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Abstract

Device drivers are Operating Systems (OS) extensions that enable the use of I/O devices in

computing systems. However, studies have identified drivers as an Achilles’ heel of system reli-

ability, their high fault rate accounting for a significant portion of system failures. Consequently,

significant effort has been directed towards improving system robustness by protecting system

components (e.g., OS kernel, I/O devices, etc.) from the harmful effects of driver faults. In con-

trast to prior techniques which focused on preventing unsafe driver interactions (e.g., with the

OS kernel), my thesis is that checking a driver’s execution for correctness violations results in

the detection and mitigation of more faults.

To validate this thesis, I present Guardrail, a flexible and powerful framework that enables

instruction-grained dynamic analysis (e.g., data race detection) of unmodified kernel-mode driver

binaries to safeguard I/O operations and devices from driver faults. Guardrail decouples the

analysis tool from driver execution to improve performance, and runs it in user-space to simplify

the deployment of new tools. Moreover, Guardrail leverages virtualization to be transparent to

both the driver and device, and enable support for arbitrary driver/device combinations.

To demonstrate Guardrail’s generality, I implemented three novel dynamic checking tools

within the framework for detecting memory faults, data races and DMA faults in drivers. These

tools found 25 serious bugs, including previously unknown bugs, in Linux storage and network

drivers. Some of the bugs existed in several Linux (and driver) releases, suggesting their elusive-

ness to existing approaches. Guardrail easily detected these bugs using common driver work-

loads.
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Finally, I present an evaluation of using Guardrail to protect network and storage I/O oper-

ations from memory faults, data races and DMA faults in drivers. The results show that with

hardware-assisted logging for decoupling the heavyweight analyses from driver execution, stan-

dard I/O workloads generally experienced negligible slowdown on their end-to-end performance.

In conclusion, Guardrail’s high fidelity fault detection and efficient monitoring performance

makes it a promising approach for improving the resilience of computing systems to the wide

variety of driver faults.
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Chapter 1

Introduction

1.1 Motivation

Device drivers are critical pieces of system software that manage input/output (I/O) devices in

computing systems (e.g., Embedded, Personal Computers, Data Centers, etc.). Drivers enable

users to enjoy the rich variety of functionalities that I/O devices offer, including persistent data

storage (e.g., optical, magnetic, and flash drives), Internet connectivity (e..g, network cards and

web cams) and entertainment (e.g., sound and graphics cards). Due to the privileged role they

play, drivers are commonly deployed as extensions of commodity operating systems (e.g., Linux,

Mac OS X, Solaris, and Windows) to enable convenient interaction with the OS kernel and

the I/O device. However, studies [19, 32, 65, 73] have indicated that defective drivers are the

Achilles’ heel of system reliability especially in production environments where drivers account

for a significant portion of system failures.

Consequently, significant research has been devoted into dynamic approaches for mitigating

the risk of using defective drivers in production systems, by preventing the corruption of trusted

system components (e.g., OS kernel and I/O devices) [14, 28, 29, 80, 81, 86, 90]. However,

existing approaches are limited in two crucial ways. First, most techniques focus only on faults

that can be observed during driver interaction with the rest of the system [14, 29, 80, 86]. In
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particular, they interpose on the driver’s interface to determine the safety of driver operations

with external side-effects (e.g., modifications of kernel memory). Such techniques are unable to

protect the system from faults that occur within the driver. Second, the vulnerability of persis-

tent I/O operations and devices to driver faults has received little attention [86] compared to the

significant number of studies on protecting the OS kernel [14, 28, 29, 80, 81, 90]. This is un-

fortunate since a faulty driver can permanently damage a device [22, 86], or compromise critical

system functions (e.g., virtual memory, filesystems, etc.) that rely on persistent I/O functionality.

This thesis demonstrates that the aforementioned limitations of existing driver fault mit-

igation techniques can be addressed through decoupled instruction-by-instruction correctness

checking of driver execution. Instruction-grain dynamic analysis of drivers enables the detection

of a wider range of driver bugs than current approaches and provides useful diagnostics infor-

mation to aid fixes. Decoupling enables this improved fault detection fidelity without incurring

high performance overheads, making it possible for production systems to efficiently tolerate

driver bugs. We propose a more powerful framework for improving driver reliability, called

Guardrail, which protects persistent I/O device state and I/O operations from defective drivers

through decoupled dynamic analysis of drivers and mediation of their I/O operations.

1.2 Improving Driver Reliability without Dynamic Analysis

The pervasive use of computing systems today, especially for mission-critical tasks (e.g., air

traffic control), underscores the importance of system reliability. Unfortunately, since systems

software such as device drivers are error-prone, improving the reliability of production systems

remains a subject of intense research.

Complementing the focus of this thesis on dynamic approaches are proposals for improving

the quality of driver code without executing the driver. These include avoiding driver faults by

design, and statically identifying faults in driver code. By not requiring driver execution, runtime

overheads, and the burden of constructing the driver’s execution environment (i.e., OS kernel and

2



I/O device) are avoided. Unfortunately, the complexity of real-world drivers [40, 73] (e.g., multi-

threading) limits the effectiveness of tackling driver faults without executing the driver, which

makes dynamic approaches important for driver reliability. However, by reducing the bug-rate of

drivers, avoiding and statically detecting driver bugs offer the following practical benefits. First,

system failure rates are reduced to a point where the corresponding device can be reasonably

useful to customers. Second, the overheads of dynamic techniques can be avoided for portions

of driver code, where faults have been completely avoided or statically identified (and removed).

Third, the assumption that faults are rare in production drivers can be exploited to reduce the

overheads of dynamic techniques. For example, decoupled dynamic analysis assumes that faults

are rare enough that the higher overheads of synchronous dynamic analysis can be safely avoided.

1.2.1 Avoiding Driver Faults by Design

The technical complexity of modern drivers, coupled with the error-prone manner in which they

developed, make driver errors inevitable. Studies have shown that the poor code quality of drivers

stems from the fact that they are written: (i) manually [49, 64], (ii) by programmers who lack

expert knowledge of the OS [9, 19, 65] and/or device [52, 73], and (iii) in unsafe program-

ming languages (C, C++) [73]. These problems have motivated proposals to improve driver

quality through type safe programming languages [11, 35, 39, 53, 69], high level specification

languages [52, 64, 74], and automatic reverse engineering [17].

Safe Programming Languages Commodity OS drivers are generally written in C and C++,

and therefore suffer from type safety issues (e.g., memory leaks, pointer errors, uninitialized

memory use, etc.) that are associated with low-level programming. An obvious approach to

avoiding this class of errors is to use type safe languages for driver development. However, the

main reason for writing drivers in unsafe languages is because they must execute as modules

of commodity OS kernels that are themselves written in such languages. Current approaches
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for avoiding type errors during driver development include writing the OS in a type safe lan-

guage [11, 39, 53], and moving drivers into user-space [69].

Proposals for using type safe languages to implement operating systems include the follow-

ing: (i) SPINOS [11] (written in Modula-3), (ii) JavaOS [53] and JX [35] (written in Java), and

(iii) Singularity [39] (written in Shing#). The drivers for these operating systems are free of

type errors by construction since they are also written in the type safe language. However, for

various reasons, including performance and legacy code compatibility, these ideas have not been

adopted for commodity OS development, and thus offer little practical value to the reliability of

production systems.

Decaf [69] offers an alternative approach for writing drivers in a safe language without break-

ing compatibility with commodity operating systems code. Decaf is an extension to the Mi-

crodriver [33] approach of partitioning a driver into a kernel-mode component, containing the

performance-critical and privileged code paths, and a user-mode component, containing other

parts of the driver. Decaf employs static analysis and multi-lingual programming techniques to

enable a safe language implementation of the user-mode component of Microdriver (Java in this

case). DriverSlicer static analysis [33] is used to identify driver code portions that can be reliably

moved into user-mode, while the Jeannie compiler [38] is used to manage the cross-language

interactions between the user-mode Java portions of the driver and the C portions that remain

in kernel-mode. Although, Decaf helps to avoid type errors in large portions of drivers, system

reliability remains vulnerable to errors in the kernel-mode portions.

Specification Languages Beyond high level programming of drivers are the techniques that

employ even higher level specification languages to automate error-prone procedures during

driver development. These include tasks that require significant manual effort (e.g., driver main-

tenance) and expert knowledge of the OS and device (e.g., writing driver interfaces). As dis-

cussed below, studies have identified such activities as significant sources of driver faults.

Changes to the internal libraries and APIs of an OS kernel often requires updating client code
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in the kernel—including drivers—to maintain compatibility. However, the number of drivers

that exist in most commodity operating systems range in the thousands [19, 54, 65] hence up-

dating them is a burdensome task that often results in widespread breakage of driver code, due

to either copy-paste errors or failure to update all the required drivers [49, 63]. Cocinelle [64]

automatically applies programmer-provided patches across the entire driver code base, thereby

relieving the programmer from the manual effort that is ordinarily required. The desired changes

are described by the programmer using a specification language—called Semantic Patch Lan-

guage (SmPL)—provided by Cocinelle. With this specification, Cocinelle systematically iden-

tifies driver codes that require updating, and applies the patch in a semantically-aware manner,

thus avoiding common patching errors. However, Cocinelle neither guarantees the correctness

of the provided patch, nor identifies existing errors in the updated drivers.

Implementing correct interface logic for drivers is notoriously difficult, primarily because

of the required OS and device expertise. Devil [52] and Termite [74] automatically synthesize

driver interface code from high-level descriptions of the OS or device protocol, thus avoiding

errors of manually written code. The underlying idea is that it is much easier for a device vendor

to write the correct formal specifications of the device protocol than for an average driver devel-

oper to implement a correct interface in C. Hence the burden for interface correctness shifts from

the programmer to the specifications provided by OS and device experts, as well as the synthesis

tool. This approach is limited by a lack of correct and formal specifications of operating sys-

tems and hardware devices. Moreover, other error-prone driver features like multi-threading and

memory management cannot be synthesized using these techniques because of their complexity.

Consequently, fully synthesized production drivers are not yet available.

Reverse Engineering Porting proprietary binary drivers is important for making devices avail-

able to operating systems that are not supported by their hardware vendor. In reality, however,

it is a labor-intensive and error-prone exercise that suffers from the lack of device specifications.

To mitigate the difficulty of porting drivers, RevNIC [17] reverse-engineers device protocol logic
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from proprietary drivers in the supported OS, producing C code that a developer can use in the

target driver. Although RevNIC avoids new bugs in the ported code, it does not eliminate existing

bugs, which are simply replicated in the target driver. Moreover, portions of the target driver that

interact with the OS (e.g., concurrency and memory management) cannot be ported, and are still

manually written.

Fault avoidance summary Fault avoidance reflects the belief that programmers are the weak

link in driver development, and that automation can improve driver quality by reducing the possi-

bilities of programmer error. Safe languages relieve the programmer from the burden of ensuring

type safety in drivers. Specification languages go a step further by relieving programmers from

the burden of implementation, leaving them instead with the task of specification. Reverse engi-

neering goes to the extreme by completely removing programmers from the development process

by synthesizing driver code entirely from existing implementations. Unfortunately, existing tech-

niques cannot fully automate the development of modern drivers. Hence detection of driver faults

is still required for system reliability.

1.2.2 Detecting Driver Faults through Static Analysis

Since current driver development techniques cannot guarantee the absence of faults in driver

code, identifying and removing faults is an important technique for improving the quality of

production drivers. One approach is to apply static analysis techniques to detect correctness

violations in driver code [7, 9, 26, 27, 65]. Although static checking improves the quality of

released drivers by preventing many bugs from escaping into production environments, it cannot

guarantee driver correctness due to driver complexity. Specifically, static checking attempts to

examine all of the possible states of a driver—along all execution paths—for errors. However,

the complexity of real-word drivers makes exhaustive state exploration intractable. Therefore,

mechanisms for tolerating the remaining faults are required in production systems.
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Existing static checkers have identified a variety of faults in driver code including: (i) vi-

olations of OS kernel API rules [7, 9, 27, 65], (ii) concurrency management errors [26], and

(iii) unsafe assumptions about device behavior [41]. However, the precision of static checking

can be impaired by pointer aliasing issues of C/C++, leading to both false positives and false

negatives. Iterative refinement [21, 45] has been proposed to reduce false positives [7, 9], while

incorporation of dynamic checking has been proposed to avoid false negatives [57].

A common strategy for managing the complexity of large systems software (e.g. operat-

ing systems) is to define system-specific rules (that go beyond programming language rules)

for developers to adhere to. For example, Linux kernel programming forbids the following:

floating point operations, blocking (or sleeping) in non-preemptible contexts, using user-space

pointers without validating them, etc. Similar rules exists in other commodity OS kernels (e.g.,

Windows [9]). Unfortunately, these rules are often confusing, poorly documented, and not sys-

tematically enforced, which introduces reliability issues for commodity operating systems, since

many drivers are developed and distributed independently of the OS vendor [54].

Meta-level compilation (MC) enables systematic enforcement of Linux kernel rules, through

the Metal language (for specifying rules as compiler analyses) and the xgcc framework (for

context-sensitive and inter-procedural analysis) [37]. MC extensions found hundreds of errors

in kernel code (including drivers) [27]. Static Driver Verifier (SDV) detects similar violations of

Windows kernel rules in drivers [9]. SDV uses SLAM [7]—a static analysis engine—to create

a boolean-program abstraction of the driver automatically from source code [8] and analyze

the abstraction for errors using model checking. Users express the rules to be checked in a

specification language called SLIC [6]. SLAM iteratively refines the driver abstraction to reduce

false positives. SDV found hundreds of errors in widely used Windows drivers.

RacerX [26] statically detects data race conditions and deadlocks in kernel code (including

drivers) using flow-sensitive, context-sensitive and inter-procedural dataflow analysis. RacerX

relies on developer annotations to help infer: (i) what locks protect what shared data, what code
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contexts are subject to multi-threaded execution, and (iii) the system-specific synchronization

functions (including preemption control). False positives are mitigated by using system-specific

heuristics to rank detected errors based on severity. RacerX found serious errors in commodity

operating systems including Linux, FreeBSD, and an unnamed, large commercial OS.

Although hardware devices sometimes do fail or misbehave, drivers often assume otherwise,

which results in system hangs or crashes. Two common examples of such faults in drivers are

that they fail to validate inputs from the device, and infinitely wait for a device response. Carbur-

izer [41] is a static analysis tool that checks for instances of such unsafe assumptions in driver

source code. Carburizer identified almost a 1000 such assumptions or bugs in Linux drivers, with

a false positive rate of less than eight percent.

1.3 Related Work

Techniques for improving system reliability by monitoring driver execution to detect driver

faults, and mitigate their impact on the system have been well studied [12, 14, 20, 28, 29, 30,

33, 46, 70, 75, 80, 85, 86, 90]. Dynamic techniques leverage runtime information about driver

behavior (e.g., thread interleaving, control flow, etc.) to precisely identify subtle faults (e.g., data

races) that are difficult to avoid by design or detect statically. Moreover, dynamic techniques

can be effectively used on unmodified driver binaries (i.e., dynamic binary analysis) unlike static

checking, which requires the availability of the driver source code. Unlike static approaches, dy-

namic checking: (i) requires executing the driver in its normal environment (i.e., with OS kernel

and I/O devices), (ii) incurs performance overheads, and (iii) detects faults only in the executed

code paths.

Techniques that dynamically check driver execution can be used (by the developer or user)

for testing drivers and making production systems robust to defective drivers. The effectiveness

of adopting a dynamic approach in these scenarios is significantly influenced by two factors:

(i) whether driver operations (e.g., instructions) are checked for correctness before or after they
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complete (i.e. timeliness) and (ii) whether checking is applied to all or some portion of driver

operations (i.e. coverage). These two factors determine the following properties of a driver

monitoring technique: (i) the impact on driver performance, (ii) fault detection fidelity, and

(iii) fault containment (e.g., OS kernel protection). Another relevant but orthogonal deployment

consideration for using dynamic approaches is the ability to handle unmodified driver binaries.

We examine these issues in more details below.

The timing of correctness checks during driver execution is an important design considera-

tion for a dynamic technique as it affects both performance and fault containment. One approach

is to guard potentially faulty driver operations with the appropriate checking operations, that are

performed synchronously (a.k.a. coupled checking). Alternatively, checking operations could be

decoupled from the driver and performed asynchronously with the driver execution (i.e. decou-

pled checking). Decoupled checking typically lags driver execution, especially when multiple

checking instructions (or cycles) are required for each driver instruction.

The timeliness of performing correctness checks on driver execution directly affects per-

formance because it determines whether or not checking overheads are incurred on the critical

execution paths of the driver. The impact of coupled checking on driver execution varies depend-

ing on the sophistication of the dynamic analysis—the number of checking instructions required

for each driver operation. For lightweight analyses (e.g., for memory safety), which require less

than ten instructions to check each driver operation, coupled checking could simply slow down

the driver. However, for heavyweight analyses (e.g., data race detection), which require tens

of instructions to check each driver operation, coupled checking could actually break the driver

due to severe perturbations of timing-sensitive computations (.e.g, interrupt handling) [28]. In

contrast, decoupled checking reduces (or eliminates) the impact of dynamic analysis on driver

performance to the point where heavyweight correctness checking can be comprehensively per-

formed on driver execution without robustness problems. Moreover, techniques like DISE [23]

and Speck [60] can be used to further accelerate decoupled checking.
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Timeliness also affects the ability to contain the driver faults that manifest during execution,

and prevent them from corrupting the rest of the system. The ability of contain driver faults is

critical to helping systems survive driver failures. In particular, driver faults should be prevented

from propagating to system components such as the OS kernel and I/O devices which inter-

act frequently with drivers. Coupled checking makes it relatively easy to provide strong fault

containment guarantees since faulty driver operations are preemptively identified and prevented

from executing. In contrast, decoupled checking makes the containment of driver faults more

challenging. This is because due to the lagging checks, faulty driver operations are not detected

until much later in the execution. However, in the meantime the driver continues to execute in

a faulty mode with the freedom to interact with, and potentially compromise other parts of the

system (e.g., the OS kernel).

Thus, coupled and decoupled checking present performance and fault containment tradeoffs

to driver monitoring techniques. Coupling enables strong fault containment guarantees at the

expense of poor performance, while decoupling enables good performance, but makes fault con-

tainment more difficult. As illustrated in Table 1.1, all but one of the existing dynamic techniques

adopt a coupled checking approach; Aftersight [20] is the sole exception. Aftersight is also the

only technique that does not protect the system from driver faults. The other techniques protect

the OS kernel from defective drivers and Nexus-RVM [86] additionally protects persistent I/O

state in the system.

Another important design consideration for driver monitoring is that of checking coverage,

i.e. what portion of driver execution to check for correctness. This issue impacts both the per-

formance and fault detection fidelity of a dynamic technique. While, checking the entire driver

execution guarantees that any fault that is exercised will be detected, it unfortunately incurs the

maximum checking overhead. In contrast, checking only portions of driver execution helps to

reduce the checking overhead, but does so at the risk of missing bugs that are exercised in the

unchecked portions. Moreover, subtle bugs (e.g., unsafe use of uninitialized data) that require
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instruction-grain information flow tracking, through registers and memory locations, cannot be

reliably detected by partially checking driver execution.

The classification of existing dynamic techniques based on whether they achieve total or

partial coverage of driver execution is illustrated in Table 1.1. Only five techniques (Aftersight,

DataCollider [28], DDT [46], KAddrCheck [30], and SafeDrive [29] check the entire driver

execution for bugs. The remaining eight techniques check only a portion of driver execution,

specifically execution of the interfaces to the OS kernel and I/O devices (only Nexus-RVM).

Thus, driver bugs that corrupt its internal state such as overflowing or racing on internal buffers

can only be detected by those five techniques.

The ability to monitor unmodified driver binaries is important in production environments be-

cause driver source code may not be available. Drivers (e.g., graphics drivers) are sometimes dis-

tributed in only binary format for proprietary and convenience reasons. Majority of the existing

techniques employ dynamic binary analysis to monitor driver execution making them effective

for unmodified driver binaries. As illustrated in Table 1.1, proposals that work on driver binaries

include SFI [85], Nooks [80], XFI [90], Aftersight, DataCollider, DDT, and KAddrCheck. The

other dynamic techniques require the availability of driver source code.

Dynamic Analysis Summary Table 1.1 summarizes our discussion on the attributes of ex-

isting dynamic driver analysis techniques which are relevant to deployment in test and produc-

tion environments. An ideal technique for driver testing should analyze the entire execution to

increase the chances of detecting faults and be efficient enough to enable heavyweight analy-

sis of interrupt handlers. While the first requirement is met by Aftersight, DataCollider, DDT,

KAddrCheck, and SafeDrive, the second is met by only Aftersight through decoupled analysis.

However, Aftersight cannot protect the OS kernel or I/O operations from defective drivers which

makes it unsuitable for production use and demonstrates the key challenge of decoupled check-

ing, i.e. fault containment. On the other hand, existing techniques which contain driver faults are

problematic for deployment in production environments either because of the poor performance
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Yes No

Couples checking with execution

BGI, DataCollider, DDT, Aftersight

KAddrCheck, Microdrivers,

Nexus-RVM, Nooks, SafeDrive,

SFI, SUD, SymDrive, XFI

Protects OS kernel BGI, DataCollider, DDT, Aftersight

KAddrCheck, Microdrivers,

Nexus-RVM, Nooks, SafeDrive,

SFI, SUD, SymDrive, XFI

Protects persistent I/O state

Nexus-RVM Aftersight, BGI, DataCollider,

DDT, KAddrCheck, Microdrivers,

Nooks, SafeDrive, SFI,

SUD, SymDrive, XFI

Checks all driver execution
Aftersight, DataCollider, DDT, BGI, Microdrivers, Nexus-RVM,

KAddrCheck, SafeDrive Nooks, SFI, SUD, SymDrive, XFI

Works on binaries

Aftersight, DataCollider, DDT, BGI, Microdrivers, Nexus-RVM,

KAddrCheck, Nooks, SFI, SafeDrive, SymDrive

SUD, XFI

Table 1.1: Classification of dynamic techniques for improving driver reliability.

of coupled instruction-grained analysis or the poor fault detection of interface checking.

1.4 Research Goals

The high-level research goal of this thesis is to demonstrate the following statement:
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Decoupling can effectively address the limitations of dynamic approaches to driver

faults by enabling sophisticated instruction-grain correctness checking without incurring

the high performance overheads of current proposals. Also, commodity virtualization can

be leveraged to enable fault containment for decoupled monitoring so that sophisticated

dynamic analysis can be deployed on production systems to efficiently mitigate the risks of

defective drivers.

1.5 Contributions

This thesis makes the following contributions:

• We propose and implement a novel framework, Guardrail, for detecting incorrect driver

behavior at run-time, and preventing the faulty driver from corrupting the rest of the sys-

tem (including the persistent state of hardware devices). In contrast to previous proposals,

Guardrail performs instruction-grain correctness checking as the driver executes; it also

uses a decoupled VM-based approach to provide efficient and transparent protection from

driver faults. Guardrail supports arbitrary kernel-mode driver binaries and devices in com-

modity operating systems.

• Within our Guardrail framework, we demonstrate instruction-grain correctness checking

tools that detect accesses to uninitialized data, data races, and DMA faults (none of which

is supported by existing driver fault mitigation techniques). Our data race tool improves

upon prior approaches by minimizing false positives and avoiding false negatives, while

handling the complexities of kernel-mode drivers.

• Our experimental results demonstrate that our proposed correctness-checking tools are

more effective at catching driver bugs than previous approaches (e.g., finding a bug in the

popular qla2xxx SCSI driver that had eluded detection for years). Moreover, our results

show that with hardware-assisted execution tracing Guardrail can safeguard network and
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storage I/O operations from driver faults with minimal impact on the end-to-end perfor-

mance of most I/O workloads, with network streaming (up to 60% throughput reduction)

as the exception.

1.6 Thesis Organization

This thesis demonstrates how decoupled instruction-grained dynamic binary analysis can im-

prove the detection and mitigation of driver bugs beyond current techniques.

Chapter 2 provides a brief background on device drivers and can be skipped by readers that

are familiar with the material. This is followed in Chapter 3 by a high-level description of

Guardrail, our proposed framework for using decoupled dynamic analysis to safeguard I/O op-

erations from bugs in kernel-mode drivers. Chapter 4 presents three novel Guardrail-enabled

instruction-grained dynamic analyses for finding data races, DMA bugs, and memory bugs in

unmodified driver binaries.

Because Guardrail decouples dynamic analysis from driver execution to improve perfor-

mance, correctness checking can lag the driver execution substantially, especially for heavy-

weight checkers. Thus, Chapter 5 describes how Guardrail transparently interposes on the I/O

operations of the driver to enable validation of those operations by the decoupled checking tool.

Chapter 6 describes how Guardrail decouples dynamic analysis from driver execution for

online mitigation of driver bugs, and evaluates the impact of Guardrail on the end-to-end per-

formance of network and storage I/O workloads. Chapter 7 concludes and summarizes the key

points of this thesis.
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Chapter 2

Background on Device Drivers

Device drivers are a class of system software that manage the peripheral I/O devices in computing

systems in order to meet the I/O needs of users. Common functionality that drivers enable include

persistent data storage through hard disk drives, Internet connectivity through network cards, and

gaming through graphics cards. To provide this functionality, a driver receives I/O requests (e.g.,

sending a network packet, disk read, etc.) from the operating system kernel and performs the

appropriate set of device operations to satisfy the requests. For example, a network driver copies

outgoing network packets from system memory onto the network card, and then manipulates the

network card to effect actual transmission of the packets across the network. Thus, as illustrated

by Figure 2.1, the driver is the interface between the operating system kernel and the device. Due

to the privileged nature of driver functionality, commodity operating systems, such as Linux and

Windows, typically implement drivers as dynamically loaded modules of the kernel so that the

drivers can efficiently and conveniently interact with the operating system and the device.

Commodity operating systems provide device access to user-level software (e.g., applica-

tions) through layers of kernel-level software collectively known as an I/O protocol stack. Thus,

a driver executes as part of the I/O protocol stack of its device. As an example, Figure 2.2 shows

the Linux protocol stacks for a network and a storage device. As shown in Figure 2.2, drivers

operate as the lowest layer of the protocol stack that interacts directly with the device.
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Figure 2.1: A device driver is the interface between the operating system and an I/O device.

2.1 Driver Interaction with Operating System Kernel

A major part of driver computation involves interaction with the operating system kernel [40, 73].

The driver receives I/O requests (e.g., from applications) and sends the corresponding responses

through the OS kernel. Moreover, the OS kernel provides critical system resources that the driver

needs for computation, such as memory, interrupt lines, and the system bus. Since the driver is a

module in the address space of the OS kernel, it interacts with the kernel through CPU registers,

physical memory, and functions.

The OS kernel forwards I/O requests to the driver by calling the corresponding driver func-

tions (a.k.a. callbacks). To enable this, the driver registers callbacks for performing various

device related operations with OS kernel (at load time). For example, a network driver regis-

ters callbacks for transmitting packets, retrieving network card statistics, configuring the net-

work card, etc. To reduce the burden of driver support in kernel development, commodity

operating systems group drivers into classes (e.g., network, disk, etc.) and export a uniform

interface to each class for maintaining state and registering callbacks. For example, the Linux

network driver interface includes struct net device data type for state maintenance and

register netdev() function for callback registration.

To allow drivers to request and manage system resources (e.g., memory), the OS kernel

exports a variety functions, such as kmalloc() for allocating memory, request irq() for

reserving interrupt lines, etc.
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Figure 2.2: Drivers in the Linux I/O protocol stacks for (a) network and (b) SCSI disk devices.

2.2 Driver Interaction with Device

Driver interaction with a device is another significant portion of driver computation [40, 73].

Conceptually, a driver maintains two communication channels with the device, one for control

and another for data. The control channel is used to configure the device, obtain status infor-

mation, issue I/O commands, and receive device interrupts. The data channel is used to transfer

I/O data between device and system memory. However, the manner in which the driver commu-

nicates with the device is influenced by the processor architecture, the OS kernel, and the I/O

subsystem. Guardrail was designed for Linux-based x86 systems with PCI-based I/O system

bus and so the following discussion applies to such systems. However, similar concepts apply to

other system platforms.

Control communication typically occurs through the device’s registers. Device registers are

mapped into three distinct x86 address spaces, where they are accessed by the driver. The I/O

related address spaces are the I/O port space, memory mapped I/O space (MMIO), and PCI

configuration space (PCI-config). Typically, there is a single 64KB I/O port space that is
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shared among devices in the system and 256 bytes of PCI-config space per device. On the

other hand, MMIO space is device-specific and of variable size.

Device registers play a critical role in reliable interrupt delivery. Each device is configured

to use a specific physical interrupt line for signaling of interrupts. However, because there is a

limited number of physical interrupt lines in a system, interrupt lines are sometimes shared by a

number of devices. Thus, a device that is using a shared interrupt line is additionally configured

to set a designated device register whenever it signals an interrupt. The driver checks the status

of the designated device register to confirm the origin of an interrupt received on a shared line

and to respond appropriately.

Device registers differ in how they are accessed by software. While I/O ports can only be ac-

cessed through privileged IN and OUT instructions (e.g inb, outb), MMIO and PCI-config are

accessed through regular loads and stores, and thus offer more programming flexibility. Unlike

the physical memory space and the processor register space, reading or writing a device register

can cause side effects on the device.

The dominant mode of data communication between drivers and devices is through Direct

Memory Access (a.k.a DMA), where the device transfers I/O data (e.g., network packets, disk

blocks, etc.) directly to/from physical memory buffers (a.k.a DMA buffers) without using CPU

cycles. DMA is initiated by the driver programming specific device registers with the desired

data transfer parameters. The data transfer could involve a single DMA buffer, multiple DMA

buffers in physically contiguous memory, or multiple DMA buffers in non-contiguous memory

(scatter-gather transfer). As part of initiating a DMA operation, the driver configures the device

registers with pointer value(s) that correspond to the DMA buffer(s). For scatter-gather transfers,

pointers to the DMA buffers could be stored in a region of system memory known as a DMA

descriptor. IOMMU hardware [1, 4] is increasingly used to tackle the addressing and reliability

challenges of DMA.
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Chapter 3

Guardrail overview

Guardrail enables online protection of the I/O operations of a system from the harmful effects of

driver faults. In this chapter, we provide an overview of Guardrail’s approach to mitigating driver

faults, while the integral components of Guardrail are described in more detail in subsequent

chapters. The following discussion starts with a motivation of Guardrail’s decoupled approach

to detecting driver faults before presenting a high-level design of the framework.

3.1 Guardrail Approach to Mitigating Driver Faults

Mitigating the impact of driver faults on system integrity generally involves: (i) identifying faulty

behavior in driver execution (i.e. fault detection), and (ii) executing the driver in a separate fault

domain from the protected system components (i.e. fault containment). However, as discussed in

Section 1.3, current proposals minimize the performance overheads of runtime analysis by check-

ing only portions of driver execution—specifically the driver interface(s)—rather than the entire

execution. In particular, driver faults are detected and contained through correctness checks that

are interposed on the driver’s interfaces to other system components (e.g., OS kernel). As a

result, the internal computation of a driver, which accounts for the bulk of its execution, is essen-

tially treated as a black box, as illustrated in Figure 3.1(a), and the bugs which exist there remain
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Figure 3.1: Comparing conventional and Guardrail approaches to mitigating driver faults.

a threat to system integrity.

Rather than ignoring the bulk of driver execution for correctness checks, Guardrail proposes a

more powerful approach. In this approach, the interposition layer’s decision of whether to allow

the driver to proceed with a side-effect-causing operation is driven not only by invariant checks

at the driver’s interface, but also by instruction-grain dynamic analysis of the driver software

as it executes, as illustrated in Figure 3.1(b). Indeed, Guardrail typically identifies correctness

problems within the driver before they reach the driver’s interface. Thus, we enable a more

comprehensive analysis of whether the driver software is behaving correctly or not than what is

practical today, by simply monitoring the driver’s interfaces. For example, a driver that contained

either a data race or a memory bug might store the wrong value in a legitimate target location in

either kernel memory or its device.

To achieve a higher fidelity of dynamic correctness checking without sacrificing driver perfor-

mance, we propose a decoupled approach to performing the dynamic instruction-by-instruction

analysis of the driver—as it executes. In our decoupled approach, an execution trace of the driver

software is captured (e.g., via a hardware-assisted logging mechanism [16, 82] or through binary

instrumentation [30, 67]), and stored in a buffer that is consumed asynchronously by a dynamic

20



analysis tool that runs concurrently on a separate core from the monitored driver. Because the

dynamic analysis tool can lag behind the driver in our decoupled approach, the interposition

layer stalls any side-effect-causing operations at the driver interface until the dynamic analysis

can catch up.

Guardrail effectively achieves a “sweet spot” between synchronous instruction-grain analysis

(that results in too large of a performance overhead for latency-critical driver operations such as

interrupt handling) and offline (or post-mortem) instruction-grain analysis (that avoids runtime

overhead, but occurs too late to prevent faulty drivers from corrupting persistent state).

We now present an overview of Guardrail design.

3.2 System Design

To foster a principled approach while designing Guardrail, we developed a set of high-level

design goals. In particular, Guardrail should have the following properties.

Generality: support the monitoring of unmodified driver binaries running in common comput-

ing environments (e.g., stock multithreaded OS, arbitrary applications and runtimes, etc).

Detection Fidelity: enable fine-grain correctness-checking and identification of errors, while

supporting a wide variety of monitoring tools.

Containment: provide mechanisms capable of preventing detected driver errors from erro-

neously affecting external state.

Response Flexibility: allow users to control what Guardrail does upon detecting an error (e.g.,

disable I/O operations from the driver, or simply record information for post-mortem anal-

ysis).

Trustworthiness: rely on a minimal trusted computing base for containment.

The system architecture that resulted from these goals is shown in Figure 3.2. To simultane-

ously satisfy the containment and generality goals, we adopted a virtual machine-based system.
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Figure 3.2: The system architecture of Guardrail.

The driver(s) of interest, along with the stock OS (Linux, in our prototype) and related applica-

tions, execute in one virtual machine (VM), labeled the “Driver VM” in the figure. The virtual

machine monitor (VMM) provides the interposition mechanism. I/O operations are intercepted

by the interposition layer, and if is error be detected the VMM prevents the error from propagat-

ing outside the driver VM by simply not delivering it to the physical hardware.

While the driver executes, a trace of the driver’s operations is collected and delivered to

the “Analysis VM”. An instruction-level trace supporting high detection fidelity can be captured

through one of several mechanisms: binary translation [30, 67] in the driver VM, VMM-based

monitoring [20, 88], or monitoring hardware [16, 82, 84]. The execution trace is streamed (pos-

sibly with some buffering delay) to the Dynamic Binary Analysis tool, which runs in the user

space in the analysis VM. This tool consumes the execution trace and checks for driver errors,

such as data races or memory access violations, to help the VMM determine when (or if) an

intercepted I/O operation can be safely dispatched to the device. If a fault is identified in the

driver’s execution, then it is potentially unsafe to dispatch the intercepted I/O operation to the

device. However, the appropriate course of action in this situation often depends on the prefer-

ences of the user (e.g., their willingness to sacrifice system availability to ensure persistent data

integrity).
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To accommodate their preferences, end users may configure Guardrail to operate in one of

three modes: (i) stringent, (ii) permissive, and (iii) triage.

Stringent: In stringent mode, Guardrail blocks the intercepted and subsequent I/O operations

from the driver, which effectively disables the I/O device.

Permissive: Permissive mode is the other extreme, where after performing user-specified actions

(e.g., alerting the user, taking a system checkpoint, enabling more detailed analysis, etc.),

Guardrail dispatches the I/O operation to the device and resumes normal execution. More-

over, permissive Guardrail records information to enable post-mortem analysis of resulting

system failures.

Triage: Triage mode represents a middle ground between these two extremes, where Guardrail

performs a best-effort estimation of the safety of completing the I/O operation by automat-

ically triaging the fault [42, 56]. If the I/O operation is deemed safe, Guardrail behaves as

if in permissive mode, otherwise it behaves as if it were in stringent mode.

Although this flexibility allows Guardrail to be configured in interesting ways for different,

real-world, deployment scenarios, this thesis is focused on stringent Guardrail because it presents

the most challenging performance issues.1

Note that in this design, the trustworthiness of the containment mechanism is maintained be-

cause any complexity associated with tracking the driver state, emulating device-specific logic, or

correctness checking is managed in the dynamic analysis tool. Consequently, device-independent

I/O interpositioning may be realized through a simple addition to the VMM layer. Less than 500

lines of C code were required to retrofit a commodity VMM (Xen [10]) with I/O interpositioning.

1Permissive and Triage modes only affect Guardrail’s response to suspected driver correctness issues within the

context of the driver VM. The interposition layer always enforces the virtual machine definition. For example, an

attempt to read/write past the end of a virtual disk will be strictly enforced under all modes.
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3.3 Analysis Scope

An important question that arises in our design is: which instructions in the driver VM should be

traced for inspection by the analysis tool? For example, Guardrail could log all the instructions

that are executed in the driver VM, only the kernel-level instructions, or just the instructions

of the monitored driver. Tracing more instructions than is necessary to identify driver faults is

undesirable because it incurs avoidable performance overhead.

Although, logging only the driver’s instructions might appear to be sufficient, we soon dis-

covered that this was not the case. This is because drivers execute as part of the protocol stack of

I/O devices, as illustrated in Figure 2.2 and I/O protocol stacks provide certain invariants that the

driver writer may rely upon. For example, the Linux network stack acquires certain locks before

executing driver code to protect shared data accesses within the driver, as illustrated by the code

snippet from Linux 2.6.18 in Figure 3.3. As we see in Figure 3.3, the network stack serializes

packet transmission by locking the execution of the driver’s hard start xmit() callback.

A race detector focused solely on the driver’s execution would not observe the lock acquire be-

cause it happens outside the driver context; hence it would incorrectly flag as data races all pairs

of accesses in hard start xmit() by different threads with at least one writer.

Guardrail addresses this issue by tracing the execution of certain kernel functions (e.g., for

synchronization) by other parts of the I/O protocol stack, outside the driver. This allows the

analysis tool to identify operations outside the driver context that are relevant to its correct be-

havior. For example, Guardrail logs the synchronization operations (e.g., lock/unlock) which are

performed by the scsi mod module in the Linux SCSI I/O protocol stack to identify the critical

sections within a SCSI driver for data race detection. While a possible drawback is that interface

changes across kernel versions will require corresponding modifications to our checking tools,

such changes are unlikely to occur frequently because they often require corresponding modifi-

cations to the entire driver code base, and to kernel analysis tools. Nevertheless, this extension is

critical for avoiding false data race and memory fault reports in checking tools.
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 HARD_TX_LOCK(dev, cpu);!
  . . .     !
  rc = dev->hard_start_xmit(nskb, dev);!
 . . .!
 HARD_TX_UNLOCK(dev);!

Figure 3.3: Serialization of packet transmission by the Linux interface to network drivers.
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Chapter 4

Detecting Driver Bugs through Dynamic

Binary Analysis

A key feature of Guardrail is that it performs instruction-grain analysis of the driver code as it

executes to identify software bugs. In this chapter, we describe three new correctness-checking

tools implemented in our framework for detecting: (i) data races, (ii) direct memory access

(DMA) faults and (iii) memory faults in unmodified driver binaries.

Our discussion in this chapter is organized as follows. First, we provide some background

on using dynamic binary analysis to improve software reliability, and justify our focus on this

particular set of correctness issues in drivers. Next, we describe the design and implementation

of each tool, starting with the data race checker, then the DMA fault checker, and finally the

memory fault checker. We then present our evaluation of the bug detection effectiveness of the

checking tools using production Linux drivers. In particular, we compare against state-of-the-

art techniques by evaluating whether those techniques can detect similar driver bugs effectively.

The performance evaluations of our checking tools in the context of the Guardrail framework are

described in Chapter 6. Finally, we discuss some issues to consider when deploying Guardrail in

test and production environments, and then examine the bug-detection limitations of Guardrail.
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4.1 Background on Dynamic Analysis and Driver Bugs

Researchers have shown that instruction-by-instruction analysis of program execution, for cor-

rectness violations, is a powerful approach for identifying hard-to-find software bugs (e.g., race

conditions, uninitialized memory use, and security vulnerabilities). Consequently, instruction-

grain dynamic analysis has emerged as an important technique for improving software reliabil-

ity at the user-level. As demonstrated in Chapter 6, a major benefit of Guardrail’s decoupled

approach is that it enables similarly sophisticated analyses to be efficiently applied on driver

execution in the kernel-space.

4.1.1 Dynamic Binary Analysis

Techniques for analyzing unmodified application binaries—dynamic binary analysis (a.k.a. DBA)—

in particular have gained particular importance as applications are often available (or distributed)

only in binary form, for legacy, proprietary, or convenience reasons. As a result, DBA tech-

niques have been proposed to detect a variety of correctness issues in unmodified application

binaries, including low level issues such as memory errors [58] and security vulnerabilities [59],

and high level issues such as concurrency [31, 76, 89] and multi-lingual program interface er-

rors [47]. Spurred by the popularity of DBA, researchers have proposed software [13, 51, 58]

and hardware-based [23, 24] frameworks to reduce the burden of developing (and deploying)

efficient DBA tools.

Inspired by the success of DBA in user-mode execution, this thesis explored how to improve

OS reliability by using DBA to improve the mitigation of kernel-mode driver faults. DBA is

a promising approach for addressing the high bug-rate of production drivers for the following

reasons. First, the variety of user-level correctness issues (e.g., memory, security, concurrency,

interface) for which DBA has been effectively used mirror the major categories of production

driver bugs (i.e., memory, concurrency, device interaction, OS interaction). Second, since DBA

is effective on unmodified software binaries, it is widely applicable even when the driver is
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only available in binary form (e.g., proprietary drivers). Finally, when applied at instruction

granularity, DBA offers sufficient fidelity for precise detection of the most elusive types of bugs

in driver execution, and provides useful diagnostics for fixing such errors.

4.1.2 Can User-mode DBA work for Kernel-mode Drivers?

Since application and driver development share similar software correctness concerns (e.g., mem-

ory, security, concurrency), it is natural to wonder whether existing DBA techniques—that were

developed for user-mode execution—could be easily adapted for kernel-mode drivers. Such

adaptation would be greatly appealing, if all that is required are modest changes to account for

interface differences between the user-level and kernel-level system libraries (e.g., for memory

and concurrency management). The potential savings in software engineering effort and time

by reusing the many existing user-mode tools for kernel-mode drivers makes this an important

question to consider.

Our investigation revealed that the answer to this question depends on whether the relevant

correctness property (e.g., memory safety) is treated similarly by user-mode and kernel-mode

executions. The three driver correctness issues that we discuss in this chapter represent a broad

spectrum of possibilities. For example, applications and drivers manage virtual memory in sim-

ilar ways; both rely on system library functions to allocate (e.g., malloc()/kmalloc()) and

deallocate (e.g., free()/kfree()) memory. Therefore, the analyses for detecting memory

faults (e.g., unallocated memory access) in applications and drivers are somewhat similar, as dis-

cussed in Section 4.4. In contrast, concurrency management is significantly more challenging

in the kernel-space, compared to the user-space (e.g., due to interrupts). Therefore, as discussed

in Section 4.2, extending existing user-mode data race detectors (e.g., Lockset [76], Happens-

Before [31]) to detect driver races is impractical. Moreover, DMA is a privileged operation, so

the correctness issues are only relevant in the kernel-space.
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4.1.3 Why The Studied Driver Bugs are Interesting

Although studies have shown that production drivers suffer from a wide range of correctness

issues [19, 32, 65, 73], we decided to focus on data races, DMA faults, and memory faults in this

thesis for two main reasons. First, this set of bugs reflect the key findings of those studies in terms

of the major root causes of driver bugs. The studies broadly classified driver bugs, based on the

underlying driver property, into: (i) type safety (e.g., memory faults), (ii) concurrency (e.g., data

races), (iii) OS protocol (e.g., DMA faults), and (iv) device protocol issues (e.g., misconfiguring

the device). Thus, our study addresses three of the four categories of driver bugs, and would

be effective for device protocol bugs if provided the relevant (proprietary) hardware information

[75]. Second, our checking tools incorporate a variety of sophisticated techniques, such as dy-

namic information flow tracking [79], and Lockset [76], and therefore show that Guardrail can

implement similarly sophisticated dynamic analyses (e.g., taint tracking [59]). Furthermore, to

our knowledge, our third analysis represents the first use of instruction-grained dynamic analysis

for DMA faults in drivers.

4.2 Detecting Data Races in Drivers

Our first dynamic analysis tool, DRCheck, detects data races in kernel-mode drivers. A data race

condition occurs whenever there are two unserialized accesses to the same shared data with at

least one being a write. Race conditions are difficult to avoid during driver development because

of the complex concurrency setting in which drivers operate, and they are difficult to find during

pre-release stress testing because of their non-deterministic nature [55, 66, 77]. Moreover, most

drivers are developed by third parties who are unlikely to be experts in kernel synchronization

mechanisms [32, 65]. As modern OS kernels and their drivers increasingly exploit parallelism

to improve performance, avoiding race conditions becomes all the more challenging and poses a

serious threat to system reliability.
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Our focus is on detecting race conditions on driver data between kernel threads executing

driver code. While there have been many studies on user-mode race detectors [31, 76, 78, 89],

this prior work cannot be easily adapted for kernel-mode drivers. This is because the concur-

rency issues of kernel-mode driver execution are more complex than user-mode execution. In

particular, we have identified the following four sources of additional complexity that must be

addressed in kernel-mode driver execution.

1. Concurrent execution of multiple priority levels, so that a thread may race even with itself.

2. “Ad-hoc” mutual exclusion techniques that avoid lock overheads, such as disabling inter-

rupts and preemption.

3. Deferred execution using softirqs and kernel timers.

4. “State-based” synchronization invariants based on driver state.

These issues can lead to excessive false positives and false negatives using existing tools. In

this section, we discuss the issues in further detail and show how DRCheck handles them, thereby

minimizing false positives and avoiding false negatives.

One existing tool that can handle these issues is DataCollider [28]. In DataCollider, a

thread “collides” with a purposely stalled thread only if there is nothing preventing them from

colliding—the tool need not reason about the particular mechanisms used to serialize threads.

However, because such stalling is not suited for threads servicing time-critical interrupts, Dat-

aCollider provides only limited coverage of interrupt contexts. This makes DataCollider less

effective for drivers, because interrupt contexts represent significant portions of driver execu-

tions. In contrast, DRCheck covers interrupts and all other contexts; moreover, it can detect not

just realized race conditions, but also some potential race conditions that could occur in other

event interleavings.
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4.2.1 Detecting Concurrency in Driver Execution

There are two basic sources of concurrency in kernel-mode driver execution: (i) multithreading

and (ii) “kernel execution contexts” (e.g., Linux kernel threads execute in interrupt, or process

context). High performance drivers (e.g., for network and graphics devices) exploit multithread-

ing to significantly improve I/O performance, especially on CMP systems. Separately, another

degree of concurrency (e.g., reentrancy) is introduced by the prompt handling of asynchronously

occurring, high priority events (e.g, device interrupts) even on uniprocessor systems. Concurrent

accesses to shared driver data by different kernel threads (i.e., multithreading) are straightfor-

wardly detected, using standard thread identifier information. In contrast, concurrent accesses

from different kernel execution contexts are harder to detect using standard techniques because

the accesses originate from a single kernel thread. Before describing how DRCheck handles con-

currency issues involving a single thread (a.k.a. intra-thread concurrency), we provide additional

background on kernel execution contexts.
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Figure 4.1: The Linux kernel contexts, wherein a thread executes network driver code.

32



Kernel Execution Contexts

Commodity preemptive OS kernels (e.g., Linux and Windows) provide multiple execution con-

texts of varying priority levels to enable flexible scheduling of time-constrained, privileged work.

This is essential to system responsiveness because it ensures that urgent tasks, such as interrupt

handling, can be performed immediately at the highest priority level, and less critical tasks, such

as system call handling, can be deferred to a more convenient time. In particular, if a high priority

event occurs on a processor (e.g., device interrupt) and the current thread is running in a lower

priority context, then the thread is immediately interrupted from its current task and elevated to

a higher priority context to process the new event. For example, in the Linux kernel [50], threads

execute either in process context or the interrupt context—which is further divided into the top-

half and bottom-half contexts. The priorities of these Linux kernel contexts in descending order

are: (i) Top-half (ii) Bottom-half and (iii) process. In the Windows kernel, execution contexts are

called Interrupt Request Levels (IRQL), and the kernel offers are 32 IRQLs [62] for scheduling

privileged work.

Since drivers handle I/O requests with different timing constraints (e.g., requests from the

device are generally more urgent than those from user-space), kernel execution contexts are used

to efficiently schedule driver computations. For example, consider Figure 4.1, which illustrates

a time line of a Linux kernel thread executing network driver code in the different execution

contexts. Initially, the thread is servicing packet transmission requests from user-space in the

process context. It is then preempted and elevated to the bottom-half context to free up memory

on the network card by copying previously received packets into system memory. While copying

the packets, the thread is again interrupted by the network card, indicating the arrival of new

packets from the network that require the driver’s attention. The thread then switches to the top-

half context, where device interrupts are serviced. Since interrupts are disabled on a processor

executing in the top-half context, interrupt handling must complete quickly. Therefore, the driver

simply acknowledges receipt of the interrupt and defers the copying of the received packets to
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the bottom-half context, where interrupts are enabled. Eventually, after completing the higher

priority tasks, the thread switches back to the lower contexts (i.e., bottom-half, then process) to

resume the interrupted, lower priority work.

Intra-Thread Concurrency

Although multiple contexts in kernel-mode execution enable drivers to promptly respond to time

critical I/O events (or requests), this benefit unfortunately comes at the risk of introducing sub-

tle variants of common concurrency errors (e.g., a thread racing or deadlocking itself). As an

example, consider intra-thread concurrency and how it can increase the possibility of reentrant

code execution. As shown in Figure 4.1, any data shared by the different driver tasks (e.g., packet

transmission and packet reception) must be carefully protected, since these logically independent

computations occur asynchronously to one another. The thread will otherwise race itself with on

access in the different contexts, and potentially results in data corruption. Worse still, the fact

that only a single thread is involved renders standard techniques ineffective at detecting these self

data races1. Also, note that naively introducing mutual exclusion primitives (e.g., locks) to fix

this problem could make the thread deadlock itself.

Based on the observation that the execution of a kernel thread could be multiplexed by dif-

ferent kernel contexts, DRCheck addresses the intra-thread concurrency issues of drivers by

tracking the execution context of kernel threads, in addition to the identifier. Just as memory

operations of a user-mode thread are considered serialized, we consider the memory accesses of

a kernel thread in a particular context to be serialized. In other words, except when explicitly

synchronized by any of the methods discussed in this section, a kernel thread’s memory access

in one context is considered to be concurrent with its memory accesses from a different context

(as well as memory accesses by other kernel threads).

1Although signal handling introduces similar intra-thread concurrency in user-space, to our knowledge, it is

basically ignored by prior work.
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4.2.2 Detecting mutual exclusion primitives

The kernel provides a variety of synchronization primitives for mutual exclusion: (i) locking

primitives such as spinlocks and mutexes; (ii) operations that disable interrupts and preemption;

and (iii) hardware atomic instructions such as test and set. Detecting (and tracking) lock-

ing primitives, such as spinlocks and mutexes, is easy because of their modularized interface

(e.g., spin lock()/spin unlock()). Interrupt enabling/disabling can be detected (and

tracked) by observing the specific instructions (e.g., STI and CLI in x86) in the execution trace.

Hardware atomic instructions like test and set are more challenging because of the need to

determine whether the instruction is guarding a critical section. DRCheck uses pattern matching

over a small window of the trace, starting with the test and set instruction (btsl in x86) to

determine whether the sequence matches a known critical section preamble for the specific ker-

nel. If so, it checks the value returned by the test and set to determine whether the thread

succeeded in entering the critical section.

4.2.3 Handling deferred execution

Kernel threads that execute under tight deadlines (e.g., interrupt service routines) are often faced

with important tasks (e.g., copying received packets from the network card), which cannot be

completed in a timely manner. Thus, most OS kernels provide mechanisms for postponing work

until a more convenient time, such as softirqs in Linux, deferred procedure calls (DPCs)

in Windows, and software interrupts in Solaris. Kernel timers are also provided for deferring

the execution of a function until a specified time in the future. Common uses of timers include

confirming that tasks are completed on schedule and checking that a device is still functional.

Softirqs are commonly used by the interrupt handling routines of high performance

drivers to defer work for future processing in a lower priority context (e.g., the bottom-half

context). However, the way the interrupt-handling thread that defers the work synchronizes with

the polling thread, which will do the work, poses a challenge for data race analysis because these
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threads may not share any locks. Instead, the interrupt-handling thread enqueues the work and

then calls raise softirq to asynchronously activate the polling thread. The Linux softirq

infrastructure guarantees that only one polling thread (on the same processor as the interrupt-

handling thread) responds to the call and completes the deferred work. DRCheck recognizes the

raise softirq call as the serializing operation between the threads.

Kernel timers also pose some challenges to data race detection. For example, although a

delay is specified when registering a timer, only the operations that were performed by the thread

prior to timer registration are guaranteed to be serialized with execution (possibly by a different

thread) of the deferred function. This is because the thread could be preempted for a period

longer than the timer delay. Also, successive executions of the function of a timer are serialized,

even though synchronization primitives (e.g., locks) are not used in the function. On the other

hand, executions of functions with different timers are not serialized. DRCheck addresses these

issues relating to kernel timers as follows. First, we associate a virtual state with each timer.

A timer is inactive before its registration, and active until it executes, after which it becomes

inactive again. This serializes the execution of the timer to operations preceding its registration.

Next, we associate a virtual lock with each timer that is held throughout the execution of the

timer function. This serializes the successive executions of the function of the timer.

4.2.4 Tracking state-based synchronizations

Many peripheral devices—e.g., ethernet, scsi, usb, etc.—behave like finite state machines, and

drivers often use their states to protect critical sections. The set of valid operations for a device

depends on the state of the device. Therefore to prevent device failures, the kernel invokes only

driver callbacks that are valid for the current state of the device. In other words, device states

act as the invariants that guard the invocation of certain driver callbacks by the kernel. Thus, any

pair of driver callbacks never concurrently valid (i.e., they have conflicting invariants) will not

execute concurrently, and their critical sections are mutually serialized as a result. For example,
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consider the finite state machine snippet in Figure 4.2 for a Linux network device. It shows

that the pci::probe and netdev::open callbacks of a network driver are valid in different

device states, and hence cannot race with each other. Existing race detection tools are oblivious

to the invariants (or states) where driver callbacks are executed, and hence they can incorrectly

report races between callbacks with conflicting invariants. Indeed, our experimental study in

Section 4.5 shows that ignoring state-based synchronization results in a high false positive rate.

(As noted earlier, DataCollider is an exception to this false positives problem because it manifests

only actual races.)
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Figure 4.2: State transitions for a Linux PCI network device.

So far, our discussion on state-based synchronization has focused on device states that are

used by the kernel to control driver execution. Some examples include status of the PCI con-

nection, interrupt request line (IRQL), polling/interrupt handling, etc. However, it is possible

for a driver to use other state information internally to manage critical sections. Nevertheless,

our focus is on kernel-aware device states because most OS kernels organize devices into classes

(e.g., network, scsi, graphics, usb) and export a standard interface to the drivers of a given class.

It is therefore more scalable to design for the kernel interface than for individual drivers.

DRCheck incorporates kernel-aware states that control driver execution by tracking, based

on the execution trace, the set of states under which each callback is invoked. Alternatively, one

could use specifications obtained from kernel experts [27, 34], perhaps incurring less runtime

overhead. We chose our approach because it does not rely on specifications being both correct

and representative of the kernel code.

Because drivers routinely change device states, the basic approach of tracking states at driver
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entry points is not sufficient. Other regions of a callback might execute under a different set of

states. As a refinement, DRCheck also tracks device states at code points that follow device state

changes.

4.2.5 Implementation of DRCheck

DRCheck is an extension of the Lockset [76] algorithm for detecting data races in applications.

Lockset detects races in multithreaded applications by checking that shared data access is pro-

tected by a consistent locking discipline. Lockset maintains metadata for each word of shared

memory. The metadata indicates whether the location has been accessed by multiple threads, and

if it has, the set of locks consistently held by all threads accessing the location from that point

on. If there is no such common lock, Lockset reports a potential data race.

DRCheck extends Lockset for kernel-mode data race detection as follows. The first set of

changes involved adding support for kernel-mode locking primitives, which was straightfor-

ward for those (e.g., kernel spinlocks) with behavior similar to user-mode locking primitives.

However, kernel-mode locking primitives that also disable interrupts (e.g., spin lock irq())

were more challenging to support. But, based on previous Lockset proposals for supporting in-

terrupts [76], we associate per-CPU virtual locks with interrupt contexts, and these locks are

acquired by threads that use interrupt (and preemption) disabling primitives. Logical locks are

maintained for virtual and real locks, e.g., spinlocks, including bitlocks of atomic test and set

instructions. In the evaluation, we call this variant KLockset.

Second, we add the mechanisms for handling deferred execution discussed in Section 4.2.3.

Finally, we include state-based synchronization tracking as follows. For each shared data the

set of device states is also tracked, in addition to tracking the set of locks held by threads on

each access. The state variable field in the device class data structure of each driver is used to

track device states. When a shared data’s set of locks becomes empty at an access, a race is

not reported only if the current device state is disjoint with the state set of the data. Instead, the
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qla2x00_process_response_queue	
  (ha)	
  {	
  
…	
  

…	
  =	
  ha-­‐>response_ring;	
  
…	
  

}	
  
(a)	
  

qla2x00_mem_free	
  (ha)	
  {	
  
…	
  

ha-­‐>response_ring	
  =	
  NULL;	
  
…	
  

}	
  
(b)	
  

Figure 4.3: Race condition on the response ring pointer in the qla2xxx driver between

qla2x00 process response queue() (part of interrupt handling) and qla2x00 mem free() (part of

driver unloading).

location’s metadata is reset to the “exclusive” (i.e., no longer accessed by multiple threads) state.

Note that, as in all our tools (recall Section 3.3), DRCheck tracks synchronization in both the

driver and kernel-driver interface execution, while reporting races only in the driver execution.

4.2.6 Case Study: A Data Race Condition in the qla2xxx Driver

To illustrate the key advantages of DRCheck over prior work, we will use as a case study a

serious race condition found by our techniques in the Linux qla2xxx SCSI host device driver.

For the sake of comparison, we consider two alternative dynamic race detectors discussed earlier,

DataCollider [28] and KLockset.

The race condition, shown in Figure 4.3, is interesting for two reasons. First, if triggered, it

could cause the interrupt handler to unsafely compute with a null pointer, potentially leading to

hard-to-diagnose system failures. Second, it is difficult to trigger, and it remained undetected for

a long time (at least 2 years from the driver version used in our studies) until discovered during

unrelated code refactoring by developers. However, the race condition was easily detected using

our techniques on a simple execution of loading and unloading the driver.

Our criteria for selecting DataCollider and KLockset for evaluation are as follows. We se-

lected DataCollider because it is the state-of-the-art in dynamic race checking for kernel code,

and its instrumentation and synchronization-protocol-oblivious approach is complementary to
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qla2x00_free_device(...) {!
...!

  qla2x00_mem_free(ha);!
...!

/* Detach interrupts */!
  if (ha->host->irq)!
   free_irq(ha->host->irq,ha);!

...!

(a)!

IRQ_HDLR!
ACTIVE!

IRQ_HDLR!
INACTIVE!

intr_handler()!

qla2x00_mem_free()!

free_irq()!

(c)!

IRQ_HDLR!
ACTIVE!

intr_handler()!

qla2x00_mem_free()!

(b)!

Figure 4.4: (a) During driver shutdown, qla2x00 free device() calls qla2x00 mem free() to clear

the pointer fields (including response ring) that used for interrupt handling; (b) this occurs in a

device state where the interrupt handler could run concurrently; (c) the fix was to disable interrupt

handler (via free irq()) before qla2x00 mem free().

our decoupled and synchronization-analysis based approach. We selected KLockset because it

represents the extension of the state-of-the art user-mode Lockset algorithm [76] for kernel-mode

execution.

The main conclusion of this study is that driver race detection is problematic for DataCollider

because races involving interrupt contexts may be missed, and problematic for KLockset because

non-lock based synchronization mechanisms lead to false alarms.

We begin our analysis of the data race using the code snippet in Figure 4.4(a). As part of

driver unloading, qla2x00 free device() calls qla2x00 mem free() to release mem-

ory and clear the associated pointers. The affected memory regions and pointers include those

used for interrupt handling, such as ha->response ring (Figure 4.3). Since qla2x00 mem free()

is executed before free irq(), it is possible on a multiprocessor system for the interrupt han-

dler to be running on another processor concurrently with driver unloading (Figure 4.4(b)). In

such a situation, the interrupt handler could end up using a null pointer (and released memory)

in an unsafe manner leading to hard-to-diagnose system failures. However, the interleaving that

leads to this failure is hard to produce; in fact, to our knowledge, no Linux bug report of it was
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ever submitted, either because the failure never occurred, or because the resulting failures were

never properly diagnosed.

Techniques that can detect such subtle driver faults, using workloads as simple as loading

and unloading the driver, are useful for improving driver reliability. DataCollider is unlikely to

detect this race because it does not work on interrupt handling threads. Remember that to detect

a race, DataCollider must stall a thread in its window of race vulnerability as another thread ex-

ecutes to the racing access. Although KLockset detected the race, it incorrectly reported that the

race remained even after the driver was patched with the developer’s fix—reversing the order of

qla2xx00 mem free() and free irq() (Figure 4.4(c)). Our investigation showed that the

false positive was because the fix did not involve locking. In contrast, DRCheck did not generate

false positives on the patched driver because it recognized the state-based synchronization used

in the fix.

4.3 Detecting Direct Memory Access (DMA) Faults in Drivers

Direct Memory Access (DMA) is an efficient method for performing bulk I/O data transfers

between system memory and peripheral devices. The main attraction of DMA is that data trans-

fer is performed by device, while (valuable) CPU cycles are conserved. Thus, drivers for high

performance devices (e.g., gigabit network cards, and graphics cards) commonly use DMA to ef-

ficiently achieve high I/O transfer throughput. However, incorrect DMA operations are a serious

threat to system stability, and so motivated our second dynamic analysis tool named DMACheck.

DMACheck performs instruction-grained analysis of driver execution to detect incorrect DMA

operations. To motivate the kind of faults that DMACheck was designed to detect, we briefly

discuss how DMA is used by drivers. Although the discussion below is based on Linux drivers

running on x86 systems, we expect that the issues will generally apply to other platforms.
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4.3.1 DMA in Linux Drivers

The physical memory regions used for DMA are known as DMA buffers. To take advantage of

DMA for I/O data transfer, a driver must do the following.

1. Map (and pin) the DMA buffer(s) to be used as either source or destination into the kernel

and I/O address spaces.

2. Inform the device of the DMA buffer(s) (i.e., their location in the I/O address space).

3. Signal the device to begin the transfer.

4. Wait for the transfer to complete.

As with other system resources, the OS kernel controls the management of DMA buffers.

It provides functions for mapping DMA buffers into the kernel address space (i.e., for driver

access) and the I/O address space (i.e., for device access), along with the corresponding un-

mapping functions. Thus DMA buffers can be accessed via two different addresses: (i) virtual

addresses used by drivers, and (ii) device address (a.k.a. I/O bus address) used by devices. The

DMA subsystem of the Linux kernel provides a variety of functions (i.e., dma map single(),

dma map page(), dma map sg()) for mapping DMA buffers into the I/O address space, and

obtaining the corresponding bus addresses.

Before instructing the device to begin data transfer, the driver has to supply the device with

the bus addresses of the DMA buffers to be used for the transfer. This is done by updating the

appropriate set of device registers. The driver’s role in setting up DMA is completed as soon as

it signals the device to commence data transfer. The driver then waits for completion, either by

yielding the CPU or performing other important tasks. The device signals transfer completion by

interrupting the driver. On completion of an incoming transfer, the driver arranges for data to be

transferred (up the I/O protocol stack) to the requesting process. For outgoing transfers, the driver

optionally releases the source DMA buffers, or it recycles them for future use. Nevertheless, a

driver must ensure that its DMA buffers are unmapped (i.e., using dma unmap single(),
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dma unmap page(), dma unmap sg()) before it is unloaded.

Because the driver (via processor) and the device access physical memory (DMA buffers)

through different data buses, the driver is responsible for avoiding coherence problems; i.e.,

it ensures that they both work with updated data. To assist drivers in achieving this, the kernel

provides functions (e.g. dma sync single() dma sync sg()) for synchronizing the cache

and physical memory copies of DMA buffers. In particular, a driver can use these functions to

fetch DMA buffer(s) from memory into the caches before accessing incoming I/O data, and flush

DMA buffer(s) from the caches before the device accesses outgoing I/O data.

4.3.2 Incorrect Usage of DMA Buffers by Drivers

Based on the preceding description of DMA operations by drivers, one can observe a number of

ways that driver defects could cause problems for the I/O subsystem. Specifically, DMACheck is

designed to check that drivers correctly handle the following DMA buffer issues.

1. Sharing: DMA buffers are shared by the driver and device, and so the driver should avoid

racing the device. In particular, while transfer is in progress, the device should be assumed

to have exclusive access to avoid data corruption. For example, driver writes into source

DMA buffers could corrupt outgoing I/O data.

2. Management: DMA buffers are system resources and should be carefully managed by

drivers. Drivers should avoid leaking (i.e., failing to unmap) DMA buffers, or (un)mapping

them multiple times. Leaks waste the system’s DMA resources, while multiple (un)maps

could corrupt the DMA subsystem.

3. Coherence: device access to DMA buffers bypasses the caches. Thus to avoid coherence

issues DMA buffers should not share cache line with other data (including other DMA

buffers). One solution is to ensure that DMA buffer size and virtual address are cache line

width aligned.
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Based on the three issues listed above, we designed DMACheck to detect the following five

types of DMA buffer faults in drivers: (i) data races between driver and device, (ii) leaks,

(iii) repeat mapping, (iv) repeat unmapping, and (v) misaligned virtual address. In summary,

DMACheck is the first use of dynamic analysis to study DMA-related problems in drivers. More-

over, we expect that DMACheck can be extended for other faults related to DMA buffers or to

DMA in general.

4.3.3 DMACheck Design

DMACheck detects errors by monitoring how drivers operate on DMA buffers. Linux drivers

manipulate DMA buffers using both virtual and bus addresses. For example, the virtual address

is used to read/write the DMA buffer, while the bus address is used to synchronize the cache and

memory copies of a DMA buffer to avoid coherence issues (e.g., dma sync single for cpu()).

Thus, DMACheck tracks the mapping of a DMA buffer in both the virtual address space and the

I/O address space, unlike other driver checking tools (i.e., DMCheck, DRCheck), which track

only kernel address space objects.

The DMA buffer faults that the DMACheck detects can be grouped into two categories, based

on the granularity of the detection analysis. First, DMA buffer races are detected by using

instruction-grained analysis, which checks if the memory operations by the driver overlap a

DMA buffer the device is currently accessing. The second category of DMA buffer faults (e.g.,

misaligned DMA buffers) can be detected by inspecting the arguments of the DMA function

calls (e.g., dma map single()) that are made by the driver.

DMACheck detects races on DMA buffers by checking for unserialized accesses by the driver

and device to a DMA buffer. However, doing this with precision is challenging because device

access to DMA buffers cannot be (directly) observed by DMACheck. Instead, DMACheck lever-

ages its ability to observe driver execution to approximate the time intervals when a DMA buffer

could be accessed by the device. We identified two pairs of driver operations for approximating
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this interval for a given DMA buffer: (i) mapping the buffer into the I/O address space and the

corresponding unmapping, and (ii) specifying the buffer as part of a DMA transfer to the device

and the corresponding servicing of the completion interrupt.

Although, the second option (ii) might appear to be a more accurate approximation of when

the device actually does use a DMA buffer for transfer, however, the conservative first option (i)

turns out to be a more practical approach for two reasons. First, some coherence issues of DMA

are addressed when DMA buffer(s) are mapped/unmapped into/from the I/O address space. For

example, the cache lines of a source DMA buffer are flushed when it is mapped for the device

to read, and thus later driver updates may not be captured in the transfer. In fact, Linux kernel

documentation recommends that drivers should not touch DMA buffers that are accessible to the

device, without unmapping the buffer or synchronizing the cache and memory copies. Next, the

second option (ii) introduces the complexity of understanding device-specific logic of how DMA

transfers are configured by drivers–a non-scalable undertaking, considering the large number of

available devices. For these two reasons, DMACheck adopts the first option to approximate

intervals when the driver should not access a DMA buffer.

4.3.4 Other Approaches for Mitigating DMA Faults

We conclude our discussion on DMA faults in drivers by briefly describing alternative hard-

ware [1, 4] and software [86] proposals for addressing this problem.

An I/O Memory Management Unit (IOMMU) [1, 4] is an hardware device for translating

DMA bus addresses into the physical memory addresses. In the absence of an IOMMU, unsafe

DMA operations by a driver could circumvent the conventional memory protection that is en-

forced via the processor’s memory management unit. This is because the device’s accesses to

physical memory bypasses the memory management unit. The IOMMU hardware provides an

efficient mechanism for addressing this issue by restricting the physical memory regions that are

accessible to a device. By preventing the device from accessing physical memory regions that
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are not DMA buffers, IOMMUs complement DMACheck, which detects conflicting driver and

device accesses to DMA buffers. IOMMUs are increasingly available in commodity computing

systems.

Nexus-RVM [86] intercepts device register reads/writes by drivers and employs a device-

specific reference validation mechanism to ensure that the device is correctly configured for

DMA transfers. For example, Nexus-RVM can check that DMA transfer requests are properly

formatted (e.g., DMA buffers are specified before a transfer command is issued). Nexus-RVM’s

focus on correct DMA setup is complementary to DMACheck’s focus on DMA buffer races.

Moreover, Nexus-RVM’s use of device-specific logic makes Nexus-RVM more accurate, but

less general than DMACheck.

4.4 Detecting Memory Faults in Drivers

Commodity OS drivers are prone to memory safety issues (e.g., buffer overflows) because they

are typically written in unsafe languages such as C and C++. Studies have confirmed that mem-

ory safety issues are a significant source of bugs [73] and security vulnerabilities [15] in pro-

duction drivers. This has inspired a number of dynamic binary analysis tools for detecting com-

mon memory faults in drivers, including DDT [17], KAddrcheck [30], and KMemcheck [61]. In

particular, these tools check driver execution for unsafe memory accesses (e.g., to unallocated

memory) and unsafe uses of uninitialized data. Similarly, our third driver checking tool, named

DMCheck, detects the same kinds of memory bugs in drivers.

The availability of more tools for detecting memory bugs in drivers compared to data races

and DMA buffer faults is probably due to the similarities in the memory safety issues for user-

level and kernel-level codes. These similarities has significantly influenced the design of these

tools (including DMCheck) in the sense that they are directly inspired by Memcheck; which is

a state-of-the-art tool for finding memory faults in application binaries. Memcheck tracks the

allocation and initialization status of each byte of memory in an application’s address space, thus
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enabling fine-grained detection of unallocated memory access, memory leaks, and unsafe uses

of uninitialized data. Allocation status information is maintained by observing the application’s

memory management operations (e.g., malloc() & free(). This enables easy identification

of accesses to unallocated memory, and memory bytes that remain allocated after the application

exits. On the other hand, uninitialized data errors are more challenging to detect because some

uses are considered safe (e.g., copying to pad data structures), while others are unsafe (e.g.,

accessing memory through an uninitialized pointer). To distinguish between safe and unsafe

use of uninitialized data, Memcheck employs dynamic information flow tracking to propagate

initialization status, as data flows through registers and memory locations.

4.4.1 DMCheck: Detecting Memory Faults in Kernel-Mode Drivers

To adapt Memcheck for kernel-mode drivers, DMCheck addresses two issues concerning memory

fault detection in kernel-space: (i) recognizing kernel-level memory management, and (ii) deal-

ing with memory objects that are used by the driver, but (de)allocated outside the driver. The first

issue is handled by recognizing that kernel memory management functions such as kmalloc()

and kfree(), behave similarly to user-space functions such as malloc() and free().

The second issue arises because drivers need to communicate with the kernel in an efficient

manner. Sometimes this means the driver will manipulate memory objects that are allocated

by other parts of the kernel. An example can be found in how socket buffers used for storing

network packets, are handled in the network stack. The packet transmission path of a network

driver receives socket buffers from the network stack and deallocates them after transmission.

Conversely, the packet reception path allocates socket buffers, for received packets, and expects

the network stack to deallocate them. DMCheck addresses this issue by incorporating the kernel-

driver interface module into our analysis, as described in Section 3.3. Consequently, the address

range for each such memory object can be captured by the analysis.2

2As in prior work, we trust the kernel-driver interface module. For example, we assume that pointer and size
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4.5 Evaluation of Fault Detection of Driver Checking Tools

We evaluated how Guardrail’s instruction-grained monitoring improves driver bug detection by

implementing our proposed dynamic binary analysis tools in the Guardrail framework. Specif-

ically, we studied the bug detection effectiveness of the following three tools: (i) DRCheck, for

detecting data races (Section 4.2), (ii) DMACheck, for detecting DMA faults (Section 4.3), and

(iii) DMCheck, for detecting memory faults (Section 4.4). We applied these tools to detect bugs

in eight production Linux network and storage drivers. The results show that Guardrail enables

better detection of driver bugs than previous approaches.

First, we describe the experimental setup for this evaluation, including the Linux drivers that

were used in the study. Next, we examine the driver bugs that were detected by our checking tools

in details. We compare each tool against existing kernel-mode dynamic correctness checkers by

evaluating whether the bugs detected using Guardrail could be similarly detected using other

techniques.

4.5.1 Experimental Setup

Since Guardrail employs novel hardware-assisted instruction-level tracing of driver execution to

decouple and run the checking tool in a separate virtual machine from the monitored driver, we

conducted our experiments in a simulation environment so that we could model the proposed

hardware tracing support. However, we used real-world device drivers and software stack in our

experiments. Unfortunately, the simulation environment restricted our studies to drivers whose

device models were readily available in the simulation framework, as further explained below.

Simulated Hardware We used the Simics [87] full system simulator (academic package ver-

sion 4.0.63) to prototype Guardrail by modifying an x86 chip multiprocessor model with exten-

arguments passed to the driver correspond to a properly allocated memory object for the given address range. The

design can be readily extended to correctness check the kernel, but this is beyond the scope of this thesis.
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Parameter Values used

Processors Dual-Core, Intel Pentium 4, 2.6Ghz, 2GB RAM

Private L1I 16KB, 64B line, 2-way assoc, 1-cycle access lat.

Private L1D 16KB, 64B line, 2-way assoc, 1-cycle access lat.

Shared L2 2MB, 64B line, 8-way assoc, 10-cycle access lat, 4 banks

Main Memory 200-cycle access latency

Tracing 512KB log buffer

DriverVM 2 VCPU, 1GB RAM

Analysis VM 1 VCPU, 512MB RAM

Table 4.1: Configuration of the simulated Guardrail system that was used for evaluation.

sions for streaming the instruction-level trace of multithreaded driver execution to the decou-

pled checking tool. The design and implementation of Guardrail’s hardware-assisted instruction

tracing are described in more details in Chapter 6. As illustrated in Table 4.1, we simulated

Guardrail as a dual-core, 2.6 GHz, Intel Pentium 4 CMP system with 2GB memory. We con-

figured Guardrail to run two virtual machines: (i) DriverVM for the monitored driver and (ii)

AnalysisVM for the checking tool. The DriverVM is configured with two virtual CPUs and

1GB of physical memory. 512KB of the DriverVM’s physical memory is reserved for streaming

the execution trace of the driver’s execution to the checking tool (assuming that each instruc-

tion record can be compressed down to one byte [16]). On the other hand, the AnalysisVM is

configured with one virtual CPU and 512MB of physical memory.

Real-World Device Drivers Our Simics simulator package included models for network and

storage devices, but not models for other important device classes such as graphics and audio

devices. Thus, we used only Linux network and storage drivers in our evaluation. In particular,

our experiments focused on the five network drivers and three storage drivers that are presented in
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Class Driver Device

e100 I82559 100Mbps NIC

e1000 I82543gc 1Gbps NIC

Network pcnet32 AM79C973 100Mbps NIC

tg3 BCM5703C 1Gbps NIC

tulip DEC21143 100Mbps NIC

qla1280 ISP1040 SCSI disk

Storage qla2xxx ISP2200 SCSI disk

sym53c8xx SYM53C875 SCSI disk

Table 4.2: Linux drivers for evaluating bug detection effectiveness of Guardrail.

Table 4.2. The drivers ran in a 32-bit Fedora Core 6 OS flavor of the Linux 2.6.18 kernel. Driver

workloads were generated using standard I/O intensive benchmarks. Network driver workload

was generated using the Apache webserver, the Memcached in-memory key-value store, and the

Netperf network measurement utility. The Postmark filesystem benchmark was used for the

storage drivers.

Tool Data race count Confirmed/Fixed Total

qla1280 qla2xxx sym53c8xx tg3 tulip Yes No*

DRCheck 1 3 2* 2 1* 6 3 9

Det-DataCollider 0 1 0 1 0 2 0 2

Ideal-DataCollider 1 2 2* 1 0 4 2 6

Table 4.3: DRCheck found nine serious races in Linux drivers, six of which have been con-

firmed/fixed. DataCollider will detect two races, if all the racy accesses were in its sample set,

and six races if the racy accesses, also occurred in an idealized order. The number of unconfirmed

races are starred in the table.
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4.5.2 Data Races

As shown in Table 4.3, DRCheck found nine serious data races in five Linux drivers, six of

which have either been confirmed or fixed. Also, using this table, we compare DRCheck with

DataCollider based on the details in [28]. We made two assumptions in our analysis to increase

the chances that DataCollider’s sampling will detect the races. First, we assume that the racy

accesses, outside of interrupt contexts, are deterministically sampled (Det-DataCollider). Dat-

aCollider does not sample interrupt context accesses for robustness reasons. Second, for races

involving interrupt and non-interrupt contexts, we assume that the non-interrupt context access

occurred earlier (Ideal-DataCollider). With these assumptions, two races will be detected by

Det-DataCollider, and six races by Ideal-DataCollider.

However, unlike DataCollider which has no false positives, DRCheck generated a small

number of false alarms while detecting these driver races, as shown in Table 4.4 (DeferExec

is DRCheck without state-based synchronizations (Section 4.2.4)). Although DDT [46] detects

data races, it was not described in sufficient details to allow comparisons in this context.

qla1280 qla2xxx sym53c8xx tg3 tulip Total

KLockset 1 36 13 35 26 111

DeferExec 1 13 13 22 18 67

DRCheck 0 0 6 4 1 11

Table 4.4: False positives of our race detection techniques.

4.5.3 DMA Faults

The different DMA buffer faults found by DMACheck in six drivers are summarized in Table 4.5.

Races on DMA buffers, which are the most serious of these bugs, affected only the tulip net-

work driver. DMACheck found seven unique driver writes (i.e., static instruction address) that
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Fault Type Count Drivers

Data race 7 tulip (7)

Leak 4 sym53c8xx (4)

Repeated map 2 tg3 (1), tulip (1)

Repeated unmap 2 tulip (2)

Misaligned virtual address 10 e100 (1), e1000 (1), pcnet32 (3), tg3 (2), tulip (3)

Table 4.5: Summary of DMA buffer faults detected by DMACheck in Linux drivers. The number

of fault instances found in each driver is given in parenthesis.

could potentially corrupt I/O data that was being read by the network card. DMA buffers with

unaligned virtual addresses (assuming 32 byte cache lines) are the most common fault type—

affecting five drivers (i.e., e100, e1000, pcnet32, tg3, tulip). As discussed earlier, this bug is

a serious issue in non-coherent (i.e., non-x86) systems. And sym5c8xx was the only driver that

leaked DMA buffers (i.e., failed to unmap DMA buffers before unloading), whereas tulip and tg3

were the only drivers to map previously mapped DMA buffers, or unmap previously unmapped

DMA buffers. Although these faults reflect programmer error in managing DMA operations, and

should be avoided, we did not observe any resulting system failures during our experiments.

4.5.4 Memory Faults

As shown in Table 4.6, DMCheck found two serious memory faults, which have been fixed. In

particular, the qla2xxx memory bug was previously unknown until reported by our tool. Based

on our report, the bug was eventually fixed in the 3.2 release of the Linux kernel six years after

the 2.6.18 version we used for our study. Because these bugs involve memory that is exclusively

used by the driver, they cannot be detected using fault isolation techniques that only check driver

interaction with the kernel [14, 33, 80, 85, 86, 90]. For example, the e1000 memory bug is an

unsafe use of uninitialized stack data, while the qla2xxx memory bug is an out-of-bounds read of
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memory-mapped device registers.

Furthermore, we use Table 4.6 to compare DMCheck against existing kernel-mode memory

fault detectors for the Windows (DDT [46]) and Linux (KAdddrcheck [30], KMemcheck [61]).

DDT and KAddrcheck track memory addressability, and therefore can only detect the out-of-

bounds bug. KMemcheck, on the other hand, tracks both memory addressability and initializa-

tion, and should therefore detect both the memory faults.

Driver Memory faults in drivers

DMCheck DDT KAddrcheck KMemcheck

e1000 1 0 0 1

qla2xxx 1 1 1 1

Total 2 1 1 2

Table 4.6: DMCheck found two memory bugs in Linux drivers that are now fixed, including the

discovery of the qla2xxx bug. While KMemcheck can find both bugs, KAddrcheck and DDT can

find only one.

4.5.5 Fault detection summary

In summary, our evaluation validated our proposal that instruction-grained dynamic analysis can

be used to improve the reliability of device drivers by detecting bugs in their execution. Our dy-

namic analysis tools detect a significant number of hard-to-find bugs in production Linux drivers

(e.g., memory faults, data races, and DMA faults) which are missed by other tools, including

a previously unknown buffer overflow in the qla2xxx storage driver. The superior bug detec-

tion quality of our proposed dynamic tools sometimes incurs a small number of false positives,

e.g., for data race detection. Also, Guardrail’s support for these tools demonstrate its value

as a general-purpose framework for implementing sophisticated correctness checking tools for

drivers, in contrast to error-specific tools such as DataCollider.
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4.6 Considerations for Deploying Guardrail

As we have demonstrated through evaluation with production Linux drivers, Guardrail not only

detects driver bugs that are missed by other dynamic techniques, but also bugs for which no other

tools currently exist. This indicates that Guardrail can improve driver debugging and testing, or

make production systems more resilient to the harmful effects of defective drivers. However, in

evaluating how to deploy Guardrail in these scenarios, it is worth considering the potential for

false negatives and false positives in our checking tools.

The underlying Lockset algorithm of DRCheck leads to false data race reports for properly

synchronized code that deviates from the expected locking discipline. This is a serious limitation

for production deployments because halting a system for a false alarm is unacceptable. Moreover,

the fact that 76%–90% of true races are actually benign [56] means that simply avoiding false

alarms (e.g., by incorporating a Happens-Before approach [89]) is insufficient. However, rather

than foregoing race detection entirely on production systems, we believe that this would be an

appropriate situation for deploying Guardrail in triage mode (Section 3.2); which automatically

classifies the alarms raised by DRCheck into harmless or harmful races. Furthermore, DRCheck

could be extended to recognize synchronization patterns and benign data sharing patterns that it

had incorrectly flagged in the past, to reduce false alarms and the need for triaging.

The dynamic nature of our techniques creates the possibility of false negatives. In other

words, our tools cannot guarantee driver correctness. Rather, they can only determine whether or

not the observed driver executions (i.e., code paths, thread interleavings, and input) are fault-free.

For production deployments, this is not a problem since the goal is to keep the system running

(i.e., availability), until there is a compelling reason to do otherwise (i.e., driver misbehaving).

In contrast, for driver debugging or testing, false negatives make it difficult to reproduce bugs

or guarantee their absence. Thus, our tools will be more effective for pre-release purposes when

combined with techniques for achieving high-coverage driver execution [18, 70].

54



4.7 Limitations of Guardrail

Although Guardrail improves driver bug detection compared to previous approaches, its effec-

tiveness is limited, however, to particular types of driver bugs. This limitation fundamentally

arises from the fact that Guardrail only observes the driver portion of the I/O protocol stack,

whereas the other portions such as the states of the application, OS, and the device are hidden.

As a result, Guardrail may miss driver bugs whose identification requires examining the execu-

tion states of the other parts of the protocol stack. An example of a such bug that could elude

Guardrail is incorrect parsing of device state by the driver during interrupt handling that leads to

erroneous servicing of device interrupts.

Because Guardrail observes when the driver accesses external state (e.g., reading device reg-

isters), it mitigates the issue of limited visibility by exploiting such accesses to approximate

otherwise hidden state (e.g., device configuration). However, this approach suffers from relying

on the driver to correctly probe relevant external state. Thus, reliable access to the execution state

of other parts of the protocol stack [75] during driver execution will greatly improve Guardrail.

4.8 Summary

Inspired by the success of instruction-grain dynamic analyses in improving the reliability of

user-space software, this chapter shows that similarly sophisticated dynamic analyses yield sim-

ilar reliability improvements for kernel-mode drivers. We presented dynamic analysis tools for

detecting memory faults (DMCheck), data races (DRCheck), and DMA faults (DMACheck) in

Linux kernel drivers. These tools cover a significant portion of the major classes of correctness

issues that plague modern drivers. Our evaluations showed that our proposed tools effectively

detected driver bugs that are typically missed by existing techniques; suggesting that instruction-

grain dynamic analysis could enable the detection of more faults during driver development and

the mitigation of more driver faults in production settings. As discussed in Chapter 6, these
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driver reliability improvements can be efficiently realized by using Guardrail to decouple dy-

namic analysis from the monitored driver execution.
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Chapter 5

Interposing on I/O Operations of Drivers

A key feature of Guardrail is that it enables powerful correctness checking, such as those de-

scribed in the previous chapter, to be applied on driver execution in a decoupled fashion to avoid

the high performance overheads that are typically incurred by heavyweight analyses. Although,

decoupling improves runtime checking performance, it introduces the risk of the system being

corrupted by faults in the driver’s execution that are yet to be detected by the lagging checker.

Guardrail contains such faults by interposing on the driver’s interaction with the device (i.e. I/O

operations) to prevent the side-effects of the unchecked and potentially faulty driver execution

from affecting the device and I/O operations.

Guardrail employs commodity virtualization techniques to realize interposition that is trans-

parent (works for arbitrary combinations of driver binaries and I/O devices), trustworthy (re-

quires only modest increase of the trusted computing base), and flexible (compatible with de-

coupled correctness checking). Despite its use of virtualization, Guardrail is designed to protect

physical devices, rather than virtual devices that are often used in virtualized environments.

In this chapter, we present the design and implementation of Guardrail’s I/O interposition

component. We describe how this component is combined with a decoupled runtime checker for

online protection of persistent I/O state from driver bugs. Finally, we evaluate the impact of I/O

interpositioning on the performance of common audio, video, storage and network benchmarks.
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5.1 Background

Before describing Guardrail’s I/O interposition technique, we briefly review the general use of

interposition for mitigating driver bugs, and the specific use of interposition for safeguarding I/O

operations.

5.1.1 Interpositioning on Driver Interfaces

Interposing on the interactions between a driver and the rest of the system is a popular tech-

nique for mitigating driver faults. This is because faults propagate outside the driver’s boundary

through interactions that have external side effects (e.g., writing kernel state, configuring the

device, etc.). In particular, an interposition layer gives a fault mitigation system the ability to

mediate each attempt by the driver to interact with the outside environment. Thus, if the driver

is found to be executing in a faulty manner at this point, then the interaction can be blocked to

prevent the corruption of trusted system components (e.g., OS kernel and I/O devices).

5.1.2 I/O Interposition in Nexus-RVM

As discussed earlier in Section 1.3, Nexus-RVM is the only prior technique that protects both

devices and the OS kernel from driver faults [86]; other proposals focused solely on protecting

the OS kernel. Thus, interposing on the device interface of Nexus-RVM drivers is the only

comparable proposal to Guardrail.

Nexus-RVM protects the OS by moving drivers out of the kernel space into user space, and it

protects the device by using a reference validation mechanism (RVM) [5] to mediate the device

interactions of the driver. The RVM consists of device-specific reference monitors, which run in

the kernel (as part of the trusted computing base (TCB)), to ensure that a driver interacts with the

device in a manner that conforms to a device safety specification (DSS). In particular the RVM

prevents unsafe driver actions such as exploiting DMA for illegal memory accesses, priority
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escalation, processor starvation, and device-specific attacks. To ensure that the RVM mediates all

device interactions, drivers access device registers through system calls which invoke the RVM

with the relevant parameters for validation. Nexus-RVM’s I/O interposition approach differs

from Guardrail in the following two ways.

First, interposition in Nexus-RVM is not transparent to drivers; device register accesses must

be identified in driver code and modified to use system calls. In contrast, the use of virtualiza-

tion by Guardrail makes the interposition of device register accesses completely transparent to

drivers. Therefore, while Guardrail can be readily applied to binary drivers, Nexus-RVM re-

quires availability of driver sources, and it imposes additional burden on the developer to modify

the driver sources.

Second, interposition and correctness checking (via reference monitors) are coupled in Nexus-

RVM, whereas both concerns are decoupled by Guardrail. This design choice impacts trustwor-

thiness of fault mitigation because while interpositioning is generally straightforward conceptu-

ally, correctness checking on the other hand can be arbitrarily complex depending on the correct-

ness properties of interest (e.g., concurrency management, conformance to the device protocol,

etc.). In other words, while Guardrail exploits decoupling to move correctness checking out of

the TCB into user space, the non-trivial RVM mechanism of Nexus-RVM remains part of the

TCB, raising trustworthiness concerns.

5.2 I/O Interposition in Guardrail

Since devices are controlled by reading/writing device registers, Guardrail’s interposition layer

prevents driver errors from propagating into the device by: (i) intercepting all1 device register

accesses, (ii) coordinating with a decoupled correctness checker to determine the safety of the

1Some performance improvements could be obtained by not intercepting I/O operations that do not affect

externally-visible state, such as side-effect free reads, but such optimizations would require scrutiny of the oper-

ations and were not pursued in this work.
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accesses (and the driver’s execution up till that point), and (iii) ensuring their timely eventual

completion as soon as they are deemed safe. Figure 5.1 depicts how the interposition layer

leverages virtualization to transparently mediate a device register access that originates from a

driver. The actions of the interposition layer are discussed in more details below.
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Figure 5.1: Transparent mediation of device register access.

5.2.1 Intercepting device register access

As described earlier, device registers are mapped into the I/O address spaces (I/O ports, MMIO,

and PCI-config), and so the interposition layer must identify and intercept memory accesses

from the driver’s VM (DriverVM) that are destined for those address spaces. One approach

is to identify the driver instructions (e.g., using dynamic binary analysis) that access device

registers [2]. Although, I/O port accesses are easy to identify with this approach, since they are

performed using special instructions, accesses to MMIO and PCI-config locations are difficult to

distinguish from regular memory accesses because they are performed using regular load/store

instructions.

Instead, Guardrail takes the alternative approach of making the I/O address spaces privileged

and thus inaccessible to the DriverVM. Thus, any attempt by the driver to access a device register

will fault into the virtual machine monitor (VMM), where it is handled by the interposition layer.
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This is a more appealing approach because I/O address spaces are easier to identify compared

to the load/store instructions that access them. Moreover, in virtualized x86 environments the

I/O port address space is normally regarded as privileged and thus accesses to this space from

a guest VM will fault. Because load/store instructions that target the other I/O address spaces

are subject to the normal memory management unit (MMU) translation mechanisms, we can

intercept them by configuring the DriverVM page tables so that such accesses fault to the VMM.

The faulting address can be used to distinguish the page faults resulting caused by interposition

from normal MMU page faults. Note that interposition only affects communication originating

from the DriverVM; interrupts to the DriverVM may be delivered normally.

5.2.2 Coordinating with decoupled correctness checking

To limit the performance penalty of I/O interposition, intercepted device accesses should be

verified and re-issued as soon as possible. If correctness checking is coupled with I/O interposi-

tion [86], this can be relatively straightforward; however, in our decoupled checking approach,

additional coordination is required between the interposition and checking components. After

intercepting a device register access, the interposition layer requests approval from the checker

to complete the access. The request includes details of the faulting instruction (e.g., thread id,

faulting address). The device access will be approved if the checker verifies that the driver’s ex-

ecution is fault-free up to that point. Otherwise, if the access is disapproved because of a driver

bug, the interposition layer can initiate recovery using appropriate techniques [14, 48, 81].

Because the checker’s response will typically incur some latency, there are a number of op-

tions available to the interposition layer regarding how it waits for the response. In addressing

this issue we carefully considered the following two options because of their transparency to the

thread scheduling policies of the guest OS. The interposition layer could either stall the faulting

virtual CPU(vCPU), or it could stall just the faulting thread in the guest VM.

The vCPU can be stalled either by descheduling it, or by holding the request in the VMM. To
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maintain the responsiveness of the guest OS, if interrupts are generated during this period, they

should be delivered to the vCPU at the point just before the faulting instruction.2 Furthermore,

the interposition layer must promptly reschedule the vCPU once the device access is approved if

it was descheduled before expiration of its time quantum.

For development expediency, we selected the alternative option of stalling the guest OS

thread: the interposition layer simply returns control to the faulting instruction. In other words,

a guest OS thread that accesses a device register will repeatedly trap into the interposition layer

until either the checker verifies the safety of the access, or the thread is naturally preempted

by the guest OS. Although, repeatedly trapping into the VMM wastes physical CPU cycles, we

however expect that the correctness checker will optimized to respond quickly to minimize the

waste. Moreover, this approach avoids the complexity of managing vCPU scheduling.

5.2.3 Completing device register access

After the checking tool has verified that the intercepted device register access is safe to perform,

there are two ways of issuing the operation to the device: (i) retry the faulting instruction after

temporarily making the device register available to the guest OS [25], and (ii) emulate the faulting

instruction in the VMM.

Although the first option offers better performance by avoiding emulation overheads it is

extremely tricky to implement correctly without breaking bug containment guarantees. This is

because commodity operating systems run in a single address space that is shared by concurrently

executing kernel threads. Therefore, the interposition layer must ensure that the device register is

only accessed by the verified operation in the intended thread, at an appropriate time, and during

this window of availability. However, since memory is managed at page granularity it means

other device registers in the same page are simultaneously accessible to the guest OS. Therefore,

2We assume that the faulting instruction will eventually be re-executed, and the matching approval from the

checker can then be applied. The VMM may need to monitor the guest to ensure it doesn’t make an adjustment to

prevent such re-execution (e.g., re-writing the stack). Such adjustments were not encountered in our experiments.
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the interposition layer must also prevent access to the other device registers in the same page.

Consequently, in our current prototype we have chosen the emulation option to avoid poten-

tial containment errors, especially in symmetric multiprocessing (SMP) environments. Although

this option introduces the additional overheads of emulation, it is however relatively easier to

implement correctly. This approach mirrors the trap-and-emulate handling of privileged oper-

ations in traditional virtualization, and simplifies the incorporation of I/O interpositioning into

commodity VMMs.

5.3 Implementation of I/O Interposition

Now that we have presented a high-level description of how Guardrail interposes on the I/O op-

erations of drivers, we now describe how those ideas were implemented in our current Guardrail

prototype. We used commodity virtualization—specifically Xen [10]—to implement Guardrail’s

I/O interposition functionality. The simplicity of our design enabled a lightweight implementa-

tion, which required extending the Xen VMM by about 500 lines of C code. Our design does not

rely on any Xen-specific features, and could therefore be implemented using other commodity

VMMs (e.g., KVM [44]). In the following discussion, we first present some background on Xen

before describing the key implementation issues that we addressed in our current prototype.

5.3.1 Xen Background

Xen is a bare metal virtual machine monitor for x86 and ARM processor based systems running

commodity guest operating systems like Linux and Microsoft Windows. Guest VMs are known

as domains in Xen terminology. Xen designates one of the domains as privileged, and delegates

to it the responsibility of managing the unprivileged domains and physical devices in the system.

This design choice helps to reduce the complexity of the VMM3.

3In Xen terminology, the privileged domain is called dom0, while an unprivileged domain is called domU.
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Xen offers two virtualization modes: (i) paravirtualization (a.k.a Xen-PV) and (ii) hardware-

assisted full virtualization (a.k.a Xen-HVM). Xen-PV requires guest OS modifications—replacing

privileged operations (e.g., page table updates) with hypercalls to the VMM—to simplify x86

virtualization and reduce virtualization overheads. In contrast, Xen-HVM leverages virtualiza-

tion support provided by recent commodity hardware [3, 83] to efficiently run unmodified guest

operating systems. Unfortunately, at the time of completing this thesis, hardware virtualiza-

tion support for Xen-HVM was not readily available in x86 simulators, including the simulator

(Simics [87]) that we used to study hardware-assisted tracing of driver execution (Section 6.3).

Thus, we used Xen-PV to prototype Guardrail. Although Guardrail runs a monitored driver in an

unprivileged domain, the driver is however granted direct access to the corresponding physical

device.

5.3.2 Intercepting device register access

Guardrail intercepts the I/O port accesses originating from drivers in a guest VM by exploiting

the fact that Xen makes the I/O port space inaccessible to both privileged and unprivileged guests

VMs. By default, I/O port accesses by guest VMs in Xen trap into the VMM layer. On the other

hand, with direct device assignment MMIO and PCI-config are normally accessible to guest

VMs, and so we made them inaccessible as described below.

The normal way that a guest VM gains access to an I/O memory region is by mapping the

region into its virtual address space. This process involves creating virtual address translations

for the I/O memory region in the guest’s page tables. However, since page tables in virtualized

systems are (ultimately) managed by the VMM, Guardrail is able to intercept requests from the

guest operating system to create virtual address translations. At that point, Guardrail marks the

corresponding page table entry (PTE) not-present to ensure that a page fault is triggered by the

MMU on references through the affected virtual addresses. In addition, Guardrail keeps track of

interposed virtual addresses by specially marking a currently unused bit in the PTE to distinguish
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page faults caused by interposition from normal page faults. Thus, accesses to device registers

by guest VMs trap into the VMM layer for appropriate handling by Guardrail.

5.3.3 Validating device register access

The interposition layer requests validation of the intercepted I/O operation from a decoupled

correctness checking tool. This validation step involves verifying that the driver’s execution is

fault-free up till and including the intercepted operation. To facilitate this, Guardrail streams an

instruction-grain execution trace of the monitored driver to the checking tool.

As described in more details in Section 6.3, Guardrail’s tracing technique involves extending

commodity processors with log producer/consumer components. The producer populates the

log with the committed instructions of the monitored driver, while the consumer extracts the log

entries for analysis. However, since the intercepted I/O operation faulted (i.e. did not commit),

an interface is provided for the interposition layer to inject the faulting instruction into the log.

A logical log is maintained for each vCPU in the monitored guest VM.

The interposition layer also tracks log production and consumption using the head and tail

indices respectively. Per standard usage, head indicates the next free slot, while tail indicates

the next log record to be consumed. The interposition layer uses this interface to efficiently co-

ordinate validation requests and responses with the checking tool. Recall that in our design the

interposition layer busy-waits for the validation request to complete. Therefore, on injecting an

I/O operation into the log, the interposition layer also records the current head index. Then, it

waits for a response by monitoring the tail index to detect when the I/O operation has been ana-

lyzed4. The checking tool communicates its disapproval of the I/O operation to the interposition

layer by setting the tail to special value. In summary, the interposition layer and the decou-

pled checker implicitly coordinate the validation of the I/O operations of a monitored using the

4Because our design does not affect preemptibility in the faulting vCPU, the head of the vCPU’s log could

change while waiting for validation if the faulting thread is preempted by another driver thread that attempts to

perform I/O.
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execution logging mechanism.

5.3.4 Emulating device register access
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Figure 5.2: Guardrail and Linux pointers that reference the same device register. Guardrail

modifies the page tables to ensure that references through the Linux pointer, fault.

As described earlier, after validation by the correctness checker the intercepted I/O operation

is completed by emulating the faulting instruction. Normally, the vCPU context at the fault point

is used for emulation in the VMM; for example, the vCPU’s program counter is used to decode

the faulting instruction. However, emulating MMIO and PCI-config access in this manner results

in the use of the guest virtual addresses (derived from the vCPU registers) that led to the original

page fault, and so the page fault will be repeated during emulation. This problem does not apply

to the emulation of I/O port accesses because virtual addresses are not involved.

Guardrail deals with this problem by creating new translations from the VMM’s virtual ad-

dress space to the MMIO or PCI-config address space. These VMM-level virtual addresses are

used to access the affected device register(s) during emulation, rather than the guest-level (i.e.

kernel) virtual addresses that would have been derived from the vCPU context. Figure 5.2 il-

lustrates a device register that is referenced by VMM-level and guest-level pointers. However,

creating (or destroying) VMM-level virtual address mappings to device registers is expensive,
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because it involves page table and TLB updates. Therefore, in order to improve performance

such mappings should ideally be persistent in the page tables (and TLB) to allow reuse. Unfor-

tunately, achieving this ideal situation is challenging for two reasons: (i) the size of the entire

MMIO address space in modern systems, and (ii) the cost of translating the guest-level virtual

address (of device registers) to VMM-level virtual address. Guardrail addresses these two chal-

lenges as follows.
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Figure 5.3: The mapping of the registers (at page granularity) of two directly assigned devices

(Device1 and Device2) into Guardrail’s address space. While each guest kernel persistently maps

the entire register space of its assigned device, Guardrail temporarily maps some of the registers

to accelerate emulation.

First, the MMIO address space of modern devices is often very large (e.g., the network and

video cards in our evaluations had 64MB and 288MB of device registers respectively). Fur-

thermore, modern computing systems are equipped with at least three I/O devices (e.g., display,

storage, and network). These two observations—coupled with the relatively small virtual address

space of the VMM (e.g., Xen occupies 64MB on x86)—demonstrate the in-feasibility of map-

ping the entire MMIO address space for every device into the VMM layer. Instead, Guardrail

reserves a relatively small region of the VMM’s virtual address space for temporarily mapping

device registers at page (e.g., 4KB) granularity when needed. The mappings are created by di-
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rectly modifying the PTEs in the VMM’s page tables to reference the relevant physical pages.

In other words, the physical pages of accessed device registers are multiplexed into the available

slots in the reserved virtual address space. This region is of configurable size and managed using

least recently used (LRU) replacement policy. For our evaluations, we reserved 512KB from

the 64MB virtual address space of the VMM (i.e. 0.7%) for this purpose. Figure 5.3 illustrates

the mapping of the registers of two directly assigned devices into the virtual address spaces of

Guardrail and two guest OS kernels. The mappings are shown in the figure at page granular-

ity, i.e. each cell represents a page of device registers. As can be observed in the figure, the

entire MMIO address space of each device (Device1, and Device2) is persistently mapped by

the respective guest OS kernels (Guest1, and Guest2). In contrast, only temporary mappings of

individual device register pages are maintained by Guardrail to emulate device register access.

Second, when a device register access is intercepted, the faulting address that is supplied by

the page fault mechanism (i.e. CR2 register) is the guest-level virtual address. Therefore, in

order to emulate the access, Guardrail must translate the guest-level virtual address to the cor-

responding Guardrail virtual address. One obvious approach, using existing MMU structures,

is to search Guardrail’s page tables for a virtual address translation that matches the device reg-

ister. Unfortunately, this incurs undesirably high overheads, even with the relatively small size

of Guardrail’s virtual address space. Instead, Guardrail uses an associative array to perform the

desired translation for each device register, i.e. from guest-level address (key) to corresponding

Guardrail virtual address (value). If the device register is not mapped into Guardrail’s virtual

address space, a new mapping is created as described earlier, and the array is updated with the

appropriate translation. The key-value pairs are maintained at page granularity, and so there are

as many pairs as needed for the reserved region in Guardrail’s virtual address space (e.g., with 4

KB virtual pages, 128 pairs are needed for 512 KB).
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Class Driver Device

Audio snd hda intel High Definition Audio (ICH7)

Network tg3 Broadcom 5754 Gigabit (1Gpbs) Ethernet controller

Storage ahci ICH7 SATA disk (200GB)

Video nvidia Quadro NVS 285

Table 5.1: Linux drivers and corresponding I/O devices.

5.4 Evaluation of I/O Interposition

We now present our evaluation of the impact of Guardrail’s interposition approach on the perfor-

mance of I/O intensive workloads. The experiments described here measure only the overheads

of intercepting and emulating I/O operations. In other words, these results reflect only part of

the overheads of using Guardrail to protect physical I/O devices from driver bugs. In particular,

the overheads of using decoupled correctness checking to validate the I/O operations of drivers

are not measured, those are reported in Section 6.5. We focused on the following four types of

I/O workloads in Linux systems: (i) audio, (ii) video, (iii) network, and (iv) storage. The Linux

drivers and corresponding devices that are used in our experiments are presented in Table 5.1.

5.4.1 Methodology

We compare the performance of I/O workloads in a Linux system with Guardrail’s I/O interpo-

sition against their performance in a non-virtualized, but otherwise similarly configured, Linux

system. We also measure the CPU and memory utilization of Guardrail’s I/O interposition. Since

we employed commodity virtualization (i.e., Xen VMM) to prototype Guardrail, we perform the

same experiments on a Linux system running on Xen to separate the overheads of I/O interposi-

tion from that of CPU and memory virtualization.

We adopt the following naming convention to report results for the three comparison points.
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Linux represents a non-virtualized system running the Linux operating system. Xen represents

running Linux as guest on Xen with directly assigned physical I/O devices (i.e., only CPU and

memory resources are virtualized). IO-Interpose represents Xen with Guardrail’s I/O interpo-

sition extensions. To mitigate spurious differences in experimental results, the same user-level

software stack, Linux kernel, and Xen VMM versions were used in the three configurations, as

appropriate. Further details of our experimental setup are presented below.

System software We implemented IO-Interpose by extending paravirtualized (PV) Xen-3.3.1

with the changes described in Section 5.3. Recall that IO-Interpose reserves a configurable num-

ber of VMM-level page table entries to generate virtual address translations for device registers.

It also maintains a direct map of the same size between these VMM-level virtual addresses and

the corresponding guest-level virtual addresses of device registers. Through experiments, we

observed that 128 page table entries was sufficient for achieving negligible miss rates. 128 page

table entries map up to 512 KB of device registers into the VMM-level virtual address space

(assuming 4KB pages in the guest). The direct map data structure consumes just 1 KB, which

is less than 1% of VMM memory. The IO-Interpose numbers that we report here were obtained

using this configuration.

Fedora Core 6 (2.6.18 Linux kernel) is used as the OS kernel in the non-virtualized envi-

ronment (Linux), and a PV version of the same kernel as the guest OS kernel in the virtualized

(Xen and IO-Interpose) environments. For convenience, the experiments in the virtualized envi-

ronments were performed in the privileged domain; unprivileged domains were not used in the

experiments. Each guest OS driver used for the experiments was a stock unmodified native driver

with direct access to the corresponding physical device.

Benchmarks We used a set of popular I/O intensive benchmarks to measure the impact of

interposition on I/O performance. We used Mplayer, an open source media player, to measure

the impact on audio and video performance. We used the Apache webserver, the Memcached
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I/O type Benchmark Version Description

Audio & Video Mplayer 1.0 Multimedia player

Apache 2.2.6 Webserver

Network Memcached 1.2.3 In-memory key value store

Netperf 2.4.0 Network performance measurement tool

Storage GNU Make 3.81 Software compilation utility

Postmark 1.5.1 Filesystem benchmark

Table 5.2: I/O intensive benchmarks.

Network client

Apache Memcached Netperf Postmark

Requests Concurrency File size Threads Req/thread Length Trx. Files File size

16K 1–64 40KB 32–256 100K 20 secs. 100K 20K 10KB–20KB

Table 5.3: Network and storage benchmark parameters.

in-memory key-value store, and Netperf to evaluate the impact on network performance. And

finally, we used the Postmark benchmark and the GNU Make utility to evaluate the impact on

storage performance. These benchmarks are briefly described in Table 5.2. The parameter set-

tings used to evaluate the network and storage benchmarks are presented in Table 5.3.

Hardware A Dell Precision 390 workstation served as the test system for our experiments.

This system was equipped with Dual-Core Intel Core 2 Duo processors running at 2.66 GHZ

and with 2GB of physical memory. The network performance studies involved client-server

experiments. The server ran in the test system, while the client workload was supplied by a non-

virtualized system. The client system was a Dell Precision T3400 workstation with Quad-Core

Intel Core 2 Extreme processors running at 3 GHz and with a 4GB physical memory. The client
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system was running 32-bit Ubuntu 10 (2.6.32 kernel) Linux OS. The client and server systems

were in the same local area network so that network latency was negligible in our results. All

other I/O experiments were conducted on the test system.

5.4.2 Audio & Video performance

We used Mplayer’s benchmarking features to measure how interposition affects the audio and

video I/O performance. We studied the following scenarios in our study: (i) movie playback

with both audio and video outputs enabled, (ii) audio output generation with disabled video out-

put, and (iii) video output generation with disabled audio output. The multimedia file used in

our experiments was a 150 seconds long movie trailer recorded in the movie industry standard

1080p24 Full HD format (i.e., 1920 x 1080p resolution and 24 frame rate). Mplayer was config-

ured to use the ALSA audio output and the X11 video output modes. The reported results are the

median of 10 runs.

Time(s) Frame Rate CPU (%)

Linux 150.51 23.94 33

Xen 150.52 23.93 35

IO-Interpose 150.52 23.91 36

Table 5.4: Impact of I/O interposition on movie playback.

The movie playback on IO-Interpose was smooth and of similar audio and video quality to

Linux and Xen. The results from this experiment are summarized in Table 5.4. As shown in

the table, the playback time and frame rate on Linux are only marginally better than on Xen and

IO-Interpose. The movie playback took 150.51 seconds on Linux and 150.52 seconds on Xen

and IO-Interpose. The achieved frame rates were 23.94 on Linux, 23.93 on Xen, and 23.91 on

IO-Interpose. We also observed that CPU utilization was slightly higher on IO-Interpose (36%)

compared to Linux (33%) and Xen (35%). Overall, these results suggest that the user experience
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of modern multimedia file playback is not noticeably degraded by I/O interposition.

Audio Output Video Output

Time(s) CPU (%) Time CPU (%)

Linux 1.22 1 47.57 50

Xen 1.28 1 47.73 50

IO-Interpose 1.27 1 47.77 51

Table 5.5: Impact of I/O interposition on audio and video output generation.

We used the Mplayer command line options for controlling output during playback to mea-

sure the time and CPU utilization of generating only the audio output (with video output disabled)

and the video output (with audio output disabled) of the movie trailer. The results are presented

in Table 5.5. As shown in the table, the audio output takes about 4% longer to generate on IO-

interpose compared to Linux, while the video output generation times were identical. We also

observed that CPU utilization was identical on all three systems for audio output generation, but

was higher in IO-Interpose for video output generation. Also, the performance on Xen was iden-

tical to IO-Interpose, which suggests that the observed overheads of IO-Interpose are mostly due

to CPU and memory virtualization.

5.4.3 Network performance

We used client/server experiments to study how I/O interposition affects network server perfor-

mance. We conducted these set of experiments using different client workloads to understand

the impact of I/O interposition under different conditions, such as when the server is lightly and

heavily loaded. For each experiment we report the median of 10 runs.

Apache We used ApacheBench, the standard benchmarking tool for the Apache webserver, to

measure how the web server’s transfer rate is affected by I/O interposition. We configured a
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Figure 5.4: Transfer rates of Apache server; normalized to network card link rate (1 Gbps).

single ApacheBench client to load the Apache server with 16, 000 requests for a 40 KB static

page while varying the number of concurrent requests. The parameter settings used for the

experiments are shown in Table 5.3.

Figure 5.4 presents, for various degrees of client concurrency, the transfer rates achieved by

the server normalized to the link rate of the server’s network card (i.e., 1 Gbps). Although the

peak transfer rate on Linux is achieved with 64 concurrent requests, we observed that the server’s

network card is practically saturated by 16 concurrent requests. At this saturation point the server

throughput is about 7% lower on IO-Interpose (and Xen) compared to Linux. We also observed

that IO-Interpose performs similarly to Xen for different concurrency levels of client requests.

Finally, we observed that IO-Interpose does not hinder the server’s ability to scale with increased

client load, since transfer rate improves with increasing concurrency of client requests.

Figure 5.5 reports the CPU utilization of the Apache server for these experiments. As can be

seen in Figure 5.5, IO-Interpose consumes noticeably more CPU cycles than Linux in general.

For example, the Linux server is consuming 35% of the CPU by the time it’s network card is

saturated (i.e., with 16 concurrent requests). In comparison, the CPU utilization of IO-Interpose

server is 58% at this saturation point. As expected, we observed that CPU utilization on Xen is

higher than Linux but lower than IO-Interpose. Moreover, we also observed Xen accounts for

more than half of the increased CPU consumption of IO-Interpose relative to Linux.
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Figure 5.5: CPU utilization of Apache server.
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Figure 5.6: Throughput of Memcached server; normalized to peak throughput on Linux.

Memcached We evaluated the impact of I/O interposition on Memcached’s throughput using

Memslap (version 1.0), the server’s standard benchmarking tool. We ran a single instance of

Memcached server on the test machine with 512 MB of physical memory reserved for object

storage. The client load was generated by configuring Memslap with the parameter settings

shown in Table 5.3. Memslap initially loads the object storage with 100K objects, and then uses

a configurable number of threads to make get requests, with each thread issuing 100K requests.

The key and value sizes were hard-coded in this Memslap distribution to be 100 and 400 bytes

respectively.

Figure 5.6 reports the server throughput for different number of client threads and normalized

to the peak Linux throughput. The peak Linux throughput was achieved with 256 client threads,
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at which point the server got saturated5. We observed that on IO-Interpose, server throughput

improves, albeit modestly, with increasing client threads. With 256 client threads, IO-Interpose

achieves 35% lower throughput compared to Linux, while Xen achieves 26% lower throughput6.

Thus, about 75% of IO-Interpose can be attributed to Xen.
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Figure 5.7: CPU utilization of Memcached server.

Figure 5.7 presents the CPU utilization of Memcached on the three server systems during

these experiments. As shown in the figure, CPU utilization is higher on IO-Interpose compared

to Linux in all cases, while CPU utilization on Xen roughly falls midway between the two. For

example, at the saturation point (i.e., 256 client threads), IO-Interpose is using 92% of the CPU,

while Linux is using 85% and Xen is using 89%.
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Figure 5.8: Netperf streaming throughput; normalized to network card link rate (1 Gbps).

5At the saturation point, Memcached was using only 50% of the network card’s link rate (1Gbps).
6Xen peak throughput, which is 21% lower than Linux, is achieved with 128 client threads.
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Netperf Netperf is a benchmark for measuring different aspects of network performance under

different transport protocols (e.g., TCP and UDP). We used it to measure how server throughput

and transaction rate are affected by I/O interposition. Netperf provides stream tests (TCP STREAM

and UDP STREAM) for measuring throughput and request/response tests (TCP RR and UDP RR)

for measuring transaction rates. In each experiment, we ran a single instance of each test from

the client for 20 seconds with various message sizes (32B–16KB) and using default values for

other parameters.

Figure 5.8 reports the observed server throughput during the experiments normalized to the

link rate of the network card. As we can see in the figure, I/O interposition (and virtualization)

had negligible impact on TCP STREAM since IO-Interpose (and Xen) achieve similar through-

put as Linux for different message sizes. In contrast, we observed I/O interposition overheads are

noticeable with UDP STREAM for messages that are smaller than 512 bytes (up to 33% relative

to Linux for 64 byte messages). UDP STREAM is CPU intensive and as depicted in Figure 5.9

doubles CPU utilization for small messages compared to larger ones. Moreover, CPU utilization

for TCP STREAM is about half that of UDP STREAM for small messages. As a result, Linux

and Xen also suffer throughput degradation for small messages with UDP STREAM,although to

a lesser degree compared to IO-Interpose.
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Figure 5.9: Netperf CPU utilization on a Linux server.

The results from the request/response experiments are presented in Figure 5.10. The figure

shows the achieved transfer rates normalized to the best Linux throughput for different sizes of
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the request. For TCP RR and UDP RR, IO-Interpose and Xen achieve similar transfer rates for

most message sizes. Thus, we can conclude that interposition (and virtualization for that matter)

have minimal impact on the request/response transfer rates.
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Figure 5.10: Netperf request/response transfer rate; normalized to peak transfer rate on Linux

5.4.4 Storage performance

We now describe our evaluation of the impact of interposition on disk storage performance using

a kernel compilation workload and the Postmark benchmark.

GNU Make The disk I/O workload for this experiment was generated by using the GNU Make

utility to compile a stock Linux 2.16.8 kernel with default configuration options. We measured

how I/O interposition affects compilation time and CPU utilization. The compiler used for com-

piling the kernel in this experiment was a stock GCC 3.4.6 compiler that was distributed with

Fedora Core 6 OS on the test system. We leveraged the parallel compilation feature (-j) of Make

to evaluate the scalability of I/O interposition on the dual-processor test system.

In Figure 5.11, we present the kernel compilation times for Linux, Xen, and IO-Interpose

with different degrees of parallelism and normalized to the best Linux result. We observed for

each system that compilation time improved with increased parallelism and that this improve-

ment peaked at 4-way parallel compilation. Some intuition for this improved performance can
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Figure 5.11: Kernel compilation time; normalized to best time on Linux.

be gleaned from Figure 5.12, which shows that Make exploits available parallel computing re-

sources. For example, CPU utilization on Linux increased from 51% for sequential compilation

to 86% for 4-way parallel compilation, while the increase was 53% to 93% for IO-Interpose.

These results show that similar to Linux and Xen, IO-Interpose enables the compilation work-

load to improve performance through increased parallelism in computing resources.
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Figure 5.12: CPU utilization of kernel compilation.

With 4-way parallelism, compilation time increased by 47% with IO-Interpose relative to

Linux. This represents a modest improvement over the 52% degradation that we observed with

sequential compilation, and suggests that IO-Interpose benefits relatively more from parallel

compilation. However, since similar overheads were observed with Xen, regardless of parallelism

degree, we suspect that Xen accounts for most of the overheads of IO-Interpose.
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Figure 5.13: Postmark transaction, read, and write rates; normalized to rates on Linux.

Postmark Postmark [43] is a single-threaded benchmark that simulates the behavior of an

Internet e-mail server. As shown in Table 5.3, we configured Postmark to perform 100K file

transaction operations (create, delete, read, write) on 20K files whose sizes ranged from 10KB

to 20KB. All other parameters were set to their default values. We report the median of 10 runs.

In Figure 5.13 we report the measured transaction, read, and write rates normalized to Linux.

The figure shows that IO-Interpose degrades the transaction rate by nine percent and the read and

write rates by 10% relative to Linux. Similar to kernel compilation, Postmark does not perform

noticeably better on Xen compared to IO-Interpose. The CPU utilization of Postmark on Linux,

Xen, and IO-Interpose were 7%, 11%, and 8% respectively.

5.4.5 I/O Interposition performance summary

We used different types of I/O intensive workloads to measure the performance impact of Guardrail’s

I/O interposition layer, and observed that the overheads were modest (at most 10%) in most cases.

In particular, we observed that the quality of audio and video playback using Mplayer is virtu-

ally unaffected by I/O interposition. Other benchmarks for which we observed similarly low

overheads include: (i) Apache, (ii) all the Netperf tests except UDP STREAM with small mes-

sages, and (iii) Postmark. Moreover, Guardrail’s I/O interposition did not limit the ability of

I/O intensive programs to leverage the available parallelism in a system to improve performance.
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On the other hand, Memcached and kernel compilation incurred significant overheads with I/O

interposition, 35% and 47% respectively.

Driver Read slowdown Write slowdown

ahci 3.7 34.47

nvidia 3.75 37.77

snd hda intel 5.66 48.98

tg3 1.79 35.48

Table 5.6: The overheads of trapping and emulating device register access.

Explaining I/O Interposition Overheads We observed that the CPU and memory virtualiza-

tion of the underlying Xen VMM accounted for a significant portion of our Guardrail prototype

overheads: about 75% of Memcached overheads and basically the entire compilation overheads.

We further observed that impact of I/O interposition on a workload’s performance depends on

the rate of device register access and on the workload’s CPU utilization in the non-virtualized

system.

Frequent device register accesses reduce Guardrail performance because such accesses are

handled through expensive trap and emulation operations. Table 5.6 reports the average slow-

downs of device register accesses when they are trapped and emulated by Guardrail. As can be

seen in Table 5.6, device register reads are 1.79X to 5.66X slower, while device register writes are

34.47X to 48.98X slower. The overhead of interposing on device register accesses is exacerbated

when the CPU utilization of the workload is high (over 50%) in the non-virtualized environment.

This is because there are fewer idle CPU cycles that can be used to perform the required traps

and emulations without degrading overall performance.

The rates of device register reads and writes performed by drivers for different benchmarks

are shown in Figure 5.14. The reported numbers are from the best performing IO-Interpose

81



5.E+01	
  

4.E+02	
  
9.E+02	
  

2.E+02	
  

1.E+05	
   2.E+05	
   1.E+05	
   1.E+05	
  
5.E+04	
   5.E+04	
  

2.E+02	
  

4.E+03	
  

6.E+02	
  
1.E+02	
   9.E+01	
  

4.E+01	
   4.E+01	
   4.E+01	
   5.E+01	
   4.E+01	
  

1.E+01	
  

1.E+02	
  

1.E+03	
  

1.E+04	
  

1.E+05	
  

1.E+06	
  

M
PL
AY

ER
	
  

M
PL
AY

ER
	
  

PO
ST
M
AR

K	
  

KE
RN

EL
-­‐C
O
M
PI
LE
	
  

AP
AC

HE
	
  

M
EM

CA
CH

ED
	
  

TC
P_

ST
RE

AM
	
  

U
DP

_S
TR

EA
M
	
  

TC
P_

RR
	
  

U
DP

_R
R	
  

SND_HDA	
   NVIDIA	
   AHCI	
   TG3	
  

Read	
   Write	
  

De
vi
ce
	
  re

gi
st
er
	
  a
cc
es
s	
  r
at
e	
  
(p
er
	
  se

c)
	
  

Figure 5.14: Rate of device register accesses by device drivers for different I/O workloads.

configuration for each benchmark (e.g., Memcached with 256 client threads). Figure 5.14 shows

that Memcached generates the highest rate of device register accesses, especially writes (about

184K writes per second). This high rate of device register writes and the high CPU utilization

of Memcached (i.e., 85% on a Linux server with 256 client threads) explain the relatively high

overheads of the workload on IO-Interpose. In contrast, Apache and the Netperf streaming

workloads which generate comparably frequent device register writes experience relatively lower

overheads on IO-Interpose because of their low CPU utilization in Linux. Apache performs

148K device register writes per second and consumes 35% of the CPU, while Netperf streaming

performs about 106K device register writes and consumes 20% of the CPU. Thus, I/O workloads

that exhibit a combination of frequent device register accesses and high CPU utilization in the

non-virtualized environment are prone to high overheads on IO-Interpose. In contrast, workloads

that infrequently access device registers (e.g., storage and multimedia workloads) or that incur

low CPU utilization (e.g., Apache server) should have good performance on IO-Interpose.
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5.5 Summary

Interposing on the I/O operations of kernel-mode drivers is an effective technique for protecting

persistent I/O state from driver bugs. This chapter described how we used commodity virtualiza-

tion technology to design and implement a transparent and trustworthy I/O interposition layer

in Guardrail. Guardrail’s I/O interposition is designed to flexibly coordinate with decoupled cor-

rectness checking of driver execution to mitigate driver bugs on-the-fly. We used I/O intensive

benchmarks to show that the performance of common I/O workloads (audio, video, network, and

storage) is modestly impacted by interposition in most cases. We observed that the exceptional

cases of high performance overheads (e.g. Memcached) were due to I/O workloads that result in

frequent device register accesses and have high CPU utilization in the non-virtualized environ-

ment. Fortunately, our evaluation showed that this behavior is not exhibited by most popular I/O

workloads, therefore Guardrail’s I/O interposition will typically offer good performance.
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Chapter 6

Mitigating Driver Bugs through Decoupled

Dynamic Analysis

A key advantage of Guardrail over binary instrumentation is that it reduces the overhead of fine-

grained runtime detection of driver bugs by decoupling correctness checking from driver execu-

tion. This chapter presents the design, implementation and evaluation of Guardrail’s decoupling

of dynamic analysis of drivers. We evaluate the performance implications of using Guardrail for

the online protection of persistent I/O state from corruption by defective drivers.

Guardrail exploits hardware extensions to efficiently stream the execution trace of a driver to

the decoupled checking tool. Since driver execution occurs intermittently, Guardrail leverages

commodity interrupt mechanisms for optimal scheduling of the checking tool to ensure efficient

monitoring without wasting computing resources (e.g., CPU cycles). For evaluation purposes, we

prototyped Guardrail using a simulated x86 chip multiprocessor (CMP) system that we extended

with the proposed hardware tracing components. Our evaluation using production Linux network

and storage drivers showed that Guardrail’s decoupling does not introduce additional overheads

besides that of the analysis. Furthermore, we observed that Guardrail safeguards the integrity

of network and storage I/O operations from corruption by memory faults, data races and DMA

faults in drivers with minimal overheads on common I/O-intensive workloads in most cases.
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6.1 Decoupled Program Monitoring

The growing popularity of CMP systems, with ever increasing processor count, has made de-

coupling a promising technique for accelerating online correctness checking of programs. Tra-

ditional program monitoring involved (binary/source) instrumentation of untrusted code [13, 51,

58] such that monitored and monitoring codes alternatively execute in the same thread context

(a.k.a. coupled dynamic analysis). A key benefit of coupled dynamic analysis is that faulty

instructions can be identified before they execute, which makes it easier to contain any harmful

side-effects. However, coupled dynamic analysis leads to the multiplexing of processor resources

(e.g., cycles, registers, caches, etc.) by the monitoring and monitored execution, which results

in (sometimes significant) degradation of monitored program performance. The amount of slow-

down experienced by the monitored program depends on the granularity and sophistication of the

analysis, e.g. instruction-grained dynamic analysis typically incurs orders of magnitude program

slowdown. In contrast, a decoupled approach allows both program and analysis to run simul-

taneously using separate processing resources (e.g., CPUs, registers, caches etc.), thus reducing

monitoring overhead [20, 23, 60, 82]. Specifically, decoupling removes analysis computation

from the monitored program’s execution paths, which leads to significant reductions in program

slowdown, especially for heavyweight analysis like data race detection.

However, the performance benefit of decoupling comes at the cost of increased complexity

for the following program monitoring issues: (i) timeliness of fault detection, (ii) observing the

monitored execution, and (iii) scheduling the execution of analysis code. We examine these

issues in further details below.

Delayed Fault Detection. A fundamental complexity of decoupled monitoring arises from the

delay between when an instruction in the monitored program (e.g., a memory access instruction)

executes, and when it is checked for errors by the checking tool. As a result, faults in the moni-

tored execution are detected after they occur. For heavyweight analysis tools such delays could
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run into thousands of cycles because these tools execute many analysis instructions per monitored

program instruction. During this window of vulnerability, the monitored program continues to

execute in a buggy state with the potential of causing irreparable damage. Therefore, decoupling

increases the difficulty of containing the harmful effects of software faults, compared to coupled

analysis, where faulty instructions are identified (and squashed) before they execute.

Observing Monitored Execution. To detect specific kinds of program errors, dynamic analy-

sis needs to examine the monitored execution state at an appropriate granularity (e.g., instruction-

by-instruction). In the coupled dynamic analysis approach, analysis code executes in the same

thread context as the monitored code, and can obtain the required information (e.g., register

values) directly by reading physical registers and memory locations. Moreover, commodity in-

strumentation frameworks like DynamoRio [13], Pin [51], and Valgrind [58], often provide this

information for the convenience of checking tools. However, since decoupling executes the mon-

itoring code in a separate process context, direct access to the monitored execution state is lost.

Rather, the standard approach is to use software [20, 60] or hardware [82] logging to stream the

monitored execution state to the checking code. Logging application execution, especially for

instruction-grained analysis, introduces the challenge of efficiently managing the bandwidth and

storage requirements of the execution trace.

Scheduling Analysis Execution. Instrumentation frameworks carefully place checking code

to ensure that monitoring overheads are incurred only for specific operations (e.g., memory ac-

cess) and in specific execution modes (e.g., user-mode). However, with decoupled monitoring

the decision of when to invoke correctness checking depends on the arrival rate of execution

events at the consumer end of the log queue. The arrival rate depends on a number of factors,

including buffering delays in the log and whether the monitored execution is CPU or I/O bound.

Nevertheless, to avoid significant slowdowns, correctness checking must be carefully scheduled

to minimize the latency of log consumption without wasting system resources. For example, if
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the log is rarely empty (e.g., a CPU-bound execution), polling the log for new events is an effi-

cient way to minimize log consumption latency. In contrast, if the log is often empty (e.g., an I/O

bound execution), polling significantly wastes CPU cycles without much performance advantage

compared to sleeping when the log is empty.

6.2 Decoupled Mitigation of Driver Bugs

The previous section discussed the performance benefits of decoupled dynamic analysis, as well

as the three challenges that it introduces to program monitoring. Since Guardrail employs decou-

pled dynamic analysis to mitigate kernel-mode driver bugs, it needs to address those challenges

in the context of kernel-mode execution. First, Guardrail must handle the inherent risks of per-

mitting privileged code, such as a driver, to continue running for a while after executing a bug.

Second, Guardrail must ensure that the decoupled checking tool can observe the execution state

of the monitored driver for correctness checking. Finally, Guardrail must decide the appropriate

points in time to execute the checking tool given the intermittent nature of driver execution. Fig-

ure 6.1 illustrates the current Guardrail prototype, and highlights the main system components

that are used to address these three challenges.

With regards to the delayed detection of driver bugs, Guardrail ensures that persistent I/O

state and the dynamic analysis tool cannot be corrupted by the harmful effects of driver bugs.

As described earlier in Chapter 5, this is achieved by transparently interposing on the I/O oper-

ations of the driver, and running the dynamic analysis tool in a separate virtual machine (a.k.a.

AnalysisVM) from the driver’s virtual machine (a.k.a. DriverVM).

Guardrail enables the decoupled analysis tool to observe the execution state of a monitored

driver—for correctness checking— by streaming a trace of the driver’s execution to the analysis

tool. To avoid the overhead of software-only tracing, our current prototype assumes hardware

assistance for tracing driver execution. The trace is consumed on-the-fly by the analysis tool,

which uses dynamic binary analysis to identify bugs in the driver’s execution.
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Figure 6.1: Guardrail prototype.

Because driver execution is typically sporadic in nature (e.g., responding to device interrupts),

the analysis tool might sometimes be idle, and waiting for driver execution to check. Guardrail

exploits standard interrupt mechanisms to avoid running the analysis tool during such idle peri-

ods, while ensuring that the execution trace is consumed with minimum latency. This objective

is realized through a kernel module called Analysis scheduler for scheduling the execution of

analysis threads in the AnalysisVM.

Since Guardrail’s I/O interposition technique was described and evaluated in considerable

detail in Chapter 5, we will not discuss it any further in this chapter. Instead, we will focus on

the other two challenges in the the rest of this chapter.

6.3 Tracing Driver Execution for High-Fidelity Bug Detection

Guardrail enables fine-grained correctness checking of multithreaded driver execution by stream-

ing a detailed trace of the driver’s execution, containing instruction-level events (e.g., memory

accesses) and shared memory dependencies, to the decoupled dynamic analysis tool. Provid-

ing this functionality requires Guardrail to do the following: (i) identify driver execution within
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Figure 6.2: LBA on a chip multiprocessor system.

kernel-mode execution for tracing, (ii) identify concurrency within driver execution, and (iii) as-

sign buffers for streaming parallel traces of driver execution. To help Guardrail efficiently meet

these requirements, we proposed hardware support for execution tracing as a set of hardware

extensions to CMP systems called Log Based Architectures (a.k.a. LBA) [16, 84].

In the rest of this section, we provide further details on hardware-assisted tracing provided by

LBA and the corresponding software support in Guardrail. Then, we described how Guardrail

satisfies the three aforementioned requirements for tracing driver execution.

6.3.1 Log Based Architectures: Hardware-Assisted Execution Tracing

Log Based Architectures (LBA) extends processor cores for efficient streaming of the execution

trace of a monitored thread, running on a producer core, to an analysis thread, running on a

consumer core [16]. An illustration of the hardware extensions that LBA proposed for CMP

systems is presented in Figure 6.2. The LBA extensions include log producer component, for

capturing instruction-level execution events of the monitored thread, and log consumer compo-

nent, for dispatching the event handling routines of the analysis. To enable flexible scheduling of

monitored and monitoring threads, as opposed to pinning the threads to specific cores, each pro-

cessor core in the system is extended with log producer and consumer components. A circular
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log buffer in the last level on-chip cache is used to stream the compressed trace to the con-

sumer core and reduce producer-consumer synchronization overhead. We further extended LBA

through Paralog [84] for efficient monitoring of multithreaded execution. Paralog introduces

an order capturing component for capturing the shared memory dependencies of the monitored

threads, and an order consuming component for ensuring that those dependencies are respected

by the checking tool. The order capturing component captures shared memory dependencies by

tracking context switch and cache coherent events.

6.3.2 Software Support for LBA

For monitoring flexibility, LBA hardware for execution tracing should be managed by software.

Examples of critical tracing related tasks that would benefit from software control include: (i) re-

serving (and protecting) physical memory for use as log buffers, (ii) enabling the log production

and consumption components when needed, and connecting them to the correct log buffers, and

(iii) optimal scheduling of monitored and monitoring threads. Since Guardrail monitors kernel-

mode drivers the guest OS kernel in the DriverVM cannot be trusted with this responsibility since

its integrity can be compromised by defective drivers. Instead, Guardrail relies on the virtualiza-

tion layer, which executes in a more privileged context, to provide the required software support.

We implemented the desired software support in our current Guardrail prototype by extending

the Xen virtual machine monitor. In particular, the virtual machine monitor reserves log buffers

from the physical memory pool of the DriverVM, and protects them using the page protection

mechanisms available in commodity processors. It also configures the logging components of

the physical CPUs appropriately when scheduling the DriverVM and AnalysisVM.

6.3.3 Identifying Driver Execution within Kernel-Mode Execution

Two important but conflicting issues in decoupled correctness checking are the precision of the

checking tool (i.e., soundness and completeness) and the storage and bandwidth costs of execu-
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tion tracing. Avoiding precision problems often requires fine-grained (instruction-level) tracing

of the monitored code, which incurs high execution tracing costs. Thus, for efficient decoupled

monitoring it is important to strike a good balance between both concerns by tracing only execu-

tion events (e.g., memory accesses, synchronization operations) that are relevant to bug detection.

For example, monitoring an application for memory access violations basically requires tracing

memory loads, stores, and (de)allocations by the application’s code—system libraries and the OS

kernel are typically trusted in such a scenario. Similarly, to detect memory access violations in

kernel-mode drivers, Guardrail traces the corresponding execution events (e.g., memory loads)

by the monitored driver’s code to the exclusion of other kernel code (and user-level codes)1.

This comprehensive yet efficient tracing approach requires identifying the execution events

of monitored code. For application monitoring this relatively easy because standard process (and

thread) identifier information can used to perform the needed identification during user-mode

execution. However, since a kernel-mode driver shares the kernel process with other modules

(e.g., other drivers) and core kernel code(s) (e.g., the thread scheduler), its instructions cannot

be distinguished from other kernel-mode instructions in this manner. Instead, Guardrail uses the

entry and exit points in a driver’s code to identify its instruction stream for tracing during kernel-

mode execution. We have implemented this in our current prototype through special registers for

recording the address region into which the monitored driver code is loaded, and by checking the

targets of control transfer operations in kernel-mode execution against this region. The potential

downside of checking each kernel-mode control transfer operation against an arbitrarily long

list of address ranges can be mitigated in practice in a couple of ways. The first is to run and

thus monitor only a few untrusted drivers in each DriverVM. Alternatively, the special registers

could be used to track the core kernel code region(s) so that any execution outside that region is

monitored.

1As described in Section 3.3, the interface between the kernel and the driver is also logged.

92



6.3.4 Detecting Concurrency in Driver Execution

As described in Section 4.2.1, there are two basic sources of concurrency in kernel drivers: (i)

multithreading, and (ii) kernel execution contexts (e.g., Linux interrupt and process contexts). To

ensure that driver bugs are efficiently detected with precision the shared memory dependencies

resulting from the concurrency in driver execution must be tracked accurately.

Guardrail leverages Paralog mechanisms to handle concurrency that is introduced by multi-

threaded execution of driver code. In particular, the order consuming component captures the

shared memory dependencies of the different kernel threads that execute driver code. Also, the

checking tools in Guardrail can rely on the order enforcing component to ensure that the execu-

tion traces of the driver are analyzed in the right order. On the other hand, the order consuming

component is ill-suited for shared memory dependencies that originate from kernel execution

contexts. This is because such dependencies may not be accompanied by context switch or cache

coherence events, since only one kernel thread is involved. However, since this issue appears to

only affect the precision of concurrency error checking, Guardrail does not explicitly handle this

problem, but rather it expects each checking tool to address the issue as the tool deems fit (e.g.,

Section 4.2.1). However, Guardrail provides some assistance for tools that need to address this

problem by tagging the logged execution events with kernel execution context information.

6.3.5 Assigning Log Buffers for Tracing Parallel Driver Execution

Another important design consideration is the assignment of log buffers for streaming the ex-

ecution trace of the monitored driver. The design choices that we considered were to assign a

distinct buffer to each monitored kernel thread, to the monitored kernel process, or to the pro-

ducer CPU. Due to the characteristics of kernel-mode execution, we recognized the last option

to be the most practical driver monitoring solution for two reasons. First, a single log buffer for

the kernel process would make it difficult to realize parallel log generation (and consumption)

when there is an abundance of CPUs to support concurrent monitored threads and concurrent
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monitoring threads. Second, maintaining a log buffer per kernel thread is not scalable because

there could be an unbounded number of such threads, and is potentially wasteful because driver

execution accounts for only a small fraction of the lifetime of such threads.

In contrast, per-CPU log buffers is not the optimal choice for monitoring multithreaded ap-

plications. This is because multithreaded application execution involves a relatively small (at

most 100s) and fixed set of threads whose lifetimes closely match that of the application, and

which spend most of their time executing monitored (i.e., application) code. Since supporting

a few hundred log buffers in order to enjoy the improved monitoring performance of parallel

log production and consumption is conceivable, per thread buffer assignment would be the most

optimal choice.

In summary, Guardrail reserves a log buffer per virtual CPU in the DriverVM to trace par-

allel execution of the monitored driver by kernel threads. This enables Guardrail to enjoy the

performance benefits of parallel log generation and consumption, while avoiding the scalability

issues of driver execution by an unbounded number of kernel threads.

6.4 Scheduling Decoupled Dynamic Analysis

Dynamic analysis code is often structured as a collection of routines for handling various execu-

tion events (e.g., memory access, control flow transfer, etc.). Thus, the computation pattern of a

decoupled analysis thread on a consumer core is a cycle of decoding log events, and dispatching

the appropriate handler routines. LBA provides hardware for performing the decode-dispatch

sequence to avoid the overheads of a software approach. However, if the analysis thread is not

scheduled (i.e., running) at this point in time the performance benefits could be overshadowed

by context switching overhead. On the other hand, running an analysis thread when there is no

event to process in the near future is a waste of system resources (including energy). Therefore,

analysis threads should be scheduled only when new log events are or would soon be available

for processing, and be descheduled otherwise (i.e., when the log buffer is empty).

94



6.4.1 Idleness in Analysis Threads

A key consideration in scheduling decoupled analysis threads is estimating how long a log buffer

will be empty. An accurate estimate will help determine when to deschedule and later reschedule

the thread. Unfortunately, estimating future events (e.g. monitored execution behavior) accu-

rately is generally impossible. However, on closer examination, it becomes apparent that this

problem could be framed as an instance of asynchronous event notification (e.g., arrival of net-

work packets on a network card). That is, an analysis thread in the AnalysisVM should be noti-

fied when the monitored driver resumes execution in the DriverVM. Thus, standard techniques

such as polling and interrupt are promising approaches for this problem.

6.4.2 Polling

With polling, analysis threads busy-wait for new log entries to process rather than yield the CPU

when the log queue becomes empty. By avoiding thread scheduling overheads, polling ensures

that log entries are processed as soon as possible. However, this benefit results in the waste

of CPU cycles, which could be quite severe if the log is frequently empty for long periods.

Driver execution typically exhibits this behavior because drivers account for a small portion

of the execution paths of I/O-bound applications; user-mode execution is commonly the most

dominant portion followed by the higher layers of the kernel-mode portion of the I/O stack.

Thus, a purely polling approach will result in significant waste of system resources.

6.4.3 Yielding

One way to avoid such waste is for an analysis thread to yield the CPU once it’s log queue

becomes empty and wait for rescheduling when there is work to do. However, this raises the

question of when to reschedule the analysis thread to ensure a timely processing of new log

events. Note that timely rescheduling is also a relevant issue for polling since analysis threads

are eventually descheduled on expiration of their time quantum. One possible approach using
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standard OS scheduling mechanisms is for the OS scheduler to check the occupancy of the log

buffer during context switching, and reschedule the analysis thread as appropriate. Unfortunately,

even if the analysis threads are assigned the highest scheduling priority, the common context

switch intervals (i.e., time quantum) of modern operating systems are too large (i.e., tens or

hundreds of milliseconds) to guarantee timely rescheduling. In other words, a log event that

arrives in a previously empty log queue could wait an entire time quantum before being noticed

by the OS scheduler.

6.4.4 Interrupts

Guardrail signals the availability of new entries in a log queue by interrupting the AnalysisVM

and scheduling (via the Analysis scheduler) the corresponding analysis thread to execute as soon

as possible. This technique works as follows. Whenever the log producing component hardware

captures an execution event it also signals a “log event” interrupt to alert the Analysis sched-

uler of the impending arrival of a log event. This interrupt can be delivered to the AnalysisVM

through standard inter-processor interrupt (IPI) mechanisms that are available on commodity

hardware. In response, the Analysis scheduler schedules the analysis thread, and masks the “log

event” interrupt line to prevent further delivery of the interrupt. Notice that due to log buffer-

ing and transfer delays, signaling the interrupt when the log event is produced as opposed to

when it arrives at the consumer core (partially) hides the overhead of rescheduling the analy-

sis thread. A performance improvement which we have not evaluated in our current Guardrail

prototype is to reserve distinct “log event” interrupt lines for each producer core. This enables

selective (un)masking of “log event” interrupts on producer cores (e.g., while the corresponding

the analysis thread is (de)scheduled).
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6.5 Evaluation

We evaluated the impact of using Guardrail to monitor driver execution on the end-to-end per-

formance of common I/O workloads. Our evaluation focused on measuring the overheads of

using Guardrail for online protection of persistent device state from corruption by the follow-

ing correctness issues in drivers: (i) memory faults, (ii) data races, and (iii) DMA faults. We

ran Guardrail in permissive mode (Section 3.2) to ensure that the experiments ran to comple-

tion without being abruptly halted for detected driver faults. Recall that permissive Guardrail

stalls the I/O operations of the monitored driver until the decoupled analysis catches up, and then

resumes execution even when it is potentially unsafe to do so (i.e., checking tool detected a fault).

Our experiments measured the performance of an I/O intensive workload with the driver be-

ing monitored by each of the three proposed Guardrail tools—DMCheck, DRCheck, and DMACheck—

normalized to the workload’s performance without driver monitoring in a non-virtualized Linux

system (a.k.a. Linux).

6.5.1 Methodology and Experimental Setup

We employed simulation techniques to model Guardrail’s proposed hardware support for instruction-

grained tracing of multithreaded kernel-mode driver execution (Section 6.3). As described earlier

in Section 4.5.1, we used the Simics [87] full system simulator to prototype our Guardrail de-

sign. The baseline Linux system and the Guardrail system were configured for the experiments

using the simulation parameters that were earlier presented in Section 4.5.1 (Table 4.1). The non-

virtualized client system for the network experiments was configured using the same simulation

parameters. All the experiments were simulated to completion.

The simulation approach limited the our performance studies in two ways. First, we were

restricted to studying only network and storage I/O performance, because models for other in-

teresting device classes (e.g., audio, graphics, etc.) were not readily available in our simulator

version. Next, we had to scale down the workload sizes in the experiments, because the simulated
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I/O class Benchmark Version Description

Apache 2.2.6 Webserver

Network Memcached 1.2.3 In-memory key value store

Netperf 2.4.0 Network performance measurement tool

Storage Postmark 1.5.1 Filesystem benchmark

Table 6.1: The I/O intensive benchmarks used for performance evaluation.

Network client

Apache Memcached Netperf Postmark

Requests Concurrency File size Threads Req/thread Length Trx. Files File size

1K 16 40KB 16 100K 5 secs. 100K 1K 10KB–20KB

Table 6.2: Network and storage benchmark parameters.

device models were not robust enough to handle real-world input sizes. An immediate impact of

reduced input parameters was that virtualization and I/O interposition overheads were negligible,

thus the overheads observed in the experiments can be solely attributed to the checking tools.

Software Environment We made a best-effort attempt to reproduce the software environment

that we earlier used for evaluating the performance of virtualization-based I/O interposition in

commodity systems (Section 5.4), in the simulated systems for this performance study. In par-

ticular, the same software stack was used for the experiments in both the real and simulated

hardware environments. The network and storage intensive benchmarks used in the experiments

are illustrated in Table 6.1, while the input parameters, which we reduced for simulation envi-

ronment, are presented in Table 6.2.

Drivers & Devices Even with the reduced benchmark input parameters, the only simulated

device models that proved robust enough for our experiments were the Broadcom BCM5703C
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Class Driver Device model

Network tg3 BCM5703C 1Gbps NIC

Storage sym53c8xx SYM53C875 SCSI disk

Table 6.3: Linux drivers and simulated device models used for performance evaluation.
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Figure 6.3: Throughput when protecting I/O operations of BCM5703C NIC from tg3 faults;

normalized to no protection.
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Figure 6.4: Postmark performance when protecting I/O operations of SYM53C875 SCSI disk

controller from sym53c8xx faults; normalized to no protection.

network card, and the Symbios SYM53C875 SCSI disk controller. Thus, our performance mea-

surements focused on using Guardrail to monitor the corresponding drivers, tg3 network driver

and sym53c8xx SCSI driver, as shown in Table 6.3.
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6.5.2 End-to-end Performance

Using the experimental setup described above, we measured the impact on the end-to-end perfor-

mance of I/O intensive workloads of using DMCheck, DRCheck and DMACheck to prevent driver

bugs from corrupting persistent network and storage device state. For these experiments, we did

not attempt to optimize the checking tools and so the following results are in fact conservative.

The impact of safeguarding the BCM53703C network card operations, performed by the tg3

driver, on the throughput of different network intensive workloads is presented in Figure 6.3.

The figure shows the normalized throughput relative to running without protection. We ob-

served that most of the benchmarks experienced minimal throughput loss, the exception being

network streaming using TCP and UDP. In particular, for TCP and UDP streaming respectively,

DMACheck reduced throughput by 55% and 53%, DMCheck by 60% and 53%, and DRCheck

by 45% and 27%. However, the other benchmarks experienced very little performance impact.

In particular, the worst case performance for each checker was with Apache, where DMACheck

reduced throughput by 1%, DMCheck by 5%, and DRCheck by 6%.

Our investigation into the significant degradation of network streaming performance suggests

that the high rate of device register accesses by networking streaming, compared to other work-

loads, was the reason for the overheads of driver monitoring. As shown in Figure 6.5, networking

streaming generates device register accesses (especially writes) at a rate that is orders of mag-

nitude higher than other workloads. In particular, we observed over 300K device register writes

per second for network streaming compared to about 25K and 40K writes per second for Apache

and Memcached respectively. Since driver execution is stalled at device register accesses, un-

til validation by the (potentially lagging) analysis, it means driver stalling is significantly more

frequent for network streaming.

Figure 6.4 illustrates how Postmark performance is impacted by using Guardrail to protect the

SYM53C875 SCSI disk controller from sym53c8xx driver bugs. The figure reports the normalized

read, write, and transaction rates of the benchmark, relative to running without protection. We
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Figure 6.5: Rates of device register access performed by tg3 driver on BCM5703C NIC (network

benchmarks), and by sym53c8xx driver on SYM53C875 SCSI disk controller (Postmark).

observed that protecting the disk from faults incurred only modest overheads. In particular,

the worst overheads for each tool was experienced for writes, 13% for DMACheck and 9% for

DMCheck and DRCheck. This relatively good performance, compared to network streaming,

can be explained by Figure 6.5, which shows that Postmark generates about 3K device register

accesses per second, and thus leads to less frequent driver stalls.

6.5.3 Fault mitigation performance summary

Our experiments showed that online protection of the persistent state of I/O devices from subtle

driver faults (e.g., memory faults, data races) can be achieved with minimal impact on end-to-end

performance of most I/O intensive benchmarks. Network streaming was the exception to this,

and we observed up to 60% drop in throughput. However, we expect that these overheads can be

significantly reduced through existing software [60, 68, 71, 72] and hardware [16, 84] techniques

for accelerating dynamic analysis.
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6.6 Summary

Guardrail mitigates the risks posed by defective drivers to I/O devices by using sophisticated cor-

rectness checking (e.g., data race detection) to detect faults in driver execution, and virtualization-

based interposition to contain detected faults within the driver. Guardrail minimizes the over-

heads of heavyweight driver monitoring using the following two techniques. First, Guardrail

leverages multi-core systems and novel hardware support for tracing driver execution to decou-

ple and run the checking tool on a separate CPU from the monitored driver. Second, Guardrail

leverages commodity interrupt mechanisms to efficiently schedule the execution of the decou-

pled checker. Evaluations using Linux network and storage drivers showed that Guardrail can

protect persistent device state from corruption by memory faults, data races, and DMA faults

in drivers with at most 10% overhead for most I/O intensive workloads. However, Guardrail

monitoring reduces network streaming throughput by up to 60%.
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Chapter 7

Conclusions

Device drivers are critical system software that enable users to enjoy the wide variety of func-

tionality (e.g., persistent storage, network connectivity, entertainment, etc.) of peripheral I/O

devices. Unfortunately, the high bug rate of production drivers accounts for a disproportionately

high fraction of system failures, making drivers an Achilles heel of system reliability.

This thesis presented Guardrail, a framework that makes systems more resilient to defec-

tive drivers through instruction-grained correctness checking of driver execution to prevent per-

sistent device state corruption. Guardrail leverages multi-core systems and hardware-assisted

instruction-grained execution tracing to decouple correctness checking from driver execution

and reduce monitoring overhead. Also, commodity virtualization is used to transparently stall

I/O operations until validation by the (potentially lagging) decoupled checking tool.

Guardrail’s general-purpose support for sophisticated dynamic analyses was demonstrated

using three novel tools for detecting: (i) data races (i.e., DRCheck), (ii) DMA bugs (i.e., DMACheck),

and (iii) memory bugs, including unsafe uses of uninitialized data (i.e., DMCheck) in unmodi-

fied driver binaries. Experimental results showed that these tools detect bugs better than prior

work—25 bugs were detected in eight Linux network and storage drivers, including previously

unknown bugs. Also, Guardrail overheads are modest (i.e., ≤ 10%) for most I/O workloads, with

the exception of workloads that perform I/O operations at unusually high rate (i.e., ≥ 100K/s).
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A number of interesting research questions emerge from the results of this thesis. First, how

can Guardrail performance be improved, especially for workloads with frequent I/O operations?

Possible directions include: (i) leveraging acceleration techniques for decoupled dynamic analy-

sis [16, 60, 68, 71, 72, 84] for faster validation of I/O operations, (ii) leveraging software [2, 36]

and hardware [3, 83] virtualization support to reduce the overheads of interposing on I/O op-

erations. Second, can Guardrail enable high-fidelity protection of the OS kernel from driver

bugs using decoupled instruction-grained correctness checking? Also, can such protection be

achieved efficiently given that a driver interacts significantly more frequently with the OS kernel

than it does with a device? Third, can the precision of Guardrail’s bug detection and mitigation

be improved by monitoring the I/O protocol stack in a more comprehensive fashion (i.e., beyond

the driver execution)? For example, are there invariants in the higher layers of the protocol stack

or in the device state that Guardrail checking tools can exploit to avoid false positives and false

negatives? These and other related research questions are the directions that we plan to pursue

in our future study of how Guardrail can improve device driver reliability.
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