Performance insulation:

more predictable shared storage
MATTHEW WACHS

September 2011
CMU-CS-11-134

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Thesis committee

Prof. Gregory R. Ganger, Chair (Carnegie Mellon University)
Prof. Garth A. Gibson (Carnegie Mellon University)

Prof. Ragunathan Rajkumar (Carnegie Mellon University)
Dr. Arif Merchant (Google)

(© 2011 Matthew Wachs

This material is based on research sponsored in part by the National Science Founda-
tion, via grants CNS-0326453, CCF-0621499, CNS-0509004, CCF-0621508, I1S-0429334,
and CNS-0917012; by the Air Force Research Laboratory, under agreement number
F496200-01-1-0433; by the Army Research Office, under agreement number DAAD19-02-
1-0389; by a subcontract from the Southern California Earthquake Center’s CME Project
as part of NSF ITR EAR-01-22464; and by the Department of Energy under Award Num-
ber DE-FC02-06ER25767. Support was also provided by an NDSEG Fellowship, which
was sponsored by the Air Force Office of Scientific Research, Department of Defense; and
by the member companies of the Parallel Data Laboratory Consortium over the period the
research was conducted (APC, Cisco, DataDomain, EMC, Engenio, Equallogic, Facebook,
Google, Hewlett-Packard, HGST, Hitachi, IBM, Intel, LSI, Microsoft, NEC, Network Ap-
pliance / NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate, STEC, Sun, Symantec,
Veritas, VMware, and Yahoo!).

The views and conclusions contained in this document are those of the author and
should not be interpreted as necessarily representing the official policies, either expressed
or implied, of the PDL Consortium, the U.S. Government, or other sponsoring parties.

ii . Performance insulation: more predictable shared storage

Keywords: Storage systems, shared storage, clustered storage, efficiency,
quality of service, performance isolation, performance insulation, bandwidth

guarantees.

To my parents.

iv . Performance insulation: more predictable shared storage

Abstract

Many storage workloads do not need the level of performance afforded by
a dedicated storage system, but do need the degree of predictability and
controllability that comes from one. The benefits of consolidation, such as
reduced waste, motivate the move to shared storage; but these benefits can
be lost if the storage system is not shared effectively and efficiently among
workloads. Unfortunately, inter-workload interference, such as a reduction of
locality when multiple request streams are interleaved, can result in dramatic
loss of efficiency and performance.

Performance insulation is a system property where each workload shar-
ing the system is assigned a fraction of resources (such as disk time) and
receives nearly that fraction of its standalone (dedicated system) perfor-
mance. Because there is usually some overhead caused by sharing, there
could be a drop in efficiency; but a system providing performance insula-
tion provides a bound on efficiency loss at all times, called the R-value. We
have built a storage system server called Argon to confirm that performance
insulation can be achieved in practice for R-values of 0.8-0.9. This means
that, running together with other workloads on Argon, workloads lose, at
most, only 10-20% of the efficiency they receive on a dedicated system.

When storage systems are built from a cluster of modest servers rather
than a single, monolithic server, techniques used to maintain efficiency do not
necessarily compose across the servers. The resulting efficiency may actually
be lower than the level achieved if no effort were made to preserve efficiency.
We identify the causes of this effect and identify the level of coordination

among servers needed to avoid this degradation. With appropriate care,

vi . Performance insulation: more predictable shared storage

efficiency can be maintained on a clustered storage system as well as it can
be maintained on a single server.

While performance insulation provides a useful limit on loss of efficiency,
many storage workloads also need performance guarantees. It may be signif-
icantly more straightforward to express a workload’s requirements directly
as performance guarantees rather than indirectly as efficiency guarantees.
To ensure performance guarantees are consistently met, however, the appro-
priate allocation of resources needs to be determined and reserved, and later
reevaluated if the workload changes in behavior or if the interference between
workloads affects their ability to use resources effectively. If the resources
assigned to a workload need to be increased to maintain its guarantee, but
adequate resources are not available, violations will result.

Though intrinsic workload variability is fundamental, storage systems
with the property of performance insulation strictly limit inter-workload
interference, another source of variability in resource requirements. Such
interference is the major source of “artificial” complexity in maintaining
performance guarantees. We design and evaluate a storage system called
Cesium that limits interference and thus avoids the class of guarantee vio-
lations arising from it. Workloads running on Cesium only suffer from those
violations caused by their own variability and not those due to the activities
of other workloads. Compared to other quality of service systems proposed
in the literature that do not explicitly manage efficiency, realistic and chal-
lenging workloads may experience an order of magnitude fewer violations
running under Cesium as a result. Performance insulation thus results in

more reliable and efficient bandwidth guarantees.

Acknowledgements

First and foremost, I’d like to thank my advisor, Greg Ganger. His positivity
and easygoing approach have made graduate school an uncommonly pleasant
experience for me. He has always been there for us when we needed his help.
It amazed me how I could be working on a problem for weeks, and have him
say something deeply insightful within a couple minutes of describing it to
him.

I would like to thank my other committee members, Garth Gibson, Arif
Merchant, and Raj Rajkumar, for serving and for their feedback and sug-
gestions for clarifications, extensions, and experiments.

Being a member of the Parallel Data Laboratory (PDL) has brought with
it remarkable opportunities for interaction with leading storage researchers
in industry. I would like to thank all those who make this environment
possible, including Karen Lindenfelser, Bill Courtright, and Joan Digney.

I would like to thank my colleagues and friends for enjoyable interac-
tions and collaboration, particularly Mike Mesnier, Mike Abd-El-Malek,
Raja Sambasivan, Alexey Tumanov, Julio Lépez, Chuck Cranor, Brandon
Salmon, Eno Thereska, Bryan Parno, Deepti Chheda, Nuno Loureiro, Aditya
Sethuraman, Chandramouli Rangarajan, Mikhail Chainani, Miray Kas, and
many other members of the PDL.

I would like to thank the companies of the PDL Consortium over the
time I was a member of the lab: APC, Cisco, DataDomain, EMC, Engenio,
Equallogic, Facebook, Google, Hewlett-Packard, HGST, Hitachi, IBM, In-
tel, LSI, Microsoft, NEC, Network Appliance / NetApp, Oracle, Panasas,
Riverbed, Samsung, Seagate, STEC, Sun, Symantec, Veritas, VMware, and

vil

viii . Performance insulation: more predictable shared storage

Yahoo!. I would also like to thank Intel, IBM, Network Appliance / NetApp,
Seagate, and Sun for hardware donations that enabled this work. Apart from
the support provided by these companies, I've enjoyed the interactions of
feedback and encouragement we’ve been able to have with them, and thank
them for their investments of time and interest in our work.

My work has been sponsored in part by the National Science Foundation,
via grants CNS-0326453, CCF-0621499, CNS-0509004, CCF-0621508, IIS-
0429334, and CNS-0917012; by the Air Force Research Laboratory, under
agreement number F496200-01-1-0433; by the Army Research Office, under
agreement number DAAD19-02-1-0389; by a subcontract from the Southern
California Earthquake Center’s CME Project as part of NSF ITR EAR-01-
22464; and by the Department of Energy under Award Number DE-FC02-
06ER25767. I also appreciate the support of an NDSEG Fellowship, which
was sponsored by the Air Force Office of Scientific Research, Department of

Defense.

Contents

Figures
Tables

1 Introduction
1.1 Limitations of current techniques
1.2 Maintaining efficiency oL
1.3 Thesis statement and validation
1.4 Contributions
1.6 Roadmap

2 Background and related work
2.1 Backgroundo
2.2 Motivation
2.3 Related work on storage QoS
2.3.1 Managing request streams

2.3.2 Admission control

3 Efficiently sharing a storage system (Argon)
3.1 Introduction.
3.2 Intended applications.
3.3 Sources of interference L0000
3.3.1 Request interference,
3.3.2 Disk head interference

3.3.3 Cache interference

X

xiii

XV

Performance insulation: more predictable shared storage

3.4 Insulating from interference 32
3.4.1 Goals and metrics 32
3.4.2 Overview of mechanisms 34
3.4.3 Amortizationo 36
3.4.4 Cache partitioning oL 38
3.4.5 Quanta-based scheduling 41

3.5 Implementation Lo 43
3.5.1 Distinguishing among workloads 43
3.5.2 Amortization 44
3.5.3 Cache partitioning 44
3.5.4 Quanta-based scheduling 45

3.6 Evaluation. 47
3.6.1 Experimental setup. 47
3.6.2 Microbenchmarks 47
3.6.3 Macrobenchmarks 56
3.6.4 Related work L. 58

3.7 Discussion: Intended applications 61

3.8 Conclusion s 62

Coordinating among servers in a cluster 63

4.1 Imntroduction. oo 63

4.2 Intended applications 65

4.3 Issues with timeslicing 0oL 66

4.4 Designing a schedule 0oL 68
4.4.1 Problem specification 68
4.4.2 Geometric interpretation. L. 70
44.3 Relatedworko 71
4.4.4 Relaxing the problem 77
4.45 Ourapproach o oo 7
4.4.6 Evaluation oL 79

4.5 Coordination among servers 84
4.5.1 Requirements 85

4.5.2 Initial solution: central coordination 86

Contents . xi

4.5.3 Symmetric operation 87
4.5.4 Evaluation oo 88

4.6 Other related work oL 92
4.7 Discussion: Intended applications 93
4.8 Conclusion L o 94
5 Providing bandwidth guarantees (Cesium) 97
5.1 Introduction. L o 97
5.2 Intended applications. 99
5.3 Backgroundo o 99
5.4 Storage QoS scheduler design 101
5.4.1 Maintaining efficiency 102
5.4.2 Providing bandwidth guarantees 102
5.4.3 Handling different access patterns 103
5.4.4 Fundamental vs. avoidable guarantee violations 104

5.5 Implementation o oL 106
5.5.1 Workloads and requests 106
5.5.2 Round-robin timeslicing 106

5.6 Evaluation. 110
5.6.1 Experimental setup. 110
5.6.2 Results 115

5.7 Discussion: Intended applications 123
5.8 Conclusion L 124
6 Conclusion 129
6.1 Futuwrework 130
6.1.1 Improving the accuracy of Cesium’s predictor 130
6.1.2 Implementing Argon or Cesium in complex arrays . . 131
6.1.3 Improving response times with timeslice sharing . . . 131

Bibliography 133

xii . Performance insulation: more predictable shared storage

Figures

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Argon’s high-level architecture
Cache profiles oo
Throughput of two streaming read workloads in Linux and

Argon
Response time CDFs for two streaming workloads
Effects of cache interference in Linux and Argon
Need for share-based scheduling in Linux and Argon
Scheduling support for two random-access workloads
Response time CDF's for a sequential workload and a random

workloado
Effect of prefetch size on throughput
Effect of scheduling quantum on throughput
TPC-C and TPC-H running together
All three mechanisms are needed to achieve performance in-

sulation L

Mismatched schedules
Out-of-phase servers
Moving beyond one server
Example problem instance and solution
Exhaustive search and heuristics
Exhaustive search and heuristics
Approximation algorithms

Search ordering Lo

xiii

Xiv

Performance insulation: more predictable shared storage

4.9 Parallel heuristic search 0L
4.10 Proportion of problems solved per heuristic
4.11 R-value tradeoffs for 13 workloads
4.12 Putting it all togethero oo

5.1 Bandwidth guarantee adherence over time for a dedicated
disk and two of the schedulers
5.2 Percentage of fundamental violations
5.3 Percentage of violations predicted by Hoeffding’s inequality
5.4 Percentage of violations above or below the fundamental vi-
olations for each of the scheduling policies
5.5 Latency for each of the scheduling policies: For an example
combination of five workloads, the distributions of latencies
experienced by a representative workload are shown as cumu-
lative distribution functions. Each y-value shows the fraction
of requests experiencing latency of at most the corresponding
r-value. oL
5.6 Latency “tails” for each of the scheduling policies. The y-axis
begins at the 95" percentile.

Tables

3.1
3.2

4.1
4.2

0.1

5.2

SCSI/SATA disk characteristics 37
Amortization and scheduling effects in Argon 55
Timeouts 84
Macrobenchmarkso 92

Example efficiency and latency measurements for each of the
scheduling policies 120
Cesium on a four-disk RAID-5 configuration 121

XV

XVi . Performance insulation: more predictable shared storage

1 Introduction

Sharing a storage system among workloads is appealing for a number of
reasons. Virtualization is potentially as beneficial for storage as it is for other
resources, such as CPUs. For instance, spare resources can be allocated to
whichever workload is experiencing a surge in demand at a particular point
in time, a principle known as statistical multiplezing. This reduces the need
for over-provisioning and avoids the need to configure static partitions.

Thus, a system that can accommodate multiple workloads is desirable.
However, merely accepting requests from and storing data on behalf of differ-
ent workloads is not enough. The resources provided to each of the workloads
must be allocated and managed appropriately so that each workload is able
to use the system effectively.

Unfortunately, many storage systems do not balance their performance-
critical resources among concurrent workloads, or fail to do so in an adequate
way. The benefits of virtualization are potentially negated when storage sys-
tems do not support robust quality of service guarantees or fair and efficient
sharing for workloads. Without such support, the actions of one workload
may unduly affect the performance of others. If the different types of inter-
ference between workloads are not carefully managed, then the performance
each workload receives may be highly variable, unpredictable, or inefficient.
Under such conditions, the storage system may be essentially useless to any
workload that needs to make steady progress.

Controlling the fraction of resources allocated to specific workloads is
necessary, but not sufficient to solve performance variability and unpre-

dictability. The resources must be allocated in a way that allows workloads

2 . Performance insulation: more predictable shared storage

to make efficient use of their fractions. Unfortunately, many systems attempt
to optimize for other metrics at the cost of such efficiency.

For robust quality of service guarantees, resources must be managed
among workloads in both a controlled and efficient manner. However, from
a workload- or client-centric perspective, resource allocations are generally
not a first-class concern; workloads care about the performance they receive
more so than the allocations that led to such performance. This motivates
a system that can accept and fulfill performance requests for workloads.

Some workloads have clear performance requirements that can be quan-
tified as bandwidth or throughput goals. For instance, a navigation system
may need to be able to read map data at a certain rate in order to make
control decisions in pace with the speed of the vehicle. Other workloads may
not have an immediately obvious bandwidth requirement, but there may be
an empirically observed rate of bandwidth above which an application tends
to have acceptable performance. For instance, for a database, the adminis-
trator may have observed that users generally begin to complain when the
storage bandwidth falls below a certain level, even if the derivation of that
value from first principles is far from obvious. For various types of com-
plex workloads, specifying guarantees in the form of a bandwidth guarantee
may be the most convenient and straightforward way to maintain acceptable
performance.

Thus, a storage system that can efficiently support performance objec-
tives in the form of bandwidth guarantees, and internally make the appro-
priate control and tuning decisions to meet the guarantees, is desirable.
This dissertation describes a system property, performance insulation, that
bounds inter-workload interference to a low level (e.g., 10%). It demonstrates
a combination of techniques that are necessary and sufficient to achieve such
insulation for realistic workloads. It also shows that previous approaches do
not maintain such insulation. With insulation, bandwidth guarantees are
more robust and require less over-provisioning; systems without insulation

may suffer dramatically more guarantee violations.

1.1 Limitations of current techniques - 3

1.1 Limitations of current techniques

A number of techniques have been proposed to improve fairness and provide
quality of service when workloads share a storage system. Generally, these
techniques attempt to maintain minimum bandwidth, minimum throughput,
or maximum latency levels for each individual workload in a combination.
Many function by managing the number of requests that each workload is
allowed to submit to disk in a given period of time, maintaining fractional
allocations of total disk time or bandwidth among the workloads.

However, these techniques do not attempt to maintain efficiency for the
workloads or characterize the total amount of bandwidth or throughput
available at any point in time to distribute among the set of running work-
loads. Thus, it is not known a priori whether a combination of bandwidth
guarantees can be supported at any point in time, because it is not known
whether the sum of the guarantees exceeds the total available bandwidth
from the disk.

For disks, total bandwidth is not a fixed value, but rather a complex
and variable function of the access stream. One defining characteristic of
this stream is the combination of active workloads and their activities; an-
other is the precise fine-grained interleaving of individual requests among
the workloads that is selected by the scheduler. The feasibility and robust-
ness of a set of guarantees are a function of both. While variation from the
workloads themselves is a fundamental, unavoidable factor affecting storage
performance, variation in interference is highly dependent on the sched-
uler. Current schedulers do not systematically control or limit the efficiency
loss or added variance caused by changes in inter-workload interactions and
interference. As a result, bandwidth guarantees are less robust and over-

provisioning needs to be unnecessarily high.

1.2 Maintaining efficiency

This work improves on past approaches by maintaining each workload’s

efficiency level, even as the activities of other workloads and potential inter-

4 . Performance insulation: more predictable shared storage

workload interference levels change over time. To accomplish this, we have
identified the sources of such interference and demonstrated mitigation tech-
niques for them. To maintain efficiency without manual tuning, we have
determined how to measure workload and disk characteristics and auto-
matically adjust system parameters as needed to limit efficiency loss to a
specified maximum.

The two primary storage system resources are disks and caches; inter-
ference may occur at both. For disks, the main cause of interference is dis-
ruption in the locality of a workload’s request stream due to interleaving of
requests from other workloads. For caches, the main cause of interference is
eviction of one workload’s pages by another workload’s accesses, particularly
when the first workload relies heavily on the cache for its efficiency.

These two sources of interference require different mitigation techniques.
For disks, we give each individual workload uninterrupted spans of exclusive
access to the disk, during which a workload can maintain its intrinsic locality.
For caches, we trace and analyze access patterns to determine the number of
evictions (beyond the level incurred under a dedicated cache) each workload
can tolerate before it experiences significant loss of overall efficiency; we then

size dedicated cache space for each workload appropriately.

1.3 Thesis statement and validation

This dissertation confirms the effectiveness and utility of performance
insulation, a storage system property that ensures efficiency will be
maintained even when workloads could potentially interfere with each
other (insulation is described in further detail in Section 3.4.1). In particu-

lar, this dissertation experimentally supports the following thesis statement:

Performance insulation is an important and feasible building
block for storage systems, providing a quantified bound on
efficiency loss when systems are shared between potentially-

interfering workloads and enabling more robust performance

1.4 Contributions . 5

guarantees with less over-provisioning.

To substantiate these claims, we run benchmarks and real workloads
against a storage system without support for performance insulation or qual-
ity of service, against storage systems with representative quality-of-service
schemes from the literature, and against a storage system that provides the
property of performance insulation. We confirm that our implementation
provides insulation and maintains efficiency — for instance, a reliable bound
on efficiency loss of 10% or less — when combinations of workloads run con-
currently, while other approaches are not consistently efficient. Other tech-
niques suffer from dramatically lower performance for some combinations of
workloads. We then attempt to maintain bandwidth guarantees with each of
these approaches and find that the performance-insulation—based quality-of-
service system provides substantially more robust guarantees for a realistic
set of workloads when the system is not over-provisioned or only moderately

over-provisioned.

1.4 Contributions
This dissertation makes the following contributions:

(1) It identifies the key sources of inter-workload interference for storage

systems.

(2) It proposes mitigation strategies for interference that are conducive to

automatic tuning.

(3) It experimentally confirms the presence of significant interference in
systems that do not support performance insulation and the practical

effectiveness of performance insulation techniques in limiting it.

(4) Tt provides the first evaluation of storage QoS approaches with work-
loads that exhibit significant variability in locality and other charac-

teristics, such as are prevalent in realistic workloads.

(5)

(6)

1.5

Performance insulation: more predictable shared storage

It demonstrates that prior QoS approaches are ineffective when faced

with such workloads.

It proposes a technique for storage QoS based on the efficiency-
preserving foundation of performance insulation and experimentally
confirms that the resulting bandwidth guarantees are more robust and

efficiency higher, even in the face of significant workload variability.

It introduces an explicit differentiation between periods when band-
width guarantees are achievable and when they are not, allowing QoS

schedulers to be compared to a reasonable ideal.

It confirms that the proposed QoS system approaches the ideal, not
only improving dramatically on previous approaches but eliminating
the vast majority of avoidable bandwidth guarantee violations, both

on single disks and RAID arrays.

Roadmap

This dissertation starts by describing past approaches for storage QoS in

Chapter 2. Then, it describes how to maintain efficiency in shared storage

systems in Chapter 3. The described techniques are appropriate for single-

node storage systems, but require extensions to work on clustered storage

systems; the necessary additions and an explanation of why they are required

forms Chapter 4. Chapter 5 then builds on the foundation of performance

insulation, and the techniques used to achieve it, to provide more robust

bandwidth guarantees.

2 Background and related work

This chapter describes background for this dissertation and prior work re-

lated to quality of service for storage systems.

2.1 Background

Sharing resources, such as time on mainframe computers, has been a com-
mon practice for decades. When individual workloads do not fully utilize
a system, and when systems have high acquisition or operating costs, it is
natural to want to multiplex the system among workloads.

Straightforward techniques for sharing many resources have been in use
for dozens of years. For instance, round-robin—timeslicing—based approaches
for sharing CPUs are simple and effective, as are fair queueing models for
network flows. Such resources can generally be shared with minimal overhead
or complication. One might expect that storage systems could be shared with
similar success using similar techniques, but efficient sharing of storage has
been elusive.

The difficulty of sharing resources is affected by the amount of state
maintained in the resource and by the latency of changing state. Network
links, for example, do not retain state between packets, and the latency of
beginning a new packet transmission after the previous one completes is not
significant. Techniques for sharing networks thus do not need to concern
themselves with, for instance, how frequently they switch back and forth
between different flows, because there is negligible cost to doing so. CPUs
retain state in the form of registers and caches. Switching between processes

involves storing and loading registers (fast) and rewarming caches (poten-

8 . Performance insulation: more predictable shared storage

tially slow). However, for many workloads, the cost of rewarming caches and
the speed penalty while the caches are cold are low enough not to pose a
serious problem.

Storage systems are not as fortunate, however. Hard disks are mechan-
ical devices, with the location of the disk head a physical state. The cost
of seeking to data residing at another location on the drive (i.e., changing
state) is high: as much as 30 ms, a time period during which multiple ac-
cesses to locations closer to the head location could potentially have been
executed. Thus, sharing policies must consider whether they are introducing
unnecessary or excessively frequent seeks that would reduce efficiency.

Incurring unnecessary repositioning delays can, in fact, reduce the effi-
ciency with which a workload is handled by an order of magnitude or more.
When multiple workloads access the same disk concurrently, the combined
request stream may contain interleaved requests from the different work-
loads. For many combinations of workloads, the locality of this combined
stream is significantly lower than the locality within the individual work-
loads’ streams. As a result, the disk head may need to frequently seek back
and forth between the workloads’ respective files. While disk firmware is
locality-aware and can reorder a sequence of requests in the queue to re-
duce seek times, queue depths at the firmware level can be far too short
to provide high efficiency levels for concurrent workloads. Moreover, disk
firmware is not QoS-aware or likely to be conscious of which requests come
from separate workloads.

Caches are also key storage system resources. Storage caches are larger
and slower to load than CPU caches, and blocks generally remain in storage
caches for much longer. Thus, beyond mere speed and size differences, stor-
age caches also feature potentially—long-lived cache footprints for individual
workloads, which introduces the concern that the relative footprints across

the workloads may not be optimal or efficient.

2.2 Motivation . 9

2.2 Motivation

As described in Chapter 1, sharing a storage system is motivated by the
benefits common in virtualization and consolidation, such as statistical mul-
tiplexing and reduced over-provisioning. Systems that do not manage their
resources effectively among the set of concurrently-executing workloads may
negate these benefits entirely.

While many systems have been proposed that attempt to control con-
current workloads’ accesses to resources so that all of them can coexist and
receive their desired levels of performance, none adequately controls effi-
ciency to consistently maintain it at a high level. This dissertation focuses
on techniques to maintain efficiency within storage systems and their ap-
plication to quality of service techniques. Increased efficiency means that
workloads complete their requests more quickly and use fewer resources.
Performance and efficiency (lack of waste) are themselves worthy goals, but
a reduction in resource consumption also reduces the provisioning required
to achieve a desired level of performance. As a result, guarantees are more
likely to be met (since fewer resources are needed to meet them) and more
workloads may be able to coexist on the same system. In addition, a guaran-
tee of consistent efficiency means one major source of variability — swings
in efficiency caused by changes in inter-workload interference — is reduced

to a negligible level.

2.3 Related work on storage QoS

This section describes past work on providing quality of service for storage.
Other chapters of this dissertation include further related work specific to
the scope of the corresponding chapter. This additional related work can be
found in Sections 3.6.4, 4.4.3, and 4.6.

A significant body of work on storage QoS exists. Generally, papers dis-
cuss two aspects of quality of service: managing the request streams coming
from the workloads in order to attempt to guarantee performance, and de-

termining whether or not a given workload and its associated performance

10 . Performance insulation: more predictable shared storage

guarantee can “fit” on a particular system (known as admission control).

These aspects will be discussed separately.

2.3.1 Managing request streams

There are two common approaches to request stream management:
bandwidth-based request throttling and deadline-based scheduling. Some
additional papers do not neatly fall into these categories.

Virtually all papers employ the strategy of deferring requests in some
manner. Systems that defer requests maintain a queue or queues in which
requests received from clients can be postponed from being sent to the disk.
Requests are dispatched or scheduled (i.e., released from the queue and sent
to the disk) when it is believed that doing so will not cause other workloads
to miss their performance targets; further, requests are not intended to be
deferred beyond the point at which they will miss guarantees [5, 9, 19, 22, 24,
32, 40, 46, 49, 56, 57, 59]. The biggest distinctions between different systems
are the exact goals and the policies behind how this general mechanism is

applied.

Bandwidth-based throttling

Systems that perform bandwidth-based request throttling manage the band-
width that different workloads or classes of workloads receive, to attempt
to ensure that no workload or class receives more than it needs at the ex-
pense of another workload or class underperforming. Generally (with some
exceptions), these systems do not provide latency guarantees, because the
techniques used for managing bandwidth are not conducive for directly con-
trolling latency as well.

One system, YFQ [5], is a fair-queuing scheduler that controls the propor-
tions of bandwidth each workload receives. Workloads are assigned weights,
which specify their relative priorities. The total bandwidth that the mixed
request stream will receive from the disk is not necessarily known in advance,
but the fractions of that bandwidth received by each workload are estab-
lished by the weights. Thus, the system allows for prioritization, but not

2.3 Related work on storage QoS . 11

strong bandwidth guarantees in terms of absolute quantities. While tech-
niques for improving efficiency, and thus the total amount of bandwidth
being divided up, are mentioned, they are not sufficient for achieving effi-
ciency levels approaching 100%.

A more common approach is establishing absolute performance (specif-
ically, bandwidth) targets for each workload using a token bucket or leaky
bucket model [54]. These models establish a rate (bandwidth) for a workload,
and permit a bounded amount of burstiness for that workload so long as it
remains close to the specified rate. Permitting burstiness allows workloads
that need occasional, high instantaneous throughput to receive it, so long
as they also have periods of lower demand that allow the load to “average
out” to the specified rate over the medium term. This is accomplished by
analogy to a bucket and a liquid. Drops of liquid (tokens) represent requests.
The liquid can be thought of as raining into the bucket (and thus adding
to its contents) at the specified rate. The workload drains liquid out of the
bucket whenever it wants to issue a request; if the bucket is empty, it must
wait until liquid accumulates. The significance of the bucket is that it pro-
vides a buffer; if the workload draws from the bucket less quickly than it is
being filled, the excess remains available for later when the workload may
increase its demand. The size of the bucket represents the bounded amount
of “burstiness” allowed for the workload. If the workload allows the bucket
to fill by issuing fewer requests than its rate, then it can later “catch up” —
but only up to the size of the bucket. If the bucket overflows, the workload
forfeits the ability to catch up beyond one bucket’s worth of deficit. This
design is partially intended to prevent the scenario where a workload is idle
for a long period of time, then becomes active and attempts to monopolize
the system for a prolonged period in order to catch up.

Most throttling-based systems either pass through requests (if a workload
is not exceeding its limits, i.e. liquid is available) or queue them (until a
workload begins to fall below its limit, i.e. liquid becomes available). Some
systems predominantly focus on a straight implementation of this policy,
such as Zygaria [57] and SLEDS [9].

SLEDS [9] uses a leaky-bucket model to throttle workloads. The goal is

12 . Performance insulation: more predictable shared storage

to provide both bandwidth and latency guarantees to workloads, with the
bandwidth guarantee specified using a leaky bucket. If at least one workload
is failing to meet its guaranteed level of bandwidth or latency, workloads that
are presenting more demand than they are guaranteed (i.e., their offered load
exceeds the guaranteed level of bandwidth) are throttled to only receive
their guarantee. Workloads that do not need to be throttled (i.e., they are
naturally staying within their leaky-bucket bound) are also provided with
their latency guarantee; workloads exceeding their limit are not guaranteed
anything with respect to latency. Beyond this degree of control, no further
optimization is provided; for instance, requests are not reordered to improve
efficiency. This is not attempted because SLEDS is intended to be used as a
pass-through performance manager that runs on top of an arbitrary storage
system, possibly consisting of many resources. Thus, the underlying system
is treated as a black box.

Triage [24] also uses a black-box approach. Workloads are throttled to
their guaranteed request rates. Workloads are also given latency guarantees,
which are managed adaptively. So long as all workloads are meeting their
latency guarantees, Triage increases the queue depth at the storage device.
If latency guarantees begin to be violated, the queue depth is decreased.
This controller is based on the observation that longer queue depths may be
beneficial because they allow for request reordering that can increase perfor-
mance and efficiency. Longer queues can increase request latency, however;
so there is some limit to how long they can be for a set of workloads and
associated latency requirements. Additional complexity comes from the fact
that the limit may change over time as the workloads and their interactions
change; rather than attempting to model this behavior, feedback control is
used to dynamically retune the system to the limit that is currently appro-
priate. In building such a control system, various questions about stability
need to be addressed; Triage explores automatic tuning that chooses ap-
propriate system parameters to promote stability. Similarly to YFQ, Triage
observes that total system throughput is unpredictable due to differences
in workload access patterns and inter-workload interference. Rather than

attempting to strictly guarantee absolute quantities of throughput, Triage

2.3 Related work on storage QoS . 13

throughput guarantees are in the form of a piecewise function that ranges
over different system operating regions. For instance, rather than guarantee-
ing workload A will receive 50 IOPS and workload B will receive 250 IOPS,
the guarantee varies with the total number of IOPS the system is providing
at a particular point in time. Guarantees are in the following format: If the
system is providing < 100 IOPS, then they will be split evenly between work-
load A and workload B. If the system is providing < 300 IOPS, then split
the first 100 IOPS as previously, then allocate the surplus to workload B.
Thus, the following (workload A IOPS, workload B IOPS) pairs are all le-
gitimate: (25, 25), (50,50), (50,150), and (50,250). This is a novel approach
for handling the unpredictability of total system throughput, by exposing
the variability to the system administrator rather than attempting to sup-
press it. While such added flexibility may allow more expressive guarantees
and more administrator control over the tradeoffs between workloads, it is
arguable whether the significant increase in complexity is acceptable.
Zygaria [57] uses basic token-bucket scheduling to provide bandwidth
guarantees to workloads. It differs in two ways: by accommodating sequen-
tial workloads better and by providing water-level fair sharing. Token buck-
ets, by their nature, treat all requests as the same — a request consumes a
token, or a request consumes a number of tokens corresponding to the num-
ber of bytes in the request. Ideally a token bucket, however, would capture
the cost of a request to the underlying device. For sequential requests per-
formed contiguously in larger blocks, cost does not scale linearly with size;
positioning time at the beginning of the request dominates over incremental
transfer time to read additional bytes. Zygaria allows sequential I/Os up to a
fixed maximum size (the authors choose 32 KB) to be treated as a single re-
quest. This somewhat improves the amenability of throttling for sequential
workloads, but does not maintain the high efficiency that such workloads
should be capable of. A separate issue addressed by Zygaria is what pol-
icy should be applied when each workload is receiving its guaranteed level
of throughput but there is excess bandwidth still available. Many systems
provide “fair sharing” where each workload receives equal amounts of the

excess. Zygaria adopts a novel alternative, water-level fair sharing. In this

14 - Performance insulation: more predictable shared storage

approach, excess capacity is used to approach the state where each workload
receives the same performance. Like rising water, the workload with the low-
est guaranteeed performance receives all of the surplus until its performance
matches the workload with the second-lowest guaranteed performance (if
there is enough surplus to even reach this state). Then, both workloads re-
ceive equal amounts of surplus until their bandwidths both match that of

the third-lowest guarantee, and so on.

Deadline-based throttling

Systems that perform deadline-based scheduling attempt to provide latency
guarantees by labeling each request with a deadline by which it must com-
plete; generally, this is the arrival time plus the maximum latency. Based on
expected service time at the disk (and the expected service time of concur-
rent requests), this establishes a time by which the request must be submit-
ted to the disk; before that time, the system may perform other work. Alter-
natively, the system may send work to the disk early, but exploit the “slack”
before deadlines to attempt to improve the efficiency with which requests
are handled (e.g. by reordering or coalescing them to increase the locality
of the request stream). Depending on the nature of a workload (e.g., open-
or closed-loop), latency guarantees may indirectly correspond to throughput
guarantees as well.

RT-FS [40] can either use slack to provide extra service to workloads or to
handle best-effort requests for non-guaranteed-service workloads. In either
case, requests not dispatched just-in-time for a deadline are scheduled in
SCAN order — in other words, sorted by location on disk.

Cello [49] considers two classes of workloads: best-effort and real-time.
A two-level scheduler design is proposed; a top-level scheduler balances be-
tween the two classes, and class-specific schedulers manage the types of
requests and appropriate goals for their particular class. The top-level sched-
uler meters time or bytes to individual classes. A best-effort class scheduler
will not attempt to provide guarantees, but will try to reorder requests to in-

crease disk seek efficiency. A real-time class scheduler will attempt to provide

2.3 Related work on storage QoS . 15

guarantees to real-time workloads by sorting requests in order of completion
deadlines and submitting them to the disk early enough to ensure meeting
these commitments. The paper primarily concerns itself on coordinating the
activities of multiple schedulers without them each needing to understand
each others’ inner workings or specific goals; the effectiveness and efficiency
of the guarantee mechanisms is of secondary concern.

Wijayaratne and Reddy [56] describe a similar three-class system. In
their system, however, all three classes receives guaranteed performance. The
three classes are periodic workloads (e.g., open-loop workloads such as video
playback), interactive workloads, and aperiodic (“normal”) workloads. An
overall timeline of the deadlines for each of pending requests is maintained,
with the intent that requests will be sent to disk at the last possible point in
time that will still allow their deadlines to be met (for periodic and aperiodic
workloads). For those workloads, completing requests “early” may be of little
benefit. For interactive workloads, though, this artificial postponement is not
as acceptable. Thus, interactive requests are dispatched immediately, so long
as doing so will not cause another request to miss its deadline. To increase
disk scheduling efficiency, when interactive requests are sent to disk, other
queued requests that are “nearby” on disk will be promoted (sent earlier than
required) and sent at the same time so that they can be handled together
with the interactive request for a lower total cost. The paper focuses on
managing classes rather than individual workloads, and it does not explore
the case where guarantees for different classes or workloads may conflict:
how to detect this case is happening, how to handle this case, and how to
do admission control to prevent incompatible workloads from being placed
together on a disk in the first place.

Facade [33] provides latency guarantees that are a function of offered
request rate, rather than in absolute terms. Each workload’s guarantee is in
the form of a pair of curves, one specifying read latency and the other speci-
fying write latency. The intention is that latency is allowed to be higher if a
workload has submitted more requests (since a request must queue behind
other requests from the same workload, even before inter-workload interfer-

ence is considered). Once the governing latency target (under the current

16 . Performance insulation: more predictable shared storage

request load) for each workload is known, standard deadline-based schedul-
ing is used, alongside a novel feedback controller that manages queue depths.
This feedback controller is based on the same efficiency / queue-depth / la-
tency relationship exploited in Triage (note that Fagade preceded Triage).
Longer queues may allow more efficient request scheduling and disk seeks.
The danger of longer queues, however, is the fact that requests cannot be
cancelled once added to the disk queue; thus, an arriving request with a
deadline that will occur before the current queue is drained cannot be as-
sured of meeting its latency target. Therefore, the controller tries to lengthen
the queue, which may (or may not) improve efficiency, so long as latency
targets are being met. If the controller observes that one or more targets are
being violated, queue depth is decreased until latency is back under control.
The queue depth, and thus the overall efficiency of the system, is limited by
the workload with the lowest latency requirement.

Stonehenge [22] attempts to virtualize bandwidth and latency for work-
loads using a standard deadline-based scheduler with fixed latency targets,
but adds an additional optimization for locality. Two queues are maintained:
one in deadline order and another in CSCAN order. When slack exists (i.e.,
requests do not need to be dispatched from the deadline queue immediately
to avoid missing their deadlines), Stonehenge “sneaks ahead” requests from
the CSCAN queue. This has the effect of explicitly managing disk schedul-
ing during slack periods, rather than simply managing queue lengths and
allowing disk scheduling to be performed in the disk’s firmware.

AVATAR and SARC [59] are a pair of schedulers, used together, to pro-
vide latency and bandwidth guarantees. Taken together, they are intended to
provide throughput guarantees over one second windows and latency guar-
antees to a specified percentile (e.g. 95"-percentile latency). The AVATAR
scheduler does standard earliest-deadline-first scheduling based on request
arrival times and latency guarantees. In addition, AVATAR works similarly
to Facade in that it determines whether to shorten (latency guarantees are
being violated) or lengthen (there is available slack to exploit) the queue.
However, AVATAR employs a queueing-theoretic approach to this decision
rather than a control-theoretic approach. The SARC scheduler throttles

2.3 Related work on storage QoS . 17

workloads to their guaranteed request rates and provides fair sharing among
“excess” requests in the case where AVATAR determines that the disk is un-
derutilized even when meeting all guarantees, and, thus, spare bandwidth is
available. The authors also identify an important control-theoretic “corner
case” that they argue should be handled differently than it is in prior work:
When deadlines are being violated en masse, other systems often shorten
queue lengths to try to reduce latency. In general, this is the correct action
to take when minor violations are occurring. When a significant backlog has
developed, however, the authors argue that the correct action to take is to
lengthen queues and attempt to clear out the backlog quickly. While ev-
ery deadline may be violated during this period, the hope is that by taking
aggressive action, the system will be returned to a normal, manageable oper-
ating point quickly. Were the system to throttle the workloads and continue
to perform conservative scheduling, it may not be possible to “catch up,”
and the backlog — and its associated guarantee violations — may remain
indefinitely.

pClock [19] performs a combination of leaky-bucket based throughput
management and deadline-based scheduling. Workloads receive bandwidth
and latency guarantees if they do not exceed the request intensity speci-
fied by the leaky bucket model. The authors introduce a novel method of
performing token bucket calculations — the arrival curve — which is more
computationally efficient. Spare capacity is used for background tasks, which
are allocated contiguous batches of time up to the amount of slack available
before the next deadline; this may improve the efficiency of background
tasks, which are often sequential. (Alternatively, spare capacity can be di-
rected to foreground tasks, providing service that is not accounted for under
token-bucket limits.) Workloads are not necessarily throttled if they exceed
their specified limit, but are no longer granted guarantees. This places the
onus on a workload to determine if its performance is better over the limit
or under it. Requests are assigned start tags and finish tags, with finish tags
similar to deadlines in other systems. Start tags represent when a flow that
is not exceeding the leaky-bucket limits would have been able to submit

the request. Finish tags are computed using the start tags, maximum la-

18 . Performance insulation: more predictable shared storage

tency, and arrival time, and only workloads within their leaky-bucket limits
are guaranteed that their finish tags will be no farther in the future than
their maximum latency. Requests are dispatched in finish-tag order. A de-
centralized implementation of the algorithms for use in a storage cluster is
presented as dClock [18].

Whether allocating contiguous spans of time to background workloads,
performing SCAN / CSCAN dispatch, promoting nearby requests, or in-
creasing parallelism, the goal of all of these variants of deadline-based
scheduling is to try to improve throughput and efficiency without violat-
ing latency bounds. The exact amount of improvement is dependent upon

the workloads and cannot be easily bounded.

Additional related work

Aqueduct [31] is a special-purpose scheduler intended to preserve the perfor-
mance of foreground workloads while migration (the copying of data belong-
ing to another workload to or from the server) is occurring in the background
on the same disk. Foreground workloads are provided bounded average la-
tency over 60-second sampling periods. Rather than attempting to determine
up front the rate at which the background workload can proceed without
causing foreground workloads to miss their latency targets, the system uses a
feedback-driven controller to adapt to the levels of interference occurring at
each point in time. If the latency guarantee is presently being violated, then
migration needs to be throttled back; if not, the current rate is acceptable,
and increasing the rate to provide better migration performance may be safe
to attempt. This strategy has the advantage of avoiding overly-conservative
up-front estimations of the appropriate migration rate by searching for the
exact boundary between an acceptable and an unacceptable migration rate.
The disadvantage is that, to “hug” this boundary tightly, the system will
have to risk crossing it, resulting in transient violations. Also, if the boundary
changes over time, violations will occur until the system reacts appropriately
and sufficiently. Thus, in the system the latency was calculated over a 60-

second window to allow violations to be averaged out. Workloads requiring

2.3 Related work on storage QoS . 19

much stricter latency bounds cannot be accommodated using this strategy.
While this simple control system is effective for this special-purpose use,
more complexity may be necessary when more than two workloads or work-
load classes are being managed. For instance, if deadline violations occur,
it may not be immediately obvious which other workload should be scaled
back from among the possible choices. In addition, in Aqueduct, the back-
ground migration workload is not given a guarantee, so there is no lower
bound on its rate, which gives the system considerable flexibility to throttle
it; in a system attempting to provide guarantees to all workloads, workloads
cannot be rate-limited below their guarantee levels.

Fahrrad [46] uses Argon’s approach (Argon is described in Chapter 3) of
providing guarantees in terms of utilization rather than performance. Reser-
vations specify desired throughput or latency, and expected I/O behavior
(e.g., sequentiality and burstiness). A broker translates these reservations
into the anticipated level of utilization that must be reserved. The standard
deadline-based scheduler achieves guarantees over a period of time under
the condition that all I/O requests that will be issued during that period
are known at the beginning of the period, allowing for decisions that are
theoretically optimal but unlikely to be practical in real systems.

Maestro [37] is a adaptive feedback controller, similar to Facade and
Triage, that provides either latency or throughput targets for workloads,
in this case for large disk arrays. Maestro works by varying concurrency
levels for applications to meet targets and to enforce the relative priorities of

workloads when insufficient performance is available to meet all the targets.

Limitations of these approaches

These approaches to providing performance guarantees suffer from a number
of key limitations.

Systems that use token buckets or leaky buckets to “provide guarantees”
use these models in a manner that is fundamentally “backwards” to their
actual nature. The desired guarantee for a workload in these systems is spec-

ified by the rate and burst characteristics of a token bucket. Each workload

20 . Performance insulation: more predictable shared storage

is then throttled (i.e., limited) to the bucket parameters. The intent is to
guarantee each workload will receive a minimum level of performance spec-
ified by the bucket, but, in fact, the bucket specifies a mazimum level of
performance: it is used to establish the level at which throttling occurs.

This “mismatch” is justified by the following argument. Suppose all the
workloads and their corresponding guarantees are able to fit together on a
particular system. Suppose further that they fit together under the schedul-
ing policy being used (since the scheduling policy can affect system capac-
ity). However, it is not necessarily known if the workloads will be able to
coexist if one or more workloads ezceeds its guarantee. Thus, the role of the
system is to prevent any workload from receiving more than its guarantee,
at least until it is certain that doing so will not cause another workload to
receive less than its guarantee. (Workloads are not necessarily designed to
send requests at exactly the guarantee rate, so the system itself is seen as
assuming the role of controlling them.)

This “mismatch” is dangerous if the opposite situation holds, however.
Suppose not all the workloads and their associated guarantees can fit on the
system. Then, even limiting each workload to its desired level, at least one
workload will still not reach its guaranteed level of performance. No change
to the throttling can solve the problem because no workload is receiving
excess resources; one can only potentially change which workload is the
“victim.”

Thus, throttling-based systems are not able to provide guarantees at all,
unless they use a separate mechanism to test the feasibility of a particu-
lar set of guarantees. The real complexity of providing guarantees in these
systems is transferred to that mechanism, but completely satisfactory so-
lutions to the problem of determining feasibility of workload combinations
under throttling do not yet exist. Furthermore, throttling-based systems use
a particular class of scheduler that is not specifically designed to manage effi-
ciency, and they often achieve poor efficiency levels in practice. Thus, even if
the workloads are feasible on a system’s hardware, they may not be feasible
under a throttling scheduler. In addition, another consequence of throttling

schedulers not explicitly managing efficiency is that there may be swings

2.3 Related work on storage QoS . 21

over time in efficiency and therefore, changes in the set of workloads that
can fit on a particular system. Hence, the critical feasibility test is made
significantly more complex due to this variance.

Systems that perform deadline scheduling provide latency guarantees for
workloads. In particular, they attempt to ensure that the latency of requests
never goes over a specified limit. In other words, their guarantees are for
maximum latency. For workloads that truly need maximum latency never to
exceed a particular value for even a single request, deadline-based schedulers
with request reordering may provide the best possible performance.

It is not clear, however, what proportion of latency-sensitive workloads
need guarantees in this form. It may be possible to provide slightly more
flexible guarantees that still result in good latency for most requests; for

example, guarantees on three values: mean latency (e.g., < 25 ms), n'h-

5"_percentile < 50 ms), and maximum latency

percentile latency (e.g., 9
(e.g., < 750 ms). By permitting occasional high latency while still preserv-
ing good latency for the majority of requests, it becomes possible in some
cases to employ techniques like Argon’s timeslicing (a main component of
this dissertation, described in Chapter 3), which may provide dramatically
better efficiency and bandwidth. Some deadline-based schedulers were evalu-
ated, when published, with latency guarantees of approximately one second.
Timeslicing can achieve very high levels of efficiency with similar or better
maximum latencies, while also providing significantly better mean latency.
One frequently-used example workload that does require hard maximum la-
tency guarantees is video streaming, which is seemingly incompatible with
timeslicing. This workload is highly sequential and predictable, however;
thus, even a timeslice-based scheduler may be able to perform prefetching
and provide workloads like this one consistently with “zero latency” (i.e.,
the latency of prefetch cache hits only).

In addition, even systems that perform strict deadline-based scheduling
do not necessarily guarantee true hard latency maxima. This is because they
must estimate the behavior of the disk in order to know the cutoff before
which requests must be sent to the disk in order to finish on time. This en-

tails more complexity than it might seem, and without perfect knowledge of

22 . Performance insulation: more predictable shared storage

disk characteristics, this estimate is itself imperfect. A deadline-based sched-
uler usually operates at a level above the disk scheduler and is not perfectly
aware of disk geometry, a key determinant of positioning delays. Thus, re-
quest completion times at the disk are not known with certainty in advance;
the last moment at which a request can be sent to the disk and complete on
time can only be estimated, either with over-conservatism (which reduces
opportunities to exploit slack and increase efficiency) or with the possibil-
ity of incurring latency violations at least some of the time. This problem
is further compounded when more than one request is kept outstanding at
the disk; the order of completions is not known in advance and there may
be greater variance in completion times. Another problem is that disks oc-
casionally have latencies well beyond the expected or advertised maximum
latencies due to retries, thermal recalibration, and other effects. The level
of conservatism needed to weather such occurrences without any latency
violations may be either impractical or completely impossible (for latency
guarantees that are shorter than the latency of a thermal recalibration, for
instance). Therefore, to some extent, even strict deadline-based scheduling
may not be providing true hard latency maxima, but only a guarantee of
latency up to a certain percentile. Hence, it is not clear in what senses the
guarantees offered by these systems are consistently better than those offered
by the timeslicing-based approach described in Chapter 3, yet the efficiency

these systems achieve may be significantly lower.

2.3.2 Admission control

Many papers that discuss policies for performance guarantees treat admis-
sion control as an orthogonal topic, which they do not explore in detail
(5,9, 24, 32, 59]. Among the papers that do discuss the topic further, there
are three common approaches to admission control: making admission de-
cisions based on current behavior (rather than possible future behavior);
accounting for the worst possible case for each workload, and thus making
correct (if very conservative) admission decisions; and performing admission

control over utilization instead of bandwidth.

2.3 Related work on storage QoS . 23

Making admission decisions based on current behavior is appealing, be-
cause it allows for a “trial-and-error” approach based on actual observa-
tions. This approach is adopted by Wijayaratne and Reddy [56], and Stone-
henge [22]. The problem with this approach is the reliance on current be-
havior, which may not be predictive of future behavior. A set of workloads
may fit together on a server now, but if even one of them were to change,
at any point in the future, the reservations may no longer be adequate for
any of the workloads (inadequate for the workload that changed because it
changed; inadequate for the others because inter-workload interference may
also have changed).

Accounting for the worst possible case for each workload is attractive, be-
cause it can provide guarantees that are highly likely to be met; after all, no
case is worse than the worst case. This approach is adopted by Zygaria [57].
Usually the worst case is taken to mean highly random request streams with
minimal locality, minimal reuse (no benefit to caching), and minimal request
sizes (small amounts of data transferred per unit of work and time). The
resources needed to provide the guaranteed level of bandwidth under these
worst-case assumptions are reserved. Some workloads operate close to the
worst case; for them, this approach is effective. Others, especially workloads
with high locality, good cacheability, and / or large block accesses, are not
handled well by this approach. For them, reservations would be made for a
worst case that may be more than an order of magnitude more costly than
their actual resource usage. For some workloads that could easily fit on a
single disk, providing the same bandwidth to a worst-case workload is im-
possible because it exceeds the dedicated-disk performance for a worst-case
workload. Thus, these policies avoid making guarantees that can’t be kept,
but can result in extreme over-provisioning and the rejection of perfectly
legitimate workloads, even running alone.

Performing admission control over utilization instead of bandwidth
greatly simplifies the problem. This approach is taken by Argon. Utiliza-
tion, which is essentially the same as the amount of resources needed for a
workload, is a fraction. Implementing admission control on a fraction of re-

sources is as simple as checking to make sure the fractions allocated to each

24 - Performance insulation: more predictable shared storage

workload do not sum to more than 100%. Admission control is usually done
over externally-determined allocation requests. If the user or administrator
determines and specifies a utilization goal, this entirely sidesteps the chal-
lenging problem of converting from a bandwidth goal into a resource level
within the storage system. But, we anticipate that for most workloads, users
and administrators have a better sense of what bandwidth (e.g., 6 MB/s)
is required than what level of resources is required (e.g., one-tenth of a
disk). Thus, while easier to implement, it is not clear that utilization-based
guarantees and admission control are practically useful for many types of

workloads.

3 Efficiently sharing a storage system
(Argon)

A significant limitation in existing approaches for storage QoS is the lack of
focus on efficiency. Efficiency is a worthy goal on its own, and it is desirable
to provide better performance and efficiency to workloads sharing a storage
system even if they do not require bandwidth guarantees. But, efficiency is
also a valuable building block for workloads that do need minimum levels
of bandwidth: Increasing efficiency may also significantly reduce variance in
bandwidth due to interference, and reduce the amount of resources required
to achieve the same level of performance for a workload. This reduces the
over-provisioning needed to achieve the same guarantees for more workloads
simultaneously. Less over-provisioning means more workloads can co-exist.
And less variance means that guarantees are more robust.

By improving efficiency, systems that are currently already shared may
perform better and more predictably and be able to host more workloads.
But, the potential benefits extend beyond that; shared storage may be-
come practical for a wider set of workloads, allowing them to be moved
from dedicated or statically-partitioned systems to systems that are more
cost-effective and whose slack is being shared among more workloads more
flexibly and effectively.

This chapter describes the key sources of inefficiency when workloads
share a storage system and the techniques that are necessary and sufficient
to limit them. To eliminate other variables, it uses microbenchmarks to

demonstrate the causes of interference and the effectiveness of the solutions

25

26 . Performance insulation: more predictable shared storage

which prevent it. To show which combination of techniques is adequate for

more realistic workloads, it provides macrobenchmark results as well.

3.1 Introduction

When active workloads share a server, each will receive only a fraction of
the server’s resources. Thus, each should expect to receive less than the
bandwidth it could achieve on a dedicated server. But, each workload should
be able to use its fraction of resources with nearly the same efficiency as it
receives when it runs alone. Unfortunately, when workloads share a storage
server, they often interfere with each other, reducing each other’s efficiency
dramatically.

The causes of interference at a storage system can be placed into three
categories. First, “aggressive” workloads can issue a disproportionate num-
ber of requests, and thus receive a disproportionate amount of attention
and service from the storage system at the expense of other workloads. Sec-
ond, fine-grained interleaving of requests at the disk among workloads can
result in greatly diminished locality in the combined request stream; local-
ity is a key determinant of hard disk performance due to the physical and
mechanical aspects of hard drives. Third, one workload can suffer excessive
evictions from the buffer cache (or equivalent) due to the requests of another
workload.

Locality is important when using hard drives because they are physical
devices that must perform mechanical motions (seeks) in order to service
requests. Compared to the time scales at which other events (such as instruc-
tion execution, memory access, or network packet transmission) occur, these
seeks take significantly (orders of magnitude) longer. Some workloads, such
as so-called sequential or streaming workloads, perform better than others at
a hard drive because the physical locations of consecutively-accessed blocks
are nearby on the disk surface (thus, fewer or shorter seeks). For these work-
loads, if anything causes their intrinsic locality to be disrupted, such as the
interleaving of requests from other workloads with data stored elsewhere on

the surface, then their performance may drop by a factor of ten or more. In

3.1 Introduction . 27

particular, their performance may deteriorate from that of a sequential ap-
plication to that of a random application (in other words, from one extreme
on the continuum of disk locality and performance to the other).

Similarly, caches can have a significant impact on workload performance.
Cache misses are two orders of magnitude slower than cache hits. Without
care, it is easy for one intensive workload to dominate the cache with a large
footprint, significantly reducing the hit rates of other workloads.

In contrast to the unboundedly-low efficiency that may occur due to
disk and cache interference, this chapter discusses the goal of maintaining
the efficiency of each workload sharing a system to at least a configurable
fraction (e.g., 0.9) of the full efficiency it achieves when it has the system
entirely to itself, regardless of the number or activity of other workloads
using the same system. We call this fraction the R-value, drawing on an
analogy to the thermal resistance measure in building insulation. With a
“perfect” R-value of 1.0, sharing would affect the portion of server time and
resources dedicated to a workload, but not the efficiency with which the
workload can use that portion. Thus, while a workload’s performance would
be scaled down as it contends for a bottleneck resource, the reduction in
performance would be no more than should be expected given that it does
not have full use of the resource. In a system with a realistic R-value of
0.9, workloads would suffer at most a slight (10%) further deterioration of
performance due to sharing overhead, but no further loss than that. Not
only does this increased efficiency result in increased performance, but also
in increased predictability of performance and a much simpler and more
predictable characterization of the effects of sharing.

The Argon storage server, described in this chapter, combines three
mechanisms plus automated configuration to maintain efficiency under shar-
ing. First, it detects sequential streams and uses sufficiently large prefetches
and write requests to amortize positioning costs and achieve the configured
R-value of streaming bandwidth. Second, it explicitly partitions the cache
to prevent any one workload from squeezing out others. To maximize the
value of available cache space, the space allocated to each workload is set

to the minimum amount required to achieve the configured R-value of its

28 . Performance insulation: more predictable shared storage

full standalone efficiency. For example, a workload that streams large files
and exhibits no reuse hits only requires enough cache space to buffer its
prefetched data. On-line cache simulation is used to determine the required
cache space for all workloads. Situations where not enough cache space is
available to host a newly added workload are explicitly identified after a
short period. Third, disk time quanta are used to separate the disk I/O
of workloads, eliminating interference that arises from workload mixing ex-
cept when one quantum is ending and another beginning. The length of
each quantum is determined by Argon to achieve the configured R-value,
and average response time is kept low by the improvement in overall server
efficiency.

The Argon storage server includes an implementation of these mecha-
nisms together with policies for managing them. For example, Argon requires
policies for detecting sequential streams and determining how much cache to
use for each workload. The sequential access size is dictated by the efficiency
desired and the re-positioning time, which can be measured.

Experiments with both Linux and pre-insulation Argon confirm the sig-
nificant efficiency losses that can arise from inter-workload interference.
With its insulation mechanisms enabled, measurements show that Argon
mitigates these losses and consistently provides each workload with at least
the configured level of efficiency. For example, when configured with an
R-value of 0.95 and simultaneously serving OLTP (TPC-C) and decision
support (TPC-H Query 3) workloads, Argon’s insulation more than dou-
bles performance for both workloads. Workload combinations that cannot
be sufficiently insulated, such as two workloads that require the entire cache
capacity to perform well, can be identified soon after an unsupportable work-
load is added.

3.2 Intended applications

This section describes the workloads and storage systems for which the tech-
niques in this chapter are appropriate, and those for which the techniques

are not suitable. Section 3.7 revisits this discussion at the end of the chap-

3.3 Sources of interference . 29

ter, indicating why these limitations exist and to what extent they may be
remediable with further refinement.

Argon is designed for single-server storage systems. (Accommodations
for clustered storage systems are described in the next chapter.) We target
storage systems where we can implement our techniques at a layer that is
aware of request-to-disk mappings and that can control the caching policy.

Argon should work with a broad range of workloads. However, for best
results, a workload should have enough activity that Argon can detect its
access patterns reasonably soon after it begins executing. In addition, full
insulation cannot be provided to sets of workloads whose access patterns
are each too demanding of the cache to be able to co-exist well on a server.
Finally, Argon’s proportional allocations of server time are reasonable for
many workloads, but may not be suitable for some, particularly those with
significant idleness. While the resources provided to workloads with idleness
are not improper, there is likely to be a more appropriate format of guarantee
and a more appropriate type of resource allotment for such workloads.

Argon targets workloads who need efficiency in terms of bandwidth (or
throughput). Argon’s impact on latency varies, depending upon the spe-
cific metric of latency being considered; however, Argon is not suitable for

workloads requiring hard real-time maximum latency guarantees.

3.3 Sources of interference

This section describes in greater detail the causes of low efficiency and high

inter-workload interference in storage systems.

3.3.1 Request interference

A workload that submits a disproportionately large number of requests can
receive a disproportionate level of attention from the storage system because
attention is, in many systems, allocated on a request-by-request basis rather
than in controlled fractions to workloads. Thus, workloads that maintain
high concurrency of requests can starve other workloads. This type of in-

terference does not directly reduce the efficiency other workloads receive in

30 . Performance insulation: more predictable shared storage

their fraction of server time, but rather reduces the fraction of server time
they receive. Control over the allocation of time among workloads must be

maintained to prevent one intense workload from dominating request queues.

3.3.2 Disk head interference

The fraction of “useful work” a workload accomplishes on a disk can be de-
fined as the fraction of the average disk request’s service time spent transfer-
ring data to or from the magnetic media (as opposed to waiting for position-
ing of the head or medium). The best case, sequential streaming, achieves
useful work levels of approximately 0.9, falling below 1.0 because no data is
transferred when switching from one track to the next [48] (the only posi-
tioning delay generally incurred by such workloads). Non-streaming access
patterns can achieve useful work levels well below 0.1, as seek time and ro-
tational latency are much greater than data transfer time. For example, a
disk with an average seek time of 5 ms that rotates at 10,000 RPMs would
provide useful work level of ~0.015 for random-access 8 KB requests (as-
suming 400 KB per track). Improved locality (e.g., cutting seek distances in
half) might raise this value to ~0.02.

Disk head efficiency under sharing can be defined as the reduction of use-
ful work suffered by a workload due to sharing. For instance, if a workload’s
useful work level on a standalone disk is z and under sharing is also x, then
the efficiency level is 1.0; if standalone useful work is # and under sharing
is 0.5 - z, then the efficiency level is 0.5. Note that efficiency is not the same
as performance, in part because it does not capture whether the number
of requests or total amount of disk time allocated to a specific workload
changes — only the efficiency with which its requests are handled, however
many or few of them there may be.

Interleaving the access patterns of multiple workloads can reduce disk
head efficiency dramatically if doing so breaks up sequential streaming. This
often happens to a sequential access pattern that shares a disk with any other
access pattern(s), sequential or otherwise. Almost all sequential patterns

arrive one request at a time, leaving the disk scheduler with only other

3.3 Sources of interference . 31

workloads’ requests immediately after completing one from the sequential
pattern. The scheduler’s choice of another workload’s access will incur a
positioning delay and, more germane to this discussion, so will the next
request from the sequential pattern. If this occurs repeatedly, the sequential
pattern’s disk head efficiency can drop by an order of magnitude or more.
Most systems use prefetching and write-back for sequential patterns.
Not only can this serve to hide disk access times from applications, it can
be used to convert sequences of small requests into fewer, larger requests.
Such larger requests are beneficial because they amortize positioning delays
over more data transfer, increasing disk head efficiency if the sequential
pattern is interleaved with other requests. Although this helps, most systems
do not prefetch aggressively enough to achieve performance insulation [43,
48] — for example, the 64 KB prefetch size common in many operating
systems (e.g., BSD and Linux) raises efficiency from ~0.015 to ~0.11 when
sequential workloads share a disk. As shown later in this chapter, efficiency
levels of 0.9 are achievable. More aggressive use of prefetching and write-back

aggregation is one tool used by Argon for performance insulation.

3.3.3 Cache interference

For some applications, a crucial determinant of storage performance is the
cache. Given the scale of mechanical positioning delays, cache hits are sev-
eral orders of magnitude faster than misses. Also, a cache hit services a
user request without consuming any disk head time, reducing disk head
contention.

With traditional cache eviction policies, it is easy for one workload to
get an unfair share of the cache capacity, preventing others from achieving
their appropriate cache hit rates. Regardless of which cache eviction policy
is used, there will exist certain workloads that fill the cache, due to their
locality (recency- or frequency-based) or their request rate. The result can
be a significant reduction in the cache hit rate for the other workloads’ reads,
and thus much lower efficiency if these workloads depend upon the cache for

their performance.

32 . Performance insulation: more predictable shared storage

In addition to efficiency consequences for reads, unfairness can arise with
write-back caching. A write-back cache decouples write requests from the
subsequent disk writes. Since writes go into the cache immediately, it is easy
for a workload that writes large quantities of data to fill the cache with its
dirty blocks. In addition to reducing other workloads’ cache hit ratios, this
can increase the visible work required to complete each miss — when the
cache is full of dirty blocks, data must be written out on the critical path in

order to create free buffers before the next read or write can be serviced.

3.4 Insulating from interference

Argon is designed to reduce interference between workloads, allowing fair
or weighted sharing with bounded loss of efficiency. To improve efficiency,
Argon combines three techniques: quanta-based scheduling, aggressive amor-
tization, and cache partitioning. Argon automatically configures each mech-
anism to reach the configured fraction of full standalone efficiency for each
workload. Quanta-based scheduling also serves to improve fairness or pro-
vide controllable weights for the fraction of resources each workload receives.

This section describes Argon’s goals and mechanisms in more detail.

3.4.1 Goals and metrics

Argon provides both insulation and weighted fair sharing. Performance in-
sulation means that efficiency for each workload is maintained even when
other workloads share the server. That is, the I/O throughput a workload
achieves, within the fraction of server time available to it, should be close
to the throughput it achieves when it has the server to itself. Argon allows
the allowable loss in efficiency to be specified by a tunable R-value param-
eter, analogous to the R-value of thermal insulation. If the R-value is set
to 0.9, a workload that gets 50% of a server’s time should achieve at least
0.9 of 50% of the throughput it would achieve if not sharing the server (in
other words, 45%). And, that efficiency (minimally) should be achieved no
matter what other workloads do within the other 50% of the server’s time,

providing predictability in addition to performance benefits.

3.4 Insulating from interference -+ 33

Argon’s insulation focus is on efficiency as defined by throughput. While
improving efficiency usually reduces average response times, Argon’s use of
aggressive amortization and quanta-based scheduling can increase variation
and worst-case response times. We believe that this is an appropriate choice
(Section 3.6 quantifies our experiences with response time), but the trade-off
between efficiency and response time variation is fundamental and can be
manipulated by the R-value parameter.

Argon focuses on the two primary storage server resources, disk and
cache, in insulating a workload’s efficiency. It assumes that network band-
width and CPU time will not be bottleneck resources. Given that assump-
tion, a workload’s share of server time maps to the share of disk time that it
receives. And, within that share of server time, a workload’s efficiency will
be determined by what fraction of its requests are absorbed by the cache
and by the disk efficiency of those that are not.

Disk efficiency under sharing was defined earlier in Section 3.3.2 as the
change, due to sharing, of the fraction of a request’s service time spent
actually transferring data to or from the disk media (useful work fraction).
A workload’s useful work level under sharing should be within the R-value
of its level when not sharing the disk (in other words, its efficiency should
be at least the R-value); for a given set of requests, the useful work fraction
determines disk throughput.

Cache efficiency under sharing can be defined as the reduction, caused by
sharing, of the fraction of requests absorbed by the cache. Absorbed requests
— read hits and dirty block overwrites — are handled by the cache without
requiring any disk time. When the cache is shared among workloads, no one
workload is likely to be allocated the full cache; thus, its absorption rate may
go down due to contention for cache pages. Many workloads’ cache absorp-
tion rates are non-linear functions of how much cache space they receive, and
different workloads may have dramatically different functions. As a result,
some workloads may suffer a significant degradation in absorption rate, and
thus efficiency and performance, with slight decreases in cache occupancy;
while others may tolerate significant reductions in footprint with little or

no effect. Because some workloads will suffer significantly when sharing the

34 - Performance insulation: more predictable shared storage

cache with others, cache efficiency cannot be maintained for every mix of
workloads — unlike disk efficiency.

Argon’s goal is to provide explicit shares (fractional allocations) of server
time, together with an explicit guarantee of maintained efficiency. An al-
ternative approach, employed in some other systems, is to focus on per-
workload performance guarantees as the first-order goal instead of shares
and efficiency. In storage systems, this is difficult when mixing workloads
because different mixes provide very different efficiencies, confusing the feed-
back control algorithms used in such systems. Argon provides a predictable
foundation that is significantly more conducive to stable control, as explored
in Chapter 5. Atop Argon, a control system can manipulate the share al-
located to a workload to change its performance, with much less concern
about efficiency fluctuations caused by interactions with other workloads
sharing the system. A control system based on this property is described in
Chapter 5.

3.4.2 Overview of mechanisms

Figure 3.1 illustrates Argon’s high-level architecture. Argon provides
weighted fair sharing by explicitly allocating disk time among workloads
in the appropriate proportions (relative time). Argon maintains efficiency
by managing per-workload cache footprints and the combined disk request
stream as needed to avoid the sources of efficiency-affecting interference
mentioned above. In particular, each workload’s disk efficiency is insulated
by ensuring that disk time is allotted to clients in large enough quanta (ab-
solute time) so that the majority of time is spent handling client requests,
with comparatively minimal time spent at the beginning of a quantum seek-
ing to the workload’s first request. Each workload’s relationship between
hit rate and cache size is then analyzed and appropriate cache sizes chosen
for each so that the total efficiency loss for each workload, accounting for
disk sharing overhead and the reduction in cache hit rates, is no more than
allowed by the R-value. To ensure quanta are effectively used for streaming

reads without requiring a queue of actual client requests long enough to fill

3.4 Insulating from interference -+ 35

Application 1 "us Application N

S

Request queue

. Partitioned
cache
~ ~
prefetched blocks | cached blocks
~ e
scheduler
; } amortized accesses
90 Qose

Figure 3.1: Argon’s high-level architecture. Argon makes use of cache
partitioning, request amortization, and quanta-based disk time scheduling.
Requests from different applications are received over the network in a sin-
gle queue, but with tags that differentiate the originating workload. The
requests are first compared against entries in a partitioned cache for hits. If
a request misses, then it proceeds to a scheduler which schedules requests
from each workload in turn; the scheduler also performs prefetching into the
appropriate cache partition for sequential workloads.

a full quantum at full utilization, Argon performs aggressive prefetching;
to ensure that streaming writes efficiently use the quanta, Argon coalesces
them aggressively in write-back cache space.

There are four guidelines we follow when combining these mechanisms
and applying them to the goals. First, no single mechanism is sufficient to
solve all of the obstacles to fairness and efficiency; each mechanism only
solves part of the problem. For instance, prefetching improves the perfor-
mance of streaming workloads, but does not address unfairness at the cache
level. Second, the mechanisms work best when they can assume properties
that are guaranteed by the other mechanisms comprising Argon. For in-

stance, timeslice-based scheduling is simplified when cache flushes on the

36 . Performance insulation: more predictable shared storage

critical path of a request = belong to the same workload as request z; cache
partitioning guarantees this is the case. Third, a combination of mecha-
nisms is required to prevent unfairness from being introduced. For example,
performing large disk accesses for streaming workloads must not starve non-
streaming workloads, requiring a scheduler to balance the time spent on
each type of workload. Fourth, to avoid misconfiguration and complexity,
Argon automatically adapts each mechanism to ensure sufficient insulation,
based on observed device and workload characteristics. For example, the ra-
tio between disk transfer rates and positioning times has changed over time,
and high streaming efficiency requires multi-MB prefetches on modern disks
instead of the 64-256 KB prefetches of OSes such as Linux and FreeBSD.
Argon is designed to automatically maintain efficiency on disks old and new,

including disks made in the future, without administrator intervention.

3.4.3 Amortization

Amortization refers to performing large, uninterrupted disk accesses for
streaming workloads. Because of the relatively high cost of seek times and
rotational latencies whenever repositioning is required, amortization is nec-
essary in order to approach the disk’s streaming efficiency when sharing the
disk with other workloads.

However, there is a trade-off between efficiency and responsiveness. Per-
forming very large accesses for streaming workloads will achieve the disk’s
streaming bandwidth, but at the cost of larger variance in response time.
Because the disk is being used more efficiently, the average response time ac-
tually improves, as we show in Section 3.6. But, because blocking will occur
for all other pending requests as large prefetch or coalesced requests are pro-
cessed, the maximum response time and the variance in response times may
significantly increase. Thus, the prefetch and coalesced write sizes should
only be as large as necessary to achieve the specified R-value.

In contrast to current file systems’ tendency to use 64 KB to 256 KB
disk accesses, Argon performs sequential accesses MBs at a time. The exact

access size is automatically chosen based on disk characteristics and the

3.4 Insulating from interference -+ 37

Avg. Req. Size
Head Avg. Sectors/ for 0.9

Disk Year RPM Switch Seek Track Capacity Efficiency

IBM Ultrastar 18LZX (SCSI) | 1999 10000 0.8 ms5.9 ms 382 18 GB 2.2 MB
Seagate Cheetah X15 (SCSI) | 2000 15000 0.8 ms3.9 ms 386 18 GB 2.5 MB
Maxtor Atlas 10K III (SCSI) | 2002 10000 0.6 ms4.5 ms 686 36 GB 34 MB
Seagate Cheetah 10K.7 (SCSI)| 2006 10000 0.5 ms4.7 ms 566 146 GB 4.8 MB
Seagate Barracuda (SATA) 2006 7200 1.0 ms8.2 ms 1863 250 GB 13 MB

Table 3.1: SCSI/SATA disk characteristics. Positioning times have not
dropped significantly over recent years, but disk density and capacity have
grown rapidly. This trend calls for more aggressive amortization.

configured R-value, using a simple disk model. The average service time for
a disk access not in the vicinity of the current head location can be modeled
as:

S =Tseek + Trot/2 + Tiransfer

where S stands for service time, Tseer is the average seek time, T}, is the
time for one disk rotation, and Tjqsfer is the media transfer time for the
data. The value Ti..r is the expected time required to seek to the track
holding the starting byte of the data stream. On average, once the disk
head arrives at the appropriate track, a request will wait T}, /2 before the
first byte falls under the head.! In contrast to the other two terms which
can be thought of as overhead, T}, 45 fer represents useful data transfer and
depends on the transfer size.

In order to achieve disk efficiency of, for example, 0.9, T}4psfer must be
9 times larger than Tseer +Trot /2. As shown in Table 3.1, modern SCSI disks
have an average seek time of ~5ms, a rotation period of ~6 ms, and a track
size of ~400 KB. Thus, for the Cheetah 10K.7 SCSI disk to achieve a disk
efficiency of 0.9 in a sequential access, Tjyqns fer must be 9% (5 ms 4 6 ms/2) =
72ms. Ignoring head switch time, ~ 72ms/T,, = 12 tracks must be read,

which is 4.8 MB. Each number is higher on a typical SATA drive.

!Only a small minority of current disks appear to have the feature known as Zero-
Latency Access, which allows them to start reading as soon as the appropriate track is
reached and some part of the request is underneath the head (regardless of the position
of the first byte) and then reorder the bytes later; this would reduce the T}0:/2 term.

38 . Performance insulation: more predictable shared storage

As disks’ data densities increase at a much faster rate than improve-
ments in seek times and rotational speeds, aggressive read prefetching and
write coalescing grow increasingly important. In particular, the access size
of sequential requests required for insulation increases over time. Argon au-
tomatically determines the appropriate size for each disk to ensure that it
is matched to a server’s current devices.

There is an interaction between disk request size policies and cache poli-
cies. In particular, multiple-MB sequential accesses require that the storage
server dedicate multiple-MB chunks of the cache space for use as speed-
matching buffers. Argon coordinates between the disk scheduler and the
cache manager to make appropriate reservations when sequential accesses
are detected.

Reads and writes are amortized through read prefetching and write co-
alescing, respectively. From a disk-efficiency standpoint, it does not matter
whether one is performing a large read or write request; efficiency simply
requires that request sizes be large in either case. However, the process of
generating large requests differs for reading and writing. Write coalescing is
straightforward because when a client sequentially writes a file, the blocks
are staged into a write-back cache and when it is time to flush a block, the
entire set of contiguous dirty cache blocks of which it is a member can sim-
ply be sent in a large group (MBs) to the disk. In contrast, read prefetching
is speculatively performed when a client appears to be sequentially reading
a file. However, because the blocks must be read before they are consumed,
and future accesses are not known with certainty, the strategy for determin-
ing when continued sequential accesses are likely must be more sophisticated

to minimize the useless prefetching of blocks that are ultimately not needed.

3.4.4 Cache partitioning

Cache partitioning refers to explicitly dividing up a server’s cache among
multiple workloads in a manner that provides complete isolation between the
respective partitions. Specifically, if Argon’s cache is split into n partitions

among workloads W7, ..., W,,, then W;’s data is only stored in the server’s 5"

3.4 Insulating from interference -+ 39

cache partition, irrespective of each workloads’ request patterns. Instead of
allowing excessive cache occupancy for some workloads to arise as an artifact
of access patterns and the cache replacement algorithm, cache partitioning
preserves a specific fraction of cache space for each workload.

It is often not appropriate simply to split the cache into equal-sized
partitions. Workloads that depend on achieving a high cache absorption rate
may require more than 1/n® of the cache space to achieve the R-value of
their full standalone efficiency. Conversely, large streaming workloads require
only a small amount of cache space to buffer prefetched data or dirty write-
back data, and workloads with little reuse do not benefit from cache beyond
a small number of pages for staging. Therefore, knowledge of the relationship
between a workload’s performance and its cache size is necessary in order
to correctly assign it sufficient cache space to achieve the R-value of its full
standalone efficiency.

Argon uses a three-step process to discover the required cache partition
size for each workload. First, a workload’s request pattern is traced; this
lets Argon deduce the relationship between a workload’s cache space and its
I/O absorption rate (i.e., the fraction of requests that do not go to disk).
Second, a system model predicts the workload’s throughput as a function of
the I/O absorption rate. Third, Argon uses the desired R-value to compute
the required I/O absorption rate (using the relationship calculated in step 2),
which is then used to select the required cache partition size (the relationship
calculated in step 1).

In the first phase, Argon traces a workload’s requests while it is running.
A cache simulator replays these traces using the server’s cache eviction pol-
icy to calculate the I/O absorption rate for different hypothetical cache
partition sizes. Figure 3.2 depicts example cache profiles for three bench-
mark workloads. In the figure, the total server cache size is 1024 MB. The
TPC-C cache profile shows that achieving a similar I/O absorption rate to
the one achieved with the total cache requires most of the cache space to
be dedicated to TPC-C. Not all workloads have this characteristic, however;
TPC-H Query 3 can achieve a similar I/O absorption rate to its standalone
value with only a small fraction of the full cache space. If both the TPC-C

40 . Performance insulation: more predictable shared storage

—~— TPC-C -=TPC-H Query 3 -<TPC-H Query 7

/
L
d

100

[0
o

D
o

N
o

% 1/Os absorbed

N
o
I

o

0 128 256 384 512 640 768 896 1024
Cache partition size (MB)

Figure 3.2: Cache profiles. Different workloads have different working
set sizes and access patterns, and hence different cache profiles. For three
database workloads, the relation between cache size and I/O absorption
percentage (defined as the fraction of requests that do not go to disk) is
shown. Requests that do not go to the disk include read hits and overwrites
of dirty cache blocks.

workload and TPC-H Query 3 use the same storage server, Argon will give
most of the cache space to the TPC-C workload, yet both workloads will
achieve similar I/O absorption rates to the ones they obtained in standalone
operation.

In the second phase, Argon uses an analytic model to predict the work-
load’s throughput for a specific I/O absorption rate. In the following dis-
cussion, we will only consider reads to avoid formula clutter (the details for
writes are similar). Let S; be the average service time, in seconds, of a read re-
quest from workload 4. The value S; is modeled as pi*SiBUF +(1—p;) *SiDISK.
Read requests hit the cache with probability p; and their service time is the
cache access time, SlB UF The other read requests miss in the cache with
probability (1 — p;) and incur a service time SP™K (write requests similarly
can be overwritten in cache or eventually go to disk). The value p; is esti-

mated as a function of the workload’s cache size, as described in the first

3.4 Insulating from interference - 41

step. The value SZ-DISK is continuously tracked per workload, as described in
Section 3.5.4. The server throughput equals 1/S;, assuming no concurrency.
In the final phase, Argon uses the R-value to calculate the required

workload throughput when sharing a server as follows:
Throughput required in share of time = (Throughput alone) - (R-Value)

A workload must realize nearly its full standalone throughput in its share
of time in order to maintain efficiency. Its actual throughput calculated over
the time both it and other workloads are executing, however, may be much
less. As an example, suppose a workload receives 10 MB/s of throughput
when running alone, and that an R-value of 0.9 is desired. This formula
says that the workload must receive at least 9 MB/s in its share of time.
(If it is sharing the disk equally with one other workload, then its overall
throughput will be 9 - 50% = 4.5 MB/s.)

Using the second step’s analytic model, Argon calculates the minimum
I/0 absorption rate required for the workload to achieve Throughput required
during its share of disk time. Then, the minimum cache partition size nec-
essary to achieve the required I/O absorption rate is looked up using the
first step’s cache profiles. If it is not possible to meet the R-value because of
insufficient free cache space, the administrator (or automated management

tool) is notified of the best efficiency it could achieve.

3.4.5 Quanta-based scheduling

Argon’s scheduler controls when each workload’s requests are sent to the
disk firmware (as opposed to performing “disk scheduling,” such as SPTF,
C-SCAN, or elevator scheduling, which reorders requests for performance
rather than for insulation; Argon expects that this level of disk scheduling
occurs underneath Argon’s own scheduler in the disk’s queue, implemented
in the disk’s firmware).

Scheduling is necessary for three reasons. First, it ensures that a work-

load receives exclusive disk access, which is required to maintain the large

42 . Performance insulation: more predictable shared storage

uninterrupted requests intended to be performed for sequential workloads.
Second, it ensures that disk time is appropriately divided among workloads
in the fractions desired. Third, it ensures that the R-value of standalone
efficiency for a workload is achieved in its quantum, by ensuring that the
quantum is large enough.

There are three phases in a workload’s quantum. In the first phase (at the
beginning of a timeslice), Argon issues requests that have been queued up
waiting for that workload’s quantum to begin. If more requests are queued
than the scheduler believes will be able to complete in the quantum, how-
ever, only enough to fill the quantum are issued. In the second phase, which
only occurs if the queued requests are expected to complete before the quan-
tum is over, the scheduler immediately passes through new requests arriving
from the application, if any. The third phase begins once the scheduler has
determined that issuing additional requests would cause the workload to ex-
ceed its quantum. During this period, the outstanding requests are drained
before the next quantum begins.

A quanta-based scheduling regime can eliminate much of the inefficiency
caused by sharing, but leaves two remaining sources. First, if a workload has
many outstanding requests, the scheduler may need to throttle the workload
and reduce its level of concurrency at the disk in order to ensure it does not
exceed its quantum. It is well-known that, for non-streaming workloads, the
disk scheduler is most efficient when the disk queue is large. Second, during
the third phase (draining a workload’s requests), the act of draining itself
also reduces the efficiency of disk head scheduling. In order to automatically
select an appropriate quantum size to meet efficiency goals, an analytical
lower bound can be established on the efficiency for a given quantum size by
modeling these effects for the details (concurrency level and average service
time) of the specific workloads in the system. Once a quantum length is
established, the number of requests that a particular workload can issue
without exceeding its quantum is estimated based on the average service

time of its requests, which the scheduler monitors.

3.5 Implementation : 43

3.5 Implementation

We implemented the Argon storage server to test the efficacy of our per-
formance insulation techniques, as a component in the Ursa Minor cluster-
based storage system [2] which exposes an object-based interface [38]. To
focus on disk sharing, as opposed to the distributed system aspects of the
storage system, we use a single storage server and run benchmarks on the
same node, unless otherwise noted.

The techniques of amortization and quanta-based scheduling are imple-
mented on a per-disk basis. Cache partitioning is done on a per-server basis.
The design of the system also allows per-disk cache partitioning.

Argon is implemented in C++ and runs on Linux and Mac OS X. For
portability and ease of development, it is implemented entirely in user space.
Argon stores objects in any underlying POSIX filesystem, with each object
stored as a file. Argon performs its own caching; the underlying file system
cache is disabled (through open()’s 0_DIRECT option in Linux and fcnt1()’s
F_NOCACHE option in Mac OS X). Our servers are battery-backed. This en-
ables Argon to perform write-back caching, by treating all of the memory
as NVRAM.

3.5.1 Distinguishing among workloads

To distinguish among workloads, operations sent to Argon include a client
identifier. “Client” refers to a workload, not a user or a machine. In our
cluster-based storage system, it is envisioned that clients will use sessions
when communicating with a storage server; the identifier is an opaque integer
provided by the system to the client on a new session. A client identifier
can be shared among multiple nodes; a single node can also use multiple
identifiers. The defining rule is that a client is the entity to which efficiency
and proportional share guarantees are provided; these guarantees apply to
the set of requests tagged with the corresponding client identifier, whatever

host they may come from.

44 - Performance insulation: more predictable shared storage

3.5.2 Amortization

To perform read prefetching, Argon must first detect that a client is per-
forming a sequential access pattern to an object. For every object in the
cache, Argon tracks a current run count: the number of consecutively read
blocks. If a client reads a block that is neither the last read block nor one
past that block, then the run count is reset to zero. During a read, if the run
count is above a certain threshold (4), Argon reads run count many blocks
instead of just the requested one. For example, if a client has read 8 blocks
sequentially, then the next client read that goes to disk will prompt Argon
to read a total of 8 blocks (thus prefetching 7 blocks). Control returns to
the client before the entire prefetch has been read; the rest of the blocks are
read in the background. The prefetch size grows until the amount of data
reaches the threshold necessary to achieve the desired level of disk efficiency;
afterwards, even if the run count increases, the prefetch size remains at this
threshold.

When Argon is about to flush a dirty block, it checks the cache for any
contiguous blocks that are also dirty. If it finds any, Argon flushes these
blocks together to amortize the disk positioning costs. As with prefetching,
the write access size is bounded by the size required to achieve the de-
sired level of disk efficiency. Client write operations complete as soon as the
block(s) specified by the client are stored in the cache; all blocks are flushed

to disk in the background (within the corresponding workload’s quanta).

3.5.3 Cache partitioning

Recall from Section 3.4.4 that the cache partitioning algorithm depends on
knowledge of the cache profile for a workload. The cache profile captures
the relationship between the cache size given to a workload and the I/O
absorption rate. Argon collects traces of a workload’s accesses when the
workload is first added. It then processes those traces using a simulator,
while the workload continues to run, to predict the absorption rate with

different hypothetical cache sizes.

3.5 Implementation : 45

The traces collected while a workload is running capture all aspects of its
interactions with the cache (cache hits, misses, and prefetches). Such trac-
ing is built in to the storage server, can be triggered on demand (e.g., when
workloads change and models need to be updated), and has been shown to
incur minimal overhead (5-6%) on foreground workloads in the system [51].
Once sufficient traces are collected, a cache simulator derives the full cache
profile for the workload. The simulator does so by replaying the original
traces using hypothetical cache sizes under the server’s eviction policy. Sim-
ulation is used, rather than an analytical model, because cache eviction
policies are often complex and system-dependent; we found that we could
not adequately capture them using analytical formulas. We have observed
that for cache hits the simulator and real cache manager need similar times
to process a request. But, the simulator is on average three orders of magni-
tude faster than the real system when handling cache misses (the simulator
spends at most 9,500 CPU cycles handling a miss, whereas, on a 3.0 GHz
processor, the real system spends the equivalent of about 22,500,000 CPU
cycles). The prediction accuracy of the simulator has also been shown to be
within 5% [50].

Another implementation issue is dealing with slack cache space, the
cache space left over after all workloads have taken their minimum share.
In our implementation, slack space is distributed evenly among workloads;
if a new workload enters the system, the slack space is reclaimed from the
other workloads and given to the new workload. This method is very similar
to that described by Waldspurger [55] for space reclamation. Other choices
are also reasonable, such as assigning the extra space to the workload that

would benefit the most, or reserving it for incoming workloads.

3.5.4 Quanta-based scheduling

Scheduling is necessary to ensure fair, efficient access to the disk. Argon
performs simple round-robin time quantum scheduling, with each workload
receiving a scheduling quantum. Requests from a particular workload are

queued until that workload’s time quantum begins. Then, queued requests

46 . Performance insulation: more predictable shared storage

from that workload are issued, and incoming requests from that workload
are passed through to the disk until the workload has submitted what the
scheduler has computed to be the maximum number of requests it can issue
in the time quantum, or the quantum expires.

The scheduler must estimate how many requests can be performed in the
time quantum for a given workload, since average service times of requests
may vary between workloads. Initially, the scheduler assigns each request the
average rotational plus seek time of the disk. The scheduler then measures
the actual amount of time these requests have taken to derive an average
per-request service time for that workload. The automatically-configured
scheduling time quantum (chosen based on the desired level of efficiency) is
then divided by the calculated average service time to determine the maxi-
mum number of requests that will be allowed from that particular workload
during its next quantum.

To provide both hysteresis and adaptability in this process, an exponen-
tially weighted moving average is used for the number of requests for the
next quantum. As a result of estimation error and changes in the workload
over time, the intended time quanta are not always exactly achieved.

Argon does not terminate a quantum until the fixed time length expires.
Consequently, workloads with few outstanding requests or with short periods
of idle time do not lose the rest of their turn simply because their queue is
temporarily empty. Argon does have a policy to deal with situations wherein
a time quantum begins but a client has no outstanding requests, however.
On one hand, to achieve strict fair sharing, one might reserve the quantum
even for an idle workload, because the client might be about to issue a
request [12, 23]. On the other hand, to achieve maximum disk utilization,
one might skip the client’s turn and give the scheduling quantum to the
next client which is currently active; if the inactive client later issues a
request, it could wait for its next turn or interrupt the current turn (at the
cost of introducing extra inefficiency). Argon takes a middle approach — a
client’s scheduling quantum is skipped if the client has been idle for its last
k consecutive scheduling quanta. (Argon leaves k as a manual configuration

option, set to 3 by default.)

3.6 Evaluation . 47

3.6 Evaluation

This section evaluates the Argon storage server prototype. First, we use
microbenchmarks as minimal test cases to demonstrate the causes of per-
formance problems arising from storage server interference, and Argon’s ef-
fectiveness in mitigating them. (Microbenchmarks allow precise control of
the workload access patterns and system load.) Second, macrobenchmarks

illustrate the real-world efficacy of Argon.

3.6.1 Experimental setup

The machines hosting both the server and the clients have dual Pentium 4
Xeon 3.0 GHz processors with 2 GB of RAM. The disks are Seagate Bar-
racuda SATA disks (see Table 3.1 for their characteristics). One disk stores
the OS, and the other stores the objects (except in one experiment which
uses two separate disks to store two separate workload’s objects to focus
only on the effects of cache sharing). The drives are connected through a
3ware 95505X controller, which exposes the disks to the OS through a SCSI
interface. Both the disks and the controller support command queuing. All
computers run the Debian “testing” distribution and use Linux kernel ver-
sion 2.4.22.

Of course, more sophisticated storage systems are built using techniques
such as clustering and RAID. Chapter 4 explores the efficacy of Argon’s
techniques in a clustered storage system; Section 5.6.2 of Chapter 5 demon-
strates results on RAID arrays.

Unless otherwise mentioned, all experiments are run three times, and
the average is reported. Except where noted, the standard deviation is less

than 5% of the average.

3.6.2 Microbenchmarks

This section illustrates microbenchmark results obtained using both Linux
and Argon. These experiments underscore the need for performance in-

sulation. We show results from Argon because they allow us to compare

48 . Performance insulation: more predictable shared storage

performance before and after we add performance insulation techniques to
our server. We show results from Linux to illustrate that the interference
problems we observe in our system are not unique, but rather common in
widely-deployed systems. Note that we have not exhaustively traced through
each layer of the OS to determine exactly which implementation decisions
in Linux detract from efficiency or whether they can be remedied easily or
only with great difficulty. Our goal is to highlight the set of mechanisms and
policies needed to provide performance insulation through an implementa-
tion in our storage system, while showing that the efficiency challenges we
address are not an artifact of our system by confirming they also exist in
Linux. The techniques we identify could also, in principle, be implemented
in Linux.

Microbenchmarks are run on a single server, accessing Argon using the
object-based interface. In each experiment, objects are stored on the server
and are accessed by clients running on the same server (to emphasize the
effects of disk sharing, rather than networking effects). Each object is 56 GB
in size, a value chosen so that all of the disk traffic will be contained in the
highest-performance zone of the disk.? The objects are written such that
each is fully contiguous on disk. While the system is configured so that no
caching of data will occur at the operating system level, the experiments are
performed in a way that ensures all of the metadata (e.g., inodes and indi-
rect blocks) needed to access the objects is cached, to concentrate solely on
the issue of data access. In experiments involving non-streaming workloads,
unless otherwise noted, the block selection process is configured to choose a
uniformly distributed subset of the blocks across the file. The aggregate size
3

of this subset is chosen to achieve a desired working-set size.

’Disks have different zones, with only one zone experiencing the best streaming per-
formance. To ensure that the effects of performance insulation are not conflated with such
disk-level variations, it is necessary to contain experiments within a single zone of the disk.

30ne alternative would be to vary the file size, but this would also affect the disk seek
distance, adding another variable to the experiments.

3.6 Evaluation . 49

©
o

Linux Argon

(o2}
o

N
o

Throughput (MB/s)
N
o

o — -

Alone Combined Alone No perf-ins With perf-ins
(a) (b)

Figure 3.3: Throughput of two streaming read workloads in Linux
and Argon.

Amortization

Figure 3.3(a) shows the performance degradation due to insufficient request
amortization in Linux. Two streaming read workloads, each of which receives
a throughput of approximately 63 MB/s when running alone, do not utilize
the disk efficiently when running together. Instead, each receives a ninth
of its unshared performance, and the disk is providing, overall, only one
quarter of its streaming throughput. Disk accesses for each of the workloads
end up being 64 KB in size, which is not sufficient to amortize the cost of
disk head movement when switching between workloads, even though Linux
does perform a degree of prefetching.

Figure 3.3(b) shows the effect of amortization in Argon. The version of
Argon without performance insulation has similar problems to Linux. How-
ever, by performing aggressive amortization (in this case, using a prefetch
size of 8 MB, which corresponds, for the disk being used, to an R-value of
0.9), streaming workloads better utilize the disk and achieve higher through-
put — both workloads receive nearly half of their performance when running
alone, and the disk is providing nearly its full streaming bandwidth in ag-
gregate.

Figure 3.4 shows, for each scenario running under Argon, the CDF (cu-

mulative distribution function) of response times for one of the streaming

50 . Performance insulation: more predictable shared storage

read workloads. (The other workload exhibits a virtually identical distri-
bution because the two workloads are essentially identical in this experi-
ment.) The three curves depict response times for the cases of the sequential
workloads running alone, together without prefetching, and together with
prefetching. The value on the y-axis indicates what fraction of requests ex-
perienced, at most, the corresponding response time on the z-axis (which is
shown in log scale). For instance, when running alone, approximately 80% of
the requests had a response time not exceeding 2 ms. Without performance
insulation, each sequential workload not only suffered a loss of throughput,
but also an increase in average response times; approximately 85% of the
requests waited for 25-29 ms. With prefetching enabled, more than 97% of
the requests experienced a response time of less than 1 ms, with many much
less.* Because some requests must wait in a queue for their workload’s time
slice to begin, however, a small number (~2.4%) had response times above
95ms. This increases the variance in response time, while the mean, 90

percentile, and 95" percentile response times decrease.

Cache partitioning

Figure 3.5(a) demonstrates performance degradation due to cache interfer-
ence in Linux. A non-streaming workload (Workload 2) has a potential full-
cache absorption rate of 50%. However, a streaming workload (Workload 1)
has much higher throughput. Thus, more of its requests are handled by the
system in a unit of time, and the recency-based cache replacement policies
used by both Linux and Argon (which implements a form of LRU) allow it
to consume most of the cache. As a result, Workload 2’s performance is sig-
nificantly degraded because it loses its cache occupancy and thus its hit rate.
To focus on only the cache partitioning problem, both workloads share the
same cache, but their misses are routed to separate disks. The throughput
of Workload 2 decreases to approximately what it would receive if it had no
cache hits at all — its performance drops from 3.9 MB/s to 2.3 MB/s, even
though only the cache, and not its disk, is being shared. (We believe that

“In fact, the response times for many requests improve beyond the standalone case
because no prefetching was being performed in the original version of Argon.

3.6 Evaluation . 51

- Alone +=No perf-ins eWith perf-ins

1 ;qu
5 0.8 ‘ r
° 1
£ os
o
= q |
© 04
>
e 4 i
)
O 02 l
0.1 1 10 100 1000

Response time (ms)

Figure 3.4: Response time CDF's for two streaming workloads. When
running alone, the average of response times is 2.0 ms and the standard de-
viation is 1.17 ms. When the two workloads are mixed without performance
insulation, the average for each is 28.2ms and the standard deviation is
3.2 ms. With performance insulation, the average is 4.5 ms and the standard
deviation is 27 ms.

the small decrease in the streaming workload’s performance is an artifact of
a system request handling bottleneck.)

Figure 3.5(b) shows the benefits when the same workloads run on Argon.
The bar without performance insulation shows the non-streaming workload
combined with the streaming workload. In that case, the performance the
non-streaming workload receives equals the performance of a non-streaming
workload with a 0% absorption rate. By adding cache partitioning and using
the cache simulator to balance cache allocations (when the desired R-value
is set to 0.9, the simulator decides to give nearly all of the cache to the
non-streaming workload), Workload 2 gets nearly all of its standalone per-

formance.

52 . Performance insulation: more predictable shared storage

80
. Linux Argon
»n — [
@ 60— - |
g | —
3 40 I |
<
)
3
2 20—] —-—
c
l_
0 (| | .
Workload 1~ Workload 2 Combined Workload 1 Workload 2 No perf-ins With perf-ins
(a) (b)

Figure 3.5: Effects of cache interference in Linux and Argon. The
standard deviation is at most 0.55 MB/s for all Linux runs and less than 5%
of the average for the Argon runs.

Quanta-based scheduling

Figure 3.6(a) shows the performance degradation due to unfair scheduling
of requests in Linux. Two non-streaming workloads, one that maintains 27
requests outstanding at all times (Workload 1) and one with just a single
request outstanding at a time (Workload 2), compete for the disk. When
run together, the first workload overwhelms the disk queue and starves the
requests from the second workload. Hence, the second workload receives
practically no service from the disk at all.

Figure 3.6(b) shows a benefit of quanta-based disk time scheduling in
Argon. The version of Argon with performance insulation disabled has sim-
ilar problems to Linux. However, by adding quanta-based scheduling with
140 ms time quanta (which achieves an R-value of 0.9 for the disk and work-
loads being used), the two non-streaming workloads each get a fair share of
the disk. Average response times for Workload 1 increased by ~2.3 times and
average response times for Workload 2 decreased by ~37.1 times compared
to their uninsulated performance. Both workloads received only slightly less
than 50% of their unshared throughput, exceeding the R = 0.9 bound.

3.6 Evaluation . 53

Linux — Argon____

Throughput (MB/s)

Workload 1 Workload 2 Combined Workload 1 Workload 2 No perf-ins With perf-ins

(@) (b)

Figure 3.6: Need for share-based scheduling in Linux and Argon.
The standard deviation is at most 0.01 MB/s for all Linux runs and at most
0.02 MB/s for all Argon runs.

Proportional scheduling

Figure 3.7 shows that the sharing of an Argon server need not be fair (i.e.,
equal across all workloads); the proportion of resources assigned to different
workloads can be adjusted to meet higher-level goals. In this experiment,
the same workloads as in Figure 3.6(b) are shown, but the system is con-
figured so that the workload with one request outstanding (Workload 2)
receives 75% of the server time, and the workload with 27 requests out-
standing (Workload 1) receives only 25%; with this configuration from the
administrator or management tool, quanta sizes are proportionally sized by
Argon’s scheduler to achieve this. Amortization and cache partitioning can

similarly be adapted to use weighted priorities.

Combining sequential and random workloads

Table 3.2 shows the combination of Argon’s amortization and scheduling
mechanisms when a streaming workload shares the storage server with a
non-streaming workload. To focus on just the amortization and scheduling
effects, the non-sequential workload is sized so that it has a negligible hit

rate. Without performance insulation, the workloads receive 2.2 MB/s and

54 - Performance insulation: more predictable shared storage

oWorkload 1 mWorkload 2

N

=
I

Throughput (MB/s)

Ideal Argon

Figure 3.7: Scheduling support for two random-access workloads.
With the same workloads as Figure 3.6(b), scheduling can be adjusted so
that Workload 2 receives 75% of the server time.

0.55 MB/s respectively. With performance insulation they receive 31.5 MB/s
and 0.68 MB/s, well within R = 0.9 of full standalone efficiency, as desired.

Figure 3.8 shows the CDF of response times for both workloads. The
sequential workload, shown in Figure 3.8(a), exhibits the same behavior
shown in Figure 3.4 and discussed earlier. As before, the variance and max-
imum of response times increase while the mean and median decrease. The
random workload is shown in Figure 3.8(b). Running alone, it had a range
of response times, with none exceeding 26 ms. The 90" percentile was at
13.7ms. Virtually all values were above 3ms. Running together with the
sequential workload, response times increased; they ranged from 6—60 ms
with the 90" percentile at 33 ms. Once aggressive prefetching was enabled
for the sequential workload, the bottom 92% of response times for the ran-
dom workload ranged from 3-24.5 ms. The remainder were above 139 ms,

resulting in a lower mean and median, but higher variance.

3.6 Evaluation . 55

Scenario Throughput
Alone Workload 1 (S)| 63.5MB/s
Workload 2 (R)| 1.5MB/s
Combined Workload 1 (S)| 2.2MB/s
(no perf-ins.) |Workload 2 (R)| 0.55 MB/s
(
(

Combined Workload 1 (S)| 31.5MB/s
(with perf-ins.)|Workload 2 (R)| 0.68 MB/s

Table 3.2: Amortization and scheduling effects in Argon. When a
sequential and a random workload run together, performance insulation re-
sults in much higher performance for both workloads. Standard deviation
was less than 6% for all runs.

Adjusting sequential access size

Figure 3.9 shows the effect of prefetch size on efficiency. Two streaming work-
loads, each with an access size of 64 KB, were run with performance insula-
tion. The performance each receives is similar, hence only the throughput of
one of them is shown. In isolation, each of these workloads receives approxi-
mately 62 MB/s, thus the ideal scenario would be to have them each receive
31 MB/s when run together. This graph shows that the desired through-
put is achieved with a prefetch size of at least 32 MB, and that R = 0.9
can be achieved with 8 MB prefetches. We observed that further increases
in prefetch size beyond 32 MB neither improve nor degrade performance

significantly.

Adjusting scheduling quantum

Figure 3.10 shows the result of a single-run experiment intended to measure
the effect of the scheduling quantum (the amount of disk time scheduled for
one workload at a time before moving on to the other workloads) on effi-
ciency. For simplicity, we show quanta measured in terms of the number of re-
quests in this figure, rather than in terms of time — since different workloads
may have different average service times, the scheduler actually schedules

in terms of time, not number of requests. Two non-streaming workloads are

56 . Performance insulation: more predictable shared storage

~ Alone = No perf-ins = With perf-ins

1 .
: i
-g 0.8
< [#
0.6
(0]
/
£ 04
5 |
€ 0.2]
S | /

0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
Response time (ms) Response time (ms)

(a) Workload 1 (Sequential) (b) Workload 2 (Random)

Figure 3.8: Response time CDFs for a sequential workload and a
random workload. The standard deviations of response times for the
sequential (a) and random-access workloads (b) when they run alone are
0.316 ms and 2.72ms respectively. The random-access workload’s average
response time is 10.3 ms. When the two workloads are mixed without per-
formance insulation, the standard deviations of their response times are
4.16 ms and 4.01 ms respectively. The random-access workload’s average re-
sponse time is 28.2 ms. When using performance insulation the standard
deviations are 15.87 ms and 39.3 ms respectively. The random-access work-
load’s average response time is 21.9 ms.

running insulated from each other. We only show the throughput of one of
them. In isolation, the workload shown receives approximately 2.23 MB/s,
hence the ideal scenario would be to have it receive 1.11 MB/s when run
together with the other. This graph shows that the desired throughput
is achieved with a scheduling quantum of at least 128 requests, and that
R = 0.9 can be achieved with a quantum of 32 requests. We observed that
further increases in quantum size beyond 128 neither improve nor degrade

performance significantly.

3.6.3 Macrobenchmarks

To explore Argon’s techniques on more complex workloads, we ran two
database benchmarks, TPC-C (an OLTP workload) and TPC-H (a deci-

3.6 Evaluation . 57

40

|

ideal throughput

-
(=]

Throughput (MB/s)
N
o

64 128 256 512 1024 2048 4096 819216284 32768
Prefetch size (KB)

Figure 3.9: Effect of prefetch size on throughput.

sion support workload), using the same storage server. The combined load
on the server is representative of realistic scenarios when data mining queries
are run on a database while transactions are being executed. The goal of the
experiment is to measure the benefit each workload gets from performance
insulation when sharing the disk.

Each workload is run on a separate machine and communicates with the
Argon storage server through an NFS server that is physically co-located
with Argon and uses its object-based access protocol.

The TPC-C workload mimics an on-line database performing transaction
processing [52]. Transactions invoke 8 KB read-modify-write operations to
a small number of records in a 5 GB database. The performance of this
workload is reported in transactions per minute (tpm). The cache profile of
this workload is shown in Figure 3.2.

TPC-H is a decision-support benchmark [53]. It consists of 22 different
queries and two batch update statements. Each query processes a large por-
tion of the data in streaming fashion in a 1 GB database. The cache profile of
two (arbitrarily) chosen queries from this workload are shown in Figure 3.2.

Figure 3.11 shows that without performance insulation, the throughput
of both benchmarks degrades significantly. With an R-value of 0.95, Argon’s

58 . Performance insulation: more predictable shared storage

ideal throughput

;

©
N

Throughput (MB/s)

0 T T T T T T T
1 2 4 8 16 32 64 128 256

Scheduling quantum (number of requests)

Figure 3.10: Effect of scheduling quantum on throughput.

insulation significantly improves the performance for both workloads. Fig-
ure 3.12 examines the run with TPC-H Query 3 more closely, showing how
much each of the three techniques, scheduling (S), amortization (A), and

cache partitioning (CP) contribute to maintaining the desired efficiency.

3.6.4 Related work

Argon adapts, extends, and applies mechanisms that have been used in the
past for other purposes, to provide performance insulation for shared storage
servers. This section discusses previous work on these mechanisms and on
similar problems in related domains. It does not attempt to cover the general
space of related work in storage QoS, as that is described in more detail in
Chapter 2.

Storage resource management

Most file systems prefetch data for sequentially-accessed files. In addition to
hiding some disk access delays from applications, accessing data in larger
chunks amortizes seeks over larger data transfers when the sequential ac-

cess pattern is interleaved with others. A key decision is how much data to

3.6 Evaluation . 59

TPC-C M TPC-H Query 3 ! TPC-C I TPC-H Query 7
|
- 12 |
S [
£ 10 | -
[[
=) \
© 08 :
= \
§e;
N
© 0.4
S 0.2
zZ ‘
|
| ‘ | | | ‘ |
No perf-ins With perf-ins | No perf-ins With perf-ins

Figure 3.11: TPC-C and TPC-H running together.

The throughput received by two database workloads is shown: on the
left, TPC-C runs with TPC-H Query 3, on the right, it runs with TPC-H
Query 7. The normalized throughput with and without performance insu-
lation in shown. The normalization is done with respect to the throughput
each workload receives when running alone, divided by two. Thus, a
workload receiving a half share of time with perfect efficiency would receive
a normalized throughput of one and, for an R-value of 0.9, at least 0.9.

prefetch [45]. The popular 64 KB prefetch size was appropriate more than a
decade ago [36], but is now insufficient [43, 48]. Similar issues are involved
in syncing data from the write-back cache, but without the uncertainty of
prefetching. Argon complements traditional prefetch/write-back with auto-
mated determination of sizes so as to achieve a tunable fraction (e.g., 0.9)
of standalone streaming efficiency.

Schindler et al. [47, 48] show how to obtain and exploit underlying disk
characteristics to achieve good performance with certain workload mixes.
In particular, they show that, by accessing data in track-sized track-aligned
extents, one can achieve a large fraction of streaming disk bandwidth even
when interleaving a sequential workload with other workloads. Such disk-
specific mechanisms are orthogonal and could be added to Argon to reduce

prefetch/write-back sizes.

60 . Performance insulation: more predictable shared storage

TPC-C W TPC-H Query 3 —

-_—
N

=
o

o
®

o
o)}

©
~

Normalized throughput
o
R

\ ‘ \ ‘ \ ‘ \ ‘ \
No perf-ins cP S S+CP S+CP+A

Figure 3.12: All three mechanisms are needed to achieve perfor-
mance insulation. The different techniques are examined in combination.
“CP” is cache partitioning, “S” is scheduling, “A” is amortization; the full
version of Argon uses all of them. No combination short of all three is suffi-
cient. Throughput is normalized with respect to the throughput each work-
load receives when running alone, divided by two; thus it matches achieved
efficiency.

Most database systems explicitly manage their caches in order to max-
imize their effectiveness in the face of interleaved queries [10, 13, 47]. A
query optimizer, for example, can use knowledge of query access patterns to
allocate for each query just the number of cache pages that it estimates are
needed to achieve the best performance for that query [13]. Cao et al. [8, 7]
show how these ideas can also be applied to file systems in their exploration
of application-controlled file caching. In other work, the TIP [45] system
assumes application-provided hints about future accesses and divides the
filesystem cache into three partitions that are used for read prefetching,
caching hinted blocks for reuse, and caching unhinted blocks for reuse. Ar-
gon uses cache partitioning, but with a focus on performance insulation
rather than overall performance and without assuming prior knowledge of
access patterns. Instead, Argon automatically discovers the necessary cache

partition size for each workload based on its access pattern.

3.7 Discussion: Intended applications : 61

Timeslicing

Some prior work also performs timeslicing of disk head time. For example,
the Eclipse operating system [6] allocates access to the disk in 1/2-second
time intervals. Many real-time file systems [1, 11, 30, 40] use a similar ap-
proach. With large time slices, applications will be completely performance-
insulated with respect to their disk head efficiency, but very high latency can
result. Argon goes beyond this approach by automatically determining the
lengths of time slices required and by adding appropriate and automatically

configured cache partitioning and prefetch/write-back.

3.7 Discussion: Intended applications

This section revisits the target workloads and environments for this chapter.
Argon is designed for single-server storage systems; the next chapter de-
scribes and remedies the issues that preclude the use of Argon in a clustered
storage system. As described in this chapter, Argon controls access to disk
heads, thus we must implement our techniques at a layer that is aware of
request-to-disk mappings. In addition, Argon’s cache partitioning requires
that we can control the caching policy. Hence, Argon is not suitable for
implementation, for instance, external to a complex storage array.

Due to Argon’s cache tracing, a workload that does not have enough
activity for Argon to detect its access patterns quickly will not benefit
from Argon’s adaptive cache sizing approach. If such workloads are very
low throughput, but expect a high cache hit rate, they will not be pro-
vided the expected insulation from Argon. In addition, as described, Argon
detects cases where workloads cannot co-exist because they cumulatively
require more cache than is available on the server; full insulation cannot be
provided in this case, but the problem can be identified and communicated
to the administrator or higher-level control system. Another limitation is on
the number of workloads; if more sequential workloads are executing on a
server than can be accommodated in the server’s cache, given the prefetch
size and the number of workloads, then full insulation cannot be provided

for lack of memory.

62 . Performance insulation: more predictable shared storage

Argon provides efficiency in terms of bandwidth and throughput. Time-
slicing increases efficiency, and thus decreases mean latency compared to
not providing quality of service, and increases mean latency for closed-loop
workloads, compared to running alone, in a bounded manner. Timeslicing
increases maximum latency (for a potentially small subset of requests) signif-
icantly, and similarly increases variance. Argon is not suitable for workloads
requiring hard real-time maximum latency guarantees, or that are otherwise

sensitive to these latency effects.

3.8 Conclusion

Storage performance insulation can be achieved when workloads share a
storage server. Traditional disk and cache management policies do a poor
job, allowing interference among workloads’ access patterns to significantly
reduce efficiency (e.g., by factor of four or more). Argon combines and au-
tomatically configures prefetch/write-back, cache partitioning, and quanta-
based disk time scheduling to provide each workload with a configurable
fraction (the R-value; e.g., 0.9) of the full efficiency it would receive without
competition. So, with fair sharing, each of n workloads will achieve no worse
than R/n of its standalone throughput. This increases both efficiency and
predictability when workloads share a storage server.

Argon’s insulation allows one to reason about the throughput that a
workload will achieve, within its share, without concern for what other work-
load do within their shares. Workloads that cannot be insulated from one
another (e.g., because they need the entire cache) or that have stringent la-
tency requirements must be separated. Argon’s configuration algorithms can
identify the former, and administrators the latter, so that a control system

can place such workloads’ datasets on distinct storage servers.

4 Coordinating among servers in a cluster

The previous chapter discussed how to maintain efficiency when a storage
system composed of a disk and a cache is shared among workloads. One way
to scale storage up, in terms of capacity and available bandwidth, is to clus-
ter together a set of relatively modest nodes into a combined system. This
approach has been gaining appeal over time. Such clustered storage systems
potentially represent a simpler and more cost-effective way to build a large
storage system, because with redundancy, no one server is essential to the
functioning of the system. Thus, components need not be engineered to the
same extreme level of reliability as would be required in a monolithic system.
Clustered systems may also provide the benefits inherent in spreading out
work, such as fewer central bottlenecks and easier growth.

Providing efficiency and effective performance insulation is desirable for
such systems. This chapter describes why the approaches described in the
previous chapter are not effective on their own when applied in this domain,
and investigates the extensions need to Argon’s base techniques to bring

insulation to clustered storage.

4.1 Introduction

Cluster-based storage systems must be designed to spread the work asso-
ciated with handling a request across a set of servers, rather than making
it the exclusive responsibility of a single node. This approach is used to
allow the performance and reliability of multiple modestly-performant and
modestly-engineered nodes to be constructively added. There are different

schemes for partitioning the work associated with a single request among

63

64 - Performance insulation: more predictable shared storage

a set of nodes. One simple scheme, known as striping, divides the request
into equal-sized pieces (fragments) and sends each to a different server. More
complicated schemes, such as erasure coding, add redundancy to this design.

Our goal is to construct a cluster-based storage system that provides the
same guarantees as Argon, a standalone server. A naive approach might be to
just “run Argon” as each of the individual servers; each server would provide
guaranteed efficiency for the fragments it is storing. The question that arises,
however, is how do these per-fragment efficiency guarantees compose into the
block-level guarantees desired for a workload?

Disk-head timeslicing is one of the primary techniques used by Argon
to maintain efficiency and provide performance insulation. Unfortunately,
however, it faces difficulties for cluster-based storage. When data is striped
across multiple servers, a client read request requires a set of responses
which must be reassembled into the complete block. Until all are received,
the read request is not complete. Since each server only acts on a disk request
within the associated workload’s disk head timeslice, the client will end up
waiting for the last (furthest-in-the-future) of the timeslices. If the relevant
disk head timeslices are not scheduled simultaneously, the delay could be
substantial (5-7x in our experiments). Worse, if the disk head timeslices
do not all overlap, the throughput of a closed-loop one-request-at-a-time
workload will be one request per round of timeslices.

Providing performance insulation for cluster-based storage requires co-
scheduling of a workload’s disk head timeslices across the servers over which
its data is striped (arranging all timeslices so that those belonging to the
same workload begin and end at the same wall-clock time across each of
servers it uses). If all data is striped across all servers, the system needs to use
an identical ordering of disk head timeslices across the servers, handle striped
requests in the same timeslices, and synchronize the timing of timeslice
switches. For cluster-based storage systems that allow different volumes to
be striped differently (e.g., over more servers or over different servers), there
is the additional challenge of finding a schedule for the cluster.

This chapter describes a cluster-based storage system that guarantees

R-values to its workloads, extending the single-server mechanisms from the

4.2 Intended applications : 65

previous chapter with explicit co-scheduling of disk head timeslices. It uses
standard network time synchronization and synchronizes “time zero” for
the disk head time scheduler. It implicitly coordinates the work done by
each server in co-scheduled timeslices, while allowing local request ordering
decisions within timeslices. It assigns workloads to subsets of servers and
organizes their timeslices to ensure that each striped workload’s disk head
timeslices are co-scheduled. Finding an assignment that works is an NP-
complete problem, but there exist heuristics that allow solutions to often
be found quickly. Although each of the heuristics yields quick answers in
only 40-80% of cases, we find that running several in parallel yields a quick
solution in over 95% of cases. When a quick solution cannot be found, in-
troducing a small co-scheduling efficiency reduction helps. In such cases, the
system compensates by increasing the per-server R-value used in automat-
ically configuring per-server resource allocations. Our experiments confirm
that, by adopting a global timeslice schedule found with heuristics and en-
suring the servers are synchronized as they follow it, workloads receive the

insulated efficiency expected.

4.2 Intended applications

This section describes the workloads and storage systems for which the tech-
niques in this chapter are appropriate, and those for which the techniques
are not suitable. Section 4.7 revisits this discussion at the end of the chap-
ter, indicating why these limitations exist and to what extent they may be
remediable with further refinement.

The approaches discussed in this chapter are effective for storage clus-
ters sized to accommodate at least dozens of workloads. Growth of processor
speeds through frequency increases or more cores per processor will scale this
limit over time. If the storage servers in a cluster have significant computa-
tional power available during the workload provisioning process, then this
resource can be used to accommodate significantly more workloads as well.

The approaches described are most suitable for long-lived workloads

that require a temporally consistent resource allocation on their respective

66 . Performance insulation: more predictable shared storage

servers, and, further, for environments with generally the same set of work-
loads over time. An example of such an environment would be enterprise /
data center applications.

Since each server in the cluster runs Argon, the limitations of Argon also

apply.

4.3 lIssues with timeslicing

With striping, a client request for a block translates to a fragment request at
each server. The client request is not fulfilled until all its fragments are read
and combined back into the original block. Unfortunately, the throughput
for a block is not simply the sum of the throughputs for its fragments. While
that sum is an upper bound, the response time observed by a client is that
of the slowest server to respond.! For closed-loop workloads, slower response
times directly reduce throughput.

Timeslicing can cause significant response time differences across servers
in two ways. First, the list of workloads, ordering and length of timeslices,
and overall round length (time before the schedule of timeslices repeats) may
not match across the servers. Without arranging the schedules for each of the
servers that a workload uses, its timeslices may not consistently “line up”
across the servers (Figure 4.1). Second, even if the schedules are conducive
to co-scheduling the timeslices of each workload, the phase of the servers
(i.e., the point in wall-clock time when the round-robin order restarts) may
not match (see Figure 4.2). This can occur either because no attempt was
made to synchronize the servers, or because they diverged over time.

The effects of non-synchronization are drastic and immediate. Figure 4.3
shows that timeslicing alone is effective on a single server, but becomes
detrimental (even worse than not performing any performance insulation
techniques at all) when a workload is striped across two or more servers.
A single-threaded workload only completes one request per round because

!With a more flexible data distribution scheme — such as erasure coding — the client
can read from any m of the n servers storing its data. While the request response time
may no longer be that of the slowest server, it is still limited by the n — m + 1% slowest
server.

4.3 lssues with timeslicing - 67

time ——»

Figure 4.1: Mlismatched schedules. If the ordering of workloads does not
match across the servers, then a client must wait for the latest occurrence
of its timeslice across all the servers before its request completes.

- round -

sever' W] 2 (RN]

2 3
- round -

Figure 4.2: Out-of-phase servers. If the phase of identical rounds does not
match across the servers, then a client must wait for the most-in-the-future
occurrence of its timeslice across all the servers before its request completes.

there is no overlap between the corresponding timeslices at the servers —
by the time the request completes at the second server, the timeslice is over
at the first server.

To realize the insulation benefits of timeslicing in a cluster, it is necessary
to find a cluster-wide schedule that co-schedules timeslices for each work-
load across all servers it uses. In addition, the servers must adhere to that
schedule in a synchronized fashion — that is, timeslices must begin and end
at the same time on the servers. Note that timeslice synchronization does
not require that individual request scheduling decisions within timeslices be
synchronized; thus, only minimal coordination is needed, and traditional lo-
cal control of request ordering is acceptable. Sections 4.4 and 4.5 describe
and evaluate our solutions to finding schedules and coordinating servers,

respectively.

68 . Performance insulation: more predictable shared storage

! !
1Lk Goal —— |
No insulation ---x---
Timeslicing ------
08 Synchronized 8-

04 -

0.2

Normalized throughput
o
(o]
I
|

10

Number of servers

Figure 4.3: Moving beyond one server. Three workloads share a server
and the throughput of one, which has been allocated a one-third share of
disk time, is graphed. Without performance insulation, the other workloads
interfere and the goal is not met. Timeslicing disk head time solves the
problem on one server. But when the workloads are striped across servers,
timeslicing becomes ineffective unless the timeslices are synchronized. (The
y-axis is normalized against the throughput the depicted workload receives
running alone on the corresponding number of servers.)

4.4 Designing a schedule

To minimize administrator effort, we wish to have an automated means of
creating timeslice schedules. This section describes and evaluates algorithms

for schedule design.

4.4.1 Problem specification

In formulating algorithms, we assume a cluster of homogenous storage
servers with one disk each.? Machines that have significantly different re-

?Machines that have multiple, independent disks can be thought of as separate ma-
chines in the context of this problem. From our perspective, machines with disk arrays
can be treated as having a single, bigger disk. Experiments shown in Section 5.6.2 confirm
that our techniques work as expected on arrays.

4.4 Designing a schedule - 69

sources (i.e., disrupt homogeneity) should be placed in a separate cluster
with like machines.?

Workloads are specified using two numbers: number of servers and share
of servers. For instance, a workload may be striped across five servers and,
to achieve the desired level of performance, need at least a one-third share
of time on each of the five servers.

Finding a suitable schedule for the cluster amounts to finding round-
robin timeslice orderings for each of the servers so that each workload re-
ceives its share of total time at the required number of servers, and each
workload’s timeslices are co-scheduled. The system may select whichever
servers are convenient for a given workload.*

Finding a solution should be relatively efficient (e.g., a few minutes or
less), but need not be extremely fast, in practice. Timeslice schedules in Ar-
gon are long-lived because they are a function of the set of workloads, not of
specific requests. A new schedule need be found only when workloads enter
the cluster, or when the fraction of server time assigned to a workload is
changed. Adding a new workload involves the substantial task of adding a
new dataset, which makes it a time-consuming operation already. Reschedul-
ing due to workload removal need not be fast, since the remaining workloads
will remain appropriately scheduled. Thus, our target is algorithms that can
find solutions within a few minutes. Nonetheless, our algorithms parallelize
very well and can be completed in seconds when spread over multiple CPUs.

Figure 4.4 shows an example input list of workloads and an example

solution to the problem.

3If a set of machines has minor variations, however, they may be clustered together
and treated as all having the “lowest common denominator” of performance. Thus, for
example, minor differences in disk characteristics (e.g., due to in-field replacement) are
fine.

“There may be additional constraints, such as not exceeding the storage capacity avail-
able at a server, or preferring certain placements due to network topology, that we do not
consider here.

70 . Performance insulation: more predictable shared storage

Total servers =7 . 12 6 176

Num servers Proportion

; o E" —

3 1/2 g

1 1/2 g N

1 1/3 *

5 13 ~ |

7 1/6 fraction of server time

Figure 4.4: Example problem instance and solution. On the left is an
example input to the scheduling algorithm; on the right is one possible so-
lution. Rectangles correspond to workloads, with their height corresponding
to the number of servers and their vertical location corresponding to which
servers to use; their width corresponds to share of time, and their horizontal
location corresponds to the span of time during which their timeslices are
scheduled. The enclosing rectangle represents a single round in the cluster;
the schedule is repeated indefinitely.

4.4.2 Geometric interpretation

This problem may be recast as a geometric problem, as suggested by Fig-
ure 4.4. Consider each workload as a rectangle whose height is the number of
servers it needs, and whose width is the fraction of time it needs on each of
those servers. Consider a larger rectangle, whose height is the total number
of homogenous servers in the cluster, and whose width is one (corresponding
to the full share of time on a server). Can the set of smaller rectangles be
placed into the larger rectangle without overlapping or rotating any of the
smaller rectangles, or exceeding the boundaries of the larger rectangle? If
so, then an appropriate schedule exists, and the rectangle placements can
be directly translated into a suitable timeslice schedule.

This geometric problem is known as the strip-packing problem or the
cutting-stock problem [17]. It has been studied in industrial settings where a
larger piece of material, such as wood or glass, must be cut into smaller pieces
to manufacture a product. Unfortunately, it is known to be NP-complete (for
instance, it is a more general version of the bin-packing problem). The above

formulation is the decision version of the problem, which asks can the rect-

4.4 Designing a schedule - 71

angles all fit in a larger rectangle of a given size? The optimization version
asks what is the minimum width of the larger rectangle, for o fized height,
such that all the rectangles fit?> An optimal solution of a given problem (in
our choice of dimensions) is a packing of rectangles that uses the minimal
possible width.

For our purposes, a solution that has a width of at most one is sufficient to
provide all workloads their requested share of the server. It may be preferable
to find a solution that is even narrower, if one exists, because it would give
the workloads extra server time; but this is not necessarily to meet the basic

insulation goals.

4.4.3 Related work

This chapter discusses the application of the strip-packing problem to
cluster-based performance insulation. This section provides theoretical back-
ground on the problem in more detail; Argon, on which this chapter builds,
is covered in the previous chapter, and the general space of storage QoS is
covered in Chapter 2. A later section (Section 4.6) discusses other related
work specific to this chapter.

Strip packing has been explored by theoreticians seeking ways to accel-
erate exhaustive searches for the optimal solution, for approximation algo-
rithms that can provide solutions within a guaranteed distance from the
optimal, solution, and for heuristics that may find “acceptable” solutions

quickly.b

FEzhaustive search

As with any NP-complete problem, one can enumerate all possible solutions
and test whether they meet the requirements or whether they are the best
solution seen up to that point (yielding the best possible solution at the end

®The problem is usually specified for a fixed width and variable height, but we reverse
the dimensions because it works more naturally for our problem.

5By “acceptable,” we mean solutions that are not even guaranteed to be necessarily
close to optimal, but might be subjectively good enough.

72 . Performance insulation: more predictable shared storage

of the exhaustive search). However, this approach results in an exponential
run time that will be prohibitive for sufficiently large problems.

In the case of strip packing, a naive search might consider placing a rect-
angle at each possible coordinate location.” However, Fernandez de la Vega
and Zissimopoulos [16] show that it suffices to consider a smaller (but still
exponential) set of possible solutions. If there is a solution, then there exists
a left-bottom justified solution — essentially, one in which there are no gaps.
Without loss of generality, a solution with no gaps can be built by placing
rectangles one after the other in some order, such that the next rectangle
in the list is placed with its left side touching another rectangle or the edge
of the enclosing rectangle, and its bottom side touching a rectangle or the
bottom of the enclosing rectangle. The authors show that, for a fixed order
of placing rectangles, there is no strategic advantage to leaving a “gap” to
fill later. Thus, it suffices to examine all possible orderings of the rectangles,
and for each of those orderings, only the placements of successive rectangles
that are at active corners, i.e. touching other rectangles or the boundaries.
This strategy still results in an exponential search space, however.

We have used the exhaustive method to solve synthetic problem instances
described later in Section 4.4.6. The amount of time taken to find a solution
or determine that one does not exist is shown in Figure 4.5 and in log scale
in Figure 4.6. Each line represents initializing the exhaustive search with
a different initial guess, and then successively permuting that initial guess
to eventually explore the entire solution space, as explained later. Search
times grows exponentially with the number of workloads, regardless of which
starting point is used. Beyond thirteen workloads, exhaustive search is im-
practical. For instance, one fourteen-workload instance took about 6 hours.
This motivates the need to find more efficient and effective ways to create
schedules, even for relatively modest numbers of workloads.

Another technique for reducing the size of the search space further is the
branch-and-bound method. Martello et al. [35] used branch-and-bound to
solve or approximate solutions to a set of benchmark problems with around

"When we refer to placing a rectangle at a coordinate location, we mean placing a
specific corner at that location.

4.4 Designing a schedule - 73

T T T T T T I I
Unsorted ———
2500 O e
o DH :--%---
= 2000 DA i
& DP + =
S 1500 |
2]
©
c
g 1000
[
n
500 |-
ou
-

Number of workloads

Figure 4.5: Exhaustive search and heuristics. Exhaustive search of the
solution space takes impractically long when there are more than a few
workloads. Initializing the search with one of the four heuristics (Decreas-
ing Width, Decreasing Height, Decreasing Area, or Decreasing Perimeter)
does not remedy this problem; growth is exponential throughout the range
plotted. In this graph, four of the lines are slightly offset in the horizon-
tal direction to make them distinguishable. Error bars show one standard
deviation in either direction.

two dozen rectangles on the order of minutes to an hour on an 800 MHz
Pentium III.

Approzimation algorithms

Approximation algorithms exist [16, 26] that are able to find solutions within
(1 4 €) of optimal in time that is polynomial in the number of rectangles
but exponential in other variables. Unfortunately, for our problem sizes, we
believe that no point along the runtime-vs.-e tradeoff will be acceptable (too
much error is introduced and runtime remains high). Approximation algo-
rithms for strip packing work by subdividing the large rectangle into smaller
rectangles, packing subsets of the rectangles into each of these smaller prob-

lem instances, and then “gluing” the smaller instances back into a larger

74 - Performance insulation: more predictable shared storage

10000 g

T T
Unsorted

1000 F
100 |

10 |
1k
0.1 |

Seconds to solve

0.01 £

el R EF RN R ISR A1 RO BT

0.001 @ ',;'I l l l l l
7 8 9 10 11 12 13

Number of workloads

[EY
IS

Figure 4.6: Exhaustive search and heuristics. Exhaustive search of the
solution space takes impractically long when there are more than a few
workloads. Initializing the search with one of the four heuristics (Decreas-
ing Width, Decreasing Height, Decreasing Area, or Decreasing Perimeter)
does not remedy this problem; growth is exponential throughout the range
plotted. In this graph, the lines are slightly offset horizontally to make them
distinguishable. The y-axis is in log scale.

instance. The loss of optimality comes from the fact that solutions of this
form may have a small amount of wasted space in each smaller instance.
Had the entire problem been considered at once, however, there may have
been a way to coalesce these voids into a larger space and fit a rectangle
into it (see Figure 4.7).

There are two issues that make even the approximation forms of these
theoretical algorithms potentially impractical for our use. First, while the
algorithms are polynomial in the number of rectangles, the number of pos-
sible ways to fit rectangles into a subproblem appears as a constant in the
running time analysis. This value is exponential in the size of the subprob-
lems and the number of distinct sizes of rectangles. With small subproblems,
running time will be fast but distance from optimality may be high because

too many subproblems are being “glued together”; loss can be introduced

4.4 Designing a schedule - 75

Figure 4.7: Approximation algorithms. These algorithms divide the
larger problem into smaller subproblems that are solved optimally, but there
can be significant loss in “gluing” them together into a larger solution. Here,
the indicated rectangle wasn’t placed in the more appropriate location, be-
cause it spanned two subproblems that were considered independently.

at each “joint.” With large subproblems, loss will be reduced, but at the
expense of a dramatic increase in time required to consider subproblems.
Second, loss cannot necessarily be made arbitrarily small; it is limited by
the size of the problem instance. In other words, when finding a solution
within (1 4 €) of optimal, the best e achievable is a function of the problem
size. For the size of the problems we expect to encounter, € is expected to
be too high.

Heuristics

There are various heuristic techniques that are sometimes able to produce a
solution quickly. They do not guarantee the optimality of the solution, nor
whether their inability to find a solution indicates there is none. However,
they can often be very effective in practice. Furthermore, despite not pro-
viding guaranteed bounds, they may do significantly better than the (14 €)
approximation bound for our problem sizes. In our case, we only need to
find a solution with a width of one or less; if a heuristic method finds any
such solution quickly, how close it is to optimal may not be important.

In a similar vein to Fernandez de la Vega and Zissimopoulos’s use of left-
bottom justified solutions, a series of heuristic methods [4, 21] will try simply

placing rectangles in a fixed order one after the other as far to the bottom

76 . Performance insulation: more predictable shared storage

and left as possible. The first such method is called BL, or Bottom-Left.
The rectangles are placed in the same order as they appear in the problem
specification. BL places the first rectangle at the bottom-left corner of the
enclosing rectangle. For each of the remaining rectangles, BL places them
one after the other in order as follows: introduce the next rectangle at the
top right, then slide it downwards until it hits another rectangle or the bot-
tom, then slide it leftwards until it hits another rectangle or the side. If
it can now be moved down farther, continue moving it alternatively down
and then left until it can no longer move in either direction. An improve-
ment on this method is called BLF, or Bottom-Left-Fill. This scheme places
each rectangle in turn at the lowest, leftmost position that can fit it; lower
locations are (arbitrarily) preferred over more-to-the-left locations. The dif-
ference between BLF and BL is that BLF can place rectangles into locations
that have space, but cannot be reached by sliding actions because they have
been “sealed off” by earlier rectangles.

Variations on these algorithms change the order in which rectangles are
placed, rather than following the arbitrary order in which the rectangles
appear in the problem instance. BL-DW and BLF-DW sort the rectangles
in order of decreasing width first. BL-DH and BLF-DH sort by decreasing
height. Lesh et al. [28] suggest sorting by decreasing area (BLF-DA) or
perimeter (BLF-DP).

Lesh et al. [28, 29] further suggest that, if one of these heuristic methods
does not work, it may still be possible to find a solution quickly by spending
a limited amount of time randomly searching small perturbations to the
initial heuristic orderings, a technique they name BLD*.

Finally, Hopper and Turton [21] discuss combining these heuristics with
meta-heuristic techniques such as simulated annealing, genetic algorithms,
or hill-climbing. These techniques can start with an initial placement made
with, for instance, BLF-DW, and refine the solution over a sequence of

modifications in an attempt to approach the optimum.

4.4 Designing a schedule - 77

4.4.4 Relaxing the problem

Argon maintains a guaranteed level of efficiency, expressed by the R-value,
when a single server is shared; we extend that concept to the clustered set-
ting. We refer to the R-value being enforced at a particular server as Rgerper-
If clustering does not introduce any further loss in efficiency and each server
is operating at at least Rgerper, then the overall efficiency seen by the client
is still Rgepyper- However, just as it may not be possible or practical to share a
single server with perfect efficiency, it may not be reasonable to cluster with
perfect efficiency. Thus, we introduce a second R-value, R.ystering, Which
represents the minimum efficiency maintained by the clustering scheme. The

R-value observed at the client, then, is

> Rclustering X sglvleg"s Rserver

The R-value at the client is the ultimate indication of whether insulation
has been achieved; Reystering and Rserver are not externally visible and can

be manipulated for the convenience of the storage system.

4.45 Qur approach

We perform strip-packing to generate a schedule for the cluster as follows.
We start by attempting to achieve R jystering = 1.0. We create four parallel
threads to attempt four different heuristics (BLF-DW, -DH, -DA, -DP). If
the heuristic orderings do not lead to a solution, then we try nearby points in
the solution space by permuting the heuristic sort orders for a limited period
of time.® Each of the threads explores orderings near its initial sort order. In
our experience, no specific sort order is always a good starting point for this
exploration, but one of them usually is. When a thread finds an acceptable
solution, the other threads are halted and the solution is used. Figure 4.8
shows pseudocode specifying the exact sequence in which we search the
solution space near a heuristic ordering. If a solution cannot quickly be

SFor instance, sorting the rectangles in decreasing width order may yield the heuristic
ordering {A, B, C, D, E}. If placing rectangles in this order does not yield a satisfactory
solution, we might next try the ordering {B, A, C, D, E}.

78 . Performance insulation: more predictable shared storage

sched = blank schedule

for i = 1 to number of distinct types of workloads do
remaining[i] = number of workloads of type i

call place_next_workload(sched, remaining)

exit with “No schedule found"”

place_next_workload(sched, remaining)
if remaining[i] = 0 for all i then
exit with “Schedule found”, sched
for i = 1 to number of distinct types of workloads do /* L */
if remaining[i] > 0 then
/* Build a schedule by placing a workload of type i next */
for s = 1 to number of servers do
for t = beginning of round to end of round do
if (s, t) is an active corner in sched
and a workload of type i fits at location (s, t) in sched then
sched2 = sched
remain2 = remaining
Place a workload of type i at location (s, t) in sched2
decrement remain2[i]
call place_next_workload(sched2, remain2)
/* Only consider the first placement that fits */
skip to next iteration of loop L

Figure 4.8: Search ordering. If the heuristic placement methods do not
immediately find a solution, nearby solutions are searched as specified by
this algorithm. The particular heuristic being used affects the ordering of
the types of workloads in the above code. For instance, if Decreasing Width
is used, “workloads of type 1” refers to those with the greatest width.

found, we relax Rejysiering (for instance, we might next try Rejusiering = 0.95)
and repeat. If the minimum acceptable R-value is known up-front, we can
alternatively start with a value of Reystering < 1.0 rather than initially

considering the best possible value.

Initial setup

The inputs to our algorithm are the number of homogenous servers in the
cluster and the list of workloads, each of which is described by a number

of servers and a fractional share for each server. We create small rectangles

4.4 Designing a schedule - 79

corresponding to each of the workloads, as described in Section 4.4.2, with
the height equal to the number of servers needed by that workload and the
width equal to the proportion of the servers’ time it needs (e.g., 1/3). We
create a large rectangle to represent the cluster with the height equal to the
number of servers in the cluster and the width equal to 1/Rcjustering-

The width of the larger rectangle represents the round length (the pe-
riod over which the schedule repeats); each workload’s rectangle consumes
a fraction of that round length. If R ystering = 1.0, representing no loss of
efficiency due to clustering, then when we pack the workloads, a workload
requesting a particular share of a server will receive that proportion of time.
If Reystering < 1.0, however, then the round length will be scaled up with-
out scaling up the workloads. This creates more space into which to pack
the rectangles, which may make the problem faster to solve or possible to
solve where the original one was not. But, the workloads receive a lower
proportional share of the overall round, resulting in a fractional decrease in

performance equal to Reystering-

4.46 Evaluation

To evaluate the efficacy of creating a timeslice schedule using our approach,
we created a number of random problem instances representing sets of stor-
age workloads. Our results show that exhaustive search is impractical; that
starting exhaustive search with any one of the heuristic orderings does not
improve mean solution time significantly; but that our approach of trying
multiple heuristics in parallel and exploring nearby solutions does result in
much faster solutions in the mean. Furthermore, for problems too large to
solve even with this approach, relaxing the value of R jystering can create an

easier-to-solve version of the problem.

Ezperimental setup

Problem instances To create a large number of workload sets, we generate
lists of storage workloads randomly. A range of list sizes is generated to

evaluate the growth of computation time as the number of workloads grows.

80 . Performance insulation: more predictable shared storage

For each workload, we choose the number of servers on which to store the
workload uniformly at random from among the numbers 1, 3, 5, 7, and 9.”
For each workload, we also choose uniformly at random the proportion of
the servers’ time it needs from among the fractions 1/2, 1/3, 2/3, 1/4, 1/5,
and 1/6.

An appropriate cluster size is calculated by summing the areas of the
workloads’ rectangles and choosing a number of servers so that the cluster’s
rectangle has that area, rounded up (before adjusting for Rejystering). This
corresponds to the cluster size that would have the least wasted resources
for that set of workloads. If one or more of the workloads needs more than
the computed number of servers, however, the cluster size is increased to
match.

We used this procedure to generate 1000 random problem instances
of each size depicted in the figures, with the exception of some of the
Rejustering = 0.9 cases to keep experiment time manageable; for 14, 20, and
30 workloads, we used 500 random problem instances and for 40 workloads

we generated 200 problem instances.

Hardware All experiments were performed on machines with Pentium 4
Xeon 3.0 GHz processors running Linux 2.6.24. The memory footprint of

strip packing is small, so memory and storage were not bottleneck resources.

Results

Individual heuristics Figure 4.6, introduced earlier, shows the decreasing
width (DW), decreasing height (DH), decreasing area (DA), and decreasing
perimeter (DP) heuristics applied to the problem. If a solution was not found
by one of the heuristic orderings, we continued to explore the solution space,
starting near the heuristic orderings, until a solution was found or the entire
solution space had been exhausted, as described in Section 4.4.5. No single
heuristic improved the mean time to solution; search time averages over the

9These values are typical of threshold quorum schemes used for erasure coding, where
an odd number ensures a majority exists for a bipartition of servers.

4.4 Designing a schedule - 81

1000 O e —
clustering — 1.00—— 5
Rcluchring =09r-x—u }
800 - -
g I
e 1
5 l
2 600 .
g l
S 400 -
3 X
? 200 b .1
0 #XI%;F ”””” o — — ol | L

Number of workloads

Figure 4.9: Parallel heuristic search. Running searches initialized with
different heuristics in parallel allows the best-performing heuristic for a par-
ticular problem to find a solution faster. For the Ry ystering = 1.0 case,
however, an adequate sample size could not be achieved for problems of size
14 and greater due to growing run time. Relaxing Rejystering further accel-
erates the search and makes larger problems tractable. The error bars show
one standard deviation.

sets of workloads of each size for each heuristic are indistinguishable from

the unsorted exhaustive search.

Qur approaches Figure 4.9 shows solution speed with our approach — par-
allel execution of the four heuristics, continuing to search the nearby solu-
tion space if a solution is not immediately found. The two lines represent
Rjustering = 1.0 and Rejystering = 0.9. A timeout value, described in the next
section, is used to terminate the search and return “no solution found” after
a period of time. The plotted times correspond to running the four threads
on a single CPU, each at quarter-speed. This represents a pessimistic run
time; one might use CPUs in the storage cluster itself to perform this search
in parallel, or a multi-core machine.

Figure 4.10 shows, for the Rejystering = 0.9 case, the proportion of prob-

lems solved for each of the four heuristics (and continued search of nearby

82 . Performance insulation: more predictable shared storage

T T T
~ Unsorted —+— -

0.8
0.6
0.4
0.2

0 | | | | |
15 20 25 30 35 40

Number of workloads

Proportion solved
I I I

Figure 4.10: Proportion of problems solved per heuristic. In a limited
amount of time (one minute for 14 and 20 workloads, two minutes for 30
workloads, and nine minutes for 40 workloads), initializing a search with one
heuristic is not able to solve all of the problems that trying the combination
of heuristics in parallel is able to solve. The proportion of problems solved
is normalized against the number of instances solved using the parallel ap-
proach. While the performance of DW and DP is similar and both do well,
the two alone are not sufficient.

orderings for a limited period of time) normalized against the number of
problems solved using our approach. No one heuristic is sufficient to solve
all of the problems in a reasonably short period of time. Our approach im-
proves solvability by allowing whichever of the four is best for a particular
problem to be used without knowing which it will be.

Figure 4.11 shows the tradeoff between Ry stering and runtime for prob-
lems of size 13. Relaxing R jystering N0t only reduces run time, but also makes
more of the randomly-generated problem instances solvable. To maintain the
desired overall R-value, however, this approach would then incur the cost of

increasing Rgeryer t0 compensate.

Solvability and timeouts We observed that our approach either finds a so-

lution relatively quickly, or not at all, suggesting that we should halt the

4.4 Designing a schedule - 83

T T T T 100
1F x. -4 90
° 180
g 0%y 170 2
= N 460 2
o AN o
» 06 N i
c \\\ = 50 2]
. N -O
2 o4 Time —+— 140 £
o A F calvable ——ox-—— [
E Solvable ---x 1 30 §
0.2 |- . q 20
X 410
0 \ L 0
0.85 0.9 0.95 1
Rclusteriny

Figure 4.11: R-value tradeoffs for 13 workloads. Relaxing R jystering
can accelerate solution speed and increase the number of solvable instances.

search after a period of time. To determine appropriate timeout values for
each problem size, we ran all of the randomly-generated problem instances
of that size without a timeout. Initially, many runs find a solution and termi-
nate. Over time, we observed a decline in “completions” until a negligible or
zero number of completions occurred per minute, at which point we halted
the experiment. We then used the 90 percentile of these completion times
(rounded up to the nearest second) for the timeout value for that size prob-
lem instance. This has the effect of sacrificing the ability to find a small
number of solutions with outlying run times.

Since many of these problem instances are too large for us to exhaustively
solve, we cannot determine for certain that solutions do not exist beyond
those we found. However, our experience with smaller problem instances,
where we can compare the number of solutions found by our technique to
exhaustive search, suggests that this strategy results in finding the vast ma-
jority of solutions. For instance, no further solutions were found by running
to exhaustion the thirteen-workload problem instances that did not find a

solution before we halted the original experiment; the percentile used to set

84 - Performance insulation: more predictable shared storage

Num. workloads|Timeout (sec.)
12 2
13 5
14 6
20 30
30 114
40 524

Table 4.1: Timeouts. Timeouts used for Reystering = 0.9, calculated as
described in Section 4.4.6. Only problem sizes large enough to have a timeout
greater than one second are shown.

the timeout directly determines what percent of problems will be solved in

this case.

Parallelization in the cluster Our experiments show that the single-CPU
parallel heuristic search achieves our “few minutes or less” target. But,
searching for a solution to the scheduling problem is an “embarrassingly
parallel” problem which can be split up across a virtually unlimited num-
ber of CPUs. Thus, any CPUs available in the storage cluster for which
the schedule is being computed can be exploited for further speedup. For
Repustering = 0.9, if one CPU per server in the cluster is used to parallelize
the search, then on average problems with twenty workloads take less than
half a second, problems with thirty workloads take about a second, and

problems with forty workloads take under four seconds.'’

4.5 Coordination among servers

Once an appropriate schedule has been determined, the servers must follow it
in a synchronized fashion. This section describes the requirements associated
with such coordination and the solution we adopted.

0Recall that the number of servers varies across problem instances.

4.5 Coordination among servers - 85

4.5.1 Requirements

The servers must begin following the schedule of timeslices at approximately
the same moment of wall-clock time.!' Once begun, the servers must start
each subsequent timeslice in the schedule at the same approximate time.
Any offset or error must not compound over time unless it accumulates
identically across the servers. For instance, if a timeslice begins late at one
server for some reason, the next timeslice must either begin on time, or (if
it is desired to give the late-starting workload a full timeslice) the servers
must all retard the beginning of the next timeslice by the same amount.

In addition to coordinating the timeslices across the servers, there are
other decisions made by the servers that impact a workload’s performance if
not also coordinated. For example, if a workload has more requests queued
than can be handled in a single timeslice, the servers must choose which
subset of requests to send to disk. Only those requests chosen by all the
servers will complete at the client that round. But, notice that the issue
here is the set of requests completed rather than the order in which they are
completed — request scheduling within each timeslice does not need to be
synchronized and can be local to each server, allowing each server’s low-level

disk scheduling to remain unchanged.

The number of requests per timeslice Requests from clients arrive at our
storage server via a custom protocol before being turned into I/O system
calls. We perform timeslicing between workloads by queueing requests in the
user-level storage server, then issuing the corresponding system calls once
a workload’s timeslice begins. However, we are not able to cancel a request
that has been sent to the kernel or disk; this complicates the implementa-
tion of our scheduler. Timeslices establish a period of time during which a
workload’s requests can execute, but the number of requests that can be
executed during that period is not known with certainty in advance. If we
send more requests than would fill the timeslice, we would delay the begin-
ning of the next timeslice and penalize the subsequent workload. If we send

" Because timeslices are long, e.g. 140 ms, small offsets among the servers — say, 0.5 ms
— will not be significant.

86 . Performance insulation: more predictable shared storage

fewer requests than could fit, we would have unnecessary idle time at the
end of the timeslice.'? Thus, we estimate how many requests would fill the
timeslice based on historical observations of a given workload. We then send
exactly that many to the disk, provided enough requests have been queued
by the client.

The servers may not all compute the same number of requests to issue for
a given workload. Variations in disk service times may make the historical
observations that drive this decision different across the servers. If one server
issues more requests in a timeslice than the others, this does not improve
client performance because the client will still have to wait for the other
servers to complete the corresponding fragment requests in later timeslices.
If one server issues fewer requests than the others, on the other hand, it
impedes client performance. Thus, care must be taken so that the servers

issue approximately the same number in a given timeslice.

4.5.2 Initial solution: central coordination

One approach to keeping all the servers in sync is to centrally coordi-
nate their actions. We implemented a central coordinator and added com-
mands to our storage protocol to communicate between the coordinator
and the servers. The coordinator is the “timekeeper” that monitors wall-
clock time and determines when timeslices should begin and end. It sends
begin_timeslice messages to servers at the appropriate times. The payload
indicates the workload to execute next, the length of the next timeslice in
milliseconds, and the number of requests the server should allow to be issued.
Servers locally track the time that has elapsed since receiving these messages
to know when to prepare to switch between timeslices; however, this infor-
mation is not considered authoritative. A server that finishes a timeslice late,
because a request was still in flight when the next begin_timeslice mes-
sage arrives, begins the next timeslice as soon as possible and abbreviates
the new timeslice (by issuing fewer requests) to return to sync.

12We could “trickle” additional requests to the disk until the timeslice ends, but this
conservative strategy can hurt workloads that benefit from disk scheduling optimizations
for concurrent requests.

4.5 Coordination among servers - 87

At the end of a timeslice, each server sends a report requestsissued
message back to the coordinator. The payload indicates how many requests
were actually issued to the disk, the actual length of time that the timeslice
lasted (in case it started late), and the amount of idle time during the
timeslice (in case the client did not keep the server busy the entire time).
The central coordinator is able to calculate, for each of the servers, a per-
request service time based on these three values and arrive at a common

suggested number of requests to issue for that workload in the next round.

4.5.3 Symmetric operation

Although it worked, we prefer not to need a central coordinator. Our method
for achieving this is to make decisions independently at each of the servers
in such a way that they usually will agree across the servers without explicit
coordination. We call this approach symmetric operation. We designed our
servers to avoid the need for central coordination of the beginning and end of
timeslices, the number of requests to issue in a timeslice, and which specific
requests to issue in a timeslice if there are more requests queued than can
be issued.

Timeslices are co-scheduled by using ntp [39] to keep wall-clock time
synchronized across the cluster.'®> The management tool that determines
the overall schedule of timeslices in a cluster also assigns a fixed wall-clock
time for when the schedule should begin. Using this “time zero” and the
schedule, the start and end times for each timeslice can be calculated. Once
a server receives a schedule, it waits until the zero time and then uses its
own clock to follow the schedule. If a server receives a schedule after the
indicated time has passed, it joins the schedule in progress. If a workload
overruns its timeslice, the server abbreviates the following timeslice to fall
back in sync by the end of that second timeslice.

When more requests are queued than can be issued in a timeslice, the
servers independently choose the same set of requests to issue. In our pro-

!3Because timeslices are large — e.g. 140 ms — neither small inaccuracies in clock
synchronization nor typical intra-data-center network latencies will affect performance
significantly.

88 . Performance insulation: more predictable shared storage

tocol each request is labeled with a unique ID by the client. Relative to a
specific client, newer requests have a numerically greater ID. Thus, even if
requests are received in different orders at different servers, the request IDs
can be used to establish a consistent temporal ordering of requests. When
choosing which subset of requests to issue in a given timeslice, then, each
server can choose the oldest requests in the queue and be in agreement
without explicit coordination. This approach also has the desirable effect of
avoiding starvation.

Our system chooses to issue the same, or almost the same, number of re-
quests in co-scheduled timeslices across the set of servers as long as the disks
are performing similarly. Each server independently determines how many
requests to issue in a given timeslice based on an exponentially-weighted
moving average (EWMA) of the service times in previous timeslices for the
associated workload at that server. This approach is not overly sensitive
to occasional discrepancies, resulting in closely matching values across the
cluster. Should a particular workload not be achieving its expected per-
formance, there are two possible remedies. First, the o parameter for the
EWMA, which represents the desired amount of smoothing, could be ad-
justed for that workload to promote more stable behavior. Alternatively,

central coordination could selectively be provided for that workload.

454 Evaluation

We ran a series of experiments to confirm that (1) timeslicing without syn-
chronization results in poor performance and (2) that our approach of sym-
metric operation results in coordination between the servers and the desired
property of performance insulation.

Experiments were run on a cluster of Pentium 4 Xeon 3.0 GHz machines
running Linux 2.6.16.11. The machines had 2 GB of RAM, but the storage
servers were directed to use only 1 MB of RAM for caching to avoid con-
founding cache effects with disk performance. Each server used two Seagate
Barracuda ST3250824AS 250 GB 7200 RPM SATA drives, one as a boot

drive and one as the volume exported by our storage server. The drives

4.5 Coordination among servers ~ + 89

were connected through a 3ware 9550SX controller, which exposes the disks
to the OS through a SCSI interface. Both the disks and controller support
command queueing. The machines were connected over Gigabit Ethernet
using Intel 82546 NICs. Clients use the same hardware and do not perform
local caching. The software used was Ursa Minor [2], with the Argon storage

server described in the previous chapter.

Varying the number of servers

The first experiment shows that, while simple timeslicing provides per-
formance insulation on a single server, striping data across two or more
servers requires coordination between the servers to provide acceptable per-
formance. We store two files, each of size 100 GB, contiguously starting at
the beginning of the disks. Three closed, read-only, random workloads with
no think time are run on three separate client machines. The first and third
workloads use the first file and have one outstanding request at a time. The
second workload uses the second file and has four outstanding requests at
a time. We assign each workload one-third shares of each of the servers and
request an R-value of 0.9. We run the workloads for a period of eight min-
utes and monitor the throughput over the last five minutes. The block size is
chosen so that each server must supply a fragment of size 4 KB per request.
This holds the disk activity constant as we increase the number of servers,
to emphasize clustering effects rather than disk factors.

Figure 4.3 on page 68 shows the throughput of the first workload as
we vary the number of servers under three scenarios.!* The performance
insulation goal is that the workload will receive a normalized throughput of
0.9-%. Without timeslicing, the workload receives significantly less, regardless
of the number of servers (in this case because Workload 2 — not shown —
crowds it out with its higher degree of concurrency). Timeslicing solves the
interference problem for the single-server case. But, with data striped over
two or more servers, timeslicing results in worse performance than with no
insulation at all because of the lack of coordination. Many requests must wait

'4Standalone performance ranged from 305KB/s for one server — within 7% of the
datasheet performance for 4 KB random reads on this drive — to 2.2 MB/s for nine servers.

90 . Performance insulation: more predictable shared storage

nearly an entire round to complete, because they are held up by the server
with the farthest-in-the-future timeslice. Synchronizing timeslices achieves
the goal for each cluster size tested.

The other workloads are not shown in the figure for readability, but
they behave similarly. In the Timeslicing case, they also miss their goal
performance by a wide margin. In the Synchronized case, each achieves its

goal.

Putting it all together

The next experiment confirms that the entire process — starting with a list
of workloads and a cluster, finding a schedule and disseminating it to the
servers, and synchronizing their execution — results in the expected perfor-
mance insulation. We use one of the random problem instances of size five
and the schedule that was found when we solved it using our algorithm. We
augment the problem instance with choices for file size and number of out-
standing requests and ask the cluster to provide an R-value of 0.9. Expressed
as tuples of (num servers, share of time, file size in GB, outstanding), the
workloads are {(7, 1/6, 28, 2), (5, 1/3, 120, 3), (3, 1/2, 96, 1), (5, 1/2, 120, 4),
(5, 1/2, 120, 5)}. We choose to make the workloads closed, uniformly ran-
dom, and read-only with 4 KB fragments. We use a cluster of size ten, the
minimum for this set of workloads. Each server runs with 1 GB of cache. The
first workload benefits from a significant cache hit rate because it stores only
4 GB of data per server. If it receives insulated performance, this confirms
the guarantees from cache partitioning compose as expected in the cluster

as well. Figure 4.12 shows that the expected R-value is provided.

Macrobenchmarks

The next experiment confirms that our approach works for more realistic
workloads. We run Postmark, TPC-C (an OLTP workload), and a specific
query from TPC-H (a decision support workload) against a cluster. We ask

the cluster to maintain an R-value of 0.85.

4.5 Coordination among servers - 91

I I T
1k Timeslicing &xeee |
Synchronized m—
0.8 | _
0.6 .

Normalized throughput

Workload

Figure 4.12: Putting it all together. Five workloads with different num-
bers of servers and shares of server time run on a cluster. The techniques
described in Section 4.4 are used to generate a schedule of timeslices across
the ten servers. Timeslices are coordinated across the cluster as described
in Section 4.5. The y-axis shows throughput normalized against the perfor-
mance each workload receives running alone on its set of servers. The lines
show the R = 0.9 throughput for the share of server time each workload was
assigned in the problem instance.

Postmark [25] is a benchmark designed to measure performance for small
file workloads, such as on an email or newsgroup server. It measures the
number of transactions per second that the system is capable of supporting.
A transaction is either a file create or file delete, paired with either a read
or an append.

The TPC-C workload mimics an on-line database performing transaction
processing [52]. Transactions invoke 8 KB read-modify-write operations to
a small number of records in a 5 GB database. The performance of this
workload is reported in transactions per minute (tpm).

TPC-H is a decision-support benchmark [53]. It consists of 22 different
queries and two batch update statements. Each query processes a large por-

tion of the data in streaming fashion in a 1 GB database. Performance is

92 . Performance insulation: more predictable shared storage

measured by the elapsed time a query takes to complete. We run query 3 in
this experiment (its runtime was closest to the other two benchmarks’).
The workloads run on a cluster of six servers. Postmark stripes its data
across five servers and is allocated % of time on each. TPC-C and TPC-H
stripe their data across three servers, and each is allocated % of time on
its respective set of servers. Table 4.2 shows the performance each receives,
normalized to its standalone performance. Again, uncoordinated timeslicing
is inadequate because workloads must wait for the slowest server to respond.
Creating a schedule for the cluster and coordinating the servers provides the

desired performance for each workload.

4.6 Other related work

This section discusses additional related work specific to this chapter, in
particular, gang- and co-scheduling for high-performance computing, and
spindle synchronization in disk arrays. Work related to the theoretical results
on strip packing was described earlier in Section 4.4.3 and general quality-
of-service literature was described in Chapter 2.

Timeslicing is employed to share CPUs among workloads in most com-
mon operating systems. When pooling numerous CPUs to create high-
performance computing (HPC) clusters, the same concerns about compos-
ability of performance across individual nodes are raised. Co-scheduling [42]

and gang scheduling [15] enforce synchronized CPU timeslices in HPC clus-

Table 4.2: Macrobenchmarks

Benchmark| Shared goal |Timeslicing|Synchronized

Postmark |0.85 x 1/3 = 0.28] < 0.05 0.29
TPC-C [0.85x2/3=0.57] 0.21 0.58
TPC-H |0.85x2/3=0.57| 0.50 0.62

Timeslicing is unable to achieve the desired efficiency for three macrobenchmarks
sharing a cluster. Only with a synchronized timeslice schedule do the workloads
perform as expected. Performance is normalized against what each workload re-
ceives when it has exclusive use of its machines; bigger is better. For TPC-H, the
metric is inverse runtime; for the others, transactions per second.

4.7 Discussion: Intended applications : 93

ters in the same spirit as our synchronization of disk timeslices. Feitelson [14]
provides a survey of the various scheduling issues in the HPC environment.
Despite the similarities, the approaches used to create process schedules for
an HPC cluster are not directly applicable to storage systems. First, the
strategies employed in the HPC setting may be constrained by communi-
cation topologies that do not apply to storage systems. Second, the cost of
“context switches” can be significantly greater in storage systems than for
CPUs; processor sharing techniques need not take as much care to minimize
the occurrence of context switches or provide workloads with long contiguous
spans of time. On a theoretical level, “zero-cost preemption” of a resource
is compatible with linear programming formulations (which assume arbi-
trary divisibility of the modeled variables) whereas “non-preemption” of a
resource is only compatible with integer programming formulations (which
do not) [14]. Thus, the lower cost of preemption in processor scheduling
is more likely to be conducive to polynomial-time approaches, and indeed
polynomial-time algorithms are used for gang scheduling [14].

A similar coordination problem to ours is that of spindle synchronization
in disk arrays [27, 41]. Without explicit synchronization among disks that
store units of the same striped block, the rotational speeds and phases of the
disks may differ. This can result in rotational latencies approaching the worst
case (one whole rotation) instead of the average case as the number of disks
increases. Some disks have physical inputs or use command-set extensions

to match speed and phase in an array.

4.7 Discussion: Intended applications

This section revisits the target workloads and environments for this chapter.
The results in this chapter demonstrate that acceptable schedule calcu-
lation times can be achieved for dozens of workloads. As the bottleneck of
this task is computational, improvements to processors will scale this limit
over time, and parallelism at the servers will scale it now.
The approaches described are most suitable for long-lived sets of work-

loads with stable resource allocations on their respective servers, because

9 - Performance insulation: more predictable shared storage

schedule generation is a relatively slow process (fast enough to do occa-
sionally, slow enough not to do dynamically every few seconds or more fre-
quently). In addition, we have not exhibited a fast incremental algorithm
that preserves most of the placement decisions. Thus, arriving workloads
may require a drastic reconfiguration of the cluster, which could necessitate
migration of all existing workloads to different servers. Such a task may be
impractically costly and slow.

Sets of workloads that leave sufficient unassigned time in the schedule
may allow transient workloads to be fit as they arrive. Therefore, some degree
of fluctuation in the set of workloads may be acceptable, but it depends on
the availability of exploitable free time (both in quantity and in “shape”).

Our schedules assume that workloads stripe across each server. Work-
loads that use erasure coding would still work with our approach, but if they
mostly read, then idle time will be introduced at the servers not receiving
specific read requests. It is not clear to what extent this idle time could be
put to more productive use.

For other types of cluster workloads, an entirely different approach may
be necessary. For instance, individual files may be independently stored on
separate servers, and a workload might access several of these files to com-
plete an application-level task. There may be no consistent correlation be-
tween the servers accessed over time by a particular workload, and in fact,
deliberate randomization of the access pattern may be the norm. Some form
of central coordination (or distributed equivalent) and credit scheme may be
necessary to track and maintain fairness of the consumption of each work-
load; the type of scheduling needed to provide efficiency while also handling
the unpredictability of such workloads is not clear.

Since each server in the cluster runs Argon, the limitations of Argon also

apply.

4.8 Conclusion

Performance insulation can be realized in cluster-based storage by co-

scheduling timeslices for each striped workload. Parallel execution of several

4.8 Conclusion . 95

heuristics enables quick discovery of global schedules in most cases. Explicit
time synchronization and implicit work coordination enable the system to
provide 2-3x higher throughput than without performance insulation. With
the appropriate care, performance insulation can scale across servers in a

clustered storage system.

96 . Performance insulation: more predictable shared storage

5 Providing bandwidth guarantees
(Cesium)

Chapter 3 showed how to maintain efficiency while providing proportional
sharing of a storage system. Consistent efficiency has significant benefits:
reduced variability, less over-provisioning, and the ability to get better per-
formance with fewer resources and host more workloads on the same system.
Proportional sharing, however, is not directly able to provide bandwidth
guarantees, because the proportion of a system needed to provide a given
level of performance is highly workload-dependent and can be highly vari-
able even for a specific workload. This chapter discusses how to build on
the efficiency foundation of Argon, but provide bandwidth guarantees with

efficiency instead of proportional shares with efficiency.

5.1 Introduction

For storage, performance SLO goals are commonly specified in terms of
I/O bandwidth. Meeting such SLO metrics can be challenging, because the
fraction of a disk needed to provide a particular bandwidth or response time
varies dramatically, depending on I/O locality in the workload. A modern
disk might provide over 100 MB/s for sequential access, but less than 1 MB/s
for random 4 KB requests. Moreover, mixing the I/O of multiple workloads
can disrupt locality for each, potentially making the resources required a
complex function of each workload’s individual I/O locality and how their

requests are interleaved during servicing.

97

98 . Performance insulation: more predictable shared storage

This chapter describes Cesium, a system that provides for SLOs specified
in terms of storage bandwidth using explicit performance insulation (via
disk head timeslicing) to bound the effects of such interference. Timeslices
are dynamically resized, in each round, to adapt to the changes in I/O
characteristics that workloads exhibit.

The approaches for storage QoS described in Chapter 2 have not been
evaluated in the past with workloads that experience high variability and
extensive disruption to locality from inter-workload interference. Our exper-
iments with Cesium and with representatives of the other predominant ap-
proaches confirm the challenges of workload interference, the shortcomings of
previous approaches in coping with it, and the success of our new approach.
Perhaps surprisingly, the most popular traditional approach, based on token-
bucket throttling, increases the frequency of violations that could have been
avoided with a more efficient scheme (but reduces the worst magnitudes
of violations compared to not providing QoS). In addition, throttling can
dramatically reduce efficiency (e.g., by a factor of 6-8x in our experiments)
compared to not providing QoS at all, because inter-workload interference
is not managed and can even be increased as an artifact of how throttling
works. In contrast, Cesium maintains each workload’s efficiency and prevents
almost all avoidable violations. (We present a characterization of which vi-
olations are avoidable by an effective scheduler, and which are fundamental
and should not be expected to be avoided by any scheduler unless slack is
available.) For realistic workload mixes that experience high variability and
sensitivity to locality, Cesium achieves an order-of-magnitude reduction in
the number of guarantee violations, compared to prior techniques. Cesium
allows workloads to receive this predictable and controllable performance
while also maintaining efficiency and reducing the average and 95 per-
centile response times. Evaluation on RAID arrays confirms that Cesium’s

approach scales to these more complex systems as well.

5.2 Intended applications : 99

5.2 Intended applications

This section describes the workloads and storage systems for which the tech-
niques in this chapter are appropriate, and those for which the techniques
are not suitable. Section 5.7 revisits this discussion at the end of the chap-
ter, indicating why these limitations exist and to what extent they may be
remediable with further refinement.

Cesium is suitable for single storage servers and for storage clusters for
which the set of workloads and requests are the same across each node (in
other words, striping across the entire cluster). Its performance guarantees
are tailored for workloads that do not exhibit excessive idle time. As a band-
width guarantee system, it is intended for use with workloads that desire
bandwidth guarantees; those requiring latency guarantees may not be com-

patible with its effects on latency.

5.3 Background

This section describes background for providing bandwidth guarantees and
efficiency to workloads sharing a storage system. Chapter 2 discusses prior
storage QoS work, and Chapter 3 discusses the Argon storage server on
which this chapter builds.

Service level objectives for storage performance are often expressed
as bandwidth requirements; a large portion of the literature discussed in
Chapter 2 attempts to accommodate such guarantees. Suppose Workloads
A, B, ... are sharing a disk and each requires guaranteed performance. SLOs
might be specified as, for instance, “Workload A needs 6 MB/s.” A controller
that is able to accept and achieve such guarantees must be provided. If the
controller is unfair, then Workload A might suffer because B is allocated too
many resources, leaving too few for A. Separately, if the controller does not
maintain efficiency, then both workloads might suffer as the overhead (i.e.,
interference and context switching) of sharing consumes too many resources,

leaving too few for the workloads themselves.

100 . Performance insulation: more predictable shared storage

A workload that typically must meet its SLO may also have periods
of non-essential activity with a different access pattern. For example, the
workload might perform garbage collection during idle periods. It may not be
expected nor required that the SLO be met for this “unusual” activity, and
achieving the same performance as for other types of activity may not even
be possible. While the guarantee may not be applicable during such periods,
the performance should not be unnecessarily impeded, and the behavior of
the system during these periods should be well-understood, fair to the other
workloads, and reasonable.

Efficiency and interference are also not static; they are affected by
changes in workloads which can perturb the entire system. Interference lev-
els can vary dramatically — by an order of magnitude or more — over time.
Even if Workload A has highly regular behavior and would receive stable
performance on a dedicated system, the effects of Workload B can cause
unexpected efficiency swings. This occurs when the intensity or access pat-
terns of B change over time, resulting in periods when the combined request
stream is especially unfavorable. Systems, such as previous QoS schedulers,
that do not manage interference allow the variance in one workload to cause
unpredictability for all workloads. If Workload A suffers guarantee violations
as a result of this variance, such violations should be considered avoidable,
because they were caused by the failure of the sharing policy to maintain ac-
ceptable insulation from B. This type of violation is distinct from one caused
by a workload’s guarantee fundamentally being unsupportable for its access
pattern when limited to its assigned resources (irrespective of interference).

By strictly controlling interference and efficiency, Argon eliminates avoid-
able violations. But, Argon does not provide bandwidth or throughput guar-
antees in absolute terms, leaving unclear how to use it with SLOs of this
format. Under Argon, workloads are assigned a fraction of disk time, e.g.
1/3, and the system is assigned a minimum efficiency level (the R-value,
e.g. 0.9). By managing interference at the disk and cache, Argon then pro-
vides a bandwidth guarantee to a given workload A that is a function of the
workload’s dedicated-disk bandwidth, standalone,. For instance, for the ex-

ample fraction 4 and system efficiency level given above, Workload A would

5.4 Storage QoS scheduler design : 101

receive 1/3 x 0.9 x standalone 4. The other workloads B, C, ... in the system
would receive similar levels of bandwidth corresponding to their respective
values of fractionp c,.. and standalonepc....

Because standalone may vary as the access pattern of a workload
changes, we believe an effective scheduler that is designed to provide
bandwidth guarantees should be able to vary fraction appropriately and
automatically over time, and we wish to address the shortcoming of
fixedfractions in Argon. For example, at one point in time the workload
may have a particular access pattern, and standalone may be 60 MB/s.
Later, the workload may have a different access pattern, and standalone
may be 45 MB/s. If the workload has been assigned 1/3 of disk time and
the system is operating at an efficiency level of 0.9, then, when the work-
load is in the first operating region, its bandwidth will be at least 18 MB/s;
but, when the workload is in the second operating region, its bandwidth will
only be guaranteed to be at least 13.5 MB/s. For workloads needing con-
sistent bandwidth levels, choosing appropriate fractions and efficiency levels
already adds administrative complexity. Having to select a constant fraction
for each workload is also a significant constraint, because the appropriate
fraction may vary over time. Choosing the worst-case fraction and provid-
ing that amount even when the workload needs less wastes slack that might
be put to better use for other workloads. Thus, we believe that an ideal
QoS system should achieve Argon’s efficiency levels while also dynamically

allocating the proper amount of resources to workloads to meet SLOs.

5.4 Storage QoS scheduler design

In contrast to previous bandwidth guarantee systems, which largely ignore
the effect of inter-workload interference on efficiency, we wish to design a
scheduler that provides bandwidth guarantees while maintaining efficiency.
With better efficiency, we expect better guarantee adherence. We do not tar-
get workloads that are highly sensitive to every single request’s latency, but
Section 5.6.2 shows that higher efficiency results in better latency than even

“latency-optimized” but inefficient schedulers, for e.g. the 99** percentile of

102 . Performance insulation: more predictable shared storage

requests, and in the mean. This section describes the concepts behind our

scheduler, which itself is detailed in Section 5.5.

5.4.1 Maintaining efficiency

To maintain efficiency, we utilize the core Argon mechanisms (e.g., diskhead
timeslicing) described in Chapter 3. For streaming workloads (workloads
that read or write blocks sequentially from the disk), high efficiency (e.g.,
> 80%) cannot be provided unless they are able to access the disk for long
periods of time without having their spatial locality interrupted by any
other workload. The efficiency level achieved for these workloads, in fact,
can be directly computed using the amount of uninterrupted time they are
assigned and the cost of “context switching” (seeking the disk head to the
appropriate position within a streaming workload’s file) at the beginning of
their access periods. If a disk seek takes 10 ms and 90% efficiency is desired,
for instance, then such a workload must be provided uninterrupted access for
90 ms at a time. Increasing the queue depth presented to a non-timeslicing
scheduler may also potentially increase efficiency, but care must be taken
to avoid starvation. Timeslicing is effectively a way to avoid starvation in
a systematic manner. While other methods to avoid starvation may exist,
dedicated spans of time at least as long as those calculated using the above
method must be allocated to workloads to reach a given efficiency level.
Thus, we argue that a scheduler must incorporate some degree of timeslicing
in order to be efficient and avoid starvation, and believe it is appropriate to

continue use timeslicing in this follow-on work to Argon.!

5.4.2 Providing bandwidth guarantees

However, in addition to the efficiency goal of the Argon storage server, we
wish to provide bandwidth guarantees. Thus, instead of sizing timeslices to

'Disk-geometry-aware schedulers, such as the Freeblock scheduler [34], may be able
to significantly reduce positioning times, thus also reducing the uninterrupted span of
useful work over which seek costs must be amortized. While such schedulers can provide
a decrease in necessary timeslice lengths, they do not obviate the need for timeslices for
locality-sensitive foreground workloads.

5.4 Storage QoS scheduler design : 103

apportion total disk time fractionally across workloads, Cesium’s timeslice
scheduler will size timeslices to meet bandwidth guarantees. Let a round be
the period of time during which each workload’s timeslice executes once;
our timeslicing-based scheduler will execute round after round indefinitely.
We choose an appropriate round length (in milliseconds) that will be divided
among the workloads. Then, for each workload, we estimate what fraction of
the round it will need to achieve its bandwidth guarantee over that period.
For instance, if the round is 2000 ms long, and a particular workload is
assigned a guarantee of 1 MB/s, then it will be assigned a timeslice that
is predicted to be long enough for it to transfer 2 MB. Since its timeslices
are scheduled once every 2 seconds, this will yield an average bandwidth of
1 MB/s.

5.4.3 Handling different access patterns

Unfortunately, estimating appropriate timeslice lengths is not straightfor-
ward. For a streaming workload, it may take 33 ms to transfer 2 MB, while
for a random workload, it may take 500-1000 ms. Other factors also affect
performance, such as cache hit rate; and, while sequential and random ac-
cess patterns represent extreme examples, there is a continuum of spatial
locality in between. Making matters worse, workloads may exhibit constant
change in access patterns; what seemed to be the proper timeslice length at
the beginning of a timeslice may prove to be highly inaccurate.

However, simple computations take a negligible amount of time when
compared to disk accesses. This allows us to monitor the performance a
workload is receiving even while its timeslice is progressing and make ad-
justments to our scheduling decisions proactively rather than reactively. In
particular, if it becomes clear that a workload will finish enough requests
to satisfy its bandwidth guarantee for a round much earlier than expected,
we can terminate the timeslice before it was initially scheduled to complete.
Similarly, if a workload is performing worse than expected, we may be able
to extend its timeslice beyond the original target. If a previous workload’s

timeslice was shortened because its guarantee has already been satisfied,

104 - Performance insulation: more predictable shared storage

this creates slack that could be assigned to later workloads without com-
promising any guarantees; the extra time may allow a workload to meet its

guarantee for the round.

5.4.4 Fundamental vs. avoidable guarantee violations

When is it safe to assign more time to Workload A (decreasing its chances
of a violation) at the expense of B (increasing its chances of a violation)? To
make the proper tradeoffs, we must consider if and when guarantee violations
are “acceptable.”

To address this question, we focus on an aspect of bandwidth guaran-
tees that has not been adequately considered in prior systems: the issue of
changing access patterns. Suppose a workload is sequential and is assigned
a guarantee of 30 MB/s. Such a guarantee may present no challenge to the
system. Later, however, the workload may become significantly more ran-
dom; so much so that 30 MB/s may no longer be possible, even with full use
of a dedicated disk. (Many disks cannot provide above 10 MB/s for random
workloads.) This would result in a bandwidth guarantee violation no matter
how sophisticated the bandwidth guarantee algorithm.

One way to avoid this scenario is to assume each workload has a worst-
case random access pattern when making admission decisions [58]. The prob-
lem of changing workloads can be avoided by extreme conservatism, but the
set of workloads that can be accommodated will also be extremely conser-
vative (i.e., much smaller than necessary). The 30 MB/s guarantee would
never be accepted in the first place, even if the workload never wavers from
sequentiality and could easily achieve that level of performance. Most other
systems leave the issue of workload access pattern changes unaddressed; if
the workload becomes unsupportable because of a change in access pattern,
both it and the other workloads may begin to suffer guarantee violations. It
will suffer, because it cannot be accommodated with the available resources;
and other workloads will suffer, because in futilely trying to provide it with
its performance requirement, resources will be directed away from other,

supportable workloads. Note that “punishing” the unsupportable workload

5.4 Storage QoS scheduler design : 105

is not necessarily viable, because there is no notion of whether a particular
access pattern is reasonable or unreasonable.

We provide a solution to this ambiguity by incorporating into our band-
width guarantees the notion of mazimum fraction. A workload is assigned
both a bandwidth guarantee, such as 6 MB/s, and a maximum fraction,
such as 1/3. Cesium maintains the bandwidth guarantee so long as doing so
does not result in the workload consuming more than the specified fraction of
server time. In addition, if there is additional time available once other work-
loads are satisfied, a workload that has reached its resource limit without
meeting its guarantee may receive additional slack? beyond its maximum
fraction, and may thus salvage its bandwidth guarantee. But, the system
makes no promises that slack will be available.

This style of guarantee allows us to divide the set of guarantee viola-
tions into two classes: fundamental and avoidable. Fundamental violations
are guarantee violations that occur when a workload’s bandwidth cannot
be accommodated within the fraction of time assumed when it was admit-
ted; this occurs when the workload’s access pattern has too little locality
to achieve its bandwidth within its assigned resource fraction. Avoidable
violations are the remaining violations, which are caused by failures of the
sharing policy. Avoidable violations can occur because the sharing policy
does not manage the set of workloads properly (for instance, it fails to main-
tain fairness among the workloads) or because the sharing policy does not
maintain efficiency (it allows one workload’s behavior to affect the efficiency
another workload receives from the disk). These violations can be regarded
as “artificial” sources of bandwidth guarantee violations.

Because fundamental violations are a characteristic of the workload and
the physical limitations of disks, we reluctantly accept them as inevitable.
Our goal is to minimize or eliminate the remaining sources of guarantee

2Note that we use the term slack to refer to free time that has accumulated when
workloads end their timeslices early or rounds were not fully reserved, while deadline-
based schedulers use the term to refer to exploitable free time before the request with the
earliest deadline must be issued. Our slack accumulates when workloads receive better-
than-expected performance or the system is undersubscribed; it is not directly related to
issues such as workload idleness.

106 . Performance insulation: more predictable shared storage

violations, the avoidable violations. These violations can be reduced by
improving the scheduling policy. Therefore, we choose to design a system
to monitor the behavior of workloads and make the appropriate tradeoffs
among the workloads to provide guarantees to workloads whose accesses
can be supported within their assigned resource allocations. We avoid di-
verting resources away from supportable workloads to workloads that are
experiencing fundamental violations, because doing so could trigger even
more violations (these ones, avoidable). But, we also avoid diverting ex-
cessive resources away from workloads undergoing fundamental violations.
They continue to receive their maximum resources, to allow them to move

past the period of unsupportable behavior quickly.

5.5 Implementation

This section details our algorithm and its implementation in a user- (as

opposed to kernel-) level scheduler.

5.5.1 Workloads and requests

As requests arrive at our system, they are tagged with a workload identifier.
A workload is the unit to which a guarantee is assigned; the guarantee applies
to the set of requests received from that workload. When a new workload
enters the system, it requests an unused identifier and an administrator
specifies its bandwidth requirement in MB/s and its maximum fraction of

resources. These values can be changed later if desired.

5.5.2 Round-robin timeslicing

The scheduler executes rounds of timeslices, where each round includes a
single timeslice for each active workload. As a system property, a target
round length is selected and represents the total time period over which
each round executes. The appropriate round length can be calculated using
the number of workloads and the “context switching cost” (cost of switching

between workloads on a particular disk) to achieve a desired efficiency level,

5.5 Implementation . 107

such as 90%. Rounds are repeated indefinitely while the storage system is

running. Each round, however, need not be identical to the others.

Beginning a round

At the beginning of a round, the system determines whether the previous
round ended early. If so, this represents slack caused by workloads receiving
their guarantees in the previous round before using their maximum fractions
of resources, and this slack can be exploited in future periods to potentially
help workloads that are not meeting their guarantees. However, allowing
slack to accumulate without bound and be assigned to a single workload
could cause starvation for the others, because the one workload’s timeslice
could be lengthened excessively. Therefore, we apply a slack-aging algorithm;
in particular, we only permit slack from the last two rounds to be carried
forward. (This number empirically worked best for our test workloads.)

Next, we scan the list of workloads and determine which (if any) failed
to meet their bandwidth requirements in the previous period despite having
sufficient requests ready to issue to the disk. These workloads are marked as
unhappy, and the remaining workloads are marked as happy. We then place
the happy workloads into one set and the unhappy workloads into another,
and randomly permute the orderings of workloads within the sets. This
avoids consistently subjecting any one workload to the effects of executing
first or last in a round. Then, we concatenate the permuted lists into an
ordering of timeslices, where all the unhappy workloads execute first.

The next step is to choose appropriate timeslice lengths for each workload
in the round. These initial allocations are predicted to allow each workload
to meet its guarantee, but as described later, the algorithm may refine these
allocations after timeslices are underway based on real-time observations of
workload performance. For each workload, we calculate the amount of data
it must transfer in one round to fulfill its guarantee. For instance, if the
round length is 2 s, and a workload is guaranteed 1 MB/s, then it must
transfer 2 MB in a round. We then reserve for each workload the projected

amount of time needed to transfer the appropriate amount of data, based

108 . Performance insulation: more predictable shared storage

on estimated per-request time. Next, we sum the reservations across the
workloads.

The total reservation for the round may exceed the configured standard
round length plus any slack carried forward from the previous round; if so, we
must start reducing reservations. We start with the last workload scheduled
in the round (typically, the happy workload chosen last) and reduce its
reservation until the total of all reservations matches the target round length,
or the workload has been reduced to its maximum fraction of the round,
whichever allows for a longer timeslice?. If the total reservation still exceeds
the target round length, we continue the process with the n — 1% workload,
and so on.

Finally, if there is at least one unhappy workload, we attempt to reserve
extra time for it, in the hopes of making it happy this period. This may
allow for brief periods of lower bandwidth to be averaged out. We choose
the first timeslice (belonging to one of the unhappy workloads), and increase
its reservation to use any time in the round that has not been reserved.
This extra time is available only if the initial reservations for the workloads
summed to less than the target round size; if it was necessary to reduce the
reservations as described in the previous paragraph, such extra time is not
available. Last, if there is slack being carried forward from previous rounds,
we also allocate this slack to the first (unhappy) workload to maximize its

likelihood of returning to guarantee adherence.

During a timeslice

When a workload’s timeslice begins, all requests from the preceding workload
have completed and the disk is ready to be dedicated exclusively to the new
workload. During the timeslice, available requests (received directly from
the workload, or dispatched from a queue of postponed requests from the
workload) are sent to the disk until we determine it is time to drain the
timeslice. When we drain a timeslice, we stop issuing further requests and
let any requests pending at the disk complete. Once the disk has completed

% Alternatively, we could reduce the last several workloads cumulatively to the same
extent. These policies have different fairness on a micro level, but not a macro level.

5.5 Implementation . 109

all pending requests, the timeslice ends. We drain a timeslice when either of

the following becomes true:

(1) The workload has issued enough requests to transfer its required
amount of data for the round (e.g., the 2 MB given in the earlier

example).

(2) The time reserved for the workload has been exhausted. However, if
preceding workloads in the round ended their timeslices early, this
surplus is made available to the current timeslice, increasing its reser-
vation from the initial calculation. If it also ends early, the surplus is
carried forward again. If the surplus is not used up by the last times-

lice, it becomes slack in the next round.

When issuing requests to the disk, we do not constrain the number that
can be outstanding at a time, with one exception: We do not allow more
requests to be in flight than we project can complete by the end of the
timeslice. However, if these requests complete sooner than expected, the

workload is permitted to send additional requests.

Prediction

The prediction of how long a timeslice a workload needs is based on a pre-
diction of the time it takes to complete a request at the disk. We have
found that, because our algorithm can recover from imperfect predictions
by changing timeslice lengths in flight, it is not highly sensitive to prediction
accuracy. The workloads we use for testing and evaluation have high variabil-
ity, with some requests completing in 0.1 ms and others in 30 ms. Predicting
the wrong type of request would result in a two-order-of-magnitude error,
which we found does result in a relatively high number of guarantee viola-
tions. Using a simple adaptive predictor resulted in such errors frequently,
and hence in unacceptable violation levels. However, using a constant value
(1.5 ms) that represents an estimate of workload behavior in between the
extremes bounds error closer to one order of magnitude. Somewhat sur-

prisingly, this guess is close enough to allow the adaptive timeslice length

110 . Performance insulation: more predictable shared storage

algorithm to size timeslices appropriately, resulting in much better perfor-
mance and guarantee adherence than what we had believed would be a more
sophisticated predictor. The ability to carry forward slack from timeslice to
timeslice and across rounds further enhances the ability to compensate for

imperfect predictions in practice.

Summary

Our algorithm must handle various scenarios and implementation issues,
but all of its details center around meeting a primary set of goals. First, a
workload’s timeslice should end when its guarantee for the round is met or
it has exceeded its resource limit. Second, all workloads should be treated
fairly in the sense that, for instance, no one workload should consistently
be first or last in a round. Third, if slack is available, it should be used

appropriately.

5.6 Evaluation

To evaluate guarantee adherence for Cesium’s algorithm and for other pro-
posed bandwidth guarantee algorithms, we ran a series of experiments with
combinations of realistic workloads and appropriate guarantees. We observed
when guarantees were and were not being met and quantified which viola-
tions were fundamental. Results show that Cesium avoids nearly all guaran-
tee violations other than fundamentally unavoidable ones, while the other
algorithms did not deliver consistent guarantee adherence because of poor

efficiency.

5.6.1 Experimental setup

This section describes the hardware, software, and traces used in our exper-

iments.

5.6 Evaluation . 111

Hardware

Each experiment used a single machine with a Pentium 4 Xeon processor
running at 3.0 GHz. A dedicated disk was used to host the data being
accessed by the workloads; it was a Seagate Barracuda 7200 RPM SATA
drive, 250 GB in size. Two other, identical disks stored the OS and traces.
All the drives were connected through a 3ware 9550SX controller, and both
the disks and the controller support command queuing. The machines had
2 GB of RAM and ran Linux kernel version 2.6.26.

Software

A baseline that does not provide guarantees or manage workloads at all; our
scheduler, Cesium; and alternatives from the literature were implemented in
a disk time scheduler that manages requests coming from a trace replayer.
The trace replayer performs as-fast-as-possible trace replay from trace files
against the standard POSIX filesystem interface. For instance, a read in the
trace will result in a standard POSIX read() call for the specified region of
the local hard drive. The trace files recorded NFS-level read and write ac-
cesses to file systems. Files are specified as filehandles; thus, for each accessed
filehandle in the traces, we assigned a corresponding, appropriately-sized re-
gion on the disk. The replayer maintains a specified level of concurrency
while replaying the traces; we used 16 threads per workload.

The scheduler receives requests from individual workloads, queues them,
and dispatches them to the disk (by making standard I/O system calls)
when appropriate. While our scheduler runs at user level and sends requests
to the underlying OS scheduler, this added layer did not appear to affect our
results: they were not sensitive to the choice of OS scheduler. We chose a
user-level implementation for simplicity of experimentation and debugging.
(We have also implemented this scheduler as one of the selectable block
I/O schedulers in the Linux kernel. Similarly, it could be incorporated into
the kernel of another OS, or used to manage requests being handled by a

user-level storage server.)

112 . Performance insulation: more predictable shared storage

Sharing policies

We implemented four algorithms in our disk time scheduler to compare in
our evaluation. The first, Ignore SLOs, does not manage the workloads or
requests in any way. Token bucket implements a classic token-bucket—based
throttling system attempting to maintain bandwidth guarantees. The bucket
size (which represents the maximum surplus a workload can “save up” for
later bursts) was 5 seconds’ worth of bandwidth at each workload’s config-
ured rate. pClock is an implementation of the pClock algorithm [19], which
uses both token-based metering and deadlines for latency control; we con-
figure it to use a maximum latency of 2400 ms (to match the configuration
of Cesium). Cesium uses the algorithm described in Sections 5.4-5.5 with a
fixed round length of 2400 ms. We use a fixed round length in this evalua-
tion that worked across the range of workload tuple sizes for comparability
across experiments, but violations do not increase significantly with round

lengths of num_workloads x 300 ms.

Workload traces

For simple workloads with minimal locality and no variability in character-
istics, each scheduler is effective at maintaining bandwidth guarantees. But,
the schedulers have not been previously evaluated with workloads that expe-
rience significant variation in behavior, suffer from significant inter-workload
interference, and require efficient handling to maintain the benefits of local-
ity. Unfortunately, previous schedulers can fail under the stress of these
realistic challenges.

To evaluate the performance guarantee techniques with realistic work-
loads, we used traces collected from the day-to-day operations of a feature-
film animation company and released by Anderson [3]. To our knowledge,
these are the most intense NF'S traces that are publicly available today. The
traces contain the storage accesses that occur from different machines in
a “render farm” as they perform the 3D rendering necessary to generate
an animated film. The traces are read-heavy but do contain a significant

number of writes [3].

5.6 Evaluation . 113

Each activity record in the traces specifies the IP address of the machine
making the request. Thus, we are able to separate accesses from different
machines in the render farm, which are presumed to be performing unrelated
jobs at a given point in time. The set of requests issued from a particular
source machine is, therefore, treated as a workload for the sake of insulation
from other workloads and as the unit to which performance guarantees are
assigned. We chose ten of the most active machines from the traces to use as
our workloads. We then selected a suitable span of time from the traces that
is short enough to be able to run a series of experiments but long enough to
capture interesting variability in behavior.

Because workloads in a datacenter often use storage systems built from
more than one disk, for those experiments performed on a single disk we
scale down the traces by a factor of four in a manner similar to striping.
Since we are evaluating the performance of a shared server, we also suppress
from the traces those accesses that would be absorbed by a client buffer
cache that is 512 MB in size with an LRU replacement policy.

Run individually without any SLOs, the resulting trace excerpts each
take approximately thirty minutes to run on our system. We derived ap-
propriate performance guarantees by running each workload separately and
examining the full-system bandwidth achieved for that workload’s access
patterns over time. We then chose a level of bandwidth that would be
generally achievable while sharing the system efficiently with a few other
workloads. Each workload, however, exhibits dramatic variability in access
patterns, and for each workload we chose a guarantee that was reasonable
for the majority of its run, but could not be met all the time, even on a
dedicated disk. We believe it is important to include such behavior in our
experiments, to evaluate how the techniques handle fundamental violations
and periods of infeasible guarantees.

All but one workload is assigned a 0.2 MB/s bandwidth guarantee; the
other, a 0.1 MB/s guarantee. While these bandwidth levels may seem un-
demanding, recall that we have filtered out requests that would hit in the
cache from our traces, and note that the data sheet for our disks implies

an average throughput of about 82 IOPS for random requests (based on

114 - Performance insulation: more predictable shared storage

average seek time and rotational latency). For an example request size of
4 KB, single workloads using a dedicated disk are therefore expected to
receive 0.328 MB/s. Hence, our guarantee levels are appropriate and well-

proportioned for our disks.

Workload combinations

For our experiments, we ran combinations of workloads consisting of between
2-10 workloads chosen from among the ten trace excerpts we generated. For
two-workload sets, there are 45 combinations (not including pairs of the same
workload), and we ran experiments with all of them. For nine-workload sets,
there are ten combinations; and there is only one ten-workload set. We ran
experiments with all of these combinations as well. To keep total experiment
time manageable, however, we sampled the > 45 combinations of workloads
sized between 3-8, and randomly chose a subset of 45 combinations for each
size. The same random selections were used for each of the sharing policies

we evaluated.

Measurements

We ran each of the ten workloads alone to measure the performance they
receive on a dedicated disk. This allows us to identify the parts of the traces
where fundamental violations occur. For a window of time, if a workload
is able to receive z MB/s on a dedicated disk, and when it shares a disk
it is assigned a maximum fraction f, then a system operating at efficiency
R should be able to provide bandwidth > f x R X z in the same window.
Bandwidth can be measured over an arbitrarily configurable window; for
our experiments, we measure bandwidth during 15-second periods of time.

Next, we run each of the different combinations of workloads. If, when a
workload is sharing the disk, we detect a bandwidth violation, we can iden-
tify the corresponding window from the dedicated-disk run of that workload.
By plugging in the appropriate values of z and f and expecting a system
efficiency of R = 0.9 (as we showed in Chapter 3 is generally achievable),

5.6 Evaluation . 115

we can discern whether the violation in the shared run is fundamental or

avoidable.

5.6.2 Results

This section presents several results. It illustrates the bandwidth achieved
when a single combination of workloads runs to demonstrate the difference
between fundamental and avoidable violations. It examines the violations ex-
perienced over the entire set of workload combinations. For example work-
load combinations, it quantifies total disk bandwidth, achieved efficiency,
and request latency effects for each scheduling policy. Last, it confirms that

Cesium provides good guarantee adherence on a RAID-5 configuration.

Example timelines

We plot the bandwidth received by one workload over time as it shares the
disk in one of the randomly-chosen combinations of five workloads. The most
straightforward way to depict bandwidth over time is to place successive
windows of time on the z-axis and bandwidth on the y-axis. Unfortunately,
in this format, it would be difficult to locate corresponding periods in a
trace across different runs, because the x-axis would represent time rather
than location in the trace — and thus is affected by performance. Instead,
in Figure 5.1, we graph successive portions of the trace on the z-axis, and
the amount of time it took to replay that part of the trace on the y-axis. If a
workload has been assigned a guarantee of 1 MB/s, then we plot successive
15 MB windows of the trace (corresponding to an expected 15 second window
of time, the same as our chosen measuring window) on the z-axis, and
the average number of seconds it took to transfer 1 MB during each of
the windows as the y-values. In this representation, a violation occurred
whenever the plot is above the line y = 1 second (rather than below the line
y = 1 MB/s, as would be the case in the conventional way). The advantage
to this format is that points on the z-axis line up from run to run, regardless

of performance.

116 . Performance insulation: more predictable shared storage

Figure 5.1(a) shows the performance the workload receives with a ded-
icated disk, but the y-values of the data have been scaled to represent the
performance a system running at 90% efficiency and allocating a maximum
fraction of 1/5 should be able to provide that workload, as described in Sec-
tion 5.6.1. This is accomplished by taking the number of seconds required to
transfer the data with a dedicated disk and multiplying by 5 (the reciprocal
of the fraction) and then dividing by 0.9 (the efficiency level). By inspecting
Figure 5.1(a), we see that an efficient system should be able to meet the
guarantee (points below the line y = 1) most of the time, but there are
several periods where fundamental violations will occur.

Figure 5.1(b) shows the performance the workload receives when sharing
the disk under the Ignore SLOs policy, where no attempt is made to manage
the interference between the workloads. Note that many of its violations
occur during the periods where fundamental violations are expected. Some,
however, such as the ones at approximately x = 750, are avoidable violations
because there are no corresponding violations in Figure 5.1(a).

Figure 5.1(c) shows the performance the same workload receives under
Cesium. Note that because each “spike” in Figure 5.1(c) matches a spike
in Figure 5.1(a), each violation is a fundamental violation in this particular
run — as expected for an efficient system. Thus, in this specific experiment,
our system has succeeded in maintaining efficiency for the workload and
eliminated all the artificial or avoidable sources of guarantee violations. In
fact, many of the fundamental violations predicted by Figure 5.1(a) do not
occur with the timeslicing scheduler. This is because the fundamental model
predicts which violations occur when the fraction of time available to the de-
picted workload is limited to 1/5. But, as described in Section 5.5, if another
workload meets its guarantee for a round in less than its maximum time, this
slack is made available to other workloads. Hence, the windows where we
avoid predicted violations are windows where statistical multiplexing works
to the favor of the workload shown.

While only one of the five workloads is plotted due to space constraints,

the others experience similar behavior.

5.6 Evaluation . 117

Fundamental violations

Using the method described in Section 5.6.1, we calculate the expected num-
ber of fundamental violations for each workload when assigned 1/2-1/10 of
the system. These values correspond to the maximum fraction given to the
workloads in our combinations of 2-10 workloads. (Note that neither our de-
sign nor implementation preclude other non-matching fractions among the
workloads.) The results are shown in Figure 5.2, with each point in the scat-
terplot corresponding to one of the workloads. Sets of two or three workloads
should fit easily on the disk. Larger sets will have violations in up to 20% of
the periods because the guarantee levels are infeasible that frequently. An
increase in such fundamental violations is how Cesium degenerates when
facing infeasible guarantees.

Figure 5.3 shows conservative bounds on statistical multiplexing derived
from Hoeffding’s inequality [20]. This formula indicates an upper bound on
how many violations should result from the failure of statistical multiplexing
— in other words, how often the combination of workloads would, in total,
require more disk time than 100%. The bound is based on the mean resource
requirements and the range of resources needed by the workloads (e.g., av-
erage of 5% but as much as 20% in some periods). The two lines represent
the violations predicted using the average range among our workloads and
the worst-case among our workloads.

The inequality predicts that there may be periods of over-subscription
when the number of workloads exceeds five. This is of significance because
when there is such a period, no slack will be available in our system. This
will prevent our algorithm from carrying forward extra time between rounds.
During periods where our algorithm loses the ability to exploit slack, it loses
much of its ability to correct for mispredictions in estimated request times

and timeslice lengths.

Combinations of workloads

Figures 5.4(a)-5.4(d) show violations for each of the schedulers we imple-

mented, running with the sets of workload combinations we generated. In

118 . Performance insulation: more predictable shared storage

these scatterplots, each point corresponds to the percentage of periods with
violations experienced by one of the workloads when running in one of the
combinations. The number of periods with fundamental violations, calcu-
lated by the method described in Section 5.6.1, is subtracted from the num-
ber of observed violations to yield the depicted values.

When ignoring SLOs (Figure 5.4(a)), avoidable violations occur even for
the two-workload combinations. When ten workloads share the system, some
experience nearly constant violations. Without management of the requests
coming from each workload, proportional sharing cannot be ensured. In
addition, the scheduler makes no effort to maintain the efficiency of the
system. The benefits of locality that some workloads enjoy when running
alone may be lost when their requests are interleaved with those from other
workloads at a fine-grained level.

With token-bucket throttling (Figure 5.4(b)), the situation counter-
intuitively becomes worse instead of better. Even for two workloads, avoid-
able violations occur in nearly half of all periods. While token-bucket sched-
ulers attempt to manage fairness among the workloads, they do so by strictly
limiting the number of requests each can send to the system. As described
in Section 2.3.1, token bucket-schedulers work by limiting each workload
to an upper bound: its bandwidth guarantee. This is fundamentally back-
wards from the intended goal of maintaining a lower bound. Consequently,
even if workloads can fit together on a system, they are at best limited
to exactly their guarantee level of bandwidth. Thus, the best-case scenario
finds workloads constantly on the edge between making their guarantee and
suffering a violation. But, token-bucket schedulers finely interleave requests
coming from different workloads, disrupting any locality they may have; no
attempt is made to preserve their efficiency. This may result in them re-
quiring substantially more time to complete their requests, and there may
not be enough time available in the system to service all the workloads at
their reduced efficiency. Note that only a limited number of combinations of
workloads were tested for this graph, because the run time of experiments
with this scheduler was prohibitive.

pClock also counter-intuitively makes matters worse (Figure 5.4(c)).

5.6 Evaluation . 119

While we have received acceptable performance using our implementation
of pClock with other workloads, and while it outperforms token bucket for
some combinations, it is not generally effective on these workloads. Like
token-bucket throttling, it does not fully preserve efficiency when workloads
share a system because it makes no effort to maintain locality or avoid fine-
grained interleaving.

Cesium eliminates most non-fundamental violations (Figure 5.4(d)). It
does this by automatically managing both the proportion of the system
a workload receives, and the efficiency with which it operates during its
assigned fraction of time. This allows workloads that benefit from locality
to continue operating at close to their full efficiency, avoiding the increase
in required resources suffered by the other systems. In some instances, the
number of violations is actually less than the expected number; there are no
avoidable violations and fewer fundamental violations than predicted. This
is the result of statistical multiplexing working to the benefit of workloads;
sometimes, one workload will meet its guarantee in less than its assigned
fraction, and this slack allows another workload to use resources beyond its
assigned fraction. Since the number of fundamental violations is calculated
for a workload’s assigned fraction, some violations may not occur when
surplus is available.

Unfortunately, a low level of avoidable violations does remain in some
cases. This begins at the point where Hoeffding’s inequality predicts that
the system will be oversubscribed in some periods (Figure 5.3). When this
occurs, no free resources are available in the system, and the scheduler does
not have slack available to make up for imperfect control decisions. The
scheduler sizes the timeslices for each workload, and determines when to
start draining requests and end a timeslice, based on projections of how long
a workload’s requests will take. The workloads used in these experiments
are highly variable (regardless of scheduler), with some requests completing
in tens of milliseconds and some in a tenth of a millisecond. The simple
prediction algorithms used in our scheduler, chosen to keep implementation
complexity low, do not make consistently accurate predictions.

Fortunately, slack allows the scheduler to make up for poor decisions.

120 . Performance insulation: more predictable shared storage

Ignore SLOs Token bucket
Num. of |Avg. total Achieved Latency ms Avg. total Ach. Lat. ms
workloads|disk MB/s efficiency mean / 95% / 99%|disk MB/s eff.

2 3.5 92% 9.7 /49 / 210 0.3 9% 87 /963 / 1013

5 3.1 7% 38 /224 /720 0.6 16% 87 / 949 / 1016
pClock Cesium

2 0.6 15% 53 / 169 / 360 3.3 88% 9.4/ 15/ 118

5 0.5 11% 181 / 184 / 1023 3.5 89% 25 /17 / 466

Table 5.1: Example efficiency and latency measurements for each of the
scheduling policies

But, if slack is not available, the effects of imperfect predictions start to
show up as “avoidable” violations. We called any violations that would not
occur under a fair and efficient scheduler avoidable. While the results show
that our scheduler is significantly more effective than the others, it is not
perfectly fair and efficient because of the uncertainty it faces with highly

variable workloads.

Efficiency and response time effects

Cesium results in better guarantee adherence in part because it maintains
significantly higher efficiency. Table 5.1 shows average total disk bandwidth,
efficiency, and average and 95" /99" percentile response times (latencies)
for representative example combinations of two and five workloads. With-
out throttling (ignoring SLOs), workloads may receive relatively high ef-
ficiency because the disk scheduler is able to perform seek optimizations
within and across workloads. But, there is no explicit management of effi-
ciency, and efficiency deteriorates as the number of workloads increases. The
token bucket and pClock schedulers provide significantly worse efficiency
levels. Their approach to balancing the streams of requests from workloads
results in requests from different workloads becoming interleaved, resulting
in poor locality. When operating less efficiently, requests cannot be handled
as quickly, and thus they suffer from increased response times as well.
Cesium consistently maintains efficiency and bandwidth, while simulta-
neously reducing most response times. Although a few requests may block

for nearly an entire round waiting for the appropriate timeslice, and there-

5.6 Evaluation . 121

Num Ignore SLOs Cesium
work-|Achieved Violations >|Ach Viols >
loads [efficiency fundamental| eff fund

2 75% 1% 92% 0%
3 57% 8% 90% 0.5%
4 51% 10% 86% 0.5%

Table 5.2: Cesium on a four-disk RAID-5 configuration

fore experience high latency, this happens to only a very small fraction of
requests. Thanks to higher disk efficiency, Cesium provides the vast major-
ity of requests with response times lower than those provided by any other
tested scheduler — both the average and the 99" percentiles are signifi-
cantly lower. To show the relative latency effects in more detail, Figure 5.5
gives the distribution of latencies for each scheduler for an example workload
combination. Figure 5.6 zooms in on the “tails” of the same distributions.
Timeslicing does cause the occasional request to wait much longer than
it would under the other schedulers, which perform fine-grained request-
by-request scheduling, but response times are significantly reduced on the

whole.

RAID

RAID [44] can increase performance, capacity, and fault tolerance above the
levels offered by a single disk. Our timeslicing-based scheduler works with-
out modification on simple RAID arrays (i.e., those with striping and redun-
dancy, but without internal caches or adaptive algorithms). Table 5.2 shows
the efficiency and guarantee adherence achieved on a four-disk RAID-5 array
with example workload combinations. The guarantees used in this experi-
ment began to saturate the array with four workloads. Cesium maintained
efficiency and suffered only a negligible number of avoidable violations.
The Cesium scheduling algorithms are designed to work at the disk
scheduling level. Thus, they are unlikely to work outside of a file server

or high-end disk array controller with large quantities of cache and adaptive

122 . Performance insulation: more predictable shared storage

mappings of LBNs to disks. Instead, they should be implemented within the
firmware of such devices, allowing them to provide efficient SLO support.

One specific level of complexity introduced by such systems is the multi-
level aggregation of disks. RAID 5 can tolerate only the failure of a single
disk in a group without data loss. Thus, it is beneficial to limit the size of
groups to minimize the probability of a two-disk failure. However, limiting
the number of disks that can be allocated to a volume limits the amount of
parallel bandwidth available to that volume. A solution to this issue is to
stripe across multiple smaller RAID 5 groups for parallelism. For instance, a
volume may be created by striping across two RAID 5 groups. A given byte
would then be stored on one of these groups. Within the specific RAID 5
group, the byte will reside on one of the disks, and contribute to a parity
value on another.

While this approach does avoid a disadvantage of the more straightfor-
ward all-disks-in-one-group approach, it raises the question of load balanc-
ing. If bytes are divided evenly across two RAID 5 groups, for example, is
it safe to assume each group will receive the same level of load? Will both
groups exhibit the same performance? If the answer to either of these ques-
tions is no, then “hot spots” will result — imbalances between the groups
resulting in sub-optimal performance.

The possibility of hot spots could be exacerbated by timeslicing, which
increases the latency of some requests by intentionally backlogging requests
coming from workloads. We ran a series of experiments to determine whether
this concern is justified in practice. We created two RAID 5 groups of four
disks each, each with a stripe size of 16 KB. We then configured our system
to perform striping over these two groups, so that half of all requests go to
one group and half to the other, and perform co-scheduling similar to that
described in Chapter 4.

We ran combinations of the feature-film animation workloads with 2-5
workloads®. Like the previous experiments, we constrained the number of
concurrent 1/Os issued by each workload (in this case, to 32). For these ex-

4Five pairs, three combinations of three workloads, two combinations of four workloads,
and two combinations of five workloads.

5.7 Discussion: Intended applications . 123

periments, however, we added an additional constraint; we do not allow the
newest request to be more than 32 requests in the trace beyond the oldest
outstanding request. This “windowing” restriction makes performance par-
ticularly susceptible to hot spots. However, the postulated performance de-
terioration due to hot spots does not occur, as Cesium effectively maintains
efficiency and performance even under these situations. Each combination

met or exceeded the desired R-value of 0.9.

5.7 Discussion: Intended applications

This section revisits the target workloads and environments for this chapter.

Cesium has been evaluated and shown to be effective on single storage
servers. For storage clusters for which the set of workloads and requests are
the same across the servers, the same fractions would likely be appropriate
across the cluster, and thus Cesium could appropriately co-schedule times-
lices across the servers. For clusters with workloads that use subsets of the
servers, the clustering approach described in the previous chapter would not
be effective. Cesium’s reactive sizing of timeslices precludes static scheduling
in advance of a round and makes consistent alignment of timeslices unlikely.

Cesium’s performance guarantees are tailored for workloads that do not
exhibit excessive idle time. It is not straightforward to interpret a bandwidth
guarantee for a workload that is idle; such a workload will inevitably receive
no bandwidth for the idle period. While the expected or desired behavior in
this scenario could be defined more clearly, Cesium’s timeslicing might still
not be appropriate. If a workload is idle during its timeslice, the idle time
cannot be used for either its benefit or for the benefit of other workloads.
Its timeslice may be extended up to its maximum fraction, however, if it
has not met its guarantee for the round. If it issues requests later after its
timeslice has ended, they will be deferred to the next round because the
workload’s maximum fraction of time has already been exhausted, albeit
unproductively.

Cesium provides bandwidth guarantees. Similarly to Argon, Cesium’s

timeslicing increases efficiency, and thus decreases mean latency compared to

124 - Performance insulation: more predictable shared storage

not providing quality of service, and increases mean latency for closed-loop
workloads in a bounded manner when compared to isolation. Timeslicing
increases maximum latency (for a potentially small subset of requests) sig-
nificantly, and similarly increases variance. Thus, Cesium is not suitable for
workloads requiring hard real-time maximum latency guarantees, or that

are otherwise sensitive to these latency effects.

5.8 Conclusion

Bandwidth guarantee violations can be dramatically reduced by using a
scheduler that explicitly manages interference between workloads. By con-
sidering efficiency, violations can be differentiated between those that are
fundamental and those that are avoidable. Cesium, our timeslicing-based
system, strictly limits interference while adapting timeslice lengths to con-
trol bandwidth. As a result, it can achieve > 85% efficiency where other
schedulers may achieve < 20%. In experiments on realistic workloads, Ce-
sium uses its efficiency to greatly increase overall throughput and also to
eliminate almost all avoidable violations, and is able to use slack to reduce
the number of “fundamental” violations as well. Compared to traditional
techniques, workloads running under Cesium may experience an order of
magnitude fewer violations. Thus, Cesium provides predictable, controllable

performance to workloads sharing a storage system.

5.8 Conclusion . 125

T T T
Normalized standalone
5 | Goal --—----]

Seconds to transfer
w
T
1

I ‘ | ‘ Mnﬂ. b LI{ _

0
0 500 1000 1500 2000 2500
Measuring windows

(a) Normalized standalone

6 T T T
Ignore SLOs

5 Goal ------- _
4+ 4

Seconds to transfer

0 500 1000 1500 2000 2500
Measuring windows

(b) Ignore SLOs

6 T T

T
Cesium
5 | Goal ------- 4

Seconds to transfer
w
T
1

0 500 1000 1500 2000 2500
Measuring windows

(c) Cesium

Figure 5.1: Bandwidth guarantee adherence over time for a dedicated disk
and two of the schedulers

126 . Performance insulation: more predictable shared storage

100 T T T T T

80 —

40 | 4

20 - -
.

i L

2 4 6 8 10
Number of workloads in combination

4+
-+

- 4
b

e
M
Hi 1

Percentage fundamental violations

Figure 5.2: Percentage of fundamental violations

100 T T T T T

80 .
60 - -

40 4

Percentage violations

20 i

-

2 4 6 8 10
Number of workloads in combination

Figure 5.3: Percentage of violations predicted by Hoeffding’s inequality

5.8 Conclusion . 127

100 T T T T T 100 T T T T

+
80 + A 80 -

A+
o
A+ o

60

20 | i % -
of—=+—= i i
1 1 1

1 1 1 1 1 1
2 4 6 8 10 2 4 6 8 10
Number of workloads in combination Number of workloads in combination

60

40_§$$$$%§

20 E

A+

- -

Percentage violations > fundamental
B
o
T
1
Percentage violations > fundamental

(a) Ignore SLOs — Average = 9.9% (b) Token bucket — Average = 55.5%

100 T T 100 T T T T T

80 E

+
+

60 E

40 4

20 | % 20 E
0 ‘ e w aom i $

1 1 1 I I I * T : = i i

2 4 6 8 10 2 4 6 8 10
Number of workloads in combination Number of workloads in combination

o
-4+

Percentage violations > fundamental
Iy D o)
o o o
T T T
R
HH - HHH-HHHHH
+
+
1
Percentage violations > fundamental

(c) pClock — Average = 49.2% (d) Cesium — Average = -0.5%

Figure 5.4: Percentage of violations above or below the fundamental viola-
tions for each of the scheduling policies

128

Cumulative fraction

0.6

0.4

0.2

Performance insulation: more predictable shared storage

Dedicated disk
Ignore SLOs
Token bucket

50 100 150
Latency (ms)

200

300

Figure 5.5: Latency for each of the scheduling policies: For an example com-
bination of five workloads, the distributions of latencies experienced by a rep-
resentative workload are shown as cumulative distribution functions. Each
y-value shows the fraction of requests experiencing latency of at most the
corresponding z-value.

Cumulative fraction

0.99

0.98

0.97

0.96

0.95

Dedicated disk
Ignore SLOs
Token bucket

1000 2000 3000 4000 5000 6000

Latency (ms)

Figure 5.6: Latency “tails” for each of the scheduling policies. The y-axis
begins at the 95" percentile.

6 Conclusion

Performance insulation is a system property that bounds efficiency loss when
workloads share a system. Insulation is achieved by controlling the sources
of inter-workload interference. In a storage system, such interference comes
from locality disruption at the disk head and from competition for cache
space. Storage system interference can be mitigated with round-robin disk-
head timeslicing, prefetching and write coalescing, and cache partitioning.
Each of these techniques is necessary to provide performance insulation, and
taken together, a system implementing them can maintain efficiency at 90%
of a workload’s dedicated-disk efficiency. To achieve such efficiency, however,
casually applying the mechanisms is not enough; they must be guided by
efficiency-aware policies to, for instance, size timeslices and cache partitions
appropriately for efficiency goals.

In cluster-based storage, timeslicing can be detrimental because a client
must wait for the farthest-in-the-future timeslice among the set of servers it
is using. Its request cannot complete until the “slowest” server responds, a
complication introduced by clustering. However, if the servers each schedule
a workload’s timeslice at the same time, this issue can be avoided entirely.
Doing so requires synchronization among the servers, and the creation of a
cluster-wide schedule of workloads across the servers. Finding an appropriate
schedule is an NP-complete problem. Fortunately, effective heuristics exist
that can solve most problem instances in a reasonable amount of time.

Providing bandwidth guarantees to storage workloads is challenging for
two reasons: workloads may have intrinsic variation in demand; and inter-

workload interference may change over time, resulting in further swings in

129

130 . Performance insulation: more predictable shared storage

resource requirements. To address workload variation, Cesium monitors the
progress a workload is making toward meeting its bandwidth goal and ad-
justs its fraction of the system accordingly. To address inter-workload in-
terference, Cesium adopts the same principles that Argon uses to maintain
efficiency, such as performing timeslicing with sufficiently large quanta. By
strictly limiting interference and maintaining efficiency, Cesium eliminates
one major source of bandwidth guarantee violations. The same challenging
workloads suffer from many avoidable violations when running under other
representative schedulers from the literature. Virtually all violations experi-
enced by workloads running under Cesium are caused by a workload’s own
intrinsic variability exceeding the level of resources available on the system.

Performance insulation is a useful system property when a system is
shared among workloads. It provides a quantified bound on efficiency loss
despite the potential for significant interference to occur. Performance insu-
lation can be achieved on storage systems, single and clustered, by applying
practical techniques with appropriate efficiency-aware policies. Insulation
can be used to provide direct efficiency guarantees. But, performance guar-
antees on metrics such as bandwidth are appealing for many workloads. For
systems providing bandwidth guarantees, insulation is a key building block
to allow guarantees to be maintained more robustly with fewer resources.
Performance insulation allows a higher degree of predictability and control

when workloads share a storage system.

6.1 Future work

Various avenues for further exploration are suggested by the research de-
scribed in this dissertation. This section lists some of the areas we have

explored or identified.

6.1.1 Improving the accuracy of Cesium’s predictor

A small number of avoidable (non-fundamental) violations occur under Ce-
sium despite the care it takes to maintain efficiency. These result from im-

perfect predictions of how long each request will take, predictions that are

6.1 Future work . 131

used for the key decision of how long a timeslice should be. Instead of being
considered fundamental or avoidable violations, these violations might best
be placed in a third class, prediction violations. A more sophisticated pre-
diction algorithm or a more resilient scheduler might be able to reduce this

type of violation.

6.1.2 Implementing Argon or Cesium in complex arrays

High-end storage systems are often built with at least hundreds of disks and
dozens of arrays. In front of these components is a sophisticated controller
that routes requests from workloads to the appropriate arrays and disks,
performs caching, executes algorithms that adapt the system’s behavior to
best match the needs of workloads, and performs various maintenance tasks.
We have not evaluated Argon or Cesium in such an environment, because
the modifications would need to understand the complex and potentially
dynamic mappings of workloads to disks, and also alter the behavior of the
caching subsystem. Both of these aspects would require modifications to the
controller software or firmware.

Because of the proprietary nature of such storage systems, it was not
practical for us to pursue this line of research. However, if we could imple-
ment an extended version of Argon or Cesium in such a system, or simulate
much of the complexity of such a system in an environment that we could
modify appropriately, it would allow us to identify the new challenges posed
by expanding performance insulation to these complex systems and confirm

that our techniques scale to this domain.

6.1.3 Improving response times with timeslice sharing

Some workloads, such as streaming workloads, must be strictly separated
from others. Many workloads, however, may be able to coexist well. Ar-
gon and Cesium’s rigid one-workload-per-timeslice scheduler does not per-
mit such “coexistence.” Workloads that do not need protected locality do
not need to be given dedicated timeslices and can share them with non-

interfering workloads. Appropriately chosen workloads could benefit from

132 . Performance insulation: more predictable shared storage

sharing timeslices in two ways. First, the timeslice can be made longer and
each workload sharing the timeslice can have its requests serviced during
that longer window, improving their response times. Second, some work-
loads constructively, rather than destructively, interfere with each other.
For instance, if their files are nearby on disk, seek optimizations over their
combined request stream may actually result in improved performance when
compared to isolation.

Preliminary results have shown the benefit of allowing appropriate mix-
ing. Speculatively mixing workloads and observing whether they suffer or
not allows compatible workloads to be identified automatically. Speculative
combinations that result in reduced performance can be quickly returned
to separate timeslices, while beneficial combinations can be maintained in

shared timeslices.

Bibliography

1]

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions
with disk-resident data. CS—-TR-207-89, Department of Computer Sci-

ence, Princeton University, February 1989.

M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R. Ganger,
J. Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad, B. Salmon,
R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk, E. Thereska,
M. Wachs, and J. J. Wylie. Ursa minor: versatile cluster-based storage.
Conference on File and Storage Technologies. 2005. San Francisco, CA,
13-16 December 2005.

E. Anderson. Capture, conversion, and analysis of an intense nfs work-
load. FAST ’09. 2009.

B. S. Baker, J. E. G. Coffman, and R. L. Rivest. Orthogonal packings
in two dimensions. SIAM J. Comput., 9(4):846-55.

J. Bruno, J. Brustoloni, E. Gabber, M. Mcshea, B. Ozden, and A. Sil-
berschatz. Disk scheduling with quality of service guarantees. ICMCS
'99. 1999.

J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The eclipse op-
erating system: Providing quality of service via reservation domains.
USENIX Annual Technical Conference. 1998. New Orleans, LA, 15-19
June 1998.

133

134

7]

[10]

[11]

[15]

Performance insulation: more predictable shared storage

P. Cao, E. W. Felten, and K. Li. Application-controlled file caching
policies. Summer USENIX Technical Conference. 6-10 June 1994.
Boston, MA.

P. Cao, E. W. Felten, and K. Li. Implementation and performance of
application-controlled file caching. Symposium on Operating Systems

Design and Implementation. 14-17 November 1994. Monterey, CA.

D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon,
and T. P. Lee. Performance virtualization for large-scale storage sys-
tems. Symposium on Reliable Distributed Systems. 2003. Florence,
Italy, 06-08 October 2003.

H.-T. Chou and D. J. DeWitt. An evaluation of buffer management
strategies for relational database systems. International Conference on
Very Large Databases. 21-23 August 1985. Stockholm, Sweden.

S. J. Daigle and J. K. Strosnider. Disk scheduling for multimedia data
streams. SPIE Conference on High-Speed Networking and Multimedia
Computing. February 1994.

L. Eggert and J. D. Touch. Idletime scheduling with preemption in-
tervals. ACM Symposium on Operating System Principles. 2005.
Brighton, United Kingdom, 23-26 October 2005.

C. Faloutsos, R. Ng, and T. Sellis. Flexible and adaptable buffer
management-techniques for database-management systems. I[IEEE
Transactions on Computers, 44(4):546-560.

D. Feitelson. Job scheduling in multiprogrammed parallel systems. IBM
Research Report RC 19790 (87657), October 1994, Second Revision,
August 1997.

D. Feitelson and L. Rudolph. Gang scheduling performance benefits for
fine-grain synchronization. Journal of Parallel and Distributed Comput-
ing, 16:306-18, 1992.

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

Bibliography . 135

W. Fernandez de la Vega and V. Zissimopoulos. An approximation
scheme for strip packing of rectangles with bounded dimensions. Dis-
crete Applied Mathematics, 82:93-101, 1998.

P. C. Gilmore and R. E. Gomory. A linear programming approach to
the cutting-stock problem. Operations Research, 9:849-59, 1961.

A. Gulati, A. Merchant, and P. Varman. d-clock: distributed qos in

heterogeneous resource environments. PODC ’07. 2007.

A. Gulati, A. Merchant, and P. J. Varman. pclock: An arrival curve
based approach for qos guarantees in shared storage systems. SIGMET-
RICS ’07. 2007.

W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13~
30, 1963.

E. Hopper and B. C. H. Turton. An empirical investigation of meta-
heuristic and heuristic algorithms for a 2d packing problem. European
Journal of Operational Research, 128:34-57, 2001.

L. Huang, G. Peng, and T. Chiueh. Multi-dimensional storage virtual-
ization. SIGMETRICS /Performance ’04. 2004.

S. Iyer and P. Druschel. Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous i/o. ACM
Symposium on Operating System Principles. 2001. Chateau Lake
Louise, Canada, 21-24 October 2001.

M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance isola-
tion and differentiation for storage systems. International Workshop on
Quality of Service. 2004. Montreal, Canada, 0709 June 2004.

J. Katcher. Postmark: a new file system benchmark. Technical report
TR3022, Network Appliance, 1997.

136

[26]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Performance insulation: more predictable shared storage

C. Kenyon and E. Remila. Approximate strip packing. Proceedings
of the 37th Annual Symposium on Foundations of Computer Science
(FOCS). October 1996.

M. Y. Kim. Synchronized disk interleaving. IEEE Trans. on Computers,
C-35:978-988, November 1986.

N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. New exhaus-
tive, heuristic, and interactive approaches to 2d rectangular strip pack-
ing. Technical report TR2003-05, Mitsubishi Electric Research Labo-
ratories, 2003.

N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. New heuristic
and interactive approaches to 2d rectangular strip packing. Technical
report TR2005-113, Mitsubishi Electric Research Laboratories, 2005.

P. Lougher and D. Shepherd. The design of a storage server for contin-
uous media. Computer Journal, 36(1):32-42, 1993.

C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: online data migra-
tion with performance guarantees. FAST. 2002. Monterey, CA, 28-30
January 2002.

C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade: virtual storage
devices with performance guarantees. Conference on File and Storage
Technologies. 2003. San Francisco, CA, 31 March—02 April 2003.

C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade: Virtual storage
devices with performance guarantees. FAST ’03. 2003.

C. R. Lumb, J. Schindler, G. R. Ganger, D. F. Nagle, and E. Reidel.
Towards higher disk head utilization: extracting free bandwidth from
busy disk drives. OSDI. 2000.

S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-
packing problem. INFORMS Journal on Computing, 15(3):310-19,
2003.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Bibliography . 137

L. W. McVoy and S. R. Kleiman. Extent-like performance from a unix
file system. USENIX Annual Technical Conference. 1991. Dallas, TX,
January 1991.

A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal, and K. Shin.
Maestro: Quality-of-service in large disk arrays. ICAC. 2011.

M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. Com-
munications Magazine, 41(8):84-90, August 2003.

D. L. Mills. RFC-1305: Network time protocol (version 3), March 1992.

A. Molano, K. Juvva, and R. Rajkumar. Real-time filesystems. guar-
anteeing timing constraints for disk accesses in rt-mach. Proceedings
Real-Time Systems Symposium. 1997. San Francisco, CA, 2-5 Decem-
ber 1997.

S. Ng. Some design issues of disk arrays. COMPCONSpring. 1989.

J. K. Ousterhout. Scheduling techniques for concurrent systems. Pro-
ceedings of the 3rd International Conference on Distributed Computing
Systems (ICDCS). October 1982.

A. E. Papathanasiou and M. L. Scott. Aggressive prefetching: an idea
whose time has come. Hot Topics in Operating Systems. 2005. Santa
Fe, NM, 12-15 June 2005.

D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (raid). SIGMOD ’88. 1988.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
lenka. Informed prefetching and caching. ACM Symposium on Op-
erating System Principles. 1995. Copper Mountain Resort, CO, 3-6
December 1995.

A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong, and
C. Maltzahn. Efficient guaranteed disk request scheduling with fahrrad.
Eurosys ’08. 2008.

138

[47]

[48]

[49]

[52]

[53]

[54]

Performance insulation: more predictable shared storage

J. Schindler, A. Ailamaki, and G. R. Ganger. Lachesis: robust database
storage management based on device-specific performance characteris-
tics. International Conference on Very Large Databases. 2003. Berlin,
Germany, 9-12 September 2003.

J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned extents: matching access patterns to disk drive characteristics.
Conference on File and Storage Technologies. 2002. Monterey, CA,
28-30 January 2002.

P. J. Shenoy and H. M. Vin. Cello: a disk scheduling framework for
next generation operating systems. ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. 1998. Madison, WI,
June 1998.

E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan, and G. R.
Ganger. Informed data distribution selection in a self-predicting stor-
age system. International conference on autonomic computing. 2006.
Dublin, Ireland, 12-16 June 2006.

E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,
J. Lopez, and G. R. Ganger. Stardust: Tracking activity in a distributed
storage system. ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. 2006. Saint-Malo, France, 26-30 June
2006.

Transaction Processing Performance Council. Tpc benchmark c. http:

//www.tpc.org/tpcc/.

Transaction Processing Performance Council. Tpc benchmark h. http:

//www.tpc.org/tpch/.

J. S. Turner. New directions in communications (or which way to the in-
formation age?). IEEE Communications Magazine, 24(10):8-15, 1986.

[55]

[56]

[57]

[58]

[59]

Bibliography . 139

C. A. Waldspurger. Memory resource management in vmware esx
server. Symposium on Operating Systems Design and Implementation.
2002. Boston, MA, 09-11 December 2002.

R. Wijayaratne and A. L. N. Reddy. Providing qos guarantees for disk
i/o. Multimedia Syst., 8:57-68, January 2000.

T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-Szendy. Zygaria:
Storage performance as a managed resource. RTAS — IEEE Real-Time
and Embedded Technology and Applications Symposium. 2006. San
Jose, CA, 04-07 April 2006.

T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-Szendy. Zygaria:

storage performance as a managed resource. RTAS ’06. 2006.

J. Zhang, A. Riska, A. Sivasubramaniam, Q. Wang, and E. Reidel.
Storage performance virtualization via throughput and latency control.
MASCOTS ’05. 2005.

140 . Performance insulation: more predictable shared storage

