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Abstract

We consider a service provider facing a continuum of delay-sensitive strategic customers. The
service provider maximizes revenue by charging customers for the privilege of joining an M/G/1
queue and assigning them service priorities. Each customer has a valuation for the service, with
a waiting cost per unit time that is proportional to their valuation; customer types are drawn from
a continuous distribution and are unobservable to the service provider. We illustrate how to find
revenue-maximizing incentive-compatible priority pricing menus, where the firm charges higher
prices for higher queueing priority. We show that our proposed priority pricing scheme is optimal
across all incentive-compatible pricing policies whenever the customer valuation distribution is
regular. We compute the resulting price menus and priority allocations in closed form when cus-
tomer valuations are drawn from Exponential, Uniform, or Pareto distributions. We find revenues
in closed form for the special case of the M/M/1 queue, and compute revenues in the more general
setting numerically. We compare our priority pricing scheme to the best fixed pricing scheme, as
well as an idealized pricing scheme where customers always reveal their valuation. We observe the
impact of service requirement variability on revenue and prices. We also illustrate how to create
the optimal discrete priority pricing menu when the service provider is restricted to offering a finite
number of priority classes.





1 Introduction

We consider a service provider facing an arrival stream of delay-sensitive, strategic customers.
The service provider charges customers for the right to join an M/G/1 queue. Customer types are
drawn from a continuous distribution where the “type” of a customer consists of her valuation
(utility obtained from receiving service) and her delay sensitivity (waiting cost). While the arrival
rate of customers and the distribution of customer types is known, we assume that a customer’s
type is her private information, and hence, not known to the service provider.

Our goal throughout is to maximize the revenue of the service provider. We do this by creating
a menu of prices, where a customer pays a higher price to receive higher queueing priority, and
hence lower delay. Based on a customer’s delay-sensitivity, it may be better for the customer to
choose the higher price option and incur less delay, or the lower price option and incur more delay.
We assume that all customers behave strategically and selfishly, that is, they maximize their own
utility (their value for service less delay costs and payments). Customers also have the option to
forego joining the queue; if they opt not to join they pay nothing. The queue is unobservable,
so customers do not know their delay ex-ante. It is thus important that customers make choices
from the menu in a predictable fashion so that the service provider can report accurate “expected
delays” as a function of customer priority (via queueing theory). Therefore, the service provider
must ensure that the menu of prices is incentive compatible.

Motivation

The above scenario is representative of many existing applications. For example, today’s airlines
offer customers different prices, where higher prices allow the customer to board earlier or get
her bags first (e.g., the Southwest Airlines Business Select ticket class). Many amusement parks
(e.g., Disney World) offer customers a menu of prices, where customers paying a higher price for
a higher priority class can jump ahead of lower priority classes in line. The goal of the service
provider (the amusement park) is to maximize revenue. Note that while the queue length is un-
observable, paying more yields lower expected delay due to having higher priority. The service
provider would like to be able to provide customers with an expectation on what their delay will
be at each priority level. To do this, the service provider must trust that customers behave in a
predictable way when making menu selections. While delay is less of a problem in the internet
today, there is apprehension that delay will become more of an issue in the future. There is already
talk of providing differentiated services for shared databases (like orbitz.com) [34, 35, 44], as well
as allowing Internet Service Providers (ISPs) to charge customers a higher price in order to give
their packets higher priority at routers (a.k.a. DiffServ).
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Continuous priority pricing

Our specific approach is to offer a priority class for each type of customer, resulting in a contin-
uum of priorities. This approach allows for expressing the price menu as a continuous function
over the space of customer types. In order to make analysis tractable, we make the natural sim-
plifying assumption that a customer’s delay sensitivity (waiting cost per unit time), c, is directly
proportional to her valuation, v; that is, c = αv for some constant α, and so the greater a cus-
tomer’s value for service, the greater her delay sensitivity. By parametrizing customer types by
their valuation, v, each type has its own priority class offered at price p(v), where the continuous
function p(·) is the price menu. With this simplifying assumption, our approach has the benefit
of yielding the first closed-form incentive-compatible price menus in the setting with a continuum
of customers. Among all possible incentive-compatible price menus, we select the one that max-
imizes revenue. In Section 7, we provide the explicit closed forms for the revenue-maximizing
incentive-compatible price menu and resulting priority allocations in the cases where valuations
are drawn from the Exponential, Uniform, or Pareto distributions. We also present the revenue
generated by these pricing menus in closed form for the special case of M/M/1 queues; we com-
pute revenues in the M/G/1 setting numerically. Throughout, we will refer to the above policy as
Priority Pricing (PP).

Comparison with other pricing policies and service requirement variability

We compare PP to several other policies. The Fixed Pricing (FP) policy involves setting a single
(optimally chosen) fixed price; all customers opting to join the queue pay this price and are served
in first-come-first-serve order. The Full Information (FI) policy is the optimal Priority Pricing
policy in the optimistic setting where customer types are visible to the firm (i.e., customer types
are not private information). By definition, FI provides an upper bound on the revenue achievable
under PP. Over a range of distributions and customer parameters, we find that revenue obtained
from PP typically outperforms FP by 2–20%. We also prove that, when customer types are unob-
servable, PP is revenue-optimal across all incentive-compatible policies.

Finally, we consider the setting where the service provider is limited to offering a finite num-
ber of priority classes (e.g., gold, silver, and bronze priority). We call the revenue-maximizing
incentive-compatible Priority Pricing policy with n priority classes, PP(n), and we find that
even for small n, PP(n) performs nearly as well as PP. In particular, in a variety of settings, of-
fering 5 priority classes is sufficient to capture over 99% of the revenue that can be obtained by
offering a continuum of priority classes.

Organization of the paper

The remainder of this paper is organized as follows. In Section 2 reviews the relevant literature
in the area of queueing with incentives. In Section 3, we formally model the customers’ utilities
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and the service provider’s revenue maximization problem. We then proceed to characterize the
incentive-compatible price functions in Section 4. Next, in Section 5 we approach our problem
from the framework of Myerson’s revenue-optimal auctions [37]. This framework allows for the
classification of the set of distributions for which the Priority Pricing policy is revenue-optimal
among across all pricing policies where customer priorities are static once they join the queue. We
introduce the aforementioned alternate pricing schemes in Section 6. We then apply our findings
from Sections 4 and 5 to specific distributions on customer valuations, namely, the Exponential,
Uniform, and Pareto distributions in Section 7. A benefit of studying an M/G/1 model rather than
the simpler M/M/1 model is that it allows us to witness the effect of service requirement variability
on revenue and prices. In Section 8, we observe that as service requirement variability rises,
revenue falls and the highest valuation customers pay more, while the lowest valuation customers
either pay less or cease to join the queue. We also compare the performance of PP with FP and FI
in Section 8, while Section 9 examines the impact of offering only finitely many priority classes
(PP(n)).

2 Literature Review

2.1 Social welfare maximization

Most prior work in the area of queueing with incentives falls under maximizing social welfare,
rather than maximizing the service provider’s profits. Within social welfare maximization, much
of the literature is concerned with homogenous customers (i.e., customers with identical pref-
erences), as in [39, 47, 9, 16, 12]. These papers are primarily concerned with admission control,
prices, and equilibrium behavior, as models with only a single class of customers do not necessitate
priority queueing.

Other work in the area of social welfare maximization deals with heterogenous customers,
who differ in either their valuation for the service or their delay sensitivities (i.e., waiting costs).
In this setting, it is beneficial to make use of priority queues to give the best service to those
customers who need it most. Kleinrock was the first to study priority pricing, although his work
ignores customer incentives [30]. Later papers such as [33, 21, 22, 36, 19, 23] present a variety
of models to address the incentive-compatible pricing of priority. In some of the related literature,
as in the work of Kittsteiner and Moldovanu, priority is auctioned rather than sold directly using
posted prices [28, 29].

2.2 Profit maximization

Contrastingly, this paper is focused on maximizing the service provider’s profits. Once again,
some of the research in this area examines models with homogenous customers. These papers
are often concerned with observable queues, which allow customers to view the length of the
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queue before making their entry decision. The observable queueing model in [39],[16], and [12]
is also applicable to profit maximization. Although Chen and Frank give some results for multiple
classes of customers, and [31] gives a formulation generalizing Naor’s model to multiple customer
classes, these findings are also restricted to observable queues. Çil, et.al. consider a rich framework
where customers incur either a high or low holding cost for the service provider, with customer
valuations distributed continuously within each group. Their results concern the structure of the
optimal policy, but the optimal pricing policy is not obtained in closed-form. [17]. While these
papers use bounded queue lengths to control customer arrivals, [8] approaches dynamic control
from a different perspective where the service provider can adjust both the arrival and service rates.
Although the aforementioned papers do not make use of priority queueing, observable priority
queues can still be of use in the identical customer setting, as in [2] and [6].

Other work on profit maximization places greater focus on heterogenous customers in settings
with unobservable queues. Within this space, customer heterogeneity is often captured via a
finite number of different customer classes, as in [42] and [3]. Petersen and Rao assume customer
waiting times rather than deriving them from queueing theory. Afèche considers a model with two
classes of customers differing in their waiting costs and service requirements. In this work profits
are maximized through a technique known as “damaging the goods,” which amounts to strategic
idling on the part of the server.

The small remainder of the literature, like our work, features models allowing for infinitely
many customer classes. Plambeck considers customers who are either patient or impatient, where
customer valuations are continuously distributed within each group [41]. However, unlike our
work, the resulting priority price menus found in this work are not incentive-compatible, that is,
they are not robust to strategic customers. Moreover, many of the results in this paper are valid only
under heavy traffic assumptions. Abhishek, et al. consider a model where customers have one of
two valuations for service, where customer waiting costs are continuously distributed within each
group [1]. However, unlike our work, the focus of this work is not on deriving closed-form price
menus, but rather on establishing some qualitative and theoretical economic results. The lack of
focus on closed-form solutions allows the work to be more general, but at the expense of structural
results, as the complexity of waiting time functions is effectively ignored. The work of Mandjes
features customer heterogeneity in service requirements rather than in preferences [32], placing
this work even further from the model investigated in our paper.

The work closest to ours appears in two working papers due to Katta and Sethuraman [26]
and Afèche and Pavlin [4]. In both papers, customer valuations and waiting costs are distributed
continuously and are related linearly. In addition to examining continuous pricing, Katta and
Sethuraman study discrete price menus via simulation, while we use exact numerical analysis.
The Aféche and Pavlin working paper was developed simultaneously with and independently from
our work. We find the same implicit formula for the optimal incentive-compatible continuous
price function given by Aféche and Pavlin. While these papers consider the M/M/1 setting, we
consider the M/G/1 setting, allowing us to study the effect of service requirement variability. Most
importantly, the results in these papers are implicit, whereas we consider particular distributions of
customer valuations, yielding the first explicit closed-form price functions and allocations.
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2.3 Analytic tools used in queueing with incentives and other directions

Much of the above work, including this paper, leverages priority queues in order to serve customers
with greater valuations and greater delay sensitivity ahead of others. Both preemptive and non-
preemptive priority queues are analyzed in the queueing theory literature in [18, 40, 43]. Moreover,
much of the mechanism design research involving profit maximization invokes techniques from the
celebrated paper by Myerson [37]. Our connection to Myerson is described at the end of Section
5.

Comprehensive surveys of the literature at the intersection of queueing and game theory are
available in the books [24] and [45]. There is much other literature involving pricing and queueing
omitted from the discussed above. For example, there is a long stream of literature on leadtime-
dependent pricing, where the amount paid by customers depends on how soon they receive a good
(their leadtime), see for example [27, 14, 15, 25, 13]. Much of this literature is far removed from
our work, in that it does not involve incentives and strategic customers. The few papers that deal
with leadtimes with incentives [5, 7] are still considerably different in their assumptions from our
model those in the papers reviewed in Sections 2.1 and 2.2.

3 The Model

3.1 The queueing model and the customers

Consider a service provider serving customers in an unobservable M/G/1 queue. Customers arrive
with average rate λ and have i.i.d. service requirements with mean E[S] and second moment E[S2].
We assume that load ρ ≡ λE[S] < 1 in order to ensure stability.1 Each customer has a type (v, c),
where v is her valuation for the service and c is her waiting cost per unit time. Customer valuations,
v, are i.i.d. random variables drawn from a continuous distribution with support on an interval
X ⊆ [0,∞), cdf F , ccdf F̄ ≡ 1−F , and pdf f ≡ F ′. We assume that f is differentiable, and non-
vanishing on the interior of X. Moreover, c = αv for some fixed constant α ∈ (0, 1/E[S]). Hence,
waiting costs are proportional to valuations, so a customer’s type is parametrized by v alone.
Henceforth, we will use the terms valuation and type interchangeably. A customer’s type is her
private information, while a customer’s service requirement, S, is independent of the customer’s
type and is unknown to both the service provider and the customer.

Upon arriving, a customer chooses whether to join the queue. If the customer decides to join,
she must report her type v to the firm, although she need not do so truthfully; the customer may
strategically report that she has type x for any x ∈ X. The customer cannot observe the current
state of the queue when making the decision to join or when reporting her type. Upon entering, a

1In most cases, we can extend our results to allow for the case where ρ > 1 by ignoring all customers with
valuations below some lower bound (so long as these customers would not join the queue in equilibrium), and thereby
changing the support of the customer valuation distribution, so that the effective load falls under 1.
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customer will pay a price p(x), based on her reported type x, where p is a price function chosen
and made public by the service provider. Customers receive preemptive queueing priority over all
customers who report lower valuations (i.e., all customers who pay less).2 The price function p
may be viewed as a price menu corresponding to a continuum of priority classes each offered at
their own price. Assuming truth-telling behavior on the part of all other customers, a customer of
type v who reports type x will obtain a utility of

uv(x) ≡ v − αvE[T (x)]− p(x) = v(1− αE[T (x)])− p(x) (1)

for joining the queue, where E[T (x)] is the expected waiting time given reported type x, assuming
all other customers report their valuations truthfully. Customers who decide not to join the queue
obtain zero utility. We will prove that under appropriate choices of p, there exists a Bayesian Nash
equilibrium where all customers will indeed report their true valuations.

3.2 The service provider’s price function

The service provider seeks to set the price function p in order maximize its revenue, or more
precisely, the rate at which the firm earns revenue, R, given by

R(p) = λ

∫
E

p(v)f(v) dv, (2)

where E ≡ {v : uv(v) > 0} is the set of types willing to enter the system, given that all customers
report their true valuations. Note that the utility functions uv depend on p, and so the set E also
depends on p. Since customers report their types in a self-interested manner, the assumption that
customers are truth-telling is actually a constraint on the service provider’s choice of the price
function p. In particular, we require that every customer type is truth-telling whenever all other
types are truth-telling,3 that is

∀v, x ∈ X : uv(x) ≤ max{uv(v), 0}}. (3)

The constraint in (3) is called the incentive-compatibility constraint on p. This means that all
customers are best off either reporting their true type or not joining the queue at all.

In most settings, it is irrelevant whether customers who receive zero utility from joining the
queue decide to join the queue. For convenience, we assume that indifferent customers do not join
the queue. That is, E = {v : uv(v) > 0}.

2We further assume for all the policies studied in this paper that a customer’s priority may not change after they
join the queue. That is, a customer may not be preempted by a lower priority customer on the basis of how long each
customer has been in the system, how much service each customer has received, etc.

3To ensure consistent and stable system behavior, it would be sufficient to find any pricing mechanism where
each customer of type v0 would prefer to report some transformation of its type τ(v0), given all customers of any
type v were reporting τ(v). Consistent with the mechanism design literature [20], we restrict attention to incentive-
compatible direct revelation mechanisms. This is without loss of generality, as the revelation principle tells us that for
any general selling mechanism, any equilibrium of rational strategies for the service provider and the customers can
be replicated by an equivalent incentive-compatible direct-revelation mechanism [38].
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4 Characterizing incentive-compatible price functions

In order to find the revenue-maximizing incentive-compatible price function, we will characterize
the class of all incentive-compatible price functions in terms of the given parameters α, λ, E[S],
and E[S2] as well as the type distribution captured by the cdf F .

4.1 The form of incentive-compatible price functions

Before expressing the explicit structure of this class of functions, we will prove some general
results that will hold for incentive-compatible price functions in this setting. Our first observation
will be that incentive-compatible price functions are non-decreasing.

Theorem 1. If the price function p is incentive-compatible, then it is non-decreasing on E.

Proof. Proof. Assume by way of contradiction that there exists some incentive-compatible p that
is not non-decreasing on E. Then there exist v1, v2 ∈ E such that v1 < v2, but p(v1) > p(v2). Since
v1 ∈ E, we know that uv1(v1) > 0, and so it follows from the incentive-compatibility of p, that
uv1(v1) ≥ uv1(v2). However, since E[T (·)] is nonincreasing on X, as higher reported valuations
never lead to slower service (i.e., longer wait times) in expectation, we see that the assumption that
p(v1) > p(v2) yields

uv1(v1) = v1(1− αE[T (v1)])− p(v1) < v1(1− αE[T (v2)])− p(v2) = uv1(v2),

contradicting the assumption that p is incentive-compatible.

Next, we prove that nonnegative incentive-compatible price functions induce customers to join
the queue according to a threshold strategy, that is, if a customer enters, all customers with higher
valuation also enter the queue.

Theorem 2. Let p be a nonnegative incentive-compatible price function. Then if type v0 ∈ X joins
the queue, then all types v ≥ v0 such that v ∈ X will also join the queue. That is, customers will
join the queue according to a threshold strategy.

Proof. Proof. We are given that v0 ∈ E, and hence uv0(v0) > 0. It follows that 1−αE[T (v0)] > 0
because p(v0) ≥ 0. Consequently, for all v ≥ v0

0 < uv0(v0) = v0(1− α · E[T (v0)])− p(v0) ≤ v(1− α · E[T (v0)])− p(v0) ≤ uv0(v)

and by incentive-compatibility uv(v) ≥ uv(v0) > 0, so v ∈ E.

A consequence of this theorem is that customers join the queue with threshold-type entry be-
havior: there exists some threshold v∗ ≡ inf E, such that E = (v∗,∞)∩X. Hence, v∗ is the greatest
lower bound on customer types willing to join the queue. Consistent with our earlier assumption,
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customers of type v∗ will not join the queue, as prices will be set to ensure that they are indifferent.
Note that threshold entry behavior also holds wherever the price function is nonnegative on E even
if p is negative somewhere on X\E.

The next theorem allows us to restrict the feasible set of incentive-compatible price functions
in our optimization problem to those incentive-compatible price functions that are nonnegative.
We prove that it is always in the interest of the firm to charge nonnegative prices, which guarantees
that if an optimal (i.e., revenue-maximizing) incentive-compatible price function exists, then at
least one such price function is nonnegative. This enables us to only restrict attention to threshold
entry behavior.

Theorem 3. For any incentive-compatible price function p, there exists a nonnegative incentive-
compatible price function p̂ such that R(p̂) ≥ R(p). In particular, there exists a nonnegative
revenue-maximizing incentive-compatible price function.

Proof. Proof. Proof deferred to Appendix.

From this point forward it will be convenient to define nonnegative price functions on just E
(or for convenience on {v∗}∪E), rather than X. That is, the service provider can elect not to offer
any priority levels below that intended for customers of type v∗. Since customers with valuations
less than v∗ would be unwilling to join the queue with any report of their type, they would still be
unwilling to join the queue if they were given fewer choices of potential types to report.

4.2 The expected response time in the preemptive priority queue

Characterizing the structure of incentive-compatible price functions explicitly will require com-
puting the expected response time of a customer reporting type x in a preemptive priority queue.
In particular, we want to compute E[T (x)] for all x ∈ E, when entry behavior is threshold type.

The expected response time of a customer reporting type x is equal to the busy period4 started
by the preexisting work, Wx (at the time of entry) in the queue made up of only those customers
with valuations (and hence reported valuations) of at least x, in addition to the work of the entering
customer, S. That is,

E[T (x)] =
E[W≥x + S]

1− ρF̄ (x)
, (4)

where ρ = λE[S]. To compute E[W≥x + S], observe that this quantity is the same as the expected
response time of a customer in a FCFS queue made up of only those customers with valuations of
at least x, which is given by the Pollaczek-Khinchin (P-K) formula

E[W≥x + S] = E[S] +
λF̄ (x)E[S2]

2(1− ρF̄ (x))
. (5)

4A busy period started by an amount of work, W , is the length of time until a system with initial work W becomes
empty (this includes completing W work in addition to any work arriving during this process).
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Substituting (5) into (4), we find that a customer reporting type x (given that all other customers
report their types truthfully) experiences an expected response time of

E[T (x)] =
2E[S] + λF̄ (x)(E[S2]− 2E[S]2)

2(1− ρF̄ (x))2
. (6)

For any x 6∈ X\E (i.e., x ≤ v), we must have E[T (x)] = E[T (v∗)] as the customer reporting
such a type is preempted by all entering customers, who have a collective arrival rate of λF̄ (v∗).
However, in equilibrium no customer joining the queue will report a valuation x ≤ v∗.

4.3 Explicit characterization of incentive-compatible price functions

Now that we have a closed form for E[T (x)], we proceed to find the incentive-compatible price
menus in closed form. As stated in Section 4.1, we need define price functions only on E (or
{v∗} ∪ E).

Theorem 4. Let E[T (·)] be as in (6). For all v∗ ∈ X, such that αE[T (v∗)] ≤ 1,

p(x) = x(1− αE[T (x)])−
∫ x

v∗

(1− αE[T (t)]) dt

is a positive, incentive-compatible price menu on the entry set E = (v∗,∞) ∩X.

Proof. Proof. We will first show that p is positive. Observe that for all x ∈ E, E[T (x)] is decreas-
ing in x and x > v∗, so 1− αE[T (x)] > 1− αE[T (v∗)] ≥ 0. It follows that

p(x) ≥ x(1− αE[T (x)])− (x− v∗)(1− αE[T (x)]) > v∗(1− αE[T (x)]) ≥ 0

establishing that p is positive (and hence, nonnegative), and confirming that entry behavior is
threshold-type. It follows that (6) accurately gives the response time in the system for a customer
reporting type x ∈ E.

To verify incentive-compatibility, we check the first order condition:

u′v(x) =
d

dx
[v(1− αE[T (x)])− p(x)]

=
d

dx
[(v − x)(1− αE[T (x)])]− (1− αE[T (x)])

= −α(v − x)

(
d

dx
[E[T (x)]]

)
= 0,
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and since E[T (x)] is monotonic on X, we may conclude that x = v is the unique solution to
u′v(x) = 0 for x ∈ X. Checking the second order condition, we have

u′′v(x)|x=v = −α
(
d2

dx2

[
(v − x)

(
d

dx
[E[T (x)]]

)])∣∣∣∣
x=v

= − α(v − x)

(
d2

dx2
[E[T (x)]]

)∣∣∣∣
x=v

+ α
d

dx
E[T (x)]]

∣∣∣∣
x=v

= α

(
d

dx
[E[T (x)]]

)∣∣∣∣
x=v

< 0,

as α > 0 and E[T (x)] is decreasing in x on X, establishing that p is incentive-compatible.

It remains to check that under equilibrium, we have the entry set E = (v∗,∞) ∩X. Since we
have established incentive-compatibility, E = {v ∈ X : uv(v) ≥ 0}. Now observe that the utility
of a customer of type v,

uv(v) =

∫ v

v∗

(1− αE[T (t)]) dt,

is positive if and only if uv(v) is v > v∗ .

The PP policy implements the price menu p with the revenue-maximizing choice of v∗. In
particular, the optimal revenue must be given by5

R = λmax
v∗

{∫ ∞
v∗

(
v(1− αE[T (v)])−

∫ v

v∗

(1− αE[T (t)]) dt

)
f(v) dv

}
. (7)

We defer the discussion of solving this optimization problem until the next section.

5 The Myerson Auction Framework and the Optimality of Pri-
ority Pricing

In this section we provide an alternative framework for viewing the revenue-maximization prob-
lem posed in this paper. This approach is based on a generalization of Myerson’s auction design
framework. One advantage of adopting this framework is that it provides an easy way of classi-
fying those distributions on customer valuations for which Priority Pricing is revenue-maximizing
across all policies (see Theorem 5).

Myerson’s celebrated paper [37] frames the problem in terms of a mechanism with a finite
number of customers where the firm is auctioning a good, such that a customer’s outcome is the

5Note that although the upper limit of the outer integral is taken to infinity, if X is bounded, f is vanishing beyond
supX, and so the upper limit of the integral could equivalently be written as supX.
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ex ante probability that the customer receives the good (or the fraction of a fungible good to be
received). The sum of the probability over all customers must therefore be 1 (or between 0 and 1 if
the good can be disposed). By contrast, in our setting the outcome a customer receives is dependent
on the customer’s delay, where delay is subject to a feasibility constraint that is considerably more
complicated than a total probability constraint. Nonetheless, we can still use a generalization of
this approach for our model.

We reformulate our model in a slightly different way. Recall that a customer of type v who
joins the queue with reported type x obtains utility uv(x) = v(1− αE[T (x)])− p(x) . Therefore,
absent prices, the customer obtains v(1−αE[T (x)]). We call y(x) ≡ v(1−αE[T (x)]) the outcome
experienced by a customer reporting type x (in expectation). Moreover, observe that a customer of
type v values her outcome y(x) linearly; that is, a customer with valuation v is willing to pay up
to vy(x) for the service when reporting x. Further assume that any customer opting not to join the
queue receives a degenerate outcome equal to zero.

The firm is essentially selling outcomes to customers; an outcome y(x) is priced at p(x). The
possible outcome allocations are subject to feasibility constraints reflecting the attainable response
times in priority-based queueing systems. For instance, allocating all customers the minimal ex-
pected delay is not a feasible allocation of outcomes. The prices, p(x), are subject to incentive-
compatibility. Moreover, if y(x) = 0, then p(x) = 0, as this outcome is equivalent in value to not
joining the queue.

5.1 Characterization of incentive-compatible price functions via the Meyer-
son framework

We now characterize the incentive compatible price functions. As before, we let E be the set of
customers opting to join the queue. We have that for all v ∈ E, v = arg maxx vy(x)− p(x), which
together with the first order condition, establishes that∫ v

v∗

p′(t) dt =

∫ v

v∗

vy′(v)dt

where v∗ is the greatest lower bound on customer types willing to join the queue, so we set p(v∗) =
v∗y(v∗) in order to extract all value from customers of type v∗ (should they join, although they
ultimately will not); note that we again have E = (v∗,∞)∩X (except for the case where E = X).

Applying the Fundamental Theorem of Calculus yields

p(v) = p(v∗) +

∫ v

v∗

ty′(t) dt = vy(v)−
∫ v

v∗

y(t) dt, (8)

where the second equality follows from integration by parts.
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5.2 The optimality of Priority Pricing

The revenue rate, R, can be found as follows

R = λ

∫ ∞
v∗

p(v)f(v) dv

= λ

∫ ∞
v∗

(
vy(v)−

∫ v

v∗

y(t) dt

)
f(v) dv

= λ

∫ ∞
v∗

vy(v)f(v) dv −
∫ ∞
v∗

∫ v

v∗

y(t) dtf(v) dv,

= λ

∫ ∞
v∗

vy(v)f(v) dv −
∫ ∞
v∗

F̄ (v)y(v) dv

= λ

∫ ∞
v∗

y(v)

(
v − F̄ (v)

f(v)

)
f(v) dv

where the last line is obtained by integration by parts.

Defining φ(v) ≡ v − F̄ (v)/f(v), we obtain

R = λ

∫ ∞
v∗

φ(v)y(v)f(v) dv. (9)

The function φ(v) is Myerson’s virtual valuation function [37], so called because the firm max-
imizes its revenue when using the outcome allocation that maximizes the social welfare (subject
only to feasibility constraints) when customer valuations are replaced by their corresponding vir-
tual valuations. When φ(v) is increasing, we say that the customer valuation distribution is regular.
This condition is important as it is sufficient to make the PP policy optimal across all pricing poli-
cies:

Theorem 5. When the customer valuation distribution is regular (i.e., φ(v) = v − F̄ (v)/f(v) is
increasing), the PP policy is the optimal pricing policy.6

Proof. Proof. Consider two customers with types v1 > v2. It also holds that φ(v1) > φ(v2) and
the customers obtain outcomes y(v1) > y(v2). If we were to exchange the queueing priorities of
these customers, their response times (and hence, outcomes) would also be exchanged, so social
welfare would decline by

φ(v1)y(v1) + φ(v2)y(v2)− [φ(v1)y(v2) + φ(v2)y(v2)] = [φ(v1)− φ(v2)][y(v1)− y(v2)],

so social welfare is maximized by serving higher valuation customers ahead of those with lower
valuations whenever possible. Hence, the preemptive priority policy maximizes social welfare.

We first note that the Exponential, Uniform, and Pareto distributions are all regular, so PP
is optimal for these customer valuation distributions. We give closed-form expressions for the
optimal price menus for these distributions in Section 7.

6We restrict attention to priority policies where a customer’s priority level cannot change after it joins the queue;
this assumption is not necessary for M/M/1 queues.
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5.3 The optimal choice of v∗

Completing the interpretation of the PP policy in the Myerson framework, we have customers with
valuation v > v∗ experience the outcome

y(v) = 1− 2αE[S] + α(E[S2]− 2E[S]2)λF̄ (v)

2(1− ρF̄ (v))2
, (10)

while all other customers obtain allocation y = 0. In order to choose the optimal price menu, it
remains only to compute the optimal value of v∗. Applying the first order condition to (9), we have

R′ = −λf(v)φ(v)y(v) = 0. (11)

We find that (11) has at most two zeros in X, as −λf(v) is nonvanishing on X, while both y(v)
and φ(v) are increasing on X. These zeros are zφ and zy, the zeros of φ and y, respectively (when
they exist in X).

Checking the second order condition, we find that

R′′(v∗)|v∗=zφ = −λf(zφ)φ′(zφ)y(zφ) ≤ 0 if and only if zφ ≥ zy,

as −λf(v) < 0 and φ′(z) > 0, while y(zφ) ≥ y(zy) = 0 if zφ ≥ zy and y(zφ) < y(zy) = 0
otherwise. Similarly,

R′′(v∗)|v∗=zy = −λf(zy)φ(zy)y
′(zy) ≤ 0 if and only if zy ≥ zφ,

as −λf(v) < 0 and y′(zy) > 0, while φ(zy) ≥ φ(zφ) = 0 if zy ≥ zφ and φ(zy) < φ(zφ) = 0
otherwise.

Hence, the revenue-maximizing choice of v∗ is max{zφ, yφ}, should they both exist. If only
one exists, then the optimal choice of v∗ is given by whichever exists, and if neither exists, then the
optimal choice of v∗ is given by inf X (i.e., in this case prices are set so that all customers opt to
join the queue). The constraint v∗ ≥ zy ensures that y(v∗) ≥ 0, and hence, all customers who join
the queue receive a positive utility without needing to be subsidized (i.e., paying a negative cost).

It is worth noting that

zy = y−1(0) = F̄−1

(
1

ρ
− α

2λ
+

αE[S2]

4λE[S]2
−
√

8αE[S]E[S2] + α2(E[S2]− 2E[S]2)2

4λE[S]2

)
(12)

for any customer valuation cdf F , and consequently, zφ ≥ zy if and only if

α ≤ 2(1− ρF̄ (zφ))2

2E[S] + λF̄ (E[S2]− 2E[S]2)
. (13)

Furthermore, for the Exponential, Uniform, and Pareto distributions, we have zφ is equal to the
mean of the customer valuation distribution.
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6 Alternative pricing policies

In this section, we introduce two alternatives to Priority Pricing (PP). Our motivation for introduc-
ing these policies is to provide a set of benchmarks by which we can subsequently evaluate the
relative efficacy of the PP policy introduced in this paper.

6.1 The Fixed Pricing (FP) policy

FP assumes that the service provider sets a fixed price p ≥ 0 and offers service in first-come-first-
serve order (i.e., there are no priorities). Once again, we assume that the queue is unobservable.
This structure again yields threshold entry behavior, with customers entering if and only if their
type v > v∗. Hence, a customer’s utility for service must be

v(1− α · E[T ])− p = v

(
1− αE[S]− αλF̄ (v∗)E[S2]

2(1− ρF̄ (v∗))

)
− p.

In particular since customers enter if and only if their utility is nonnegative, p and v∗ are related as
follows:

p = v∗

(
1− αE[S]− αλF̄ (v∗)E[S2]

2(1− ρF̄ (v∗))

)
. (14)

In this setting the revenue is given by RFP = λpF̄ (v∗) and hence, the optimal revenue is

RFP = max
v∗

{
λv∗F̄ (v∗)

(
1− αE[S]− αλF̄ (v∗)E[S2]

2(1− ρF̄ (v∗))

)}
, (15)

with the optimal price (in terms of the optimal v∗) given in (14). Surprisingly this is a maximization
problem that eludes closed form solutions for even simple distributions on customer valuations.

6.2 The Full Information (FI) policy

FI assumes that that the firm can observe customer types directly and extract full surplus from all
customer types opting to join the queue. Like PP, this policy also prioritizes customers with higher
valuations above those with lower valuations, as it can extract greater surplus from the former. In
this setting the service provider charges customers with valuation v a price arbitrarily close to, but
less than

p(v) = v

(
1− 2αE[S] + α(E[S2]− 2E[S]2)λF̄ (v)

2(1− ρF̄ (v))2

)
. (16)

If we assume that indifferent customers join the queue (in contrast to our earlier assumption), we
can charge exactly p(v). Note that it is beneficial to the firm to serve all customers willing to pay
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a positive price, and hence, the optimal choice of v∗ = max{inf X, zy}, with zy as given in (12).
The firm’s revenue will be

RFI = λ

∫ ∞
v∗

v

(
1− 2αE[S] + α(E[S2]− 2E[S]2)λF̄ (v)

2(1− ρF̄ (v))2

)
f(v) dv. (17)

Although the FI policy is not incentive-compatible, and therefore cannot be implemented in prac-
tice when customers are strategic, this policy provides an idealized upper bound on the feasible
revenues from all incentive-compatible policies.

7 Closed form results for specific distributions

In this section we apply our implicit results from Sections 4 and 5 to provide closed form pricing
menus, p(v), (and the associated value of v∗) for the PP and FI policies for general α, λ, E[S],
and E[S2], where customer valuations v are drawn from the Exponential (Section 7.1), Uniform
(Section 7.2), or Pareto (Secion 7.3) distributions. For the optimal revenue, R, closed forms do
not always exist; we present R in closed form for the special case of M/M/1 queues (for all three
valuation distributions), where we set E[S2] = 2 and E[S] = 1. We compute R in the M/G/1 case
numerically.

7.1 Customer valuations drawn from the Exponential distribution

We now assume that v ∼ Exponential(β). Without loss of generality, we may set the scale
parameter β = 1, and consequently F (x) = 1− e−x and E[v] = 1.

• Under PP, customers are served if and only if v > v∗, where

v∗ =


1 if α ≤ α0

log

(
4ρE[S]

4E[S] + α(E[S2]− 2E[S]2)−
√

8αE[S]E[S2] + α2(E[S2]− 2E[S]2)2

)
if α ≥ α0

and

α0 =
2(e− ρ)2

2e2E[S]− λe(E[S2]− 2E[S])
.

• The PP policy price menu (with v∗ as given above) computed from (8) is

p(v) = v∗ + αE[S] log(ev − ρ) +
αλE[S2]

2(ev∗ − ρ)
− αE[S] log(ev∗ − ρ)

+
α(λ2E[S]E[S2]− 2E[S]ve2v − λev((E[S2]− 2E[S]2)v + E[S2])

2(ev − ρ)2
.
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• Under PP, in the special case of the M/M/1 setting, where E[S] = 1 and E[S2] = 2:

RM/M/1 =


λ

e
+ α (log(e− λ)− 1) if α ≤ (1− λ/e)2

α log(α)

2
+ (1−

√
α)

(√
α + (1−

√
α) log

(
λ

1−
√
α

))
if α > (1− λ/e)2

.

We compute RM/G/1 numerically (not shown).

• Under FI, customers are served if and only if v ≥ v∗, where

v∗ =


0 if α ≤ α0

log

(
4ρE[S]

4E[S] + α(E[S2]− 2E[S]2)−
√

8αE[S]E[S2] + α2(E[S2]− 2E[S]2)2

)
if α ≥ α0

and

α0 =
2(1− ρ)2

2E[S] + λ(E[S2]− 2E[S]2)
.

• The FI policy price menu computed from (16) is

p(v) = v

(
1− αev (2E[S]ev + λ(E[S2]− 2E[S]2))

2(ev − ρ)2

)
.

• Under FI, in the special case of the M/M/1 setting, where E[S] = 1 and E[S2] = 2:

R
M/M/1
FI =

λ+ α log(1− λ) if α ≤ (1− λ)2

α log(α)

2
+ (1−

√
α)

(√
α + (1−

√
α) log

(
λ

1−
√
α

))
+ (1−

√
α)2 if α > (1− λ)2

It follows that limα→1(R
M/M/1/R

M/M/1
FI ) = 1, while limα→0(R

M/M/1/R
M/M/1
FI ) = F̄ (1) =

1/e.

7.2 Customer valuations drawn from the Uniform distribution

We now assume that v ∼ Uniform(0, b). Without loss of generality, we may set b = 2, and
consequently F (x) = x/2 for 0 ≤ x ≤ 2 and E[v] = 1.

• Under PP, customers are served if and only if v > v∗, where

v∗ =


1 if α ≤ α0

2(α + 2λ)E[S]2 − 4E[S]− αE[S2] +
√
α8E[S]E[S2] + α2(E[S2]− E[S]2)2

2ρE[S]
if α ≥ α0

and

α0 =
(2− ρ)2

4E[S]− λ(E[S2]− 2E[S])
.
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• The PP policy price menu (with v∗ as given above) computed from (8) is

p(v) = v∗ +
αE[S2](v∗ − 2)

(ρ(v∗ − 2) + 2)E[S]
− 2α(E[S2]− (E[S2]− E[S]2)v)

(ρ(v − 2) + 2)E[S]

− 2αvE[S2]

(ρ(v − 2) + 2)2E[S]
+
α(E[S2]− 2E[S]2)(log(ρ(v∗ − 2) + 2)− log(ρ(v − 2) + 2))

ρE[S]

• Under PP, in the special case of the M/M/1 setting, where E[S] = 1 and E[S2] = 2:

RM/M/1 =


λ2 − 4α(log(4)− λ) + 8α log(2− λ)

2λ
if α ≤ (1− λ/2)2

2(2
√
α(2− λ)− α(3− λ)− (1− λ) + α log(α))

λ
if α > (1− λ/2)2.

• Under FI, customers are served if and only if v ≥ v∗, where

v∗ =


0 if α ≤ α0

2(α + 2λ)E[S]2 − 4E[S]− αE[S2] +
√
α8E[S]E[S2] + α2(E[S2]− E[S]2)2

2ρE[S]
if α ≥ α0

and

α0 =
2(1− ρ)2

2E[S] + λ(E[S2]− 2E[S]2)
.

• The FI policy price menu computed from (16) is

p(v) = v

(
1− 2αE[S] + αλ(1− v/2)(E[S2]− 2E[S]2)

2(1− ρ(1− v/2))2

)
.

• Under FI, in the special case of the M/M/1 setting, where E[S] = 1 and E[S2] = 2:

R
M/M/1
FI =


2α + λ+

2α log(1− λ)

λ
if α ≤ (1− λ)2

4
√
α(1− λ) + (2λ− 1)− α(3− 2λ) + α log(α)

λ
if α > (1− λ)2.

It follows that limα→1(R
M/M/1/R

M/M/1
FI ) = 1, while limα→0(R

M/M/1/R
M/M/1
FI ) = F̄ (1) =

1/2.

7.3 Customer valuations drawn from the Pareto distribution

Finally, for our last specific distribution, we let v take a Pareto distribution with a scale parameter
of 2, and (without loss of generality) E[v] = 1. That is, F (x) = 1 − (1 + x)−2 for x ≥ 0. Note
that we have shifted the conventional Pareto distribution so that the support takes 0, rather than 1,
as its lower bound, for consistency with the other distributions studied.
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• Under PP, customers are served if and only if v > v∗, where

v∗ =


1 if α ≤ α0(

4ρE[S]

4E[S]− 2αE[S]2 + αE[S2]−
√

8αE[S]E[S2] + α2(E[S2]− 2E[S])2

)1/2

− 1 if α ≥ α0

and

α0 =
(4− ρ)2

16E[S]− 2λ(E[S2]− 2E[S])
.

• The PP policy price menu (with v∗ as given above) computed from (8) is

p(v) = v∗ + αE[S](v − v∗) +
αE[S2](v − v∗)

4E[S]
− αE[S2]v(v + 1)4

2E[S]((v + 1)2 − ρ)2

+
α(E[S2](v − 1)− 4vE[S2]

4E[S]((v + 1)2 − ρ)
+

αE[S2](v∗ + 1)3

E[S]((v∗ + 1)2 − ρ)

+
α
√
λ(4E[S]2 + E[S2])

2
√

E[S]

(
log

(
1− 2(v∗ + 1)

1 + v∗ −
√
ρ

)
− log

(
1− 2(v + 1)

1 + v −√ρ

))

• Under PP, in the special case of the M/M/1 setting, where E[S] = 1 and E[S2] = 2:

RM/M/1 =


1

4

(
λ− 2α

√
λ coth−1

(
2√
λ

))
if α ≤ α0

(2−
√
α)
√
λ(1−

√
α)

2
−
(
1−
√
α
)2 − α

√
λ tanh−1

(√
1−
√
α
)

2
if α > α0

• Under FI, customers are served if and only if v ≥ v∗, where

v∗ =


0 if α ≤ α0(

4ρE[S]

4E[S]− 2αE[S]2 + αE[S2]−
√

8αE[S]E[S2] + α2(E[S2]− 2E[S])2

)1/2

− 1 if α ≥ α0

and

α0 =
2(1− ρ)2

2E[S] + λ(E[S2]− 2E[S]2)
.

• The FI policy price menu computed from (16) is

p(v) = v − αvE[S]

(1− ρ/(1 + v)2)2
+

αλv(E[S2]− 2E[S])

2(1 + v)2(1− ρ/(1 + v)2)2
.
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• Under FI, in the special case of the M/M/1 setting, where E[S] = 1 and E[S2] = 2:

R
M/M/1
FI =


λ− α

√
λ tanh−1

(√
λ
)

if α ≤ (1− λ)2

2λv∗ + λ

(v∗ + 1)2
− αλv∗

(v∗ + 1)2 − λ
+

(
α
√
λ

2

)
log

(
2v∗ + 2

v∗ + 1 +
√
λ
− 1

)
if α > (1− λ)2,

where when α > (1− λ)2, we have

v∗ =

√
λ

1−
√
α
− 1.

8 Comparison of policies and the impact of service require-
ment variability

In this section, we conduct numerical experiments to test the efficacy (in terms of the revenue) of
PP as compared to the two benchmark pricing policies—FP and FI—described in Section 6. For
simplicity, we restrict ourselves to the M/M/1 setting where E[S] = 1 and E[S2] = 2, so we can
use our closed-form results from Section 7. In order to compute the the revenue under FP from
(15), we must resort to numerical methods. Furthermore, we use numerical integration to study the
impact of the variability of the customer service requirement distribution on the revenue obtained
from PP introduced in M/G/1 queueing settings.

Figure 1 shows plots of the revenue obtained for PP, FP, and FI as a function of the arrival rate λ
for the cases of α = 0.25, 0.5, and 0.75, corresponding to low, medium, and high delay sensitivity,
respectively.7 As suggested by our theoretical results, as α approaches 1, the performance of PP
approaches that of FI in the cases where customer valuations, v, are drawn from the Exponential
and Uniform distributions.

Figure 2 shows the percentage improvement of PP over FP (i.e., R/RFP − 1) as a function
of λ for the cases of α = 0.25, 0.5, and 0.75. We confirm that PP outperforms FP in all the
cases we tested, as we have proven would hold for these distributions (see Theorem 5). Moreover,
the improvement seems sharpest in the test cases where α = 0.75 (that is, when customers are
more delay sensitive). When customers are more delay sensitive (e.g., α = 0.5 or α = 0.75) and
customer valuations are drawn from the Exponential or Uniform distributions, the improvement is
most pronounced for intermediate values of λ in the range of 0.2–0.6, whereas in the remaining
cases, where customer valuations are drawn from the Pareto distribution, or delay sensitivity is
low, the improvement continues to increase as λ (and hence the load ρ) approaches 1.

Moving beyond the M/M/1 system, we study the impact of customer service requirement vari-
ability on the revenue obtained via the PP policy. That is, we keep E[S] = 1 fixed and observe the

7Note that α ∈ (0, 1), since E[S] = 1.
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Low delay sensitivity: α = 0.25
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Intermediate delay sensitivity: α = 0.5
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High delay sensitivity: α = 0.75
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Figure 1: Revenue versus arrival rate (λ) in three delay sensitivity regimes for PP (solid), FP
(dahed), and FI (dotted). We assume an M/M/1 system where E[S] = 1, E[S2] = 2, and customer
valuations are drawn from the (a) Exponential, (b) Uniform, and (c) Pareto distributions from
Section 7.

impact of E[S2] on revenue. Note that in this case E[S2] = Var(S) + 1. Figure 3 shows a plot
of R vs. E[S2] when α = λ = 0.5. We observe that although revenue is always decreasing in
variability, revenue does not decline significantly from E[S2] = 100 to E[S2] = 200 for any of the
distributions studied. Revenue decreases when E[S2] increases, as the increase in E[S2] leads to
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Low delay sensitivity: α = 0.25
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Intermediate delay sensitivity: α = 0.5
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High delay sensitivity: α = 0.75
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Figure 2: Percentage increase in revenue generated by PP over the revenue generated by FP (i.e.,
1− R/RFP) as a function of the arrival rate, λ (in three delay sensitivity regimes). We assume an
M/M/1 system where E[S] = 1 and E[S2] = 2, and customer valuations are drawn from the (a)
Exponential, (b) Uniform, and (c) Pareto distributions from Section 7.

an increase in response time, and therefore a decrease in surplus for all customers. Moreover, as
E[S2] rises, the set of customers admitted also begins to fall, that is, v∗ begins to decline and fewer
customers are paying for service.

Figure 4 demonstrates the impact of variability on the PP price menu. For all three distributions,
we see that there exists some value ṽ such that p(v) is increasing in E[S2] for all v > ṽ, while p(v) is
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The impact of service requirement variability on revenue
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Figure 3: The revenue under the PP policy, R, as a function of E[S2] when E[S] = 1 (i.e., E[S2] =
Var(S) + 1), and α = λ = 0.5. Customer valuations are drawn from the Exponential (solid),
Uniform (dashed), and Pareto (dotted) distributions from Section 7.

decreasing in E[S2] for all v < ṽ. That is, as variability increases, the highest valuation customers
end up paying more, while the lowest valuation customers end up paying less, if they join the queue
at all. We interpret this result as being due to the fact that higher valuation customers are impacted
less by variability, as they have priority over most customers, while lower valuation customers are
impacted the most, and hence, they are not able to pay as much for service. We were unable to
derive ṽ in closed form.

Perhaps the most striking regarding observation regarding the impact of service requirement
variability is as follows: while revenue generated under PP is greatest in this setting in the case
of Uniformly distributed customer valuations and least for the case of Pareto distributed customer
valuations when variability is low (as in the M/M/1 setting), this ordering is reversed under high
variability. The Pareto case yields greater revenue that the Uniform case at around E[S2] = 10 and
greater revenue than the Exponential case at around E[S2] = 20.

9 Discrete pricing

Thus far, we have proposed the use of a continuous pricing policy and found the revenue-optimal
incentive-compatible price menu in terms of the continuous function p(v). In this setting, cus-
tomers can choose from a continuum of priority levels. Although we proved in Theorem 5 that the
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The impact of service requirement variability on prices
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Figure 4: The PP price menu, p(v), when E[S] = 1 and E[S2] = 1/2, 1, 2, 4, 8 (from top to bottom
on the left-hand side; reversed on the right-hand side), and α = λ = 0.5. Customer valuations are
drawn from the (a) Exponential, (b) Uniform, and (c) Pareto distributions from Section 7.

revenue-maximizing incentive-compatible price menu is a continuous pricing function when cus-
tomer valuations are regularly distributed (e.g., Exponential, Uniform, or Pareto), in many settings
it is not practical to offer a continuous menu of prices: the customers’ decisions may be unneces-
sarily complicated and the service provider may have trouble representing this information to the
customers. It may also be the case that it is too costly or otherwise impossible for a customer to
communicate an arbitrarily precise valuation to the service provider, or it requires too much time
for the service provider to sufficiently fine-tune a continuous price menu. Instead many services
are offered according to a finite number of discrete priority classes. In this section we numerically
study the effect of offering a discrete number of priority classes, and find that in many cases the
profits that can be obtained from offering as few as three or four priority classes are comparable to
those that can be obtained by offering a continuous menu of prices.

When the firm is restricted to offering only n preemptive priority levels at n prices p1 > p2 >
· · · > pn, by a result analogous to Theorem 2, there exist thresholds v1 ≥ v2 ≥ · · · ≥ vn, such that
a customer of type v ≤ vn opts not to receive service, a customer of type v ∈ (vi, vi−1) pays pi for
the i-th priority level, and a customer of type v > v1 pays p1 for the first priority level. Customers
in the i-th priority level receive preemptive queueing priority over all customers in priority levels
i + 1 and beyond. When implementing the optimal prices, we denote this policy by PP(n). We
let Rn be the optimal revenue obtained under PP(n). Note that PP(1) is the same as Fixed Pricing
(FP), while as n→∞ PP(n) approaches Priority Pricing (PP).

In order to guarantee incentive-compatibility it is sufficient that customers of type vi be indif-
ferent between being in priority level i and paying pi and being in priority level i + 1 and paying
pi+1 whenever i < n, while customers of type vn are indifferent between paying pn for the last
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priority level and not joining the system at all. To see why this guarantees incentive-compatibility,
let ε > 0 and consider some customer vi − ε who strictly prefers class i over class i − 1. Since
prices are nonnegative, however, this would imply customer vi prefers class i to class i − 1, by
an even greater margin, but this contradicts the assumption that customer vi is indifferent between
these classes, so no such customer vi− ε exists. A similar argument shows that no customer vi + ε
prefers class i− 1 over class i.

We proceed to analyze these policies by calculating the delay experienced by the customers.
We let τi be the mean response time of a customer with type v ∈ (vi, vi−1), assuming truthful
reporting. From queuing theory, τ1 is the expected response time in a FCFS M/G/1 queue with
arrival rate λF̄ (v1),

τ1 = E[S] +
E[S2]

2(1− ρF̄ (v1))
,

while for all i ≥ 2, τi is a busy period perpetuated by arrivals with valuation vi−1 and above started
by the expected work in a FCFS system made up of customers with valuation vi and above:

∀i ∈ {2, 3, . . . , n} : τi =
E[S]

1− ρF̄ (vi−1)
+

λF̄ (vi)E[S2]

2(1− ρF̄ (vi−1))(1− ρF̄ (vi))
.

Therefore, the optimal choice of {pi}ni=1 and the resulting {vi}ni=1 are determined by solving the
following nonlinear optimization program, with the objective value yielding Rn, the optimal rev-
enue with n preemptive priority levels:

Rn = max
{pi,vi}ni=1

λp1F̄ (v1) + λ
n∑
i=2

{
pi(F̄ (vi−1)− F̄ (vi))

}
(18)

s.t. vi(1− ατi)− pi = vi(1− ατi+1)− pi+1 (∀i ∈ {1, 2, . . . , n− 1});
vn(1− ατn)− pn = 0;

0 < pn ≤ pn−1 ≤ · · · ≤ p1;
0 < vn ≤ vn−1 ≤ · · · ≤ v1;
v1, v2, . . . , vn ∈ X.

We solve this nonlinear program numerically in the M/M/1 setting where E[S] = 1 and E[S2] = 2.
Our numerical findings suggest that the optimal vn ≈ v∗, the optimal threshold in the continuous
case, even for small values of n.

Figure 5 shows the discrete pricing curves as a function of customer valuations (that is the price
paid by a customer of a given type v) when the number of priority classes offered is n = 5. The
lowest threshold v5 is typically very close to the threshold v∗ in the optimal (continuous) case. In
virtually all cases, the thresholds v1, . . . , v5 for Uniformly distributed v are nearly equally spaced,
and hence, each priority level is purchased by roughly a 1/n fraction of the customers opting to join
the queue. This is possibly due to the fact that the continuous pricing function is approximately
linear in this case. For the other distributions, the pattern is not as simple.

As expected, our findings show that Rn is increasing in n (i.e., offering more priority classes
yields greater revenue). We also wish to understand the number of classes that are sufficient for

24



The PP(5) and PP price menus

v
1 2 3 4

p(v)

0

0.60
0.45
0.30
0.15

(a) v ∼ Exponential

v
0.4 0.8 1.2 1.6

p(v)

0

(b) v ∼ Uniform

v
2 4 6 8

p(v)

0

(c) v ∼ Pareto

Figure 5: A juxtaposition of the PP(5) (solid) and PP (dotted) price menus where E[S] = 1,
E[S2] = 2, and α = λ = 0.5, and customer valuations v are drawn from the (a) Exponential, (b)
Uniform, and (c) Pareto distributions from Section 7.

capturing nearly all the available revenue. More formally, we study the loss in revenue as compared
to the optimal revenue achievable via continuous pricing, R.

Figure 6(a) shows R1, R2, . . . , R6 (i.e., the optimal revenue obtained when the number of pri-
ority classes ranging from n = 1 to n = 6) in the case where λ = α = 0.5, E[S] = 1 and
E[S2] = 2. For all the distributions studied there is little difference between R3, R4, R5, R6, and
R (i.e., the optimal revenue under PP). In fact, a log-log plot of the proportional loss in revenue
due to discretization, 1 − Rn/R, versus the number of classes, n, for all the distributions stud-
ied suggests a linear decline with a slope of −2 (see Figure 6(b)). Using other values of λ and
α yields plots similar to those in Figure 6. In particular the nearly linear decline with a slope of
−2 (although with slightly different intercepts) was present in all cases examined. Therefore, it
appears that the proportional loss in revenue, 1 − Rn/R ∼ C/n2 as n → ∞ for some constant
C (i.e., limn→∞ n

2(1 − Rn/R) → C). This is consistent with theoretical results on the efficiency
of discrete price menus in other settings without queueing [46, 10, 11]. This suggests that a few
priority classes are sufficient to capture nearly all the revenue available. We find that R5 and R6

are typically within 1% of optimal revenue, R.

10 Conclusion

We propose a pricing model for an unobservable M/G/1 queueing system that allows for infinitely
many customer types. In particular, strategic customers are parametrized by their valuation, v, and
their delay sensitivity, c = αv, with constant α. We allow v to be a random variable drawn from
a continuous distribution with cdf F . This extends upon the previous work in the area of revenue
(profit) maximization for priority queues, where there are only finitely many customer types and
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The impact of discrete price menus on revenue
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Figure 6: Plots of (a) the revenue Rn and (b) the fractional loss in revenue (compared to PP) as
the number of discrete priority classes offered ranges from n = 1 to n = 6. In (a) we have a
linear-linear plot and in (b) we have a log-log plot. The plots illustrate a representative case where
E[S] = 1, E[S2] = 2, and α = λ = 0.5 for valuations drawn form the Exponential (solid), Uniform
(dashed) and Pareto (dotted) distributions from Section 7.
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priority classes, customers differ in only one way, or customers are non-strategic.

We derive the revenue-maximizing incentive-compatible priority price menus, p(v), (where
customers pay a greater price for greater priority) in closed form. Revenues, R, are computed
numerically in the M/G/1 setting and in exact closed-form in the more restrictive M/M/1 setting.
We solve this optimization problem in the cases where the customer valuation distribution is Ex-
ponential, Uniform, or Pareto and then compare our results with the Fixed Pricing (FP) and Full
Information (FI) policies. Using the Myerson revenue-optimal auction framework, we are able to
show that for these distributions on customer valuations, Priority Pricing (PP) is the best pricing
policy, when priority levels must remain static; more generally, it is the optimal pricing policy
whenever the distribution on customer valuations is regular. Gains of 2–20% over FP are typical
for the PP policy. The M/G/1 setting also allows us to understand the significant role played by ser-
vice requirement variability. Moreover, using only a discrete number of priority classes often does
nearly as well as the the PP policy: offering five discrete classes, PP(5), typically yields revenues
within 1% of the optimal (PP).

There are many avenues for further research in this area. For example, we could relax the
assumption that c = αv, and consider a joint-distribution of valuations and delay-sensitivities.
Moreover, one could relax the assumption that customer types and service requirements are inde-
pendent. Another direction for further research would be investigating policies where a customer’s
priority could change over time, based on, for example, how long she has been in the system or
how much service she has received since entering the system.
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[13] ÇELIK, S., AND MAGLARAS, C. Dynamic pricing and lead-time quotation for a multiclass
make-to-order queue. Management Science 54, 6 (2008), 1132–1146.

[14] CHARNSIRISAKSKUL, K., GRIFFIN, P., AND KESKINOCAK, P. Order selection and
scheduling with leadtime flexibility. IIE transactions 36, 7 (2004), 697–707.

[15] CHARNSIRISAKSKUL, K., GRIFFIN, P. M., AND KESKINOCAK, P. Pricing and scheduling
decisions with leadtime flexibility. European Journal of Operational Research 171, 1 (2006),
153–169.

[16] CHEN, H., AND FRANK, M. State dependent pricing with a queue. IIE Transactions 33, 10
(2001), 847–860.
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Appendix: Proof of Theorem 3

Before Proving Theorem 3, we will first prove the following Lemma.

Lemma 1. For any incentive-compatible price function p, if there exist z, z′ ∈ E such that p(z) <
0 < p(z′), then there exists some y ∈ E such that p(y) = 0.

Proof. Proof of Lemma 1. Assume, by way of contradiction, that no such y exists. It immediately
follows that either (i) p has discontinuity on the entry set E, or (ii) E = E− ∪ E+, where p
is negative on E− and positive on E+ (and hence, the two sets are disjoint). We can rule out
case (i), because such a discontinuity would violate the hypothesis that p is incentive-compatible
(a customer on one side of the discontinuity would benefit from “jumping” to the other side).
Similarly, in case (ii), it must be the case that supE− < inf E+, (if the two were equal, say
both are y′, then the incentive compatibility constraint would not hold for y′). Therefore, by the
continuity of waiting times, there exists a point in E+ which would increase its utility by reporting
some type in E−, violating incentive compatibility.

Proof. Proof of Theorem 3. We will prove the claim by construction. If all prices are positive on E
(or if E is empty), then we are done (we can charge p̂(x) = +∞ for all x ∈ X\E), and if all prices
are negative on the entry set, then the price menu can be trivially improved by setting p̂(x) = +∞
for all x (i.e., not offer the service), so that R(p̂) = 0 ≥ R(p). Otherwise, there exists z, z′ ∈ E
such that p(z) < 0 < p(z′), and so by Lemma 1 there exists y ∈ E such that p(y) = 0. Then
uy(y) > 0. Now let w ≡ uy(y) and

p̂(x) ≡

{
p(x) + w if x ≥ y,

w otherwise.

We now show that p̂ is incentive-compatible with the entry set Ey ≡ E ∩ (y,∞). Let û denote
utilities under p̂ and note that ûy(y) = 0.

For all v ∈ Ey, understanding that the response time for these customers (and all reported types
x > y) will be the same as it was under p and entry set E, we have

ûv(v) = uv(v)− w ≥ uv(y)− w = ûv(y) > ûy(y) = 0

(since prices are nonnegative for all x ≥ y) and so

∀x ≥ y : ûv(v) = uv(v)− w ≥ uv(x)− w = ûv(x),

while
∀x < y : ûv(v) ≥ ûv(y) = ûv(x),

as no customers are entering with valuations between x and y. Hence, the entering customers
satisfy the incentive-compatibility constraint.
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For all v 6∈ E with v > y, we have

∀x ≥ y : ûv(x) = uv(x)− w ≤ −w ≤ 0.

Meanwhile,
∀x ≤ y : ûv(x) = ûv(y) ≤ 0,

so these customers also satisfy the incentive-compatibility constraints.

Finally, we consider v < y, and we see that

x ≥ y : ûv(x) ≤ uy(x) ≤ uy(y) = 0,

where uy(x) ≤ uy(y) follows from the argument that the customers with v ≥ y, and in particular,
v = y, satisfy the incentive-compatibility constraint for p̂. Next, we see that

∀x < y : ûv(x) ≤ ûv(y) = 0.

Therefore, p̂ is incentive compatible when the entry set is Ey. Moreover,R(p̂) ≥ R(p)+λw·P(v ≥
w) ≥ R(p), proving the claim.
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