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Abstract

This paper introduces a general technique for streaming complex, inter-
active physical simulations to portable devices from a server. We present an
implementation of this approach with an iOS client application that runs par-
ticle simulations with several thousand objects. We achive good compression
by factoring the simulation in two parts: the portable device computes only
the easy simulation steps that have a large impact on the result. Therefore, the
server only needs to transmit information about the simulation steps that are
hard to compute. The server can therefore transmit significantly compressed
data while still allowing clients recover the full simulation state.
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Chapter 1

Introduction

For portable devices such as smartphones, streaming information over the Internet allows
for interactive applications otherwise impossible with such limited computational power.
Complex, interactive physical simulations cannot be computed on portable devices, but
streaming physics data from a server would enable such simulations on these machines.
However, real-time streaming is impractical because of the large amount of data, and even
standard compression techniques will not solve the problem. For example, in a particle
simulation with 10,000 objects, the full simulation state for a single frame is over 200
kilobytes. At 30 frames per second, a program would require a bandwidth of nearly 6
megabytes per second to stream the data. An ideal system would enable reconstruction
of the entire simulation state while transmitting only a fraction of this data. At the same
time, such a system should be general to many types of simulation. To date, no streaming
technique for interactive simulation captures these properties.

This work solves the problem by exploiting a key property of certain physical simula-
tions. Consider particle simulation. Some steps of particle simulation, such as integration,
are easy to compute yet affect a large number of particles. Others, such as collision de-
tection, are very hard to compute but have a comparatively small effect on the simulation
state. We exploit this to create a novel factorization of particle simulations, enabling real-
time streaming of a large physical simulation from a server to a portable device. The client
device computes the easy parts of the simulation so that the server only needs to transmit
data resulting from the difficult simulation steps.

We have implemented our approach with a multi-user iOS application that allows in-
teraction with a particle simulation of several thousand objects. Since particle simulations
form the basis of many more complex simulations such as fluids or cloth, our method
works with many simulation types. In fact, our method applies generally to any simula-
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tion which can be factored as described.

Our technique exhibits many unique properties for mobile devices. Our solution allows
for much larger simulations with many more objects than otherwise possible on devices
with such limited computational power. Furthermore, it enables multi-user interaction
with very large scenes, which are not attainable even with desktop machines.

Sending physics data has several advantages over other approaches, such as streaming
video. With physics data, the client is free to render at a frame rate independent of the
rate in which updates are received, leading to smoother frame rates. More importantly,
transmitting physics data gives the client flexibility to distribute parts of the program’s
updates and rendering computations on the client. For example, the client could run other
independent, less computationally-intensive simulations itself.

This paper is organized as follows. Chapter 2 discusses related work. Chapter 3 de-
scribes the full and predicted simulations we use and the algorithm to create a compressed
delta between the two. Chapter 4 describes the implementation details of our system as a
mobile phone application. Chapter 5 shows results of the algorithm, such as the amount
of data sent over the network.
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Chapter 2

Related Work

We focus on particle simulations as a model problem. Particle simulations serve as the
building blocks for more complex real-time simulations, such as cloth[Baraff and Witkin,
1998], fluids[Müller et al., 2003], or rigid bodies[Baraff and Witkin, 2001]. While our im-
plementation uses the CPU to compute the simulation, even larger simulations can be run
on graphics hardware[Green, 2008]. Particle-based cloth[Zeller, 2005] and fluids[Amada
et al., 2004] have also been simulated in real-time on the GPU. Our method can be applied
to any simulation that can be separated into a computationally-intensive portion such as
collision detection and a portion that can be simulated on mobile devices.

Data compression is a widely studied topic. Specifically in computer graphics, mesh
compression is relevant to our work. Mesh compression is typically done in two separate
segments: lossless compression of connectivity data and lossy compression of geometry
data[Peng et al., 2005]. Since the latter of these consists of compressing a sequence of
3D-vectors of floating-point data, it is applicable to our problem space. Geometry com-
pression typically relies on first quantizing the data, then using a predictor allowing the
compressed delta to be encoded rather than the full data. Examples of such predictors are
the delta predictor[Deering, 1995], the linear predictor[Taubin and Rossignac, 1998], and
the parallelogram predictor[Touma and Gotsman, 1998]. All of these approaches essen-
tially generalize to predicting a vertex as some linear combination of nearby, connected
vertices. Our work differs in that we don’t necessarily have connected objects to use for
prediction. Instead, we use a partial simulation as the predictor for object positions and
velocities. However, these approaches could be used with simulations where particles are
connected, such as cloth.

Networked video games are closely related to our problem and are an obvious ap-
plication of our method. Due to their proprietary nature, comprehensive information on
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the implementation details of networked games is difficult to find, so our information is
based on a few sources[Fiedler, 2010, 2011] and the best of our knowledge. There are
a few main models of multi-user networked games. One is where clients all run the full
simulation in lock step, sharing only input events. This is typically used when the simu-
lation state is too large to transmit or when input latency is not of concern. Another is to
have an authoritative server that sends the full simulation state to every client. This suf-
fers the same problems already discussed, specifically large latency with user input, even
with small state size. Most games using a client/server model overcome this by having
clients use predictive simulations to hide the latency of communication with the server.
Clients do not know other users’ input events, so their predicted simulations are incor-
rect. On each update, the server transmits the true simulation state to each client, and each
client fully replaces its prediction with the server version. Compression is often used; for
example, servers typically employ delta compression by sending only changes from the
previous state instead of the entire state. Other techniques employed include quantization
of floating-point data or entropy encoding such as Huffman coding. But to the best of our
knowledge, in contrast to our method, games do not exploit the client’s prediction when
compressing the server’s data to any significant degree. The most a typical game may
do is avoid sending data for objects under the client’s control, such as the user’s avatar.
Usually, predictions are just discarded and overwritten with the correct data. In further
contrast to our method, games do not use the client/server model to enable to use of com-
plex physical simulations on low-end devices but rather simply for enabling a multi-user
application. Clients’ predictions in games with complex physical simulations are typically
of comparable computational intensity as the server’s simulation.
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Chapter 3

Overview

The overall goal of our method is for a set of mobile devices or other low-end machines
to display a complex, interactive, multi-user simulation. Since the simulation is very com-
plex, these machines do not compute the entire simulation. Instead, each client connects to
a central server, which computes the full simulation and transmits the result to all clients.
Our method is to use a second, partial simulation as a prediction for the full simulation.
If this prediction is close to the original, the server can significantly compress the data it
sends to the client. We applied our technique to a particle simulation.

It is important to note that we do not try to precisely match the output of the full
simulation, but rather we attempt have an output that is perceptively identical to it. For
example, it’s important that particle positions in the client’s simulation are very close to
those in the full simulation, but they can differ very slightly if it is not noticeable to a user.
This leniency allows for significant lossy compression of the delta.

3.1 Client and Server Simulations

We refer to the algorithm that computes the entire simulation as the full simulation. The
desired output is displaying the result of executing the full simulation. Predicted simula-
tion refers to the algorithm that partially computes the desired simulation, for the purpose
of serving as a prediction for compression. In our implementation, the predicted simula-
tion is a particle simulation without collision detection. Our algorithm’s goal is for each
client to execute only the predicted simulation, but adjust the result each frame using data
from the server so that the client’s simulation closely matches the full simulation. Figure
3.1 shows a high-level picture of how the system should behave.

5



Original 
State

Predicted 
StatePredicted Simulation

Full Simulation

Server
Client

Original 
State

Updated 
State

Updated 
State

Apply Delta

Figure 3.1: High-level picture of how the system should function. The client computes
only the predicted simulation but recovers the full simulation state using data from the
server.

We realize this goal by keeping track of two simulations, the server state and the client
state. The server state is the authoritative simulation state, run by the server and updated
with the full simulation. The client state is only updated with the partial simulation, and
exists on both server and clients. The client state is updated identically on the server and
on every client.

Each update step, both the server and each client update the original client state using
the predicted simulation, resulting in a predicted client state. The server also updates the
original server state using the full simulation, then computes a compressed delta between
the updated server state and predicted client state. This delta is sent to all client machines.
Finally, the server and every client apply the delta to the predicted client state to get the
fully-updated client state. This updated client state is then displayed to users. Figure 3.2
illustrates the algorithm in detail. Note that due to lossy compression, the fully-updated
client state will not precisely match the updated server state.

3.2 Simulation Details

We focus on particle simulation with our implementation. To create the predicted simu-
lation, we remove collision detection, since it is very expensive to compute but does not
have a large impact on the result.
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Figure 3.2: Detailed illustration of algorithm. Only the server has the server state, but the
server and each client all have the client state. This illustration shows 2 clients, though an
arbitrary number of clients is possible.
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3.2.1 Full Particle Simulation

We implemented a standard particle simulation with penalty forces to prevent collisions.
There are a number of particles, each of which consists of a 3-dimensional position and
velocity. Orientation is not stored since all our objects are perfectly spherical, though our
system could be extended to rigid body simulations by including orientation or construct-
ing rigid bodies from multiple particles.

Every update step, forces (primarily gravity and velocity damping) are calculated, then
each particle’s position and velocity are updated using Euler integration. This is given
by equation 3.1, where pt

i and vt
i are the position and velocity of particle i on frame t,

respectively, f t
i is the force applied to particle i at time t, and mi is the mass of particle i,

and δ is the change in time between two frames. We use Euler integration for simplicity
and speed; other integrators with better stability or accuracy are also options.

vt+1
i = vt

i + δf t
i /mi pt+1

i = pt
i + δvt+1

i (3.1)

Following integration, intersections with the scene geometry and other particles are
calculated, and penalty forces are applied to separate any intersecting particles. These
forces are added to the force accumulator, to be applied on the subsequent update step.
Our collision detection algorithm uses a spatial hash, based on an implementation by
NVIDIA[Green, 2008]. The world space is partitioned in uniform cells, and before colli-
sion detection, each object is assigned to its nearest cell. Each object needs to be tested
for collision with only other objects within its cell and adjacent cells.

3.2.2 Predicted Simulation

Since collision detection is by far the most computationally expensive portion of the sim-
ulation, it is the one removed to form the predicted simulation. The predicted simulation
performs the same steps as the full simulation (e.g., gravity, Euler integration of position
and velocity), but does not perform collision detection or resolution. Thus, the full and pre-
dicted simulations diverge when an object collides with scene geometry or with another
object.

Collision detection is a good part of the full simulation to remove since it is both very
expensive in computation but very sparse with its output. In many simulations, only a
small percentage of particles are affected by collisions on any given frame. Even when
there are a large number of collisions, a collision only changes the velocity of a particle,
so a colliding particle in the predicted simulation will diverge slowly from the one in the
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full simulation. This means that after a single update step, relatively few particles in the
predicted simulation will be incorrect, and those that are will be very close to where they
should be.

3.3 Compression

We use the accuracy of the predicted simulation to significantly compress the simulation
data sent by the server. This compression is what allows us to transmit the simulation
state to the clients in real-time. The compression algorithm creates a delta that can be
applied each frame to the predicted simulation to minimize the perceived difference be-
tween the predicted and full simulations. Since we allow output to deviate slightly from
the full simulation, we can use lossy techniques to compress the delta. It is important that
the compression algorithm does not modify the full simulation state, so the result of the
simulation is not affected.

In our implementation, the data to be compressed are a sequence of floating-point num-
bers, six numbers per object. Our compression strategy consists of two major parts. First,
we avoid sending any data for particles that are close enough to those the full simulation,
correcting them only after a particle’s error becomes noticeable. Second, for particles we
do transmit, since the error is very small, we can encode that difference effectively us-
ing quantization and entropy-encoding. The entire compression technique presented here
would apply to a rigid body simulation or any simulation consisting of floating-point or
integer data.

3.3.1 Selective Correction of Particles

The largest portion of compression comes from only transmitting a small fraction of the
erroneous particles each frame. Obviously, we do not need to send particles that have no
error, but we also avoid transmitting particles with only minor error. We define particle
error as the Euclidean distance of the position between the full and predicted simulation
states.

There are two primary methods we use. One is to correct a particle only when the error
exceeds a certain threshold. This threshold is chosen experimentally based on the scene
to be as high as possible without making the corrections noticeable. We only consider
position error rather than velocity error because while the position is easily visible to the
user, errors in velocity are not visually apparent. If this error in velocity results in a large
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Figure 3.3: An outline of how we compress individual particles.

error in position on a subsequent frame, the particle will be corrected at that time.

The second method is to use a rate limiter, forcing the delta to be smaller than a desired
size. The algorithm sorts the particles by error from largest to smallest, and sends particles
in that order until the desired size is exceeded. The remaining particles are left uncorrected.

Since relatively few particles need to be corrected each frame using these methods, we
send a sparse list of the particles that need to be corrected. For each particle that needs
to be corrected, we send its two-byte index followed by the necessary data. If the set of
particles to send is dense enough, an alternative method is to send a single bit for every
particle: 0 means the particle is not to be corrected, and 1 is followed by the data to correct
the particle. This method is optimal when sending corrections for more than 1/16 of the
total particles.

3.3.2 Compression of Individual Particles

Each object consists of 6 floating-point numbers and would require 24 bytes of correc-
tion data without additional compression. We further compress individual objects using
quantization and entropy-coding. Figure 3.3 outlines the procedure.

Quantization of Floating-Point Differences

Since the predicted and full simulation are typically very close to each other, our algorithm
quantizes the floating-point difference between the two simulations to reduce the size. Due
to the nature of floating-point arithmetic and quantization, the full simulation’s value will
not be precisely recovered. However, as previously established, this is acceptable for the
goals of the compression algorithm.

The range of the quantization is chosen experimentally based on the scene. The upper
bound of the quantization range is chosen to slightly exceed the maximum error of exper-
imental runs, with position and velocity data each using a different range. If a particle’s
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error exceeds the quantization range, then the algorithm will take multiple frames to fully
correct the error.

Our algorithm quantizes each floating-point value to an 8-bit integer, reducing each
particle to 6 bytes of data (not counting the index).

Entropy Encoding of Quantized Values

The resulting 8-bit integers are skewed heavily toward small values, making them amenable
to entropy-coding to further compress the data. Any well-known entropy-encoding method
would be appropriate here. Our algorithm uses standard Huffman encoding, though it was
chosen only for its simplicity, not because of optimality.

11
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Chapter 4

System Details

This chapter discusses relevant details about our implementation. We implemented an
iOS application using our technique to simulate several thousand objects in a interactive
simulation. Users interact by changing gravity of the scene. The server runs on any typical
desktop or machine of comparable capability.

4.1 Basic Program Architecture

The server is the authoritative controller of the simulation. The predicted simulation on
the client and the server remain in synchronization for the compression algorithm to work,
so the simulation updates at a fixed rate on all machines. Updates are tracked with frame
numbers.

The clients send input data to the sever every update step. This message also notifies
the server that the client has performed an update of the predicted simulation for a certain
frame number. The server sends simulation data to all clients every frame. The data sent
are the compressed difference between the full simulation and the predicted simulation as
described in section 3.3.

Rendering on the client is decoupled from simulation updates, allowing for a smooth
frame rate in spite of any interruptions in updates. Interactions such as panning the cam-
era are therefore always smooth and responsive. This is a primary advantage or sending
geometry data instead of streaming video.

13



4.2 Synchronizing Server and Client

Ideally, the server sends updates to every client every 33 milliseconds, and hears back from
all of them a short time later. However, sometimes a client has a temporary interruption
of communication with the server. Therefore, both the client and server are allowed to
continue updating without communication from each other.

The server will continue to update at 30 updates per second, sending out simulation
data to all clients regardless of how quickly clients respond. However, the server will stop
if it does not hear back from a client after several updates. When this happens, server
assumes there was some kind of minor network problem, and temporarily suspends updat-
ing until it either receives data from that client or disconnects from the client. If a single
client suffers an brief interruption in communication with the server, the other clients can
continue to receive updates, limiting the impact of the network problem to a single client,
at least for a short while. In our implementation, we typically allowed to server to advance
two frames ahead of the clients.

The server applies input events as soon as possible when receiving them from clients.
Thus, input events suffer some latency from when they are executed by the user, from both
the time for the event to travel from client to server and the number of frames the server
is running ahead of client. Allowing the server to advance too far in front of the clients
negatively impacts responsiveness of user input.

Likewise, the clients continue to update at 30 frames per second, sending events to the
server. But if it too long a length of time passes with no response from the server, the client
will temporarily halt until data are received.

The client stores simulation data for previous frames in a circular buffer whose length
is large enough to hold data for any frame for which it may not have yet received data from
the server. Once it receives a delta from the server, it will apply the delta to the appropriate
frame, and then re-simulate from that frame until the current. However, since particles
do not interact in the predicted simulation, the client needs to simulate only particles that
were affected by the server data.

This of course means that the further ahead the server is allowed to go than the clients,
the more noticeable the change will be once the delta is applied. In practice, we typically
allow the client to get either zero or one frames ahead of the server to minimize this.

14



4.2.1 Synchronizing Input Events with the Clients

Certain input events, such as changing gravity, impact the predicted simulation as well as
the real one. Therefore, all clients need to be notified about the change to the system so that
their predicted simulations stay synchronized with the server. In practice, the server cannot
apply such input events as soon as it receives them. It must choose the nearest frame in the
future such that all clients will know about the input event before they simulate that frame.
Increasing the time the client can advance without server data increases the distance to the
nearest frame, thus impacting input event latency for such events.

4.3 Network Protocol

The client and server use TCP to communicate with each other. Due to the nature of the
data, another protocol could possibly be developed on top of UDP that differs slightly from
TCP, as many interactive applications such as games currently do, and would be a good
avenue for future work.
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Chapter 5

Results

This chapter discusses how well our algorithm performed in practice. We tested the pro-
gram on several scenes with both single and multi-user scenarios. We looked primary at
the quality of the compression and the achieved frame rate.

5.1 Evaluation of Compression Algorithm

We compared several different versions of the program to evaluate the impact of the com-
pression algorithm. We analyzed both the network bandwidth used and the visual artifacts
generated by compression. Each tested method used the same simulation but different
methods of compression, as listed in table 5.1.

Table 5.2 lists the scenes on which we tested the algorithms. In each case, we used pre-
scripted input events to ensure consistency for each run. The input events are simulated by
clients as if they were regular user input.

The results are shown in table 5.3, which lists the average megabits per second required
to run at 30 updates per second. Figures 5.1, 5.2, and 5.3 show bandwidth over time for
some of the scenes, with accompanying images.

Discussion

The effect of compression on data size is significant on most scenes. Even without the rate
limiter, the compression shrunk the data to anywhere from about 2 to 10 percent of the
original size. The data indicate that fast-moving objects do not compress as well as slow-
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Algorithm Description

No Compression (NC) Sends the entire simulation state every frame.

Selective Particles (SP) Uses error thresholds as described in 3.3.1, but
does no compression on the resulting particles.

Quantized Particles (QP) Same as Selective Particles, with the addition of
quantization of particles as described in 3.3.2.

Entropy-Encoded Particles (EP) Same as Quantized Particles, with the addition of
using a Huffman encoder on the quantized parti-
cles as described in 3.3.2.

Full Compression (FC) The entire algorithm, as described in the previous
sections, including a rate limiter that prevents data
from exceeding .05 Mbps. Is identical to Entropy-
Encoded Particles with a rate limiter.

Table 5.1: Algorithms used to test bandwidth.

Scene ID Description

1 Two diagonal ramps, forming a half-pipe. The objects start in
a block above one pipe. Single user, with a few input events,
and slow-moving objects.

2 A solid cube floating in the center. The objects start in a block
above the cube. Single user, frequent input events, and slow-
moving objects.

3 Four solid cubes floating in the center, arranged in a grid. The
objects start in a block centered above the cubes. Single user,
nearly continuous input events, and fast-moving objects.

4 Same as Scene 1, except with 2 users, each with frequent input
events and slow-moving objects.

5 Same as Scene 1, except with 3 users, each with nearly contin-
uous input events and fast-moving objects.

Table 5.2: Scenes for testing bandwidth. All use pre-scripted input events.

18



Figure 5.1: Top: Image from scene 1 with 10,000 objects. Bottom: Bandwidth over time
for scene 1. Values for the No Compression algorithm are omitted both since it is constant
and since the values are much larger than the other algorithms.
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Figure 5.2: Top: Image from scene 2 with 10,000 objects. Bottom: Bandwidth over time
for scene 2.
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Figure 5.3: Top: Image from scene 5 with 10,000 objects. Bottom: Bandwidth over time
for scene 5.
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Scene Average Bandwidth (Mbps)

ID # Particles Avg. Collisions/Frame NC SP QP EP FC

1 5,000 2,792 27.47 2.41 0.89 0.65 0.65
1 10,000 6,309 54.93 5.26 1.87 1.35 1.20
2 5,000 1,635 27.47 2.32 0.89 0.71 0.66
2 10,000 4,771 54.93 5.66 2.07 1.60 1.15
3 5,000 3,966 27.47 7.46 2.67 1.86 1.37
3 10,000 8,476 54.93 15.84 5.60 4.00 1.43
4 5,000 2,549 27.47 2.07 0.80 0.57 0.57
4 10,000 5,676 54.93 4.29 1.62 1.15 1.06
5 5,000 4,586 27.47 9.46 3.26 2.23 1.44
5 10,000 9,436 54.93 20.07 6.82 4.73 1.45

Table 5.3: Average bandwidth required to run at 30 updates per second. Averages are over
the first 1000 update steps. Values are average megabits per second. Average collisions
per frame lists the average number number of objects affected by collisions each update
step.

moving objects, likely because faster speeds means particles diverge more quickly when
collisions occur, so objects must be corrected more often. As expected, data size correlates
highly with the number of collisions occurring in the scene. When all the objects are in the
air, the bandwidth is very low, and likewise bandwidth spikes briefly when many objects
collide simultaneously.

While the evaluation on how the compression algorithm perceptively affects the output
was informal, we can make several observations. The rate limiter successfully reduces
the size of the data, but at a noticeable cost. When the rate limiter prevents too many
particles from being corrected, error builds up for a long while, and the eventual large
corrections are quite obvious. To minimize the effect, the rate limiter should affect only a
small number of objects or have affect only for a short period of time. It therefore works
effectively for scenes that might have periodic spikes in data size but, on average, stay
close to the limit.

Choosing effective thresholds for quantization bounds and deciding which particles to
send also have noticeable impact. With a slightly too large threshold, objects corrections
are plainly visible. In our scenes, we chose these values experimentally, though a good
avenue for future research would be to have the program select these values automatically
based on the data. Quantization bounds that are too large prevent the program from fully
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Algorithm Description

Client Only (CO) Computes the full simulation on the client. The
server is not used.

No Compression (NC) The server computes and sends the entire simula-
tion state every frame.

Entropy-Encoded Particles (EP) Our method, as described in the previous sections,
except without a rate limiter.

Full Compression (FC) Our method, as described in the previous sections,
including a rate limiter that prevents data from ex-
ceeding .05 Mbps.

Table 5.4: Algorithms used to test frame rate.

correcting all objects. On the other hand, quantization bounds that are too large create
noticeable jitter since particles cannot be finely adjusted. In particular, objects at rest are
very noticeable when they are corrected too roughly.

5.2 Evaluation of Frame Rates

The best evaluation of our method’s success is how well it performs as an interactive
application. We measured the achieved updates per second of our method (both with and
without the rate limiter), as compared to two naı̈ve solutions: using just the client machine
or sending the entire simulation state from the server every frame. Table 5.4 describes the
tested algorithms.

We ran the server on a desktop machine and ran the client on an iPod Touch connected
to a consumer wireless router with broadband Internet. Due to having only two mobile
devices for testing, headless desktop machines were used to simulate additional clients for
the multi-user tests. As with the bandwidth tests, all user input events were scripted. Table
5.5 lists the test scenes. In multi-user tests, all clients are connected to the same router and
consumer Internet connection.

Table 5.6 shows the results as average updates per second of the phone client. Since
the client can only go a couple frames ahead of the server, and vice versa, this number is
an accurate measure of the speed of the slowest component in the entire system.
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Scene ID Description

1 Two diagonal ramps, forming a half-pipe. The objects start in
a block above one pipe. Single user, with a few input events
and slow-moving objects.

2 A solid cube floating in the center. The objects start in a block
above the cube. Single user, frequent input events and slow-
moving objects.

3 Four solid cubes floating in the center, arranged in a grid. The
objects start in a block centered above the cubes. Single user,
nearly continuous input events, and fast-moving objects.

4 Same as Scene 1, except with 4 users, frequent input events
and slow-moving objects.

5 Same as Scene 1, except with 4 users, nearly continuous input
events, and fast-moving objects.

Table 5.5: Scenes for testing frame rate. All use pre-scripted input events.

Discussion

Our method greatly outperforms both naı̈ve methods, anywhere from 4 to 20 times faster
than the next-best method. In nearly all test scenes, both naı̈ve methods performed more
slowly than required for a smooth frame rate, while our method performed at or above
interactive frame rates. For methods involving a server, frame rates are roughly correlated
with data size, indicating that the network is the performance bottleneck. Even with 4
users on the same router, the program still ran at interactive frame rates. The bottleneck in
the multi-user scenes was the shared router, which likely means that the server can support
even larger numbers of users if they connect on different Internet connections. The data
show that our method allows for much larger simulations that possible with more naı̈ve
methods.
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Scene Average Updates/Second

ID # Particles Avg. Collisions/Frame CO NC EP FC

1 5,000 2,780 8.9 19.2 100.1 118.1

1 10,000 6,276 4.4 8.0 77.9 86.7

1 20,000 13,648 2.6 4.6 40.4 46.1

2 5,000 1,641 6.6 16.4 107.4 109.3

2 10,000 4,755 3.4 8.5 73.0 85.0

2 20,000 10,973 2.3 8.3 40.0 43.0

3 5,000 4,003 2.6 18.0 77.2 77.3

3 10,000 8,485 1.3 8.7 39.1 41.27

3 20,000 17,607 0.9 4.3 18.5 19.1

4 5,000 2,307 N/A 4.2 68.9 81.2

4 10,000 5,766 N/A 2.1 46.2 60.5

5 5,000 4,665 N/A 3.9 26.9 37.2

5 10,000 9,392 N/A 2.1 18.7 25.8

Table 5.6: Average updates per second of the server on the test scenes. Multi-user scenes
have no data for the Client Only algorithm.
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Chapter 6

Conclusion and Future Work

We have presented a general approach to running complex, interactive physical simula-
tions on small portable devices and implemented the specific example of a large particle
simulation running on iOS devices. By factoring particle simulation into two parts, we
were able to run an interactive simulation with several thousand objects on a mobile de-
vice. Clients compute the easy integration step that has a large impact on the result, while
a server computes the hard collision detection step that affects comparatively few parti-
cles. The server can therefore transmit a significantly compressed delta, allowing clients
recover the full simulation state.

Our implementation works well in practice, achieving interactive frame rates with a
mobile phone application over a consumer broadband connection. Many users can interact
simultaneously with the simulation, using devices that could not compute the simulation
on their own. Our method runs at frame rates several times higher than the naı̈ve methods
of running the simulation fully on the client or sending uncompressed simulation state.
Since the client receives geometry data, clients’ frame rates are decoupled from the system
update rate. This leads to smoother frame rates and the flexibility of allowing client-side
prediction in the event of temporary network problems. The main drawbacks to our system
are some combination of additional user input latency and visual artifacts of the result.

The compression algorithm is far from optimal. There is likely much room for im-
provement with the data size, and the current implementation has several apparent arti-
facts. These artifacts typically manifest as objects noticeably snapping to new positions
as their positions are corrected. Currently, the parameters for our compression algorithm
(e.g., quantization range, limit for the rate limiter) are hard-coded constants, decided by
experimentation. The program could instead automatically adjust those values during run-
time.

27



Looking forward, we hope to apply this technique to other algorithms, Since our tech-
nique applies to simulations that are extensions of particle simulation, rigid-body, fluid,
or cloth simulations would be ideal targets for our technique. More generally, our method
applies to any simulation or computation which can be factored appropriately. Any portion
of the computation that is easy to compute yet high in impact can be moved to the client,
enabling more complex simulations than otherwise possible.

Though computing power will increase, portable devices will always remain behind
desktop machines in computational ability. However, the predicted simulation will need to
adopt more complex techniques than merely removing the expensive portions of the full
simulation. There are many exciting avenues of research to explore in this area. Predicted
simulations could run lower-fidelity versions of the full simulation, such as a grid-based
fluid with different grid sizes on the client and server. Methods could be devised that
automatically factors the simulation at runtime based on the capabilities of the client ma-
chine. Our technique even extends beyond physical simulation and can be used for any
real-time computation on mobile devices that can be effectively partitioned. In general, we
believe that even as computer power grows, our technique will remain effective in allowing
portable devices to share the same interactive simulations as more powerful computers.
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