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Abstract

Large-scale data-intensive computing systems have become a critical foun-
dation for Internet-scale services. eir widespread growth during the past
decade has raised datacenter energy demand and created an increasingly large
ĕnancial burden and scaling challenge: Peak energy requirements today are
a signiĕcant cost of provisioning and operating datacenters. In this thesis,
we propose to reduce the peak energy consumption of datacenters by using
a FAWN: A Fast Array of Wimpy Nodes. FAWN is an approach to building
datacenter server clusters using low-cost, low-power servers that are individu-
ally optimized for energy efficiency rather than raw performance alone. FAWN
systems, however, have a different set of resource constraints than traditional
systems that can prevent existing soware from reaping the improved energy
efficiency beneĕts FAWN systems can provide.

is dissertation describes the principles behind FAWN and the soware
techniques necessary to unlock its energy efficiency potential. First, we present
a deep study into building FAWN-KV, a distributed, log-structured key-value
storage system designed for an early FAWN prototype. Second, we present
a broader classiĕcation and workload analysis showing when FAWN can be
more energy-efficient and under what workload conditions a FAWN cluster
would perform poorly in comparison to a smaller number of high-speed sys-
tems. Last, we describe modern trends that portend a narrowing gap between
CPU and I/O capability and highlight the challenges endemic to all future bal-
anced systems. Using FAWN as an early example, we demonstrate that per-
vasive use of “vector interfaces” throughout distributed storage systems can
improve throughput by an order of magnitude and eliminate the redundant
work found in many data-intensive workloads.
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Chapter 1

Introduction

1.1 Problem and Scope

Energy has become an increasingly large ĕnancial burden and scaling challenge for com-
puting. With the increasing demand for and scale of Data-Intensive Scalable Computing
(DISC) [32], the power and cooling costs of running large data centers are a signiĕcant
fraction of the total cost of their ownership, provisioning, and operation [24]. On a smaller
scale, power and cooling are serious impediments to the achievable density in data cen-
ters [109]: companies frequently run out of power before they exhaust rack space.

Today’s DISC systems are primarily designed to access large amounts of data stored on
terabytes to petabytes of storage. Examples of DISC systems include those being built by
Google, Microso, Yahoo!, Amazon.com, and many others. ese systems oen span the
globe with multiple datacenters, each consisting of tens of thousands of individual servers
built from commodity components. e peak power provisioned for each datacenter can
reach tens ofmegawatts, which hasmotivated the deployment of datacenters near abundant
access to cheap energy [72, 123].

Given the degree to which today’s largest datacenters are affected by energy, we propose
to reduce the energy consumed by large-scale computing by building datacenters using
a FAWN: A Fast Array of Wimpy Nodes. FAWN is an approach to building datacenter
clusters using low-cost, low-power hardware devices that are individually optimized for
energy efficiency (in terms of work done per joule, or equivalently, performance per watt)
rather than rawperformance alone. e abundant parallelism found inmanydata-intensive
workloads allows a FAWN system to use many more individually wimpier components in
parallel to complete a task while reducing the overall energy used to do the work.
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e FAWN approach balances the I/O gap between processing and storage, but chooses
a speciĕc balance that optimizes for energy efficiency. Over the last several years, we have
built several different FAWN instantiations by using off-the-shelf hardware consisting of
embedded/low-power processors pairedwith consumer-class Ęash storage, whichhave hard-
ware characteristics that most existing datacenter soware systems are unable to take full
advantage of.

is dissertation describes how to adapt soware to this new environment, and how
doing so can signiĕcantly improve energy efficiency for a subset of datacenter workloads.
Speciĕcally, FAWNcan improve energy efficiency for data-intensive workloads that are eas-
ily partitioned, parallelizable, and require computations (both simple and complex) across
petabytes of data that tend to be more I/O-bound than CPU-bound on traditional brawny
systems. In contrast, traditional HPC and transaction-processing systems perform com-
plex computations and synchronization on small amounts of data for which FAWN is less
effective and are workloads we do not consider.

1.2 esis Statement

is dissertation claims that the FAWN approach can drastically improve energy efficiency
for data-intensive computing systems, but achieving its potential requires revisiting and jointly
changing the entire compute and storage stack.

Successfully deploying FAWN requires more than simply choosing a different hard-
ware platform; it requires the careful design and implementation of soware techniques
optimized for the different balance, constraints, and distributed system challenges result-
ing from FAWN system properties. FAWN nodes have a different balance of I/O capability
to CPU and a reduced memory capacity per core. Because FAWN nodes are individually
less capable, more individual nodes are required to complete the same amount of work.
ese different properties oen prevent existing soware from taking full advantage of the
improved efficiency FAWN systems can provide, but we show that properly architecting
soware for FAWN systems can improve datacenter energy efficiency by an order of mag-
nitude.

1.3 esis Overview

To substantiate the claim made in the thesis statement, this dissertation describes the de-
sign, implementation, and evaluation of several systems built speciĕcally with FAWN clus-
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ters in mind and analyzes why existing soware can fail to attain the efficiency potential
of FAWN. In Chapter 2, we introduce the background concepts and trends motivating
the FAWN approach and the key unique combination of constraints of FAWN systems to
which systems soware must adapt. In Chapter 3, we describe the foundation of related
work upon which this dissertation builds.

Chapter 4 describes our in-depth study into building a distributed key-value storage
system on an early FAWN prototype system, demonstrating the beneĕts of re-thinking the
design of the higher-level distributed system and local storage techniques targeted for the
FAWN environment. In Chapter 5 we then provide a broader classiĕcation and workload
analysis for other data-intensiveworkloads to understandwhenFAWNcanbemore energy-
efficient and why soware can fall short of capitalizing on its beneĕts.

Chapter 6 then delves more deeply into FAWN-KV running on modern FAWN hard-
ware and state-of-the-art solid state devices, showing how a dramatic shi in balance be-
tween CPU and I/O highlights the need to re-think and re-design the lower-layer operating
system implementations and interfaces to I/O. In Chapter 7, we propose the pervasive use
of vector interfaces to storage and RPC systems as a technique to overcome this shrinking
I/O gap. We then follow with a proposal for using vector interfaces throughout operat-
ing systems and applications in Chapter 8. Finally, we conclude with future work and a
summary of the work in Chapter 9.

1.4 Contributions

is dissertation makes the following contributions:

• e principles and trends underpinning energy-efficient cluster design using a Fast
Array of Wimpy Nodes;

• a capital and power cost analysis showing when FAWN systems are preferable for a
given dataset size and query rate;

• the ĕrst design and implementation of a distributed key-value storage system on Ęash
storage (FAWN-KV);

• the design for a memory-efficient hash table targeted towards wimpy processors and
low Ęash read-ampliĕcation;
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• an analysis of several classes of data-intensive workloads on wimpy and traditional
systems demonstrating where and why FAWN can be more effective than traditional
systems;

• measurements showing the deĕciencies of the Linux I/O stack formodern high speed
Ęash solid state drives and an interrupt mitigation scheme for the SATA driver to
batch I/O completions;

• the design, implementation and evaluation of a key-value storage server architecture
using vector interfaces to RPC and storage that provides 1.6M key-value lookups per
second over the network;

• and the principles of applying vector interfaces to eliminate redundant execution in
operating systems running on balanced systems.

e FAWN-KV soware developed in this thesis as well as the interrupt mitigation
SATA implementation are available for download at http://github.com/vrv/.

4

http://github.com/vrv/


Chapter 2

Background Concepts and Trends

2.1 Datacenter Energy Efficiency

e tremendous growth of cloud computing and large-scale data analytics highlights the
importance of reducing data center energy consumption. Cluster distributed systems con-
sisting of tens to hundreds of thousands of machines are becoming more prevalent each
year, and the ĕnancial burden imposed by datacenter power and cooling requirements in-
creases the total cost of ownership for datacenters. At today’s energy prices, the direct cost
to power a datacenter server is a modest fraction (perhaps 10%) of the total cost of owner-
ship (TCO) of the server [24], but the proportion of a server’s TCO related to total energy
use, such as cooling and infrastructure costs, has become high enough to warrant concern
from the large companies that operate these datacenters. For example, assuming a cost of
$10 for power and cooling infrastructure per Watt of delivered power [24], a 200W server
would require $2000 of initial investment, equal to or higher than the cost of the server
itself. If this cost is amortized over four server generations, power and cooling costs would
comprise 20% of TCO.

At the warehouse computing scale (hundreds of thousands of machines in a single loca-
tion), the components of overall energy use are widespread, ranging from the energy use of
the server itself to its supporting infrastructure such as battery backup systems, power sup-
plies, and higher-level energy management infrastructure. Because datacenter Ęoor space
is oen an important cost concern, many datacenter designs increase the compute and stor-
age density of their datacenter. But the density of the datacenters that house the machines
has traditionally been limited by the ability to supply and cool 10–20 kW of power per rack
and up to 10–20MWper datacenter [72]. Datacenters today are designed with amaximum
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power draw of 50MW [72], or the equivalent of nearly 40,000 residential homes. Such high
power density requires dedicated electrical substations to feed them, further driving up the
datacenter TCO.

Datacenter lifetimes spanmultiple generations of server hardware to amortize the initial
cost of construction, whereas the average server’s lifetime is on the order of three to four
years [24]. e infrastructure required to support a datacentermust plan for a peak capacity
that projects for future growth over a long duration. e designed peak power draw of the
datacenter then informs the design and subsequent cost of building the datacenter. Not
surprisingly, building a datacenter to support ĕeen years of growth requires both high
upfront costs and complex, long-term business projections that can have signiĕcant impact
on proĕtability. As a result, reducing peak power requirements can substantially reduce
datacenter cost.

e peak power of a datacenter is determined by the aggregate power draw of all server
components at full load. Assuming that the amount of work to be done in a datacenter
is ĕxed, one way to reduce the peak power draw of a datacenter is by improving energy
efficiency. We deĕne energy efficiency as the amount of work done per Joule of energy, or
equivalently, the performance per Watt. By improving the energy efficiency of a datacenter,
we can reduce the amount of energy required to perform a deĕned amount of work.

2.2 FAWN: A Fast Array of Wimpy Nodes

To reduce peak power and its related costs, we introduce an approach to building clusters
using low-power, low-speed nodes at large scale which we call FAWN: A Fast Array of
WimpyNodes [17]. e central observation of this idea is that efficient data-intensive clus-
tersmust be both balanced in their CPU and I/O-capabilities (i.e., not wasting the resources
of the CPU, memory, storage, or network), and also efficient in the amount of work done
per Joule of energy, because balance alone does not necessarily imply energy efficiency.

A FAWN cluster is composed of more nodes than a traditional cluster because each
FAWN node is individually slower. Our initial prototype FAWN node from 2007 used an
embedded 500MHz processor paired with CompactFlash storage, which was signiĕcantly
slower per-node than a multi-GHz multi-core server system balanced with multiple disks
available then. Today, a FAWN node may use a small number of cores operating at 1.6GHz,
or roughly half the clockspeed of high-speed servers.

A FAWN must use more wimpy nodes in parallel to replace each traditional, “brawny”
system [64] to achieve the same level of performance. As a result, the FAWN approach
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might fail to improve energy efficiency for workloads that cannot be easily parallelized or
whose computation requires a serialized component (because of Amdahl’s Law [12]). For-
tunately, many (but not all [23, 64]) DISC workloads are parallelizable because of the data-
oriented nature of the workloads. e FAWN approach can work well for these types of
workloads, which we focus on throughout this dissertation.

2.3 Reducing Energy in Datacenters

ere are several viable approaches to reducing energy consumption and costs in datacen-
ters, FAWN being the focus in this dissertation. In this section, we highlight two other
approaches and how they contrast and complement the FAWN approach.

Reducing PUE Over the last several years, many of the largest datacenter builders have
largely focused on reducing a datacenter’s Power Usage Effectiveness, or PUE. PUE is the
ratio of total power draw to aggregate server power draw. In 2009, the Energy Star program
estimated that the average datacenter PUE was 1.91–for every watt of power delivered to a
server, the datacenter infrastructure required another 0.91 watts to deliver the power and
remove the heat generated by the server [126].

While the industry average PUE remains relatively high, state-of-the-art datacenters
have been built that reduce the PUE to about 1.1, so that only an additional 10% of power
is used to deliver power to servers.Ƭ Providing this low of a PUE has required innovation
in battery backup systems, efficient power supplies, voltage regulators, and novel cooling
infrastructures. e EPA PUE study suggested that PUE was inversely correlated with size:
the largest datacenter providers had the lowest PUE. us, if state-of-the-art techniques are
employed, PUE can be reduced to a negligible fraction of TCO.

Moreover, improving PUE is orthogonal to reducing peak power, because improving
PUE mostly requires focusing on the infrastructure surrounding the servers that do the
real work. Less focus has been placed on the peak power draw of a datacenter, which still
remains a major factor in determining the capital and operational costs of running a data-
center today.

Improving Proportionality Datacenters must be provisioned for peak power, but their
average utilization is oen far below peak—anywhere from 5% [77] for smaller datacen-

Ƭe PUE metric does not capture additional efficiency losses when distributing the power to the individ-
ual components inside the server, which can add another 10 or 20% power overhead.
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ters to 30% at the low end for larger datacenters [23]. Innovations in cluster scheduling
and other techniques fueled by cost pressures have enabled state-of-the-art datacenters to
operate at upwards of 70% of peak cluster utilization.

Ideally, a datacenter would use only a proportional fraction of power when not fully
utilized (e.g., operating at 20% utilization should require only 20% of the cluster’s peak
power draw), a feature termed “energy proportionality” [23].

Unfortunately, individual servers have oen not been energy proportional because of
their high ĕxed power draw even when idle: servers can consume 20-50% of their peak
power at 0% utilization. While server proportionality has improved, it is only a part of
the equation: when considering the datacenter as a whole, one must factor in the energy
proportionality of other components such as power supply, distribution, and cooling, which
are also far from energy proportional [24].

Achieving energy proportionality in a datacenter thusmay require “ensemble-level tech-
niques” [128], such as turning portions of a datacenter off completely [13]. is can be
challenging because workload variance in a datacenter can be quite high, and opportuni-
ties to go into deep sleep states are few and far between [23, 90], while “wake-up” or VM
migration penalties can make these techniques less energy-efficient. Also, VM migration
may not apply for some applications, e.g., if datasets are held entirely in DRAM to guar-
antee fast response times. Finally, companies may be loathe to turn expensive machines
off completely because they fear increasing failure rates caused by repeated power-cycling,
instead preferring to ĕnd additional tasks to occupy spare capacity.

As Figure 2.1 shows, improvements to hardware proportionality or ensemble-level tech-
niques to do so should apply equally to FAWN. Improving energy proportionality is there-
fore a complementary approach to FAWN. In other words, energy proportionality tech-
niques reduce the day-to-day operational cost of a datacenter, whereas FAWN’s lower peak
power requirements reduce initial capital cost and worst-case operational cost. We note
that proportionality can additionally reduce peak power requirements by 30% for real dat-
acenter workloads because not all machines will be simultaneously operating at full capac-
ity [50].

2.4 FAWN Principles

Tounderstandwhy FAWNcan be fundamentallymore energy-efficient for servingmassive-
scale I/O and data-intensive workloads, we explain how fundamental trends in computing
and technology make FAWN the optimal choice for energy efficiency.
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Figure 2.1: Energy proportionality is orthogonal to energy efficiency. Here, the wimpy
platform is six times more efficient in performing the same amount of work regardless of
load. is assumes that the proportionality of both platforms is identical, which may not
be true in practice.

2.4.1 Deĕning Energy Efficiency

Before outlining FAWN trends and principles, we must ĕrst deĕne how to measure energy
efficiency. Several such deĕnitions exist, but the one we focus on is “work done per Joule”.
For large-scale cluster computing applications that are consuming a signiĕcant fraction of
energy in datacenters worldwide, “work done per Joule” is a useful metric to optimize: it
relies on being able to parallelize workloads, which is oen explicitly provided by data-
intensive computing models such as MapReduce [42] and Dryad [67] that harness data-
parallelism.

More speciĕcally, when the amount of work is ĕxed but parallelizable, one can use a
larger number of slower machines yet still ĕnish the work in the same amount of time, e.g.,
ten nodes running at one-tenth the speed of a traditional node. If the aggregate power used
by those ten nodes is less than that used by the traditional node, then the ten-node solution
is more energy-efficient.

Other communities, such as in low-power VLSI design, have deĕned efficiency using
the “energy-delay product,” whichmultiplies the amount of energy to do an amount of work
with the time it takes to do that amount of work. is penalizes solutions that reduce the
amount of energy by reducing performance for energy efficiency gains. Our goal ofmeeting
the same throughput or latency targets through increased cluster parallelism, however, also
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optimizes for energy-delay product. Others have gone further by proposing using “energy
delay2” to further penalize solutions that simply reduce voltage at the expense of perfor-
mance; FAWN does not work well in optimizing this latter metric.

One additional metric we do not study in detail is the cost of soware development. As
we will repeatedly show in this dissertation, soware may not run well “out-of-the-box” on
wimpy hardware for a number of reasons, requiring additional development time to either
rewrite from scratch or tune/optimize appropriately. When calculating the cost of transi-
tioning a portion of a cluster to the wimpy platform, energy costs, capital costs, and so-
ware development costs will all play a factor. For the purposes of narrowing the research,
however, we focus only on energy efficiency and soware design techniques that work well
for balanced system designs, though it is likely that soware development costs will nec-
essarily work in favor of “brawnier” platforms [64] because they offer more computational
headroom.

2.4.2 CPU Trends

FAWN is inspired by several fundamental trends in energy efficiency for CPUs, memory,
and storage.

Increasing CPU-I/O Gap: Over the last several decades, the gap between CPU perfor-
mance and I/O bandwidth has continually grown. For data-intensive computing work-
loads, storage, network, and memory bandwidth bottlenecks oen cause low CPU utiliza-
tion.

FAWN Approach: To efficiently run I/O-bound data-intensive, computationally simple
applications, FAWN uses processors that are more energy efficient in instructions per Joule
while maintaining relatively high performance. Typically, we target FAWN systems that
operate at a third to half of the speed of the fastest available systems. is reduced processor
speed then beneĕts from a second trend:

CPUpower consumptiongrows super-linearlywith speed. Operating processors at higher
frequency requires more energy, and techniques to mask the CPU-memory bottleneck at
higher speeds come at the cost of energy efficiency. CMOS transistor switching (dynamic)
power can be calculated using the formula P = CV 2f , where C is the capacitance of the
transistor, V is the operating voltage, and f is the frequency. According to this equation,
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increasing frequency alone should only linearly increase power consumptionƭ, but high-
speed processors have typically been designed to hide the latency between the processor
and various levels of memory. Because CPUs have traditionally grown faster in speed than
the memory hierarchy, operating at higher frequency did not provide real performance
improvements unless the processor avoided memory stalls.

Techniques to avoid memory stalls, such as complex branch prediction logic, specula-
tive execution, out-of-order execution and increasing the amount of on-chip caching, all
require additional processor die area; modern processors dedicate as much as half their
die to L2 and L3 caches [65]. ese additional features on high-speed processors are de-
signed to provide the processor with data, but they do not increase the speed of performing
computations themselves. e additional die area contributes to static and dynamic power
consumption and additional power circuitry, making faster CPUs less energy efficient. For
example, the Intel Xeon 5080 operates 2 cores at 3.73GHz, contains 373 million transistors
on the die and has a max thermal dissipated power of 135W. e Intel Atom Z500 oper-
ates a single 32-bit core at 800MHz, contains 47 million transistors, and has a max thermal
dissipated power of just 0.65W.

FAWN Approach: A FAWN cluster’s simpler CPUs dedicate more transistors to basic
operations. ese CPUs execute signiĕcantly more instructions per Joule than their faster
counterparts (Figure 2.2): multi-GHz superscalar quad-core processors can execute up to
500 million instructions per Joule, assuming all cores are active and avoid stalls or mispre-
dictions. Lower-frequency in-order CPUs, in contrast, can provide nearly 2 billion instruc-
tions per Joule—four times more efficient while still running at 1/3rd the frequency.

Implications: FAWN systems therefore choose simpler processor designs whose single-
core speed is close to those of low-end server processors; processors that are too slow can
make soware development difficult [64], and unavoidable ĕxed costs (e.g., power sup-
ply, I/O controllers, networking) can eliminate the beneĕts of extremely slow but energy-
efficient processors.

ƭSimilarly, decreasing frequency should only linearly decrease power consumption. A primary energy-
saving beneĕt of Dynamic Voltage and Frequency Scaling (DVFS) for CPUs was its ability to reduce voltage
as it reduced frequency [133] to see superlinear energy savings when operating more slowly, but retaining the
capability to operate at full speed when needed. Unfortunately, modern CPUs already operate near minimum
voltage at the highest frequencies, and various other factors (such as static power consumption and dynamic
power range) have limited or erasedmany of the energy efficiency beneĕts of DVFS today [124]. In fact, today
most processors operate most efficiently at either full capacity, or when completely idle due to processor C-
states, motivating approaches that attempt to “race-to-idle” (http://www.lesswatts.org).
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Figure 2.2: Max speed (MIPS) vs. Instruction efficiency (MIPS/W) in log-log scale. Num-
bers gathered from publicly-available spec sheets and manufacturer product websites.

2.4.3 Memory Trends

eprevious section examined the trends that cause CPUpower to increase drastically with
an increase in sequential execution speed. In pursuit of a balanced system, one must ask
the same question of memory as well.

Understanding DRAM power draw. DRAM has, at a high level, three major categories
of power draw:

Idle/Refresh power draw: DRAM stores bits in capacitors; the charge in those capacitors
leaks away andmust be periodically refreshed (the act of reading the DRAM cells implicitly
refreshes the contents). As a result, simply storing data in DRAM requires non-negligible
power.

Precharge and read power: e power consumed inside the DRAM chip. When reading
a few bits of data from DRAM, a larger line of cells is actually precharged and read by the
sense ampliĕers. As a result, random accesses to small amounts of data in DRAM are less
energy-efficient than large sequential reads.
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Memory bus power: A signiĕcant fraction of the totalmemory systempower draw—perhaps
up to 40%—is required for transmitting read data over the memory bus back to the CPU
or DRAM controller.

Designers can somewhat improve the efficiency of DRAM (in bits read per Joule) by
clocking it more slowly, for some of the same reasons mentioned for CPUs. In addition,
bothDRAMaccess latency and power growwith the distance between theCPU (ormemory
controller) and the DRAM: without additional ampliĕers, latency increases quadratically
with trace length, and power increases at least linearly.

is effect creates an intriguing tension for system designers: Increasing the amount of
memory per CPU simultaneously increases the power cost to access a bit of data. To add
more memory to a system, desktops and servers use a bus-based topology that can handle
a larger number of DRAM chips; these buses have longer traces and lose signal with each
additional tap. In contrast, the low-power DRAM used in embedded systems (cellphones,
etc.), LPDDR, uses a point-to-point topology with shorter traces, limiting the number of
memory chips that can be connected to a single CPU, but reducing substantially the power
needed to access that memory.

Implications: Energy-efficient wimpy systems are therefore likely to contain less memory
per core than comparable brawny systems. Further exacerbating this challenge is that each
FAWN node in a cluster will oen have duplicated data structures held in memory, such
as operating system and application data structures that must be replicated. If splitting
a unit of work into smaller units does not proportionally reduce the amount of memory
required to process that work, the usable memory of each FAWNnode shrinks even further
in comparison to a brawny platform.

As we show throughout this work, programming for FAWN nodes therefore requires
careful attention to memory use, and reduces the likelihood that traditional soware sys-
tems will work well on FAWN systems out of the box.

2.4.4 Storage Power Trends

e energy draw of magnetic platter-based storage is related to several device character-
istics, such as storage bit density, capacity, throughput, and latency. Spinning the platter
at faster speeds will improve throughput and seek times, but requires more power because
of the additional rotational energy and air resistance. Capacity increases follow bit den-
sity improvements and also increase with larger platter sizes, but air resistance increases
quadratically with larger platter sizes, so larger platters also require more power to operate.
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Figure 2.3 demonstrates this tradeoff by plotting the efficiency versus speed for several
modern hard drives, including enterprise, mobile, desktop, and “Green” products.Ʈ

e fastest drives spin at between 10-15K RPM, but they have a relatively low energy
efficiency as measured by MB per Joule of max sustained sequential data transfer. e 2.5”
disk drives are nearly always more energy efficient than the 3.5” disk drives. e most ef-
ĕcient drives are 2.5” disk drives running at 5400 RPM. Energy efficiency therefore comes
at the cost of per-device storage capacity for magnetic hard drives. Our preliminary inves-
tigations into Ęash storage power trends indicate that the number of IOPS provided by the
device scales roughly linearly with the power consumed by the device, likely because these
devices increase performance through chip parallelism instead of by increasing the speed
of a single component. Table 2.1 summarizes the tradeoff between hard disk size, speed,
and comparison to Ęash technology.

Implications: Energy-efficient clusters constrained by storage capacity requirements will
continue to use 2.5” disk drives because they provide the lowest cost per bit, but Ęash storage

Ʈe ĕgure uses sequential throughput numbers from vendor spec sheets in 2010, which are oen best-
case outer-track numbers. e absolute numbers are therefore somewhat higher than what one would expect
in typical use, but the relative performance comparison is likely accurate.
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Relation to Platter Radius (R) Rotational Speed (S) Advantage (Disk vs. Flash)
Energy per Bit∗ ∼ R5 ∼ S3 Disk

Capacity R2 – Disk
Max roughput R S Flash
Mean Access Time R 1/S Flash

Table 2.1: Hard disk power relationships. ∗Drag forces increase power proportional to
velocity3 and area, so energy-per-bit increases by approximately R5 and S3.

will continue to make in-roads in the datacenter, particularly for the remote small object
retrieval systems thatmany large services rely on today. Ourwork on FAWN focusesmostly
on pairing wimpy platforms with Ęash storage and other non-volatile memories, but we do
advocate using efficient magnetic disks when storage capacity is the leading cost [17].

2.4.5 Fixed Power Costs

Non-CPU components such as memory, motherboards, and power supplies have begun to
dominate energy consumption [23], requiring that all components be scaled back with de-
mand. As a result, running a modern system at 20% of its capacity may still consume over
50% of its peak power [128]. Despite improved power scaling technology, entire systems re-
main most energy-efficient when operating at peak utilization. Given the difficulty of scal-
ing all system components, we must therefore consider “constant factors” for power when
calculating a system’s instruction efficiency. Figure 2.4 plots the same data from Figure 2.2
but adds a ĕxed 0.1W cost for system components such as Ethernet. Because powering
even 10Mbps Ethernet dwarfs the power consumption of the tiny sensor-type processors
that consume only micro-Watts of power, total system efficiency drops signiĕcantly. e
best operating point exists in the middle of the curve, where the ĕxed costs are amortized
while still providing energy efficiency.

Low-power processors are oen more energy proportional due to reduced static power
leakage, but if they surrounded by components that are not proportional or efficient, their
whole system efficiency can suffer. In Chapter 5.1.2, we provide a real world benchmark
example of howĕxed power costs can signiĕcantly diminish the efficiency beneĕts of having
an efficient processor, particularly at low utilization.
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2.4.6 System Balance

Balanced systems ensure that provisioned resources are not wasted [111], but the envelope
of the points in Figure 2.4a illustrates that balance alone does not imply efficiency: Even a
balanced system can be inefficient if the amount of energy to operate at a higher speed is
disproportionately high.

Figure 2.4b takes the speed vs. efficiency graph for processors in Figure 2.4a and shows
where several different “balanced” systems operate in the curve. e FAWN approach
chooses a cluster conĕguration where each node is individually optimized for energy ef-
ĕciency, focusing on ĕnding both a balanced and efficient point in the curve.

While the speciĕc point on the curve that optimizes for energy efficiency will change
over time, the trends described previously suggest that the general shape of the curve should
hold for the foreseeable future, with expected shis and continued improvements in overall
efficiency [75]. Other individual components that require a superlinear increase in power
to increase speed will reduce efficiency for faster systems, while higher ĕxed power costs
will push the optimal point towards brawnier systems.
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2.5 Analysis of FAWN Total Cost of Ownership

Improving energy efficiency at a signiĕcantly higher total cost would erase the efficiency
beneĕts FAWN can provide. To address this, here we provide an analytical, back-of-the-
envelope calculation to better understand when the FAWN approach is likely to cost less
than traditional architectures. We examine this question in detail by comparing the three-
year total cost of ownership (TCO) for six systems: three “traditional” servers using mag-
netic disks, Ęash SSDs, and DRAM; and three hypothetical FAWN-like systems using the
same storage technologies. We deĕne the 3-year total cost of ownership (TCO) as the sum
of the capital cost and the 3-year power cost at 10 cents per kWh.

We study a theoretical 2009 FAWNnodeusing a low-powerCPU that consumes 10–20W
and costs ∼$150 in volume. We in turn give the beneĕt of the doubt to the server systems
we compare against—we assume a 2 TB disk exists that serves 300 queries/sec at 10 W.

Our results indicate that both FAWN and traditional systems have their place—but for
the small random access workloads we study, traditional systems are surprisingly absent
from much of the solution space, in favor of FAWN nodes using either disks, Ęash, or
DRAM.

Key to the analysis is a question: why does a cluster need nodes? e answer is, of course,
for both storage space and query rate. Storing a DS gigabyte dataset supporting a query
rate QR requires N nodes:

N = max

(
DS
gb

node

,
QR
qr

node

)

For large datasets with low query rates, the number of nodes required is dominated by
the storage capacity per node: thus, the important metric is the total cost per GB for an
individual node. Conversely, for small datasets with high query rates, the per-node query
capacity dictates the number of nodes: the dominantmetric is queries per second per dollar.
Between these extremes, systems must provide the best tradeoff between per-node storage
capacity, query rate, and power cost.

Table 2.2 shows these cost and speculative performance statistics for several candidate
systems circa 2009; while the numbers are outdated, the general trends should still apply.
e “traditional” nodes use 200 W servers that cost $1,000 each. Traditional+Disk pairs a
single server with ĕve 2 TB high-speed (10,000 RPM) disks capable of 300 queries/sec, each
disk consuming 10 W. Traditional+SSD uses two PCI-E Fusion-IO 80 GB Ęash SSDs, each
also consuming about 10W (Cost: $3k). Traditional+DRAM uses eight 8GB server-quality
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System Cost W QPS Queries
Joule

GB
Watt

TCO
GB

TCO
QPS

Traditionals:
5-2TB Disks $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs:
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003

Table 2.2: Traditional and FAWN node statistics circa 2009.

DRAM modules, each consuming 10 W. FAWN+Disk nodes use one 2 TB 7200 RPM disk:
FAWN nodes have fewer connectors available on the board. FAWN+SSD uses one 32 GB
Intel SATA Ęash SSD capable of 35,000 random reads/sec [102] and consuming 2W ($400).
FAWN+DRAM uses a single 2 GB, slower DRAM module, also consuming 2 W.

Figure 2.5 shows which base system has the lowest cost for a particular dataset size and
query rate, with dataset sizes between 100 GB and 10 PB and query rates between 100 K
and 1 billion per second.

LargeDatasets, LowQuery Rates: FAWN+Disk has the lowest total cost per GB. While
not shown on our graph, a traditional system wins for exabyte-sized workloads if it can be
conĕgured with sufficient disks per node (over 50), though packing 50 disks per machine
poses reliability challenges.

Small Datasets, High Query Rates: FAWN + DRAM costs the fewest dollars per query
rate, keeping in mind that we do not examine workloads that ĕt entirely in L2 cache on a
traditional node. We assume the FAWN nodes can only be conĕgured with 2 GB of DRAM
per node, so for larger datasets, a traditional DRAM system provides a high query rate and
requires fewer nodes to store the same amount of data (64 GB vs 2 GB per node).

Middle Range: FAWN+SSDs provide the best balance of storage capacity, query rate,
and total cost. If SSD cost per GB improves relative to magnetic disks, this combination
is likely to continue expanding into the range served by FAWN+Disk; if the SSD cost per
performance ratio improves relative to DRAM, so will it reach into DRAM territory. It is
therefore conceivable that FAWN+SSD could become the dominant architecture for many
random-access workloads.

Are traditional systems obsolete? We emphasize that this analysis applies only to small,
random access workloads. Sequential-read workloads are similar, but the constants de-
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pend strongly on the per-byte processing required. Traditional cluster architectures may
retain a place for some CPU-bound and memory-hungry workloads, but we do note that
architectures such as IBM’s BlueGene successfully apply large numbers of low-power, ef-
ĕcient processors to many supercomputing applications—but they augment their wimpy
processors with custom Ęoating point units to do so.

Our deĕnition of “total cost of ownership” ignores several important costs: In com-
parison to traditional architectures, FAWN should reduce power and cooling infrastruc-
ture costs, but may increase network-related hardware and power costs due to the need for
more switches. In the above analysis, the direct cost of energy contributes roughly 10% to
TCO and therefore reĘects heavily upon the reduced capital cost of commercially-available
FAWN nodes rather than direct energy savings. e reduction of peak power by roughly
a factor of 3–4, however, would signiĕcantly reduce the energy infrastructure costs, which
comprise perhaps another 20% of the TCO.

Our current hardware prototype improves work done per volume, thus reducing costs
associated with datacenter rack or Ęoor space. Finally, our analysis assumes that cluster
soware developers can engineer away the human costs of management—an optimistic
assumption for all architectures. We similarly ignore issues such as ease of programming,
though we selected an x86-based wimpy platform for ease of development.
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A full, contemporary analysis of TCO would produce a different result inĘuenced by
external market factors, current costs of compute and storage technologies, additional so-
ware developer cost, and other non-technology related costs such as energy generation and
real estate prices. e above analysis simply attempts to tease out the relevant factors and
design choices available to system designers when choosing node architectures and how
metrics such as query performance per watt and gigabytes of storage per dollar factor into
the optimal node choice for a random-access key-value cluster.
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Chapter 3

Related Work

is thesis work touches on numerous topics in systems, architecture, and networking and
builds upon a broad set of research spanning topics from balanced computing, energy effi-
cient architecture, distributed storage systems and databases, and uses of non-volatilemem-
ory technologies. In this section we summarize the prior work that this dissertation builds
upon.

3.1 Balanced Computing

A cluster with balanced systems contains nodes that use most of their capability. An un-
balanced system dedicates too many resources to speeding up one component of a system
when other components are a bottleneck for a given workload. All systems inevitably have
some bottleneck, but the large degree to which I/O-bound workloads running on high-
speed traditional systems are out of balance is one motivation for ĕnding better system bal-
ance. In this light, FAWN follows in a long tradition of ensuring that systems are balanced
in the presence of scaling challenges and of designing systems to cope with the performance
challenges created by hardware architectures.

JouleSort [111] was an important ĕrst step in identifying the imbalance of traditional
systems for I/O-bound workloads, focusing on large-scale sort. Its authors developed a
SATA disk-based “balanced” system coupled with a low-power (34 W) CPU that signiĕ-
cantly out-performed prior systems in terms of records sorted per joule. As we show in
Chapter 5, developing a balanced system for different sized sorts can produce very dif-
ferent outcomes, and that the energy-efficient optimal system balance has recently shied
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signiĕcantly with the growing popularity and affordability of Ęash disks combined with
innovations in low-power processor design and manufacturing.

Over the last ĕve years, there have been several different proposals for using low-power
processors for datacenter workloads to reduce energy consumption [33, 39, 47, 59, 84, 93,
127]. Next, we describe some of these proposals and discuss how this thesis builds upon or
differs from this broad set of work.

In late 2007, Adrian Cockcro from NetĘix, Inc. described the concept of “Millicom-
puting” [39], or building clusters using computers that consume less than 1Watt for highly-
partitionable workloads. His proposal argued for the use of mobile or embedded proces-
sors, such as ARM architecture or system-on-chip processors from Freescale, Marvell and
Gumstix, combined with microSDHC Ęash. One focus of Millicomputing was on packag-
ing: how do you build individual millicomputers and how do you assemble them together
into a cluster? Our contemporaneous initial work on FAWN explored real infrastructure
uses of embedded processors combined with Ęash, focusing on key-value storage. We dis-
covered that ĕnding the right balance of hardware for a givenworkloadwas non-trivial. For
example, when developing for the Gumstix platform, we found that it only supported PIO
mode access to the Ęash interface and therefore could not sustain more than 50 random
IOPS from a Ęash device capable of thousands of IOPS. Cockcro also described soware
challenges from having nodes with with only 128–256MB of DRAM. e work described
in Chapter 4 uses the best off-the-shelf hardware we could ĕnd aer a several month search
in 2007 and 2008, and further highlights how soware must be redesigned to fully take
advantage of balanced hardware. Furthermore, this thesis covers speciĕc examples where
a difference in DRAM sizes produces a non-linear shi in efficiency depending on work-
ing set sizes and per-node memory capacity, and contributes some techniques to reducing
memory overhead for key-value storage indexing.

e Gordon [33] hardware cluster architecture pairs an array of Ęash chips and DRAM
with low-power CPUs for low-power data intensive computing. e authors provided a
simulation-based analysis of the design space for ĕnding the most efficient per-node con-
ĕguration for a few different workloads, ĕnding that combining Ęashwith low-power nodes
like the Intel Atom could be signiĕcantly more energy efficient in terms of performance per
watt than an Intel Core2 based system. A primary focus of their work was on developing a
Flash Translation Layer (FTL) suitable for pairing a single CPUwith several raw Ęash chips,
and simulations on general system traces indicated that this pairing could improve energy
efficiency by up to a factor of 2.5. FAWN similarly leverages commodity low-power CPUs
and Ęash storage, but focuses on a cluster key-value application, and this thesis contributes
soware modiĕcations necessary to achieve the potential of the underlying hardware and
enabling good performance on Ęash regardless of FTL implementation.
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CEMS [59], AmdahlBlades [127], and Microblades [84] also leverage low-cost, low-
power commodity components as a building block for datacenter systems, similarly argu-
ing that this architecture can provide the highest work done per dollar and work done per
Joule using simulations, benchmarks, and analysis. Lim et al. provide a quantitative analysis
isolating processor choice from other system choices, ĕnding that the low-cost low-power
designs can be the best choice for a variety of warehouse computingworkloads and describe
options to package and cool individual nodes into a cluster, similar in spirit to (but different
in outcome from) the Millicomputing architecture.

Microso began exploring the use of a large cluster of low-power systems called Mar-
lowe [93], focusing on the very low-power sleep states provided by the Intel Atom chipset
(between 2–4 W) to turn off machines and migrate workloads during idle periods and low
utilization, initially targeting the Hotmail service.

In the last two years, commercial “wimpy node” products have emerged with signiĕ-
cant adoption. Several ultra-low power server systems have become commercially avail-
able, with companies such as SeaMicro, Marvell, Calxeda, and ZT Systems producing low-
power datacenter computing systems based on Intel Atom and ARM platforms. SeaMicro,
for example, has produced a 768-node Intel Atom 1.66GHz server in use (as of 2011) by
services such as e Mozilla Foundation for their web hosting needs and eHarmony for
MapReduce [42] analysis using Hadoop [8]. Tilera, a producer of custom 100-core pro-
cessors, has worked with Facebook engineers to demonstrate that using low-power, low-
speed (866MHz) many-core systems can signiĕcantly improve energy efficiency for use in
memcached clusters [27].

Considerable prior work has examined ways to tackle the “memory wall.” e Intelli-
gent RAM(IRAM) project combinedCPUs andmemory into a single unit, with a particular
focus on energy efficiency [29]. An IRAM-based CPU could use a quarter of the power of
a conventional system to serve the same workload, reducing total system energy consump-
tion to 40%. Early IRAM systems placed an array of CPUs with an array of DRAM chips
on a single die [74] speciĕcally for massively-parallel embedded systems, noting that pro-
gramming their message-oriented I/O model “requires signiĕcant soware involvement”.
ese designs hark back to the early Transputer [136] andZMOB [78] proposals for system-
on-chip and array processors, respectively, each focusing on the microarchitectural ways
these processors are composed together. FAWN takes a thematically similar view—placing
smaller processors very near Ęash—but with a signiĕcantly different realization, one that
uses more loosely coupled systems (though the cost beneĕts of tight integration are numer-
ous [5, 117]). Similar efforts, such as the Active Disk project [110], focused on harnessing
computation close to disks. Schlosser et al. proposed obtaining similar beneĕts from cou-
pling MEMS-based storage systems with CPUs [115].
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3.2 Flash in Databases and Filesystems

Much prior work has examined the use of Ęash in databases, such as how database data
structures and algorithms can be modiĕed to account for Ęash storage strengths and weak-
nesses [81, 82, 96, 98, 129]. Some of this work has concluded that NAND Ęash might
be appropriate in “read-mostly, transaction-like workloads”, but that Ęash was a poor ĕt
for high-update-rate databases [96]. is earlier work, along with FlashDB [98] and FD-
Trees [82], like ours also noted the beneĕts of a log structure on Ęash; however, in their en-
vironments, using a log-structured approach slowed query performance by an unacceptable
degree. Prior work in sensor networks [40, 87] has employed Ęash in resource-constrained
sensor applications to provide energy-efficient ĕlesystems and single node object stores.

Several ĕlesystems are specialized for use onĘash. Most are partially log-structured [113],
such as the popular JFFS2 (Journaling Flash File System) for Linux. Our observations
about Ęash’s performance characteristics follow a long line of research [49, 96, 98, 102,
138]. Past solutions to these problems include the eNVy ĕlesystem’s use of battery-backed
SRAM to buffer copy-on-write log updates for high performance [137], followed closely by
purely Ęash-based log-structured ĕlesystems [73]. Others have explored ways to expose
Ęash to applications using memory-like interfaces but internally using log-structured tech-
niques [22].

3.3 High-throughput Distributed Storage and Analysis

Recent work such as Hadoop or MapReduce [42] running on GFS [57] has examined tech-
niques for scalable, high-throughput computing on massive datasets. More specialized ex-
amples include SQL-centric options such as the massively parallel data-mining appliances
from Netezza [99], AsterData [4], and others [1, 3, 9].

Designing soware for FAWN shares common traits with designing soware for dis-
tributed storage and analysis appliances. Developers can spend time optimizing soware
layers to take advantage of speciĕc hardware conĕgurations. e constraints of FAWN
nodes require the use of memory-efficient data structures and algorithms and specialized
use of Ęash devices, topics which this thesis explores with speciĕc hardware and workloads
in mind. Some of these techniques would apply equally well to other appliances such as
WAN accelerators [14] and deduplication [43].

Related cluster andwide-area hash table-like services includeDistributed data structure
(DDS) [58], a persistent data management layer designed to simplify cluster-based Inter-
net services. Myriad distributed key-value storage systems such as memcached [91], Dy-
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namo [46], Voldemort [103], Cassandra [6], and Riak [2] have been developed over the last
several years. Ourwork inChapter 4 ismotivated by systems likememcached, Dynamo and
Voldemort, while Riak’s BitCask storage systemuses the log-structured key-value technique
we proposed in our original FAWN-KVwork [17]. Our key-value work throughout the dis-
sertation focuses mostly on identifying ways that soware can fully take advantage of the
balanced hardware it runs on, whereas systems like Dynamo target eventually-consistent,
wide-area environments whose goal is to maintain high-availability for writes. Systems
such as Boxwood [85] focus on the higher level primitives necessary for managing storage
clusters. Our focus in this area is on the lower-layer architectural and data-storage func-
tionality.

3.4 “Low and slow” High Performance Computing Systems

High performance computing clusters such as IBM’s BlueGene place thousands of compute
nodes in a single facility, an environment where “low-power design is the key enabler” [55].
eir need for high performance, energy efficiency, and reliability for supercomputing
workloads required a high degree of system integration. e BlueGene/L system turned to
a system-on-chip (SoC) design using a low-power embedded PowerPC core. ese cores
are connected using a network specialized for supercomputing workloads: they contain
hardware support for small messages and collective communication patterns common in
these environments.

e FAWN approach conceptually extends the low-power core design of modern su-
percomputers to warehouse-scale, data-intensive systems and focuses on workloads more
commonly found in datacenters than supercomputing environments. We note, however,
thatmany of the same ideas apply to both environments, and that recent work has proposed
using the BlueGene architecture for datacenters [19].

3.5 Energy Proportionality

Barroso and Hölzle have rallied the industry for improvements in energy proportionality
(Section 2.3) for compute systems [23]. Energy efficiency and energy proportionality are
orthogonal concepts, but both are desired in “heterogeneous” or “asymmetric” core de-
signs [51, 94]. Asymmetric processors pair a few high performance cores with many more
low-performance cores to provide a tunable knob to trade between performance and effi-
ciency. Systems using asymmetric cores can use the low-performance, high-efficiency cores
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at low load and the high-performance cores when computational performance is needed.
Alternatively, sequential parts of code can be executed using the high-speed cores and par-
allel parts can be executed using the efficient slower cores. Research in this area primarily
focuses on scheduling work across these cores to optimize for performance, power, or to
remain within a particular power proĕle.

Unfortunately, CPUs are only one consumer of energy within an entire system, and
similar techniques to trade lower performance for higher efficiency need to apply to the
memory, storage, and power supply components of a system. For example, recent work
has identiĕed that idle low-power modes for cores achieve proportionality for the CPU,
but similar mechanisms need to exist for shared caches and memory components [90].
is work also showed that for a particular datacenter workload, batching queries to cre-
ate periods of full system idleness (which could then use PowerNap [89] to save energy)
did not provide an effective power vs. latency tradeoff. In contrast, Chapter 7 ĕnds that
batching similar work together can improve overall system efficiency if appropriate system
interfaces are provided, though its beneĕts stem from eliminating redundant work rather
than exploiting periods of idleness.

Challen and Hempstead recently proposed the idea of power-agile systems, heteroge-
neous devices that combinemultiple types of processors, memory, and storage systems each
offering a different optimal power-envelope. ese systems can then be dynamically con-
ĕgured based on workload characteristics to choose the optimal types of each subsystem to
improve whole system efficiency [36].

A ĕnal set of research in this area examines the storage system: how and when to put
disks to sleep. We believe that the FAWN approach complements them well. Hiberna-
tor [139], for instance, focuses on large but low-rate OLTP database workloads (a few hun-
dred queries/sec). Ganesh et al. proposed using a log-structured ĕlesystem so that a strip-
ing system could perfectly predict which disks must be awake for writing [54]. Finally,
Pergamum [122] used nodes much like our wimpy nodes to attach to spun-down disks for
archival storage purposes, noting that the wimpy nodes consume much less power when
asleep. e system achieved low power, though its throughput was limited by the wimpy
nodes’ Ethernet.

3.6 FAWNWorkload Studies

Several recent studies have explored applying the FAWNapproach to differentworkloads [37,
68, 79]. For example, Lang et al. [79] studied using wimpy nodes for database workloads,
noting that the serialized components of many query-processing workloads, or the lack of

26



scale out, make FAWN systems less energy-efficient than their brawny counterparts. As we
articulated in the previous section, the FAWN approach willingly trades sequential perfor-
mance for efficiency, and existing database workloads with a large serial component are not
well-suited to the FAWN approach.

Reddi et al. [68] studied the use of FAWN systems for web search workloads (which
include CPU-intensive components found inmachine learning algorithms), demonstrating
that search can be up to ĕve timesmore efficient using Intel Atoms compared to Intel Xeons
but suffers from poor QoS guarantees under overload situations. is study also argues for
several microarchitectural changes to the design of the wimpy cores, such as increasing the
size of the cache hierarchy, that can substantially improve efficiency without increasing cost
or power.

Similar to thework presented in this dissertation, Facebook andTilera’s study of amany-
core key-value system using low-power cores shows that with soware modiĕcations to the
memcached layer, a 512-core 866MHz Tilera system could improve efficiency by a factor of
three over a server-class system. eirworkload is similar to the FAWN-KVwork presented
in this dissertation, but differs in their lack of data persistence, avoiding the traditional I/O
storage stack because their requests are served only from DRAM. Nonetheless, their work
corroborates our thesis statement that changes to soware are required to make the best
use of the FAWN approach, and that doing so can substantially improve energy efficiency.
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Chapter 4

FAWN-KV: A Distributed Key-value Store
for FAWN and Flash

e FAWN-KV distributed key-value storage system is one we designed and implemented
to help answer the question: How does a FAWN approach change the way distributed sys-
tems soware is built? Speciĕcally, how do the constraints the FAWN approach imposes on
system architects require them to rethink and redesign the infrastructure soware running
on this platform?

To look at a concrete, large-scale data-intensive application, we focus our attention ĕrst
on high-performance key-value storage systems, which are growing in both size and impor-
tance; they now are critical parts ofmajor Internet services such as Amazon (Dynamo [46]),
LinkedIn (Voldemort [103]), and Facebook (memcached [91]).

e workloads these systems support share several characteristics: they are I/O, not
computation, intensive, requiring random access over large datasets; they are massively
parallel, with thousands of concurrent, mostly-independent operations; their high load re-
quires large clusters to support them; and the size of objects stored is typically small, e.g.,
1 KB values for thumbnail images, 100s of bytes for wall feed or stream posts, Twitter mes-
sages, etc.

e clusters that serve these workloads must provide both high performance and low
cost operation. Unfortunately, small-object random-access workloads are particularly ill-
served by conventional disk-based or memory-based clusters. e poor seek performance
of disks makes disk-based systems inefficient in terms of both performance and perfor-
mance per watt. High performance DRAM-based clusters, storing terabytes or petabytes of
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data, are both expensive and consume a surprising amount of power—two 2 GB DIMMs
consume as much energy as a 1 TB disk.

e workloads for which key-value systems are built for are oen both random I/O-
bound and embarrassingly parallel—the lowest hanging fruit and most applicable target
for FAWN. We therefore choose this small-object, random-access workload as the ĕrst dis-
tributed system built using a FAWN architecture. For this workload, we pair low-power,
efficient embedded CPUs with Ęash storage to provide efficient, fast, and cost-effective ac-
cess to large, random-access data. Flash is signiĕcantly faster than disk, much cheaper than
the equivalent amount of DRAM, and consumes less power than either.

Several key constraints make deploying existing soware on this type of FAWN hard-
ware challenging:

1. Individual FAWNnodes have a lowermemory capacity per core. Our 2007-era FAWN
nodes contain only 256MB of DRAM per node, an order of magnitude less DRAM
than a traditional server conĕguration from the same era.

2. Flash is relatively poor for small random writes because Ęash technology cannot up-
date in place and must perform block erasures and rewrite existing data along with
new updates.

3. More nodes in a FAWN cluster leads to more frequent failures than a traditional
cluster with fewer nodes. FAWN soware designs must therefore accommodate this
higher rate of failure with efficient failover and replication mechanisms.

FAWN-KV is a system designed to deal with these challenges by conserving memory
use, avoiding random writes on Ęash and using most of the available I/O capability of each
individual wimpy node, and together harnessing the aggregate performance of each node
while being robust to individual node failures. In the next section, we detail the design and
implementation of various components within FAWN-KV, including ourmemory-efficient
in-memory hash index, our log-structured key-value local storage system called FAWN-DS,
and our local storage soware mechanisms for restoring replication of data efficiently on
failures and arrivals into the system.

4.1 Design and Implementation

Figure 4.1 gives an overview of the entire FAWN-KV system. Client requests enter the
system at one of several front-ends. e front-end nodes forward the request to the back-
end FAWN-KV node responsible for serving that particular key. e back-end node serves
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Figure 4.1: FAWN-KV Architecture.

the request from its FAWN-DS datastore and returns the result to the front-end (which in
turn replies to the client). Writes proceed similarly.

e large number of back-end FAWN-KV storage nodes are organized into a ring using
consistent hashing. As in systems such as Chord [121], keys are mapped to the node that
follows the key in the ring (its successor). To balance load and reduce failover times, each
physical node joins the ring as a small number (V ) of virtual nodes, each virtual node rep-
resenting a virtual ID (“VID”) in the ring space. Each physical node is thus responsible for
V different (non-contiguous) key ranges. e data associated with each virtual ID is stored
on Ęash using FAWN-DS.

We describe the design and implementation details of the relevant FAWN-KV’s system
components from the bottom up: We begin with a brief overview of Ęash storage (Sec-
tion 4.1.1), and then describe the per-node FAWN-DS datastore (Section 4.1.2) and its in-
ternal and external interface and design.

4.1.1 Understanding Flash Storage

Flash provides a non-volatile memory store with several signiĕcant beneĕts over typical
magnetic hard disks for random-access, read-intensive workloads—but it also introduces
several challenges. ree characteristics of Ęash underlie the design of the FAWN-DS sys-
tem described throughout this section:
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1. Fast random reads: (≪ 1ms), up to 175 times faster than random reads onmagnetic
disk [96, 102].

2. Efficient I/O: Many Ęash devices consume less than one Watt even under heavy load,
whereas mechanical disks can consume over 10 W at load. Flash alone is over two
orders of magnitude more efficient than mechanical disks in terms of random seeks
per Joule.

3. Slow random writes: Small writes on Ęash are expensive. At the Ęash chip level,
updating a single page requires ĕrst erasing an entire erase block (128 KB–256 KB)
of pages, and then writing the modiĕed block in its entirety. As a result, updating a
single byte of data is as expensive as writing an entire block of pages [98].

Modern devices improve randomwrite performance using write buffering and preemp-
tive block erasure implemented in the device ĕrmware and Flash Translation Layer. ese
techniques typically improve performance for short bursts of random writes, but recent
studies show that sustained random writes still perform poorly on these devices [102].

ese performance problems havemotivated log-structured techniques for Ęash ĕlesys-
tems and data structures [69, 97, 98]. ese same considerations inform the design of
FAWN’s node storage management system, described next.

4.1.2 FAWN-DS:e FAWNData Store

FAWN-DS is a log-structured key-value store. Each store contains values for the key
range associated with one virtual ID. It acts to clients like a disk-based hash table that
supports Store, Lookup, and Delete.Ƭ

FAWN-DS is designed speciĕcally to performwell on Ęash storage and to operatewithin
the constrained DRAM available on wimpy nodes: all writes to the datastore are sequential,
and reads typically require a single random access. To provide this property, FAWN-DS
maintains an in-DRAM hash table (Hash Index) that maps keys to an offset in the append-
onlyData Log onĘash (Figure 4.3a). is log-structured design is similar to several append-
only ĕlesystems [57, 107], which avoid random seeks on magnetic disks for writes.

ƬWe differentiate datastore from database to emphasize that we do not provide a transactional or relational
interface.
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/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM_HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&
readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT_FOUND;

Figure 4.2: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory (DRAM) Hash Index to map
160-bit keys to a value stored in the Data Log. It stores only a fragment of the actual key
in memory to ĕnd a location in the log; it then reads the full key (and the value) from the
log and veriĕes that the key it read was, in fact, the correct key. is design trades a small
and conĕgurable chance of requiring multiple reads from Ęash (we set it to roughly 1 in
16,384 accesses) for drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 4.2 shows the pseudocode that implements this design for Lookup. FAWN-DS
extracts two ĕelds from the 160-bit key: the i low order bits of the key (the index bits) and
the next 15 low order bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each bucket is only six bytes:
a 15-bit key fragment, a valid bit, and a 4-byte pointer to the location in the Data Log where
the full entry is stored.

Lookup proceeds, then, by locating a bucket using the index bits and comparing the key
against the key fragment. If the fragments do not match, FAWN-DS uses hash chaining to
continue searching the hash table. Once it ĕnds a matching key fragment, FAWN-DS reads
the record off of the Ęash. If the stored full key in the on-Ęash record matches the desired
lookup key, the operation is complete. Otherwise, FAWN-DS resumes its hash chaining
search of the in-memory hash table and searches additional records. With the 15-bit key
fragment, only 1 in 32,768 retrievals from the Ęash will be incorrect and require fetching
an additional record, a resulting read-ampliĕcation factor of less than 1.0001.
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quential scan of the data region, transferring out-of-range entries to the new store. (c) Aer
scan is complete, the datastore list is atomically updated to add the new store. Compaction
of the original store will clean up out-of-range entries.

e constants involved (15 bits of key fragment, 4 bytes of log pointer) target the 2007
prototype FAWN nodes described in Section 4.2. A typical object size is between 256 B
to 1 KB, and the nodes have 256 MB of DRAM and approximately 4 GB of Ęash storage.
Because each node is responsible for V key ranges (each of which has its own datastore ĕle),
a single physical node can address 4GB *V bytes of data. Expanding the in-memory storage
to 7 bytes per entry would permit FAWN-DS to address 1 TB of data per key range. While
some additional optimizations are possible, such as rounding the size of objects stored in
Ęash or reducing the number of bits used for the key fragment (and thus incurring, e.g., a
1-in-1000 chance of having to do two reads from Ęash), the current design works well for
the target key-value workloads we study.

Several subsequent hashtable designs have chosen an even more aggressive space-time
tradeoff building off our design (e.g., FlashStore [44], SILT [83]) to further reduce memory
consumption. ese techniques add per-hash computations, bloom ĕlters, and compres-
sion to do so. On the generation of wimpy nodes we use in this work, hashing alone already
consumes 25-40% of available CPU cycles at full load, so adding computational complexity
was not worth the memory consumption tradeoff for this platform.

Reconstruction. Using this design, the Data Log contains all the information necessary
to reconstruct the Hash Index from the log alone. As an optimization, FAWN-DS can peri-
odically checkpoint the index by writing the Hash Index and a pointer to the last log entry
to Ęash. Aer a failure, FAWN-DS uses the checkpoint as a starting point to reconstruct
the in-memory Hash Index quickly.
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Virtual IDs and Semi-random Writes. A physical node has a separate FAWN-DS data-
store ĕle for each of its virtual IDs, and FAWN-DS appends new or updated data items
to the appropriate datastore. Sequentially appending to a small number of ĕles is termed
semi-random writes. Prior work by Nath and Gibbons observed that with many Ęash de-
vices, these semi-random writes are nearly as fast as a single sequential append [97]. We
take advantage of this property to retain fast write performance while allowing key ranges
to be stored in independent ĕles to speed the maintenance operations described below. We
show in Section 4.2 that these semi-random writes perform sufficiently well.

Basic functions: Store, Lookup, Delete

Store appends an entry to the log, updates the corresponding hash table entry to point to
this offset within the Data Log, and sets the valid bit to true. If the key written already ex-
isted, the old value is now orphaned (no hash entry points to it) for later garbage collection.

Lookup retrieves the hash entry containing the offset, indexes into the Data Log, and
returns the data blob.

Delete invalidates the hash entry corresponding to the key by clearing the valid Ęag
and writing a Delete entry to the end of the data ĕle. e delete entry is necessary for fault-
tolerance—the invalidated hash table entry is not immediately committed to non-volatile
storage to avoid random writes, so a failure following a delete requires a log to ensure that
recovery will delete the entry upon reconstruction. Because of its log structure, FAWN-
DS deletes are similar to store operations with 0-byte values. Deletes do not immediately
reclaim space and require compaction to perform garbage collection. is design defers
the cost of a random write to a later sequential write operation.

Maintenance: Split, Merge, Compact

Inserting a new virtual node into the ring causes one key range to split into two, with the
new virtual node gaining responsibility for the ĕrst part of it. Nodes handling these VIDs
must therefore Split their datastore into two datastores, one for each key range. When a
virtual node departs the system, two adjacent key ranges must similarly Merge into a single
datastore. In addition, a virtual node must periodically Compact its datastores to clean up
stale or orphaned entries created by Split, Store, and Delete.

e design of FAWN-DS ensures that these maintenance functions work well on Ęash,
requiring only scans of one datastore and sequential writes into another. We brieĘy discuss
each operation in turn.
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Split parses the Data Log sequentially, writing each entry in a new datastore if its key
falls in the new datastore’s range. Merge writes every log entry from one datastore into the
other datastore; because the key ranges are independent, it does so as an append. Split and
Merge propagate delete entries into the new datastore.

Compact cleans up entries in a datastore, similar to garbage collection in a log-structured
ĕlesystem. It skips entries that fall outside of the datastore’s key range, which may be le-
over aer a split. It also skips orphaned entries that no in-memory hash table entry points
to, and then skips any delete entries corresponding to those entries. It writes all other valid
entries into the output datastore.

Concurrent Maintenance and Operation

All FAWN-DS maintenance functions allow concurrent read and write access to the data-
store. Stores and Deletes only modify hash table entries and write to the end of the
log.

e maintenance operations (Split, Merge, and Compact) sequentially parse the Data
Log, which may be growing due to deletes and stores. Because the log is append-only, a
log entry once parsed will never be changed. ese operations each create one new output
datastore logĕle. e maintenance operations therefore run until they reach the end of the
log, and then brieĘy lock the datastore, ensure that all values Ęushed to the old log have
been processed, update the FAWN-DS datastore list to point to the newly created log, and
release the lock (Figure 4.3c). e lock must be held while writing in-Ęight appends to the
log and updating datastore list pointers, which typically takes on the order of microseconds
at the end of a Split or Merge (Section 4.2.1).

4.2 Evaluation

We begin by characterizing the I/O performance of a wimpy node. From this baseline,
we then evaluate how well FAWN-DS performs on this same node, ĕnding that its perfor-
mance is similar to the node’s baseline I/O capability. To further illustrate the advantages of
FAWN-DS’s design, we compare its performance to an implementation using the general-
purpose Berkeley DB, which is not optimized for use on Ęash. We ĕnish the evaluation
of the single-node FAWN-DS design by measuring the impact of the background failure
operations triggered in FAWN-DS on foreground query latency.
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Seq. Read Rand Read Seq. Write Rand. Write
28.5 MB/s 1424 QPS 24 MB/s 110 QPS

Table 4.1: Baseline CompactFlash statistics for 1 KB entries. QPS = Queries/second.

Evaluation Hardware: Our FAWN cluster has 21 back-end nodes built from commodity
PCEngineAlix 3c2 devices, commonly used for thin-clients, kiosks, network ĕrewalls, wire-
less routers, and other embedded applications. ese devices have a single-core 500 MHz
AMD Geode LX processor, 256 MB DDR SDRAM operating at 400 MHz, and 100 Mbit/s
Ethernet. Each node contains one 4 GB Sandisk Extreme IV CompactFlash device. A node
consumes 3 W when idle and a maximum of 6 W when deliberately using 100% CPU, net-
work and Ęash. e nodes are connected to each other and to a 27 W Intel Atom-based
front-end node using two 16-port Netgear GS116 GigE Ethernet switches.

EvaluationWorkload: FAWN-KV targets read-intensive, small objectworkloads forwhich
key-value systems are oen used. e exact object sizes are, of course, application depen-
dent. In our evaluation, we showquery performance for 256 byte and 1KB values. We select
these sizes as proxies for small text posts, user reviews or status messages, image thumb-
nails, and so on. ey represent a quite challenging regime for conventional disk-bound
systems, and stress the limited memory and CPU of our wimpy nodes.

4.2.1 Individual Node Performance

We benchmark the I/O capability of the FAWN nodes using iozone [66] and Flexible I/O
tester [7]. e Ęash is formatted with the ext2 ĕlesystem and mounted with the noatime
option to prevent randomwrites for ĕle access [96]. ese tests read and write 1 KB entries,
the lowest record size available in iozone. e ĕlesystem I/O performance using a 3.5 GB
ĕle is shown in Table 4.1.

FAWN-DS Single Node Local Benchmarks

Lookup Speed: is test shows the query throughput achieved by a local client issuing
queries for randomly distributed, existing keys on a single node. We report the average of
three runs (the standard deviations were below 5%). Table 4.2 shows FAWN-DS 1 KB and
256 byte random read queries/sec as a function of the DS size. If the datastore ĕts in the
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DS Size 1 KB Rand Read 256 B Rand Read
(in queries/sec) (in queries/sec)

10 KB 72352 85012
125 MB 51968 65412
250 MB 6824 5902
500 MB 2016 2449

1 GB 1595 1964
2 GB 1446 1613

3.5 GB 1150 1298

Table 4.2: Local random read performance of FAWN-DS.

buffer cache, the node locally retrieves 50–85 thousand queries per second. As the datastore
exceeds the 256 MB of RAM available on the nodes, a larger fraction of requests go to Ęash.

FAWN-DS imposes modest overhead from hash lookups, data copies, and key com-
parisons, and it must read slightly more data than the iozone tests (each stored entry has
a header). e resulting query throughput, however, remains high: tests reading a 3.5 GB
datastore using 1 KB values achieved 1,150 queries/sec compared to 1,424 queries/sec from
the ĕlesystem. Using the 256 byte entries that we focus on below achieved 1,298 queries/sec
from a 3.5GBdatastore. By comparison, the rawĕlesystem achieved 1,454 random256 byte
reads per second using Flexible I/O.

Bulk store Speed: e log structure of FAWN-DS ensures that data insertion is entirely
sequential. As a consequence, inserting two million entries of 1 KB each (2 GB total) into
a single FAWN-DS log sustains an insert rate of 23.2 MB/s (or nearly 24,000 entries per
second), which is 96% of the raw speed that the Ęash can be written through the ĕlesystem.

Put Speed: In FAWN-KV, each FAWN node has R ∗ V FAWN-DS ĕles: each virtual ID
adds one primary data range, plus an additionalR− 1 replicated ranges. A node receiving
puts for different ranges will concurrently append to a small number of ĕles (“semi-random
writes”). Good semi-random write performance is central to FAWN-DS’s per-range data
layout that enables single-pass maintenance operations. We therefore evaluate its perfor-
mance using ĕve Ęash-based storage devices.

Semi-random performance varies widely by device. Figure 4.4 shows the aggregate
write performance obtained when inserting 2GB of data into FAWN-DS using ĕve different
Ęash drives as the data is inserted into an increasing number of datastore ĕles. All SATA-
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Figure 4.4: Sequentially writing to multiple FAWN-DS ĕles results in semi-random writes.

based Ęash drives measured below use an Intel Atom-based chipset because the Alix3c2
lacks a SATA port. e relatively low-performance CompactFlash write speed slows with
an increasing number of ĕles.

e 2008 Intel X25-M and X25-E, which use log-structured writing and preemptive
block erasure, retain high performance with up to 256 concurrent semi-random writes for
the 2 GB of data we inserted; both the Mtron Mobi and Memoright GT drop in perfor-
mance as the number of ĕles increases. e key take-away from this evaluation is that Ęash
devices are capable of handling the FAWN-DSwrite workload extremely well—but a system
designer must exercise care in selecting devices that actually do so.

Comparison with BerkeleyDB

To understand the beneĕt of FAWN-DS’s log structure, we compare with a general purpose
disk-based database that is not optimized for Ęash. BerkeleyDB provides a simple put/get
interface, can be used without heavy-weight transactions or rollback, and performs well
versus other memory or disk-based databases. We conĕgured BerkeleyDB using both its
default settings and using the reference guide suggestions for Ęash-based operation [28].
e best performance we achieved required 6 hours (B-Tree) and 27 hours (Hash) to insert
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seven million, 200 byte entries to create a 1.5 GB database. is corresponds to an insert
rate of 0.07 MB/s.

e problem was, of course, small writes: When the BDB store was larger than the
available RAM on the nodes (< 256 MB), both the B-Tree and Hash implementations had
to Ęush pages to disk, causing many writes that were much smaller than the size of an erase
block.

at comparing FAWN-DS and BDB seems unfair is exactly the point: even a well-
understood, high-performance database will perform poorly when its write pattern has not
been speciĕcally optimized to Ęash’s characteristics. We evaluatedBDBon topofNILFS2 [100],
a log-structured Linux ĕlesystem for block devices, to understand whether log-structured
writing could turn the random writes into sequential writes. Unfortunately, this combi-
nation was not suitable because of the amount of metadata created for small writes for
use in ĕlesystem checkpointing and rollback, features not needed for FAWN-KV—writing
200MB worth of 256 B key-value pairs generated 3.5 GB of metadata. Other existing Linux
log-structured Ęash ĕlesystems, such as JFFS2 [69], are designed to work on raw Ęash,
but modern SSDs, compact Ęash and SD cards all include a Flash Translation Layer that
hides the raw Ęash chips. While future improvements to ĕlesystems can speed up naive
DB performance on Ęash, the pure log structure of FAWN-DS remains necessary even if
we could use a more conventional backend: it provides the basis for replication and con-
sistency across an array of nodes.

Read-intensive vs. Write-intensive Workloads

Most read-intensive workloads have at least some writes. For example, Facebook’s mem-
cached workloads have a 1:6 ratio of application-level puts to gets [70]. We therefore mea-
sured the aggregate query rate as the fraction of puts ranged from 0 (all gets) to 1 (all puts)
on a single node (Figure 4.5).

FAWN-DS can handle more puts per second than gets because of its log structure. Even
though semi-random write performance across eight ĕles on our CompactFlash devices is
worse than purely sequential writes, it still achieves higher throughput than pure random
reads.

When the put-ratio is low, the query rate is limited by the get requests. As the ratio
of puts to gets increases, the faster puts signiĕcantly increase the aggregate query rate. On
the other hand, a pure write workload that updates a small subset of keys would require
frequent cleaning. In our current environment and implementation, both read and write
rates slow to about 700–1000 queries/sec during compaction, bottlenecked by increased
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Figure 4.5: FAWN supports both read- and write-intensive workloads. Small writes are
cheaper than random reads due to the FAWN-DS log structure.

thread switching and system call overheads of the cleaning thread. Last, because deletes are
effectively 0-byte value puts, delete-heavy workloads are similar to insert workloads that
update a small set of keys frequently. In the next section, we mostly evaluate read-intensive
workloads because it represents the target workloads for which FAWN-KV is designed.

Impact of Failures/Arrivals on Query Latency

Figure 4.6 shows the distribution of query latency for three workloads: a pure get workload
issuing gets at the highest sustainable rate (Max Load), a 500 requests per second workload
with a concurrent Split (Split-Low Load), and a 1500 requests per second workload with a
Split (Split-High Load).

Accesses that hit buffer cache are returned in 300 µs including processing and network
latency. When the accesses go to Ęash, the median response time is 800 µs because the
access time of the CompactFlash device is approximately 500 µs. Even during a split, the
median response time remains under 1 ms. e median latency increases with load, so the
max load, get-only workload has a slightly higher median latency than the split workloads
that have a slowly lower external query load.
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Many key-value systems care about 99.9th percentile latency guarantees as well as fast
average-case performance. During normal operation, request latency is very low: 99.9%
of requests take under 26.3 ms, and 90% take under 2 ms. During a split with low exter-
nal query load, 10% of requests experience a query latency above 10 ms. e 99.9%-ile
response time during the low-activity split is 491 ms. For a high-rate request workload, the
incoming request rate is occasionally higher than can be serviced during the split. Incom-
ing requests are buffered and experience additional queuing delay: the 99.9%-ile response
time is 611 ms. Fortunately, these worst-case response times are still on the same order as
those worst-case times seen in production key-value systems [46], but they are still much
higher than anticipated from our design.

High latency behavior due to Ęash garbage collection. We initially attributed the high
latency (even at low external load) to the need to atomically lock the datastore at the end of
a split. However, we measured the lock duration to be between 5–50 microseconds, which
doesn’t explain the spikes of hundreds of milliseconds we observe in Figure 4.6.

Our investigation into this problem identiĕed that this high latency behavior can be
attributed to the background garbage collection algorithms implemented in the Ęash trans-
lation layer in the Ęash device. e sequential writes caused by a split, merge or rewrite in
FAWN-DS can trigger the block erasure operation on the CompactFlash, which contains
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only one programmable Ęash chip. During this operation, all read requests to the device
are stalled waiting for the device to complete the operation. While individual block era-
sures oen only take 2 ms, the algorithm used on this Ęash device performs a bulk block
erasure lasting hundreds ofmilliseconds, causing the 99.9%ile latency behavior of key-value
requests to skyrocket. With larger values (1KB), query latency during Split increases fur-
ther due to a lack of Ęash device parallelism—a large write to the device blocks concurrent
independent reads, resulting in poor worst-case performance.

Modern SSDs support and require request parallelism to achieve high Ęash drive per-
formance by packaging many Ęash chips together in one SSD [102]; these devices could
greatly reduce the effect of background operations on query latency by using algorithms
that perform writes or block erasures on only a subset of the Ęash chips inside the SSD.
Unfortunately, our experience with many modern SSDs shows that they all perform bulk
block erasures that block access to the entire device, producing the same tens to hundreds
of milliseconds of delays we see with our 2007-era CompactFlash device.

We hypothesize that these hundreds of millisecond worst-case latencies occur due to
engineering decisions made by Flash Translation Layer designers. Lazy garbage collection
algorithms require erasing blocks in bulk, trading higher worst-case latency for higher peak
write throughput. is decision is similar to the ĕrmware scheduling policies used in hard
disks to perform thermal calibration, which also blocks access to external requests until the
calibration is complete. In the case of hard drives, the latency impact of thermal calibration
was eliminated by distributing the calibrations during periods of light I/O. is improve-
ment was important for media applications that needed more predictable streaming per-
formance [116] from hard drives. We imagine that Ęash vendors will follow a similar path
as customers call formore stringent and predictable latencies from enterprise Ęash systems.

One way to reduce this worst-case latency behavior is to use an m-of-n striping algo-
rithm, where an object is erasure-coded such that access tom Ęash chips allows the full ob-
ject to be reconstructed. e Ęash translation layer can then use an algorithm that performs
bulk block erasures on nomore than n−m Ęash chips to ensure that reads for an individual
object are never blocked. Our lack of access to the FTL on modern commercially-available
SSDs prevents us from evaluating this space-QoS tradeoff.

43



44



Chapter 5

Workload Analysis for FAWN Systems

rough a deep study into a key-value storage workload, FAWN-KV demonstrated the po-
tential of the FAWN approach and described a set of techniques to achieve the hardware’s
full potential. In this section, we explore the use of FAWN for a variety of other workloads:
I/O-throughput bound, memory-bound, and CPU-bound. To a ĕrst order, we ĕnd that
FAWN can be several times more efficient than traditional systems for I/O-bound work-
loads, and on par with or more efficient for some memory and CPU-limited applications.

Our experiences highlight several challenges to achieving the potential energy efficiency
beneĕts of the FAWN approach for these workloads. Whereas the previous chapter de-
scribed how rethinking the application soware stack could harness the underlying capa-
bility of the wimpy node approach, this section demonstrates why existing soware may
not run as well on FAWN nodes which have limited resources (e.g., memory capacity, CPU
cache sizes), and highlights speciĕc challenges for new algorithms and optimizations.

A secondary contribution of this work is an evaluation of more modern FAWN proto-
types than in the previous section, showing that many existing low-power hardware plat-
forms have high ĕxed power costs that diminish the potential efficiency returns.

5.1 Workloads

In this section, we describe under what conditions a FAWN approach can provide higher
energy efficiency, and where traditional architectures can be as efficient, or in some cases,
more energy-efficient than low-power systems. For each case, we identify characteristics
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of the workload, soware, or hardware that contribute to results of the energy efficiency
comparison.

5.1.1 Taxonomy

Warehouse-scale datacenters run a large and varying set of workloads. While they typically
must process large amounts of data, the amount of per-byte processing required can vary
signiĕcantly. As a result, it is worth investigating the applicability of the FAWN approach
to a wide set of workloads that differ in their computational requirements.

We begin with a broad classiĕcation of the types of workloads found in data-intensive
computing oen found in large-scale datacenter deployments:

1. Memory/CPU-bound workloads

2. I/O-bound workloads

3. Latency-sensitive, but non-parallelizable workloads

4. Large, memory-hungry workloads

e ĕrst category includes CPU and memory-bound workloads, where the running
time is limited by the speed of the CPU or memory system. In other words, these are
workloads where the storage I/O subsystem is not fully saturated. is also assumes that
the broader applications represented by these workloads can overlap computation and I/O
such that improving the speed of the I/O system would not dramatically improve overall
performance.

e second class of workloads, I/O-bound workloads, have running times that are de-
termined primarily by the speed of the I/O devices (typically disks for data-intensive work-
loads). I/O-bound workloads can be either seek- or scan-bound as described earlier in
Chapter 4 and related work [17]. Typically, these workloads represent the low-hanging
fruit for the FAWN approach because traditional systems with complex, high-speed pro-
cessors usually target more computational workloads for which they have been tuned more
aggressively. Because we have already covered the seek-bound workload extensively, we
discuss one other example of an I/O-bound workload: performing energy-efficient, large
sorts as demonstrated in JouleSort [111].

ird, latency-sensitive workloads require fast responses times to provide, for exam-
ple, an acceptable user-experience; anything too slow (e.g., more than 150ms) impairs the
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quality of service unacceptably. Key to this workload deĕnition is the inability to shard or
parallelize the unit of work that carries a strict latency bound.

Finally, large, memory-hungry workloads frequently access data that can reside within
the memory of traditional servers (on the order of a few to 10s of gigabytes per machine
today). As we describe in Section 5.1.5, the data structure created in grep when searching
for millions of short phrases requires several gigabytes of memory and is accessed ran-
domly. is causes frequent swapping on FAWN nodes with limited memory, but ĕts en-
tirely within DRAM on modern server conĕgurations.

5.1.2 Memory-boundWorkloads

We begin by exploring some worst-case workloads expected to be more energy-efficient on
traditional, high-power, high-speed systems than low-power, low-speed systems.

Cache-bound Microbenchmark

Workload description: We created a synthetic memory-bound benchmark that takes ad-
vantage of out-of-order execution and large caches. is benchmark repeatedly performs
a matrix transpose multiplication, reading the matrix and vector data from memory and
writing the result to memory. We chose matrix transpose speciĕcally because it exhibits
increasingly poor memory locality as the size of the problem increases. e matrix data is
in row-major format, whichmeans that the transpose operation cannot sequentially stream
data from memory. Each column of the matrix is physically separated in memory, requir-
ing strided access and incurring more frequent cache evictions when the matrix does not
ĕt entirely in cache.

e vector multiplications are data-independent to beneĕt from instruction reorder-
ing and pipelining, further biasing the workload in favor of modern high-speed, complex
processors. We spawn as many parallel, independent incarnations of the benchmark as
there are cores on the system to measure peak performance. We ran the benchmark with
various input matrix sizes and estimate the metric of performance, FLOPS (Ęoating point
operations per second) as the number of multiply operations performed.Ƭ

Evaluation hardware: In this experiment, we compare an Intel Core i7-Desktop, our
traditional system proxy, to an Intel Atom chipset, our more modern FAWN instantiation.

ƬComparing the FLOPS numbers here to those found in other CPU-intensive benchmarks such as in the
Green500 competitionwill underestimate the actual computational capabilities of the platformswemeasured,
because this benchmark primarily measures memory I/O, not peak Ęoating point operation performance.
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Figure 5.1: Efficiency vs. Matrix Size. Green vertical lines show cache sizes of each proces-
sor.

e i7-Desktop operates 4 cores at a max of 2.8GHz, though we used the Linux CPU onde-
mand scheduler to choose the appropriate speed for each workload. e i7 860 has a 32 KB
L1 cache and a 256 KB L2 cache per core, and also has an 8 MB L3 cache shared across all 4
cores. We enabled two-way Hyper-threading (Simultaneous Multi-reading) so that the
system exposed 8 “processors” to the operating system; disabling Hyper-threading did not
improve performance for this benchmark. We attached one X25-E and one 2 GB DRAM
DIMM to the traditional system further reduce power over a fully I/O-balanced system. At
idle, the power consumed by the machine was 40 W and at full load reached 130 W.

e Atom’s processor cores each have a 24 KB L1 data cache and a 512 KB L2 cache.
Two-way hyper-threading was enabled, exposing 4 “processors” to the OS. At idle, the
Atom system consumed 18 W and at full load would reach 29 W.

Results: Figure 5.1 shows the energy efficiency (in KFLOPS/W) of our matrix multiply
benchmark as a function of the size of the matrix being multiplied. When the matrix ĕts
in the L1 data cache of both the i7-Desktop and the Atom, the Atom is roughly twice as
efficient as the i7-Desktop. As the matrix size exceeds the L1 data cache, most memory
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accesses hit in L2 cache, and the efficiency drops by nearly a factor of two for both systems,
with the Atom retaining higher energy efficiency.

e i7-Desktop’s efficiency drops even further as the matrix size exhausts the 256 KB of
L2 cache per core and accesses hit in L3. As the matrix size overĘows the L2 cache on the
Atom, most accesses then fall to DRAM and efficiency remains Ęat thereaer. Meanwhile,
the matrix size continues to ĕt within the 8 MB L3 cache of the i7. Once the matrix grows
beyond 8 MB, most of its accesses then hit in DRAM, and its energy efficiency drops below
that of the Atom.

When theworking set of the benchmarkĕts in the same level caches of each architecture,
theAtom is up to twice as energy-efficient inKFLOPS/Was the i7-Desktop. However, when
the workload ĕts in the L2/L3 cache of the i7-Desktop but exhausts the Atom’s on-die cache,
the i7-Desktop is considerably more efficient by up to a factor of four.

In other words, workloads that are cache-resident on a traditional system but not on
a FAWN can be more efficient on the traditional system simply because of the amount of
cache available on traditional systems. e incongruity of cache size between wimpy and
brawny processors is one possible reason why existing soware may not run as efficiently
on FAWN systems, particularly when the soware has not been carefully tuned to work on
both types of platforms. Others have noted this similar discontinuity, arguing that wimpy
processors should oen have a larger cache hierarchy to be more efficient for some work-
loads [68]. While this would improve the energy efficiency comparison between FAWN
and traditional systems, doing so could increase capital costs beyond the efficiency beneĕt
it would provide.

Running below peak load: e above experiment used OpenMP to run multiple threads
simultaneously, eight threads on the i7-Desktop and four threads on the Atom. Running
multiple threads is required to fully tax the CPU and memory systems of each node. We
also ran the same experiment on each system with one thread, to see how efficiency scales
with load. Figure 5.2 shows that with one thread, the i7-Desktop is more efficient regardless
of the size of the matrix.

is can be explained by ĕxed power costs. e i7-Desktop running one thread con-
sumed 70 W (versus 40 W at idle), and the Atom running one thread consumed 20 W
(versus 18 W at idle). e Atom platform we evaluated therefore pays a large penalty for
not operating at full capacity. Its energy-proportionality is much worse than that of the i7-
Desktop. Because the Atom was, at best, only twice as energy efficient as the i7-Desktop for
this worst-case workload at 100% load, the inefficient chipset’s power overhead dominates
the CPU power and reduces the energy efficiency at low-load signiĕcantly. In the case of
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our particular system, many of the ĕxed energy costs are due to non-“server” components:
the GPU and video display circuitry, extra USB ports, and so on. Some components, how-
ever, such as the Ethernet port, cannot be eliminated. ese same factors preclude the use
of extremely low-power CPUs, as discussed inChapter 2.4.5. Similar ĕxed power overheads
have been noted by other researchers exploring the use of the FAWN approach to different
workloads [68, 79].

5.1.3 CPU-boundWorkloads

e memory-bound workloads in the previous section required frequent memory accesses
per computation across a large dataset. Next, we look at a CPU-intensive task: crypto-
graphic computation. is further isolates the comparison betwen wimpy and brawny pro-
cessors, because the input and outputs are small and do not stress the storage I/O system at
all.

Table 5.1 shows several assembly-optimized OpenSSL speed benchmarks on the i7-
Desktop and Atom systems described above. On SHA-1 workloads, we ĕnd that the Atom-
based platform is slightlymore efficient in terms of work done per Joule than the i7-Desktop
architecture, and for RSA sign/verify, the reverse is true.
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Workload i7-Desktop Atom
SHA-1
MB/s 360 107
Watts 75 19.1
MB/J 4.8 5.6

SHA-1 multi-process
MB/s 1187 259
Watts 117 20.7
MB/J 10.1 12.51

RSA
Sign/s 8748 1173.5
Verify/s 170248 21279.0
Watts 124 21.0
Sign/J 70.6 55.9
Verify/J 1373 1013

Table 5.1: Encryption Speed and Efficiency

is Ęip in efficiency appears to be due to the optimization choicesmade in the assembly
code versions of the algorithms. e OpenSSL “C” implementations of both SHA-1 and
RSA are both more efficient on the Atom; we hypothesize that the asm version is tuned for
high-performance CPUs. e SHA-1 assembly implementation, in contrast, was recently
changed to use instructions that also work well on the Atom, and so its efficiency again
exceeds that of the i7-Desktop. ese results suggest that, ĕrst, CPU-bound operations can
be as or more efficient on low-power processors, and second, they underscore that nothing
comes for free: code must sometimes be tweaked, or even rewritten, to run efficiently on
these different architectures.

5.1.4 Scan-boundWorkloads: JouleSort

e above microbenchmark described a tightly controlled cache size-bound experiment
showing that differences in cache sizes can signiĕcantly impact energy efficiency compar-
isons. But these discontinuities appear in more real world macrobenchmarks as well. More
speciĕcally, in this section we look at sorting many small records and describe our experi-
ences competing for the 2010 10GB JouleSort competition. Our best system consists of a
machine with a low-power server processor and ĕve Ęash drives, sorting the 10GB dataset
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in 21.2 seconds (±0.227s) seconds with an average power of 104.9W (±0.8W). is sys-
tem sorts the 10GB dataset using only 2228 Joules (±12 J), providing 44884 (±248) sorted
records per Joule.

Our entry for the 10GB competition tried to use the most energy-efficient platform we
could ĕnd that could hold the dataset in memory to enable a one-pass sort. We decided to
use a one-pass sort on this hardware over a two-pass sort on more energy efficient hard-
ware (such as Intel Atom-based boards) aer experimenting with several energy efficient
hardware platforms that were unable to address enough memory to hold the 10GB dataset
in memory. e low-power platforms we tested suffered from either a lack of I/O capability
or high, relative ĕxed power costs, both stemming from design decisionsmade by hardware
vendors rather than being informed by fundamental properties of energy and computing.

Hardware: Our system uses an Intel Xeon L3426 1.86GHz quad-core processor (with
two hyperthreads per core, TurboBoost-enabled) paired with 12GB of DDR3-1066 DRAM
(2 DIMMS were 4GB modules and the other 2 DIMMS were 2GB modules). e main-
board is a development board from 2009 based on an Intel 3420 chipset (to the best of our
knowledge, this confers no speciĕc power advantage compared to off-the-shelf versions of
the board such as the Supermicro X8SIL-F or Intel S3420GPV Server Board), and we used
a Prolimatech “Megahalems” fanless heatsink for the processor.

For storage, we use four SATA-based Intel X25-E Ęash drives (three had a 32GB ca-
pacity and one had 64GB), and one PCIe-based Fusion-io ioDrive (80GB). We use a 300W
standard ATX power supply (FSP300) with a built-in and enabled cooling fan.

e storage devices were conĕgured as follows: one small partition of a 32GB X25-
E contained the OS. e other three X25-Es, the leover portions of the OS disk, and
the Fusion-IO (partitioned into three 10GB partitions) were arranged in a single partition
soware RAID-0 conĕguration. Both the input and output ĕle were located in a single
directory within this partition. We used a Fusion-io in addition to 4 X25-Es because the
SATA bus exists on the DMI bus with a bandwidth limitation of 10Gbps in theory and
slightly less in practice. e Fusion-io was in a PCIe slot that is independent of the DMI
bus and had a much higher bandwidth to the processor and memory system. Using both
types of devices together therefore allowed us to more easily saturate the I/O and CPU
capabilities of our system.

System power and soware: e total power consumption of the system peaks at about
116Wduring the experiment, but asmentioned below, averages about 105Wover the dura-
tion of the sort runs. While we do not have individual power numbers for each component
during the experiment, the {processor, DRAM, motherboard, power supply} combination
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Time (s) Power (W) Energy (J) SRecs/J
Run 1 21.278 105.4 2242.5 44593
Run 2 21.333 104.1 2219.8 45049
Run 3 21.286 104.9 2232.6 44791
Run 4 21.454 104.1 2233.7 44769
Run 5 20.854 106.0 2211.5 45218
Avg 21.241 104.9 2228.0 44884
Error 0.227 0.849 12.273 247.564

Table 5.2: Summary of JouleSort Experiment Results.

consumes about 31 W at idle, the Fusion-io adds 6W at idle, and each X25-E adds about
1W to the idle power consumption for a total of 43 W at idle with all components attached.

All of our results are using Ubuntu Linux version 9.04 with kernel version 2.6.28 for
driver compatibility with the Fusion-io device. We used ext4 with journaling disabled on
the RAID-0 device. We use the gensort utility provided by the competition organizers
(http://sortbenchmark.org) to create the 108 100-byte records and use valsort to
validate our ĕnal output ĕle. For sorting, we used a trial version of NSort soware (http:
//www.ordinal.com).

Results: Our results are summarized in the Table 5.2. Our system improves upon the
January 2010Daytona winner by nearly a factor of two, and also improves upon the January
2010 Indy winner by 26% [26]. e January 2010 Indy winner group’s more recent entry
closes this gap to 5% for the Indy designation and 12% for the Daytona designation.

We log the statistics provided by NSort for comparison with [41]. Table 5.3 summarizes
the information (Utilization measured out of a total of 800% and bandwidth measured in
terms of MB/s for reading and writing the data).

Experiences: Our submission used a server-class system as opposed to a low-power
component system like the Intel Atom. e dominating factor in this choice was the abil-
ity of our server system to hold the entire 10GB dataset in DRAM to enable a one-pass
sort—in this case, the energy efficiency beneĕts of performing a one-pass sort outweighed
the hardware-based energy efficiency of low-power platforms that must perform a two-
pass sort. Our submission tried to use the most energy-efficient platform we could ĕnd
that allowed for a one-pass sort, and this turned out to use the low-frequency Xeon plat-
form described above. Below, we describe some details about what other systems we tried
before settling on the entry system described above.
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In CPU Out CPU Input BW Output BW
Util Util (MB/s) (MB/s)

Run 1 343 628 973.71 1062
Run 2 339 651 953.29 1074
Run 3 339 613 971.82 1056
Run 4 336 622 975.61 1050
Run 5 343 646 976.56 1081
Avg 340 632 970.198 1065
Error 3 16.078 9.626 12.759

Table 5.3: JouleSort CPU and bandwidth statistics.

Alternative Platforms: We tried several alternative low-power conĕgurations based on
the Intel Atom as part of our research into the FAWNapproach [17]. In particular, we began
with the Zotac Ion board based on an Intel Dual-core Atom 330 (also used by Beckmann
et. al) paired with 4 Intel X25-E drives. Without any special soware tweaking, we were
able to get approximately 35000 SRecs/J at an average power of about 33W. We also tried to
use the NVidia GPU available on the Ion to do a portion of the sorting, but found that the
I/O was the major bottleneck regardless.

We also experimentedwith a single coreAtomboard byAdvantech pairedwith 1X25-E,
and a dual-core Atom Pineview development board with two X25-Es. ese boards were
both lower power than the Zotac Ion—the Pineview board moved from a three-chip to
a two-chip solution, placing the graphics and memory controllers on-die, thus reducing
chipset power slightly. We also tried attaching a Fusion-io board to a dual-core Atom sys-
tem, but because the Fusion-io currently requires signiĕcant host processing and memory,
the Atom could not saturate the capabilities of the drive and so was not currently a good ĕt.

5.1.5 Limitations

FAWNand other low-powermany-core cluster architecturesmay be unsuited for some dat-
acenter workloads. ese workloads can be broadly classiĕed into two categories: latency-
sensitive, non-parallelizable workloads and memory-hungry workloads.
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Latency-sensitive, non-parallelizable

As mentioned previously, the FAWN approach of reducing speed for increased energy ef-
ĕciency relies on the ability to parallelize workloads into smaller discrete chunks, using
more nodes in parallel to meet performance goals; this is also known as the scale-out ap-
proach using strong scaling. Unfortunately, not all workloads in data-intensive computing
are currently amenable to this type of parallelism.

Consider a workload that requires encrypting a 64 MB chunk of data within 1 second,
and assume that a traditional node can optimally encrypt at 100 MB/sec and a FAWN node
at 20 MB/sec. If the encryption cannot be parallelized, the FAWN node will not encrypt
data fast enough tomeet the strict deadline of 1 second, whereas the traditional node would
succeed. Note that if the fastest system available was insufficient tomeet a particular latency
deadline, parallelizing the workload here would no longer be optional for either architec-
ture. us, the move to many-core architectures (with individual core speed reaching a
plateau) poses a similar challenge of requiring application parallelism.ƭ

Memory-hungry workloads

Workloads that demand large amounts of memory per process are another difficult target
for FAWN architectures, because the memory capacity per node in FAWN is typically an
order of magnitude lower than a traditional system is typically conĕgured with.

To better understand this class of workload, we examined a speciĕc workload derived
fromamachine learning application that takes amassive-data approach to semi-supervised,
automated learning of word classiĕcation. e problem reduces to counting the number of
times each phrase, from a set of thousands to millions of phrases, occurs in a massive cor-
pus of sentences extracted from the Web. FAWN converts a formerly I/O-bound problem
into a memory size-bound problem, which requires new algorithms and implementations
to work well. For example, the 2007 FAWN prototype using Alix3c2 nodes can grep for a
single pattern at 25 MB/sec, close to the maximum rate the CompactFlash device can pro-
vide. However, searching for thousands ormillions of phrases with the naive Aho-Corasick
algorithm in grep requires building a DFA data structure that requires several gigabytes of
memory. Although this structure ĕt in the memory of conventional architectures equipped

ƭIndeed, this challenge is apparent to the designers of next-generation cryptographic algorithms: Sev-
eral of the entrants to the NIST SHA-3 secure hash competition include a hash-tree mode for fast, parallel
cryptographic hashing. e need for parallel core algorithms continues to grow as multi- and many-core ap-
proaches ĕnd increased success. We believe this general need for parallel algorithms will help make a FAWN
many-core approach even more feasible.
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with 8–16 GB of DRAM, it quickly exhausted the 256 MB of DRAM on each individual
FAWN node.

To enable this search to function on a node with tight memory constraints, colleagues
optimized the search using a rolling hash function and large bloom ĕlter to provide a one-
sided error grep (false positive but no false negatives) that achieves roughly twice the energy
efficiency (bytes per second per Watt) as a conventional node [95].

However, this improved efficiency came at the cost of considerable implementation ef-
fort. Our broad experience with using FAWN for different applications suggests that ef-
ĕciently using FAWN nodes for some scan-based workloads will require the development
of easy-to-use frameworks that provide common, heavily-optimized data reduction oper-
ations (e.g., grep, multi-word grep, etc.) as primitives. is represents an exciting avenue
of future work: while speeding up hardware is difficult, programmers have long excelled at
ĕnding ways to optimize CPU-bound problems.

An interesting consequence of this optimization was that the same techniques to allow
the problem to ĕt in DRAM on a FAWN node drastically improved cache performance on
more conventional architectures: Others were able to apply these techniques to double the
speed of virus scanning on desktop machines [35]. As we detail below, we ĕnd that scaling
up is oen as important as scaling out when the goal is to improve energy efficiency.

5.2 Lessons fromWorkload Analysis

In this section, we summarize some of the lessons we have learned about applying FAWN
to a broader set of workloads. We break down these lessons into two different categories:
hardware challenges and soware challenges.

Hardware Challenges

Many of today’s hardware platforms appear capable of further improvements to energy effi-
ciency, but are currently limited in practice due to several factors, many of which are simply
due to choices made by hardware vendors of low-power platforms:

High idle/ĕxed cost power: e boards we have used all idled at 15-20W even though
their peak is only about 10-15W higher. Fixed costs affect both traditional processors and
low-power CPUs alike, but the proportionally higher ĕxed-cost to peak-power ratio on
available Atom platforms diminishes some of the beneĕts of the low-power processor. In
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practice, this means that the best FAWN systems target the lowest-speed processor that is
not dominated by ĕxed power costs, precisely the point illustrated by Figure 2.4.

IO and bus limitations: When exploring the sort benchmark, we found it difficult to
ĕnd systems that provided sufficient I/O to saturate the processor. Most Atom boards we
examined provided only two SATA drive connectors. While some exist that contain up to
six ports, they were connected to the CPU over a bandwidth-limited DMI bus; this bus
provides 10Gbps in each direction, which can support only four X25-E SSDs reading at
250MB/second. ese limitations may reĘect the fact that these processors are not aimed
at the server market in which I/O typically receives more emphasis.

e market for ultra low power server systems has greatly expanded over the last sev-
eral years, with companies such as SeaMicro, Marvell, Calxeda and ZT Systems all produc-
ing low-power datacenter computing platforms. We expect many of the non-fundamental
hardware challenges to disappear as competition drives further innovation, but many of
the fundamental challenges (e.g., the unavoidable ĕxed power costs posed by having an
onboard Ethernet chip or I/O controllers) will always play a large role in determining the
most efficient balance and absolute speed of CPU and I/O on an energy-efficient platform.

Soware Challenges

ecentral theme of this thesis is that existing soware oen does not run as well on FAWN
node platforms. When deploying out-of-the-box soware on FAWN and ĕnding poor effi-
ciency results, it is critically important to identify precisely the characteristics of the work-
load or the soware that reduce efficiency. For example, many applications are becoming
increasinglymemory hungry as server-class hardwaremakesmorememory per node avail-
able. As we have shown, the working set size of a cache- or memory-bound application can
be an important factor in the FAWN vs. traditional comparison. If these applications can-
not reduce their working set size, this is a fundamental limitation that FAWN systems can-
not overcome. Fortunately, many algorithmic changes to soware can improve memory
efficiency to the point where the application’s performance on a FAWN platform signiĕ-
cantly increases. is emphasizes the thesis statement that writing efficient soware on top
of efficient hardware has a large role in improving energy efficiency and making the most
of the FAWN approach.

Memory efficiency is not the only soware challenge to overcome when considering
FAWN systems. By shrinking the CPU–I/O gap, more balanced systemsmay becomeCPU-
bound when processing I/O by exposing previously unimportant design and implementa-
tion inefficiencies. As we highlight in more detail in the next chapter, we have observed
that the Linux block layer—designed and optimized for rotatingmedia—imposes high per-
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request overhead that makes it difficult to saturate a modern Ęash drive using a single or
dual-core Atom processor. Similarly, we have identiĕed that for some sequential I/O work-
loads microbenchmarks like dd or fio, some of the FAWN prototypes we have used are
unable to read or write sequentially to the full capability of the attached SSDs, despite there
being no obvious expected soware or hardware bottlenecks.

Soware optimization back in vogue: Soware efficiency was once a community fo-
cus: ekeing every last drop of performance or resource from a system was a laudable goal.
With the rapid growth of data-intensive computing and a reliance on Moore’s law, today’s
developers are less likely to optimize resource utilization, instead focusing on scalability at
the detriment of node efficiency [18]. Instead, the focus has been on scalability, reliability,
manageability, and programmability of clusters. With a FAWN-like architecture, each node
has fewer resources, making the job of the programmers harder. Our prior work has shown
that the limited amount ofmemory per node has required the design of new algorithms [95]
and careful balance of performance and memory footprint for in-memory hashtables [17].
ese difficulties are compounded by the higher expected node count in FAWN architec-
tures—not only does resource utilization become more important, these architectures will
further stress scalability, reliability, and manageability.
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Chapter 6

e Shrinking I/O Gap

Up to this point, we have examined application-level redesigns to understand how FAWN
applies to different classes of datacenter workloads. In this part of the dissertation, we
provide a measurement and analysis of Linux I/O stack performance on a modern FAWN
system, demonstrating the “shrinking I/O gap” that future balanced systems will encounter.

6.1 Background

FAWN and other balanced system approaches have taken advantage of the previously in-
creasing CPU-I/O gap prevalent throughout the 1990s and much of the 2000s. But two
speciĕc trends over the last few years have dramatically changed the landscape of system
balance.

First, individual processor core speeds have hit a ceiling, with aggregate performance
now being provided by using multiple cores in parallel. Figure 6.1 illustrates that the ratio
of individual core speed to the speed of random I/O from storage is shrinking dramatically
using historical data over the past 25 years. For example, the Nehalem “Westmere” series
Intel Xeon Server processors offered today operate at a maximum speed of 3.46GHz per
core, offering up to six cores and twelve hyperthreads per socket, and the “SandyBridge”
processor line similarly operates between 2.5 and 3.4GHz, with core counts increasing to
ten per socket. Individual core frequency has plateaued, while microarchitectural changes
improve cycles per instruction performance over previous generations, but which only in-
creases single-threaded performance by 10-30% (See [15]) rather than the trend of doubling
single-threaded performance every few years.
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Figure 6.1: e Shrinking I/O gap trend. CPU numbers collected from http://cpudb.
stanford.edu, showing the fastest (in terms of clock rate) Intel processor released every
year. Hard drive seek time numbers from [52], Ęash IOPS based on public spec sheets.

Second, new non-volatile memories such as Ęash (with PCM or memristor in the fu-
ture) have already begun making inroads in real systems, with access latencies and per-
formance signiĕcantly faster than disks. e green line in Figure 6.1 shows data collected
or measured about sequential and random I/O performance from disks over the past 25
years.Ƭ Random I/O performance from Ęash alone has gone from roughly 2500 random
I/Os per second from CompactFlash platforms many years ago to over 1,000,000 IOPS per
device [34], an improvement of over two orders of magnitude. Non-volatile memories ca-
pable of nanosecond access latencies and increased device parallelism will further increase
this performance. is narrowing gap between core frequency and I/O speed means that
the number of cycles needed to perform I/O may need to improve as the access latencies
and IOPS throughputs of these new I/O devices continue to improve.

We term the combination of these two trends as the shrinking I/O-gap: As storage gets
faster and core speeds stay Ęat, there is a pressing need to improve IOPS per core, or the
processor efficiency of performing I/O.

ƬCPUnumbers collected from http://cpudb.stanford.edu, showing the fastest clock rate for an Intel
processor released every year. Hard drive seek timenumbers come froman IBMGPFSWhitepaper [52]. Flash
IOPS are derived from public speciĕcation sheets.
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Mapping FAWN challenges to future balanced systems. e shrinking I/O gap is a trend
that all systems are likely to experience. Because FAWN speciĕcally targets slower fre-
quency cores, we can measure the soware impact of the shrinking I/O gap by assembling
FAWN nodes with very fast SSDs on a hardware platform that should theoretically saturate
the I/O system.

FAWN can therefore be thought of as an instrument that allows us to measure and ex-
periment with existing systems to identify bottlenecks that future balanced systems will
encounter a few years down the road. In the next part of the dissertation, we demonstrate
the impact of the shrinking I/O gap through an analysis of low-level storage and operating
system stack bottlenecks on a FAWN platform that provides more IOPS from storage than
the system soware stack can handle. In Chapter 7, we use the lessons from this measure-
ment study tomotivate the need for vector interfaces to storage andRPC,whichwe examine
in greater detail using a novel SSD emulator platform that provides us greater control over
the I/O interfaces than off-the-shelf hardware currently provides.

6.2 Measuring I/O Efficiency

In this sectionwe perform several experiments tomeasure the I/O efficiency (in IOPS/core)
of the existing Linux I/O stack. We focus particularly on random reads, a decision made
for several reasons. First, random writes exhibit worst-case performance from today’s Ęash
devices, though this is slowly changing as the devices use more log-structured techniques
underneath. Second, random I/O stresses the operating system more than sequential I/O,
andwe assumenon-volatilememories like Ęashwill predominantly be used ĕrst for random
I/O because of their much better random I/O performance (Ęash random IOPS per dollar
is higher than for disks).

To obtain a baseline measure for IOPS/core, we use a microbenchmark based on Flex-
ible I/O Tester [7]. ere are a few important parameters for this benchmark. First, we
use the asynchronous libaio interface and set the I/O depth to 64 because modern Ęash
devices require several outstanding I/Os to saturate the internal parallelism exposed by the
device [102]. We could also use synchronous I/O, but we must run multiple threads of ex-
ecution to achieve the same degree of I/O parallelism. Next, we read from the device in
direct mode, bypassing the ĕlesystem layer and its associated caching. While most appli-
cations will interact with the ĕlesystem, direct I/O is the only way to issue 512 byte reads
to the device, which best stresses the efficiency of the I/O stack from the block layer down
through the device; going through the ĕlesystem would require 4KB page access.
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Figure 6.2: Number of random read IOPS provided by pairing an Atom and a Xeon CPU
with a single X25 Ęash device. ese experiments are run without the blk_iopoll NAPI
polling setting enabled on the Atom.

Experimental Setup: For the rest of this chapter, we performmost of ourmeasurements
on Linux 2.6.36 kernels except where noted, and the storage device used is an Intel X25-
based SATA drive. To stress I/O efficiency, we close the gap between the CPU and I/O by
using a dual-core 1.6GHz Intel Atom D510 system. We also use a Core i7 2.8GHz system
to provide a point of comparison to the Atom.

Figure 6.2 shows the result of running the Flexible I/O tester microbenchmark when
pairing both the Intel Atom and the Intel Core i7 (Xeon) with the X25. As with this graph
and in the rest of the paper, these experiments are run for a minimum of 30 seconds, and
we take the ĕnal IOPS number reported by ĕo; our results show <5% variance between
repeated runs so we omit error bars. e combination of the Intel Atom with the X25
provides only 19,000 IOPS. When pairing the X25 with the Xeon platform, however, we
achieved 87,000 IOPS. is suggests that the device itself is capable of this I/O rate, and thus
the bottleneck on the Atom platform is likely the processor (as subsequent experiments will
corroborate).

Accurately measuring the IOPS/core for the Xeon platform would require attaching
manymore Ęash devices to the point where the Xeon becomes CPU-bottlenecked. Because
we are CPU limited on the Atom already, improving the number of IOPS on this set of
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Atom and Ęash hardware will increase the I/O efficiency as measured by IOPS/core. us,
we investigate ways to improve the IOPS rate provided by this Atom + X25 conĕguration,
although our experience has shown that some of these modiĕcations would also apply to
balanced brawny platforms as well.

6.2.1 Asynchronous Devices and I/O Paths

To better understand the limitations and bottlenecks that prevent higher IOPS throughput,
we ĕrst proĕle the distribution of time spent in various locations in the I/O stack. Because
storage devices today are asynchronous, there are two sequential paths to measure and an-
alyze: the issuing path and the interrupt path.

e Issuing Path: When ĕo makes an I/O request direct to the drive, the code must
traverse several parts of the I/O stack: the VFS layer, the block layer (including the I/O
scheduling layer), and the device driver layer, which in the case of SATA-based devices is
the SCSI/ATA layer.

e Interrupt Path: When the device completes a requested I/O, it will raise an in-
terrupt to signal the operating system that the I/O has ĕnished transferring data from the
disk to kernel memory. In the hardware interrupt context, the operating system turns off
the hardware interrupt line and then schedules further processing in the soware inter-
rupt (soIRQ) context, which completes some initial processing. It then schedules an I/O
completion function at the block layer, which cleans up data structures and executes more
callbacks at higher layers to notify the application of the completed I/O.

6.3 Analysis of Time Spent in the I/O Stack

Critical to understanding the bottlenecks in these two paths is measuring the time it takes
to traverse portions of each path. Although this would normally require kernel modiĕca-
tions to add tracing and logging data, recent Linux kernels automatically provide hooks for
tracing various events in the I/O stack.

blktrace is a user-level tracing program that can collect these trace events and log
them to a ĕle. Speciĕcally, blktrace can be run in a separate process during microbench-
marks. Running blktrace has a small performance hit on the microbenchmark aggregate
because it requires writing in large batches to a ĕle. But the trace results can accurately
capture the minimum costs of traversing the I/O stack, which is necessary to understand
baseline I/O stack overhead.
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Dev CPU SeqNum Timestamp pid Act . Extra Info
8,0 3 89 0.000703200 1432 Q R 143356401 + 1 [fio]
8,0 3 90 0.000705432 1432 G R 143356401 + 1 [fio]
8,0 3 91 0.000707520 1432 P N [fio]
8,0 3 92 0.000708593 1432 I R 143356401 + 1 [fio]
8,0 1 17 0.000713951 0 C R 132397149 + 1 [0]
8,0 3 93 0.000715258 1432 U N [fio] 2
8,0 3 94 0.000723261 1432 D R 143356401 + 1 [fio]
8,0 3 95 0.000754803 1432 Q R 218920021 + 1 [fio]

Figure 6.3: Example blktrace output. Records which CPU each event is executed on,
timestamp to nanosecond granularity, type of block activity, and other information, e.g.,
block number and process ID.

Figure 6.3 shows an example subset of output from a run of Flexible I/O tester with
blktrace running in the background. is subset shows a read for block 143356401 is-
sued on CPU 3, shortly aer followed by another read for block 218920021. Note that the
ĕh entry shows that a completion for a different I/O was executed simultaneously on an-
other CPU, demonstrating that the two paths of I/O can technically be handled in parallel
(though a completion must execute on the same CPU on which it was issued). In most of
our experiments, however, we enable CPU affinity for issuing/completing requests to sim-
plify the analysis of results. Overlapping I/O on multiple processors makes it difficult to
measure IOPS/core.

e important ĕelds we use from this output are the CPU ĕeld, the timestamp ĕeld, and
the Action ĕeld. e action ĕeld values describe the type of operation within the I/O stack:

• Q – Block request arrives at the block layer

• G – Request structure is allocated

• P – Queue is “plugged” to allow more I/Os to be issued to the queue for batching.

• I – Request is inserted into the I/O scheduler.

• U – Request queue is unplugged

• D – Request is sent to the underlying device driver (in this case, SCSI/ATA).

• C – e corresponding I/O is completed.
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Figure 6.4: Breakdown of I/O time in the Kernel for Stock Kernel conĕguration.

Many of the subsequent graphs are generated by parsing the output of blktrace above.
We begin bymeasuring theminimumandmedian time it takes for an I/O to transition from
the various states above on the issuing path. More speciĕcally, we measure the time spent
betweenQ andG (QG), G and I (GI), I andD (ID), andD back toQ (DQ). For example, the
time spent in ID represents how long a request remains in the queue of the I/O scheduler
before being issued to the device driver. Time spent in DQ measures how long a request
takes to travel through the device driver to when the next I/O arrives at the block layer.

6.3.1 e Issuing Path

Figure 6.4 shows the breakdown of time spent in these phases of the issuing path of the I/O
stack. e Atom (Min) bar shows the minimum time to transition through each phase. For
example, the time spent in ID, or between when the I/O is queued in the I/O scheduler to
when it is issued to the device driver, took at least 10.4 microseconds. e Atom (Median)
bar shows the median time to traverse these phases, and is not signiĕcantly worse than the
minimum. We then plot the median I/O breakdown when measured on the Xeon platform
on the far right.

ere are several important takeaways from this graph. First, the total time to issue an
I/O from the Q state to the next Q state is a minimum of 33 microseconds and a median of
about 40 microseconds. Because this process is not pipelined, a single core can only issue
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Figure 6.5: Histogram distribution of time between two consecutive completion events in
microseconds.

as many I/Os as it can repeatedly traverse this entire path, so the IOPS/core on the issuing
path is 1/40 microseconds, or about 25,000 IOPS issued per core. In contrast, the Xeon
platform can go through the entire I/O stack in just 6.7 microseconds, so it is capable of
performing up to 150,000 IOPS issued per core.

Another interesting result is that a majority of time is spent in the ID and DQ phases:
the time an I/O sits in the I/O scheduler queue is signiĕcant, and the time spent in the
device driver to when the next I/O begins its processing is even longer.

e last important takeaway is that the proportional importance of each phase is iden-
tical on both the Atom and the Xeon. On both platforms, the DQ phase is roughly 60% of
the entire I/O stack time and the ID stack takes roughly 30% of the time. is suggests that
nothing speciĕc to the Atom platform is making any of these phases proportionally worse
than on the Xeon platform (i.e., L2 cache overĘows are not a large factor even though the
two platforms have different L2 cache sizes).
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Block Size IOPS Interrupt Rate MB/s
512B 17K 17K 8.5
1KB 17K 17K 17
2KB 17K 17K 34
4KB 17K 17K 70
8KB 17K 17K 140

16KB 15.4K 15.1K 240

Table 6.1: IOPS, Interrupt rate and Bandwidth as a function of the block size for a random
access microbenchmark on the Atom + X25 platform.

6.3.2 e Interrupt Path

e IOPS issued per core of the issuing path does not perfectlymatch the IOPSmeasured in
Figure 6.2, suggesting that the issuing path may not be the bottleneck. us, in this section
we brieĘy explore the interrupt path to see if it limits performance.

blktrace only tracks one event on the interrupt path: when an I/O ĕnally completes in
the block layer. Figure 6.5 shows the distribution of time between consecutive completions
based on this coarse-grained information. e distribution contains two strong peaks, one
at about 60 microseconds between completions and the other at about 120 microseconds.
Note that theminimum time it takes to traverse fromcompletion to completion is only about
6 microseconds: the time to handle the entire interrupt stack, such as resource cleanup and
callback calling, is quite short in the best case.

Taking the inverse of the average completion time, the system can perform about 16667
completions per second per core. Because the minimum value is signiĕcantly faster than
the median value, we see a slightly higher average number of completions per second when
running experiments.

Comparison with ĕo

Recall that Figure 6.2 shows the Atom capable of about 19,000 IOPS. We therefore suspect
the limit in performance is due to the slower interrupt path. As another indication that
the interrupt path may be a bottleneck, Table 6.1 shows the results of an experiment that
varies the block size of random I/O through the block layer, measuring IOPS, interrupt rate,
and total data throughput. For data access up to 8KB, the IOPS obtained from the Atom
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Block Size IOPS Interrupt Rate MB/s
512B 78K 75K 38
1KB 72K 70K 70
2KB 60K 58K 120
4KB 41.5K 40.6K 166
8KB 26K 25.5K 208

16KB 14.6K 14.5K 233

Table 6.2: IOPS, Interrupt rate and Bandwidth as a function of the block size for a random
access microbenchmark on the Xeon + X25 platform.

remained at 17,000, with the interrupt rate roughly matching it. It begins to drop at a block
size of 16KB because of the limited sequential bandwidth of the drive.

In comparison, Table 6.2 shows the same experiment but run on the Xeon platform.
Note that the IOPS and interrupt rate consistently drop as we increase the block size, sug-
gesting that the limit in performance for a block size of 1KB and above is not the interrupt
rate, since the system is capable of handling higher interrupt rates. e IOPS numbers for
a block size of 512 bytes are lower than the numbers obtained in Figure 6.2 because these
experiments were run using a slightly different benchmarking tool that is not as optimized
as the ĕo benchmark used before.

6.3.3 Improving the Interrupt Path

To eliminate the interrupt bottleneck, we explore mechanisms to mitigate the number of
interrupts handled by the operating system. We describe two such approaches to interrupt
mitigation.

eNAPI Approach: A general interface developed for interrupt mitigation in the Linux
kernel is the “NewAPI” interface (NAPI). NAPI allows the OS to switch between interrupt-
driven processing and spin-loop polling based on the load generated by the device. At high
load, NAPI causes the system to switch to polling mode, which is more efficient because
there is plenty of work available. At low load, the normal interrupt-drivenmode is sufficient
because the frequency of interrupts is low.

NAPIwas originally developed for network cards, but since LinuxKernel version 2.6.28,
NAPI support for block devices has been added (termed blk-iopoll). is mimics the gen-
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eral framework of NAPI and has shown improvements to IOPS performance and CPU uti-
lization for traditional systems [21]. e blk-iopoll system relies on the block device sup-
porting Native Command Queuing (NCQ) to allow the operating system to queue up to 31
outstanding commands to the device at once. If the number of I/Os retrieved on an initial
interrupt is high, the blk-iopoll system remains in pollingmode to check ifmore commands
will be completed soon.

Unfortunately, even with this change, the number of interrupts handled does not de-
crease. On fast, multi-core machines, a single fast core can queue several commands to
the device before the device completes one of the requests and interrupts the system, so
that multiple commands can be completed for only one interrupt. However, on a slower
system such as the Intel Atom, the OS can only queue a few commands to the device be-
fore the ĕrst one completes. Switching from interrupt mode to polling therefore performs
additional work to handle only one command, resulting in lower performance.

e Timer-based Approach An alternative approach to NAPI be taken by using event-
and timer-based logic [20] to decide when to actually service requests from a network de-
vice [112], giving more control to the OS to decide when to perform device-related work.

Speciĕcally, we have modiĕed the blk-iopoll system to defer the completion of a com-
mand on an interrupt for a conĕgurable duration. During this deferral, several more com-
mands can be both issued and completed by the device and other OS work can be attended
to. is deferral requires a later timer interrupt to ĕnally complete all available commands.
In essence, we allow one block device interrupt to trigger a series of timer interrupts, equally
spaced, to increase the number of commands completed per interrupt. is deferral intro-
duces a higher cost at low load where efficiency is less of a concern, is just as efficient as
spin-loop polling at high-load (depending on how the OS schedules the work), and avoids
the cost of switching between interrupt and polling mode frequently during medium load.
is technique does not change any of the higher layer processing of the entire interrupt
stack; it simply delays the handling of the soware interrupt processing and higher layers
by a speciĕed amount on an initial hardware interrupt.

Figure 6.6 shows the distribution of inter-completion duration when using this patch.
eĕrst obvious point is that the histogram is highly clustered around six to eightmicrosec-
onds. Six microseconds was the minimum inter-completion duration without the patch,
representing a situation where a single interrupt happened to trigger two completions in a
row. is modiĕcation speciĕcally attempts to recreate more of those opportunities, and
the results show that our technique is successful at doing so.
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Figure 6.6: Histogram distribution of time between two consecutive completion events in
microseconds with interrupt batching enabled. Defer parameter used in this experiment
was 160 microseconds.

Our implementation requires one I/O to complete before we can defer the processing
of further I/Os, causing a bump in the histogram at 160 microseconds. e time until the
immediately next completion thus depends on the conĕguration parameter of how much
to delay. Because we used 160 microseconds as this parameter, we occasionally create one
inter-completion duration of 160 microseconds for many subsequent inter-completion du-
rations of 6-8 microseconds.

e histogram alone does not indicate whether the interrupt path has been improved
because the long 160 microsecond delays can adversely impact the IOPS rate. However,
whenwemeasure the IOPS rate aer implementing this interrupt patch, we improve perfor-
mance to about 25,000 IOPS when using the ĕo microbenchmark. While this did increase
the IOPS rate, suggesting that indeed the interrupt path is a bottleneck, it only increases
performance by a few thousand IOPS.

Recall that the median time it takes to traverse the issuing path of the I/O stack is 40
microseconds, meaning that a single core can issue only 25,000 requests per second to stor-
age. While the interrupt mitigation scheme eliminated the interrupt path bottleneck, the
new bottleneck is on the issuing path.
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6.3.4 Improving the Issuing Path

We revisit Figure 6.4 to identify opportunities for improvement on the issuing path. As
mentioned previously, the time spent in the I/O scheduler and the time spent in the device
driver are the two major components of time spent on the issuing path. e biggest oppor-
tunity for improvement exists in the device driver code. However, the device driver code is
complex and contains a lot of layering to translate block commands to the ATA commands
issued to the device. Instead, we look at the I/O scheduler to identify whether there are any
obvious improvements that can be made.

e default I/O scheduler used in Linux is CFQ: Completely Fair Queuing. Many have
argued that the “noop” scheduler is better for SSDs because it does not need to worry about
any of the seek or rotational penalties associated with disks. We re-run the ĕo benchmark
and use blktrace to measure the time spent in the I/O stack. Figure 6.7 shows the com-
parison between the stock kernel (which uses CFQ) and our optimized kernel (which uses
noop in combination with the kernel patch to mitigate interrupts). As expected, the QG,
GI, and DQ phases are roughly the same between the two kernels. However, the ID phase,
which is the time spent in the I/O scheduler, is dramatically different: moving to the noop
scheduler results in a decrease of 8 microseconds in the I/O scheduler portion of the stack,
or 33% of the time spent in the CFQ scheduler.

e overall time spent in the kernel therefore reduces from about 40microseconds to 32
microseconds, so a single Atom core can traverse the issuing stack fast enough to provide
about 30,000 IOPS. Indeed, our ĕo benchmark with these kernel modiĕcations provides
29,649 IOPS.

One interesting result is that changing to the noop scheduler on a stock kernel may not
yield signiĕcantly better performance because the bottleneck initially exists on the interrupt
path. is highlights the importance of measuring and understanding the location of the
bottleneck on a given platform.

Identifying the next opportunity: e right bar also shows that an even more signif-
icant amount of time is spent in the DQ phase, or the device driver part of the I/O stack.
Improving this layer would take signiĕcantly more effort because it requires invasive code
changes, but could greatly improve performance.

Unfortunately, the returns begin to diminish once this large bottleneck is removed. For
example, reducing the DQ portion of the stack to about 3microseconds would decrease the
overall issuing path time to about 10 microseconds, providing potentially 100,000 IOPS,
which is a signiĕcant increase over the existing result. At this point, however, improving
any one portion of the stack then requires improving all portions of the stack equally to
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Figure 6.7: Breakdown of I/O stack time for original stock kernel and optimized kernel.
Optimized kernel uses interrupt mitigation patch and uses the noop I/O scheduler instead
of CFQ.

see signiĕcant improvements in performance. ese changes will inevitably require sig-
niĕcant soware engineering effort. Furthermore, it is possible that other portions of the
interrupt stackmay begin to limit performance. For example, although theminimum inter-
completion duration is 6 microseconds (which suggests approximately 150,000 comple-
tions per second is possible), this is only achievable by introducing the delay of hundreds
of microseconds to batch completions together.

6.3.5 Summary

is part of the dissertation showed evidence of the shrinking I/O gap through an analy-
sis of random I/O performance in the Linux I/O stack on a modern FAWN system. Aer
identifying numerous initial bottlenecks, we improved random I/O performance by 50%
through small modiĕcations to parameters in the system combined with an interrupt coa-
lescing algorithm for these Ęash SSDs.

Unfortunately, this approach does not demonstrate a scalable solution as the I/O gap
continues to shrink. is motivates the need for novel ways to address the shrinking I/O
gap through different interfaces and implementations that scale with increases in I/O per-
formance and increasing core parallelism.
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Chapter 7

Vector Interfaces to Storage and RPC

Given the difficulty of optimizing the existing I/O stack of operating systems to deal with
the shrinking I/O gap, in this chapter we describe a solution to this problem by describing,
implementing and evaluating the use of vector interfaces to storage and RPC systems.

Fast non-volatilememories (NVMs) are poised to change the landscape of data-intensive
computing. Flash technology today is capable of delivering 6GB/s sequential throughput
and just over 1 million I/Os per second from a single device [53]. But the emergence of
these fast NVMs has created a painful gap between the performance the devices can deliver
and the performance that application developers can extract from them.

As we show in this chapter, an implementation of a networked key-value storage server
designed for the prior generation of Ęash storage only sustains 112,000 key-value queries
per second (QPS) on a server with a storage device capable of 1.8 million QPS. is large
performance gap exists for a number of reasons, including Ethernet and storage interrupt
overhead, system call overhead, poor cache behavior, and so on. Unfortunately, the bottle-
necks that create this gap span application code, middleware, numerous parts of the oper-
ating system kernel, and the storage device interface. Solutions that do not address all of
these bottlenecks will fail to substantially narrow this performance gap.

To address bottlenecks across the entire stack, we advocate for pervasive use of “vector
interfaces” in networked systems. At a high level, vector interfaces express work in groups
of similar but independent units whose computation can be shared or amortized across the
vector of work. Vector interfaces to storage submit multiple independent I/Os in one large
batch (normally issued independently); vector interfaces to RPC coalesce multiple separate
RPCs into one large RPC to reduce per-message overhead and send fewer packets over the
network.
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We focus our attention on one particular compelling use case, distributed key-value
storage backed by fast NVM (e.g., solid state drives), to illustrate how applications can best
use vector interfaces. We demonstrate that using vector interfaces improves throughput by
an order-of-magnitude for our networked key-value storage system, allowing a single server
to deliver 1.6 million key-value storage requests per second at a median latency below one
millisecond, providing over 90% of the throughput capabilities of the underlying NVM
device.

e contributions of this work are as follows:

• We demonstrate that end-to-end use of vector interfaces can deliver the performance
potential of an NVM device capable of 1.8 million queries/second;

• We describe the latency versus throughput tradeoffs introduced by using vector in-
terfaces and how systems should dynamically choose vector widths based on load;

• We describe how using vector interfaces exclusively on a storage server can increase
client system efficiency;

• We provide guidance to system designers as to when vector interfaces should be used
and when they are not effective.

7.1 e Shrinking CPU-I/O Gap

Fast non-volatile memories provide several beneĕts over traditional magnetic storage and
DRAM systems. In contrast to magnetic disks, they provide several orders of magnitude
lower access latency and higher small random I/O performance. ey are therefore well
suited to key-value storage workloads, which typically exhibit small random access patterns
across a relatively small dataset. In response, researchers have developed several key-value
storage systems speciĕcally for Ęash [14, 17, 44, 45].

Solid state drive (SSD) performance has increased dramatically over the last few years
(recall Figure 6.1). SATA-basedĘash SSDshave been capable of between 50,000 and 100,000
small (512-byte) random reads per second since 2009 [130], and enterprise-level PCIe-
based SSDs advertise random read performance of approximately 1.2 million I/Os per sec-
ond [53]. Prototype PCIe NVM platforms have demonstrated similar IOPS throughput
with latencies of 40 microseconds for phase-change memory [11] and 10 microseconds for
NVM emulators [34]. Meanwhile, CPU core sequential speeds have plateaued in recent
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years, with aggregate system performance achieved through using multiple cores in paral-
lel.

Given this dramatic improvement in throughput and latency, what changes are needed
to allow key-value storage systems to take advantage of these improvements?

We answer this question in this section by measuring the performance of FAWN-KV
(Chapter 4) running on a hardware emulator for next-generation non-volatile memories.
ePCIe-based emulator is capable of 1.8million IOPS, reĘecting amodest but not implau-
sible advance over the 1.1 million IOPS available off-the-shelf today from companies such
as FusionIO. FAWN-KV was designed for a hardware architecture combining Ęash devices
from a prior generation of CompactFlash or SATA-based SSDs with low-power processors
such as the Intel Atom. e soware has therefore already been optimized to minimize
memory consumption and CPU overheads and take advantage of SSDs capable of nearly
100,000 IOPS.

First, we describe the non-volatile memory platform and provide baseline numbers
to provide bounds for throughput and latency. en, we demonstrate the best tuning of
FAWN-KV on the same hardware platform, highlighting over an order of magnitude gap
in throughput between device capability and measured throughput.

7.1.1 NVM Platform and Baseline

We evaluate three different system conĕgurations to understand where the performance is
limited (see Figure 7.1). In the networked system evaluation, client machines send requests
at high rate to a “backend” storage node. e backend node translates these requests into
reads to the PCIe SSD emulator, waits for the results, and sends replies back to the clients.
e backend datastore evaluation measures only the backend storage node and local data-
store soware. Finally, the storage-only evaluation omits the datastore soware and sends
storage queries from a stripped-down benchmark application designed to elicit the highest
possible performance from the SSD emulator.

e backend storage node is a typical fast server machine with two 4-core Intel Xeon
X5570 CPUs operating at 2.933 GHz with hyperthreading disabled. It uses an Intel X58
chipset, contains 12GB of DRAM, and is attached to the network using an Intel 82575EB
1Gbps on-board network interface.

ememory-mapped, direct-access SSDemulatordoes not require systemcalls, avoid-
ing the associated high overhead for reads and writes; instead, the userspace soware in-
terface provides read()- and write()-like interfaces. ese interfaces translate reads and
writes into memory copies and commands issued directly to the PCIe-attached SSD em-
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Figure 7.1: Benchmark Scenarios

ulator. e device uses four independent DMA engines for read and write commands,
requiring that at least 4 different threads simultaneously access the device for full perfor-
mance.

Our aim is to use the SSD emulator to understand how applications and system soware
must adapt in order to support the tremendous recent advances in storage speeds. We do
not use the emulator to emulate a speciĕc device technology with particular latencies, wear-
out, or access peculiarities (such as erase blocks). We instead use a storage layer, FAWN-DS,
which has already been optimized to write sequentially using a log-structured layout. We
believe that the performance-related aspects of our work will generalize to future NVMs
such as phase-change memory (PCM), but device-type-speciĕc layout optimizations be-
yond the scope of this work will likely be necessary to make the best use of an individual
technology.

e SSD emulator provides 1.8 million I/O operations per second (IOPS) when ac-
cessed directly via a simple test program (lemost bar in Figure 7.2). Microbenchmarks
using FAWN-DS, our log-structured, local key-value datastore application, achieve similar
performance. Wemeasure the throughput of looking up random key-value pairs with 512B
values. Each lookup requires a hash computation, a memory index lookup, and a single
read from the underlying storage device. ese results show that a local key-value datas-
tore can saturate the SSD emulator, despite having to perform hashing and index lookups.
A single key-value pair retrieval takes 10 microseconds, on par with the fastest NVM em-
ulator platforms available today [34].
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Figure 7.2: Local benchmark demonstrates that the NVM platform is capable of 1.8M
IOPS, while FAWN-KV achieves an order-of-magnitude worse throughput. Using vector
interfaces provides approximately 90% of device capability for network key-value queries.

7.1.2 FAWN-KV Networked System Benchmark

e FAWN-KV benchmark is an end-to-end benchmark. e server communicates with
25 open-loop, rate-limited client load generators (enough clients to ensure they are not the
bottleneck). e middle bar in Figure 7.2 shows that the networked system is an order
of magnitude slower than the purely local datastore, achieving only 112,000 IOPS. Even
a highly optimized networked key-value storage system designed for current SSDs cannot
take advantage of the performance capabilities of next generation SSD systems.

Understanding this large performance gap requires breaking down the components of
FAWN-KV. FAWN-KV builds three layers on top of FAWN-DS: 1) networking, 2) RPC,
and 3) the associated queues and threads to make parallel use of Ęash using a staged exe-
cution model similar to SEDA [134]. ese additional components are responsible for the
signiĕcantly reduced throughput since FAWN-DS alone can saturate the device capability;
we further tested FAWN-KV using a “null” storage backend that returned a dummy value
immediately, which only modestly improved throughput.

FAWN-KVuses Apacheri [10] for cross-language serialization and RPC. Each key-
value request from the client requires protocol serialization and packet transmission; the
backend receives the request and incurs a network interrupt, kernel IP and TCP process-
ing, and protocol deserialization before it reaches the application layer; these steps must
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be repeated for each response as well. ese per-request computations are one source of
additional overhead.

To amortize the cost of these per-request computations, the rest of this chapter describes
the implementation, evaluation and tradeoffs of using vector interfaces to storage and RPC
systems. As we build up to in this chapter, a system design that pervasively uses vector
interfaces improves performance from 112,000 IOPS to 1.6M IOPS, shown as the rightmost
bar in Figure 7.2, a factor of 14 improvement in performance that achieves nearly 90% of
the capability of the NVM platform.

7.2 Vector Interfaces

Given that a state-of-the-art cluster key-value store cannot provide millions of key-value
lookups per second (despite underlying storage hardware that can), there are three mostly-
orthogonal paths to improving its throughput: Improving sequential code speed through
faster CPUs or code optimization; embracing parallelism by doling out requests to the in-
creasing number of cores available in modern CPUs; and identifying and eliminating re-
dundant work that can be shared across requests.

In this work, we focus on only the last approach. Sequential core speeds show no signs
of leaping forward as they once did, and sequential code optimization is ultimately limited
by Amdahl’s law [34]—and, from our own experience, optimizing code that spans the en-
tire height of the kernel I/O stack is a painful task that we would prefer to leave to others.
Although improving parallelism is a ripe area of study today, we avoid this path as well for
two reasons: First, we are interested in improving system efficiency as well as raw through-
put; one of the most important metrics we examine is IOPS per core, which parallelism
alone does not address. Second, and more importantly, the vector-based interfaces we pro-
pose can themselves degrade into parallel execution, whereas a parallel approach may not
necessarily yield an efficient vector execution.

Vector interfaces group together similar but independent requests whose execution can
be shared across the vector of work. Doing so allows a system to eliminate redundant work
found across similar requests and amortize the per-request overheads found throughout the
stack. By eliminating redundant work and amortizing costs of request execution, we can
signiĕcantly improve throughput as measured by IOPS as well as efficiency as measured by
IOPS/core.
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Vector interfaces also provide an easy way to trade latency for improved throughput and
efficiency by varying the width of the vector. Moving to storage devices that support higher
throughput can be as simple as increasing the vector width at the cost of higher latency.

We focus on two types of explicit vector interfaces in this work: 1) Vector RPC inter-
faces, aggregatingmultiple individual, similar RPCs into one request, and 2)Vector storage
interfaces, or vector-batched issuing of I/O to storage devices.

7.2.1 Vector RPC Interfaces

Vector RPC interfaces batch individual RPCs of the same type into one large RPC request.
For example, memcached provides programmers a multiget interface and a multiget net-
work RPC. A single application client can use themultiget interface to issue several requests
in parallel to the memcached cluster, improving performance and reducing overall latency.
e multiget RPC packs multiple key-value get requests into one RPC, reducing the num-
ber of RPCs between an application client and a single memcached server, resulting in fewer
network interrupts and system calls, and reduced RPC processing overhead.

7.2.2 Vector Storage Interfaces

Vector storage interfaces specify vectors of ĕle descriptors, buffers, lengths, and offsets to
traditional interfaces such as read() or write(). ey differ from the current “scatter
gather I/O” interfaces readv() and writev(), which read or write only sequentially from
or to a single ĕle descriptor into several different buffers, whereas vector storage interfaces
can read or write from random locations in multiple ĕle descriptors.

Our proposed vector storage interfaces resemble the readx()/writex() POSIX exten-
sion interfaces, whichwere designed to improve the efficiency of distributed storage clusters
in high-performance computing. e differences are twofold: First, gaining the efficiency
we seek requires pushing the vector grouping as far down the storage stack as possible—in
our case, to the storage device itself. Second, we emphasize and evaluate the synergistic ben-
eĕts of comprehensive vectorization: as we show in our evaluation, combining network and
storage vectorization provides a large boost in throughput without imposing extra latency
for batching requests together (the price of batching, once paid, is paid for all subsequent
vector interfaces).

Storage devices today read and write individual sectors at a time. A future device sup-
portingmultiread ormultiwrite takes a vector of I/O requests as one command. In addition
to saving memory (by avoiding duplicated request headers and structure allocation) and
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CPU time (to initialize those structures, put more individual items on lists, etc.), a major
beneĕt of these vector interfaces is in drastically reducing the number of storage interrupts.
A multi-I/O operation causes at most one interrupt per vector. Interrupt mitigation fea-
tures found onmodern network interface cards share these beneĕts, butmulti-I/O provides
several better properties: First, there are no heuristics for how long to wait before interrupt-
ing; the device knows exactly how many requests are being worked on and interrupts ex-
actly when they are complete. Second, it is less likely to unintentionally delay delivery of a
message needed for application progress—because the application itself determined which
requests to batch.

7.3 Vector Interfaces to Storage

We begin by describing the implementation and beneĕt of vector interfaces to storage,
showing that they can help systems match the potential throughput of high-speed SSDs
for both asynchronous and synchronous access.

7.3.1 Vector Interface to Device

A storage device supporting a vector interface must implement a single I/O storage com-
mand containing multiple, individual and independent requests to storage.

Implementation Details. Current I/O stacks do not contain commands to submit mul-
tiple I/Os to a device in a single command. Although hosts can send up to 31 outstanding
I/Os to SATA devices using Native Command Queuing (NCQ), these devices process each
I/O independently and generate a separate interrupt for each submitted I/O.

Instead, we access the non-volatile memory emulator platform described above us-
ing a direct userspace interface. e userspace soware interface provides read()- and
write()-like interfaces similar to POSIX. A read or write command prepares an I/O struc-
ture containing a buffer, offset, and length as arguments, appends that I/O structure to a
submission queue, and “rings a doorbell” using DMA commands to notify the device that a
request is ready to be processed. e device processes the request and uses DMA to transfer
the result back, similarly ringing a doorbell to signal the host that the request is complete
and available in a completion queue.

Our proposed read_vec() and write_vec() interfaces take multiple buffers, offsets,
and lengths as arguments and issue the requests to the device in one large batch. When
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Figure 7.3: 512 Byte read throughput comparison between “single I/O” interface (dashed
line) and “multi-I/O” interface (solid line).

delivered in a large batch, the soware running on the emulator processes each individual
command in submitted order, transfers the results into the host’s userspace memory using
DMA, and generates a single interrupt to the host only aer all of the commands in the
vector are complete.

Benchmark: e benchmark in this sectionmeasures the raw capability of the emulator
platform using asynchronous I/O, which allows a single thread to submit enough outstand-
ing I/Os to keep the device busy. To understand its capabilities, we vary queue depth, thread
count, and vector width, whose deĕnitions are as follows:

1. Queue depth per thread (QD/T): e number of asynchronous, outstanding I/O re-
quests sent by one thread. For single-I/O, an interrupt is generated for each individual
request, and for each response, one new I/O can be issued.

2. read count: e number of independent user threads issuing I/Os to the device.

3. Storage vector width: e number of I/Os for which one interrupt notiĕes the com-
pletion of the entire vector. For our multi-I/O experiments in this section, the vector
width is always set to half of the QD/T value to ensure the device is busy processing
commands while new requests are generated.
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Figure 7.4: roughput of 512 B single-I/O vs. multi-I/O writes.

Figures 7.3 and 7.4 compare the performance of vector and single read for a variety of
thread counts and queue depth/multiread settings. Error bars are omitted because the vari-
ance is under 5% across runs. e solid line shows the experiment where vector interfaces
are used, and the dashed line shows when a single I/O is posted at a time (and one interrupt
is returned for each).

e emulator platform contains 4 DMA engines. Peak throughput requires at least 4 in-
dependent threads—eachuses oneDMAchannel regardless of the number of asynchronous
I/Os it posts at once. Saturating the device IOPS further requires maintaining a high effec-
tive queue depth, either by having a high queue depth per thread value or by spawning
many independent threads. Prior work has demonstrated that maintaining an I/O queue
depth of 10 is required to saturate the capabilities of current SSDs [102]; our results suggest
that this number will continue to increase for next generation SSDs.

Multiread and single I/O read throughput are similar because the read throughput is
limited by the hardware DMA capability, not the CPU. In contrast, multiwrite improves
performance over single writes, particularly at high thread counts and high queue depth.
For example, for a queue depth of 16, single I/O write performance remains between 900K
and 1M IOPS, whereas multiwrite performance reaches approximately 1.2M IOPS, an im-
provement of nearly 20%.
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reduce overall CPU load by a factor of three.

Raw throughput, however, is a potentially misleading indicator of the beneĕts of vec-
tor interfaces. CPU efficiency, measured by IOPS/core, paints a very different picture.
We calculate efficiency by dividing the IOPS performance by CPU utilization reported in
/proc/stat.

Figure 7.5 shows that at high vector widths, multiread and multiwrite are between 2–3x
more efficient than using single I/O. A large vector width reduces substantially the number
of interrupts per I/O, allowing the CPU to devote less time to interrupt handling. As we
demonstrate in more detail later, this reduced overhead makes many more cycles available
to application-level code: e overall systemperformance improves signiĕcantlymore than
the throughput-only microbenchmark might suggest.

7.3.2 Vector Interfaces to Key-value Storage

Next, we describe using vector interfaces to access a local key-value datastore on the back-
end node.

e log-structured FAWN-DS key-value datastore exports a synchronous put(string
key, string value)/get(string key) interface. We added get(vector<string>
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Figure 7.6: 512B synchronous read throughput through FAWN-DS using synchronous I/O
interface. Multi-I/O allows applications using synchronous I/O to maintain a high queue
depth at the device without requiring hundreds of threads.

key) which returns a vector of key-value results. For each lookup, FAWN-DS hashes the
key, looks up an entry in a hashtable, and read()s from storage using the offset from the
hashtable entry.

evector version requires taking in a vector of keys and calculating a vector of potential
offsets from the hashtable in order to issue a multiread() for all keys. One feature of
FAWN-DS complicates vectorization: To conserve memory, it stores only a portion of the
key in the hashtable, so there is a small chance of retrieving the wrong item when the key
fragments match but the full keys do not. As a result, the keys being looked up may each
require a different number of read() calls (though most complete with only one).

e vector version of get() must inspect the multiread result to identify whether all
entries have been retrieved; for entries that failed, vector get() tries again, starting from the
last hash index searched. Vector support required signiĕcant changes to the code structure
to manage this state, but the changes added fewer than 100 additional LoC.

Benchmarking multiget in FAWN-DS: One important difference between the FAWN-
DS benchmark and the earlier device microbenchmark is that the FAWN-DS API is syn-
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chronous, not asynchronous. is means that when FAWN-DS reads from the storage de-
vice, the reading thread blocks until the I/O (or I/Os, in the case of multiread) complete.
Many applications program to the synchronous I/O model, though some systems support
native asynchronous I/O though libaio-like interfaces.

Figure 7.6 shows the performance of 512B key-value lookups with an increasing num-
ber of threads. Single I/O submission reaches a maximum of about one million key-value
lookups per second at 32 threads, whereas multireads of size 16 or 32 can provide approx-
imately 1.8 million key-value lookups per second at 32 threads. In contrast to the asyn-
chronous I/O direct device benchmark, which showed no beneĕt for reads, multiread dou-
bles key-value lookup throughput. For synchronous I/O, using vector interfaces allows an
application to issue multiple I/Os per thread to maintain the high effective queue depth
required to saturate the device, whereas the single I/O interface can only maintain as many
outstanding I/Os as there are threads available. Beyond 64 threads, single I/O performance
drops.

We note that an application capable of issuing multireads should theoretically be struc-
tured to also perform asynchronous I/O as the application does not need to issue I/Os
one a time. However, the simplicity of synchronous I/O is appealing to many develop-
ers, and providing a “bulk I/O” interface can achieve many of the beneĕts of asynchronous
I/O for developers issuing multiple independent reads (e.g., in a for loop). Steere’s “dy-
namic sets” [120] proposed unordered aggregate I/O interfaces for such set iterator pat-
terns, showing that the system can choose an optimal pattern of access that ordered access
to I/O would prevent.

Vector interfaces and latency: Vector batching has a complex effect on latency. Batching
waits for multiple requests before beginning execution. It similarly does not complete until
the last request in the batch completes. Both of these effects add latency. On the other hand,
it reduces the amount of work to be done by eliminating redundant work. It also achieves
higher throughput, and so on a busy server reduces the time that requests spend waiting
for others to complete. ese effects reduce latency, particularly at high load.

Figure 7.7 shows the how batching modestly increases latency at low load. e bottom
le point in the graph shows the minimum latency for retrieving a key-value pair using the
NVM platform, which is approximately 10µs. Doubling the vector width does not double
the latency for the entire batch at low load. For example, for one thread, a vector width of
32 I/Os returns in 80µs, which is only a factor of eight worse than for a vector width of 1. In
fact, regardless of the number of threads, the vector width of 32 always has 8x the latency
of a single request. e next section evaluates latency versus (high) load in the networked
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Figure 7.7: Latency of vector I/O as a function of vector width and thread count. High
vector widths can hide latency: a vector width of 32 has only eight times higher latency
than a vector width of 1.

system, where increases in vector width signiĕcantly increase throughput with almost no
additional increase in latency.

7.4 Vector Interfaces to Networked Key-Value Storage

Exporting vector interfaces to non-volatile memory devices and to local key-value storage
systems provides several throughput, latency, and efficiency beneĕts. Next, we examine
vector interfaces to RPCs and their interaction with the vector interfaces provided by the
storage device and key-value storage APIs.

7.4.1 Experimental Setup

e experiments in this section all involve queries made over the network. A cluster of In-
tel Atom-based machines generates the query workload, using as many nodes as needed to
ensure that the backend node, not the load generators, are the bottleneck. e experiments
described here use between 20 and 30 query generation nodes. Queries are sent in an open
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loop: e query generators issue key-value queries at a speciĕc rate regardless of the rate of
replies from the backend.Ƭ We run each experiment for approximately 20 seconds, measur-
ing the throughput of key-value queries at the backend and logging the end-to-end latency
of each key-value request at every client in order to report the median latency.

e FAWN-KV soware running on the backend node uses 8–16 independent threads
to post I/Os to the NVM emulator, which is enough to saturate the DMA engines of the
platform.

Asynchrony: e benchmark utility issues asynchronous key-value requests because
synchronous requests would be bottlenecked by the end-to-end network latency of our
environment. Although some applications may desire a synchronous interface, an asyn-
chronous interface can benchmark the limits of the backend system using a relatively small
number of clients and threads.

Request Size: is evaluation inserts and retrieves 4-byte values (prior sections used
512 byte values), because transferring larger values over the network quickly saturates the
server’s 1Gbps network. Internally, the server still reads 512 bytes per request from storage.
is change will slightly over-state the relative beneĕts of vector RPC (below): Requests are
unchanged, internal storage I/Os are unchanged, but the amount of time spent copying data
into responses—something not helped greatly by network vectorization—will decrease. We
believe, however, that these effects are modest.

Multiget and Multiread: Our evaluation in this section measures the impact of multi-
read, multiget, and their combination when applied to FAWN-KV running on top of the
emulator platform with multiread support. We use the term multiread to describe vector
I/Os to the storage device, and we use the term multiget to describe vector RPCs over the
network. In ĕgures, we refer to amultiget vector width of N as “GN” and amultiread vector
width of M as “RM”. We use multiread as a proxy for multiwrite, and multiget as a proxy
for other types of RPCs such as multiput.

Reporting individual points: When comparingmaximum throughput values from dif-
ferent lines, we compare the maximum throughput achievable at a median latency below
1ms and 99%-ile latency below 10ms. is deĕnition chooses the highest throughput value
that does not suffer from extreme latency variability near the knee of the throughput vs.
latency curves.

Ƭe benchmark client uses three threads: one ĕlls a token bucket at the speciĕed rate, another removes
tokens to issue asynchronous requests to the backend device; and the ĕnal thread receives and discards the
responses.
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Figure 7.8: Networked 4-byte key-value lookup throughput vs. latency as a function of the
multiget width.

7.4.2 Results

We begin by measuring baseline throughput and latency without vectors. e R1G1 line
in Figure 7.8 shows the throughput versus latency as the query load increases. Because the
measurement is open-loop, latency increases as the system approaches full capacity.

At low load, the median latency is 220µs. As shown previously, the NVM device access
time at low load is only 10µs, so most of this latency is due to network latency, kernel, RPC,
and FAWN-KV application processing. Without vector interfaces, the system delivers 112K
key-value lookup/sec at a median latency of 500µs.

Multiget (Vector RPC) Alone

Network key-value throughput using standard storage and RPC interfaces is over an order
of magnitude lower than device capability and eight times lower than local I/O perfor-
mance. At this point, the overhead from I/O, local datastore lookups, RPC processing, and
network I/O has greatly exceeded the CPU available on the backend node. We begin by
examining how much the Vector RPC interface can help reduce this overhead.
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Figure 7.9: Variability between median and 99%-ile latency when using multiget. Top bar
above point (median) depicts 99%ile latency. Variability increases slightly with throughput.

e remaining lines in Figure 7.8 show load versus latency for larger multiget widths.
Multiget improves the throughput (at reasonable latency) from 112K key-value lookups/sec
to 370K for a multiget width of 16. Increasing the vector width further increases latency
without improving throughput.

Vector RPCs increase peak throughput more than they increase latency. For a multi-
get width of 4 (G4), the latency at 50,000 key-value lookups/sec is 300µs compared to
220µs for single get. But the maximum throughput achieved for G4 is roughly 212,000
lookups/second, over twice the throughput of G1 at a latency of just 340µs. e additional
latency comes from 1) the time to assemble a batch of key-value requests on the client, 2)
the time to enqueue and dequeue all requests and responses in a batch, and 3) the response
time for all I/Os in a batch to return from the NVM platform.

99%-ile Latency: While median latency is a good indicator of typical performance,
users of key-value systems may prefer a bound on 99%-ile latency. Figure 7.9 shows the
difference between median and 99%-ile latency as a function of throughput when using
multiget, with connecting lines omitted for clarity. e difference between median and
99%-ile (for a given multiget width) grows slowly as throughput increases. For most points
below the knee of that curve, the difference is oen only 20% at low load and no more than

89



 0

 2000

 4000

 6000

 8000

 10000

 0  50  100  150  200  250  300  350  400  450

L
a

te
n

c
y
 (

in
 u

s
)

K Lookups/sec

4B FAWN-KV Key-Value Lookups Varying Multiread

R1G1
R2G1

R4G1
R8G1

R16G1
R32G1

Figure 7.10: Networked 4-byte key-value lookup throughput vs. latency as a function of
the multiread vector width. Multiread can create batches of network activity which reduce
interrupt and packet rate to improve performance.

a factor of two at high load. Our data show similar results when varying multiread or when
combining multiget and multiread together.

Despite the 2× throughput improvement compared to single get throughput, through-
put is still far below the 1.8M key-value lookups that the device can provide. Although
multiget improves performance, per-RPC processing is not the only bottleneck in the sys-
tem.

Multiread (Vector Storage) Alone

Next, we hold the multiget width at 1 and vary the multiread width to understand to what
degree multiread can improve performance without multiget. Varying multiread alone is
useful for environments where only local changes to the storage server are possible.

Figure 7.10 plots throughput versus latency formultireadwidths of 1, 2, 4, ..., 32. Group-
ing 8 reads together (from different RPCs) improves throughput from 112K to 264K key-
value lookups/sec. Multiread widths beyond 8 do not increase throughput without a cor-
responding large increase in median latency.
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e low-load latency behavior is different for multiread than for multiget. At very low
load, latency scales linearly with the multiread width, drops rapidly as offered load in-
creases, and then increases as the system approaches peak capacity. is behavior is caused
by the queue structure that collects similar RPC requests together: Using a multiread width
N , the ĕrst key-value RPC that arrives into an idle system must wait for the arrival ofN−1
other key-value requests from the network before the batch of I/Os are issued to the device.
At low load, these N − 1 other requests enter the system slowly and as load increases, re-
quest inter-arrival time shortens and reduces the time the ĕrst request in the queue must
wait.

Multiread’s implicit beneĕts: To our surprise, multiread both improves the efficiency of
client network performance—evenwithoutmultiget—and increases cache efficiency on the
backend. We term these two improvements as implicit beneĕts, in contrast with the explicit
design goals of vector interfaces: multiread explicitly reduces the total number of com-
mands sent to the storage device, and correspondingly the number of interrupts received;
multiget explicitly reduces the number of send() and recv() system calls, serialization
and deserialization overhead for individual RPC messages, and number of packets (when
Nagle’s algorithm is disabled).

Improved client efficiency: A multiread storage I/O contains multiple key-value re-
sponses. Because we use a one-thread-per-connection model, these responses are destined
to the same client, and so the RPC handling thread sends these responses closely in time.
e client receives a burst of several responses in one packet (due to interrupt coalesc-
ing support on the network card), reducing signiĕcantly the number of ACK packets sent
back to the server. is improves the efficiency and performance of the server because
it incurs fewer network interrupts, but this behavior also improves efficiency on clients.
In Figure 7.10, the backend server is the bottleneck, but we have also found that enabling
multiread on the server can improve performance when the client CPU is bottlenecked by
network processing.

Improved cache efficiency: A by-product of organizing requests into queues for multi-
read is that it improves the backend’s cache efficiency, and hence sequential performance.
On each get request, the servicing thread performs a read(), processes the get RPC, and
inserts the request into a queue, repeating N times in a row while keeping requisite data
structures and code in cache. When the thread issues the multiread request, the hardware
interrupt generated will cause the processor’s cache to Ęush, but many of the structures
needed for performing I/O are no longer needed. is better cache locality increases the
instructions per cycle and contributes partially to the improvement that multiread provides
over single reads in the networked server evaluation.
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Figure 7.11: roughput vs. latency for matched vector widths. Vector interfaces enable a
single server to provide 1.6M key-value lookups per second at a latency below 1ms.

7.4.3 Combining Vector Interfaces

Despite their beneĕts, multiread and multiget in isolation cannot achieve full system per-
formance of 1.8M key-value lookups per second. Multiread improves networked key-value
retrieval by roughly 2x by reducing the storage interrupt load, freeing the CPU for the costly
network and RPC processing. Multiget provides a similar 2x improvement by reducing the
number of packets sent across the network and the RPC processing overhead. In this sec-
tion, we show that the two combine synergistically to increase throughput by more than a
factor of 10.

When the multiget width is less than the multiread width, a queue structure is required
to collect key-value requests from multiple RPCs. We call this implementation the “in-
termediate queue” pattern. If the multiget width and multiread width are the same, no
intermediate queues are necessary, and the backend can execute a multiread directly—we
call this implementation the “direct” pattern.
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Figure 7.12: roughput increases as storage and multiget widths increase. Using an in-
termediate queue between the RPC and storage layer signiĕcantly degrades performance at
large vector widths.

Matching Multiread and Multiget Widths

e combinations of parameters R and G are numerous; thus, we begin by investigating the
performance when the multiget width equals the multiread width. In this case, we use the
“direct” pattern that omits intermediate queues.

Figure 7.11 shows the latency versus throughput for equal vector widths using the direct
pattern. Combining multiread and multiget provides up to maximum of 1.6M key-value
lookups per second from the backend, nearly saturating the SSD emulator, and does so
without increasing median latency beyond 1ms. Achieving this only requires vector widths
of 32. Because no intermediate queues are required, the latency behavior at low load is
identical to that of just using multigets.

e seemingly small overheads of enqueuing and dequeuing requests in the intermedi-
ate queue signiĕcantly reduce performance at high load. Figure 7.12 shows the peak query
throughput with increasing multiget/multiread vector width. e dashed line depicts the
performance using an intermediate queue, while the direct call is shown as the solid line.
With a queue, the overhead of inserting and removing each get RPC’s data limits the per-
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Figure 7.13: 4-byte FAWN-KV key-value lookup latency behavior for various settings of
multiread and multiget, organized by holding the multiget width constant. e best choice
of multiread width depends on both load and the multiget width.

formance to 1.2M key-value IOPS, whereas the direct call implementation performs 1.7M
IOPS at peak.

Unequal Vector Widths

Is it ever advisable to set the size of multiget and multiread widths differently? We consider
scenarios where the multiget width is ĕxed at different values as the independent variable
and show how varying the multiread width affects throughput and latency. Figure 7.13
shows the throughput versus latency curves for various ĕxed multiget widths as we change
the multiread width. When the multiget width is less than the multiread width, we use an
intermediate queue to collect requests together. When the multiget width is greater than
the multiread width, we use the direct implementation but issue reads to the device in sizes
of the speciĕed multiread width.

For low multiget widths: At low load it is advisable to keep the multiread parameter
low. Waiting for the multiread queue to ĕll up at low load creates long queuing delays
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as shown previously. As load increases, however, it is beneĕcial to increase the multiread
width higher than the multiget width because it allows the system to achieve higher rates
than otherwise possible. us, the best strategy is to scale the multiread width higher as
load increases to get the best tradeoff of throughput and latency.

For highmultiget widths: Regardless of load, it is always best to match RPC and multi-
read widths. For example, Figure 7.13(e) shows the results for amultiget width of 32. When
multiread is low, issuing each request serially and taking an interrupt for each get request
in the multiget batch increases latency signiĕcantly. At low load, using a low multiread
width nearly doubles median latency, while at high load it is necessary to have a high mul-
tiread width to achieve higher throughput. e queue structure required when multiread
is greater than multiget, though, reduces the performance beneĕts having a high multiread
width can provide.

In summary, vector interfaces used in isolation improve throughput by amortizing the
cost of RPCs and reducing interrupts and packet processing, but still provide only a small
fraction of the underlying storage platform’s throughput capabilities. By carefully com-
bining both types of vector interfaces, however, we have shown both that such a system is
capable of 90% of optimal throughput and also how to set the widths to achieve the best
throughput and latency tradeoffs.

7.5 Discussion

7.5.1 When to Use Vector Interfaces

Using vector interfaces at the RPC and storage layers can signiĕcantly improve performance
for a simple key-value storage system. In this section, we ask: when are vector interfaces
generally useful and when should they be avoided?

e principal scenarios where vector interfaces are useful share three properties: e
services expose a narrow set of interfaces, exhibiting a high degree of “operator redun-
dancy”; the work being batched together shares common work; and the requests in an ini-
tial vector follow a similar path to ensure that vectors are propagated together throughout
the distributed system.

Narrow Interfaces: Key-value and other storage systems oen export a small number of
external interfaces to clients. Under high load, any such system will be frequently invoking
the same operators, providing the opportunity to eliminate redundant work found across
these similar operations. If the interface is not narrow but the operator mix is skewed to-
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wards a common set, then operator redundancy will be high enough that vector interfaces
can provide a beneĕt.

Similarity: e computational similarity found among get requests in a multiget inter-
face allows us to amortize and eliminate redundant work common across independent exe-
cutions of those requests. StagedDB took advantage of query similarity to improve database
performance by eliminating redundant table scans and re-using commondata and code ref-
erences [62, 63]. In contrast, consider a vector “SELECT” interface for SQL used to batch
completely different select queries. If the queries in a vector do not operate on the same
table or process the resulting data similarly, then there may be few opportunities for opti-
mization because redundancy may not exist. e cost of serializing independent requests
that are computationally-unique would outweigh the beneĕts the small amount of work
sharing provides [71].

Vector Propagation: For maximum advantage, vectors of similar work should propa-
gate together through the system. In FAWN-KV, the key-value lookups in a multiget from
a client to the backend remain together throughout the lifetime of the operation. A mixed
put/get workload, in contrast, would diverge once the request arrives at the backend; the
backend would need to inspect the elements in the vector to separate the puts and gets into
two separate vector operations. e system may then need to re-combine these two vec-
tors before sending a response, adding further coordination and serialization overhead.
Other systems have successfully used the “stages with queues” model to implement re-
convergence for graphics pipelines [125]; PacketShader, for example, demonstrated that
packet processing does not signiĕcantly diverge in execution to erase the beneĕts that GPU-
accelerated vector processing can provide [61].

7.5.2 Using Vector Interfaces at Large Scale

Vector RPCs can be easily used when communicating with a single backend storage server.
When the storage system consists of tens to hundreds ofmachines, each storing a portion of
the entire dataset, a client’s key requests might not map to the same backend storage server,
requiring that the client issue several RPCs each consisting of requests for fewer keys. e
ability to issue large multiget RPCs depends on three factors: key naming, access pattern,
and the replication strategy.

Key naming: Backend nodes are typically responsible for a subset of the key-value pairs
in a distributed storage system; a single storage node serves keys for multiple continuous
partitions of the key space, and an index (oen a distributed B-tree or a simple map) is
queried to map keys to nodes. Most systems structure accesses to key-value storage based
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on how keys are named. If the key is a hash of an application-speciĕc name, then a multi-
get from a single client will contain keys that are randomly distributed throughout the key
space, reducing the likelihood that a multiget request can be served by a single backend. If
the keys are not hashed, then the application access pattern and key naming policy deter-
mines how a set of key requests in a multiget map to backends.

Access pattern: Some applications, like webmail services, will exhibit a high degree of
request locality: users access and search only over their own mail. If keys corresponding to
a particular user are preĕxed with a unique user ID or some other identiĕer that speciĕes
locality in the key space, then requests for multiple keys might be served by a small number
of backend nodes, allowing the multiget RPC to maintain the original vector width. For
other applications, the access pattern might not exhibit locality: Social network graphs can
be difficult to partition well [60], so requests from a single client may need to access a large
fraction nodes in the backend storage system.

Replication: Data in large-scale key-value storage systems are oen replicated for fault-
tolerance, and also for higher performance or load balancing. Because replication provides
multiple choices from which to obtain the same data, it is possible to use replication to re-
duce the total number of nodes one needs to contact when using vector RPCs: amultiget for
two keys that map to different physical nodes can be satisĕed by a single node if it contains
a replica for both keys.

However, the type of replication used determines whether replication can maintain the
beneĕt of using vector RPCs for higher performance. For example, if a system uses a hot-
spare replication scheme (a replica node contains the exact same data as its master), then
two keys that map to different masters will not map to the same physical node. On the
other hand, a mapping system like we used in FAWN-KV (overlapping chains using virtual
nodes) slightly increases the probability that two keys can be served by the same node and
allows a client to issue a single multiget RPC to retrieve both key-value pairs.

Application-speciĕc replication schemes can do far better in ensuring that a client’s re-
quests need only hit one server. For example, SPAR is a middleware layer that partitions
and replicates data for online social networks to ensure that a user’s data (including one-
hop neighbors) exists on a single server, while simultaneously minimizing the overhead of
replication [105].

Simulation of worst-case pattern: To understand how a random access workload inter-
acts with vector RPCs and replication, we use aMonte Carlo simulation to ĕnd the expected
averagewidth of vector RPCs as a key-value storage cluster scales. We assume that keysmap
uniformly at random to nodes (including replicas of keys). We then ĕx the desired vector
width at 32, vary the number of serversN that data is distributed evenly across, and calcu-
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Figure 7.14: Simulation results showing the expected vector width of multiget RPCs, with
the client making requests for 32 random keys, as a function of cluster size and replication
factor. Data is assumed to be distributed evenly across all nodes, and replica nodes are
chosen randomly (without replacement).

late the minimum number of nodes a client must contact to retrieve 32 random keys (out
of a large set of keys)ƭ. Each experiment is run 1000 times and we record the average mini-
mum node count. We then divide the desired vector width (32) by this number to calculate
the average expected vector RPC width.

Figure 7.14 shows how increasing the number of servers affects the average vector RPC
width. For a replication factor of 1, the vector width starts at 32 for 1 server, reduces to 16
for 2 servers, etc. is line follows the formula f(x) = 32

x−(x×(1− 1
x
)32)

, which can be derived
from a balls and bins analysis assuming 32 balls and x bins.

Increasing replication allows a client tomaintain a higher vector width as the number of
backend servers increases, because the additional choice provided by replication allows the
client to pick a smaller set of nodes to cover all keys. For example, with a replication factor
of 10 and 128 servers, a client can expect to contact minimum of ∼9 servers to retrieve

ƭis requires calculating a minimum set cover where the universe is the 32 keys requested and the sets
are the N mappings of server number to keys.
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the 32 random keys in the vector request, resulting in an average vector width of ∼4 key
requests sent to each server.

While random replication can improve the ability tomaintain higher vector RPCwidths
for random access patterns, these simulation results highlight the need to cluster keys in-
telligently (e.g., application-speciĕc locality hints or clustered replication techniques [105])
to ensure that vectors can be propagated with maximum efficiency.

7.5.3 How to Expose Vector Interfaces

Vector interfaces to local key-value storage systems and devices can be implemented with-
out requiring global modiĕcations, whereas vector interfaces to RPC requires coordinated
changes. is necessitates the question: Where and how should these vector interfaces be
exposed to other components in a distributed system?

One option, as we have chosen, is that Vector RPC interfaces are exposed directly to
clients interacting with key-value storage systems. For example, a social networking appli-
cation may need to gather proĕle information given a large list of friends, and it may do
so by issuing a multiget corresponding to key-value requests for each friend, instead of re-
questing data serially one friend aer another. Multiget support in systems like memcached
and Redis suggest that applications today already have opportunities to use these vector in-
terfaces.

Alternatively, a client library can implicitly batch synchronous RPC requests originating
from different threads into a single queue, issuing the vector request once a timeout or a
threshold has been reached. Unfortunately, this creates the same opaque latency versus
throughput tradeoffs found in TCP’s Nagle option. In contrast, the advantage of an explicit
synchronous vector interface is that the program cannot advance until the entire vector is
complete, giving full control to the application developer to decide how to trade latency for
throughput.

Some cluster services separate clients from backend infrastructure using load balancers
or caching devices. Load balancers can coalesce requests arriving from different clients
destined to the same backend, batching the requests in vector RPCs to the backend. Unfor-
tunately, doing so can create the same poor low-load latency behavior we observe when the
multiread factor is much greater than the multiget factor: the degree of coalescing should
depend on load to avoid this behavior. In addition, some clients may require very low
latency, whereas others may desire high throughput; vectorizing requests from different
clients unfairly penalizes the former to satisfy the latter if coalesced at an intermediary.
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7.5.4 Vector Network Interfaces

We have discussed vectorizing storage and RPC interfaces, but we did not need to vectorize
the network socket layer interfaces because our TCP socket access patterns already work
well with existing Ethernet interrupt coalescing. Our structuring of threads and queues
ensures that we write in bursts to a single stream at a time. As we showed in Section 7.4.2,
when several packets arrive over the network closely in time, Ethernet interrupt coalescing
will deliver multiple packets to the kernel with a single interrupt (which, in turn, oen
triggers only one outgoing ACK packet from the kernel for the combined sequence range).
e application recv() will process this larger stream of bytes in one system call rather
than one for each packet. On the sending side, Nagle’s algorithm can coalesce outbound
packets, though the application must still incur a mode switch for each system call.Ʈ

However, vector networking interfaces (such as multi_send(), multi_recv(), or
multi_accept()) can be useful in other environments when code repeatedly invokes the
same type of network function call with different arguments close in time: for example,
an event loop handler sending data might frequently call send() for multiple sockets, and
amortizing the cost of this system call across multiple connections may be useful. Many
event-based systems fall under this pattern, including systems build on libevent [104].

Vector network interfaces therefore can be useful depending on the structure of network
event processing in a key-value storage system. For a highly-concurrent server for which
event-based systems use signiĕcantly lower memory, we believe that implementing vector
interfaces to the network might be necessary.

7.5.5 Vector Interfaces for Vector Hardware

Programming to vector interfaces oen introduces many for loops in code. For example,
preparing the multiread I/O command to the underlying storage device requires creating
and populating a structure describing the offset and size of each individual I/O. is creates
a unique opportunity to better use vector hardware available on emerging server platforms.

As an example, the multiget/multiread code path in the backend server contains 10 for
loops that iterate over vectors whose width matches the multiget factor. A signiĕcant com-
ponent of the increased latency at high vector widths comes from having to sequentially it-
erate through these vectors. SSE hardware today is capable of operating on 256-bit registers
and GPU hardware is capable of much wider widths. Exporting the computations within

Ʈe RPC package we use (Apache ri) explicitly disables Nagle’s algorithm by default to reduce the
RPC latency added by batching outgoing packets in the kernel.
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these simple loops to specialized vector hardware instead of general-purpose cores could
dramatically reduce the latency at larger batch sizes. is is not merely wishful thinking:
developers today have tools to harness vector hardware, such as CUDA and Intel’s SPMD
compiler (http://ispc.github.com/).

7.6 Related Work

Vector interfaces: Prior systems have demonstrated the beneĕts of using an organization
similar to vector interfaces. For example, “event batches” in SEDA [134] amortize the cost
of invoking an event handler, allowing for improved code and data cache locality. Vector
interfaces also share many common beneĕts with Cohort Scheduling [80] such as lower
response time under certain conditions and improved CPU efficiency. However, Cohort
Scheduling beneĕts only from the implicit batching that scheduling similar work in time
provides, whereas vector interfaces can completely eliminate work that need not be exe-
cuted once per request.

Batched execution is a well-known systems optimization that has been applied in a va-
riety of contexts, including recent soware router designs [48, 61, 86] and batched system
call execution [106, 108, 119]. Each system differs in the degree to which the work in a
batch is similar. e multi-call abstraction simply batches together system calls regardless
of type [108], whereas FlexSC argues for (but does not evaluate) specializing cores to han-
dle a batch of speciĕc system calls for better cache locality. Vector interfaces target the far
end of the spectrum where the work in a vector is nearly identical, providing opportunities
to amortize and eliminate the redundant computation that would be performed if each re-
quest in the vector were handled independently [131]. e Stout [88] system demonstrates
the throughput and latency beneĕts of batching key-value queries at high load and uses an
adaptation algorithm to control the RPC vector width based on current latency. Using this
approach can allow a system to operate at the optimal convex-hull of latency vs. throughput.
Orthogonally, we show that propagating work in vectors is crucial to improving throughput
and latency for a high-performance storage server.

In High Performance Computing, interfaces similar to our vector interfaces have been
developed. Examples includeMulticollective I/O [92], POSIX listio andreadx()/writex()
extensions. ese extensions provide batches of I/O to an intermediate I/O director, which
can near-optimally schedule requests to a distributed storage system by reordering or co-
alescing requests. e existence of these interfaces suggests that application designers are
willing and able to use explicit vector interfaces to achieve higher performance.
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Key-value stores: In recent years, several key-value storage systems optimized for Ęash
storage have emerged to take advantage of Ęash storage and non-volatile memory improve-
ments. BufferHash [14], SkimpyStash [45], FlashStore [44], and SILT [83] are examples of
recent key-value systems optimized for low-memory footprint deduplication or Content
Addressable Memory systems. ese systems evaluate performance on a prior generation
of SSDs capable of a maximum of 100,000 IOPS, whereas our work looks ahead to future
SSD generations capable of much higher performance. eir evaluations typically use syn-
thetic benchmarks or traces run on a single machine. In contrast, our work demonstrates
that achieving high performance for a networked key-value storage system is considerably
more difficult, and that achieving the performance of local microbenchmarks may require
redesigning parts of local key-value systems.

Non-volatile memory uses: Several studies have explored both the construction and
use of high-throughput, low-latency storage devices and clusters [11, 34, 101, 118, 132].
Most closely related is Moneta [34], which both identiĕed and eliminated many of the ex-
isting overheads in the soware I/O stack, including those from I/O schedulers, shared
locks in the interrupt handler, and the context switch overhead of interrupts themselves.
Our work is orthogonal in several ways, as vector interfaces to storage can be used on top
of their soware optimizations to yield similar beneĕts. In fact, our userspace interface to
the NVM device begins where they le off, allowing us to explore opportunities for further
improvement by using vector interfaces. Finally, we demonstrate that having the capability
to saturate a NVM device using local I/O does not imply that achieving that performance
over the network is straightforward.

Programming model: Our current implementation of vector interfaces and functions
uses simple structures such as queues and vectors but requires programmers explicitly to
use the vector interfaces (both in type and in width). In some cases, converting an op-
eration from using a single interface to a multi-interface can be difficult. Libraries like
Tame [76] provide novice programmers with basic non-vector interfaces and event-based
abstractions, but can execute operations using vectorized versions of those interfaces (as-
suming that the function being vectorized is side-effect free).

Vector interfaces bear similarity to the “SIMT” programming model used in the graph-
ics community, where computations are highly-parallelizable, independent, but similar in
operation. GPU ĕxed function and programmable shader hardware matches well to these
workloads where each functional core performs work in lockstep with potentially hun-
dreds of other threads in a warp [56, 125]. e popularity of CUDA programming sug-
gests that exposing non-vector interfaces to programmers and using vector-style execution
for performance-critical sections can provide the best of both worlds, provided that vector
interfaces are exposed where needed.
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Chapter 8

Vector Interfaces for OS-intensive
Workloads

For a distributed key-value storage system, we have demonstrated that pervasive use of
vector interfaces are a scalable and effective technique to improve system efficiency. e
advantages they provide can be generalized beyond networked key-value systems to OS-
intensive systems such as webservers and databases. In this section, we make the case for
e Vector Operating System, describing the opportunities for eliminating redundant ex-
ecution found in many of these OS-intensive services and discussing the challenges in ex-
posing these vector interfaces to more than just storage and RPC systems.

8.1 Background

Over the last decade, computing hardware has promised and delivered performance im-
provements by providing increasingly parallel hardware. Systems with multi-core CPUs,
and GPUs with hundreds of cores have become the norm. e gauntlet has been ĕrmly
thrown down at the soware community, who have been tasked to take advantage of this
increased hardware parallelism.

e operating systems community has largely risen to the challenge, presenting new
OS architectures and modifying existing operating systems that enable parallelism for the
many-core era [25, 30, 31, 135]. Independently, application writers have rewritten or mod-
iĕed their applications to use novel parallel programming libraries and techniques. Both
communities have improved soware without changing how applications request OS re-
sources.
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In this chapter, we argue that OS-intensive parallel applications, including many of to-
day’s driving datacenter applications, must be able to express requests to the operating sys-
tem using a vector interface in order to give the OS the information it needs to execute
these demands efficiently. To not do so will make “embarrassingly parallel” workloads em-
barrassingly wasteful. We outline a new design, the Vector OS (VOS), that is able to let
OS-intensive applications be not just parallel, but efficiently parallel.

Consider a modern webserver that receives a new connection using the accept() sys-
tem call. accept() returns exactly one connection from a list of pending connections. e
application thenperforms a series of sequential operations to handle the connection—setup,
application-speciĕc processing, and teardown. Ahigh-loadwebservermay be servingmany
requests in parallel, but each request follows similar execution paths, wasting resources ex-
ecuting redundant work that could be shared across concurrent requests.

In VOS, work is executed using vector operations that are speciĕed through vector
interfaces like vec_accept() (which returns multiple connections rather than just one),
vec_open(), vec_read(), vec_send(), etc. Exposing vector interfaces between applica-
tions and the operating system improves efficiency by eliminating redundant work; more-
over, vector interfaces open the door to new efficiency opportunities by allowing VOS to
more effectively harness vector and parallel hardware capabilities already present in many
machines, such as SSE vector instructions and GPUs.

is part of the thesis argues that vector interfaces are critical to achieving efficient
parallelism, thus requiring changes to the OS interface that applications program to. But
this departure from a decades-old interface raises several questions and challenges that are
as exciting as they are difficult: Should developers explicitly specify work in terms of vectors
of resources? If not, how should vector execution be hidden from the programmer without
introducing excessive complexity into the OS? What are the semantics of vector system call
completion? Should they be synchronous or asynchronous, and how should they handle
exceptions? We addressmany of these questions in this paper, but donot yet have answers to
all of them. Nonetheless, we believe that theVectorOS can enableOS-intensive applications
to make the maximum use of today’s increasingly vector and parallel hardware.

8.2 e Parallel Landscape

Hardware parallelism is growing. Processors continue to gain speed by adding cores;
graphics engines improve rendering performance by adding shaders; solid state drives im-
prove throughput by adding more Ęash chips; and CPUs increase throughput by making
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open(f):
  1. context switch
  2. alloc()
  3. copy(f)
  4. path_resolve(f):
      acl_check(f)
      h = hash(f)
      lookup(h)
  5. read(f)
  6. dealloc()
  7. context switch

                vec_open([f1,f2,f3]):
                  1.  context switch
                  2.  vec_alloc()
                  3.  vec_copy([f1,f2,f3])
                  4.  vec_path_resolve([f1,f2,f3]):   
                        vec_acl_check([f1,f2,f3])    
                        hset = vec_hash([f1,f2,f3])
                        vec_lookup(hset)

                  
                  6. vec_dealloc()
                  7. context switch

Redundancy eliminated}

Redundancy eliminated if joined}
} Parallelizable

}SSE
}Redundancy eliminated

}Redundancy eliminated

5a.  vec_read_xfs([f1])   5b. vec_read_ext4([f2,f3])

Figure 8.1: Pseudocode for open() and proposed vec_open(). vec_open() provides oppor-
tunities for eliminating redundant code execution, vector execution when possible, and
parallel execution otherwise.

their vector instructions, such as SSE, even wider.Ƭ ese trends are expected to continue
into the foreseeable future, barring a revolution in device physics.

OS-intensive, parallel applications are adapting to parallel hardware. memcached
moved from single-threaded to multi-threaded; event-based webservers such as node.js
and PythonTwisted are improving support formassive concurrency; languages and thread-
ing libraries such as OpenMP, Cilk, Intel read Building Blocks, and Apple’s Grand Cen-
tral Dispatch library all encourage applications to break work into smaller independent
tasks, which the libraries can then assign to cores.

Parallel operating systems are making parallel execution possible. Recent work on
improving operating system support for parallelism has made great strides in enabling par-
allel execution of code by removing locks, improving cache locality and utilization for data,
carefully allocating work to processors to minimize overhead, and so on [31, 61, 119, 135].

Parallelism is necessary, but not necessarily efficient. While parallel execution on par-
allel hardwaremay sound ideal, it completely ignores efficiency, a metric that measures how
much of a system’s resources are necessary to complete some work [18]. We therefore turn
our attention to “efficient parallelism,” or making the best overall use of resources on a
parallel system.

ƬIntel’s Advanced Vector Extensions support 256-bit wide register operations.
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8.3 Vectors will be Victors

Providing efficient parallelism requires that operating systems do the following:

1. Eliminate redundancy: Identify what work is common or redundant across a set of
tasks and execute that work exactly once.

2. Vectorize when possible: Work should be expressed as operations over vectors of ob-
jects so it can be both executed efficiently using hardware techniques such as SSE and
better optimized by compilers.

3. Parallelize otherwise: If code paths diverge, continue to execute work in parallel.

Consider the example of the open() system call in Figure 8.1 (le) simpliĕed from
the Linux 2.6.37 source code. Opening a ĕle requires context switches, memory operations
(e.g., copying the ĕlename into a local kernel buffer in alloc()), performing access control
checks, hashing ĕle names, directory entry lookup, and reads from a ĕlesystem. Today,
simultaneous open() calls can mostly be executed in parallel, but doing so would not be as
efficient as it could be.

Figure 8.1 (right) shows the set of operations required for vec_open(), which pro-
vides a vector of ĕlenames to the operating system. In this example, ĕle f1 exists in an
XFS ĕlesystem while the other two reside in an ext4 ĕlesystem. e code path is similar to
open(), with the exception that the interfaces are capable of handling vectors of objects,
e.g, vec_hash() takes in several ĕlenames and returns a vector of hashes corresponding
to those ĕlenames. ese vector interfaces package together similar work and can improve
efficiency by using the techniques described above.

Eliminating Redundancy: When provided vectors of objects, a vector system call can
share the common work found across calls. Examples of common work include context
switching, argument-independentmemory allocations, anddata structure lookups. alloc()
is an argument-independent memory allocation that returns a page of kernel memory to
hold a ĕlename string; the vec_alloc() version need only fetch one page if the length of
all ĕlename arguments ĕts within that page, eliminating several additional page allocations
necessary for each ĕle if processed one by one. vec_path_resolve() requires traversing
the directory tree, performing ACL checks and lookups along the way. If ĕles share com-
mon parent directories, resolution of the common path preĕx need only occur once for all
ĕles instead of once per ĕle.

As yet another example, lookup(hash) must search a directory entry hash list to ĕnd
the one entry that matches the input hash. In vec_lookup(hset), the search algorithm
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need only traverse the list once to ĕnd all entries corresponding to the vector of hashes.
While this search can be performed in parallel, doing so would needlessly parse the hash
list once for each input hash, wasting resources that could be dedicated to other work.

Vector interfaces provide general redundancy-eliminating beneĕts (e.g., reducing con-
text switches), some of which can be provided by other batching mechanisms [119]. But
vector interfaces also can enable specialized algorithmic optimizations (e.g., hash lookup)
because all operations in a batch are the same, even though the operands may differ.

HWVectorizing: Certain operations can be performedmore efficiently when theymap
well to vector hardware already available but underutilized by existing operating systems.
An implementation of vec_hash() might use SSE instructions to apply the same trans-
formations to several different ĕlenames, which may not be possible when dealing with
precisely one ĕlename at a time.

Parallelizing: Not all work will perfectly vectorize throughout the entire execution. In
our vec_open() example, three ĕles are stored on two different ĕlesystems. While most of
the code can be vectorized because they share common code paths, performing a read()
from two different ĕlesystems would diverge in code execution. Both calls can occur in
parallel, however, which would use no more resources than three parallel read() calls;
in this case it would probably use fewer resources because there will exist common work
between ĕles f2 and f3 within vec_read_ext4().

When code paths diverge, the system should automatically determine whether to join
the paths together. In Figure 8.1, there is an optional barrier beforevec_dealloc()—should
both forked paths complete together, joining the paths can save resources in executing deal-
locations and context switches. But should they diverge in time signiĕcantly, it may be
better to let the paths complete independently.

8.3.1 Quantifying Redundant Execution

Howmuch redundancy exists for OS-intensive parallel workloads running on highly paral-
lel hardware? We explore this question by looking at the system call redundancy of Apache
2.2.17 server web requests between four different ĕles in two different directories. We use
strace to record the system calls executed when serving a single HTTP GET request for
each ĕle. Each request was traced in isolation and we show the trace for the request with
the median response time out of ĕve consecutive requests for each ĕle.

Figure 8.2 shows when each system call was executed for each request for these four dif-
ferent static ĕles. Each request invoked the same set of system calls regardless of which ĕle
was served, and the timings between system calls were similar, with variances attributable
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A-accept            G-getsockbyname   F-fcntl       R-read  
S-stat/shutdown O-open                   M-mmap/munmap  
W-write/writev    C-close                   P-poll

/home/user/foo.html

/home/user/bar.html

/var/www/htdocs/index.html

/var/www/htdocs/favicon.ico

 0  0.5  1  1.5  2  2.5  3  3.5
Time (ms)

Strace of Four Web Requests

A G FF R S OFF MRWMWCP RSPRCRA

A G F F R S O FF MRWMWCP RSPRCRA

A G FF R S OFF MRWMWCP RSPRCRA

A G FF R S O FF M RW MWC P RSPRCRA

Figure 8.2: Trace of four different web requests serving static ĕles shows the same system
calls are always executed, and their execution paths in time are similar.

to OS scheduling. is simple experiment demonstrates that real applications provide op-
portunities to take advantage of the beneĕts of vector interfaces.

8.3.2 Scaling Redundancy With Load

Efficiency matters most when parallel systems are operating at high load, so we must un-
derstand how redundancy scales as a function of incoming load. We argue that at high load,
redundancy is abundantly available, making the Vector OS approach an appealing solution.

To illustrate this concept, Figure 8.3 shows how offered load affects the redundancy
available in a parallel system. Here, we deĕne redundancy loosely as the amount of work
that is identical to some unique work currently being done in the system. In the best case,
each additional request is identical to existing requests in the system, and requests arrive
simultaneously; redundancy therefore increases linearly with load.

In the worst case, requests are uncoordinated: they differ in both type and/or arrival
time. At low load, redundancy is thus hard to ĕnd. As load increases, redundancy increases
for several fundamental reasons. First, a system has a ĕnite number of different types of
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Figure 8.3: At high load, redundancy linearly grows with incrementally offered load.

tasks it is likely to execute; a similar argument has been made for applications running on
GPUs [56]. By the pigeonhole principle, redundancy must increase once a request of each
type already exists in the system. In addition, high load systems are increasingly becoming
specialized for one type of workload (databases and ĕlesystems, caching, application-logic,
etc.), further shrinking the number of distinct types of work. Distributed systems oen
partition work to improve data locality or further increase specialization within a pool of
servers, again increasing the chance that a high-load system will see mostly homogeneous
requests.

ese homogeneous requests may also arrive closely in time: Many systems already
batch work together at the interrupt level to cope with interrupt and context switching
overheads, creating an under-appreciated opportunity. Today’s operating systems make
limited use of this interrupt coalescing, but this mechanism plays a more fundamental role
in the Vector OS: It provides the basis for nearly automatic batching of I/O completions,
which are delivered to the application and processed in lockstep using convenient vector
programming abstractions. ese “waves” of requests incur additional latency only once
during entry into the system.

8.4 Towards the Vector OS

e Vector OS must address several difficult interface and implementation challenges. e
design must expose an appropriate set of vector interfaces to allow application writers to
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both easily write and understand soware running on parallel hardware. VOS must also
organize and schedule computation and I/O to retain vectorization when possible and par-
allel execution otherwise.

Batching imposes a fundamental tradeoff between efficiency gains by having a larger
batch, and adding latency by waiting for more requests to batch. However, at higher loads,
this tradeoff becomes a strict win in favor of vectorization, as the efficiency gains enable
all requests to execute faster because they spend less time waiting for earlier requests to
complete. VOS must therefore make it easy for applications to dynamically adjust their
batching times, much as has been done in the past for speciĕc mechanisms such as network
interrupt coalescing. Fortunately, even at lower load, Figure 8.2 shows that calls that arrive
together (e.g., subsequent requests for embedded objects aer an initial Web page load)
present a promising avenue for vectorization because their system call timings are already
nearly identical.

8.4.1 Interface Options

Today’s system call interface destroys opportunities for easy vectorization inside the ker-
nel—system calls are synchronous and typically specify one resource at a time. VOS must
be able to package similar work (system calls, internal vector function calls) together to be
efficiently parallel. We enumerate several interface possibilities below and describe their
impact on the efficiency versus latency tradeoff.

1. Application-agnostic changes: One way to provide opportunities for making vector
calls without application support is to introduce system call queues to coalesce similar re-
quests. An application issues a system call through libc, which inserts the call into a syscall
queue while the application waits for its return. Upon a particular trigger (a timeout, or a
number threshold), VOS would collect the set of requests in a particular queue and execute
the set using a vector interface call—this implementation can build upon the asynchronous
shared page interface provided by FlexSC [119]. Another approach is to rewrite program
binaries to submitmultiple independent system calls as onemulti-call by using compiler as-
sistance [106, 108]. Both approaches transparently provide VOS with collections of system
calls which it could vectorize, but these approaches have several drawbacks: First, applica-
tions do not decide when to issue a vector call, so they cannot override the timing logic built
into the OS or compiler, leading to a frustrating tension between application writers and
OS implementers. Second, a single thread that wishes to issue a set of similar synchronous
system calls (e.g., performing a bunch of read() calls in a for loop), will still execute all
reads serially even if there exists no dependence between them.

110



2. Explicit vector interface: Applications can help VOS decide how to coalesce vector
calls by explicitly preparing batches of similar work using the vector interface to system
calls, such as vec_open(), vec_read(), etc. VOS can use this knowledge when schedul-
ing work because it knows the application thread will be blocked until all submitted work
completes. is assumes these vector calls are synchronous, though a non-synchronous
completion interface (e.g., return partial results) may be useful for some applications.

As an example of how an applicationmight use explicit vector interfaces, the core event-
loop for an echo server may look as follows (in simpliĕed pseudocode):

fds = vec_accept(listenSocket);
vec_recv(fds, buffers);
vec_send(fds, buffers);

As the application processing between vec_recv() and vec_send() becomes more
complicated, raw vector interfaces may prove difficult to use. e beneĕt is that the OS is
relieved of deciding how and when to vectorize, leaving the application as the arbiter for
the efficiency versus latency tradeoff and eliminating that complexity from the OS.

3. Libraries and Languages: Although our focus is on the underlying system primi-
tives, many applications may be better served by library and language support built atop
those primitives. Several current event-based language frameworks appear suitable for
near-automatic use of vector interfaces, including node.js and Python Twisted. Programs
in these frameworks specify actions that are triggered by particular events (e.g., a new con-
nection arrival). If the actions speciĕed are side-effect free, they could be automatically
executed in parallel or even vectorized as is done with some GPU programming frame-
works such as CUDA. System plumbing frameworks such as SEDA [134] that use explicit
queues between thread pools also present a logical match to underlying vector interfaces,
with, of course, non-trivial adaptation.

Finally, the progress in general-purpose GPU programming is one of the most promis-
ing signs that programming for vector abstractions is possible and rewarding. Both CUDA
and OpenCL provide a “Single Instruction Multiple read” (SIMT) abstraction on top of
multi-processor vector hardware that simpliĕes some aspects of programming these sys-
tems. Although programmers must still group objects into vectors, the abstraction allows
them to write code as if the program were a stream of instructions to a single scalar proces-
sor. We believe that the amazing success of GPGPUs in high-performance computing is a
telling sign that programmers who want performance are willing and able to “think vector”
in order to get it.
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8.5 Discussion

We believe that restructuring for a vector OS is needed to improve the efficiency of OS-
intensive parallel soware, but to do so brings challenges and accompanying opportunities
for OS research:

Heterogeneity: As the multiple-ĕlesystem example of vec_open() showed, VOS will
need to move efficiently between single-threaded execution of shared operations, vector
execution of SIMD-style operations, and parallel execution when code paths diverge. We
believe it is clear that forcing the OS programmer to manually handle these many options
is infeasible; VOS will require new library, language, or compiler techniques to render the
system understandable. In addition to code divergence, VOS’s code should also be appro-
priately specialized for the available hardware, be it a multi-core CPU, an SSE-style CPU
vector instruction set, an integrated GPU or a high-performance discrete GPU.

Application to databases: StagedDB [62] showed the beneĕts of a speciĕc type of work-
sharing made available through staged construction of query processing in a database. Ex-
amples of shared work included re-using the results of a database scan across many concur-
rent queries. Follow up work showed that aggressive work sharing could end up serializing
query execution beyond the beneĕt that work sharing could provide for in-memory work-
loads [71]. In their system, the work being shared oen involved the shared table scan, with
each individual query performing a unique operation on that shared data that could not be
vectorized across queries. We believe that for database workloads that exhibit more compu-
tational similarity, such query serialization can be avoided, but for computationally-unique
workloads, vector interfaces are less useful.

Passingdownvector abstractions throughdistributed storage: Manyhigh-performance
computing systems use I/O directors as a middleware layer between compute and storage
systems. Multi-collective I/O is an interface presented to application designers that allows
these I/O directors to more effectively use the underlying storage system. Given that these
applications already use these “vector”-like interfaces in applications, we believe that these
abstractions can and should be pushed down to the storage layer as we showed in Chapter 7
for similar efficiency and throughput beneĕts.
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Chapter 9

Future Work and Conclusion

e FAWN approach has the potential to provide signiĕcant energy and cost savings by
reducing the peak power consumed by datacenters. is dissertation demonstrates that
achieving this potential involves soware-hardware co-design, and that existing soware
system stacks require a new set of techniques, designs, and abstractions to harness the full
capabilities of the FAWN approach. In this section, we discuss the landscape for prior and
future FAWN systems, the future work le by the dissertation, and conclude with a brief
summary of the contributions of the work.

9.1 Evolving Server and Mobile Platforms

e FAWN project began in 2007 because of the enormous opportunity to improve energy
efficiency by combining wimpy nodes and, at the time, relatively high-end Ęash. Over the
last several years, our comparisons have demonstrated a still signiĕcant but smaller im-
provement over evolving brawny platforms.

One reason for this difference is that we have oen chosen off-the-shelf systems that
leave something to be desired: e ĕxed power overheads of non-CPU components tended
to dominate power consumption, or the storage or networking I/O capability were not bal-
anced well with processing capability. A sign that further efficiency improvements are pos-
sible is that custom architectures designed by SeaMicro, Tilera, and others have demon-
strated tight integration of wimpy nodes with balanced communication architectures (be-
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tween cores) that provide the same performance as ourwimpy node prototypes, while being
more than four times as energy efficient.Ƭ

Simultaneously, designers of “brawny” platforms have needed to increase throughput
while avoiding the power wall. Importantly, they have done so by taking advantage of some
of the same properties bywhich FAWN improves energy efficiency: by using slower, simpler
cores. For example, our winning entry for the 2010 10GB JouleSort competition used an
Intel Xeon L3426, which operated 4 cores (8 Hyperreads) at a clock rate of just 1.86GHz
and contained 8MB of L2 cache, about the same clock rate as the Atom-based FAWN sys-
tems we compare against.

An analysis of mobile processor evolution shows a similar trend: the high-end 15” Ap-
ple Macbook Pro line has moved from using a 2.8GHz dual-core Core2 Duo with 6MB of
L2 cache in 2009 to using a 2.2 GHz quad-core with 6MB of L3 cache in 2011, a signiĕ-
cant decrease in both frequency and per-core cache size. Because manufacturers have ap-
plied energy-efficient designs targeted originally for wimpy processors tomobile and server
platforms, we expect that the efficiency differences between wimpy systems and “efficient
server” platforms will shrink.

9.2 Implications and Outlook

In Section 2.1, we outlined several power scaling trends for modern computer systems.
Our workload evaluation in Chapter 5 suggested that these trends hold for CPU in real
systems—and that, as a result, using slower, simpler processors represents an opportunity
to reduce the total power needed to solve a problem if that problem can be solved at a higher
degree of parallelism.

In this section, we draw upon the memory scaling trends we discussed to present a
vision for a future FAWN system: Individual “nodes” consisting of a single CPU chip with
a modest number of relatively low-frequency cores, with a small amount of DRAM stacked
on top of it, connected to a shared interconnect. is architecture is depicted in Figure 9.1.
e reasons for such a choice are several:

Many, many cores: e ĕrst consequence of the scaling trends is clear: A future energy-
efficient system for data-intensive workloads will havemany, many cores, operating at quite

Ƭey have so far avoided integrating storage into their platforms. We believe that this integration will be
the next important step in ensuring these platforms are used for rich, stateful services like key-value storage
as opposed to stateless, simple webservers.
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Figure 9.1: Future FAWN vision: Many-core, low-frequency chip with stacked DRAM per
core.

modest frequencies. e limits of this architecture will be the degree to which algorithms
can be parallelized (and/or load-balanced), and the static power draw imposed by CPU
leakage currents and any hardware whose power draw does not decrease as the size and
frequency of the cores decrease.

However, themove tomany-core does not imply that individual chipsmust havemodest
capability. Indeed, both Intel andTilera have produced systemwith 48–100 cores on a single
chip. Such a design has the advantage of being able to cheaply interconnect cores on the
same chip, but suffers from limited off-chip I/O andmemory capacity/bandwidth compared
to the amount of CPU on chip.

Less memory, stacked: We chose a stacked DRAM approach because it provides three
key advantages: Higher DRAM bandwidth, lower DRAM latency (perhaps half the latency
of a traditional DIMMbus architecture) and lower DRAMpower draw. e disadvantage is
the limited amount of memory available per chip. Using the leading edge of today’s DRAM
technologies, an 8Gbit DRAM chip could be stacked on top of a small processor; 1GB of
DRAM for a single or dual-core Atom is at the low end of an acceptable amount of memory
for many workloads. From the matrix multiplication workload in the previous section, we
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expect that this decision will result in a similar efficiency “Ęip-Ęop”: Workloads that ĕt in
memory on a single FAWN node with 1GB of DRAM would run much more efficiently
than they would on a comparable large node, but the FAWN node would be less efficient
for the range of problems that exceed 1GB but are small enough to ĕt in DRAM on a more
conventional server.

Implications: is vision for future FAWN system abuts roadmaps for traditional server
systems. e similarities are in the need for increasing soware parallelism andmotivations
for treating individual nodes more like distributed systems [25, 135], but they differ in the
tighter coupling of compute and memory and the emphasis on ensuring soware reduces
per-core memory consumption.

Innovations in hardware should continue, but harnessing these improvementswill likely
require revisiting soware-hardware abstractions, programming models, and applications
together. In this light, this dissertation suggests some techniques, interfaces, and perspec-
tives that should apply to these future systems as well.

9.3 Future Work

Broadly categorized, there are several directions of future work that this dissertation leaves
open.

More In-depthWorkload Studies is dissertation studied the application of the FAWN
approach primarily to distributed key-value storage systems supplemented with a broad
categorization and analysis of other data-intensive workloads. Performing a deep study of
these other data-intensive workloads will always remain an area of future work.

ChangingMarkets As theseworkload studies continue to show the potential of the FAWN
approach, the market is likely to respond in several different ways, each of which will
open up further research studies. First, several different startup companies are producing
FAWN-like wimpy node systems each with different hardware architectures. For example,
SeaMicromachines use a tightly integrated compute andmemory fabric, butmove all other
peripheral services such as storage to a separate hardware I/O virtualized shared infrastruc-
ture. While the system can work as a “plug-and-play” replacement, many of the soware
techniques to access local SSDs described in Section 7may not apply to a shared virtualized
environment, requiring the use of a different set of soware-hardware co-design strategies.
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Second, hardware vendors are likely to produce many more systems that span the range
between wimpy nodes and high-speed server designs. Formany workloads, mobile proces-
sors and low-power servers may provide a better tradeoff between computational features
and energy efficiency than either of the other extreme design points, assuming these sys-
tems remain balanced for a given workload.

Last, many studies, including ours, have used current prices of hardware to understand
total cost of ownership numbers. is will of course remain a moving target as the market
responds to the demand for high-speed and low-speed systems alike.

Non-volatile memories is thesis has been inĘuenced by the increasing throughput
and reduced latencies of non-volatile memories such as Ęash, PCM, and others, but we
have treated these non-volatile memories as storage devices instead of “persistent mem-
ory.” When technologies like PCM and memristor can deliver nanosecond access times,
their use as a DRAM replacement or substitute becomesmore attractive. Abstractions such
as NVHeaps [38] and other data structures and algorithms [132] have begun to shed light
on better ways to use these systems, and discovering how higher-level applications can use
these abstractions effectively is an exciting avenue of future work.

FAWN-KV opted for using log-structured writing both to avoid randomwrites on Ęash
as well as to provide efficient failover operations. Modern Ęash devices nowperform greater
degrees of log-structuring in their Ęash translation layer and still expose the block-based
abstraction to the operating system and applications. But if applications are already log-
structuring writes, should the underlying device duplicate this effort? We believe that
opening up the interface between the application and the device can help both entities,
perhaps through the use of “I/O personalities” that specify the types of access (e.g., ran-
dom/sequential, small/large) the application is likely to need [16].

Lastly, we have only begun to understand the potential impact of fast, predictable non-
volatile memories on operating system design. Whereas performance from hard disks is
unpredictable due to mechanical delays, solid state devices potentially can have more pre-
dictable access latencies. Today, block erasures and TRIM commands are not well hidden,
but smarter scheduling or improved application-device communication might make de-
vices more predictable. is predictability changes many aspects of operating systems. For
example, we used the relative predictability of I/O performance from SSDs when tuning
the constants for the SATA interrupt mitigation driver to some success. Similarly, instead
of using heavyweight storage hardware interrupts to abruptly notify the operating system
of completed I/O, the OS can schedule the completion of I/O at a convenient time to pro-
vide higher performance and better quality-of-service, eliminating the need for hardware
interrupts except as a backup mechanism.
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Heterogeneous systems Our work, along with others, has demonstrated that no one sys-
tem design will work well for all workloads. As mentioned in Chapter 3, several hetere-
ogenous node designs that combine wimpy cores with brawny cores can bridge this gap.
Prior work has investigated the use of these asymmetric core designs for microbenchmarks
and CPU scheduler design [51], but understanding how higher-level soware components
in a distributed system should be exposed to this asymmetry, if at all, remains an open
and intriguing question. As heterogeneity increases, e.g., by supplementing systems with
GPUs and other specialized hardware, so do we need to revisit abstractions, interfaces, and
use-cases further. Recent work has begun exploring this research area in particular for
GPUs [114].

Quality of Service per Joule While we have demonstrated that the FAWN approach can
signiĕcantly improve energy efficiency as measured by “work done per Joule”, Quality of
Service (QoS) is becoming an increasingly important measurable statistic. Many datacen-
ter services need to provide service level agreements such as 99%-ile latency below some
threshold, a target throughput level, or a speciĕc availability such as “ĕve nines” of uptime.
FAWN demonstrates that a latency or reliability-agnostic metric such as work done per
Joule can be improved but comes at the cost of higher latency and worse behavior under
high load [68]. Some questions remain, such as: Is worst-case performance fundamen-
tally worse for the FAWN approach, or are they by-products of system engineering? Do
FAWN systems fundamentally produce lower availability because of increased node count,
or does FAWN maintain or increase availability by reducing the per-node recovery work
unit? Do the strong scaling requirements of FAWN systems make them harder to manage?
Ultimately, these questions are a subset of the general metric “Quality of Service per Joule”,
which measures how much compute energy is required to provide a particular Quality of
Service level.

Improving QoS/J could involve, for example, deliberately over-provisioning a cluster
to handle peak loads more gracefully, as suggested in [68]. Here, energy proportionality
becomes more important because systems are driven explicitly below peak capability to
provide more headroom for workload variation. But doing so increases the peak power
consumed by the datacenter, increasing infrastructure costs and energy use. Whether this
approach improves QoS/J at the datacenter level is therefore an open question.
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9.4 Conclusion

is dissertation proposed FAWN, a Fast Array of Wimpy nodes, and analyzed the trends,
tradeoffs, and soware techniques needed to improve datacenter energy efficiency using
FAWN. Our evaluation of the FAWN approach on several different datacenter workloads
demonstrated that balanced system designs optimized for per-node efficiency can improve
aggregate cluster energy efficiency but requires revisiting several layers of the soware stack
to account for the different constraints and properties of FAWN systems. At the applica-
tion layer, we developed a distributed key-value storage system called FAWN-KV that used
energy-efficient processors paired with Ęash, identifying a combination of techniques to
effectively use Ęash, conserve memory, and efficiently handle failover in a large FAWN
cluster. Our study of several other datacenter workloads identiĕed key differences between
FAWN nodes and traditional nodes that can make deploying existing soware less efficient
on FAWN nodes.

We then explored the use of modern balanced systems with fast SSDs, identifying and
eliminating bottlenecks in the existing I/O stack, motivating our proposal for new vector
interfaces to fast I/O devices. We then demonstrated subsequent changes to networked ap-
plication server design to take advantage of the lower-level vector interfaces provided by
the operating system, storage devices, and RPC systems. Last, we generalized the design
behind vector interfaces to all system interfaces, identifying mechanisms to eliminate re-
dundant work found in many datacenter workloads and described the associated interfaces
and tradeoffs such a proposal could provide.

In summary, this dissertation provided multiple sources of evidence to suggest that
novel, efficient soware techniques are needed to fully take advantage of the FAWN ap-
proach to improving datacenter energy efficiency. Finally, I believe the lessons, abstrac-
tions, and insights provided by this work will apply generally to all future balanced systems.
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