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Abstract

Both SAT and #SAT can represent difficult problems in seemingly dissimilar areas such
as planning, verification, and probabilistic inference. Here, we examine an expressive new
language, #∃SAT, that generalizes both of these languages. #∃SAT problems require
counting the number of satisfiable formulas in a concisely-describable set of existentially
quantified, propositional formulas. We characterize the expressiveness and worst-case
difficulty of #∃SAT by proving it is complete for the complexity class #PNP [1], and re-
lating this class to more familiar complexity classes. We also experiment with three new
general-purpose #∃SAT solvers on a battery of problem distributions including a simple
logistics domain. Our experiments show that, despite the formidable worst-case complex-
ity of #PNP [1], many of the instances can be solved efficiently by noticing and exploiting
a particular type of frequent structure.
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1 Introduction
#∃SAT is similar to SAT and #SAT—determining if a propositional boolean formula has
a satisfying assignment, or counting such assignments. SAT may be written as ∃~x φ(~x),
and #SAT may be written as Σ~x φ(~x), where ~x is a vector of finitely many boolean
variables and φ(~x) is a propositional formula. #∃SAT allows a more general way of
quantifying than SAT or #SAT. Specifically, a #∃SAT problem is Σ~x∃~y φ(~x, ~y), which
corresponds to counting the number of choices for ~x such that there exists a ~y satisfying
φ(~x, ~y).

The change of quantification is significant. Rather than being a decision problem like
SAT (‘is there a satisfying assignment?’) the solution of an #∃SAT is an integer found by
summing over a subset of the variables. This richer type of quantification generalizes both
SAT and the pure counting problem #SAT, capturing a larger class of problems.

The integer answer to a #∃SAT instance has a natural interpretation: the number of
formulas that are SAT from a concisely-described but exponentially large set of formulas.
Each full assignment to the Σ-variables ‘selects’ a particular, entirely ∃-quantified, residual
formula—i.e., ∃~y φ(~x, ~y) for some ~x—from the set. If a concise quantifier-free represen-
tation of ∃~y φ(~x, ~y) could be found efficiently, #∃SAT would reduce to #SAT. In most
instances, however, the existential quantification is required for concise representation.

#∃SAT captures a simple type of probabilistic interaction useful for testing the robust-
ness of a policy under uncertainty. As an example, imagine a delivery company pondering
whether to purchase more vehicles to improve quality-of-service (QoS). They wonder if,
under some world model, the probability of timely delivery could be significantly im-
proved with more vehicles. We answer this question by counting1 how many random
scenarios (e.g., truck breakdowns and road closures) permit delivery plans (sequences of
vehicle movements, pickups, and dropoffs) that meet QoS constraints (every package is
delivered to its destination by some predetermined time) for both the current fleet and the
augmented one.

This logistics problem can be pseudo-formalized as

Σ~b,~c,~r∃~p QoS(~b,~c,~r, ~p), (1)

where the vector ~b describes which vehicles break down, ~c lists road closures, ~r lists
delivery requests, and ~p defines the plan of action. QoS is a formula that describes initial
positions, goals, and action feasibility. After realizing all uncertainty, we are left with an
instance of a famous NP -complete problem: finding ~p is bounded deterministic planning.

1 Throughout, for simplicity, we discuss unweighted #∃SAT, where each scenario is equally likely. Our
algorithms also work for the weighted problem; furthermore, some weighted problems reduce to unweighted
ones by proper encoding.
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This logistics example suggests another interpretation for #∃SAT problems: they are
policy-space robustness questions for a type of planning problem. #∃SAT problems en-
code situations where all uncertainty is resolved on the first time-step, and then the plan-
ning agent tries to achieve their goal using some restricted policy space with complete
observation.

#∃SAT is a subset of general planning under uncertainty that requires that all uncer-
tainty is revealed initially. This excludes the succinct description of any problem that
has a more complicated interlacing of action and observation. For example, the logistics
problem does not describe the random breakdown of trucks after they leave the depot.

However, #∃SAT is still very expressive—we characterize its complexity in §2. We
provide three exact solvers for #∃SAT in §3, before testing implementations of these ap-
proaches in §4.1 and §4.2.

The experiments are encouraging, and show a type of structure that can be noticed and
exploited by solvers. Our experiments and algorithms may be useful not just for #∃SAT
problems, but also for problems with more complicated uncertainty. We are hopeful that
similar structure can be discovered and exploited in these settings, and that our solvers can
be used as components or heuristics for more general solvers.

1.1 Related work.
SAT is the canonical NP -complete problem. Many important problems like bounded
planning (e.g., Kautz and Selman [1999]) and bounded model checking (e.g., Biere et al.
[2003]) can be solved by encoding problem instances in a normal form—like conjunctive
normal form (CNF) or DNNF (Darwiche [2001])—and using an off-the-shelf SAT solver
such as GRASP [Marques-Silva and Sakallah, 1999], Chaff [Moskewicz et al., 2001],
zChaff [Fu et al., 2004], or MiniSat [Eén and Sörensson, 2006]. Current work in sat-
isfaction modulo theory (SMT; e.g., Nieuwenhuis et al. [2006]) is a continuation of this
successful program.

This method of solving NP -complete problems (convert to normal form and solve
with a SAT solver) succeeds because SAT solvers can automatically notice and exploit
some kinds of structure that occur frequently in practice. Techniques include the venerable
unit-propagation rule [Davis et al., 1962], various preprocessing methods (e.g., [Eén and
Biere, 2005]), clause learning [Marques-Silva and Sakallah, 1999], restarting [Gomes et
al., 1998], and many others. These techniques are typically fast—adding clause learning
to a SAT solver does not add a lot of overhead to it—but has a significant impact on the
empirical performance of SAT solvers on important distributions of problems instances.
As a result, modern SAT solvers can tackle huge industrial problem instances. The quality
of modern SAT solvers enables Scientists and engineers to treat them largely as black
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boxes, not delving too deeply into their code. Because of this, improvements to SAT
solvers have immediate and far-reaching impact.

SAT is not fully general and there are many reasons to examine more expressive set-
tings. Many of these settings amount to allowing a richer mixture of quantifiers: there is a
SAT-like problem at each level of the polynomial hierarchy, formed by bounded alterna-
tions of ∀ and ∃. QBF is even more general, allowing an unbounded number of ∃ and ∀
alternations; QBF is PSPACE-complete [Samulowitz and Bacchus, 2006].

Bounded alternation of ∃ and Σ quantifiers yields another hierarchy of problems,
and our #∃SAT problem is one of the two problems at its second level. Other mem-
bers of this hierarchy include the pure counting problem, #SAT (the canonical #P -
complete problem) and Bayesian inference (also #P -complete [Roth, 1996]), as well as
the two-alternation decision problem MAXPLAN [Majercik and Littman, 1998, 2003] and
the unbounded-alternation PSPACE-complete decision problem stochastic SAT (SSAT;
Littman et al. [2001]). Our counting problem is related to a restriction of SSAT.

MAXPLAN bears a number of similarities to #∃SAT. It asks if a plan has over a 50%
probability of success, and can be thought of as asking an ∃#SAT thresholding question—
the opposite alternation to our #∃SAT. MAXPLAN has a different order of observation
that, in the planning analogy, means the MAXPLAN agent commits to a plan first, then
observes the outcome of this commitment. The #∃SAT agent observes first, then acts.
MAXPLAN is NP PP -complete (complete for the class of problems that are solvable by an
NP machine with access to a PP oracle), and we compare its expressiveness to #∃SAT in
§2.

While #SAT is in PSPACE and, could in theory, be solved by a QBF solver we are not
aware of any empirically useful reductions of #SAT to QBF. Indeed, we are not aware of
a reduction that does not involve simulating a #SAT solver with a counting circuit—these
are thought to be a difficult case for QBF solvers (e.g., Janota et al. [2012]). We expect the
relation between #∃SAT and QBF to be similar.

#∃SAT is also a special case of another general problem—it is a probabilistic con-
straint satisfaction problem Fargier et al. [1995] with complete knowledge and binary
variables. The restriction to #∃SAT not only allows us to develop both novel algorithms
but also stronger theoretical results.

We note that this paper concerns exact solvers rather than approximate solvers (e.g.,
Wei and Selman [2005] or Gomes et al. [2007]). This is for several reasons. First, we are
interested in solvers that provide non-trivial anytime bounds on the probability range—so
we can terminate if our bounds become sufficiently tight or are sufficient to answering a
thresholding question. Secondly, we believe that exact solvers will generalize better to
first-order settings such as Sanner and Kersting [2010] or Zawadzki et al. [2011].
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2 Complexity
The previous section mentions a number of other problems that generalize SAT. In this
section we clarify how expressive #∃SAT is compared to them with three theoretical state-
ments.

Our first result is that #∃SAT is complete for #PNP [1]. #P , by itself, is the class
of counting problems that can be answered by a polynomially-bounded counting Turing
machine. A counting Turing machine is a nondeterministic machine that counts paths
rather than testing if there is a path. The machine’s polynomial bound applies to the length
of its nondeterministic execution paths.

The superscripted oracle notation used in #PNP [1] refers to a generalization of the
#P counting machine that allows the machine to make a single query to an NP -complete
oracle per path. This oracle seems weak at first glance—there is a simple reduction from
NP to #P , so why would a single call to this oracle help? A later result shows, however,
that this oracle call does change the complexity class unless the polynomial hierarchy
collapses.

Theorem 1 (Completenes). #∃SAT is complete for #PNP [1].

Proof. First we show that our problem is in #PNP [1]. Our oracle-enhanced, polynomially-
bounded counting Turing machine can solve this problem by nondeterministically choos-
ing the Σ-variables, and then asking the oracle whether the entirely ∃-quantified residual
formula is SAT or not.

Second, we show that an arbitrary problem A ∈ #PNP [1] can be converted to an in-
stance of #∃SAT in polynomial time. This is done through a Cook-Levin-like argument:
since there must be some oracle-enhanced, polynomially-bounded counting Turing ma-
chine M that counts A, and we will simulate its running in a #∃SAT formula φ. We use
Σ-variables to correspond to the non-deterministic branching decisions in the counting
Turing machine, and ∃-variables to describe the remainder of the counting machine and
all of the oracle machine.

For each time step in the simulation we encode the tape state (e.g. CountTapeict is
true iff counting tape cell i contains character c at time t), the read/write head state (e.g.
CountHeadit is true iff the counting machine head is at cell i at time t), and the finite
automaton state (e.g. CountStatest is true iff the counting automaton is in state s at time
t). These variables are summarized in Table 1.

We use clauses to encode the operation of the Turing machine. For example, the set of
clauses

∀i, t, c, c′ ¬CountTapeict ∨ ¬CountTapeic′t
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Counting Oracle
Tape CountTapeict OracleTapeict
Head CountHeadit OracleHeadit
Automaton CountStatest OracleStatest
Path PathTaken∗isct -

Table 1: Summary of variables required to simulate the counting Turing machine with ora-
cle. The PathTaken variables are annotated with an asterisk to indicate that they, uniquely,
are Σ-variables. The rest are ∃-variables.

ensures that no cell of the counting machine tape has more than one character written to it
at any time. See Cook [1971] for greater details on these clauses.

The counting machine has additional clause to describe how it writes to the oracle tape,
and has three special state in its automaton called ‘Ask’, ‘SAT’ and ‘UNSAT’ that me-
diate its interaction with the oracle. The oracle is quiescent before the counting automaton
lands on ‘Ask’, solves the problem on its tape, and moves the counting automaton to the
appropriate answer state. The requirement that the oracle is called once is already encoded
in the automaton ofM . See, for example, Goldreich [2008] for more details on both oracle
and counting Turing machines.

The main difference between our machine and the standard oracle machine occurs in
the‘’transition rule’ that determines what transitions are possible in the machine. For a
standard decision Turing machine this looks like:

∀i, s, c, t (Headit ∧ Statest ∧ Tapeict)→∨
(s′,c′,d)∈T (s,c)

(
Head(i+d)(t+1) ∧ States′(t+1) ∧ Tapeic′(t+1)

)
.

Here, d ∈ {−1, 0, 1} and T (s, c) is the set of transitions (s′, c′, d) possible when the head
reads c and the automaton is in state s.

In addition, we modify the transition rule of the counting machine to ‘record’ the non-
deterministic branching decision that it made with a Σ-variable:

∀i, s, c, t (CountHeadit ∧ CountStatest ∧ CountTapeict)→∨
(s′,c′,d)∈T (s,c)

(
CountHead(i+d)(t+1) ∧ CountStates′(t+1)

∧ CountTapeic′(t+1) ∧ PathTaken(i+d)s′c′t)

)
.
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From this construction, every satisfying path in the counting Turing machine M corre-
sponds to a unique set of PathTaken literals φ. From this correspondence, we proven that
their counts are identical, as required.

The time required to construct the simulation formula φ is bounded by a polynomial
in the size of the original input A. This can be seen from the fact that φ combines two
Cook-Levine style formulae which are polynomial in the size of the original input, added
a polynomial number of Σ-variables, and adjusted a subset of the clauses.

We now turn to whether the oracle call actually adds something; #PNP [1] is not merely
#P in disguise.

Theorem 2. If #∃SAT reduces to #P , then the polynomial hierarchy collapses to ΣP
2 .

This proof is based on the fact that a ‘uniquifying’ Turing machine MUNQ—a machine
that can take a propositional boolean formula (p.b.f) φ and produce another p.b.f. ψ that
has a unique solution iff φ has any (and none otherwise)—cannot run in deterministic
polynomial time unless the polynomial hierarchy collapses to ΣP

2 (a corollary of Dell et
al. [2012] and Karp and Lipton [1982]).

Proof. Suppose #∃SAT reduces to #P . Then there is a polynomial time Turing machine
MRED that reduces any Σ∃-quantified p.b.f. Φ = Σ~x∃~y φ(~x, ~y) to a p.b.f. ψ such that
counting solutions to ψ answers our #∃-counting question about Φ. Therefore, Φ must
have the same number of Σ∃-solutions as ψ has solutions: Count#∃(Φ) = Count#(ψ).

We use MRED to uniquify any boolean formula φ as follows. First, form the #∃SAT
formula Φ = Σx∃~y [x ∧ φ(~y)]. By design, Count#∃(Φ) = 1 iff Count#(φ) ≥ 1.

Then, since we have assumed that #∃SAT reduces to #SAT, we can run Φ through
MRED to produce a p.b.f. ψ. Since Count#∃(Φ) = Count#(ψ), ψ is the uniquified version
of φ. This whole process runs in polynomial time ifMRED is, soMRED cannot exist unless
PH collapses.

Thus, the oracle call (probably) adds expressiveness and our problem #∃SAT is (prob-
ably) more general than #SAT.

Finally, we combine some existing results to show that NP PP contains PPNP [1], a
decision class closely related to our counting class. Class PPNP [1] is ‘close’ in the sense
that it Cook-reduces to our counting class #PNP [1].

Corollary 1. PPNP [1] ⊆ NP PP

Proof. Follows from Toda’s theorem [Toda, 1991] (middle inclusion): PPNP [1] ⊆ PP PH ⊆
P PP ⊆ NP PP .
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This establishes that a closely related decision problem to our #PNP [1] is contained
in NP PP , the complexity class that MAXPLAN is complete for. The result suggests that
thresholding questions for #∃SAT are possibly less expressive than MAXPLAN, but also
easier in the worst case.

3 Algorithms
The previous section establishes #∃SAT’s worst-case difficulty, but we know from many
other problems (e.g., SAT) that the empirical behavior of solvers in practice can be radi-
cally different than the worst-case complexity.

In the next two sections we explore the empirical behavior of three different solvers on
several distributions of #∃SAT instances. #∃SAT generalizes both SAT and #SAT, so the
first two solvers are adaptations of algorithms for those settings. The final solver is a novel
DPLL-like procedure, and capitalizes on an observation specific to the #∃SAT setting.

Our design principle for these solvers is to use a black box DPLL solver as an inner
loop. First, our solvers automatically get faster whenever there is a better DPLL solver.
Second, the inner loop of the black-box solver is already highly optimized, so we can avoid
zealously optimizing much of our solver and focus on higher-level design questions.

3.1 mDPLL: A SAT inspired solver.
One intuition for #∃SAT problems is that instances with a small number of Σ-variables
might be solvable by running a SAT solver until it sweeps across every Σ-assignment
(rather than returning after finding the first satisfying assignment, like we would in SAT).
We test this intuition by generalizing DPLL.

Our first algorithm, mDPLL, searches over Σ-assignments (consistent total or partial
assignments to the Σ-variables), pruning whenever a Σ-assignment can be shown to be
SAT or UNSAT. Each Σ-assignment defines a subproblem S = 〈φ,AΣ, UΣ, U∃〉, where φ
is the original formula, AΣ ⊂ LΣ is the Σ-assignment, and UΣ ⊆ VΣ and U∃ ⊆ V∃ are
the unassigned Σ and ∃ variables. LΣ, L∃, VΣ, V∃ are sets of the Σ and ∃ variables and
literals.

Our implementation is iterative (we maintain an explicit stack), but for clear exposition
we present mDPLL as a recursive procedure. mDPLL is a special case of mDPLL/C (Alg 1)
that skips lines 4-8. These two cases are explained later in the description for mDPLL/C.
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Algorithm 1
1: function MDPLL/C(S = 〈φ,AΣ, UΣ, U∃〉)
2: if UnSatLeaf(S) then return 0
3: if SatLeaf(S) then return 2|UΣ|

4: if InCache(S) then
5: return CachedValue(S)

6: if Shatterable(S) then ⇐= Skip for mDPLL
7:

〈
C(1), . . . , C(m)

〉
← Shatter(S)

8: return
∏m

i=1 mDPLL/C(C(i))

9: 〈Sx, S¬x〉 ← Branch(S)
10: return mDPLL/C(Sx) + mDPLL/C(S¬x)

mDPLL first checks if a subproblem S is either an SAT or UNSAT leaf in the Un-
SatLeaf and SatLeaf functions. Both of these checks are done with the same black box
SAT solver call. S is an UNSAT leaf if φ is UNSAT assuming AΣ ((

∧
a∈AΣ

a) ∧ φ is UN-
SAT), and a SAT leaf if the solver produces a model where each clause in φ is satisfied
by at least one literal not in UΣ. If S is not a leaf then the subproblem is split into two
subproblems Sx and S¬x in the Branch function by branching on some Σ-variable in UΣ.2

Σ-literal unit propagation is a special case of branching where the implementation
has fast machinery to determine if one of the children is an UNSAT leaf. ∃-literal unit
propagation is handled by the black box solver.

The following is useful for proving mDPLL is correct.

Definition 1 (Total Σ-extensions). For any Σ-assignment σ ⊂ LΣ a total Σ-assignment
that contains σ is a total Σ-extension of σ. The set of all such extension is ExtΣ(σ) ⊂ LΣ.

We analogously define total Σ∃-extensions and ExtΣ∃(σ).

Theorem 3. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-count κ, mDPLL returns κ.

Proof. By induction on the structure of the mDPLL search. Consider S = 〈φ,AΣ, UΣ, U∃〉:

• Unsatisfying leaf, by definition of an UNSAT leaf φ is infeasible assuming AΣ, so
S has no Σ∃-assignments.

• Satisfying leaf, by definition of a SAT leaf every σ ∈ ExtΣ(AΣ) has at least one
τ ∈ ExtΣ∃(σ) that is satisfying. |ExtΣ(AΣ)| = 2|UΣ| so S has count 2|UΣ|.

2We use an activity-based branching heuristic similar to VSIDS [Moskewicz et al., 2001] in our imple-
mentation.
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• Internal node, we inductively assume that mDPLL works correctly on the subprob-
lems Sx and S¬x. By construction, the children’s Σ∃-total extension setsExtΣ∃(AΣ∪
{x}) and ExtΣ∃(AΣ ∪ {¬x}) are a partition of ExtΣ∃(AΣ). Therefore the child
counts can be added together to form a count for S.

3.2 #SAT inspired solvers
For problem instances with a large number of Σ-variables we might suspect that #SAT’s
techniques are more useful than SAT’s. There are at least two families of exact #SAT
solvers: based on either binary decision diagrams (BDDs; Bryant [1992]) or DPLL with
component caching like cachet [Sang et al., 2005].

3.3 Binary decision diagrams
A ROBDD is a graph-based representation of a boolean function with a number of nice
properties. ROBDDs can exploit kinds of structure that CNF cannot, and consequently can
be quite compact. As a simple example, XORing N variables requires an exponentially
large CNF formula or true table, while an equivalent ROBDD needs only 2N + 1 nodes.

Once a problem has been compiled into an ROBDDs, many difficult questions can be
efficient to answer. After construction, SAT is just an O(1) operation—checking if the
ROBDD is the canonical UNSAT ROBDD. Furthermore, #SAT counting is linear in the
size of the diagram. This clearly suggests that building an ROBDDs is, in general, difficult.
Constructing ROBDDs is very dependent on finding a good variable ordering, and these
seem to be largely problem specific.

We can also #∃SAT count quickly, as long as we construct the ROBDD using a con-
strained variable order—we insist that the Σ-variables precedes any ∃-variables. For a
simple example of a BDD with this variable ordering, see Figure 1.

Assuming that the variable order is stratified in this fashion, we can #∃SAT by just
doing a modified depth-first search pass on just the Σ-variables in the ROBDD.

Algorithm 2 Counts the number of satisfying Σ-assignments using a ROBDD.
1: function BDDCOUNT(φ, U∃, UΣ)
2: B← BuildBDD(φ, U∃, UΣ)
3: Count← 0
4: Paths = ΣPathsFromRootToTrueTerminal(B)
5: for P ∈ Paths do
6: Count← Count + 2|UΣ|−|P |

7: return Count
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Here, BuildBDD builds a BDD using a variable ordering constrained so every Σ-
variable procedes the ∃-variables. ΣPathsFromRootToTrueTerminal is a set of paths ex-
tracted from the BDD. It is every path from the root to the true terminal ( 1 ) , omitting any
∃-literal. So if two paths differ only in their ∃-literals, they are purposefully conflated in
ΣPathsFromRootToTrueTerminal. For example, there are four Σ-paths to true in Figure 1:

〈¬Σ1,Σ2,¬Σ3〉 ,
〈¬Σ1,¬Σ2〉 ,
〈Σ1,Σ3〉 ,
〈Σ1,¬Σ3〉 .

ΣPathsFromRootToTrueTerminal can be seen as the set of paths from the root of the BDD
to any ∃-nodes in the BDD that have a Σ-parent. We also include 1 in this set if it has a
Σ-parent. This set is called the Σ-fringe.

Root Σ1

~~   
Σ2

||

��

Σ3

�� ��

Σ3

�� ""

∃1

vv ��

∃1

yyss0 1

Terminals

Figure 1: A simple BDD. Solid line indicates true branches, and dashed indicates false
branches. The dotted dividing line indicates edges connecting to the Σ-fringe.

The set of ΣPathsFromRootToTrueTerminal can be calculated by, for example, depth-
first search:
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Algorithm 3 Finds the set of paths from the root of a BDD to the Σ-fringe
1: function ΣPATHSFROMROOTTOTRUETERMINAL(B)
2: Paths← ∅
3: for Path ∈ DepthFirstSearchPaths(B) do
4: if 0 ∈ Path then
5: Continue
6: P ← Copy(Path)
7: P ′ ← Delete∃Nodes(P )
8: Paths← Paths ∪ P ′
9: return Paths

This algorithm is simple and easy to reason about.

Theorem 4. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-count κ, BDDcount returns
κ.

Proof. Every element of P ∈ ΣPathsFromRootToTrueTerminal differs from each other
by at least one Σ-literal, so their extensions are a partition of the space of satisfying as-
signments. Every P can be extended in 2|UΣ|−|P | ways to form a complete Σ-assignment.
The algorithm returns exactly this aggregate count.

Implementations of it may be accelerated by figuring out the number of Σ-paths of
length k from the root to every member of the Σ-fringe by using dynamic programming
rather than explicitly forming each path in ΣPathsFromRootToTrueTerminal.

An alternative perspective about what this algorithm is doing is that it is essentially
projecting out ∃-nodes—and any edges involving these nodes—from the BDD. This pro-
jection involves replacing edges from any Σ-node S to any ∃-node E with a direct edge
from S to 1 . Since we are working with a reduced BDDs with a stratified variable order,
an edge from S to E implies that there is some path from E to 1 using just ∃-variables.
Only the Σ-node part of a path matters for counting, so we bypass this ∃-path with a direct
edge from S to 1 .

When there no more edges from any Σ-node to any ∃-node, then the ∃-nodes are
totally disconnected from the root3 and can be deleted. This completes projecting out the
∃-variables.

The remaining BDD only has Σ-nodes and can be reduced if any nodes have become
trivial—both the true and false branch go to the same node. After projection our problem
can be solved by normal #SAT counting on the BDD. Figure 2 shows an example of
projecting out the ∃-variables from Figure 1.

3The root is always a Σ-node unless the formula has trivial Σ-structure.
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Figure 2: The BBD from Figure 1 after projecting out ∃-variables and eliminating trivial
nodes.

The solver was dramatically slower than any of our other algorithms on every prob-
lem instance—the first step of constructing the BDD with a restricted variable order was
exceptionally time consuming. We deemed it unpromising and discontinued work on em-
pirically evaluating the BDD approach. This approach, however, may still be useful if one
has a particularly quick method of constructing BDDs for a particular application.

3.3.1 mDPLL/C: a #SAT inspired solver.

A more promising approach was to use component caching. Modern caching solvers tend
to outperform BDD solvers and our exploratory experiments with BDD solvers reflected
this.

mDPLL/C (Alg 1) adds two cases (lines 4-8) to mDPLL. If S is not a leaf, then In-
Cache checks a bounded-sized cache of previously counted components for a match.4 If
there is a match the CachedValue is returned.

If S is neither cached nor a leaf, then Shatterable checks S for components using
depth first search. Components are subproblems formed in the Shatter step by partition-
ing UΣ∪U∃ into disjoint pairs U (1)

Σ ∪U
(1)
∃ , . . . , U

(m)
Σ ∪U (m)

∃ so that no clause in φ contains
literals from different pairs. Each component C(i) = 〈 φ(i), AΣ, U

(i)
Σ , U

(i)
∃ 〉 has a formula

φ(i) that is restricted to only involve literals from U
(i)
Σ ∪U

(i)
∃ —the satisfiability of a compo-

nent is relative to this restricted formula. Detection and shattering are expensive—profiling
component caching algorithms reveals that solvers spend a large proportion of their time
doing this work [Sang et al., 2004]—but can dramatically simplify counting in #SAT.

4Fully counted components are cached in a hash table with LRU eviction. Components are represented
as UΣ ∪ U∃ and the set of active clauses (not already SAT) that involve these variables.

14



In both mDPLL and mDPLL/C our implementations augment φ with learned clauses
found by the black box solver. Since we explicitly check S for feasibility in the UnSatLeaf
check this is a safe operation [Sang et al., 2004].

Theorem 5. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-count κ, mDPLL/C returns
κ.

Proof. Add the following two cases to the proof for mDPLL:

• Cached component, by induction the algorithm was correct on the original occur-
rence of the component.

• Internal shattering node, by construction components do not share clauses, so the
Σ∃-assignments made to one component does not effect whether the Σ∃-assignment
made to another component satisfies it. Thus every way of choosing from each
component C(i) a Σ-assignment σ(i) that is total w.r.t. C(i) and has a satisfying
(w.r.t. C(i)) Σ∃-extension τ (i) leads to a Σ-assignment σ =

⋃m
i=1 σ

(i) for S that has
a satisfying Σ∃-extension τ =

⋃m
i=1 τ

(i). Consequently the count of S is just the
product of component counts.

Algorithm 4
1: function POPS(φ,UΣ, U∃)
2: 〈φ′, U ′Σ〉 ← Rewrite(φ,UΣ)
3: return POPS helper(〈φ′, ∅, U ′Σ, U∃〉)
4: function POPS helper(S = 〈φ,AΣ, UΣ, U∃〉)
5: if SatSolve(Pess(S)) then return 2|UΣ|

6: if ¬SatSolve(Opt(S)) then return 0
7: x← Branch(S)
8: Sx ← 〈φ,AΣ ∪ {px,¬nx}, UΣ \ {px, nx}, U∃〉
9: S¬x ← 〈φ,AΣ ∪ {¬px, nx}, UΣ \ {px, nx}, U∃〉

10: return POPS helper(Sx) + POPS helper(S¬x)

3.4 POPS: pessimistic and optimistic pruning search.
The final algorithm, POPS, is based on being agnostic about values of Σ-variables when-
ever possible. If, during a SAT solve, we notice a subproblem can be satisfied with just
the ∃-variables then we can declare the problem to be a SAT leaf. On the other hand, if we
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notice that a subproblem cannot be satisfied regardless of how the Σ-variables are assigned
we can declare it to be a UNSAT leaf.

This pruning is done by SAT-solving two modified formula per subproblem (mDPLL
and mDPLL/C solved one formula per subproblem). The first is the pessimistic problem,
which is SAT only if every way of extending AΣ with Σ-variables is SAT. The second
is the optimistic problem, which is UNSAT only if every way of extending AΣ with Σ-
variables is SAT. We prune if the pessimist is SAT, or the optimist is UNSAT, and branch
otherwise.

Both problems use the same black box solver instance by rewriting the original CNF
formula. This allows activity information and learned clauses to be shared, and saves
memory allocations. We rewrite the formula to essentially allow any Σ-variable to take
one of four values—true (T ), false (F ), unknown but optimistic (O), or unknown but
pessimistic (P ). If a Σ-variable is O a clause can be satisfied by either the positive or the
negative literal of that variable; if it is P , a clause cannot be satisfied by either literal. T
and F behave as usual—only the appropriate literal satisfies clauses.

This four-valued logic is encoded through the literal splitting rule. It replaces every
negative literal of a Σ-variable x with a fresh ∃-variable nx and every positive literal with
a ∃-variable px. A Σ-variable x may be set to any of four values by making different
assertions about nx and px (see Table 2 for the details).

x O T F P
px T T F F
nx T F T F

Table 2: The four assignment values O, T, F and P and how they correspond to the split
literals nx and px

This encoding yields a simple formulation of the optimistic and pessimistic problems:
for some rewritten problem S the purely ∃-variable optimistic problem is

Opt(S) = 〈φ,AΣ ∪ {u | u ∈ UΣ}, ∅, U∃〉

and the pessimistic problem is

Pess(S) = 〈φ,AΣ ∪ {¬u | u ∈ UΣ}, ∅, U∃〉 .

For example, Σx∃y [x ∨ y] ∧ [−x ∨ y] is rewritten as ∃y,nx,np [px ∨ y] ∧ [nx ∨ y]. The
pessimistic problem (i.e., [px = F, nx = F ]) is SAT so we return 2 at the root without any
branching.
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POPS initially Rewrites the problem by literal splitting. A subproblem is pruned if
the overly constrained pessimistic problem is SAT (i.e SatSolve(Pess(S)); SatSolve is the
black box solver) or if the relaxed optimistic problem is UNSAT (i.e. ¬SatSolve(Opt(S))).
Otherwise POPS chooses to Branch on one of the Σ-variables x and solves the child
subproblems Sx and S¬x(see Alg 4).

The proof for the correctness of POPS is very similar to the proof for mDPLL.

Theorem 6. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-count κ, POPS returns κ.

Proof. Consider some subproblem S = 〈φ,AΣ, UΣ, U∃〉 and its rewritten version S ′ =
〈φ′, A′Σ, U ′Σ, U∃〉. (Our branching procedure allows us to track the simple correspondence
between S and S ′.)

• Unsatisfying leaf If the optimistic problem of S ′ is UNSAT then, since is a relax-
ation of S, there cannot be any satisfying assignments for S.

• Satisfying leaf If the pessimistic problem of S ′ is SAT then there exists an ∃-
assignment ε ⊂ L∃ such at least one literal from ε ∪ AΣ appears in every clause
of φ. Therefore, every Σ-assignment σ ∈ ExtΣ(AΣ) for S has at least one satisfy-
ing Σ∃-assignment in ExtΣ,∃(AΣ)—namely: σ ∪ ε.

• Internal node If S is not a leaf then it must have at least one x ∈ UΣ—otherwise
the optimistic and pessimistic problem for S ′ are identical and S must be a leaf.
Branching on x and ¬x in S is equivalent to branching on {px,¬nx} and {¬px, nx}
in S ′. As argued earlier, this partitions the space of Σ∃-assignments so child counts
can be summed.

4 Empirical evaluation

4.1 Problem distributions
We explore the empirical characteristics of the these algorithms by running them on a
number of instances drawn from four problem distributions—job shop scheduling, graph
3-coloring, a logistics problem, and random 3#∃SAT. The distributions touch a number of
properties: job shop scheduling is a packing problem that uses binary-encoded uncertainty,
the 3-coloring problems are posed on dense graphs, the logistics problem is a bounded-
length deterministic planning problem, and random 3#∃SAT is unstructured.
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Job shop scheduling. Schedule J jobs of varying length on M machines with time
bound T . Job lengths are described by P bits of uncertainty per job, encoded by Σ-
variables. These instances capture a setting where a factory is considering a contract based
only on estimates about job length.

Graph 3-coloring. Color an undirected graph where we have uncertainty about which
edges are present: for every edge there is a Σ-variable to disable the edge iff true. Param-
eters are number of vertices V and proportion of edges PE .

Logistics. Similar to the problem in §1, except the delivery requests are deterministic.
Parameters are the number of cities C, the ratio of roads to citiesR, the number of vehicles
V , the number of delivery requestsB, and the time bound T . The undirected road network
is generated by uniformly scattering cities about a unit square and selecting the bC ·Rc
shortest edges. The roads are disabled iff a particular Σ-variable is true. Initial positions
for the trucks and boxes, and goal positions for the boxes, are selected uniformly. Trucks
break down independently at random.

Random 3#∃SAT. Out of V variables, bV · PP c are declared to be Σ-variables. Then
we build bRC · V c clauses, each with three non-conflicting literals chosen uniformly at
random without replacement.

4.2 Experiments
Our experiments ran on a 32-core AMD Opteron 6135 machine with 32×4GiB of RAM,
on Ubuntu 12.04. Each run was capped at 4GiB of RAM and cut off after two hours. The
experiments ran for roughly 160 CPU days.5 Table 3 shows the parameter settings. Each
instance and solver pair was run only once because the solvers are deterministic.6

# Solvers Dist. Parameters Insts per param
1 cachet, mDPLL/C Pure # Jobs J ∈ {1, . . . , 12},M ∈ {2, 3}, T ∈ {3, 4, 5}, P = 2 1
2 mDPLL, mDPLL/C, POPS Jobs J ∈ {2, . . . , 16},M ∈ {2, 3, 4}, T ∈ {6, 8, 10}, P ∈ {2, 3} 1
3 mDPLL, mDPLL/C, POPS Color V ∈ {3, . . . , 24}, PE ∈ {0.7, 0.8, 0.9} 10
4 mDPLL, mDPLL/C, POPS Logistics C ∈ {3, . . . , 10}, R ∈ {1.0, 1.1}, V ∈ {2, 3, 4}, B ∈ {2, 3, 4}, T ∈ {6, 8} 5
5 mDPLL, mDPLL/C, POPS Random V ∈ {10, 15, . . . , 150}, PP ∈ {0.1, 0.2, 0.3}, RC ∈ {2.5, 3, 3.5, 4} 10

Table 3: Parameter settings for the five experiments.

5We attempted to compare our solvers to DC-SSAT [Majercik and Boots, 2005], a SSAT-based planner.
We determined—after personal communication with the authors—that we are unable to faithfully represent
a number of our problem instances in their slightly restricted COPP-SSAT language. The restrictions are
reasonable for planning, but make representation of some #∃SAT formulas impossible—e.g., no purely
#SAT problem can be directly encoded. Consequently, performing a valid comparison with DC-SSAT is
still interesting, but unfortunately out-of-scope for this paper.

6Randomizing might be beneficial, e.g., in branching heuristics.
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We hypothesize that POPS exploits a type of structure reminiscent of conditional inde-
pendence in probability theory or backdoors in SAT (e.g., Kilby et al. [2005]). By solving
the pessimistic problem POPS can demonstrate that—given some small partial assignment
to the Σ-variables and full assignment to the ∃-variables—the remaining Σ-variables are
unconstrained and can take on any value. We call this Σ-independence, and expect it to
occur more frequently in lightly constrained formulas, and in formulas close to being ei-
ther VALID or UNSAT.7 mDPLL and mDPLL/C are generally unable to exploit this type
of structure.

Experiment 1, checking mDPLL/C implementation. In this experiment we demon-
strate that we have a reasonable implementation of component caching by comparing
mDPLL/C and cachet to each other on a 72 instances of purely #SAT job shop schedul-
ing (see Table 3 for details). We capped both programs at 2.1× 107 cache entries.

Figure 3: #SAT job shop scheduling problems with 2 machines, 2 bits of uncertainty and 4 times
steps with varying numbers of jobs.

A clear trend emerged. For each machine (M ∈ {2, 3}) and time-step (T ∈ {3, 4, 5})
the graph is similar to Fig 3: mDPLL/C is an order of magnitude slower than cachet

7There are exceptions. Parity formulas like Σ~x∃y [
⊕
~x] ↔ y are difficult because while they are

VALID, proving this requires reasoning about cases that are difficult to summarize.
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on small problems, but eventually becomes somewhat faster. We suspect that this scaling
behavior has to do with our different way of handling UNSAT components. Problems from
this distribution have an increasingly small ratio of SAT Σ-assignments to Σ-assignments
as jobs are added, so the effect of this difference becomes more pronounced. However,
since many of our problem distributions have this ‘larger problems have a smaller ratio’
property, we believe that Fig 3 argues strongly that our solver specializes to be a reasonable
#SAT solver for the instances that we examine.

Figure 4: Log runtimes for #∃SAT job shop scheduling instances with 2 machines, 2 bits of
uncertainty and 8 times steps.

Experiment 2, job scheduling scaling. The job scheduling instances exhibited a pat-
tern that repeats in most of our experiments: the POPS solver tended to outperform the
other two, especially when instances were close to being either VALID or UNSAT. Addi-
tionally, augmenting the mDPLL solver with component caching did not help—mDPLL/C
was the slowest solver on every job scheduling instance. These results are summarized in
Table 4 (left). Fig 4 is typical of the scaling curves on this distribution. We see that POPS
is dramatically faster than the other two solvers until 6 jobs.

Experiment 3, 3-color scaling. The trends in 3-coloring are similar to those found in
the job shop experiments—POPS is the fastest solver on almost every instance (see Table 4
right). Unlike in the jobs setting, the performance gap between POPS and the other solvers
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Jobs 3-color
mDPLL mDPLL/C POPS mDPLL mDPLL/C POPS

mDPLL - 135 2 - 190 27
mDPLL/C 0 - 0 0 - 2
POPS 136 138 - 173 198 -

Table 4: Number of instances where the row solver beats the column solver. Left: based on 270
job scheduling instances. Right: based on 880 3-coloring instances.

does not close. Fig 5 illustrates this phenomenon for graphs with 70% edge density, but
denser graphs are similar. These trends may indicate that only a small number of the edges
are important to reason about.

Figure 5: Log runtime for 3-Coloring instances on graphs with 70% of the possible edges. Medi-
ans are plotted as a trend line, and individual instances are plotted as points.

Experiment 4, logistics scaling. The logistics experiments are more difficult to sum-
marize than previous experiments, but the left of Table 5 shows that POPS is again the
fastest solver for most instances. mDPLL, however, is faster than POPS for a relatively
large number of the instances—especially compared to previous experiments. Instances
where mDPLL is superior might have common properties—they might lack Σ-independence,
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or perhaps independence is present but POPS fails to exploit it with our current heuristics.

Logistics Random
mDPLL mDPLL/C POPS mDPLL mDPLL/C POPS

mDPLL - 813 222 - 3038 1359
mDPLL/C 124 - 176 77 - 447
POPS 737 783 - 1849 2761 -

Table 5: Number of instances where the row solver beats the column solver. Left: based on 960
logistics instances. Right: based on 3360 random 3#∃SAT instances.

Scaling trends, such as the one in Fig 6, is less strong than the trends in the previous
experiments. This is due to the high variance found between different instances generated
with the same parameter tuple.

Experiment 5, random 3#∃SAT scaling. The right of Table 5 paints a different
picture than the previous experiments: here, neither POPS nor mDPLL seem to be the true
victor. Both beat the other on a number of different instances—although, again, mDPLL/C
seems to be the slowest solver.

Taking a look at the different clause ratios is informative, and the different parameter-
izations have very dissimilar scaling trends. The instances where the clause ratio is 2.5
paints a rosy picture for POPS (e.g., Fig 7—it is the fastest algorithm in 28% of such in-
stances, and is only beaten by mDPLL in 2% of these instances). We note that the variance
for POPS grows quickly with the number of variables, indicating more sensitivity to prob-
lem structure than mDPLL and mDPLL/C. However, if we restrict our attention to more
constrained instances with a clause ratio of 4.0, then we get a much different picture. Here,
mDPLL emerges as the superior algorithm, beating POPS in 29% of such instances while
POPS beats mDPLL only 3% of the time—a reversal of the previous trend.

5 Conclusions
In this paper we introduced #∃SAT, a problem with a number of interesting properties.
#∃SAT can, for example, represent questions about the robustness of a policy space for a
simple type of planning under uncertainty. Not only did we provide theoretical statements
about the expressiveness and worst-case difficulty of #∃SAT, but we also built the first
three dedicated #∃SAT solvers.

We ran these solvers through their paces on four different distributions and many dif-
ferent instances. These experiments led us to three conclusions. First, our algorithm POPS
shows promise on many of these instances, sometimes running many orders of magnitude
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Figure 6: Logistics instances on networks with 1.1 roads per city, 4 trucks, 3 boxes, and
8 time steps. Medians are plotted as a trend line, and individual instances are plotted as
points.
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Figure 7: Log runtimes for random 3#∃SAT instances on graphs with a clause ratio of 2.5 and
10% Σ-variables. Medians are plotted as a trend line, and individual instances are plotted as points.
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faster than the next fastest algorithm, due to its ability to exploit Σ-independence. Sec-
ond, the instances on which POPS solver was slower than mDPLL should serve as focal
instances for understanding the exploitable structure that occurs in #∃SAT. Finally, they
suggest that #SAT-style component caching is detrimental to solving #∃SAT problems.
This does not rule out lighter-weight component detection tailored to #∃SAT’s unique
trade-offs.

There are a number of research directions: our theory about the importance of Σ-
independence should be tested on more problem distributions. Further profiling should
guide the design of better heuristics; POPS, in particular, will benefit from a branching
heuristic tuned to its style of reasoning. Profiling data may inspire additional methods for
exploiting independence structures and symmetry in #∃SAT problems. A final direction
is to build approximate solvers that maintain bounds on their approximation. These may
be necessary for tackling larger real-world applications. For example, we are interested in
using #∃SAT to pose ‘robust bounded model checking’ questions about the yield of com-
puter chips under some noisy fabrication model. Questions like this are currently much too
large for our exact solvers to tackle, but perhaps a carefully designed approximate solver
could quickly find an acceptable estimate.
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