪πext is a counterexample to seq (steps 8, 9)

Lemma 4.4. Consider a QBF formula Φ and two disjoint assignments π and πext.

If πext is a set of universal literals and JΦK(π ∪ πext)
∗
= false, then JΦKπ

∗
= false.

If πext is a set of existential literals and JΦK(π ∪ πext)
∗
= true, then JΦKπ

∗
= true.

Proof. By structural induction on Φ using Definition 4.1 (on pages 40–41).

Example. Consider the formula Φ = ∀u.∃e. (e∧u)∨ (¬e∧¬u) and the assignments

π = {u} and πext = {e}. Then JΦKπ ∪ {e} = true, so JΦKπ
∗
= true.
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Lemma 4.5. Consider a a literal ` and an assignment π such that var(`) 6∈ vars(π):

� If ` is existential and JΦKπ
∗
= false, then JΦKπ ∪ {`} ∗= false.

� If ` is universal and JΦKπ
∗
= true, then JΦKπ ∪ {`} ∗= true.

Proof. By structural induction on Φ using Definition 4.1 (on pages 40–41).

Lemma 4.6. Useful properties of “
∗
=” relation (Definition 4.2 on page 41):

1. If y
∗
= z, then w ∨ y ∗= w ∨ z.

2. If y
∗
= z, then w ∧ y ∗= w ∧ z.

Proof. Easily verified by truth tables. An abbreviated truth table for the first

property is shown below. Entries where y
∗
= z fails to hold are omitted. A dash

indicates that the value is irrelevant.

w y z w ∨ y w ∨ z w ∨ y ∗= w ∨ z

true − − true true true

false true true true true true

false false false false false true

false dontcare − dontcare − true

dontcare true true true true true

dontcare false false dontcare dontcare true

dontcare dontcare − dontcare − true

Lemma 4.7. Useful properties of “
∗
=” relation:

1. If x = y1 ∨ y2, and y1
∗
= z1, and y2

∗
= z2, then x

∗
= z1 ∨ z2.

2. If x = y1 ∧ y2, and y1
∗
= z1, and y2

∗
= z2, then x

∗
= z1 ∧ z2.

3. If x = (` ? y1 : y2), and y1
∗
= z1, and y2

∗
= z2, then x

∗
= (` ? z1 : z2).

Proof. Easily verified by truth tables or using Lemma 4.6.
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Lemma 4.8. Suppose that 〈Lnow∪{r}, Lfut〉 |= (P loses Φ) holds true, and 〈Lnow, Lfut〉

matches π0, and r is owned by Player P , and r is upstream of all literals in Lfut not

assigned by π0, and r does not occur (positively or negatively) in Lnow ∪ Lfut or π0.

Then, JΦKπ0

∗
= JΦKπ0∪{¬r}.

Remark. This lemma is a formalization of the idea that adding a forced non-free

literal (here, ¬r) to an assignment doesn’t change the truth value that the formula

evaluates to under the assignment (except in situations that we don’t care about).

Proof. Follows immediately from Lemma 4.9 below (using i = 1 and πup = ∅).

Lemma 4.9. Consider a QBF formula Φ = Q1x1...Qkr...Qnxn. φ. (We assume that

all free variables have corresponding dummy ‘quantifiers’, as discussed on page 40).

Suppose that 〈Lnow ∪ {r}, Lfut〉 |= (P loses Φ) holds true, and 〈Lnow, Lfut〉 matches

π0, and r is owned by Player P , and r is upstream of all literals in Lfut not assigned

by π0, and r does not occur (positively or negatively) in Lnow ∪ Lfut or π0. Fur-

ther suppose that i ∈ {1, ..., k} and πup is an assignment to {x1, ..., xi−1} \ vars(π0).

Then JΦKπ0 ∪ πup

∗
= JΦKπ0 ∪ πup ∪ {¬r}. (We will prove this lemma for the case where

Player P is existential; the proof is similar if P is universal.)

Proof. By induction on i, counting down from k to 1.

� Base case: i = k

1. Let π′ = π0 ∪ πup

2. π′ assigns all variables upstream of r, so r is outermost under π′.

3. π′∪{r} matches 〈Lnow ∪ {r}, Lfut〉, and thus JΦKπ′∪{r} ∗= false.

4. JΦKπ′ = JΦKπ′∪{¬r} ∨ JΦKπ′∪{r} (Lemma 4.1)

∗
= JΦKπ′∪{¬r} ∨ false (step 3, Lemma 4.7)

5. JΦKπ′
∗
= JΦKπ′∪{¬r}

57



� Inductive case: i ∈ {1, ..., k − 1}

1. πup is an assignment to {x1, ..., xi−1} \ vars(π0)

2. Let π′ = π0 ∪ πup

3. Inductive hypothesis (IH): For every assignment πIH to {x1, ..., xi}\vars(π0),

JΦKπ0 ∪ πIH

∗
= JΦKπ0 ∪ πIH ∪ {¬r}

4. If xi ∈ vars(π0), then {x1, ..., xi−1}\ vars(π0) = {x1, ..., xi}\ vars(π0), so IH

directly proves the desired property; go to step 10.

5. For ` ∈ {xi,¬xi}, it follows from IH that JΦKπ′∪{`} ∗= JΦKπ′∪{`}∪{¬r}.

6. π′ assigns all variables upstream of xi, so xi is outermost under π′.

7. If xi is existential:

JΦKπ′ = JΦKπ′∪{xi} ∨ JΦKπ′∪{¬xi} (Lemma 4.1)

∗
= JΦKπ′∪{xi}∪{¬r} ∨ JΦKπ′∪{¬xi}∪{¬r} (IH)

= JΦKπ′∪{¬r} (Lemma 4.1)

8. If xi is universal:

JΦKπ′ = JΦKπ′∪{xi} ∧ JΦKπ′∪{¬xi} (Lemma 4.1)

∗
= JΦKπ′∪{xi}∪{¬r} ∧ JΦKπ′∪{¬xi}∪{¬r} (IH)

= JΦKπ′∪{¬r} (Lemma 4.1)

9. If xi is free:

JΦKπ′ = (xi ? JΦK(π ∪ {xi}) : JΦK(π ∪ {¬xi})) (Lemma 4.1)

∗
= (xi ? JΦK(π ∪ {xi}∪{¬r}) : JΦK(π ∪ {¬xi}∪{¬r})) (IH)

= JΦKπ′∪{¬r} (Lemma 4.1)

10. Therefore, JΦKπ′
∗
= JΦKπ′∪{¬r}, which is what needed to be proved.
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Lemma 4.10. The following inference rule is sound:

〈Lnow, Lfut ∪ {`}〉 |= (Q loses Φ)

Player Q owns `, and ¬` 6∈ Lnow

〈Lnow, Lfut〉 |= (Q loses Φ)

Intuition. Given the formula Φ = ∀u.∃e. (u∧ e)∨ (¬u∧¬e), consider the difference

between the following two sequents:

1. 〈∅, {e,¬e}〉 |= (Φ⇔ true), which holds true, and

2. 〈∅,∅〉 |= (Φ⇔ true), which fails to hold true.

The first sequent means roughly “Player ∃ always wins if he plays e optimally”.

The second sequent means roughly “Player ∃ wins regardless of how he plays e”.

So Lemma 4.10 roughly says “If Player Q can’t win even if he plays ` optimally, then

he certainly doesn’t win if he plays ` pessimally” (but this isn’t an exact translation,

because Lemma 4.10 deals only with one polarity of `).

Proof. We consider the case where Q is existential; the universal case is similar.

1. 〈Lnow, Lfut ∪ {`}〉 |= (∃ loses Φ) (Premise 1)

2. Player ∃ owns `, and ¬` 6∈ Lnow (Premise 2)

3. Consider an arbitrary assignment π that matches 〈Lnow, Lfut〉.

4. If ¬` 6∈ π, then π matches the sequent in Premise 1, so JΦKπ
∗
= false; go to

step 8.

5. Let π′ = π \ {¬`}, so that π = π′ ∪ {¬`}.

6. JΦKπ′
∗
= false (because π′ matches the sequent in Premise 1)

7. JΦKπ′ ∪ {¬`} ∗= false (Lemma 4.5 and step 6)

8. JΦKπ
∗
= false

9. 〈Lnow, Lfut〉 |= (∃ loses Φ) (steps 3 and 8)

59



Lemma 4.11. The following inference rule is sound:

〈Lnow, Lfut ∪ {`}〉 |= (Φ⇔ ψ)

var(`) is free in Φ, and ¬` 6∈ Lnow

〈Lnow, Lfut〉 |= (Φ⇔ ψ)

Proof.

1. 〈Lnow, Lfut ∪ {`}〉 |= (Φ⇔ ψ) (Premise 1)

2. var(`) is free in Φ, and ¬` 6∈ Lnow (Premise 2)

3. Consider an arbitrary assignment π that matches 〈Lnow, Lfut〉.

4. If ¬` 6∈ π, then π matches the sequent in Premise 1, so JΦKπ
∗
= ψ|π; go to

step 8.

5. Let π′ = π \ {¬`}, so that π = π′ ∪ {¬`}.

6. π′ matches the sequent in Premise 1, so JΦKπ′
∗
= ψ|π′

7. JΦKπ = JΦKπ′ ∪ {¬`} (step 5)

= (JΦKπ′)|{¬`} (Lemma 4.2)

∗
= (ψ|π′)|{¬`} (step 6)

= ψ|(π′ ∪ {¬`}) (Lemma 4.2)

= ψ|π (step 5)

8. JΦKπ
∗
= ψ|π

9. 〈Lnow, Lfut〉 |= (Φ⇔ ψ) (steps 3 and 8)
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Definition 4.7 (Vacuous game-state, vacuously true sequent). A game-state 〈Lnow, Lfut〉

is vacuous iff no assignment matches it. Equivalently, it is vacuous iff there exists a

literal ` ∈ Lnow such that ¬` ∈ (Lnow ∪ Lfut). A sequent 〈Lnow, Lfut〉 |= (Φ ⇔ ψ) is

vacuously true iff the game-state 〈Lnow, Lfut〉 is vacuous. (It is easy to confirm that

a vacuously true sequent is true under Definition 4.4 on page 42).

Observation 4.1. If assignment π matches a game-state 〈Lnow ∪ Lnow
+ , Lfut ∪ Lfut

+ 〉,

then, a fortiori , π also matches 〈Lnow, Lfut〉.

Lemma 4.12. If the sequent 〈Lnow, Lfut〉 |= (Φ ⇔ ψ) holds true, then the sequent

〈Lnow ∪ Lnow
+ , Lfut ∪ Lfut

+ 〉 |= (Φ⇔ ψ) also holds true.

Proof. Follows from Observation 4.1.

Lemma 4.13. In the inference rules in Figure 4.3 on page 47, if either 〈Lnow
1 , Lfut

1 〉

or 〈Lnow
2 , Lfut

2 〉 is vacuous, then the sequent in the conclusion of the inference rule is

vacuously true.

Proof. Follows from Observation 4.1.

Lemma 4.14. If ¬` ∈ Lnow, then the sequent 〈Lnow, Lfut ∪ {`}〉 |= (Φ ⇔ ψ) is

vacuous.

Proof. Follows from Definition 4.7.
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Proof of Theorem 4.1 (page 47). We consider the case where r is owned by

Player ∃; the case for Player ∀ is similar. We prove a nominally weaker version by

adding the premise that all literals in Lfut
1 are owned by Player ∀. (Any literals in

Lfut
1 not owned by Player ∀ can be removed by Lemmas 4.10 and 4.11 (unless the

premise sequents are vacuously true, in which case the conclusion sequent follows by

Lemma 4.13), and they can be added back to the sequent in the conclusion of the

inference rule by Lemma 4.12.)

1. The quantifier type of r in Φ is existential. (premise)

2. 〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φ⇔ false) (premise)

3. 〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φ⇔ false) (premise)

4. r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪Lfut
2 ) (premise)

5. r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 ) (premise)

6. All literals in Lfut
1 are owned by Player ∀. (premise)

7. Let π be an arbitrary assignment matching 〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉

8. If r is assigned by π, then JΦKπ
∗
= false follows from step 2 or 3; go to step 15.

9. Let Lfut
1 up be the subset of literals in Lfut

1 that are upstream of r

10. Let π+ = π ∪ Lfut
1 up

11. π+ matches 〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 (steps 4, 7-10)

12. π+ matches 〈Lnow
1 , Lfut

1 〉 (step 11)

13. π+ ∪ {¬r} matches 〈Lnow
2 ∪ {¬r}, Lfut

2 〉 (steps 11, 5)

14. JΦKπ+
∗
= JΦKπ+∪{¬r} (Lemma 4.8; steps 12, 2, 5, 9–10)

∗
= false (steps 3, 13)

15. JΦKπ
∗
= false (Lemma 4.4; steps 6, 10, 14)

16. 〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Φ⇔ false) (steps 15 and 7)
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Proof of Theorem 4.2. We consider the case where r is owned by Player ∃; the

case for Player ∀ is similar. We prove a nominally weaker version by adding an

extra premise restricting what types of literals may occur in Lfut
1 and Lfut

2 . (Any

disallowed literals in Lfut
1 or Lfut

2 can be removed by Lemmas 4.10 and 4.11 (unless

the premise sequents are vacuously true, in which case the conclusion sequent follows

by Lemma 4.13), and they can be added back to the sequent in the conclusion of the

inference rule by Lemma 4.12.)

1. The quantifier type of r in Φ is existential. (premise)

2. 〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φ⇔ false) (premise)

3. 〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φ⇔ ψ) (premise)

4. r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪Lfut
2 ) (premise)

5. r doesn’t occur (positively or negated) in (Lnow
1 ∪ Lnow

2 ∪ Lfut
1 ∪ Lfut

2 ) (premise)

6. All literals in Lfut
1 are owned by Player ∀. No free vars occur in Lfut

2 . (premise)

7. Let π be arbitrary free-total assignment matching 〈Lnow
1 ∪Lnow

2 , Lfut
1 ∪Lfut

2 ∪{¬r}〉

8. Since π is free-total, it follows that ψ|π evaluates to true or to false (i.e., it

doesn’t evaluate to a formula with free variables).

9. If ψ|π = true, then:

(a) JΦKπ ∪ {¬r} ∗= ψ|(π ∪ {¬r}) (step 3)

= ψ|π (since ψ contains only free vars)

= true

(b) JΦKπ
∗
= true (Lemma 4.4)

10. If ψ|π = false, then:

(a) JΦKπ
∗
= false (following the same logic as for Theorem 4.1)

11. JΦKπ
∗
= ψ|π (steps 9, 10)

12. 〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {¬r}〉 |= (Φ⇔ ψ) (steps 11 and 7)
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Proof of Theorem 4.3.

1. Literal r is free (premise)

2. 〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φ⇔ ψ1) (premise)

3. 〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φ⇔ ψ2) (premise)

4. Let π be an arbitrary assignment matching 〈Lnow
1 ∪Lnow

2 , Lfut
1 ∪Lfut

2 ∪ {r,¬r}〉

5. r is not assigned by π (step 4; definition 2.4 (page 16))

6. JΦKπ ∪ {r} ∗= ψ1|π (steps 4 and 2; definition 4.4)

7. JΦKπ ∪ {¬r} ∗= ψ2|π (steps 4 and 3; definition 4.4)

8. JΦKπ = r ? JΦKπ ∪ {r} : JΦKπ ∪ {¬r} (step 5, Lemma 4.1)

9. JΦKπ
∗
= r ? ψ1|π : ψ2|π (steps 6, 7, 8)

10. JΦKπ
∗
= (r ? ψ1 : ψ2)|π (steps 9 and 5)

11. 〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {r,¬r}〉 |= (Φ⇔ (r ? ψ1 : ψ2)) (steps 10 and 4)

12. 〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Φ⇔ (r ? ψ1 : ψ2)) (Lemma 4.11 and step 11)
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Chapter 5

Counterexample-Guided

Abstraction Refinement (CEGAR)

in QBF

5.1 Introduction

A number of approaches have been proposed for QBF, including (Q)DPLL (e.g.,

[27]), expansion [2, 8, 43], and Skolemization [5]. This chapter presents a new ap-

proach by M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke [36]. It employs

Counterexample-Guided Abstraction Refinement (CEGAR) [17] to gradually expand

the input formula. The CEGAR approach differs from existing expansion-based

solvers (such as Quantor [8] and Nenofex [43]) in how the expansion is performed.

For a quantifier block of n variables, existing expansion-based solvers perform

up to n expansions (one for each variable), and the formula grows exponentially

with the number of expansions performed (in the worst case), for a total expansion

factor of O(2n). The CEGAR approach has the same worst-case expansion factor

of O(2n), but it gets there by performing up to 2n partial expansions (one for each

65



possible assignment to all n variables), with the formula growing only linearly with

the number of partial expansions performed. In practice, often only a relatively

small number of partial expansions are needed, allowing the CEGAR approach to

solve instances on which existing expansion-based solvers run out of memory.

We present two different ways in which CEGAR expansion can be used. In the

first approach, we use a recursive algorithm that is driven by CEGAR expansion.

In the second approach, CEGAR is used as an additional learning strategy in an

existing DPLL-based QBF solver.

5.2 Preliminaries

1. We write “Q̄” to denote “∀” (if Q is “∃”) or “∃” (if Q is “∀”).

2. We write “moves(X)” to denote the set of assignments to the variables X.

3. A winning move for X in a closed QBF QX.Φ is an assignment τ ∈ moves(X)

such that Φ|τ is true (if Q is ∃) or Φ|τ is false (if Q is ∀).

4. We use the notation “SAT(φ)” to represent a call to a SAT solver on a proposi-

tional formula φ. The SAT solver returns a satisfying assignment for φ, if such

exists, and returns NULL otherwise.

5. A formula is in strictly alternating prenex form iff no two adjacent quantifier

blocks have the same quantifier type (existential or universal). In this chapter,

we assume the input formula is closed and in strictly alternating prenex form.

5.3 Recursive CEGAR-based Algorithm

In previous work, a CEGAR approach was used to solve quantified boolean formulas

with 2 levels of quantifiers [37]. Here we present a recursive algorithm that applies to
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formulas with any number of quantifier alternations. The algorithm attempts to find

a winning move for the outermost quantification block or prove that none exists. In

doing so, it makes recursive calls to subproblems with fewer quantifier blocks. In the

base case, there is only a single quantifier block, which is handled by a SAT solver.

The basic idea is as follows. Consider a QBF instance ∃X. ∀Y.Φ. Note that

∀Y.Φ is logically equivalent to the full expansion over all possible moves for Y :

(∀Y.Φ) ⇔
∧

µ∈moves(Y )

(
Φ|µ
)

Of course, if there are many variables in Y , then performing a full expansion is not

practical. However, it turns out that, in many instances that arise in practice, only

a small number of assignments (moves) need to be considered. Accordingly, we use

a partial expansion defined below.

Definition 5.1 (Partial Expansion). Let ω be a subset of moves(Y ).

The partial expansion of ∃Y. Φ over ω is the formula
∨
µ∈ω Φ|µ.

The partial expansion of ∀Y. Φ over ω is the formula
∧
µ∈ω Φ|µ.

For example, if Ψ = ∃x1, x2. ∀z1, z2. (x1 ∨ z1) ∧ (x2 ∨ z2) ∧ (¬x1 ∨ ¬z2), and

ω =
{
{x1, x2}, {¬x1, x2}

}
, then the partial expansion of Ψ over ω is ¬z2 ∨ z1, since

Ψ|{x1, x2} = ¬z2 and Ψ|{¬x1, x2} = z1.

Observation 5.1. A partial expansion of QY.Φ can be considered an abstraction of

QY.Φ. It represents a handicap on player Q in the sense that player Q is allowed to

play only those moves in ω rather than any move in moves(Y ). Thus, if Q wins a

partial expansion of QY.Φ, then Q also wins QY.Φ:

•
((∧

µ∈ω Φ|µ
)
⇔ false

)
⇒
((∧

µ∈moves(Y ) Φ|µ
)
⇔ false

)

•
((∨

µ∈ω Φ|µ
)
⇔ true

)
⇒
((∨

µ∈moves(Y ) Φ|µ
)
⇔ true

)
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Definition 5.2 (Candidate). Let Φ be a formula QX. Q̄Y.Ψ, and let α be an arbi-

trary partial expansion of Q̄Y.Ψ. Given an assignment π ∈ moves(X), we say “π is

a candidate with respect to α” iff Q wins α|π.

Example. Let Φ = ∃e1, e2. ∀u. (e1∧u)∨(e2∧¬u), and let α be the partial expansion

over ω =
{
{¬u}

}
. Then α = (e1∧ false)∨ (e2∧ true) = e2, so {¬e1, e2} is a candidate

w.r.t. α, but {e1,¬e2} is not.

Lemma 5.1. Let Φ be a formula QX. Q̄Y.Ψ, and let α be an arbitrary partial

expansion of Q̄Y.Ψ. If there is no candidate with respect to α, then Q̄ wins Φ.

Proof. Follows from Observation 5.1.

Definition 5.3 (Counterexample). Let Φ be a formula QX. Q̄Y.Ψ, and let cand

be a candidate with respect to an arbitrary partial expansion of Q̄Y.Ψ. Given an

assignment π ∈ moves(Y ), we say “π is a counterexample to cand with respect to Φ”

iff Player Q̄ wins (Φ|cand)|π. We may omit saying “with respect to Φ” if the formula

Φ is understood from context.

Example. If Φ = ∃e1, e2. ∀u. (e1 ∧ u) ∨ (e2 ∧ ¬u) and cand = {¬e1, e2}, then {u} is

a counterexample to cand , but {¬u} is not.

Lemma 5.2. Let Φ be a formula QX. Q̄Y.Ψ, and let cand ∈ moves(X) be a can-

didate with respect to an arbitrary partial expansion of Q̄Y.Ψ. If there is no coun-

terexample to cand with respect to Φ, then Q wins Φ.

Proof. Since Player Q wins (Φ|cand)|π for all π ∈ moves(Y ), it follows that Player Q

wins Φ|cand . Furthermore, since Player Q owns all the literals in cand , it follows that

Player Q wins Φ.
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Lemma 5.3. Let Φ be a formula QX. Q̄Y.Ψ,

let ω be a subset of moves(Y ),

let α be the partial expansion of Q̄Y.Ψ over ω,

let cand ∈ moves(X) be a candidate with respect to α,

let cex ∈ moves(Y ) be a counterexample to cand , and

let α′ be the partial expansion of Q̄Y.Ψ over ω ∪{cex}.

Then cand is not a candidate w.r.t. α′.

Proof. We consider the case where Q is existential:

α′|cand =
(∧

µ∈ω ∪{cex}Φ|µ
)
|cand

=
((∧

µ∈ω Φ|µ
)
∧ (Φ|cex)

)
|cand

=
(∧

µ∈ω Φ|µ
)
|cand ∧ (Φ|cex)|cand

=
(∧

µ∈ω Φ|µ
)
|cand ∧ (Φ|cand)|cex

=
(∧

µ∈ω Φ|µ
)
|cand ∧ false

= false

To solve QX. Q̄Y. Φ, we start with a coarse abstraction and gradually refine it until

we find an answer. At a high level, the algorithm is as follows:

1. Initialize ω such that ω ⊆ moves(Y ). (Specifically, we use ω = ∅.)

2. Let α be the partial expansion of Q̄Y. Φ over ω.

3. Try to find cand ∈ moves(X) such that Player Q wins α|cand .

4. If no such assignment exists, we’re done: Player Q̄ wins QX.Q̄Y.Φ.

5. Try to find cex ∈ moves(Y ) such that Player Q̄ wins (Φ|cand)|cex .

6. If no such assignment exists, we’re done: Player Q wins QX.Q̄Y.Φ.

7. Let ω := ω ∪{cex} and go back to Step 2.

This algorithm is fleshed out in Algorithm 1, and illustrated in Figure 5.1.

69



Algorithm 1: Basic recursive CEGAR algorithm for QBF

1 Function Solve (QX. Q̄Y. Φ)

2 /* Return value: A winning assignment for X if there is one, NULL otherwise.

3 begin

4 if (Y = ∅) then return
(
Q=∃ ? SAT(Φ) : SAT(¬Φ)

)

5 ω := ∅
6 while true do

7 α :=




∃X.∧µ∈ω Φ|µ if Q̄=∀
∀X.∨µ∈ω Φ|µ if Q̄=∃

8 cand := Solve(Prenex(α)) // find a candidate solution

9 if cand = NULL then return NULL

10 Remove from cand any variables not in X

11 cex := Solve(Q̄Y.Φ|cand) // find a counterexample

12 if cex = NULL then return cand

13 ω := ω ∪ {cex}
14 end

15 end

∃X. ∀Y. Φ

∃X.
∧

µ∈ω
Φ|µ

abstraction

cand
Solve

return null
null

∀Y. Φ|cand cex
Solve

return cand
null

ω := ω ∪ {cex}

Figure 5.1: Flowchart for CEGAR Algorithm
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5.3.1 Improving Recursive CEGAR-based Algorithm

Note that Algorithm 1 requires prenexing α. This is harmful because it loses infor-

mation about dependencies among variables. Algorithm 2 avoids this prenexing by

using the concept of a multi-game:

Definition 5.4 (multi-game). A multi-game is denoted by QX.{Φ1, . . . ,Φn} where

each Φi is a prenex QBF starting with Q̄ or has no quantifiers. The free variables

of each Φi must be in X. We refer to the formulas Φi as subgames and QX as the

top-level prefix. A winning move for a multi-game is an assignment to the variables X

such that it is a winning move for each of the formulas QX. Φi.

Algorithm 2: RAReQS: Recursive Abstraction Refinement QBF Solver

1 Function RAReQS (QX. {Φ1, . . . ,Φn})
2 /* Return value: A winning assignment for X if there is one, NULL otherwise.

3 begin

4 if (Φi have no quantifiers) then return Q=∃ ? SAT(
∧
i Φi) : SAT(¬(

∨
i Φ))

5 α := QX. {}
6 while true do

7 cand := RAReQS(α) // find a candidate solution

8 if cand = NULL then return NULL

9 Remove from cand any variables not in X.

10 for i := 1 to n do cex i := RAReQS(Φi|cand) // find a counterexample

11 if cex i = NULL for all i ∈ {1..n} then return cand

12 let l ∈ {1..n} be such that cex l 6= NULL

13 α := Refine(α, Φl, cex l)

14 end

15 end

16

Refine is defined as follows:

Refine
(
QX.{Ψ1, . . . ,Ψn}, Q̄Y QX1.Ψ, µ

)
= QXX ′1.{Ψ1, . . . ,Ψn,Ψ

′|µ}
where X ′1 are fresh duplicates of X1, and Ψ′ is Ψ with X1 replaced by X ′1

Refine
(
QX.{Ψ1, . . . ,Ψn}, Q̄Y. ψ, µ

)
= QX.{Ψ1, . . . ,Ψn, ψ|µ}

where ψ is a propositional formula (where no duplicates are needed)
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5.4 CEGAR as a learning technique in DPLL

The previous section shows that CEGAR can give rise to a complete and sound

algorithm for QBF. In this section we show that CEGAR enables us to extend existing

DPLL solvers with an additional learning technique.

Notation. Given an assignment π, let prop(π) be the assignment produced by

adding literals that would be forced in boolean constraint propagation (BCP) using

the solver’s sequent database. For example, if the input formula contains a subfor-

mula (x ∨ y) labelled by g, then prop({x}) would contain x, g∃, and g∀.

To illustrate the basic idea of the CEGAR-in-DPLL technique, let Φ be a QBF of

the form ∀X. ∃Y. φ. Let πcand be an assignment to the variables in X such that

prop(πcand) doesn’t match any sequent in the solver’s sequent database. Let πcex be

a counterexample to πcand; i.e., let πcex be an assignment to the variables in Y such

that φ|πcand ∪πcex = true. The goal of the CEGAR learning is to produce a set of

sequents such that, if these sequents are added to the sequent database, then for

every assignment π′cand ∈ moves(X) to which πcex is a counterexample, some sequent

in the database would match prop(π′cand). This goal is accomplished as follows:

1. Substitute the assignment πcex into φ, yielding the formula φ|πcex.

2. Introduce ghost variables for any gates in φ|πcex that are not already labelled

by ghost variables. Add sequents that relate these ghost variables to the gates

that they represent, as in Section 2.4.1 on page 20.

3. Let g∀∗ be the universal ghost variable that labels the formula φ|πcex.

4. Learn the new sequent 〈{g∀∗}, πcex〉 |= (Φ⇔ true).

Consider an arbitrary assignment π′cand ∈ moves(X) to which πcex is a counterexam-

ple. Then φ|πcand ∪πcex = true. To prove that prop(π′cand) matches 〈{g∀∗}, πcex〉, we
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must prove (1) g∀∗ ∈ prop(π′cand) and (2) prop(π′cand) does not contain the negation

of any literal in πcex:

1. Since all the variables in the formula labelled by g∀∗ are assigned by π′cand, it

follows that either the variable g∀∗ or its negation must be a forced literal under

π′cand. And since g∀∗ labels φ|πcex, and (φ|πcex)|πcand = true, it follows that the

positive literal g∀∗ is forced, i.e., g∀∗ ∈ prop(π′cand).

2. A literal ` is forced under an assignment π only if the owner of ` is doomed to

lose under π ∪{¬`}. Since Player ∃ owns πcex and wins under π′cand ∪ πcex, it

follows that no literals from πcex appear negated in prop(π′cand).

For example, consider the formula Φ = ∀X.∃Y.φ where φ is:

φ = (¬u1 ∨ ¬e3) ∧ (¬u2 ∨ ¬e4) ∧ (u1 ∨ e3) ∧ (u2 ∨ e4) (5.1)

Suppose that πcand = {u1, u2} and πcex = {¬e3,¬e4}. Then φ|πcex = u1 ∧ u2.

Let g∀6 be the universal ghost variable for u1 ∧ u2. The solver learns the sequent

〈{g∀6}, {¬e3,¬e4}〉 |= (Φ⇔ true), as well as sequents relating g∀6 to the gate which it

represents.

To add CEGAR learning to the DPLL-based solver GhostQ, we insert a call

to a new CEGAR-learning procedure after standard DPLL learning, as shown in

Algorithm 3. As shown in Algorithm 3, CEGAR learning is performed only if the

last decision literal in πcur is owned by the winner. (The case where the last decision

literal is owned by the losing player corresponds to the conflicts that take place within

the underlying SAT solver in RAReQS.)

Consider a QBF Q1Z1....QnZn.φ. Suppose that the last decision literal belongs to

the winner and is in the block Zi. Then CEGAR learning would proceed as follows:
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Algorithm 3: DPLL Algorithm with CEGAR Learning

1. initialize_sequent_database();

2. πcur := ∅; Propagate();

3. while (true) {

4. while (πcur doesn’t match any database sequent) {

5. DecideLit();

6. Propagate();

7. }

8. Learn();

9. if (learned seq has form 〈∅, Lfut〉 |= (Φin ⇔ ψ)) return ψ;
10. if (last decision literal is owned by winner) {cegar learn(φin);}

11. Backtrack();

12. Propagate();

13. }

1. Let πc be a total assignment to the variables in Zi. If a variable in Zi is assigned

by πcur, it should have the same value in πc; if it doesn’t appear in πcur, it can

be assigned an arbitrary value in πc.

2. Let guard be a subset of πcur that assigns a subset of variables in Z1, ..., Zi−2.

3. Let Z ′i+1, ..., Z
′
n be fresh variables corresponding to Zi+1, ..., Zn, respectively.

4. Let φ′ be the result of substituting the assignment πcex into φ and replacing all

occurrences of variables in Zi+1, ...., Zn with Z ′i+1, ..., Z
′
n, respectively.

5. Introduce ghost variables for any gates in φ′ not already labelled by ghost vars.

Add sequents that relate these ghost variables to the gates that they represent.

6. Let Q∗ be Q̄i. Let gQ
∗
∗ be the ghost variable that labels the formula φ′ (or the

negation of the ghost variable, if Q∗ is ∃) .

7. Learn the new sequent 〈guard ∪{gQ∗
∗ }, πcex〉 |= (Q∗ loses Φ).
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1661

Both

RAReQS vs GhostQ

Both Both

RAReQS vs Qube

2870

RAReQS vs Quantor

2436

1432

3046

RAReQSRAReQS RAReQS

Only GhostQ Only Qube Only Quantor

998

242

Only Only Only

2207

Table 5.1: Number of instances solved by RAReQS but not by a competing solver,
and vice versa. For example, there were 1661 instances that RAReQS solved but
GhostQ didn’t, and 242 instances that GhostQ solved but RAReQS didn’t.

5.5 Experimental Results

A prototype of the CEGAR algorithm is implemented in a solver called RAReQS

(Recursive Abstraction Refinement QBF Solver). For the underlying SAT solver,

minisat 2.2 [20] is used. We compared RAReQS to other solvers on the the formal

verification and planning suites of QBF-LIB [51]. Several large and hard families were

sampled with 150 files (terminator, tipfixpoint, Strategic Companies). The

solvers QuBE7.2 [25], Quantor, and Nenofex were chosen for comparison. QuBE7.2

is a state-of-the-art DPLL-based solver; Quantor and Nenofex are expansion-based

solvers. The experimental results were obtained on an Intel Xeon 5160 3GHz. The

time limit was set to 800 seconds and the memory limit to 2GB.

All the instances were preprocessed by the preprocessor bloqqer [11] and instances

solved by the preprocessor alone were excluded from further analysis. An exception

was made for the family Debug where preprocessing turned out to be infeasible and
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Family Lev. RAReQS GQ GQ-C QuBE Quantor Nenofex

trafficlight-ctlr (1459) 1–287 1459 806 1001 1092 955 863

RobotsD2 (700) 2–2 699 350 271 630 0 30

incrementer-encoder (484) 3–119 483 285 477 284 51 27

blackbox-01X-QBF (320) 2–21 320 138 126 224 3 4

Strat. Comp. (samp.) (150) 1–2 107 12 12 107 18 12

BMC (85) 1–3 73 26 48 37 65 64

Sorting-networks (84) 1–3 72 24 32 45 38 38

blackbox-design (27) 5–9 27 27 27 18 0 0

conformant-planning (23) 1–3 17 7 16 5 13 12

Adder (28) 3–7 11 2 2 4 5 9

Lin. Bitvec. Rank. Fun. (60) 3–3 9 0 0 0 0 0

Ling (8) 1–3 8 6 8 8 8 8

Blocks (7) 3–3 7 6 7 5 7 7

fpu (6) 1–3 6 0 0 6 6 6

RankingFunctions (4) 2–2 3 0 0 3 0 0

Logn (2) 3–3 2 2 2 2 2 2

Mneimneh-Sakallah (163) 1–3 110 148 141 89 3 22

tipfixpoint-sample (150) 1–3 26 128 127 22 5 6

terminator-sample (150) 2–2 98 109 103 9 25 0

tipdiam (121) 1–3 55 99 93 54 21 14

Scholl-Becker (55) 1–29 37 43 40 29 32 27

evader-pursuer (15) 5–19 10 11 8 11 2 2

uclid (3) 4–6 0 2 2 0 0 0

toilet-all (136) 1–1 134 133 131 131 135 133

Counter (58) 1–125 30 14 11 20 33 15

Debug (38) 3–5 3 0 0 0 24 6

circuits (63) 1–3 8 4 5 5 9 8

Gent-Rowley (205) 7–81 52 67 67 70 2 0

jmc-quant (+squaring) (20) 3–9 2 0 0 6 0 2

irqlkeapclte (45) 2–2 0 0 44 0 0 0

total (4669) 3868 2449 2801 2916 1462 1317

Table 5.2: Number of instances in each benchmark family solved within 800 seconds
by each solver. “Lev” indicates the number of quantifier blocks (min–max) in the
family, post-bloqqer.
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Figure 5.2: Cactus plot of the overall results

the family was considered in its unpreprocessed form.

Unlike the other solvers, GhostQ’s input format is not clause-based (QDIMACS);

instead, it is circuit-based. To enable running GhostQ on the targeted instances,

the solver was prepended with a reverse-engineering front-end. Since this front-end

cannot handle bloqqer’s output, GhostQ was run directly on the instances without

preprocessing. The other solvers were run on the preprocessed instances (further

preprocessing was disabled for QuBE7.2).

The relation between solving times and instances is presented by a cactus plot

in Figure 5.2; number of solved instances in each family are shown in Table 5.2; a

comparison of RAReQS with other solvers is presented in Table 5.1.

On the considered benchmarks, RAReQS solved the most instances, approxi-

mately 33% more than the second solver QuBE7.2. RAReQS also turned out to be

the best solver for most of the types of the considered instances. Table 5.1 further

shows that for each of the other solvers, there is only a small portion of instances

that the other solver can solve and RAReQS cannot. These results indicate that,
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for at least the types of practical problems represented by these benchmarks, only

a relatively small number of assignments (moves) are necessary to obtain a partial

expansion that is logically equivalent to the full expansion.

In several families the addition of CEGAR learning to GhostQ worsened its per-

formance. With the exception of Robots2D, however, the performance was worse

only slightly. Overall, GhostQ benefited from the additional CEGAR learning and

in particular for certain families. A family worth noting is irqlkeapclte, where no

instances were solved by any of the solvers except for GhostQ-CEGAR.

5.6 Future Work

Although the recursive CEGAR algorithm works well for many practical problems,

there are some simple problems on which it takes exponential time. For example,

consider the following class of formulas, parameterized by n:

∀X.∃Y. (x1 ⇔ y1) ∧ ... ∧ (xn ⇔ yn) (5.2)

where X = 〈x1, ..., xn〉 and Y = 〈y1, ..., yn〉. For this class of problems, RAReQS

needs to consider all 2n partial expansions, so it takes time exponential in n. To deal

with this sort of problem, we can consider a generalization of the CEGAR technique.

Instead of only considering assignments of variables to boolean constants, we can

consider assignments of variables to formulas in terms of upstream variables. This

would enable Formula 5.2 above to be solved with only a single counterexample

(namely, by an assignment that maps yi to xi, for i ∈ {1, ..., n}).

Specifically, we would modify Algorithm 1 so that instead of adding cex to ω, we

create a modified counterexample cex ′ and add cex ′ to ω. The modified counterex-
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ample cex ′ will map each variable of Y to a formula that may contain variables from

X (but no other variables). We write “ Φ|cex ′ ” to denote the same notion of substi-

tution as in Definition 1.1 on page 3, except that variables are mapped to formulas

instead of just to boolean constants. The modified counterexample cex ′ should be

equivalent to cex under cand , i.e., the following should hold true:

(
yi|cex ′

)
|cand =

(
yi|cex

)
|cand

Of course, yi|cex is a boolean constant, so yi|cex =
(
yi|cex

)
|cand . By Lemma 4.2 on

page 54,
(
yi|cex ′

)
|cand = yi|cex ′∪cand

The tricky part about the above generalization of the CEGAR algorithm is devis-

ing a heuristic for generating cex ′ from cex . All other things being equal, it is best to

generate a modified counterexample cex ′ that strengthens the abstraction the most.
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Chapter 6

Conclusion

In this thesis, we first introduced the concepts of ghost variables and game-state

sequents , which improve upon existing CNF propagation and learning techniques.

The use of ghost variables eliminates the asymmetry between the two quantifier

types, strengthening propagation and learning in cases where the existential player

wins. The technique is especially helpful in cases where the formula has multiple

alternations of conjunctions and disjunctions and the asymmetric algorithm needs to

consider many assignments under which the existential player wins. If the formula is

naturally written in CNF, then the symmetric technique provides no benefit. If the

existential player rarely wins when employing the asymmetric algorithm, then there

is little opportunity for improvement when using the symmetric algorithm.

Using game-state sequents, we have reformulated the techniques for conflict and

satisfaction analysis, BCP, non-chronological backtracking, and learning. In all cases,

we give a unified presentation which is applicable to both the existential and universal

players, instead of using separate terminology and notation for the two players.

Experiments show that our techniques work particularly well on certain benchmarks

related to formal verification.
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We have extended the concept of game-state sequents for non-prenex formulas to

allow learning to be applied to quantified subformulas. This way, when we learn the

truth value of a quantified subformula under an assignment, we effectively cache it so

that we don’t need to recompute it again. For future work, it may be worthwhile to

investigate whether the ideas of dynamic partitioning [53] can be extended to allow

dynamic unprenexing.

We have shown how a DPLL-based closed-QBF solver can be extended to handle

free variables. The main novelty of this work consists of generalizing clauses/cubes

(and the methods involving them). Instead of only being able to express when the

original formula evaluates to True or to False, our sequent can express when the origi-

nal quantified formula evaluates to propositional formulas that contain free variables.

Our extended solver GhostQ produces unordered BDDs, which have several favorable

properties [18]. However, in practice, the formulas tended to fairly large in compar-

ison to equivalent CNF representations. Unordered BDDs can often be larger than

equivalent OBDDs, since logically equivalent subformulas can have multiple distinct

representations in an unordered BDD, unlike in an OBDD. Although our BDDs are

necessarily unordered due to unit propagation, in future work it may be desirable to

investigate ways to reduce the size of the output formula.

Finally, we have presented two novel techniques for using CEGAR in solving

QBF problems. First, a CEGAR-driven solver RAReQS has been presented which

builds an abstraction of the given formula by constructing partial expansions. This

technique works well on formulas for which relatively few partial expansions are

needed. For formulas that require many partial expansions, such as Equation 5.2

(page 78), the technique performs poorly. Experimentally, RAReQS has been shown

to work very well on a wide variety of benchmarks. Second, CEGAR has been

incorporated into a DPLL solver as an additional learning technique. While this
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technique does not take advantage of the full range of CEGAR learning exploited

by RAReQS, it still provides a more powerful learning technique than standard

clause/cube learning, and experimentally it has been shown helpful for a variety of

benchmarks.
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Appendix A

Encodings of Problems in QBF

A.1 Encoding Bounded Model Checking in QBF

Bounded Model Checking (BMC) [9] is the method used by most industrial-strength

model checkers today. Given a finite state-transition system, a temporal logic prop-

erty, and a bound k, BMC generates a propositional formula that is satisfiable if and

only if the property can be disproved by a counterexample of length k. This proposi-

tional formula is then fed to a Boolean satisfiability (SAT) solver. If no counterexam-

ple of length k is found, then we look for longer counterexamples by incrementing the

bound k. For safety properties (i.e., checking whether a “bad” state is unreachable),

it can be shown that we only need to check counterexamples whose length is smaller

than the diameter of the system — the smallest number of transitions to reach all

reachable states. Alternatively, BMC can be used for bug catching (rather than full

verification) by simply running it up to a given counterexample length or for a given

amount of time. BMC has been observed to have several advantages over symbolic

model checking with BDDs in typical industrial experience:

1. BMC finds counterexamples faster than BDD-based approaches.

2. BMC finds counterexamples of minimal length.
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3. BMC uses much less memory than BDD-based approaches.

4. BMC does not require the user to select a variable ordering and does not need

to perform costly dynamic reordering.

In BMC, the states of the model are represented as vectors of Booleans. For example,

in a hardware circuit, the state of each flip-flop would be usually encoded as a single

Boolean variable. A state transition system is encoded as follows:

• the set of initial states is specified by a propositional formula I(s) that holds

true iff s is an initial state;

• the transition relation is specified by a propositional formula R(s, s′) that holds

true iff there exists a transition from s to s′;

• for each atomic proposition p, there is a propositional formula p(s) that holds

true iff p is true in state s.

Definition A.1. A sequence of states (s0, ..., sk) is a valid path prefix iff:

1. I(s0) holds true (s0 is an initial state); and

2.
∧k−1
i=0 R(si, si+1) holds true (for all i < k there exists a transition si → si+1)

For simplicity, we first describe BMC for LTL safety properties of the form G p,

where p is an atomic proposition.

A.1.1 Safety Properties

The property G p asserts that p holds true in all reachable states (remember that

LTL formulas are implicitly quantified by an outer A path operator.) We wish to

determine whether there exists a counterexample whose length is no larger than a

fixed bound k. In other words, we wish to determine whether there exists a valid

path prefix (s0, ..., sk) in which p fails for some state si, with i ≤ k. Thus, we have

that a sequence (s0, ..., sk) is a counterexample to G p iff the following formula is
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000 010 101 111

100 110

011001

Figure A.1: State diagram for Example A.1. Each state s is labelled with
〈s[3], s[2], s[1]〉.

satisfiable:

I(s0) ∧
k−1∧

i=0

R(si, si+1)

︸ ︷︷ ︸
(s0,...,sk) valid path prefix

∧
k∨

i=0

¬p(si)
︸ ︷︷ ︸

p fails in (s0,...,sk)

(A.1)

Example A.1. We write s[i] to denote bit i of the state s = 〈s[0] . . . s[n]〉. Consider

a 3-bit state transition system defined as follows and shown in Fig A.1:

I(s) = ¬s[0] ∧ ¬s[1] ∧ ¬s[2]

R(s, s′) = (s[2]⇔ s′[1]) ∧ (s[1]⇔ s′[0])

p(s) = ¬s[0] .

We want to model check the property G p. First we try to find a counterexample of

length k = 0. (We measure the length of a path prefix by the number of transitions

between states, not the number of states; a counterexample of length 0 is a sequence

of exactly one state.) Substituting into formula (A.1), we obtain:

I(s0) ∧ ¬p(s0) = (¬s0[0] ∧ ¬s0[1] ∧ ¬s0[2]) ∧ s0[0]
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which is clearly unsatisfiable, so no counterexample of length 0 exists. It turns out

that the shortest counterexample is of length 3. In fact, for k = 3 we have that

formula (A.1) becomes

(¬s0[0] ∧ ¬s0[1] ∧ ¬s0[2]) ∧ (s0[2]⇔ s1[1]) ∧ (s0[1]⇔ s1[0])

∧ (s1[2]⇔ s2[1]) ∧ (s1[1]⇔ s2[0])

∧ (s2[2]⇔ s3[1]) ∧ (s2[1]⇔ s3[0])

∧ (s0[0] ∨ s1[0] ∨ s2[0] ∨ s3[0])

which is satisfiable by the states (s0, s1, s2, s3) = (〈000〉, 〈001〉, 〈011〉, 〈111〉). There-

fore, the sequence of state transitions s0 → s1 → s2 → s3 is a counterexample to

G p.

In practice, the formulas obtained by expanding (A.1) can be very large. Nev-

ertheless, BMC remains useful because modern SAT solvers can efficiently handle

formulas with millions of clauses.

A.1.2 Determining the Bound

We now discuss two methods for determining the counterexample length when verify-

ing a safety property such as G p. Let d be the diameter of the system, i.e., the least

number of steps to reach all reachable states. Alternatively, d is the least number for

which the following holds: for every state s, if there exists a valid path prefix that

contains s (i.e., s is reachable), then there exists a valid path prefix of length at most

d that contains s. Clearly, if property p holds for all valid path prefixes of length

k, where k ≥ d, then p holds for all reachable states. So, we only need to consider

counterexamples of length at most d. However, finding d is computationally hard.

Given a bound k, we can decide whether k ≥ d by solving a quantified Boolean
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formula. In particular, if every state reachable in k + 1 steps can also be reached in

up to k steps, then k ≥ d. More formally, let reach=n and reach≤n be the predicates

defined over the state space S as follows:

reach=n(s) = ∃s0, ..., sn I(s0) ∧
n−1∧

i=0

R(si, si+1) ∧ s = sn

reach≤n(s) = ∃s0, ..., sn I(s0) ∧
n−1∧

i=0

R(si, si+1) ∧
(

n∨

i=0

s = si

)

The predicate reach=n(s) holds iff s is reachable in exactly n transitions, while reach≤n

holds iff s can be reached in no more than n transitions. Then, k ≥ d iff

∀s ∈ S reach=k+1(s)⇒ reach≤k(s) . (A.2)

The above method of bounding the counterexample length is of limited value due

to the difficulty of solving the quantified Boolean formula (A.2). Another way of

using BMC to prove properties (i.e., not merely for bug-finding) is k-induction [55].

With k-induction, to prove a property G p, one needs to a find an invariant q such

that:

1. q(s)⇒ p(s), for all s ∈ S.

2. For every valid path prefix (s0, ..., sk), q(s0) ∧ ... ∧ q(sk) holds true.

3. For every state sequence (s0, ..., sk+1), if
∧k
i=0 R(si, si+1) holds true then

(q(s0) ∧ ... ∧ q(sk))⇒ q(sk+1) holds true.

Other techniques for making BMC complete are cube enlargement [46], circuit co-

factoring [23], and Craig interpolants [47].
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A.1.3 BMC for General LTL Properties: Original Encoding

In this Section we present the BMC encoding for full LTL, as originally proposed by

Biere et al. [9]. A counterexample to F p can only be an infinite path. In order to

use a finite path prefix to represent an infinite path, we consider potential back-loops

from the last state of a finite path prefix to an earlier state, as illustrated in Fig. A.2.

More precisely, a valid path prefix (s0, ..., s`, ..., sk) has a back-loop from k to ` iff the

transition relation R contains the pair (sk, s`).

l
S
k

S

Figure A.2: A lasso-shaped path

Note that an LTL formula is false iff its negation is true. So, the problem of

finding a counterexample of an LTL formula f is equivalent to the problem of finding

a witness to its negation ¬f . In this section, we will follow this approach.

Given a state transition system M , an LTL formula f , and a bound k, we will

construct a propositional formula JM, f Kk that holds true iff there exists a path

prefix (s0, ..., sk) along which f holds true. We assume that all negations in f have

been pushed inward so that they occur only directly in front of atomic propositions.

First we define a propositional formula JM Kk that constrains (s0, ..., sk) to be a valid

path prefix:

JM Kk = I(s0) ∧
k−1∧

i=0

R(si, si+1) . (A.3)

Now, we have to consider two cases, depending on whether the sequence (s0, ..., sk)

has a back-loop or not. First we consider the case without a back-loop. We introduce
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a bounded semantics, employing the following identities (similar to those used in the

fixed-point characterizations of CTL):

• F f = f ∨X F f

• G f = f ∧X G f

• [f U g] = g ∨ (f ∧X [f U g])

Definition A.2 (Bounded Semantics without a Back-Loop). Given a bound k and

a finite or infinite sequence π whose first k states are (s0, ..., sk), we say that an LTL

formula f holds true along π with bound k iff π |=0
k f is true, where π |=i

k f is defined

recursively as follows for i ∈ {0, ..., k}:

π |=i
k p iff atomic proposition p is true in state si

π |=i
k ¬p iff atomic proposition p is false in state si

π |=i
k f ∨ g iff (π |=i

k f) or (π |=i
k g)

π |=i
k f ∧ g iff (π |=i

k f) and (π |=i
k g)

π |=i
k X f iff i < k and (π |=i+1

k f)

π |=i
k F f iff π |=i

k f ∨X F f

π |=i
k G f iff π |=i

k f ∧X G f

π |=i
k f U g iff π |=i

k g ∨
(
f ∧X [f U g]

)

Note that the recursion is well-founded, since π |=i
k X f is false if i ≥ k. This

also means that formulas of the type G f do not hold true for any bound.

It is easily seen that π |=0
k f implies π |= f for any infinite path π and LTL

formula f . Given a bound k, an LTL formula f , and a valid path prefix (s0, ..., sk),

we construct a propositional formula J f K0
k that is true iff π |=0

k f .

91



Definition A.3 (Original translation of LTL formula without a loop).

J p Kik := p(si) where p is an atomic proposition

J¬p Kik := ¬p(si) where p is an atomic proposition

J f ∨ g Kik := J f Kik ∨ J g Kik

J f ∧ g Kik := J f Kik ∧ J g Kik

J X f Kik :=





J f Ki+1
k if i < k

false otherwise

J F f Kik := J f Kik ∨ J X F f Kik

J G f Kik := J f Kik ∧ J X G f Kik

J f U g Kik := J g Kik ∨
(
J f Kik ∧ J X (f U g) Kik

)

The translations for F and G are easily expanded:

J F f Kik =
k∨

j=i

J f Kjk

J G f Kik = false .

For J f U g Kik, we write a propositional formula that requires that g holds for some

path suffix πj (where i ≤ j ≤ k) and that f holds on all path suffixes in the set

{πn | i ≤ n < j}, as illustrated in Fig. A.3:

J f U g Kik =
k∨

j=i

(
J g Kjk ∧

j−1∧

n=i

J f Knk

)
.
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f holds g holds

... s
j ... s

k
s
0 ... s

i

Figure A.3: Translation of J f U g Kik for a loop-free path prefix.

Now consider a path prefix (s0, ..., sk) with a back-loop from k to `. Define an

infinite lasso path π as shown in Fig. A.2: π = (s0, ..., s`−1, s`, ...sk, s`, ..., sk, ...).

We construct a propositional formula `J f K0
k that holds iff f holds on π (in the usual

LTL semantics).

Definition A.4 (Original translation of LTL formula with a loop).

`J p Kik := p(si) where p is an atomic proposition

`J¬p Kik := ¬p(si) where p is an atomic proposition

`J f ∨ g Kik := `J f Kik ∨ `J g Kik

`J f ∧ g Kik := `J f Kik ∧ `J g Kik

`J X f Kik :=





`J f Ki+1
k if i < k

`J f K`k if i = k

`J G f Kik :=
k∧

j=min(i,`)

`J f Kjk

`J F f Kik :=
k∨

j=min(i,`)

`J f Kjk

`J f U g Kik :=
k∨

j=i

(
`J g Kjk ∧

j−1∧

n=i

`J f Knk

)

︸ ︷︷ ︸
Similar to loop-free case

∨
i−1∨

j=`

(
`J g Kjk ∧

k∧

n=i

`J f Knk ∧
j−1∧

n=`

`J f Knk

)

︸ ︷︷ ︸
See Fig. A.4

The translation for `J f U g Kik deserves some explanation. The translation is a
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disjunction of two parts. The first part is similar to the loop-free case. The second

part is illustrated in Fig. A.4. It handles the case where f holds on all path suffixes

from πi through πk, continues holding for π` through πj−1, and then g holds on πj.

(Note that πk+1 = π`, since π has infinite length.)

f holds f holdsg holds

... s
j ...s ... ss ...s

l0 i k

Figure A.4: Translation of `J f U g Kik for a path prefix with a back-loop.

Having defined the translation for paths both with and without back-loops, we

are now almost ready to define the final translation into SAT. But first we need two

auxiliary definitions. We define `Lk to be true iff there exists a transition from sk to

s`, and we define Lk to be true if there exists any possible back-loop in (s0, ..., sk).

Definition A.5 (Loop Condition). For l ≤ k, let `Lk := R(sk, s`), and let Lk :=

∨k
`=0 `Lk.

Now we are ready to state the final translation into SAT, which we denote by

“JM, f Kk”:

JM, f Kk := JM Kk︸ ︷︷ ︸
valid prefix

∧
( (
¬Lk ∧ J f K0

k

)

︸ ︷︷ ︸
loop-free case

∨
k∨

`=0

(
`Lk ∧ `J f K0

k

)

︸ ︷︷ ︸
case with loop

)
.

Theorem 1. Given an LTL formula f , there exists a path π that satisfies f iff there

exists a k such that JM, f Kk is satisfiable. Equivalently, M |= A¬f iff JM, f Kk is

unsatisfiable for all k.
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A.1.4 Improved Encoding for General LTL Properties

The translations that we have given above in Definitions A.3 and A.4 are not the most

efficient, although they have the benefit of being relatively straight-forward. More

efficient translations are given in [10, 41, 42]; these translations have the benefit

of having size linear in k (the unrolling depth) for the U operator, compared to

size cubic in k (or quadratic in k, if certain optimizations [16] are used) for the

translations in Definitions A.3 and A.4.

We use the same formula JM Kk as the original encoding (defined in Equation A.3

on page 90) to constrain the path to be a valid prefix. In addition, we define for-

mulas for loop constraints , which are used to non-deterministically select at most

one back-loop in the path prefix (s0, ..., sk). We introduce k+ 1 fresh loop selector

variables , l0, ..., lk, which determine which possible back-loop (if any) to select. If

lj is true (where 1 ≤ j ≤ k), then we select a back-loop from k to j. The state

sj−1 is constrained to be equal to the state sk, and we consider an infinite path

π = (s0, ..., sj−1, sj, ..., sk, sj, ..., sk, ...). If none of the loop selector variables are

true, we use the bounded semantics (Definition A.2 on page 91).

We introduce auxiliary variables InLoop0 through InLoopk, which will be con-

strained so that InLoopi is true iff position i is in the loop part of the path. In other

words, InLoopi should be true iff there exist a position j ≤ i such that lj is true. To

ensure that at most one of {l0, ..., lk} is true, we require that li must not be true if

there exists an earlier position j < i such that lj is true. Let |[LoopConstraints]|k be
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the conjunction of the following formulas for i ∈ {1, ..., k}:

l0 ⇔ false

li ⇒ (si−1 = sk)

InLoop0 ⇔ false

InLoopi ⇔ InLoopi−1 ∨ li

InLoopi−1 ⇒ ¬li

In Fig. A.5, we define a function |[f]|0 that translates an LTL formula f into a

Boolean formula that indicates whether the path prefix (s0, ..., sk) is a witness for

f . If none of the loop selector variables are true, then |[f]|k+1 simplifies to false, in

accord with the bounded semantics. If a single loop selector variable lj is true, we

consider an infinite path π = (s0, ..., sj−1, sj, ..., sk, sj, ..., sk, ...). Note that the

infinite path suffix πk+1 is equal to πj. Thus, the translation for |[f]|k+1 simplifies to

|[f]|j, except in the case of the U operator.

For |[f U g]|i, we make two passes through the loop part of path prefix. On the

first pass, we consider path suffixes πi through πk (see Fig. A.6). If f holds true for

all these path suffixes, but g never holds true, then we need to make a second pass

and continue checking at the start of the back-loop (πj). If we reach position k on

the second pass without g ever being true, then we know that g is never true at any

position in the loop, so f U g is false. The auxiliary definition 〈〈f U g〉〉 handles the

second pass. The final encoding for Kripke structure M , LTL formula f , and bound

k is given by |[M, f, k]|:

|[M, f, k]| = |[M]|k ∧ |[LoopConstraints]|k ∧ |[f]|0

96



Formula Translation for i ≤ k Translation for i = k + 1

|[p]|i p(si)
∨k
j=1

(
lj ∧ |[p]|j

)

|[¬p]|i ¬p(si)
∨k
j=1

(
lj ∧ |[¬p]|j

)

|[f ∧ g]|i |[f]|i ∧ |[g]|i
∨k
j=1

(
lj ∧ |[f ∧ g]|j

)

|[f ∨ g]|i |[f]|i ∨ |[g]|i
∨k
j=1

(
lj ∧ |[f ∨ g]|j

)

|[X f]|i |[f]|i+1

∨k
j=1

(
lj ∧ |[X f]|j

)

|[f U g]|i |[g]|i ∨
(
|[f]|i ∧ |[f U g]|i+1

) ∨k
j=1

(
lj ∧ 〈〈f U g〉〉j

)

〈〈f U g〉〉i |[g]|i ∨
(
|[f]|i ∧ 〈〈f U g〉〉i+1

)
false

Figure A.5: Improved BMC Translation

f holds f holdsg holds

... s ...s ... ss ...s
0 i kj m

Figure A.6: Translation for a path prefix with a back-loop.

More compact translations are possible using QBF [38]. Often the transition relation

is a very large formula, and Equation A.3 (on page 90) requires k copies of the

transition relation. With a QBF encoding, the requirement
∧k−1
i=0 R(si, si+1) can be

encoded using only a single copy of the transition relation, as follows:

(
k−1∧

i=0

R(si, si+1)

)
≡
(
∀x, x′.

(
k−1∨

i=0

(si = x) ∧ (si+1 = x′)

)
⇒ R(x, x′)

)
(A.4)
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