CMU-CS-81-100

Scribe:
A Document Specification Language
and its Compiler

Brian K. Reid

October 1980

Submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in
Computer Science at Carnegie-Mellon University

The author was supported by a Computer Science Department Research Assistantship while a
graduate student, and gratefully acknowledges the numerous funding agencies, including the Defense
Advanced Research Projects Agency, the Rome Air Development Center, and Army Rescarch. which
at various times funded that assistantship.

Support for the CMU Computer Science Deparunent research facility, in which this work was
performed, was provided by the Defense Advanced Research Projects Agency (DOD), ARPA Qrder
No. 3597. monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The
Xerographic printer on which this document was printed, and the workstations at which the diagrams
were produced, were donated by the Xerox Corporation.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, expressed or implied, of the funding agencies, the
U.S. Government, Carnegie-Mellon University, or the author’s advisor or thesis readers.

_ to Laretta
who saw me through it all

Abstract i

Abstract

It has become commonplace to use computers to edit and format documents,
taking advantage of the machines’ computational abilities and storage capacity to
relieve the tedium of manual editing and composition. A distressing side effect of
this computerization of a previously manual craft is that the responsibility for the
appearance of the finished document, which was once handled by production
editors, proofreaders, graphic designers, and typographers, is in the hands of the
writer instead of the production staff.

In this thesis I describe the design and implementarion of a computer system for
the production of documents, in which the separation of form and content is
achieved. A writer prepares manuscript text that contains no mention of specific
format; this manuscript text, represented in a document specification language, is
processed by a compiler into a finished document. The compiler draws on a
database of format specifications that have been prepared by a graphic designer,
producing a document that contains the author’s text in the designer’s format.

To simplify the knowledge representation task in the document design database,
the document preparation task was parameterized into approximately one hundred
independent variables, and the formatting compiler is controlled by changing the
values of those variables. The content of the document design database is primarily
tables of variable names and the values to be assigned to them.

To enable substantial feedback from actual users for validating the design,
parameterization, and general utility of such an approach, the resulting computer
system was built as a production-quality program and documented as a piece of
software rather than as an experiment. Released under the name Scribe, it has been
used as production software at several dozen laboratories. It is therefore possible to
report on its effectiveness as well as its design and construction. I conclude with a
critical retrospective on the project’s basic principles, its implementation, and its
overall strengths and weaknesses as compared both to existing alternatives and to an
envisioned ideal.

A Language and Compiler_for Producing Documents

A Linguistic Note - ii

A Linguistic Note

It is customary in scholarly writing to avoid the use of the first person, usually by
using the passive voice. A sentence such as

“I did not get the same results as did Smith when I performed the
distillation experiment.”

is often transformed into something like

“The distillation experiment did not yield the same results as when
Smith performed it.”

In an attempt to recover some of the clarity of the ongmal sentence a common trick
is to rephrase it in the third person:

“The author’s results at performing the distillation experiment were not
the same as Smith’s.”

This thesis is about writing, publishing, and printing. I must frequently refer to
“the writer” or “the author”, not in an attempt to escape the first person for the
third, but to talk about the writer who is using the computer system that I describe,
or to differentiate an author from an editor or a proofreader in a discussion of
information flow. As a further complication, the word “editor” used in the context
of computer science normally refers not to a human being but to a computer
program that changes text. Furthermore, following the dictum of current style
conventions, the active voice is used [42, p. 13] I have therefore adopted the
following cast of characters in this thesis:

I, me: Brian K. Reid .
the author: Someone who has produced a written manuscript
the writer: Same as the author
editor: A copy editor; a human being
text editor: A computer program to change text

iv

A Language and Compiler for Producing Documents

Table of Contents

Table of Contents

PART I:
Introduction

1. Prior Work
2. Goals and Principles

2.1 Eanguage Goals

2.1.1 Portability

2.1.2 Nonprocedurality

2.1.3 Domain
2.2 Compiler Goals

2.2.1 Quality

2.2.2 Clerical support

2.2.3 Mutability and Definition by Analogy
2.3 Documentation Goals

3. Typography and Formatting

3.1 Letter Placement and Spacing in Text
3.1.1 Letter spacing and kerning
3.1.2 Ligatures
3.1.3 Diacritical Marks

3.2 Lineation and Word Placement’
3.2.1 Word Spacing and Justification
3.2.2 Paragraphing
3.2.3 Hyphenation

3.3 Tabular and Display Material

3.4 Page Layout

PART Ii:
Design and Implementation
4. The Document Specification Language

4.1 Rationale
4.2 Syntax

D ECOEREEEE o o =

35

38

39
41

A Language and Compiler for Producing Documents

4.3 Language Abstract
. 4.3.1 Environments

4.3.2 Document Types

4.3.3 Commands

4.3.4 Declarations
4.4 Character Sets and Font Variations
45 Language Examples
. The Environment Mechanism

5.1 Environment Entry and Exit
5.2 Types

5.3 Dynamic State Parameters
5.4 Static State Parameters

5.5 Pattern Templates

5.6 Definition by Analogy

5.7 An Illustrated Example

. The Database

6.1 Device Data

6.2 Font Data

6.3 Document Format Definition Data
6.4 Libraries

7. A Writer’s Workbench'

7.1 Derived Text

7.2 Bockkeeping and Numbering
7.2.1 Cross Referencing
7.2.2 Indexing

7.3 Document Management
7.3.1 Division into Parts
7.3.2 Separate Compilation
7.3.3 Document Analysis Aids
7.3.4 Draft Editions

7.4 Database Retrieval

7.5 Summary and Prospectus

8. The Compilier

8.1 Overall Organization
8.2 Information Flow
8.3 The Auxiliary File Mechanism
8.4 Data Structures and Data Flow
8.4.1 Low-level data Types
8.4.1.1 Simple Types

42
42
43
45
45
46
43
53
33
54
55
56
56

- 38

58
61
61
64
64
70
71

71
5.
72
73
75
76
T
78
78
30
82

83

83
85
86
87
87
87

Table of Contents vii

8.4.1.2 Records and Storage Management 89

8.4.1.3 Strings 89

8.4.1.4 Association Lists _ 90

8.4.2 High-Level Data Structures 91

8.4.2.1 Manuscript Files 91

8.4.2.2 Fonts 91

8.4.2.3 Environments 92

8.4.2.4 Text Buffers 93

8.4.2.5 Symbol Table 94

8.4.2.6 Dictionaries 94

8.5 Parsing and Error Reporting 95

8.6 Formatting and Justification 95

8.6.1 Word Assembly . 95

8.6.2 Line Assembly 97

8.6.3 Box and Page Assembly ' 97

8.6.4 Hyphenation 9%

8.6.5 Footnotes 100

8.6.5 Floating, Grouping, and Page Break Control 100
PART Ill:

Results, Conclusions, and Future Directions 103

9. An Evaluation of the System 105

9.1 Chronology 105

9.2 Evolution of the Compiler 106

9.3 Evolution of the Manuscript Language 107

9.3.1 Evolution of the Databases 108

10. Critical Retrospective 444

10.1 Lanéuage Goals 113

10.1.1 General Language Issues 111

10.1.2 Portability 114

10.1.3 Domain 116

10.2 Compiler Goals 117

10.3 Documentation Goals 118

References 121

Acknowledgments 127

Glossary | 129

Appendix A. The State Parameters 133

‘A.1 Dynamic State Parameters 133

viii A Language and Compiler for Producing Documents

A.2 Static State Parameters ' 139
Appendix B. Compiler Implementation Details 143
B.1 The Generic Operating System Interface 143
B.1.1 The File System 144
B.1.1.1 Open for Text Input 144

B.1.1.2 Open For Text Output 144

B.1.1.3 Check For Text Input 145

B.1.1.4 Check For Text Output 145

B.1.1.5 Open Unique Text Output 145

B.1.1.6 Close File 145

B.1.1.7 Close and Delete 145

B.1.1.8 Rewind 146

B.1.1.9 Read Text Character 146

B.1.1.10 Write Text Character 146

B.1.2 Address Space Management ' 146
B.1.3 Environment Inquiry 146
B.1.3.1 Determine Date 146

B.1.3.2 Determine Time 147

B.1.3.3 Determine File Date ' 147

B.1.3.4 Determine File Time 147

B.1.3.5 Determine User Name 147

B.2 The Generic Device Interface 147

List of Figures

Figure 1:
Figure 2:
Figure 3:

Figure 47
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:

List of Figures

Information flow in a traditional publishing operation.
Ideal information flow in an automated publishing operation.
Information flow in a typical computerized publishing opera-
tion.

Type slug, showing protruding kerns.

Mechanical (top) and visual (bottom) spacing of the same text.
Derivation of kerning lists from spacing matrix.

A ligature character.

Variations in accent marks of letters within a font.
Paragraph with “rivers” of white space.

Unusual paragraphing styles.

Various schemes for marking text.

Font environments in the basic language.

Paragraph environments in the basic language.

Simple Scribe manuscript. '

Document produced from manuscript in Figure 14.

An elaborate scribe manuscript.

Document produced from manuscript shown in Figure 16.
Manuscript used for the example in Figure 19.

State vector changes during environment processing.
Device definition for a photocomposer (part one).

A font family definition (Times Roman 10).

Sample device font (Times Italic Bold).

Document format definition for a business letterhead.
Document format definition for CMU thesis.

Twenty basic rules for indexers, from Collison [11].
Decomposition of a document into a file tree.

Sample document directory.

Sample cross-reference summary.

Conceptual structure of the compiler.

Code space distribution.

Scribe data flow paths.

Major data flow paths within the compiler.

W b N

RoB8iER

29
29

49
50
51
52
59
59
62
65
65
67
68
74
76
79
79
84

85
38

A Language and Compiler for Producing Documents

Figure 33: Document specification language grammar.) | 96
Figure 34: Word tokens, showing bounding and spacing boxes. 98
Figure 35: Use of bounding and spacing boxes in line assembly. 98

Introduction : ' 1

Part |

Introduction

Throughout history the reproduction of written material has been a craft
requiring an enormous amount of tedious handiwork and a certain amount of
intelligence and artistic sense. Beginning with Gutenberg’s automation of the
process of shaping the letters, various technological advances have reduced the
tedious portions of the printer’s art, but few inroads have been made into its more
cerebral parts. This thesis describes a research project into automating those parts of
the printing process that have traditionally required too much skill or artistry to be
properly mechanized.

The production of modern-day printed material follows an information flow
similar to that shown in Figure 1. An author types his work in rough form, and
submits it to an editor. The editor marks various changes, and submits the marked
manuscript to a typesetter, who produces typeset galleys. These galleys are then
proofread against the original and possibly returned to the typesetter for error
correction, and finally passed to the page makeup staff, who cut the galieys into
page-size pieces, placing figures and footnotes and adding page numbers and other
“running head” material. If the book is to have an index, then page proofs are
hurriedly sent to an indexer, who produces the index for the book from the pags
proofs. The index is then rushed off to be typeset and made up into pages and
added to the end of the book, which is then printed.

A Language and Compiler for Producing Documents

/—h Document design

Typographic expertisz \

N | |
/_~ Lavout expenige \
\l Page \

Flow of text
- Makeup

N\

N

Finished Document

Figure 1: Information flow in a traditional publishing operation.

/—.— Document design
/_‘ Typographic expertise
/\ Layout expertise

Computer system

Flow of text

Ny

Finished Document

Figure 2: Ideal information flow in an automated publishing operation.

Introduction 3

There are numerous sources of cost and delay in this production scheme. When
the text is passed from each person to the next, errors and misunderstandings
inevitably occur. Various tedious aspects of the page layout, such as footnote
placement and cross-reference resolution, need to be completely redone if small
changes to the text cause pagination to change. The index cannot reasonably be
produced until the book is completely finished and all of the pagination decided.

We would like to be able to perform all of the tedious production work with a
computer, so that the flow of work would be as shown in Figure 2. In comparing
Figures 1 and 2, note that they differ only in the substitution of a computer system
for several of the currently-manual processing steps.

Document design
Typographic expertise

Layour expenise

Text. design.
Compuier sistem
typographic expertise.

and farout expeninse

N

Finished Document

Figure 3: Information flow in a typical computerized publishing operation.

Previous atiempts at complete computerization of the printing process, while
technologically successful, have lead to a disruption of the traditional flow of
information and expertise. Figure 3, for example, shows the flow of information
and sources of expertise in a typical computerized publication operation. The
author is now responsible for essentially all of the final appearance of the document,
since the control codes that determine the appearance of the finished document are

4 A Language and Compiler for Producing Documents

intermixed with the author’s text, and often typed by the author himself. While
many authors enjoy this involvement in the physical and artistic aspects of the
printing of their work, not all are interested or qualified [15].

The Scribe document specification language was designed to permit writers to
prepare text in a relatively informal manuscript form that contains little or no
typographic information. This language is processed by the Scribe compiler, which
supplies all of the missing typographic detail to produce the final document. This
first part of the thesis is devoted to a discussion of the ideas behind the language
design and the principles behind the compiler design, and to the problems that need
to be addressed by any document preparation system, whether automated or
manual. Chapter 2 details the goals for the Scribe language and compiler. Chapter
1 sketches the prior work in computer document production. Chapter 3 discusses
the issues raised and problems to be solved in document formatting.

Prior Work 5

Chapter 1
Prior Work

The early applications of computers to document formatting were concerned
either with computer control of commercial typesetting equipment or with crude
monofont formatting for a line printer. Very little of the pioneering work was
recorded in the literature, but one can get a sense of the goals indirectly from the
tone and intended audience of the instruction manuals.

The earliest text-formatting program known to me is the Print program com-
pleted in 1959 at Johns Hopkins University by R. P. Rich. It ran on an IBM 1401
computer, and produced output for an all-uppercase line printer [38]. Interestingly
enough, it was not designed explicitly as a document preparation program, but as an
information retrieval aid for a simple database system—it obviated the need for the
textual data being stored to be in any particular format.

In 1963 Barnett, Moss, Luce, and Kelley reported the successful completion of a
computer-controlled typesetting system that operated an opucal photocomposer.
The input commands in their formatting language corresponded to the physical
capabilities of the typesetting machine: there were commands to change fonts,
change magnification, position text, and so forth [4, 5]. Also in 1963, a formatting
program for the IBM 7090 called Text90 became available. Produced by G. Bumns,
it formatted text for a line printer. and with special print trains was capable of
generating mixed case and special symbol output from punched-card input.

These two programs, one representing the point of view of commercial type-
setting and the other the point of view of a software documentation writer, were the
opposite ends of the spectrum in terms of their goals. Barnett er al’s program placed
typographic quality as the foremost goal, requiring the user to learn the nuances of
the typesetting machine and to communicate with it in a language that is by modern
standards unintelligible. Text90 placed simplicity of input as a high-priority goal,
and since it could not achieve quality typography on its output line printer, it almost
totally ignored questions of typography, concentrating instead on control and
simplicity. The designers of all formatting programs must steer a compromise path
between these fundamentally conflicting goals of simplicity and power, and in

6 A Language and Compiler for Producing Documenis

studying these and later programs it is worthwhile to note the compromises of
simplicity that were made in the interests of power and the compromises of power
that were made in the name of simplicity.

Manuscript conventions used in Text90 have carried over into many similar
computer text formatters. J. Saltzer's Runoff program developed at MIT for the
CTSS system, which was operable by 1966, is the direct ancestor of most of the next
generation of formatters such as Roff, TRoff, Script, Pub, and Text360 [20, 34, 43].
The formatting programs in this family all used the input language convention that a
flag character in the first position of an input record denoted a command and other
lines were text. The early programs in this family were restricted to monofont
printing devices; TRoff and Pub later provided multiple fonts and character sizes.
While the basic command structure of these programs was device-oriented and
tedious, some of them provided a macro facility that allowed an ambitious user to
produce high-level commands by macro combinations of the existing commands.

Barnett's work at MIT led tc the development by P.Justus of the Page-]
formatting system at RCA, as part of the development effort for the RCA
VideoComp photocomposition system [22, 35]. Justus later produced Page-2, a
successor to Page-1. RCA sold its interests in the VideoComp hardware and
software 10 Information International Inc. (I11), who continued the software devel-
opment on Page-2. Bell Labs’ TRoff and III's Page-2 are currently the most widely
used programmable photocomposition languages. A successor to Page-2. named
Page-I1], has recently been released.

In 1965, M. V. Mathews and J. E. Miller of Bell Labs reported a syvstem for
editing and typesetting that involved a high-resolution oscilloscope with a camera
mounted in front of it [27]. Although it used a display tube, which in current
technology is associated with interactive systems, the Mathews and Miller system
was a batch system. It was similar in philosophy to the Barnett program. but did not
have the commercial-grade typesetting machine available as an output device.
High-quality mathematical and oriental-language typesetting was achieved by A. V.
Hershey, of the Naval Weapons Laboratory (Dahlgren), who produced both u
typesetting system and a typeface design system that could handle calligraphy and
oriental languages as well as normal type [19].

Until about 1975, the trend in document preparation programs was towards
increasing programmability by macros or interpreted commands. Essentially all
were compiler-model programs, which is to say that they operated on a prepared
manuscript file to produce the output file, with no interaction with the user. (The
Quids interactive documentation system developed at Queen Mary College by
Coulouris et al. is a notable exception [12].) The DPS program developed at the
University of Maryland by K.Sibbald in 1973 epitomizes the algorithmic

Prior Work s

approach [40]. Its manuscript language was imbedded in an interpreted prog-
ramming language similar in style to Snobol; almost every user-level command was
" microprogrammed in this interpreted language. Other notable algorithmic systems
are the Script family of programs [20], and the Texture system developed by
M. Gorlick er al. at the University of British Columbia [14].

These early formatting programs had the common property that they all proc-
essed a low-level device-dependent input language. The user needed to modify the
manuscript file to format for a different device, and needed to be aware of the
detailed properties of the printing device if he wanted to use them. In 1975 the first
high-level formatting system was reported by B. Kernighan and L. Cherry [23].
Their EQN system for typesetting mathematics processed a high-level machine-
independent language into a formatted mathematical expression, regardless of the
particular printing device used. EQN was actually implemented as a preprocessor to
TRoff, but that fact was essentially invisible to a casual user. The concept behind
the EQN system—a high-level problem-domain language with a processor that
handles all of the device-dependent details—is one of the major concepts embraced
by the work reported in this thesis.

The Yorktown Mathematical Formula Processor, developed by N. Badre at the
T.J. Watson research center, is extremely similar to EQN in concept and
implementation [3]. Another high-level system conceptually similar to EQN was the
Generalized Markup Language (GML) developed starting about 1970 by
C. Goldfarb at the IBM Cambridge Scientific Laboratory, and first available in
1978 [13]. It is a modification to the basic IBM Script system that allows automatic
database retrieval of appropriate macro definitions according to the printing device
selected.

Also reported in 1975 by B. Lampson was the Bravo system [25]. Although its
only description is a user’s manual that has never been published, the Bravo work
has strongly influenced the design of text editing and formatting programs [33]. One
expects that as computer hardware capable of supporting such systems becomes
generally available, its influence will be more obvious. Bravo is a display-oriented
formatting editor, running on a raster-display graphics terminal capable of display-
ing an entire page of text in actual size. The essence of Bravo is the maintenance on
the screen of a faithful image of the finished document with all fonts, spacing, and
letter sizes current on the screen. As the text is changed, the display is quickly
updated to reflect that change. Unfortunately, the size of Bravo's video screen (8
inches wide), the resolution with which dots can be displayed on it (80 per inch),
and the useful resolution of the pointing device used to select letters on it (about
0.05 inches) led to an implementation of Bravo in which the screen is only a crude
approximation of the final output; in particular, line breaks do not appear in the

8 A Language and Compiler for Producing Documents

output as they did on the screen. As a result, Bravo is nearly useless for high-
precision formatting.

As computer-controlled typesetting matured, more attention was turned to the
quality of the typesetting. N. E. Wiseman, C. I. O. Campbell, and J. Harradine
developed a book-production system at the University of Cambridge for the
Cambridge University Press; it was reported in 1978 and is in production at the
University Press [48].

In 1978, D. E. Knuth of Stanford University described his landmark TEX (Tau
Epsilon Chi) system [24]. TEX was designed to give a writer the ability to produce
technical manuscripts of the highest quality. Intended primarily for the production
- of books and other high-quality manuscripts containing large amounts of mathe-
matics, it incorporates and expands upon many of the fundamental ideas of EQN in
a formatting program that takes typographic quality seriously. The resulting system
is very successful; and has proven to be extremely powerful in the hands of expert
users. Many of the algorittms used internally by TEX for line breaking, hyp-
henation, page layout, and justification are notable improvements over the classical
algorithms used in essentially all prior work as well as in Scribe. These algorithms
are mentioned briefly in appropriate places in Part II of this thesis.

While TEX is the asymptotic case of a system that is willing to sacrifice in the
interest of quality of the finished product, programs at the other
asymptote—systems that sacrifice everything in the interests of simplicity—have
been in use for some time in the publishing industry. Usually called idior rext
systems in the printing industry, they process raw text that contains no commands at
all, to produce galley files for commercial typesetting systems. These galley files
must then be manually edited to override mistakes made by the idiot text system,
but the bulk of the work—input of the actual text characters—does not need to be
repeated. None of these systems is described in the literature.

Goals and Principles 9

Chapter 2
Goals and Principles

The ideal text formatting system is a good secretary. He can be given rough
handwritten manuscript text and from it produce a polished document in approp-
riate form. A near-perfect separation of content and form is achieved: the writer
provides only the text and the secretary performs all of the formatting, though
possibly the secretary is assisted by clues or remarks placed in the text by the writer.

The fundamental goal of the research reported in this thesis was the design,
construction, and documentation of a computer document preparation system that
offers the same level of support for a writer that a good secretary does. Ideally, the
writer would provide only text, and the computer system would correct spelling and
grammar and perform all of the formatting.

The methodology used was to design a document specification language that
embodied the kinds of information that a writer might reasonably be willing to
convey to a secretary, and then to devise a compiler capable of compiling that
language into an actual finished document. In the course of designing the compiler,
it was found necessary to incorporate into it various specialized knowledge about
typing and formatting as well as a more general mechanism for adding new
knowledge to the compiler. The overall development strategy was to preserve the
simplicity and domain of the specification language regardless of the complexity
needed in the compiler to compile that language properly.

Since the overall project goal involved the construction of a working compiler for
release to actual users, various subsidiary goals for that construction were adopted.
Most of these goals amount to good engineering practice rather than innovation, and
would be equally applicable to other compiler-like programs. Some of the goals
specific to the document production task were motivated by negative experience
with earlier document production systems.

After suitable reflection on the aggregate of project goals, design principles, and
physical limitations on the available editing and printing devices, the following
outline was set for the entire Scribe effort:

10 A Language and Compiler for Producing Documents

o Design a document-specification language of documents that frees the-
author from the need to specify any output format details but encour-
ages him to identify and label the components of a document.

« Design and implement a compiler to process that language into finished
documents. The compiler is to provide all of the details of formatting
that were omitted from the manuscript.

o Design a knowledge representation and retrieval mechanism for the
storage of these format details that will permit the compiler to be made
to produce a wide range of document formats with reasonable efficiency
and grace, and that will permit users of the system to define their own
document formats or modify existing formats.)

o Determine how to teach the system to novices, and write an introductory
manual that presents the material properly. Since the system differs
from existing similar systems in concept and not just in detail, the
manual should also be able to present the material to people who are
experienced users of other systems. Two different approaches might be
needed for these two different audiences. '

Users rarely perceive a system in terms of its separate design components, but will
instead see and use it as a monolithic whole. Various goals were therefore set for the
whole Scribe system, as understood and used by its user community. These goals
flavored the design of the language, the structure of the compiler, and the
organization of the manual. Although these goals were set as guides for the
implementation, they are actually goals for the user’s perception and style of use of
the finished system.

The remainder of this chapter is devoted to more detailed discussion of those
goals, principles, and beliefs that together motivated the design of the Scribe
language and shaped the implementation of its compiler. Chapter 10 reviews these
same goals, with commentary and analysis of how realistic they were and how well
the finished system managed to meet them.

Goals and Principles 1

2.1 Language Goals

' The Scribe document specification language is the language in which manuseript
- files are prepared. The compiler produces finished documents by processing files in
this language. We want the document specification language to be able to serve
both as the input to the compiler and as a communication language for the
transmission of documents from one site to another. Furthermore, the language is
to be nonprocedural, which is to say that it should direct the final result of the
compiler without regard to the details of processing needed to achieve that result.

Nonprocedurality means that “statements” in the document specification lan-_
guage should be viewed not as imperative commands to the compiler, but as goals
for the compiler. Furthermore, since the substantive part of a manuscript file is its
text, the specification language is best viewed as a commentary on that text, as a set
of labels or annotations marking sections of it. These labels can be very abstract: by
combining the role label with specific goal information from the database, the
compiler can determine the necessary or appropriate concrete action.

The document specification language must be able both to label regions of the
text, as for example “this is a chapter heading”, and to mark specific points within
the text, as for example “a footnote reference goes here”. The compiler or human
reader must be able to distinguish unambiguously the text from the text labels.
More conventional document production systems—publishing houses, for
example—use visual methods, such as colored pencils or marginal notations, to
distinguish text from labels. Since our language must be representable as a linear
stream of characters, there must be some way of distinguishing text characters from
label characters.

2.1.1 Portability

If the manuscript form of a document is not tied, explicitly or implicitly, to a
particular printing device, we say that it is device-portable. If it contains nothing
that ties it to a particular computer, then we say that it is site-portable. The mention
of specific margins or amounts of spacing between lines or the mention of specific
fonts, for example, will make a document be dependent on a particular printing
device; the mention of file system directory names or “library” files not part of the
manuscript will make it be dependent on a particular computer site.

If a manuscript file is both device-portable and site-portable, then it can be
transmitted to another site as a means of communicating the document without the
sender and receiver needing to agree on compatible manuscript conventions. The

12 A Language and Compiler for Producing Documents

receiver can compile it locally into a document, using whatever printing device is
convenient. ' :

We therefore require that the document specification language used in manu-
script files be completely site-portable and device-portable, in order that it can be
used as a document communication language as well as a document specification
language. The necessary device-dependent details must be filled in by the compiler,
which must therefore be sophisticated enough to generate the concrete device-
specific document from an abstract device-independent manuscript.

There are two different interpretations of the notion of device portability. The
first might be called “imitation of the ideal”, and the second might be called
“making do with the resources at hand”. The first approach, imitation of the ideal,
embraces the notion that there is one true output format for a document, namely the
one that would be produced by a typesetter with an unlimited supply of fonts.
Lesser printing devices are just an imperfect imitation of this ideal format, and one
.achieves portability by imitating the ideal format as closely as possible on the
printing device at hand. The second approach, making do, assumes that the user is
not interested in printing an imitation of a typeset document on some lesser
machine, but rather in producing something that is maximally readable and
attractive on the printing device at hand. The design goal for Scribe was to produce
the best output for each kind of printing device, rather than to imitate the ideal.

2.1.2 Nonprocedurality

If the primitives provided by any system, whether digital computer or bank teller
machine, coffee percolator or kitchen stove, do not directly fulfill the needs of the
user, then he must synthesize the desired behavior by combining the primitives
provided into patterns that yield the desired effect. Systems that are designed to be
general-purpose, such as digital computers and kitchen stoves, typically provide
low-level primitives that must be combined into higher-level functions before they
are of any direct value to the end user. Systems that are designed to be special-
purpose, such as automatic bank teller terminals and coffee percolators, provide the
functonality needed by the intended user as direct system primitives.

There is clearly a continuum of possibilities between purely procedural and
purely nonprocedural systems. If a system can be used directly, without synthesis,
to solve the problem at hand simply by our describing to it the desired effect, then
we call it purely nonprocedural. A vending machine is a pure nonprocedural system
in the domain of food distribution: the desired result (candy bar, peanuts, gum, ice
cream) is communicated to the system by way of its specialized keyboard, and the

Goals and Principles __ 13

mechanism within it delivers up the candy bar by means invisible to the user. The
details of the algorithm used by the machine to locate and deliver the candy bar vary
with its storage allocation schemes and implementation quirks. Their varying effects
are sometimes discernible by an alert user in terms of delays or noises, but the result
is normally the desired food item.

If a system cannot be used directly to solve the problem at hand by our just
describing the goal to it, then it is at least partly procedural in that problem domain.
Sometimes a system can be lured into solving a problem by giving it a series of sub-
goals, each of which it is able to achieve, and the sequence of which will yield the
desired effect. For example, there is rarely a key marked “tea with cream™ on a
beverage vending machine, though there is one marked “tea” and another marked
“extra cream”. By depressing first the “extra cream” key and then the “tea” key, tea
with cream can be had. This is a simple procedure requiring little strategy and little
knowledge of the internals of the machine in order to achieve a goal that is closely
related to the domain that the designer intended for the machine.

Sometimes considerable strategy and knowledge of the implementation of a
system can be used to coerce it into solving a problem substantially outside its
originally intended domain. For example, a certain ice cream vending machine can
often be used to get exact change for bus fare, assuming that a supply of quarters is
available (bus fare is sixty cents), and that a possibly-borrowed “seed nickel” is
available. The ice cream machine is designed to sell ice cream at a price not to
exceed fifty cents. Its coin accepter will accept fifty cents in any form, and will then
stop accepting new coins. If the coin release button s pushed while fifty cents or
less is in the coin accepter, then all of the original coins will be returned. However,
if a single nickel is placed in the machine, followed by two quarters, the second
quarter will exceed the fifty-cent retention threshold of the coin accepter. Rather
than retaining the second quarter in the coin accepter, the vending machine will
drop it irretrievably into the coin box, and record its amount in a register. An
attempt to insert a third quarter will be rejected, since the accepter is now over the
fifty cent threshold. If the coin release button is now depressed, the ice cream
machine will return the original nickel, the original first quarter, and five nickels
from some internal supply. This process can be repeated indefinitely until the
machine runs out of nickels or the would-be bus rider runs out of quarters.

Althiough the change-making example is relatively far-fetched, it is a good
example of a system that is intended to be purely nonprocedural in a fixed domain
being used procedurally to solve a problem radically outside that domain.

We require the language used to specify documents to be nonprocedural in the
document specification domain, ie., that a writer must not have to synthesize
needed functionality from the primitives at hand, but should be able to use them

14 A Language and Compiler for Producing Documents

directly. This implies specialization: though suited for the specification of many
documents, this language might not be appropriate for genmeral computational
purposes, or even for the specification of certain kinds of documents such as
airplane tickets or road maps.

2.1.3 Domain

The scope or problem domain of a low-level procedural system is not well-
defined—it can be used to solve those classes of problems for which its users are
willing to synthesize solutions. There is generally a “kernel” domain that corres-
ponds to the problems that the system designer had in mind when designing the
primitives, but it is rare to see the use of a successful low-level procedural system
restricted as its designer intended. The domain of a higher-level, more nonpro-
cedural system is much more sharply defined.

Document formatting tasks are particularly hard to characterize, since their only
common property is that they include marks on paper. A crossword puzzle is a
document, and so is a display advertisement, but the algorithms executed to produce
them and the criteria for success are completely different. '

Scribe was designed to be able to handle the vast majority of the document
preparation tasks found in a computer science research environment: academic
papers, instruction manuals, homework assignments, an occasional textbook, Chi-
nese recipes, business letters, and so forth. There was a conscious decision not to
make it completely general so that it could be adapted to the production of all
documents, but rather to assume a reasonably fixed domain and then try to
characterize (and later parameterize) that domain. 1 considered it far more
interesting to be able to do a really good job of producing 95% of the documents
that people wanted than to be merely able to produce anything.

2.2 Compiler Goals

The Scribe compiler is to serve two purposes: 0 compile the author's
specification into a document, and to provide document management and book-
keeping assistance to the author during document development.

Goals and Principles : . -

2.2.1 Quality

In order to attract and keep users, the compiler must have a production-quality
aura about it. This includes robust recovery from abject errors in the manuscript,
responsible and accurate diagnostics phrased not in the compiler’s terms but in the
user’s terms, and enough speed and reliability that people can actually use it.
Nevertheless, the prototype compiler developed during this research work, even
though it was expected to be released as software within Carnegie-Mellon’s
Computer Science Department, did not have ambitious goals with respect to speed
or workmanship. It was instead to be organized in such a way as 10 permit
maximum flexibility, encouraging experimentation with the language.

2.2.2 Clerical support

Much writing, especially technical and expository writing, requires a great deal of
clerical support. Technical material is normally cross-referenced and indexed.
Documents contain glossaries, bibliographies, tables of figures, or other derived text
Documents often contain fixed or boilerplate material that is assembled from
various sources; it is useful to be able to postpone that data retrieval as long as
possible in order that the most recent version be used, and that the manuscript file
not contain an obsolete copy of the text. '

We want the Scribe compiler to take on as many of these clerical support tasks as
possible, both to free the author for more important work and to ensure- the
accuracy of the finished product. 'In extreme cases, the actual manuscript might
contain no text except a title; the remainder of the document would be assembled
by the compiler by appropriate database retrieval.

2.2.3 Mutability and Definition by Analogy

The mutability of a system is its ability to sustain gracefully various changes in its
behavior. Many high-level computer systems permit the user to extend the system
or redefine components of it by supplying a complete definition or redefinition of
the procedure that implements them. The mutation of a system by reprogramming
requires that one understand its primitives and be able to synthesize the desired new
behavior by appropriate procedural combinations of those primitives, which is
precisely the same set of skills needed to program it in the first place.

We require that the user be able to make incremental modifications or definitions
by analogy; the user skills required to make such a mutation must be proportional to

16 A Language and Compiler for Producing Documents

the complexity of the change and not the complexity of the resulting changed
object. Since the user is not expected to be able to program, mutation by
reprogramming is not an acceptable method. The target users for this document
preparation system certainly should not be expected to learn an elaborate definition
language in order to be able to make small changes to the system behavior.

An incremental modification is a request to “change the definition of X so that the
z property of its behavior is now g, instead of p,; leave all other facets of its behavior
alone.” A definition by analogy is a request to “define ¥ to be just like X, except that
its z property is g, instead of p,.” Less formally, an incremental modification is a
specification for change to the definition of some standard compiler function that
specifies only those characteristics of it that should differ. The parts of the compiler
function that are not mentioned one way or the other in the change request are left
untouched. Typically, the compiler’s database would contain a definition for some
relatively complex entity. Rather than providing a complete redefinition of the
entity, the user specifies in his manuscript file an incremental modification that
modifies that entity for the duration of the compiler run.

2.3 Documentation Goals

The user documentation is an essential part of any system design, but it is too
often left until after the construction is completed. A comprehensive tutorial
manual was an integral part of the system design of Scribe, and it ultimately played
a crucial role in the evolution of the design of the system.

As compiler development and language changes progressed, the User’s Manual
was updated in parallel, though not necessarily on a daily basis. Any proposed
modification to the specification language that was not easily documented, or whose
documentation would not fit harmoniously into the existing manual, was rejected for
that reason alone. The manual represents the view of the system seen by the user,
and any complexity of the system that generated complexity in the manual, with
resulting complexity in the user’s mental model of how the system works, was
considered a compromise of the design integrity of the system and therefore a bad
idea.

Faithfulness in the maintenance of the manual during periods of system design
activity, without resorting to “fine print” detailing the exceptional cases, is the best
single control against the design evolving into the baroque morass of details and
“features” that befalls many systems as they mature.

The user’s manual for a system is an informal specification of its behavior. While
valuable as a tool for preventing the design from becoming unmanageable, it is rare

Goals and Principles ' . 17

to find a situation in which the implementation of a system does not force changes in
its specification. One reason for this is that the informality of the user-manual level
of specification often masks inconsistencies in the design. The use of a more formal
specification scheme as part of the design process, as suggested by J. Guttag and
1. J. Horning [18], could substantially improve the effectiveness of this sort of
watchdog methodology. The design work on the Scribe project was completed
before I became aware of the work of Guttag and Homning, else I would have
attempted to use their methodology.

The specific goals for the user documentation were to produce three distinct
documents aimed at different audiences. The User’s Manual was to be a tutorial
that made no assumptions about the background of the reader other than that he
could use a computer and a text editor. The User’s Manual was intended to be read
front-to-back by a beginning user. The Pocker Reference was to be a summary of
the information contained in the User’s Manual, bound in such a way that it will fit
in a pocket, and organized alphabetically by function. The third manual was to be
the Expert’s Manual, an advanced manual containing information that expert users
and system maintainers will need in order to add to the database. |

18

A Language and Compiler for Producing Documents

Typography and Formatting . ‘ 19

Chapter 3
Typography and Formatting

The preeminent English typographer Stanley Morison defined fypography as “the-
art of rightly disposing printing material in accordance with specific purpose; of so
arranging the letters, distributing the space, and controlling the type as to aid to the
maximum the reader’s comprehension of the text Typography is the efficient
means to an essentially utilitarian and only accidentaily aesthetic end, for enjoyment
of patterns is rarely the reader’s chief aim” [31, p. 1]. A good typographer strives to
produce documents that are both beautiful and legible. Where the two conflict, he
must normally choose legibility.

Many illuminated manuscripts are beautiful at the expense of legibility, and
many mass-distribution- publications such as newspapers are legible without being
noted for their beauty. Numerous studies have been published of the legibility of
written material, each reaching a slightly different conclusion.

For example, in a classic textbook on typography and graphic design, Arthur
Tumnbull has concluded that readers find most legible that which is most familiar to
them, and that all other factors are secondary [44]. Morison insists that “The
typography of books requires an obedience to convention which is almost absolute”
and “for a new font to be successful, it has to be so good that only very few people
recognize its novelty” [31, p. 7]. S. H. Steinberg muses that “A book which, in some
way or other, is ‘different’, ceases to be a book and becomes a collector’s piece or
museum exhibit, to be looked at, perhaps admired, but certainly left unread” [4], p.
28].

As typographic skill is transferred from the artists who devised it to the craftsmen,
apprentices, and machines who will be performing it, that which was once just the
artist’s taste and judgment must te codified as rules, for the benefit of those not
gifted with an artist’s instincts. Various typographic traditions have evolved into
numerous standards of correct practice; most of them are expressed as positive or
negative constraints on the finished document. For example, one standard for the
factoring of lines into pages requires that the last line of a paragraph not appear by
itself at the top of a page [1].

20 A Language and Compiler for Producing Documents

Not all of the published rules are consistent with one another. A textbook for
printers published in 1915 specifies that the inter-word spacing be reduced by 15
percent when the last letter of the first word and the first letter of the second word
both have ascenders or descenders, €.g., between “shall be” or “and probably.” [2, p.
40]. A recent monograph on typographic design specifies that in precisely the same
circumstance, the inter-word spacing be expanded by the same amount [7, p. 33].

Printers have nevertheless traditionally been loath to reduce their artistic princi-
ples to a set of simple constraints; indeed, one reference work for printers explains:

“Owing largely to the conservative ideas prevalent among printers in
general, it is somewhat difficult to lay down hard and fast rules.” [2, p. 39]

Even if the rules cannot be made hard and fast, they must at least be made rigorous
and consistent, as specific constraints, before they can be used to guide directly any
formatting program. It doesn’t really matter which set of rules is used, but there
needs to be some set. '

This chapter is a discussion of the major and interesting traditions for the
typography of Western languages, with consideration given to the constraints that
those traditions place on computer programs engaged in typography. Where
appropriate, data structures or algorithms appropriate for their implementation are
discussed. Various terms from typography and printing are used without much
explanation; the reader is referred to the glossary on page 129 for their definitions.

3;1 Letter Placement and Spacing in Text

The requirements on individual letter positioning and spacing are relatively
insensitive to context, requiring at most the consideration of a small amount of
context near the letters in question.

3.1.1 Letter spacing and kerning

Classical type fonts were designed around the idea that each letter was on a
rectangular slug, and the width of that slug determined the width of the letter. The
width was thus always the same for any letter, regardless of the context in which it
was used. Figure 4 shows a drawing of one such rectangular type slug. The
semicircular notch at the bottom of the body helps the typesetter more easily detect
upside-down letters. Some type faces, such as italic, are slanted enough that parts of
the letter needed to protrude beyond the edges of the slug. These protrusions, are
called kerns [44, p. 58]. When a type slug having a kerned letter is placed next to

Typography and Formatting 21

Kern N

Type body

Type size

Figure 4: Type slug, showing protruding kerns.

Variable
Variable

Figure 5: Mechanical (top) and visual (bottom) spacing of the same text.

22 A Language and Compiler for Producing Documents

another slug, the kern overlaps the body of the second slug, providing a closer
spacing than could otherwise be achieved. '

When letters are not stored on rectangular slugs and are thus free of mechanical
constraints on spacing, better spacing can be achieved. The term “mechanical
spacing” refers to letters that have been spaced exactly as if they came from type
slugs. See, for example, Figure 5. The words in the top row have been set according
to a simple mechanical spacing, while the words in the bottom row have been set
according to a more complicated “visual” spacing algorithm, in which the spacing
between letters is dependent on those letters. Similarly, the amount of space to be
left after a period depends on the capital letter starting the next sentence: ifitisa T
or a Y or an 4, for example, the amount of space to be left after the period is
reduced by a certain amount [44, p. 59].

If letters are mechanically spaced, with the amount of space given to each letter
independent of its context, then a simple table of widths is sufficient to represent a
font. If the actual printed width of a letter differs from the emount of space it is to
be given on the page, as for example the script letter /' , then a separate table of
spacing increments is needed.

For the compiler to be able to implement non-mechanical spacing, the context
that determines spacing must be bounded, and preferably fixed. For all practical
purposes in body-sized text, it is sufficient to compute the space between two letters
without considering any letters but those two. Regardless of how this distance is
derived, it can be stored in a matrix indexed by letter pairs and used to determine
the spacing. Although the complete nX n spacing matrix would be large (n for most
fonts is one or two hundred), it is sufficiently regular that much more space-efficient
encodings of the information can be used.

By subtracting the modal (most frequent) element from each row of the spacing
matrix, and placing that modal element into the corresponding element of a vector,
then the spacing matrix is reduced to a space-adjusting matrix or kerning matirix,
and the vector so derived becomes a table of widths. The kerning matrix will be
relatively sparse, and it will contain regularities based on the equivalence classes of
the left and right edges of letters: the spacing between a lefi-hand letter and those
with vertical edges (b, B, P, N, h, etc.) will normally be the same. The sparse
kerning matrix can then be represented with short lists of kerning values by
equivalence class of the letter’s left edge, attached to the width vector. Figure 6
shows the various steps in this derivation.

Tvpography and Formatting. 23

a b c d & .., B
a [15 (13 |16 |15 |15 115
b M2 (13 (12 |12 |12 13
¢ [14 15 |14 |14 |14 15 -
d 15 (12 |15 |14 |14 15
e M2 |12 |12 |12 |12 11
f 1 IR 111 2 12 extract modal element
z 115 |16 |15 |15 |15 17
a b ¢ d e z
5 [18 0o [2]1 o o 0
b |12 0 1 0 0 0 1
c 114 0 1 0 0 0 1
d |15 + 0 3 0 1 1 0
s |12 0|0 0lo0 0 1
f (1 0 1 0 0 1 1
z |13 0 1 0 | 0o | O 2
collapse zeros
o [T] —(b=2c=1...)
b [12 | — (b=L....2=])
c i b=l z=1)
g 115 | —@=3d=Le=L...)
& |12 | waillousyz=1)
f |11 — (b=1,e=_1 z=1)
;|15 | — ®b=L....2=2)

Figure 6: Derivation of kerning lists from spacing matrix.

24 A Language and Compiler for Producing Documents

3.1.2 Ligatures

In certain fonts, notably script letters and body fonts with serifs (Figure 4 shows
serifs), the very shape of letters changes when they are used in certain groups. For
example, when the letter i is used following the letter fin a Roman alphabet with
serifs, it is customary to omit the dot over the ;, letting the dot that is part of the top
of the fserve that purpose: “fi”. This shape-change is normally handled by
designing a ligature character, which is a single character that prints in place of two
or more letters. Figure 7 shows the type slugs for several ligature characters.

In modern Roman-alphabet fonts only the combinations “ff”, “AI”, “A”, “M",
and “#1” remain as ligatures, but in the early days of printing, there were hundreds
of ligature characters. A Greek font developed about 1495 by Aldus Manutius (the
most commercially successful printer of his era) had more than 1300 ligature
characters in addition to the 50 or 60.ordinary alphabetic characters [29, p. 280].
Part of the job of a font designer was to decide which letterspacing could be handled
with kerning, and which actually required ligation. Current typographers consider
the Aldine Greek font to be a black mark on the record of an otherwise artistic
designer. '

For the compiler to be able to process ligatures, the information kept about each
font must include a list of the ligated letter combinations and the printing sequence
in the font that will generate the appropriate substitute character. The information
available about each ligature must include its manuscript key (“££” to generate fF,
for example), the width of the resulting ligature character (not generally equal to the
sum -of the widths of the ligated characters), and the device-dependent code
sequence that will actually cause the character to be printed.

3.1.3 Diacritical Marks

Most Roman languages have diacritical marks, or accents, that can be applied to
letters to indicate a change in pronunciation, to indicate stress, and so forth. Most of
them go above the letters that they mark:

oo, b2 - S
AEOUcEAnN
but others go below the letters or even through them:

¢P¢

Typography and Formatting

Figure 7. A ligature character.

tee EE

Figure 8: Variations in accent marks of letters within a font.

25

26 A Language and Compiler for Producing Documents

Although English as commonly written no longer needs any diacritical marks,
mathematical notation is rich with them, and many special-purpose applications
such as pronunciation guides rely heavily on diacriticals.

A detailed examination of the accenting process will show that it is more intricate
than the simple superposition of two characters. Figure 8 shows five different letters
in the same font and point size that have been marked with a circumflex. Note that
no two of the circumfiex marks have quite the same position, and not all of them
have the same size. We must consider the application of a diacritical mark to a letter
or pair of letters as a function that takes into account the size, shape, and darkness of
the letter in deciding how to accent it.

For the compiler to be able to accent letters properly, a considerable amount of
information must be available to it. The horizontal position of an accent mark is
determined both by the angle of the major axis of the character, the height of the
character, and the center point of the accent mark itself.

Accent characters of size, darkuess, and siyle appropriate to the font being
accented must be used; the accent characters must either be part of the font, or else
the font must have, for each kind of accent symbol, a pointer to a character to
implement the accent in that font. Information about the geometry of the accent
character must be stored with it in order that it may be aligned properly over the
letter to be accented.

Another approach to accent marks is to treat each accented letter as a ligature and
to devise manuscript sequences that ligate to the accented character.] A scheme like
this has the advantage of properly handling those characters that must be ligated—a
dieresis over a lower-case i, for example, requires that the dot over the i be
eliminated: 1 . The disadvantages of this scheme are that it greatly increases the
size of the alphabet, it can produce only accented characters that are part of the font,
and it introduces a large number of obscure ligature combinations into the
manuscript language.

IThe issue of how to print accented characters is entirely separate from the equally important issue
of how to specify them. Language issues, such as the specification of accented characters, are
discussed in Chapter 4.

Typography and Formatting - 27

3.2 Lineation and Word Placement

Once letters have been formed into words, according to the rules for word
assembly set forth in the previous section, the words must be formed into lines and
paragraphs.

3.2.1 Word Spacing and Justification

Words are assembled into lines of more or less even length; customarily the lines
are then justified by adding extra spaces between words until the right margin is
aligned. This practice was originally a mechanical necessity, as the type box full of
lead slugs could not be used safely unless the text lines were securely clamped, and
they could be clamped only if they were all the same length [47, p. 121]. Several
studies have shown that unjustified text is often more readable than justified text,
and never less readable {8, 45]. Typographic instructor and author J. R. Biggs points
out, however, that a study of calligraphic manuscripts shows that scribes liked their
lines to be about the same length, and frequently resorted to compressing or
expanding their letters towards the end of the line in order to make the line lengths
come out even [7, p. 32].

Word spacing is normally measured and specified in spacing units. A spacing unit
is traditionally 1718 of the width of the widest character in a font [47, p. 58]. Like
many typographic traditions, this nomenclature arose from mechanical limitations
of a particular technology, in this' case the Monotype machines introduced in
1894 [30].

The preferred word spacing for text fonts is 4 to 6 spacing units. The narrowest
word spacing that is generally considered by professional typographers to be
reasonable in text is 3 spacing units or 1/6th of the width of the widest letter.2 The
widest word spacing that is generally considered acceptable is 9 units, or 1/2 the
width of the widest letter [44, p. 59,47, p. 121]. If the line cannot be justified
without expanding or contracting the spaces outside these limits, it is customary to
hyphenate (see Section 3.2.3). The new line breaking algorithm devised by Knuth,
in which whole paragraphs are considered at one time and all the line breaks found
simultaneously, greatly reduces the number of cases in which hyphenation must be
attempted [24, p. 52].

2Pro]ongfd exposure toany format willlead one tofind itmore readable; perhapstypographershave
simply trained themselfto be able toread such text.

28 A LANZUdED a0 COIIIPLET 106 rIvduciily, DUCULIEDS

In non-text situations, the word spacing often differs. Verse is normally set with
word spacing of 6 to 8 units, somewhat wider than the preferred spacing for text.
When setting tabular material and computer programs, one customarily uses a space
that is the same width as the digit zero in the font in use.

For a compiler to get word spacing correct, it must have some way of computing
the size of a spacing unit and a set of rules for how wide or narrow a space to place
between words before attempting some other solution. Whether the compiler deals
in actual Monotype spacing units or in relative character widths is not important,
but the inforrnation must be available to it. The compiler must of course know
whether it is setting text, verse, tabular material, or computer programs, in order
that it choose the correct space width for the circumstance.

3.2.2 Paragraphing

When words are typeset into paragraphs, it is customary to take care that the last
line of the paragraph not be too short. Sometimes this constraint is expressed as
“the last line of the paragraph will not be a single word”, at other times it takes the
form “the last line of the paragraph will not be shorter than k% of the other lines.”
In either case, the intent is to prevent paragraphs with vestigial lines at the end of
them; an example of this can be seen in the first paragraph of Section 3.2.2 on page
28.

It is considered bad form to typeset a paragraph so that there are any regular
patterns in the word spaces from one line to the next [44, p. 59]. Figure 9 shows an
example of a paragraph set with geometric patterns or “rivers” in the word breaks.

Any mechanism for arranging words into paragraphs must be able either to look
" ahead or to backtrack if it is to be able to do a satisfactory job of avoiding these
conditions, as it is not possible to know at the beginning of a paragraph how the text
will fall at the end, but the only way to control the placement of the text at the end is
to adjust the placement at the beginning.

Some paragraphing styles call for a change in type size or type face after the first
letter, word, few words, or line of text. Figure 10 shows several examples of this sort
of style. Note particularly the third example, in which the precise location of the
font change is determined by the location of the first line break, which cannot be
determined by consideration of the text alone—the first line must actually be set in
type before the location of the font change can be determined. These conditions
amount to events in the text, and the compiler must have a pattern matcher able to
recognize these events and trigger the appropriate action if it is to superimpose these
formats on text. The compiler implemented for this research contains no such event

Typography and Formatting.

The guests included Sen. and
Mrs. Edward F. Kennedy, Sen. and
Mrs. John Anderson, Dr. and Mrs.
Michael 1. DeBakey, Dr. and Mrs.
Edward N. Emery, Judge Bean Roy,
Mr. James Marshall Hendrix. Mr.
and Mrs. William O. Douglas, Fr.
and Mrs. John Fetterman, and the
Rev. Jonathan B. Appleyard.

Figure 9: Paragraph with “rivers” of white space.
o

Ik frequendy happens in the history of
thought that when a powerful new
method emerges the swdy of those
problems which can be dealt with by the
new method advances rapidly and attracts
the limelight, while the rest tends to be
ignored or even forgotten, its study
despised.

IT FREQUENTLY HAPPENS in the
history of thought that when a powerful
new method emerges the study of those
problems which can be dealt with by the
new method advances rapidly and attracts
the limelight, while the rest tends to be
ignored or even forgotien, its study
despised.

IT FREQUENTLY HAPPENS IN THE
history of thought that when a powerful
new method emerges the study of those
problems which can be dealt with by the
new method advances rapidly and attracts
the limelight while the rest tends to be
ignored or even forgotten. its study
despised.

Figure 10: Unusual paragraphing styles.

30 . A Language and Compiler for Producing Documents

detector and cannot generate such event-dependent formats, although Page-2 and
Troff can. '

3.2.3 Hyphenation

When the justification of a line requires the word spaces to be expanded or
contracted so much that they ar€ unsightly or ineffective, it is customary to
hyphenate the last word on the line or the first word of the next line. The “correct”
hyphenation of words has been an annoying problem throughout the whole history
of document production. An examination of early manuscript documents, done
with pen and ink, shows that new lines were started wherever the scribe found it
convenient, even if it was in the middle of a word, and that no notion of a “hyphen”
existed. A compositor setting type by hand spent as much as one third of his time .
on hyphenation, even when using linecasting machines designed to expedite the
process [44, p. 58].

Standards for correct hyphenation vary among languages In English it is
customary to hyplienate between syllables, where syllable division corresponds
roughly to pronunciation [36, p. xxv]. Unfortunately, English spelling does not
correspond very well to pronunciation, and so there are no particularly good rules
for finding hyphenation points in a word by examination of letter combinations.
Many homographic pairs are hyphenated differently because of different etymology,
e.g., ten-der (an offer) and tend-er (a ship), and sometimes the same word is
hyphenated differently depending on its part of speech, e.g., prog-ress (noun) and
pro-gress (verb) [17). English hyphenation cannot be done correctly without an
understanding of the text deep enough to recognize parts of speech.

Most other languages have rules for hyphenation that differ in detail but not in
spirit from the English rules. Some are much more regular. In Finnish, words are
divided between vowels except those that are part of a diphthong [16, p. 435]. There
is a set of seven rules for hyphenating French; there are no exceptions to those
rules [16, p. 442]. In German, a set of twelve rules for word division suffices [16, p.
448]. However, if a German spelling is an elision of a longer form, then if the word
is hyphenated at the elided syllable, the long form must be restored: glitschst is
hyphenated glit-schest, and Luftschiffahrt is hyphenated Lufischiff-fahrt. When the
German double consonant ck is divided, it must be spelled kk: Hacke is divided
Hak-ke [16, p. 450]. In Hungarian, when a word is divided at a “long” consonant
such as ssz or ggy, the consonant is repeated completely in its short form: hosszu is
hyphenated hosz-szu and hattyu is iyphenated haty-tyu [16, p. 471).

As noted earlier in this section, a compiler cannot hyphenate English perfectly

Typography and Formatting - ' _ 31

without understanding the context in the sentence of the word being hyphenated,

but it can do an acceptable job with a hyphenation dictionary or with a set of rules

and a dictionary of exceptions to them. A very elaborate commercial typesetting

program might have 200 rules and 15,000 words in the exception dictionary [6]. The

clever hyphenation algorithm used by D. E. Knuth in TEX has 5 rules and 350

words in the exception dictionary [24, p. 180]. TEX avoids having to hyphenate very

often by considering the entire paragraph at once, to make the lines break more

evenly. It therefore can get by with a hyphenator that in general does not find all of

the legal hyphenation points in a word. The Scribe compiler uses a pure dictionary-

based hyphenator; there are no rules to fall back on if the word to be hyphenated is

not found in the dictionary. This scheme has the advantage of being very simple -
and being independent of the text language, but it is not very efficient in terms of
the memory space consumed by the dictionary or by the 170 time expended in

looking up words if it is not kept in primary memory. A technique for maintaining

and using document-specific hyphenation dictionaries avoids this inefficiency; it is

described in the chapter on the workings of the compiler, in section 8.6.4.

3.3 Tabular and Display Material

Any text not filled and justified in the usual way is called “display” text;
complicated displays are cailed “tabular material”. Simple displayed text can be
centered, or flushed left or right to some fixed horizontal position. Complex
displays include matrices, columnar material aligned on decimal points or with
justified text set in tables, and so on. A centered display might have each line
individually centered, like a wedding invitation, or be “block centered”, wherein the
lines in the display are set flush left to a margin chosen such that the longest line is
centered.

Overlong lines in display material often cannot be automatically folded to the
next line. Some means therefore must be found for making them fit on a page. Use
of a smaller type face, or going outside the margins, or rotating the whoie display to
go sideways on a page, or some combination of these effects, is often used to make
long lines fit.

When a large amount of tabular information must be fit into a small space, “dot
leaders”, a row of dots or dashes, are used to draw the eye from one part of the table
to another. Dot leaders are often seen in telephone directories and tables of
contents. The dots in separate rows must be vertically aligned. - Frequently a dot
leader is used in combination with a flush-right operation, so that the dots fill all of
the space up to the text that is right flushed. At other times, dot leaders are used in

32 A Language and Compiler for Producing Documents

conjunction with filled but unjustified text, so that the dot leader begins at r.hé end
of the last word that was able to fit on the line, and follows from there to the end of
the line.

In tables, the material in each row of a column must be harmoniously aligned
with the other material in that column. Table columns might be fush left, flush
right, centered, justified as text, or aligned on some punctuation character such as a
decimal point. Similarly, the various columns of a table must sometimes be
synchronized to a common vertical position before a new row can begin.

In very geometric or regular tables, it is customary to add blank space or a rule
after every n lines. In poetry or prose that will be cited lineally, line numbers are
often placed beside every n line. |

3.4 Page Layout

“Page Layout”, also called “makeup” or “dummying”, is the assignment of lines
of text to pages while coping with figures, footnotes, and various traditions and
conventions. To a first order, it consists of putting as many properly-spaced lines on
a page as will fit, while taking into account the page numbers, footnotes, and figures.
Beyond that, the primary goals are legibility, consistency of design, and appearance.
There are many traditional constraints and rules designed to assist a typesetter in
producing legible and attractive pages. Not all of them can be satisfied simulta-
neously.

The last line of a paragraph should not be alone at the top of a page, and some
standards call for the first line of a paragraph never being alone by itself at the
bottom of a page. These lines are called widow lines, and the painstaking work that
human typographers perform to get rid of them is referred to as widow elimination.
The last word on a page should not be hyphenated.

When headings are used in text, the amount of text on the page below the
heading should be roughly proportional to the significance of the heading. Major or
chapter headings usually begin a new page. Second-order heads usually should be
placed high enough on a page as to have several lines of text after them. Every
heading should have at least two lines of text following it on a page.

When displayed material is interspersed in text, the line of text introducing the
display should be on the same page as the display. Page breaks are not normally
permitted inside displayed material, except when it is so long that one has no choice.

The first line of a text footnote must appear on the same page as the reference to
it, and it is best if the entire footnote appears on that page. A footnote to a table

Typography and Formatting | 33

should appear with the table, at its foot, before the caption. When a page contains
both full-width text and multiple-column text, footnotes to the full-width part
should be set full width, below the column footnotes that are set column-width in
the bottom of the column containing the footnote reference [16].

When figures are used with text, the figure should appear on the same two-page
spread as the first reference to the figure. When possible, the bottom margins on the
left and right pages of a two-page spread should be the same, though they need not
be consistent from one page spread to another.

Page layout has of all aspects of typography yielded the least to reduction to rules,
and remains the hardest unsolved problem in automated document production.
Page layout is also the aspect of a document’s appearance that is most heavily”
affected by considerations of the document design. The current Scribe compiler
does a barely adequate job of page layout, using relatively inflexible algorithms. A
compiler for the Scribe document specification language that is able t0 do a high-
quality job of page layout for arbitrarily complex document designs will likely
require an order of magnitude more knowledge about the layout task than the
current compiler uses. .

A Language and Compiler for Producing Documents

Design and Implementation - 35

Part 1l

Design and Implementation

The goals for the Scribe system, as itemized in Chapter 2, were the design of a
language for the specification of documents, the design and implementation of a
compiler to process that language into finished documents, and the production of
user documentation. The document specification language explicitly forbids the
user from providing low-level device-specific information. For the compiler to be
able to compile the document specification language properly into a finished
document it must have considerable typographic expertise. The compiler must be
able to recognize problem situations in the text (possibly aided by the writer), and to
apply the correct typographic rule to produce appropriate output.

This organization makes the compiler design be a problem more in knowledge
engineering than in formatting. The actual formatting is relatively trivial once the
compiler has determined the rule or rules to apply. This determination often
involves conflict resolution among multiple rules that apply. The major component
of the compiler design was therefore a codification of the formatting task in terms
that would make the knowledge representation simple, and the design of a
knowledge representation suitable for storage in a database system external to the
program. This codification resulted in the parameterization of the document
production task in terms of about one hundred parameters; the behavior of the
compiler is controlled by changing the values of these parameters. This parameter-
ization and its impact on the solution are discussed in Chapter 5.

36 A Language and Compiler for Producing Documents

In order to be able to evaluate the effectiveness of the solution, especially the
parameterization, the compiler was documented as production software and re-
leased to the university community at Carnegie-Mellon, and later to numerous other
laboratories, As information came in from this field experience, the parameter-
ization evolved somewhat, primarily by the addition of some new variables, but the
basic approach has proved sound. A discussion of this field experience and its effect
on the compiler is in Part III of the thesis.

The various pieces of knowledge needed by the compiler were divided into two
groups: those that were likely to remain more or less fixed over all formatting tasks
within the intended domain, and those that were likely to vary widely over those
formatting tasks. The fixed knowledge was “hardwired” into the code of the
compiler, and the variable knowledge was codified, organized into appropriate
external form, and stored in database files. The compiler must retrieve the
externally-stored knowledge and process it into an appropriate internal form before
it can actually be applied.

The crucial factor in the compiler’s ability to locate, control, and modify its
formatting knowledge is the representation used for it. The requirements placed on
the knowledge representation were: -

1 It must be legibly representable in text files, not just in complex data
structures in memory, to facilitate database management. An external
representation can be designed for any data structure, but we also
demand that:

2. It must be easily read and easily modified, both automatically by the
compiler and manually by users.

3. It must be efficiently usable by the compiler, which is to say that once
the compiler has retrieved the necessary knowledge from its database, it
must run at a speed roughly comparable to one in which the knowledge
is fixed in the compiler code. '

Requirement 2 essentially eliminates any procedural knowledge representation:
procedural knowledge sources are by definition coded in some programming
language, to which automated modifications (such as those needed by the definition-
by-analogy mechanism) are difficult or impractical. Furthermore, a procedural
knowledge representation requires the user to learn the procedural language that is
used before he can make substantive modifications. While there certainly exist
procedural representations of knowledge and editing systems that operate on them
to automatically perform the changes needed to redirect the behavior of the

Design and Implementation - ' 37

procedure, they are not well understood. I deemed it risky to use such
incompletely-understood techniques in such a crucial part of the compiler, since the
primary research goal was not the investigation of knowledge representation
techniques but the application of them.

The knowledge representation chosen to meet these various requirements, as
discussed further in Chapter 5, is an association list. An association list is similar to
the property lists used in LISP and the description lists used in IPL [28,32]. The
LISP property list is a list of attributes and their values that is attached to an object
to show what properties it has. In IPL, the description lists are normally used to
implement associations, which are single-valued functions that return a value for an
object [32, p. 58]. Both organizations are used in Scribe, though the property-list
form is dominant.

The document specification language, described in Chapter 4, has as its dominant
characteristic the description of formats in terms of formatting environments. Each
formatting environment causes the text contained within it to be shaped or styled in
a certain way, as contolled by the value of the environment parameters. The
overall collection of environments available to the compiler during the processing of
a document is determined by its document type. The database of document and
device types is discussed in Chapter 6.

38

A Laﬁguage and Compiler for Producing Documents

The Document Specification Language 39

Chapter 4
The Document Specification Language

Further explanation of the compiler mechanisms and implementation requires an
understanding of the document specification language. This chapter outlines that
language. The document specification language abstracted here is described in full
in the Scribe User’s Manual [37). In this chapter, enough of the specification
language is explained to give its flavor and to provide background for the chapters
on mechanism.

The specification language is a scheme for marking (l_abe]ing) regions of the text
and locations in it.3 There is also a simple facility for passing information to the
compiler via declarations at the beginning of the manuscript.

The strategy behind the language design is to have the writer identify segments of
the text in abstract terms, and to have the compiler automatically retrieve the
concrete details from the document design database. The language design process
consisted of identifying the proper set of abstractions and giving them names, then
devising a simple syntax that would allow those abstractions to be represented in a
file of text characters.

4.1 Rationale

Although it is specifically intended that the specification language be repre-
sentable as a linear stream of character text, a sequence of pictures can be used to
explain it best. Figure 1la shows a paragraph of text that has been graphically
labeled to show its component parts. One might envision a simple graphical
notation like this being used informally at a blackboard when two people are
discussing a format. Notice that there are several labeled regions, some nested
inside others.

3The words region and location have precise technical meanings in this thesis; they are defined in
section 4.2.

A Language and Compiler for Producing Documents

The desired document text:
We need to be able to mark regions of text, individual letters and
words, and also specific points within the text

When your pipes clog. call the Plumb Line.

441-4820, and let the experts from Khalil's
Emergency Plumbing repair it for you.

Markup using a pictorial notation: 'i{a{

We need to be able to markf text, individual letters

and words, and also specific points within

bafa-{;a!

'When your pipes clog, call (he Plumb Ling} 441-4820, and let

the experts from@alil‘s Emergency Plumbing yepair it for you.
— > »
Markup using a graphical notation:

We need to be able to mark italic region§ end italic of text, individual letters
and words, and also specific points within the text. guotation

When your pipes clog, call italic the Plumb Line end irdlic. 441-4820, and let
the experts from bold Khalil's Emergency Plumbing end bold repair it for you.
end quotation

Markup using an escape-character notation:
We need to be able to mark @i[regions] of text. individual letters and words. and
aisc specific points within the text. @begin(Quotation)
When your pipes clog, call the Plumb Line, 441-4820, and let the experts from
@b<Khalil's Emergency Plumbing> repair it for you. @End(Quotation)

Figure 11: Various schemes for marking text.

The Document Specification. Language 41

Figure 11b shows the same labeling, but this time the labels are differentiated
from the text graphically: the labels are in script, and the text is in ordinary print.
The printing industry uses proofreaders’ marks in colored pencil to handle the text
marking problem; both color and being handwritten serve to separate a proof-
reader’s mark from the text being marked.

To represent this same labeling without resorting to graphics, special script, or
color, one need only designate some character as the “color shift” character or
escape character. We would like to choose a shift character that does not occur often
in text and that is visually obvious to a person looking at a manuscript file. The
Ascii character “@” satisfies these requirements; selecting “@" as the blue shift
escape character yields Figure 1lc, which is a syntactically correct Scribe manu-
script.

4.2 Syntax

Three classes of notation are needed in the document specification language:

o Region labels: a notation for attaching a label, or attribute, to indicate
the author’s intention regarding a region of text [will call these labels
environments.

» Markers: a notation for marking specific points in the text, often with
respect to the boundaries of some containing environment. Although it
is a slight misnomer, I will call these commands.

« Declarations: a notation for passing values to the compiler to control
certain details of its behavior. Most simple documents will need no
declarations.

To describe all three of these notations, I shall borrow a word from printers and use
the term rmark, with collective plural markup.

A manuscript will consist of a mixture of text and markup, and the compiler must
have some way of telling them apart. Although various schemes are possible, the
fixed single shift-character scheme outlined in the previous section was selected
because it places the least complicated restriction on the writer: anything following
an “@" character is a mark. The shift character cannot be changed or redeclared;
therefore no context dependencies are possible: a word or sentence from the
manuscript can be moved or copied anywhere with confidence that it will still be
syntactically correct in the new context.

42 A Language and Compiler for Producing Documents

All marks begin with an “@" character. If the character following the “@" is not
alphanumeric, then the mark consists of exactly two characters, such as:

e#

@%

@-
If the character following the “@” is alphanumeric, then the mark consists of an
identifier and a single delimited operand:

@Heading(The Document Specification Language)

@Labe1<L19> ;

@Style(Doublesided,Footnotes="*"

@Newpage()
Sometimes the delimited operand contains text that will be examined by the
compiler (e.g. @Label and @Style, above), while other times it contains text that
will be included in the finished document instead of being examined by the
compiler (@Heading in the example above). Sometimes the operand is null
(@Newpage). The mark is ended and text resumed by the closing delimiter that
matches the opening delimiter that was used. Any of these paired Ascii characters
can be used as delimiters: [...] <...> (...) {0} "...” S0 00000 Any
mark that takes a text argument can also be represented in “long form”, with
properly nested @Begin and @End:

@Begin(Heading)The Document Specification LanguageBEnd(Head1ing)
@Begin(Center)
Text to be Centered
@end(Centar)
The syntax is not recursive; it is defined only at these two levels.

@Begin(Begin)Heading@End(Begin) is not recognized.

Capitalization in alphanumeric marks is not important; any mixture of upper and
lower case is equivalent to any other. End-of-line characters inside markup are
equivalent to spaces, though in some environments end-of-line characters are
significant. '

4.3 Language Abstract

4.3.1 Environments

An environment is- the mark attached to a piece of text identifying it to the
compiler, and specifying certain goals that the author has for its appearance. If the
text is a theorem, it would be marked as a Theorem environment; if the text is a
footnote, it would be marked as a Footnote environment. Some environments

The Document Specification Language 43

represent very simple concepts, like “italic” or “centered”, while others represent
relatively advanced concepts, like “bulleted list” or “footnote”. Environments can
be nested: for example, text can be marked as italic inside text that is marked as
Jootnate.

Environments in the basic subset taught to the novice fall into two categories:

o Environments that define character shape, size, font, or appearance.
These tend to have one-letter names; the [environment marks text as
italic, the C environment marks text in SMALL CAPITALS.

» Environments that define paragraph shape (and sometimes paragraph
font). These have multi-letter names: the [temize environment marks
paragraphs as elements of a bulleted list (like this one); the Quotation
environment marks paragraphs as text quotations.

Figure 12 lists the “fcnt-change” environments defined in the basic system, and
Figure 13 lists the “paragraph shape” environments.

The “basic system” is not a separate or different part of the language; it is not
implemented in any way differently than the more intricate parts. The concept of a
basic system is rather just a documentation trick: the language features in the basic
system are all simple, reguiar, stylistically similar, and guaranteed to be present in all
document types.

4.3.2 Document Types

Whenever the compiler produces a document from a manuscript, it does so under
control of the format set forth in a document type definition from the editorial data
base. This document type definition completely determines the appearance of the
document. The manuscript file is expected to contain a declaration of document
type; if it does not, the compiler selects a default document type named Text.

All document types provide definitions for the basic environments; some provide
additional definitions for environments that are peculiar to that document type. For
example, the Business Lerter document type provides environments for return
address, greeting, and signature; the Ph.D. Thesis document type provides environ-
ments for chapter headings, a title page, and a bibliography.

44

gi[phrase]
@b[phrase]
@r[phrase]
@p[phrase]
@c[phrase]
@u[phrase]
8t[phrase]
8+[phrase]
@-[phrase]
8g[phrase]

Center

Description

Display
Enumerate

Exampls
FlushLeft
FlushRight
Format
Itemize

Quotation
Verbatim

Verse

~ A Language and Compiler for Producing Documents

Ialics

Boldface

Roman (the normal typeface)
Bold Italics

SMALL CAPITALS
Underline non-blank characters
Typewriter font

print S¥P*Tscript

print ¢ pscript

Greek (EAAey)

Figure 12: Font environments in the basic language.

Unfilled environment. Each manuscript line centered.

Filled environment. Qutwards-indented paragraphs; single spacing with wider
margins. This list of environments is in a Description environment.

Unfilled environment. Widens both margins.
Filled environment. Numbers each paragraph. Widens both margins

Unfilled environment. Uses fixed-width typeface for examples of computer type-
in or type-out. Widens both margins.

Unfilled environment. Prints the manuscript lines, in the normal body font, flush
against the left margin. '

Unfilled environment. Prints the manuscript lines, in the normal body font, flush
against the right margin. |

Unfilled environment. Normal body typeface. No changes to margins. Any
horizontal alignment that is needed should be done with tabbing commands.

Filled environment. Marks each paragraph with a tick-mark or bulle Widens
both margins.

Filled environment. Single-spaced; widens both margins; indents each paragraph.
Unfilled environment. Fixed-width typeface. No changes to margins.

Serni-filled environment; fills lines, but starts a new line for each line break in the
manuscript. Widens both margins.

Figure 13: Paragraph environments in the basic language.

The Document Specification Language 45

4.3.3 Commands

While environments label whole regions of text, commands mark specific points
in it. Some commands take arguments, others do not. Some sample commands:

8| Permit a word break to occur here.

@t Set a tab stop at the current horizontal position.

@Labe1(XYZ) Attach the cross-reference name “XYZ” to the current page and
section number.

BRef(XYZ) Insert as text into the document at this point the section number

that was attached to the cross-reference name “XYZ” elsewhere
in the document.

@pPageRef(XvZ) Insert as text into the document at this point the page number
that was attached to the cross-reference name “XYZ~ elsewhere
in the document.

Others include commands to do bibliography database retrieval, forcmg of new
pages, horizontal tabbing, and various other effects.

4.3.4 Declarations

Declarations in the specification language serve to control the compiler by passing
it various parameters and values. Most declarations are restricted to the beginning
of a manuscript, but some are permitted to occur anywhere.

Simple declarations include @Device(name), which instructs the compiler to
format the document for the named device, and @Make(what), which instructs the
compiler to produce a document of the requested type. More sophisticated
declarations include @Modify, which alters the definition of an existing environment,
and @PageHeading, Which tells the compiler what text to put in the running page
heads.

One declaration, @Style, serves as a catchall for passing miscellaneous scalar
values to the compiler. There are several dozen “style keywords” whose values can
be set by the eStyle command. These include, for example, values to conwol the
way dates are printed, to select a font family for the document, to select nonstandard
paper sizes, and to select single-sided or double-sided formatting. The style
parameters select small variations in document design. '

Certain declarations, such as @Def ine and @Form (which define environments and
macros, respectively) are intended primarily for use in document format definition

46 A Language and Compiler for Producing Documents

entries in Scribe’s database. They can nevertheless be used in manuscript files,
where their use permits expert users to develop new document types by gradual
mutation of existing ones.

4.4 Character Sets and Font Variations

Western languages use alphabets, which consist of characters. The set of
characters in each Western language has stayed essentially constant since the
Renaissance, though not all Western languages use the same set of characters.
When a character is typeset, the precise style and geometry of its appearance is
determined by the font in which that character is typeset.

In addition to the alphabetic characters that are the basis of the written language,
writers use many special characters. Some are punctuation marks, like “.” or “;”.
Others are symbols borrowed from foreign aiphabets, like I or 8. Others are
purely fabricated, like “t” or “<"”. When two printed letters of different appear-
ance are visually compared, the difference sometimes arises because they are
genuinely different letters and sometimes arises because they are the same letter

printed in different fonts.

Pictorial representations of text, such as photographic copies or electronic
facsimile transmission, do not need-to concern themselves with identifying or
encoding the letters—they merely store a picture of the letter and pass on to the
reader the job of identifying the letter so pictured. When text is represented by
character identity independent of the font in which the character is printed, there is
a necessity to determine that identity and represent it with some sort of an
unambiguous code.

Various codes for information interchange have been devised. Each defines a
fixed set of characters to be represented, then assigns a numeric code to each. In the
United States, for example, the BCD code defines 48 characters, the military Fieldata
code 63 characters, the Ascii code 96, and the EBCDIC code 192. Whenever a
character outside the defined set needs to be represented, one must go cutside the
interchange standard and use some private encoding. The specification of Ascii
includes an explicit mechanism for extending the code, but does not assign character
identities to any of the extended codes. As a result, no two users ever seem to
produce the same set of extensions.

Some special characters are just ligatures of ordinary characters (ligatures are
discussed in Section 3.1.2). For these cases, the compiler automatically substitutes
the ligature graphic for the group of characters that were in the manuscript: £ for
“s£i”, f for “£¢”, and so on. Some special characters can be represented as

The Document Specification Language 47

pseudo-ligatures: “—" for “~”, for example. To represent special characters for
which no common pseudo-ligature convention exists, the Scribe manuscript lan-
guage uses a special-character convention that is not very satisfactory, and is one of
the weakest parts of the design. It has been very difficult to maintain device
portability of special characters as a result of this convention. A special character is
represented by specifying an ordinary character in a special-character font: while
@i[A] prints as “A” and @b[A] prints as “A”, @f1[A] prints as “V” and @f2[A]
prints as “ L

It is worth noting briefly the several alternative specification schemes for special
characters that were considered. TEX and EQN both use a “naming” scheme. To
get an alpha character produced in TEX, one types \alpha (for lowercase “a”) and
\Alpha (for uppercase “A”). EQN recognizes the identifiers “alpha” and
“AL'PHA”, although in the basic Troff system underneath EQN, an alpha is denoted
instead by “\(*a”.

These are implemented as fixed macros, encoded in whose definition is the
information about how to print the special character on the printing device at hand.
These naming schemes presuppose that the language designer knows all of the
special characters that will be available on the printing device, and gives them all
names in advance. Since the Scribe language is intended to be independent of
printing devices, its naming convention would have needed to include all of the
‘special characters expected ever to be available on any printing device. Fixed macro
names for characters were therefore not adopted (although they are superior to the
scheme actually used in the current Scribe language).

The TEX and EQN special-character schemes both require that the compiler (or
the macro definitions) know the mapping of characters to slot numbers in fonts, for
example, Troff must know that to generate a mu (“p”) character while using a
certain font, it must switch to film 3 and generate a capital W; that font is arranged

so that the character in the capital-W position is a lowercase mu.

A superior scheme for Scribe would have been to encode the font data such that
there was no hard notion of a character slot, as exemplified by the “capital W slot”
example above. Each font would have a name embodying its style and size, for
example, “Helvetica 14-point lightface expanded italic” and would contain a set of
definitions of characters. Some of these definitions would be standard, which is to
say that they are valid graphics for the character set (Ascii, EBCDIC, etc.) being used,
while others would be non-standard, meaning that they are not valid graphics for

4See Section 8.6.3 on page 97 for a discussion of the formatting issues for lines containing oversize
characters like this one.

48 A Language and Compiler for Producing Documents

any characters in the base character set. The standard characters would be
addressed by their slot in the font, while the non-standard characters would be
addressed by name. The manuscript form of a document would be permitted to
refer to any character by name; a symbol table associated with the base character set
would identify those addressable in a particular slot. When a reference is
encountered to a character not part of the base character set, it will first be looked up
in the “current” font. If not found there, then fonts that are similar to the current
font in shape and size must be searched until some definition for the character is
finally found. This scheme requires standardization in naming, but not in allocation
of non-standard characters to font slots. ‘

4.5 Language Examples

Figure 14 (page 49) shows a simple manuscript prepared in the Scribe document
specification language, and Figure 15 (page 50) shows the resulting document.
Figure 16 (page 51) shows a reasonably elaborate one-page manuscript, and Figure
17 (page 52) shows the resulting document.

The Environment Mechanism 49

@Heading(What can be copyrighted)

Copyright protection exists for ''original works of authorship’'' when they
become fixed in a tangible form of expression. Copyrightable works include the
following categories:

@begin(enumerate)

literary works;

musical works, including any accompanying words;
dramatic works, including any accompanying music;
pantomimes and choreographic works;

pictorial graphic, and sculptural works;

motion pictures and other audiovisual works: and
sound recordings.

@End(enumarate)

This 1ist is 11lustrative and 1s not meant to exhaust the categories of
copyrightable works. These categories should be viewed gquite broadly so that,
for sxample, computer programs and most '‘compilations'' are registrable as
**1{terary works''; maps and architectural blusprints are registrable as
‘*pictorial, graphic, and sculptural works.''

@Heading({What cannot be copyrighted)

Several categories of material are generally not aligiblie for

statutory copyright protection. These include among others:

8Itemize[

Works that have @i[not] been fixed in a tangible form of expression. For
example: chorsographic works which have not been notated or recorded, or
improvisational speeches or performances that have not been written or recorded.

Titlas, names, short phrases, and slogans: familiar
symbols or designs; mere variations of typographic
ornamantation, lettering, or coloring; mere listings of
ingredients or contents.

Ideas, procedurss, methods, systems, processes, concapis, principles,
discoveriss, or devices, as distinguished from a description, explanation, or
i1lustration. :

Works consisting @1i[entirely] of information that is common property and
containing no original authorship. For sxample: standard calendars, height and
weight charts, tape measures and rules, schedules of sporting events, and lists
or tables taken from public documents or other common sources.@Foot<

From @i[The Nuts and Bolts of Copyright (Circular R1)]., U. S. Copyright Office.>

]
Figure 14: Simple Scribe manuscript.

50 A Language and Compiler for Producing Documents

What can be copyrighted

Copyright protection exists for “original works of authorship™ when they become fixed in a
tangible form of expression. Copyrightable works include the following categories:

1. literary works;

2. musical works, including any accompanying words;

3. dramatic works, including any accompanying music;

4. pantomimes and choreographic works;

S, pictorial graphic, and sculptural works;

6. motion pictures and other audiovisual works; and

7. sound recordings.
This list is lustrative and is not meant to exhaust the categories of copyrightable warks. These
categories should be viewed quite broadly so that, for example, computer programs and most

“compilations” are registrable as “literary works”; maps and architectural blueprints are registrable as
“pictorial, graphic, and sculptural works.”

What cannot be copyrighted

Several categories of material are generally not eligible for statutory copyright protection. These
include among others:

e Works that have not been fixed in a tangible form of expression. For example:
choreographic works which have not been notated or recorded, or improvisational
speeches or performances that have not been written or recorded.

o Titles, names, short phrases, and slogans; familiar symbols or designs; mere variations of
typographic ornamentation, lettering, or coloring; mere listings of ingredients or contents.

o Ideas, procedures, methods, sysiems, processes, concepts, principles, discoveries, or
devices, as distinguished from a description, explanation, or illustration.

o Works consisting entirely of information that is common property and containing no
original authorship. For example: standard calendars, height and weight charts, tape
measures and rules, schedules of sporting events, and lists or tables taken from public
documents or other common Sources.

Figure 15: Document produced from manuscript in Figure 14.

SFrom The Nuts and Bolts of Copyright (Circular R1), U. S. Copyright Office.

The Environment Mechanism 51

8Make(Wedding Program)

85tyle(Font "Times Roman 10%)

8begin(Introductory)

The Marriage of Loretta Rose Guarino and Brian Keith Reid
Saturday, May 12, 1979

The Church of St. Michael and All Angels, Tucson, Arizona
8Separator()

8end{Introductory)

8Heading(Voluntary)

@88egin(Verss)

8i[Siciliano], from 8i[Sonata #2 for Flute and Kcyhoard] J. S. Bach
@i[Prelude in Classic Style], Gordon Young

81[Andante], from @1[Organ Concerto in F. Major], G. F. Hando]
8end(Verse)

8Heading(Processional)

@begin(Verss)

@1[Adagio in A Minor], from the 8i[Toccata, Adagio, and Fugue in € Major], J. 8. B:
@1[Rigaudon], Andre Campra

Bend(Verse)

The text for the Marriage Ceresmony may

be found in the 81[Book of Common Prayer] beginning on page 423.
@Heading(The Invocation8PagaNum[p. 423])

@Heading(The Ministry of the Word@PageNum{p. 425})
8SubHeading(The 01d Testament@>Tobit 8:5-86\)
@SubHeading(The New Testament®>I Corinthians 13:1-13@\)
@SubHeading{Hymn 363)

@SubHeading(The Gospel@>John 15:9-128\)
8SubHeading(Homily8>Fr. John Fowler)

8Heading(The Marriage@PageNum[p. 427])

8SubHeading(The Exchangs of Vows)

8SubHeading(The Prayers)

@Heading(The Blessing of ths Marriage@PageNum[p. 430])
8SubHeading{The Blessing)

@SubHeading(The Peace)

@Heading({The Holy Communion@PageNum{p. 361])

@SubHeading(The Great Thanksgiving)

@SubHeading(The Brsaking of the Bread)

8SubHeading(The Prayer of Thanksgiving@>p. 432)
@SubHeading(Benediction and Dismissal)
@Heading(Processional)

@begin(verse)

@i[Toccata], from @i[Symphony #5 for Organ], C. M. Widor
8end(verse)

Figure 16: An elaborate scribe rdanuscript.

52 A Language and Compiler for Producing Documents

The Marriage of Loretta Rose Guarino and Brian Keith Reid
Saturday, May 12, 1979
The Church of St. Michael and All Angels, Tucson, Arizona

Wi L2 L]

Voluntary
Siciliano, from Sonata # 2 for Flute and Keyboard, J. S. Bach
Prelude in Classic Style, Gordon Young
Andante, from Organ Concerta in F. Major, G. F. Handel

Processional
Adagio in A Minor, from the Toccata, Adagio, and Fugue in C Major, 1. S. Bach
Rigaudon, Andre Campra

The text for the Marriage Ceremony may be
found in the Book of Common Prayer beginning
on page 423.

The Invocation p. 423

The Ministry of the Word p. 425
The Old Testament Tobit 8:5-8
The New Testament 1 Corinthians 13:1-13
Hymn 362
The Gospel John 15:9-12
Homily Fr. John Fowler

The Marriage p. 427
The Exchange of Vows
The Prayers

The Blessing of the Marriage p. 430
The Blessing
The Peace

The Holy Communion p. 361
The Great Thanksgiving
The Breaking of the Bread
The Prayer of Thanksgiving p. 432
Benediction and Dismissal

Processionai
Toccata, from Symphony #5 for Organ, C, M. Widor

Figure 17: Document produced from manuscript shown in Figure 16.

The Environment Mechanism 53

Chapter 5
The Environment Mechanism

To facilitate knowledge representation and manipulation, the problem of text
formatting was reduced to a set of almost-orthogonal parameters. The behavior of
the formatting compiler is controlled by setting and manipulating the value of these
parameters. The formatter interrogates the most recent value of appropriate
parameters whenever it must make a decision.

The parameterization of the task for document formatting was crucial to the
success of the compiler. It is therefore worthwhile to document the parameter-
ization in detail, explaining the purpose and behavior of the parameters and the
mechanisms that operate on them.

5.1 Environment Entry and Exit

Each environment (environments are defined in Section 4.3.1) specifies a value for
some parameters, but not necessaﬁly all of them. As environments are nested, a
binding stack protocol is used; the current value of a parameter is the one found
topmost on the binding stack, and therefore belonging to the innermost envi-
ronment that specified a value for it. Because the parameters are static (no new
parameters can be created without reconfiguring the compiler) the compiler is able
to implement the binding stack much more efficiently than the classic LISP
implementation.

All changes to the behavior of the output assembler—new margins, new fonts,
new paragraphs, etc.—are effected by changing a state parameter. These parameter
changes are made whenever an environment is entered, and they are unmade when
the environment is exited. The initial values of the state parameters are determined
by the initialization from the document type definition retrieved from the document
design database.

An environment is a prescription for change to one or more state parameters. An
environment could be represented as a program that operates on one set of state

54 A Laﬁgu‘age and Compiler for Producing Documents

parameter values to produce another, but for a variety of reasons it js implemented
as a simple list of state parameter names and the change that is supposed to be made
to them. An environment normally specifies a change to only a few of the
parameters, leaving the rest to be inherited from outer environments.

When the compiler needs to know the value of a parameter during the formatting
process, it uses the topmost value found in the binding stack for that parameter.
When an environment is entered, its parameters and their values are pushed onto
the binding stack; when the environment is exited, the values that it pushed onto the
binding stack are removed. On both entry and exit, a change analyzer is called to
examine the changes that have just been made in the state parameters to see if any
support processing must be performed. Typical support processing functions
signaled by the change analyzer include storage allocation, font structure initial-
ization (the first time a font is used), and footnote placement.

5.2 Types

Every parameter has a type, and every value in an environment has a type. When
the environment is entered and a new parameter value is computed, the value that
the environment specifies for a parameter is coerced into the type of the parameter.
Some of these coercions are context-sensitive, so that the same environment value
can produce differing parameter values depending on context. For example, there is
a state parameter named WidestBlank that specifies the largest size to which a blank
can be stretched before the compiler will try to hyphenate the next word. The type
of the WidestBlank parameter is horizontal distance—it specifies a genuine max-
imum size. However, a document format designer can specify a value in type font
width relative distance—and it will be converted to a different absolute distance
depending on the font currently in use. This permits most of the bookkeeping
computations to be handled automatically. These types and their implementations
are discussed in more detail in Section 8.4.1.

e Type character is a single Ascii character.
o Type string is a string of characters.

o Type integer is an ordinary machine integer, subject to the usual
limitations of finite word size.

o Type rational number is a rational number represented as the quotient of
two machine integers. They are used in distance calculations in which
rounding errors must be avoided at any cost.

The Environment Mechanism 55

o Type Boolean is true or false.

o Type vertical distance is an absolute distance measured as an integral
. number of basic vertical spacing units of the destination printing device.
Since it is always an integer, it is not subject to rounding error.

« Type horizontal distance is an absolute distance measured as an integral
number of basic horizontal spacing units of the destination printing
device.

o Type foni-width-relative distance is a distance that is proportional to the
width of the digit “0” in the current font. When an environment’s value
for a parameter is in type jfonr-width-relative-distance and the param-
eter’s type is an absolute distance, the environment’s value is multiplied
by the appropriate width at environment entry time, thereby yielding
different absolute distances in different contexts.

o Type font-height-relative distance is a distance that is proportional to the
height of the current font. Its coercion to absolute distance is context-
sensitive; see above,

« Type symbol is a pointer to an entry in the compiler'’s symbol table.
State parameters can take on symbolic values when they need to link the
state to some external entity, such as a numberning counter.

There are also various enumerated types that are specific to the parameter whose
value ranges over that type. These types are described along with the parameter for
which they are the domain.

5.3 Dynamic State Parameters

Dynamic parameters are those that may change during a run of the compiler.
They are classified into two groups, inheriting parameters and non-inheriting -
parameters. The inheriting parameters obey the binding stack protocol discussed in
Section 5.1. The non-inheriting parameters do not: if an environment entry does
not specify a value for a non-inheriting parameter, then a default value is used
rather than an inherited value.

A sample dynamic parameter is the one that selects the font, which is an
inheriting parameter: an environment whose definition makes no mention of font is
produced in the same font as the containing environment Another is the flag that

56 A Language and Compiler for Producing Documents

specifies whether or not a new paragraph is to be started on entry to the
environment. It is a non-inheriting parameter.” The complete set of dynamic
parameters is listed in Appendix A, beginning on page 133.

5.4 Static State Parameters

~ Static state parameters are fixed during compiler initialization, and they do not
change during a compilation. Their values are read in from various database files, or
occasionally specified directly in the manuscript.

The various static state parameters that affect the formatting process are listed in
Appendix A, beginning on page 139. These parameters are static not because of a
conceptual or implementation need that they be static, but because there is no need
for them to be dynamic, and static parameters are accessed much more efficiently.
Examples of static state parameters are the width of the paper loaded into the
printing machine and the flag that specifies whether or not the document type is to
be set up for double-sided reproduction.

5.5 Pattern Templates

In designing or modifying a document a document format, one frequently needs
to specify a style for numbering or marking or labeling. Are chapters numbered 1,
2,3, 4or [, I0, ITT, IV? Or are they numbered one, two, three, four or One, Two,
Three, Four?

In keeping with the general Scribe philosophy of nonprocedural specification, the
Scribe compiler has a general mechanism for providing a schema for the generation
of systematically-created names or numbers. This paitern rempilate mechanism is
similar to the Fortran FORMAT mechanism: the user provides a series of codes that
show how the numbers are to be converted and where they are to be placed once
they have been converted.

The Scribe pattern template mechanism supports about 15 different kinds of
numeric conversion, including cardinal and ordinal Arabic (1, 2; 1st, 2nd), cardinal
and ordinal English (one, two; first, second), upper- and lower-case Roman
(I, I1; i, ii), replicated tallies (*, **, ***, etc.) and selection from enumerated sets
(dagger, double-dagger, etc.). Besides these format conversions, the pattern tem-
plate can specify literal text (like the H format in Fortran conversion) and perform
simple conditional tests on the numbers being converted.

There is sometimes a need to control the printing style of automatically-generated

The Environment Mechanism _ 57

text other than numbers. The Scribe compiler, for example, will insert the current
date wherever it finds the construct @value(date). The default format is ~13
December 1980, but many document styles require different date formats. A user
can request the compiler to generate dates in a different format by providing it with
a date template. A date template is a representation of the date § March 1952, using
nearly any format. By parsing that template, the compiler can recognize fields as
standing for the month, the day, the day of the week, the year, and so forth. When a
date is inserted by the compiler into the text, it converts the components of that date
into a string according to the fields found from parsing the template. Various
examples:

The template “8 March 1952” prints today's date as “13 December 1930".

The template “08 Mar 52" prints today's date as “13 Dec 80".

The template "8/3/52" prints today’s date as “13/12/80™.

The template *03/08/52 (Saturday)” prints today's date as “12/13/80
(Saturday)”.

The template “The First of March, One Thousand Nine Hundred and
Fifty-two prints today’s date as “The First of December, One Thou-

sand Nine Hundred and Eighty™.

The template “Samedi, le 8 Mars, 1952” prints today’s date as “Samedi, le
13 Decembre, 1980".

The template “el 8 de Marzo de 1952” prints today’s date as “el 13 de
Diciembre de 1980,

The standard date was chosen so that a purely syntactic analysis could be used. The
month number (3) must not duplicate the day number (8), the day number of that
date within the week (6), or any of the digits of the year (1, 9, 5, or 2). Both the
month number and the day number must be single digits, so that leading zeros can
be detected (3/8/52 vs. 03/08/52). The month cannot be January, so that day-
within-month and day-within-year can be disambiguated. The date must fall within
the first 99 days of the year, so that leading zeros can be detected in a day-within-
year value. Whatever month is used must have different spellings in all of the
languages that we hope to recognize (English, Spanish, French, German, and
Swedish); this eliminates April, which is spelled the same in English and German.
Finally, I wanted the date to be relatively recent, so that it could be represented as a
positive number in an offset Julian-day scheme whose values would fit into 16-bit
machine words. February 2-8 and March 2-8 all provisionally satisfy these
restrictions, though not all of them will work every year because of conflicts with the
year digits. March 8 is my wife’s birthday, so that settled it.

58 A Language and Compiler for Producing Documents

5.6 Definition by Analogy

The representation of environments as attribute lists permits a very simple
definition by analogy mechanism. As introduced in Section 2.2.3, a definition by
analogy is the definition of a new environment to be essentially like another, but
with a specified set of differences.

Each environment is a set of pairs of attributes and their values. If environment x
specifies values v;....,v, for attributes a,...,a,, and environment y is defined to be
“like x, but having value w, for attribute g, ”, then y will have values e
for attributes a.,....a.....a,. Environment x might or might not have had a value
specified for attribute a,. ‘

This definition by analogy can also be used to make incremental changes to the
definition of an existing environment, by the simple tactic of substituting x for y in
the above transformation. x will then be redefined to be different in some set of
attributes from its previous denition.

5.7 An lllustrated Example

For this example, please refer to Figures 18 and 19. The initial state, at sequence
number 1 in Figure 18, is vy,v,,...,v,