
Spare a Little Change?
Towards a -Nines Internet in  Lines of Code

Mukesh Agrawal

CMU-CS--
May 

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 

Thesis Committee:
David G. Andersen

Bruce M. Maggs, Duke University
Srinivasan Seshan, Chair

Hui Zhang

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright ©  Mukesh Agrawal

This research was sponsored by the National Science Foundation under grant numbers CNS-, ANI-, and
ANI-; the Air Force Research Laboratory under grant number F---; the Pittsburgh Digital Greenhouse;
and AT&T. The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: Internet reliability, BGP performance, Quagga

This document includes excerpts of the source code for the Linux operating system kernel, and
the Quagga routing software suite. These programs are copyrighted by their authors; excerpts are
reproduced here solely for scholarly purposes.

To my parents
मेरे सब उपलिİध

आप का ĭयोछावर पर हआु

and

नानाजी और नानीजी को
दȥुनया मɿ Ȥकतना दूर

लेȤकन ȣदल मɿ हमेशा पास

iii

iv

Abstract

From its beginnings as a single link between two research institutions in , the
Internet has grown in size and scope, to become a global internetwork connecting over
 million computers, and . billion users. No longer a niche facility for scientific col-
laboration, the Internet now touches the lives of the world’s population, irrespective of
their occupation or geography. It is used by people the world over, to pay bills, read the
news, listen to music, watch videos, telephone or video-conference friends and family,
and much more. The Internet is the premier communications network of our age.

Unfortunately, however, there are some respects in which the Internet lags the net-
works it replaces. In particular, with respect to reliability, the Internet falls far short
of the Public Switched Telephone Network which proceeded it. Whereas the PSTN
sought, and often delivered the vaunted “five nines” of reliability, the Internet strug-
gles to compete. As for the cause of this reliability shortfall, available evidence indicates
that much of the shortfall is due to the unreliability of IP routers themselves.

Given the importance of a reliable Internet to contemporary society, vendors and
researchers have proposed a number of solutions to either improve the reliability of
individual IP routers, or to make networks more resilient to the unavailability of a single
router. While having some promise, these existing solutions face significant obstacles
to widespread deployment. Thus, in this dissertation, we endeavor to find or construct
a practical, readily deployable, method for mitigating the outages caused by IP routers.

To achieve our goal, we take inspiration from previous proposals, which advocated
the use of link migration. These proposals improve network resilience, by moving links
away from a failed (or failing) router, to an in-service router. To understand the con-
straints of a practical solution, and resolve the limitations of previous proposals, we
conduct extensive experimentation, and study source code and protocol specifications.
Using the insights produced by these studies, we construct a practical, readily deploy-
able migration solution with sub-second outage times.

v

vi

Acknowledgments

This dissertation could not, and would not, have come to pass, but for for the abundant help, guid-
ance, and support I have been so fortunate to receive over the past several years. And so, it brings
me much joy to finally have the ideal occasion to give thanks, to the many who helped me along
the way. I offer my sincere thanks to all those that follow, and my humble apologies to those who
I might, quite regrettably, neglect to mention.

Apart from myself, I suspect no one has invested more time in the work leading to this disser-
tation than my thesis advisor, Srini Seshan. He has shared his time generously for the past nine
years. For that alone, I am deeply indebted. In addition, Srini has made the effort, time and again,
to find problems that matched my interests and skills. For that, as well, I am truly grateful.

Srini has always set high expectations. Indeed, some goals seemed simply unattainable at the
outset. But such goals were set with the understanding that, if they were truly impossible, an
explanation of why they were so would suffice. It is an approach that is simultaneously idealistic,
and pragmatic. And it is has served me well — both in research, and beyond. Perhaps, then, the
best way to understand limits is to push them…

There are many factors that contribute to research success, some more obvious than others.
Perhaps one of the most under-appreciated is a solid methodology. Thus, for the successes I have
had, I must thank those who helped develop my approach to research. In addition to my research
advisors, these include teachers and colleagues, from primary school through grad school.

For contributing to my research methods, I thank specifically: Juanita Mitchell, who empha-
sized the importance of meticulousness in her science class; Doug Collar, whose insisted on good
note-taking in his literature class; Bianca Schroeder, who taught me how to tease insights from in-
timidatingly large log files; David Nagle, who advised me to work every day, and to work neither
too little, nor too much; and Sean Rhea, who taught me that when stuck, it is better to take a walk
than to bang one’s head against the proverbial wall.

As many before me, I had no small amount of doubt during graduate school. For helping
me through those doubting moments, I thank Michael Abesamis, Luis von Ahn, Aditya Akella,
Rajesh Balan, Nikhil Bansal, Ashwin Bharambe, Sharon Burks, Shuchi Chawla, Beatrice Chen, Urs
Hengartner, John Langford, Kate Larson, Bruce Maggs, Amit Manjhi, Mahim Mishra, David Nagle,
Suman Nath, Yamuna Raju, Bianca Schroeder, Srini Seshan, Maverick Woo, and Jeannette Wing.
I thank especially Rajesh Balan, Amit Manjhi, Suman Nath, and Srini Seshan for their kind and
sustained encouragement to complete my dissertation.

The Computer Science Department at Carnegie Mellon is an amazing place to study, and con-
duct research. Beyond the caliber of research talent, and the first-rate facilities, lurk two less well-
known, but no less important, treasures. These are the administrative staff, and, the not entirely
unrelated department culture. Sharon Burks, Deborah Cavlovich, Catherine Copetas, Tracy Far-
bacher, Barbara Grandillo, Karen Lindenfelser, Angela Miller, and others took care of administra-
tive matters, so that I never had to.

vii

When I returned to Pittsburgh in the Spring of , Deb even had the foresight to find me an
office literally two doors down from my advisor, so that I could easily drop in with quick ques-
tions. That Deb foresaw what I would need, when I myself had not, is truly remarkable, and quite
appreciated. I also thank Catherine and Karen taking the time to welcome me back during that
Spring, despite my having been out of touch for so long.

The administrative staff takes the lead in creating a culture that values students not just as stu-
dents, but as people with interests and needs beyond those of classwork or research. The students
themselves build on this foundation, to provide a welcoming, supportive, and fun-loving social en-
vironment. In particular, the members of D/5 volunteer their time to organize non-work events,
to help balance the lives of their fellow students. Thank you to Chris Colohan, Francisco Pereira,
Patrick Riley, Ted Wong, Martin Zinkevich, and many others.

While this work owes much to my time, and my mentors, at Carnegie Mellon, I would be remiss
not to mention my mentors from before Carnegie Mellon, and from summers away from Carnegie
Mellon. From my time as a graduate student at the University of Michigan, I thank Farnam Jaha-
nian, Rob Malan, and Brian Noble. Farnam gave me my start in research, and he, along with Rob,
and Brian, encouraged me to continue towards the doctoral degree. From my summers at IBM
Research, I thank Dilip Kandlur, Anees Shaikh, and Dinesh Verma. And from my time at AT&T
Labs, I thank Bobbi Bailey, Albert Greenberg, Charles Kalmanek, and Jennifer Yates.

My work has, I believe, an unusually large empirical component. While that is my natural
tendency, it took others to help me appreciate its value. Farnam and Anees appreciated my exper-
imental skills long before I could do so myself. Max Poletto, my first manager at Meraki, allowed
me to pursue a similar approach in my development work there. It was my first opportunity to ex-
periment with, and then apply experimental insights to improve, a production. Successes in those
endeavors led me to trully believe in, and fully embrace, the value of experimental work. Thank
you, Farnam, Anees, and Max.

The results presented herein come from no fewer than one hundred experiments, of at least ten
trials each, conducted between March and Novemeber of . For the laboratory that made these
experiments possible, I thank the late Jay Lepreau, and the dedicated, talented, and visionary team
at the Utah Network Testbed. Their work, and their vision, has dramatically expanded the limits
of what is possible in empirical Computer Science. I hope that my work here has, in its own small
way, demonstrated the power and value of their vision.

Good work cannot be appreciated without good presentation. So I thank those who have im-
proved my presentation skills immeasurably over the past many years. I thank Mor Harchol-Balter,
my first advisor at Carnegie Mellon, for emphasizing the importance of easy to read, visually ap-
pealing graphics. I thank Peter Steenkiste for organizing the Systems Seminar, which gave me
many opportunities to practice the art of presenting my work.

I thank also those who gave me good examples from which to learn. For more good presenta-
tions than I can count, I thank the speakers at, and organizers of, the Systems Seminar, the Student
Seminar Series, and the SDI/LCS Seminar Series. For ideas and examples that improved the the
system charts which underpin many explanations of experimental results herein, I thank Edward
Tufte and his series of books on data visualization. For many ideas that informed the design of this
document, I thank Peter Wilson, the author of the memoir template for LTEX. And as a veritable
font of good presentation ideas, I thank my officemate of many years, Maverick Woo.

For additional resources that enabled my research, and its presentation, I thank the staff of the
University of Oregeon Route Views Project, the staff of the Schooner testbed at the University of
Wisconsin, and the authors of the software which was vital to the research presented in, and the

viii

production of, this document. This software includes Quagga, matplotlib, git, LTEX, and oprofile.
Over time, this document developed into something rather larger than expected. I did not set

out to produce, and my committee members likely did not expect to receive, a  page tome. I
thank them for reviewing it nonetheless. I further thank Bruce Maggs and Hui Zhang for cheer-
fully accepting a dissertation that arrived three years later than expected. I especially thank David
Andersen for graciously agreeing to fill an absence resulting from my delay. I thank him, also, for
suggesting the five-nines reliability goal. That goal became the central theme of this dissertation.

In addition to those listed above, there are many others who have helped me reach this goal.
Though my debt is too large to detail here, I wish thank many other friends, colleagues, and co-
conspirators over the past dozen years, including: Kristal Aliyas, Mike Bailey, Marcella Baker,
Justin Burke, Moira Burke, Juan Caballero, Meeyoung Cha, Mary Cherng, Sudhakar Cherukuri,
Jin Cordaro, Nilesh Dalvi, Brian Davis, Uri Dekel, Bao Do, Joshua Dunfield, Khalid El-Arini, Mar-
vin Eng, Adam Fass, Cliff Frey, Jason Ganetsky, David Greene, Mafan Gong, Jan Harkes, David
Helder, Cathy Hong, George Hong, Ningning Hu, Scott Iekel-Johnson, Hetunandan Kamichetty,
Min Gyung Kang, Jean Kao, Hyang-Ah Kim, Lea Kissner, Eddie Kohler, Craig Labovitz, Abiruchi
Lanjewar, Charles Lefurgy, Carmen Liang, Peggy Liao, James Liang, Ivy Lim, Alice Lin, Chris Lin,
Lucian Lita, Julio Lopez, Wai Yong Low, Rob Malan, David Maltz, Pratyusa Manadhata, Pedro Mar-
rón, Prem Melville, Kobus van der Merwe, Troy Nolan, King Ow, Jia-Yu Pan, Shashank Pandit, Jeff
Pang, Altin Papa, Jorge Pastor, Dan Pei, Dan Pelleg, Chase Phillips, Shruti Prakash, Steve Raasch,
Jade Rarang, Paul Reitsma, John Reumann, Christa Robinson, Monica Rogati, Mugizi Rwebangira,
Lina Saleski, Lois Schonberger, Panagiotis Sebos, Vyas Sekar, Aman Shaikh, Rob Shanks, Abhinav
Singhal, Shafeeq Sinnamohideen, Danny Sleator, Charlene So, Chris Tam, Ju Kok Tan, Bing Tian,
Mitul Tiwari, Brian Tobin, Michael Tschantz, Gaura Veda, Shobha Venkataraman, Patrick Verkaik,
Jimmy Wan, Mike Wang, David Watson, Dan Wendlandt, Xiao Yu, Ying Zhang, Jim Zhu, and the
Zephyr Crew.

Last, though most certainly not least, I thank my family. I thank Mom and Dad for, amongst so
many things, the time that I spent working at home in the Summer of . Just as in years long
past, they took care of the everyday concerns, leaving me without worry, and free to focus on my
studies. I thank my younger brother, Ritesh, for commiserating about the challenges of graduate
school. And I thank my older brother, Rakesh, for his perspectives on life outside of the academic
realm.

S F, CA
M 

ix

x

Contents

 Introduction 
. Existing Solutions . 
. Our Thesis . 
. Our Approach . 
. Scope . 
. Our Contributions . 
. Dissertation Roadmap . 

 Baseline 
. Experiment Environment . 

.. Network Model . 
.. Experimental Network Topology . 
.. Routing Tables . 
.. Software . 
.. Measurement Apparatus . 
.. Experiment Framework . 

. Restart Procedure . 
. Experimental Results . 

.. Outage times on Low Spec hardware . 
.. Benefits of faster hardware . 

. Conclusion . 

 Rehoming 
. Rehoming Goals . 
. Naïve rehoming . 

.. High-level comparison to router restart . 
.. In-depth comparison of trials with the shortest overall outage times 
.. Comparison of trials with the longest overall outage times 
.. BGP timeout behavior . 
.. BGP session establishment behavior . 
.. Avenues for improvement . 

. Clean shutdown rehoming . 
.. Rehoming procedure . 
.. Empirical results . 
.. Avenues for improvement . 

. Conclusion . 

xi

 Graceful Rehoming 
. Introduction to Graceful Restart . 

.. Overview of Graceful Restart . 
.. Graceful Restart in Practice . 

. Experiment Setup . 
.. Code Modifications . 
.. Forwarding State Parameter . 

. Graceful Restart with clean shutdown . 
. Graceful Restart with naïve rehoming . 
. Graceful Restart with local-preference . 

.. Configuration Notes . 
.. Empirical Results . 

. Design discussion . 
. Avenues for improvement . 
. Conclusion . 

 On Code: Processing Optimizations 
. CPU Profiling With OProfile . 
. Optimizing zebra . 

.. Finding hot-spots with OProfile . 
.. Gleaning behavior from logfile messages . 
.. Deeper insight from instrumentation and code inspection 
.. Resolving the hot-spot, and assessing our improvements 
.. Avenues for improvement . 

. Optimizing bgpd . 
.. Finding the hot-spot . 
.. Resolving the hot-spot, and assessing our improvements 
.. Avenues for improvement . 

. Conclusion . 

 On Timing: Scheduling Optimizations 
. Evaluation Framework . 
. Optimizing Session Establishment . 

.. Finding the problem . 
.. Our Patch . 
.. Evaluation and Avenues for Improvement . 

. Optimizing Route Propagation . 
.. Finding the problem . 
.. Our Patch . 
.. Evaluation . 

. Optimizing Route Processing, Part I . 
.. Finding the problem, and our patch . 
.. Evaluation . 
.. Diagnosis . 

. Optimizing Route Processing, Part II . 
.. Finding the problem, and our patch . 

xii

.. Evaluation, and Design discussion . 
.. Avenues for improvement . 

. Conclusion . 

 ZIRO: Ziro Interruption Rehoming 
. The Soft Handoff Concept . 

.. Our route-map . 
.. Our patch . 
.. Our rehoming procedure . 

. ZIRO Results . 
.. Evaluation . 
.. Diagnosis . 
.. Revision and Re-evaluation . 
.. Design Discussion . 

. Simplifying ZIRO . 
.. Removing changes to scheduling policy . 
.. Removing CPU optimizations . 

. ZIRO at Scale . 
. ZIRO Interruption . 

.. Impact of ZIRO on TCP streams . 
.. Impact of ZIRO on TCP applications . 
.. Impact on video conferencing . 

. Conclusion . 

 Dénouement 
. Design Principles . 
. Related Work . 

.. Internet Reliability . 
.. BGP Behavior and Performance . 
.. Other Related Work . 

. Future Work . 
.. Experimental Validation . 
.. Usage Scenarios . 
.. Configuration Management . 
.. Generalizing to Other BGP Implementations 
.. Improving BGP Implementations . 

. Concluding Remarks . 

A Supplemental System Charts 

B Source Code 
B. Implementation of router-id Spoofing . 

B.. Core functionality . 
B.. Configuration handling . 

B. Improvements to Quagga’s Graceful Restart Implementation 
B. Understanding CPU Utilization . 

B.. Capturing scheduler statistics . 

xiii

B.. Capturing hash table statistics . 
B.. Miscellany . 

B. Reducing CPU Utilization . 
B.. Resolving scheduler bug . 
B.. Improving hash table performance . 

B. Scheduling Optimizations . 
B.. Improving session establishment time . 
B.. Improving route propagation delay . 
B.. Improving route processing delay, Part I . 
B.. Improving route processing delay, Part II . 

B. Soft Handoff . 

Bibliography 

xiv

List of Figures

. Typical Tier  Internet Service Provider Network . 
. Our experimental network topology . 
. Architecture of the Quagga routing software suite . 
. Illustration of our experiment framework . 
. Partial system chart for behavior during restart of an access router with a single

statically routed customer . 
. Partial system charts for behavior during access router restart 
. Comparison of restart behavior with a single statically routed customer, for different

computing hardware . 
. Comparison of restart behavior with a single BGP customer with dynamic routing,

for different computing hardware . 

. Naïve rehoming procedure . 
. Partial system chart for router restart, for the trial with the minimum overall outage

time . 
. Partial system chart for naïve rehoming, for the trial with the minimum overall out-

age time . 
. Partial system chart for naïve rehoming, with the initial router configured to have a

higher router-id than the target router . 
. Partial system charts comparing router restart and naïve rehoming, for the trials with

the longest overall outage times . 
. Partial system charts comparing the trials of naïve rehoming with the shortest and

longest outages . 
. Partial system chart for naïve rehoming with router-id spoofing, for the trial with

the longest overall outage time . 
. Clean shutdown rehoming procedure . 
. Partial system charts comparing naïve rehoming with router-id spoofing, and clean

shutdown rehoming . 
. Partial system chart for clean shutdown rehoming, for the trial with the longest out-

age time . 

. Example of Graceful Restart in operation . 
. Example of Graceful Restart applied to rehoming . 
. Flowchart for a restarting router during Graceful Restart 
. Flowchart for a receiving router during Graceful Restart 

xv

. Partial system chart for clean shutdown rehoming with router-id spoofing and Grace-
ful Restart, for the trial with the minimal overall outage time 

. Partial system chart for naïve rehoming with router-id spoofing and Graceful Restart 
. Partial system charts for clean shutdown with router-id spoofing, and naïve rehom-

ing with router-id spoofing, Graceful Restart and LOCAL_PREF, for the trials with
the minimal overall outage times . 

. Partial system chart for naïve rehoming with router-id spoofing, Graceful Restart
and LOCAL_PREF, for the trial with the minimal overall outage time 

. Partial system chart for router restart with a single static customer 
. Partial system charts for rehoming with and without the patch of Listing ., for the

trials with the minimal overall outage times . 
. Partial system charts for rehoming with and without hash table resizing patches . . 

. Partial system chart following the application of our first patch to improve route
processing delay . 

. Sequence of packets exchanged by the target router and the customer router, between
the start of the outage for traffic to , and +/ 

. Excerpted example of Graceful Rehoming (excerpted from Figure .) 

. Excerpted example of Graceful Rehoming (excerpted from Figure .) 
. Soft handoff rehoming procedure . 
. Illustration of race condition that would exist without the “new route” barrier in the

soft handoff rehoming procedure . 
. Partial system charts comparing trials of ZIRO, using the soft handoff rehoming pro-

cedure . 
. Revised soft handoff rehoming procedure . 
. Partial system charts comparing ZIRO with and without changes to bgpd scheduling

policies . 
. Partial system charts comparing ZIRO with and without CPU optimizations in zebra

and bgpd . 

A. Full system chart for router restart with a single statically routed customer 
A. Full system chart for router restart with a single BGP customer, using default routing

for outbound traffic . 
A. Full system chart for router restart with a single BGP customer, using dynamic rout-

ing for outbound traffic . 
A. Full system chart for router restart with a single static customer, on High Spec hardware
A. Full system chart for router restart with a single BGP customer, using dynamic rout-

ing for outbound traffic, on High Spec hardware . 
A. Full system chart for naïve rehoming, for the trial with the minimum overall outage

time . 
A. Full system chart for naïve rehoming, with the initial router configured to have a

higher router-id than the target router . 
A. Full system chart for router restart, with a single BGP customer, using dynamic rout-

ing for outbound traffic, for the trial with the longest overall outage time 
A. Full system chart for naïve rehoming, for the trial with the longest overall outage time

xvi

A. Full system chart for naïve rehoming with router-id spoofing, for the trial with the
longest overall outage time . 

A. Full system chart for clean shutdown rehoming, for the trial with the longest outage
time . 

A. Full system chart for rehoming with Graceful Restart and clean shutdown, for the
trial with the minimal outage time . 

A. Full system chart for naïve rehoming with Graceful Restart 
A. Full system chart for clean shutdown with router-id spoofing 
A. Full system chart for naïve rehoming with router-id spoofing, Graceful Restart and

LOCAL_PREF, for the trial with the minimal overall outage time 
A. Full system chart for naïve rehoming with router-id spoofing, Graceful Restart, LO-

CAL_PREF, and the scheduling patch for zebra . 
A. Full system chart for rehoming with default hash table sizing in bgpd 
A. Full system chart for rehoming with increased hash table sizing in bgpd 
A. Full system chart for rehoming following the application of our first patch to improve

route processing delay . 
A. Full system chart for rehoming with our initial soft handoff rehoming procedure, for

the trial with the minimal overall outage time . 
A. Full system chart for rehoming with our initial soft handoff rehoming procedure, for

the trial with the maximal overall outage time . 
A. Full system chart for ZIRO, with our changes to bgpd scheduling policies 
A. Full system chart for ZIRO, following the removal of our changes to bgpd scheduling

policies, but with our CPU optimizations for zebra and bgpd in place 
A. Full system chart for ZIRO, following the removal of our CPU optimizations for

zebra and bgpd . 
A. Full system chart for a trial exhibiting the unsuccessful case of the race condition

illustrated in Figure .(b) . 

xvii

xviii

List of Tables

. Role of each node in the topology . 
. Hardware specifications of experiment nodes . 
. Key parameters of our route traces . 
. Customer routing strategies . 
. Outage times for customers with three different routing strategies 
. Key to events depicted on system charts . 
. Improvement in outage times achievable through faster hardware 

. Comparison of outage times for router restart and naïve rehoming 
. Comparison of outage times for router restart, naïve rehoming and clean shutdown

rehoming . 

. Comparison of outage times for clean shutdown, and clean shutdown with router-id
spoofing and graceful restart . 

. Comparison of outage times for clean shutdown, naïve, and naïve with router-id
spoofing and Graceful Restart . 

. Outage times for naïve rehoming using router-id spoofing, Graceful Restart and
local-preference . 

. Top ten functions called by zebra, in terms of CPU time 
. Work-queue statistics for the route_node processing workqueue in zebra 
. Improvement due to the patching of work_queue_run 
. Top ten functions called by zebra, before and after our patch to work_queue_run, in

terms of CPU time . 
. Top ten functions called by bgpd, in terms of CPU utilization 
. Hash table statistics for bgpd, at the completion of rehoming 
. Cost of, and improvement due to, the resizing of hash tables 
. Top ten functions called by bgpd, in terms of CPU utilization, with resized hash tables 

. Breakdown of outage time before any improvements 
. Comparison of outage times before, and with, our patch for improving session es-

tablishment delay . 
. Breakdown of outage time after application of our patch for improving session es-

tablishment delay . 
. Comparison of outage times before, and with, our patch for improving route prop-

agation delay . 

xix

. Breakdown of outage time after application of our our patch for improving route
propagation delay . 

. Comparison of CPU time used by routing processes before and after application of
our patch to improve route propagation delay . 

. Comparison of outage times before, and with, our first patch for improving route
processing delay . 

. Breakdown of outage time after application of our first patch for improving route
processing delay . 

. Comparison of external and internal breakdowns of outage times, for our first patch
for improving route processing delay . 

. Comparison of outage times before, and with, our second patch for improving route
processing delay . 

. Breakdown of outage time after application of our second patch for improving route
processing delay . 

. Comparison of outage times before, and with soft handoff 
. Mean delay, over ten trials, between various log file messages and the FIB update for

 . 
. Comparison of outage times before soft handoff, with soft handoff, and with revised

soft handoff . 
. Comparison of outage times before and after removal of scheduling policy changes . 
. Comparison of outage times before and after removal of CPU optimizations 
. Comparison of outage times for CMU and Google . 
. Top five functions called by bgpd during soft handoff, when rehoming Google 
. Disruption for constant bitrates stream over TCP . 

. Design principles for rapid recovery of routing sessions 

A. Key to events depicted on system charts (repeats Table .) 

xx

Listings

. Source code that might generate “Bad BGP Identifier” messages, from the function
bgp_open_receive in bgp_packet.c . 

. Source code that generates the “Bad BGP Identifier” messages observed in our ex-
periments . 

. Core source code for patch to enable router-id spoofing 
. Source code of acpi_pm_read_verified and related functions, as annotated by OPro-

file . 
. Excerpted source code of thread_fetch, as annotated by OProfile 
. Sampling of logfile messages generated by zebra during rehoming 
. Core source code for patch to capture work queue length statistics 
. Core source code for patch to capture work queue yield counts 
. Source code of rib_queue_add . 
. Source code of meta_queue_process . 
. Abstracted source code of work_queue_run . 
. Source code of work_queue_item_requeue . 
. Source code of ALL_LIST_ELEMENTS . 
. Source code for patch to resolve the hot-spot in zebra 
. Line-by-line CPU time for hash_get, as called by bgpd 
. Core source code for patch to capture hash table statistics 
. Core source code, part  of , for patch to resolve the hot-spot in bgpd 
. Core source code, part  of , for patch to resolve the hot-spot in bgpd 
. Log file messages from bgpd, from the start of the outage for traffic to , until

bgpd has sent its BGP OPEN message to the customer router 
. Core source code for our patch to improve BGP session establishment time 
. Log file messages from bgpd, relating to the ∼ and +. events 
. Log file messages from bgpd, relating to the ∼ and +. events 
. Core source code for our patch to improve route propagation delay 
. Log file messages from bgpd, relating to the ∼ and +. events, following

application of our patch to reduce route propagation delay 
. Source code of bgp_process . 
. Core source code for our first patch to improve route processing delay 
. Log file messages from bgpd, between the +/ and ∼ events 
. Excerpted source code of bgp_establish . 
. Source code of bgp_announce_table . 
. Core source code for our second patch to improve route processing delay 
. The route-map used to identify customer routes, and mark them for soft handoff . . 
. Core source code, part  of , for patch to implement soft handoff 

xxi

. Core source code, part  of , for patch to implement soft handoff 
. Core source code, part  of , for patch to implement soft handoff 
. Log file messages from bgpd, for the five seconds prior to the enable peering event . 
. Source code for the core loop of bgp_scan, in bgp_nexthop.c 
B. Patch to bgp_open_send, in bgp_packet.c . 
B. Patch to struct peer, in bgpd.h . 
B. Patch to neighbor_local_id, in bgp_vty.c . 
B. Patch to peer_local_id_set, in bgpd.c . 
B. Patch to bgp_vty_init, in bgp_vty.c . 
B. Patch to bgp_config_write_peer, in bgpd.c . 
B. Patch to peer_global_config_reset, in bgpd.c . 
B. Patch to peer_grouppeer_config_copy, in bgpd.c . 
B. Patch to bgp_router_id_set, in bgpd.c . 
B. Patch to toplevel of bgpd.h . 
B. Patch to bgp_open_capability, in bgp_open.c . 
B. Patch to bgp_capability_restart, in bgp_open.c . 
B. Patch to bgp_open_receive, in bgp_packet.c . 
B. Patch to bgp_clear_route_table, in bgp_route.c . 
B. Patch to static const struct FSM, in bgp_fsm.c . 
B. Patch to work_queue_run, in workqueue.c . 
B. Patch to get_order, in workqueue.c . 
B. Patch to struct work_queue, in workqueue.h . 
B. Patch to show_work_queues, in workqueue.c . 
B. Patch to struct hash, in hash.h . 
B. Patch to hash_get, in hash.c . 
B. Patch to toplevel of hash.c . 
B. Patch to hash_create_size, in hash.c . 
B. Patch to hash_create, in hash.c . 
B. Patch to hash_free, in hash.c . 
B. Patch to show_hash_tables, in hash.c . 
B. Patch to bgp_sync_init, in bgp_advertise.c . 
B. Patch to aspath_init, in bgp_aspath.c . 
B. Patch to cluster_init, in bgp_attr.c . 
B. Patch to transit_init, in bgp_attr.c . 
B. Patch to attrhash_init, in bgp_attr.c . 
B. Patch to community_init, in bgp_community.c . 
B. Patch to ecommunity_init, in bgp_ecommunity.c . 
B. Patch to distribute_list_init, in distribute.c . 
B. Patch to if_rmap_init, in if_rmap.c . 
B. Patch to thread_master_create, in thread.c . 
B. Patch to cmd_init, in command.c . 
B. Patch to toplevel of hash.h . 
B. Patch to struct memory_list, in memtypes.c . 
B. Patch to toplevel of command.c . 
B. Patch to work_queue_run, in workqueue.c . 
B. Patch to toplevel of bgp_attr.h . 

xxii

B. Patch to bgp_sync_init, in bgp_advertise.c . 
B. Patch to attrhash_init, in bgp_attr.c . 
B. Patch to peer_open, in bgpd.c . 
B. Patch to open_ip_bgp_peer, in bgp_vty.c . 
B. Patch to bgp_open_vty, in bgp_vty.c . 
B. Patch to bgp_open, in bgp_vty.c . 
B. Patch to bgp_open_vty_error, in bgp_vty.c . 
B. Patch to bgp_vty_init, in bgp_vty.c . 
B. Patch to toplevel of bgpd.h . 
B. Patch to toplevel of command.h . 
B. Patch to bgp_write, in bgp_packet.c . 
B. Patch to bgp_update_receive, in bgp_packet.c . 
B. Patch to bgp_update_receive, in bgp_packet.c . 
B. Patch to work_queue_run, in workqueue.c . 
B. Patch to toplevel of bgp_packet.c . 
B. Patch to bgp_announce_route, in bgp_route.c . 
B. Patch to bgp_update_receive, in bgp_packet.c . 
B. Patch to bgp_open_capability, in bgp_open.c . 
B. Patch to bgp_capability_restart, in bgp_open.c . 
B. Patch to bgp_establish, in bgp_fsm.c . 
B. Patch to bgp_process_announce_selected, in bgp_route.c 
B. Patch to bgp_write_packet, in bgp_packet.c . 
B. Patch to neighbor_receive_first, in bgp_vty.c . 
B. Patch to bgp_vty_init, in bgp_vty.c . 
B. Patch to bgp_config_write_peer, in bgpd.c . 
B. Patch to struct peer_flag_action, in bgpd.c . 
B. Patch to struct peer, in bgpd.h . 
B. Patch to bgp_announce_check, in bgp_route.c . 
B. Patch to bgp_soft_reconfig_in, in bgp_route.c . 
B. Patch to bgp_update_receive, in bgp_packet.c . 
B. Patch to route_set_reflect, in bgp_attr.h . 
B. Patch to set_reflect, in bgp_attr.h . 
B. Patch to no_set_reflect, in bgp_attr.h . 
B. Patch to bgp_route_map_init, in bgp_attr.h . 
B. Patch to toplevel of bgp_attr.h . 

xxiii

xxiv

It’s always best to start at the beginning.
Glinda, the Good Witch of the North

1
Introduction

I S , BBN Technologies installed the first node of the ARPANET at the University of
California at Los Angeles. One month later, a second node was installed, at Stanford Research

Institute []. From these modest beginnings, the ARPANET has evolved into the Internet, a global
internetwork connecting over  million computers [], and . billion users [].

As it has grown in size, the Internet has also grown in scope. No longer a niche facility for
the collaboration of US scientists, the Internet now touches the lives of the world’s population. It
enables the average citizen to pay his bills, read the news, listen to music, watch videos, e-mail his
doctor, engage in voice or video chat with his friends and family, and much more. The Internet has
grown to be the premier communications network of our age.

Unfortunately, however, there are some respects in which the Internet lags the networks it re-
places. In particular, with respect to reliability, the Internet falls far short of the Public Switched
Telephone Network which proceeded it. Whereas the PSTN sought, and often delivered the vaunted
“five nines” of reliability [], the Internet struggles to compete. In [], for example, Reardon re-
ported that IP networks averaged two to six hours of downtime a year, or just “three nines” of
reliability.

While detailed data on the cause of failures in the Internet is scarce, available evidence indicates
that outages are often due to the unreliability of IP routers. For example, data from a study of
a regional ISP, by Labovitz et al. [], suggest that router faults accounted for up to half of all
trouble tickets at that ISP, between November  and November . In a more recent study [],
researchers from Sprint reported that % of outages observed between April and August 
were likely resolved via a reset of either the control plane, or the forwarding plane, of the router.

Breaking down the sources of unreliability within an IP router, the data from Labovitz et al. []
indicate that approximately % of router failures were due to hardware or software upgrades,
while another % of failures were due to hardware or software faults. Similarly, Reardon []
cites a study conducted for Alcatel, which found that % of router failures were due to hardware
or software upgrades, and an additional % of failures were due to hardware or software failure.



C . I

. Existing Solutions

Given the importance of the Internet, and the down time caused by unreliable IP routing equip-
ment, vendors and researchers have proposed a number of solutions to either improve the relia-
bility of individual IP routers, or to make networks more resilient to the unavailability of a single
router. We highlight representative examples here, deferring a fuller discussion of related work to
Chapter .

Solutions to improve the reliability of IP routers, offered by many router vendors, typically
exploit redundant hardware to mask both software and hardware failures. For example, Cisco, the
dominant vendor of IP routers used in ISP networks, offers “Nonstop Forwarding with Stateful
Switchover” []. With this software feature, and redundant control plane hardware, a router can
mask the failure of control plane software or hardware by switching to the backup control plane.

Taking the alternate approach of making networks resilient to single-node failures, researchers
have proposed a number of solutions based on the idea of link migration. In these proposals, when
a router fails, or requires maintenance, the links incident to it are migrated to an alternate router.
The earliest proposal in this vein is that of Sebos et al. []; more recent proposals include those of
Wang et al.’s [], and Keller et al. [].

While having some promise, each approach faces significant obstacles to widespread deploy-
ment. For hardware redundancy, the additional capital cost poses a large financial burden. Migra-
tion holds the promise of solving this financial problem by reducing the redundancy required. For
example, an ISP might share a single backup router amongst all the routers in a point-of-presence,
rather than installing redundant hardware in each router.

Unfortunately, however, existing proposals for migration suffer from their own deployment ob-
stacles. Beginning with the earliest proposal, Sebos et al.’s proposal requires changes to neighbor-
ing routers, to facilitate rapid migration. Wang et al. eliminate this requirement, by virtualizing
routers, and migrating these virtual routers across physical hardware. Unfortunately, however,
this requires a significant architectural change to IP routers, and introduces a new compatibility
requirement between them. Namely, the routes must support compatible virtualization schemes.

To avoid the challenges of virtualization, Keller et al. proposed a migration scheme which ex-
tracts routing state from one router, and reinstantiates that state on another router. This scheme
does not require significant architectural changes. Unfortunately, however, it introduces a com-
patibility requirement of its own: support for the migration of TCP sockets between hosts. Alas,
despite much research on TCP socket migration, going back at least to the work of Maltz and Bhag-
wat in  [], TCP socket migration has, itself, yet to see broad, interoperable deployment.

. Our Thesis

We believe that a more deployable solution exists, and can be found. Specifically, we contend that:

It is possible to dramatically improve the reliability of IP routers, and
thereby provide order-of-magnitude improvements in Internet reliabil-
ity, with modest, interoperable, software-only changes to IP routers.

The primary component of the control plane hardware is often referred to as the route processor.



.. O A

. Our Approach
We view reliability not as a broad architectural challenge, but as a system and performance opti-
mization problem. Namely, informed by the observation of Patterson et al. [], that system re-
liability can be improved by minimizing either the Mean Time to Failure, or the Mean Time to
Recovery, we seek to understand and improve recovery times following the failure or maintenance
of IP routers. To achieve this understanding, and facilitate improvements, we employ extensive
experimentation, cross-layer data collection, rich visualization, and the study of source code.

. Scope
To make our work tractable, we limit the scope of this dissertation in two important aspects. In
particular:

. While migration can be used to cope with many causes of router outages, we focus on migra-
tion prior to planned maintenance activities, such as hardware or software upgrades.

. We focus on access links, which connect ISP subscribers to the ISP, rather than backbone links
(within an ISP), or peering links (between ISPs). This choice is informed by prior work, which
indicates that access link failures limit end-to-end reliability to three nines [].

We discuss the questions of how to apply migration in other failure scenarios, and for other link
types, in Chapter .

. Our Contributions
The primary technical contributions of this dissertation are:

• a practical, robust, transparent, method for the migration of access links from
one IP router to another, while minimizing disruption to network traffic;

• and the demonstration of how this method can be used to facilitate planned
maintenance with sub-second outage times.

In addition to this primary contribution, this dissertation makes several substantial, though sec-
ondary, contributions. These include:

• a novel, data-rich visualization for understanding the behavior of IP routers when processing
BGP messages (see Section ..);

• two simple, new, pieces of instrumentation for better understanding the performance of the
scheduler and BGP message processing code in Quagga, a major open-source IP routing soft-
ware suite (see Sections .. and ..);

• identifying and resolving several defects in the implementation of high availability support
in Quagga (see Section ..);



C . I

• identifying and resolving a defect in Quagga’s scheduler, which we found to be the cause of
a major performance issue in Quagga’s RIB management software (see Section ..);

• identifying and resolving a performance issue in Quagga’s handling of BGP path attributes
(see Section ..); and

• providing insight into the complex scheduling behavior of a real-world BGP router (see Chap-
ter ).

. Dissertation Roadmap
The remainder of this dissertation is organized as follows:

• In Chapter , we introduce our network model, detail our experimental setup, and empiri-
cally determine the baseline cost, in terms of seconds of outage time, of a common planned
maintenance task: the in-place upgrade of routing software.

• In Chapter , we introduce two simple methods for link migration, and then measure and
analyze the outage times they achieve.

• In Chapter , we explain Graceful Restart, a software component of Cisco’s Nonstop Forward-
ing solution, and how it might be applied to the link migration problem. We then measure
and analyze the performance of a link migration scheme which incorporates Graceful Restart.

• In Chapters  and , we introduce and evaluate further optimizations to our link migration
scheme. Chapter  focuses on reducing the CPU time used by the routing software, while
Chapter  introduces scheduling modifications to move non-critical work off the critical path.

• In Chapter , we introduce one final optimization, which leverages the cross-node data re-
dundancy inherent in routing protocols. We then consider two significant simplifications to
our solution, and demonstrate that they reduce complexity without increasing outage times.

• In Chapter , we discuss related work, present our ideas for future work, and offer our con-
cluding remarks.

We suggest that the reader begin with Chapter , to establish the appropriate context for inter-
preting subsequent results, proceed through Chapters  and  for an understanding of the main
concepts behind our migration scheme, and also read Chapter  for our end result. Chapters 
and  may be read more selectively, depending on the reader’s level of interest in the specific op-
timizations developed therein. Similarly, Chapter  may be read or omitted, concordant with the
reader’s interest in the broader context of our work.



If we could first know where we are, and whither we are tending, we could better judge
what to do, and how to do it.

Abraham Lincoln

2
Baseline

A  in Chapter , one of the most significant causes of downtime in IP networks is the up-
grade of routing software itself. Such upgrades can be both, frequent, and highly disruptive.

In terms of frequency, Cisco’s IOS version . has, for example, seen twenty-four updates []
since its initial release in June, . In order to keep current, an ISP would need to upgrade the
software on its routers roughly once every 2½ months.

In terms of the degree of disruption caused by an upgrade, Cisco’s IOS, the dominant operat-
ing system amongst IP routers, requires a full system reboot in order to update routing software.
Following the reboot, the router must resynchronize routing state, update forwarding tables, etc.
Other systems, such as those running IOS XR, JunOS, or Quagga, do not require a full reboot. They
do, however, still require that the router resynchronize routing state, update forwarding tables, and
the like.

Despite the frequency of routing software releases, the disruption they cause, and the resulting
impact on the reliability of IP networks, there is a paucity of hard data on exactly how long it takes
to upgrade routing software, and why the process is so disruptive. In this chapter, we remedy this
state of affairs, by examining the behavior of a set of routers as routing software is restarted.

We show that, with the Quagga software router, an  MHz Pentium III CPU, a single customer
link, and a contemporary-sized routing table (approximately , entries), the mean outage
time experienced by the customer can vary from  to  seconds, depending on the type of
routing used by the customer.

We further show that while faster processors can reduce the outages experienced, substantial
down time remains. Upgrading from the  MHz system (circa ) to a a  GHz hyper-threaded
Xeon CPU (circa ) reduces the mean downtime to between  to  seconds, again depending
on the type of routing used by the customer. However, upgrading to the latest hardware avail-
able, a hyper-threaded quad-core Xeon E processor (circa ), reduces outages times only
marginally, with the outages ranging from  to  seconds.

These twenty-four updates do not included so-called “rebuild releases”, which narrowly target single defects.



C . B

Via detailed measurements, and data-rich visualizations, we then explain the difference in out-
age times between routing strategies, as well as the limitations of relying on CPU improvements
to improve outage times. In particular, with regard to CPU improvements, we show that existing
routing software is unable to exploit the parallelism offered by modern CPUs.

The remainder of this Chapter is structured as follows:
• In Section ., we introduce and explain the experiment setup that we use throughout the

dissertation.
• In Section ., we detail the restart procedure we use to evaluate baseline performance.
• In Section ., we present and analyze empirical measurements of the downtime caused by

restarting a router. The measurements cover three different routing strategies, and three
hardware configurations, for a total of nine conditions in all.

• In Section ., we summarize our findings, and outline the optimization strategies that we
will pursue in Chapters  through .

. Experiment Environment
To set the stage for our experiments, we now explain our experiment environment. We begin with
our high-level network model, and then detail the experimental network topology we use to em-
ulate that model. We next describe the routing table traces used to drive our experiments, as well
as our choice of routing software. Finally, we explain our measurement apparatus and automated
experiment framework.

.. Network Model
In order to measure the outage time experienced by a customer when a router is upgraded, we
must model and emulate the ISP network. To this end, Figure . illustrates our model of an ISP
network. In this model, the ISP has placed backbone routers at many geographically distinct loca-
tions, known as “points-of-presence”, or PoPs. The backbone routers are connected via wide-area
links. Each PoP also houses one or more access routers. These routers serve as intermediaries
between customer routers, and backbone routers.

Note that from the routers’ perspective, the links depicted in this diagram are fixed, point-to-
point links. Consequently, the opposite end of the link does not change after the link is config-
ured. In practice, however, these links are often reconfigurable at the transport layer. A number
of IP routers may be connected to a single transport layer device, such as an add-drop multiplexer
(ADM). This provides a level of indirection that enables us to, for example, migrate the customer
router’s layer-two link to terminate at access router B, instead of access router A.

As noted in Section ., our focus in this dissertation is outages caused by the unavailability of
access links. Accordingly, our experiments use a topology focused on the connection between the
customer and the access router, as we next describe.

.. Experimental Network Topology
While the model in Figure . includes many components, many of them are not vital to under-
standing, and solving our problem. Accordingly, we use a simplified topology as illustrated in
Figure .. Detailed descriptions of the roles of each node are provided in Table .. Note that, in



.. E E

Access Router Backbone RouterCustomer Router

Metro Wide-Area

ADM

IP

transport

A
B

Figure .: Typical Tier  Internet Service Provider Network. The upper portion of the diagram
illustrates the IP network, while the lower portion illustrates the transport network underlying the
IP network.

addition to removing components such as backbone routers, our experimental network topology
also adds the “customer sink” and “sink” nodes to facilitate measurement, and the “bridge” node
to provide link reconfiguration.

The topology is instantiated on the Emulab [] at the University of Utah. Depending on the
experiment, the nodes are either “Low Spec,” “Mid Spec,” or “High Spec,” as detailed in Table ..
In addition to the links depicted in Figure ., each node has a link to a control network, which is
used to coordinate the activities of the nodes during the experiment. The control network is not,
however, used for the BGP peerings, or the delivery of measurement traffic. The components of
our topology are sufficient to emulate critical factors including FIB update time, BGP processing
time, and route propagation delays.

.. Routing Tables
BGP routing performance is significantly influenced by the number of distinct prefixes in the rout-
ing system, and the number of distinct path attributes associated across the prefixes. The former
impacts the computation required to complete the route decision process, while the latter influ-
ences the amount of work required to parse inbound routing messages from BGP peers, and to
format outbound routing messages to BGP peers.

When multiple prefixes share the same path attributes, announcements for the group of prefixes can be sent as a single
BGP UPDATE message, containing one copy of the shared path attributes, along with an enumeration of the prefixes. For
quantitative results on the performance benefits of packing multiple prefixes into a single BGP UPDATE, see[].



C . B

customer sink
. generates IP datagrams outbound from the customer
. receives IP datagrams inbound to the customer
. maintains BGP peering with customer router (as appropriate)
. injects customer prefixes into the routing system via its BGP peering with

the customer router (as appropriate)

customer router
. maintains BGP peering with customer sink (as appropriate)
. maintains BGP peering with initial router or target router (as appropriate)
. forwards IP datagrams between customer sink and initial router or target

router (as appropriate)

bridge
. forwards Ethernet frames between the customer router, and the initial

router, or target router (as appropriate)

initial router
. maintains BGP peering with customer router (as appropriate)
. maintains BGP peering with target router and remote router
. forwards IP datagrams to and from customer router

target router
. maintains BGP peering with customer router (as appropriate)
. maintains BGP peering with initial router and remote router
. forwards IP datagrams to and from customer router (as appropriate)

remote router
. maintains BGP peering with initial router
. maintains BGP peering with target router
. maintains BGP peering with sink
. forwards IP datagrams to and from sink

sink
. generates IP datagrams outbound from the Internet
. receives IP datagrams inbound to the Internet
. maintains BGP peering with remote router
. injects Internet prefixes into the routing system via its BGP peering with the

remote router

Table .: Role of each node in the topology. Some functions may not apply, or may vary, in some
experiments. These functions are denoted “(as appropriate).”



.. E E

customer

sink

customer

router
bridge

initial

router

target

router

remote

router
sink

Figure .: Our experimental network topology. Each line indicates a layer-two link. Colors depict
autonomous systems.

CPU Parameters
Model Speed Cores Threads RAM Network Vintage

Low Spec Pentium III  MHz    MiB  Mbit 
Mid Spec Xeon  MHz    MiB  Mbit 
High Spec Xeon E  MHz    MiB  Mbit 

Table .: Hardware specifications of experiment nodes. Note that the Mid Spec machines have
Gigabit Ethernet network cards configured in  Mbit mode.

To obtain representative results, we conduct our experiments using routing data, obtained from
Route Views []. Route Views maintains BGP peering sessions with over forty different ISPs, and
provides the routing from these peering sessions in two formats. The formats are a) a stream of BGP
UPDATE messages, as received by Route Views, and b) a point-in-time dump of the RIB computed
by the Route Views router, by processing the update stream without any local policy.

In our experiments, we use a point-in-time RIB dump to seed the RIB on “remote router.” To
do so, we convert the RIB dump into a sequence of BGP updates, and then use the sbgp tool from
the Multithreaded Routing Toolkit [] to replay these updates from “sink” to the BGP routing
software on “remote router.”

Similarly, we seed the RIB on “customer router” via sbgp running on “customer sink.” Note
that because Route Views only peers with ISPs, we generate the updates for the customer router
by processing the RIB dump for a second ISP, and selecting the routes having an ASPATH ending
at the customer’s AS.

We provide key parameters of the ISP and customer routing data in Table .. We note that
while the absolute number of prefixes in the CMU and Google traces are small, this is, in fact,
typical of individual customer networks in the Internet. In particular, the CMU and Google traces
represent ASes that rank at the nd and th percentiles in terms of the number of prefixes they
originate into the global routing system.

All experiments in this dissertation use the UUNET trace for seeding “remote router.” For

It might seem more appropriate to replay a stream of updates as captured by Route Views. However, because Route
Views rotates its stream captures every fifteen minutes, and BGP only generates messages when a route changes, we cannot
assume that any given stream capture contains complete routing information.



C . B

AS number # prefixes # path attributes first prefix last prefix
UUNET    ... ...
CMU    ... ...
Google    ... ...

Table .: Key parameters of our route traces. The CMU and Google traces, are generated by fil-
tering the Route Views RIB dump for AS  (Sprint), selecting those prefixes with an AS PATH
ending in AS  or AS , respectively. The UUNET trace is generated directly from Route Views’
RIB dump for AS. Both RIB dumps were generated by Route Views on July , .

seeding “customer router,” we use the CMU trace in all experiments except the experiments of
Section ..

.. Software
There are many routing platforms available today, including Cisco’s IOS and IOS XR, Juniper’s
JunOS, GNU Zebra [], Quagga [], XORP [], BIRD [], and OpenBGPD []. We conduct our
experiments with Quagga, as i) it runs on readily available hardware and software, ii) its source
code is readily available, and iii) it closely models the functionality available in IOS, the dominant
routing platform on the Internet today. These properties are important to our work for several
reasons:

. by running Quagga on Fedora Linux and Intel processors, we are able to leverage measure-
ment tools, such as packet capture utilities, and CPU performance counter-based profilers, to
gain deep insight into the behavior of the system;

. without readily available source code, we would not be able to prototype and evaluate our
proposed improvements; and

. the similarity between the features of Quagga and IOS gives some measure of assurance that
our changes could be applied to other systems.

We discuss the implications of our work, for other routing platforms, in Section ...

Quagga Architecture

Quagga is a multi-process, multi-protocol routing suite, supporting multiple operating systems. It
is organized as one process per routing protocol, plus a process which manages interactions with
the operating system kernel. These interactions include adding and removing entries from the
kernel’s routing information base, and listening for changes in network interface status.

Each Quagga process has its own configuration file, as well as a command-line interface, ex-
posed via TCP. Most relevant to our experiments are the bgpd and zebra processes, which handle
the BGP routing protocol, and kernel requests, respectively. We illustrate Quagga’s software ar-
chitecture in Figure ..

For completeness, we note that our experiments also use ospfd, to establish routing paths between the ISP-side routers
in our topology, using the OSPF routing protocol.



.. E E

bgpd

CLI

ospfd

CLICLI

zebra

user

kernel

RIB, interface events, route events

unix socket unix socket

netlink socket

Figure .: Architecture of the Quagga routing software suite.

Configuration Notes

We use Quagga version .., and the Fedora Core  operating system. Based on past experience,
we make two changes to the default Linux socket parameters. First, we increase the size of the
socket receive buffers to  MB. This provides sufficient buffering so that netlink messages from
the kernel to the zebra process are not dropped. Second, we increase the size of socket send buffers
to  MB. This avoids a deadlock we have observed between the zebra and bgpd processes.

.. Measurement Apparatus
In order to gain a detailed understanding of system behavior, we instrument the system for mea-
surement across layers, and across nodes in the system. In particular, we capture the following
passive measurements:

• all inbound and outbound BGP messages
(on all nodes running Quagga)

• log messages generated by bgpd and zebra
(with microsecond granularity, using default logging levels)

• the time at which each step of restarting or rehoming process is initiated
(with nanosecond granularity)

• overall system CPU utilization, from the /proc/stat pseudo-file
(captured at one second intervals, with  ms granularity)

• CPU utilization of bgpd, ospfd, and zebra, in kernel and user code, from the respective
/proc/<pid>/stat pseudo-files
(captured at one second interval intervals, with  ms granularity)

• the time at which the FIB entries for the first and last Internet and customer prefixes, hereafter
denoted , , , and  respectively, are modified
(polled at one second intervals, reported with nanosecond granularity)

In addition to these passive measurements, we inject ICMP ping packets, to measure the reacha-
bility of traffic, both from the customer router to the Internet, and from the Internet to the customer
router. This is facilitated and captured by:



C . B

• a ping process on the customer sink, sending traffic to 
( ms interval)

• a ping process on the customer sink, sending traffic to the 
( ms interval)

• a ping process on the sink, sending traffic to 
( ms interval)

• a ping process on the sink, sending traffic to 
( ms interval)

• a capture of all inbound and outbound ICMP packets

Note that it is sufficient to monitor the first and last prefixes because Quagga transmits adver-
tisements in numerical order. One subtlety in this ordering, however, is that prefixes having iden-
tical path attributes are “packed” into a single update message. Hence, when we refer to  or
, we mean the last prefixes advertised by the ISP or the customer (respectively), taking in to
account both numerical order, and “update packing.”

.. Experiment Framework
BGP performance can exhibit a great deal of variability, due to the effects of timers which govern
actions such as the establishment of peering sessions, the transmission of route advertisements, and
the processing of periodic tasks such as next-hop reachability checking. To capture the effects of
this variation, as well as to provide assurance about the reproducibility of our results more broadly,
we built a framework which enables us to readily repeat a single experiment for multiple trials. The
framework is illustrated in Figure ., and is realized in under  lines of code. In Section ..,
we highlight one example where timer variation significantly influences outage times.

. Restart Procedure
Having explained our experiment environment, we now turn to the details of the the procedure we
use to restart our router. As the Quagga routing software contains three processes (zebra, ospfd,
and bgpd), there are numerous procedures we might use for restarting the software. These proce-
dures vary in the order that the processes are restarted, and whether the processes are restarted
concurrently or serially.

While the simplest procedure would be to restart all of the processes concurrently, we found this
method to be unreliable. Specifically, in some trials with the Low Spec machines, the system would
converge to a state where the first customer prefix was installed in the FIB, but the last customer
prefix was not. As we were unable to reproduce this behavior with the Mid Spec machines, we

For example, if prefixes .../ and .../ share path attributes, while .../ does not, the message containing
.../ will arrive before the message containing .../.

The timers for establishing peering sessions and transmitting route advertisements include the ConnectRetryTimer, De-
layOpenTimer, and IdleHoldTimer. Timers governing route advertisements include the MinASOriginationIntervalTimer,
and MinRouteAdvertisementIntervalTimer. More details about these timers are available in the BGP specification [].
Timers for periodic tasks, such as next-hop reachability checking, are implementation-dependent.



.. R P

customer customer initial target remote
sink router bridge router router router sink

start monitors
start pings start pings

monitors ready

reachable?


reachable?


reachable?


reachable?

sleep  sleep 
start

<execute experiment code> new 
in bgpd?


reachable?

new route new route

reachable?

rehome reach rehome
reach

 in FIB?

 in FIB?

>k routes
in bgpd?

>k routes
in FIB?

done done
CPU idle?
sleep 

trial complete
stop monitors
<revert changes> old  in

bgpd?
old route old route

reachable?


reachable?


reachable?


reachable?

stop pings stop pings
revert reach

sleep - min
revert compete

CPU idle? CPU idle?

Figure .: Illustration of our experiment framework. The columns list the steps taken by each
node. Light gray bars indicate actions repeated across several nodes. Medium gray bars indicate
barriers used to synchronize actions across nodes. Note that steps between barriers are unordered
with respect to actions of other nodes. Note further that the steps after “stop monitors” are omitted
for restart experiments, except for the - minute sleep.



C . B

believe the behavior is a symptom of a race condition between the deletion of old routes, and the
insertion of new ones.

In order to reliably restart the routing software, we use the following procedure:

. signal zebra to terminate
. wait for zebra process to exit
. start zebra
. wait for the processor to become idle
. restart ospfd
. restart bgpd

The key to the success of this procedure is step , which allows zebra to complete its startup tasks,
including the removal of routes installed by the previous process, before permitting route modifi-
cations by ospfd or bgpd.

. Experimental Results
Having detailed our experiment environment, and the restart procedure, we are now ready to
describe our specific experiments, and present our findings. Our experimental results for restarting
a router are organized as follows:

• First, in Section .., we consider the outage times on Low Spec hardware, for customers
with three typical routing strategies. We show that the mean outage time ranges from  to
 seconds, and that much of this time is due to computation delays.

• Second, in Section .., we repeat our experiments on Mid Spec and High Spec hardware,
to determine the extent to which outage times can be reduced through the use of faster hard-
ware. We find, however, that neither can achieve “five-nines” reliability for customers using
BGP with dynamic routing, in the face of a routing software upgrade once every 2½ months.

Note that all experiments are repeated for ten trials. When presenting our results, we generally
begin with summary statistics over these ten trials. We then proceed to provide deeper insight
into the factors behind the observed behavior by highlighting particular features of representative
trials.

.. Outage times on Low Spec hardware
Herein, we study the outage times experienced when an access router is restarted. We study the
outage times for three different kinds of customers, grouped by their routing strategies. These three
routing strategies are: static, BGP with default routing, and BGP with dynamic routing. Each rout-
ing specifies how routes for traffic inbound to, and outbound from, the customer, are established.
The strategies are detailed in Table .. Note that, for BGP with default routing, the initial router
is configured not to transmit any route advertisements on its peering session with the customer
router.

We have not attempted this restart procedure with the High Spec machines.
In principle, the shell code for restarting zebra should accomplish the same, as it calls ip route flush proto zebra

before starting the new zebra process. However, we found that ip command would terminate before removing all of the
routes installed by zebra. This may be a defect in the version of the ip command in Fedora Core .



.. E R

bgp + bgp +
static default dynamic

inbound customer prefixes
configured on ISP router

customer prefixes
advertised to ISP via BGP

customer prefixes
advertised to ISP via BGP

outbound default route configured
on customer router

default route configured
on customer router

Internet routes acquired
through BGP

Table .: Customer routing strategies. Columns list the strategy names, and rows describe how
they establish routes for traffic inbound to, and outbound from, the customer.

bgp + bgp +
static default dynamic

internet to  29.56 35.14 58.19
internet to  21.81 30.63 54.15
customer to  40.36 41.03 73.69
customer to  96.77 97.97 129.67
any 109.92 111.82 143.17

Table .: Mean outage times, in seconds, and over ten trials, for customers with three different
routing strategies. The row labeled “any” gives the total time during which any of the four prefixes
is unreachable. If the outages for these prefixes overlapped completely, the “any” outage time
would be the maximum of the rows above it. If the outages did not overlap at all, the “any” outage
time would be sum of the rows above it.

Conducting experiments with these different routing strategies is valuable for two reasons.
First, these strategies are representative of different real-world customers. Second, by comparing
the system’s behavior for these different routing strategies, we can better understand and isolate
the causes of load on the system.

High-level results

We begin our study of outage times with Table ., which gives the mean outage times for these
three routing strategies. The table lists the outage time for traffic to each of , , , ,
as well as the total outage duration. From the data in the table, we can make several important
observations:

. The outage times are significant barriers to achieving “five-nines” reliability. Even the static
routing strategy sees a mean outage time of approximately  seconds. Thus, a single router
restart consumes approximately % of the annual outage budget.

. Static routing and BGP with default routing see similar overall outage times. However, BGP
with dynamic routing sees significantly longer overall outage times.

. Outages for traffic to  are considerably shorter than outages for traffic to .



C . B

load 0

load 1remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

∼CUST1
∼CUSTN

+INET1.I

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1
−CUSTN
−INETN

+CUSTN
+CUST1

bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

20 40 60 80 100 120 135
time (sec)

reachability

13 38
INET→ CUSTN

8 38
INET→ CUST1

14 109
CUST→ INETN

1 39
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

Figure .: Partial system chart for behavior during restart of an access router with a single statically
routed customer. This chart illustrates the trial with the shortest total (“any”) outage time. The
target router, bridge, and customer router are omitted, as they do not significantly contribute to
observed behavior. A larger rendering of this chart, is provided as Figure A..

. Surprisingly, for  and , the story is reversed. That is to say that outages to 
are longer than those for . The magnitude of the difference is, however, significantly
smaller.

Visualizing system behavior

For a deeper understanding of the mechanisms behind these outages, we need more details about
the system behavior, and the ability to correlate events across the nodes in the system. To that end,
we introduce our system chart. The system chart leverages our battery of measurements to provide
a single visualization that captures the salient aspects of the system’s behavior.

Figure . presents the system chart for the restart of an access router which hosts a single
statically routed customer. The top two graphs present the CPU load on the remote router, and the
initial router, respectively. The shaded areas indicate CPU load for the bgpd and zebra processes,
broken down by user mode and system mode time, as denoted in the legend. The light dotted line
indicates total CPU load. In cases where CPU load is due to some process other than bgpd or zebra,
the dotted line exceeds the sum of the blue and green shaded areas.

In addition to the illustrating the CPU load, each of the top two graphs also illustrates the timing
of important events during the rehoming process. For each such event, we place an annotation on
the graph for the node where the event occurred, and at the x-axis position for the time at which
the event occurred. For example, zebra ↓, the leftmost label and marker on the graph labeled
“initial router”, indicates that the experiment framework signalled the zebra process to terminate
one second after the start of the experiment.

The ordering of closely spaced events can be determined by their vertical positioning. The later event will appear above



.. E R

We describe the complete set of events illustrated throughout this dissertation, including how
they are captured, and the precision of their timestamps, in Table .. Note that, for graphs in the
body of the dissertation, some annotations are shown in gray type, while other are shown in black.
This formatting emphasizes events referenced from the text, while still presenting the full set of
events observed.

Finally, the bottommost graph indicates the reachability of different IP address prefixes, as mea-
sured from two vantage points. Green areas denote times during which packets are delivered suc-
cessfully, and red areas denote times during which packets are lost. For example, the large red
region in the series labeled  → , indicates that from time  seconds to time  seconds,
packets sent from the customer sink towards  were not received at “sink”.

In-depth analysis

Having introduced our system charts, we are now equipped to present a deeper analysis of the
system behavior. We now use our system charts to illuminate the causes of each of the behaviors
highlighted in our high-level results above.

. Regarding the overall outage time, we see in Figure . that most of the outage can be at-
tributed to CPU processing delays on the initial router. Because there is no BGP session
between the customer router and the initial router, the CPU load on the initial router must
be due to the processing of updates from the remote router.

One obvious way to avoid the outage caused by these delays to move migrate the customer
to another router before upgrading the initial router. Accordingly, we introduce and evaluate
techniques for link migration in Chapter .

. We next consider the similarities and differences between the overall outages times for the
three different types of customers. In order to understand why the outage times for static cus-
tomers are so similar to those for BGP customers using default routing, and why the outage
times for BGP customers with dynamic routing are much higher, we present Figure ..
This figure compares the system charts for the trials with the minimum outage times, for
each routing strategy. Examining Figures .(a) and .(b), we see that, as for static routing,
the dominant factor in outage times for BGP customers with default routing is CPU process-
ing time on the initial router. In contrast, Figure .(c) shows that, for BGP customers with
dynamic routing, the dominant factor is the processing time on the customer router.
We further note that the length of the computation on the initial router is appreciably larger
for BGP customers with dynamic routing, than the other two routing strategies. Quantifying
this difference, we find that, in the mean, BGP customers using dynamic routing require an
additional  seconds of computation by the BGP process on the initial router, as compared to
the other two routing strategies. This likely due to the work required to generate and transmit
routing advertisements to the customer router.

the earlier event, except in the case where the earlier event occupies the topmost position in the graph. In such cases, the
later event occupies the bottommost position.

Updates from the peering between the initial router’s peering with the target router are not an issue, because i) the
target router does not originate any routes of its own, and ii) in the restart experiments, the target router does not maintain
any EBGP peerings, and iii) the routes that the target router has learned from the remote router can not be advertised to the
initial router, because both the remote router and the initial router are IBGP peers of the target router.



C . B

description capture method precision
bgpd 	 the framework restarted the bgpd process experiment logfile nanosecond
bgp ↓ the BGP peering with the customer went down

(also initial router, remote router, and ISP router.)
bgpd log file microsecond

bgp ↑ the BGP peering with the customer came up
(also initial router, remote router, and ISP router.)

bgpd log file microsecond

∼ the nexthop IP address of the kernel FIB entry
for  has changed
(also , , and )

polling kernel FIB
(once per second)

nanosecond

− the kernel FIB entry for  has been removed
(also , , and )

polling kernel FIB
(once per second)

nanosecond

+ a kernel FIB entry for  has been added
(also , , and )

polling kernel FIB
(once per second)

nanosecond

+/ a BGP advertisement for  was received
from the customer router
(with variations for different prefixes and BGP peers)

packet capture microsecond

+. a BGP advertisement for  was sent to the
ISP router
(with variations for different prefixes and BGP peers)

packet capture microsecond

-/ a BGP withdrawal for  was received from
the initial router (also )

packet capture microsecond

-. a BGP withdrawal for  was sent to the
remote router (also )

packet capture microsecond

disable nic the framework disabled the customer-facing
network card

experiment logfile nanosecond

enable nic the framework enabled the customer-facing
network card

experiment logfile nanosecond

enable
peering

the framework enabled a BGP peering between
the ISP and the customer

experiment logfile nanosecond

move link the framework reconfigured the layer- link
between the ISP and the customer

experiment logfile nanosecond

open. a BGP OPEN message was received from the
customer router

packet capture microsecond

reject peer the customer router rejected a peering request
from the ISP

bgpd log file microsecond

zebra ↓ the framework signalled the zebra process to
terminate

experiment logfile nanosecond

zebra ↑ the framework started a new zebra process experiment logfile nanosecond

Table .: Key to events depicted on system charts. Note that not all events occur on all charts.



.. E R

bgp + bgp +
static default dynamic

Low Spec 109.92 111.82 143.17
Mid Spec 36.83 37.45 64.52
High Spec 32.02 30.97 56.70

Table .: Improvement in outage times achievable through faster hardware. For each hardware
configuration, we show the mean outage time, over ten trials. Note that the “Low Spec” row of this
table repeats the “any” row of Table ..

We tackle the problem of customer router computation in Chapter , and we optimize BGP
processing on the ISP router in Chapter .

. For all routing strategies, the difference in outage times for  and  can be explained
by CPU processing time. For static routing, or BGP routing with a default route, this process-
ing occurs on the initial router; for BGP with dynamic routing, the processing occurs on the
customer router. Surprisingly, the zebra uses more CPU time than the bgpd process. This
suggests that FIB processing is more expensive than BGP processing.

. To understand the difference in outage times between  and , we focus on Fig-
ure .(a), as the other trials depicted in Figure . do not show any difference between these
two prefixes. Specifically, we consider the annotations −, −, −, and the
outage graphs for  →  and  → .
We first observe that the outage start times correlate well with the annotations for the FIB
changes. We next note that the CPU on the initial router is busy in the zebra process during
this time, and then conclude that the difference in outage times for these prefixes is due to
the cost of FIB updates.
The difference in outage times might seem out of proportion to the number of prefixes orig-
inated by this customer (just seven, as listed in Table .). Note, however, that these seven
prefixes span a large portion of the IP address space: from ... to .... Thus,
there can be a considerable delay between the processing of these two prefixes, as the router
performs FIB processing for other prefixes in the Internet.

.. Benefits of faster hardware
Having observed that much of the outage time can be attributed to CPU processing time, it is
valuable to consider the extent to which outage times can be improved through the use of faster
processors. To that end, we present Table .. This table shows the overall outages time observed
with Low Spec, Mid Spec, and High Spec hardware.

At a high level, we observe that the Mid Spec hardware reduces outage times for static, and BGP
with default routing, by approximately %. Thus, a single router restart would consume slightly
over % of the annual outage budget. Given the rate of software releases, however, keeping rout-
ing software current could easily consume half the annual outage budget. For BGP customers with
dynamic routing, the disruption caused by software updates alone would make it impossible to
achieve “five-nines” reliability.



C . B

load 0

load 1initial
router

zebra ↓
−INET1

zebra ↑
−CUST1
−CUSTN
−INETN

+CUSTN
+CUST1

bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

20 40 60 80 100 120 135
time (sec)

reachability

13 38
INET→ CUSTN

8 38
INET→ CUST1

14 109
CUST→ INETN

1 39
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) statically routed customer

load 0

load 1initial
router

zebra ↓
−INET1

zebra ↑
−CUST1
−CUSTN
−INETN

bgpd 	
bgp ↑C

+CUST1/C

+CUSTN/C

+CUSTN
+CUST1

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

20 40 60 80 100 120 135
time (sec)

reachability

6 38
INET→ CUSTN

6 37
INET→ CUST1

14 108
CUST→ INETN

1 37
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) BGP customer with default route to Internet

load 0

load 1initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN
−INETN

bgpd 	
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1
+CUSTN

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INET1.C +INETN/R +INETN

+INETN.C

customer
router

bgp ↓ISP

−INET1
bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

−INETN
+INET1/ISP

+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

6 36
INET→ CUSTN

6 36
INET→ CUST1

14 133
CUST→ INETN

1 59
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(c) BGP customer with dynamic routing to Internet

Figure .: Partial system charts for behavior during access router restart. These charts illustrate
trials with the shortest “any” outage times. For ease of comparison a reduced version of Figure .
is repeated here as subfigure (a). The full versions of these three charts are provided as Figures A.
through A..



.. E R

Intriguingly, the move from Mid Spec hardware to High Spec hardware provides much more
modest improvements, of -%. Why is it that, despite a historical trend of computing power
doubling every  months, a full decade of improvements in computing hardware has proved in-
sufficient to solve our problem? To answer this question, we again turn to our system charts. We
first consider statically routed customers, then those using BGP with dynamic routing.

Improvement for a statically routed customer

Figure . presents system charts for restarting of a router with a single statically routed customer,
comparing the behavior of Low Spec and High Spec hardware. From this figure, we make three
observations:

. A significant fraction of the outage time is no longer due to CPU processing delays. Specifi-
cally, we note that from time  seconds to  seconds in Figure .(b), processors on both the
remote router and initial router are idle. During much of this time, bgpd on the initial router
has restarted (as denoted by bgpd), but not yet re-established the peering session with the
remote router (as denoted by bgp ↑). We investigate delays in peering session establishment,
and how to resolve them, in Chapter .

. The newer hardware has reduced the wall-clock time required by the post-restart zebra and
bgpd processes from approximately  seconds to approximately  seconds. This roughly
factor-of-five improvement is far short of historical norms, which would have predicted a
-fold improvement.

. The CPU utilization on the initial router never exceeds , despite the fact that the hardware
supports  threads. Thus, much of the shortfall between the factor-of-five improvement in
CPU processing time, and the -fold improvement we might expect, is due to the mismatch
between the evolution of software and hardware. Most software is simply not prepared to
take advantage of hardware support for multithreaded execution.

Improvement for a BGP customer with dynamic routing

We next analyze the benefits of faster hardware for a BGP customer with dynamic routing, using
the system charts of Figure .. From this figure, we make the following observations:

. With High Spec hardware, as illustrated in Figure .(b), there is no significant period of time
during which all nodes in the system are idle. During the times when the initial router is idle,
the customer router is busy, and vice versa.

. The High Spec hardware reduces the post-restart wall-clock time required by the zebra and
bgpd processes on the customer router from about  seconds to about  seconds. This is a
greater factor of improvement than observed for computation on the initial router, but still
far short of the -fold improvement we might expect from historical norms.

. As with the statically routed customer, the routing software lacks sufficient thread-level par-
allelism to fully utilize the CPU hardware.

Both zebra and bgpd are structured as multithreaded programs. However, they both use cooperative, user-level threads.
Thus, the operating system cannot schedule the threads for simultaneous execution on the hardware.



C . B

load 0

load 1remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

∼CUST1
∼CUSTN

+INET1.I

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN
−INETN

+CUSTN
+CUST1

bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

20 40 60 80 100 110
time (sec)

reachability

13 38
INET→ CUSTN

8 38
INET→ CUST1

14 109
CUST→ INETN

1 39
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) Low Spec nodes

load 0

load 8remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

+INET1.I

∼CUST1
∼CUSTN

+INETN.I

initial
router

zebra ↓
−INET1
−CUST1
−INETN
−CUSTN

zebra ↑

+CUSTN
+CUST1
bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1
+INETN/R

+INETN

20 40 60 80 100 110
time (sec)

reachability

3 16
INET→ CUSTN

2 16
INET→ CUST1

3 29
CUST→ INETN

1 16
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) High Spec nodes

Figure .: Comparison of restart behavior with a single statically routed customer, for different
computing hardware. The customer router is omitted from the charts, as it does not contribute
significantly to the observed behavior. The charts are presented on a common scale for ease of
comparison; as the High Spec hardware completes the experiment more quickly than the Low
Spec hardware, no data exists for the area at the right of the High Spec chart. Full versions of these
charts are provided as Figures A. and A..



.. E R

load 0

load 1initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN
−INETN

bgpd 	
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1
+CUSTN

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INET1.C +INETN/R +INETN

+INETN.C

customer
router

bgp ↓ISP

−INET1
bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

−INETN
+INET1/ISP

+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

6 36
INET→ CUSTN

6 36
INET→ CUST1

14 133
CUST→ INETN

1 59
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(a) Low Spec nodes

load 0

load 8initial
router

zebra ↓
−INET1
−CUST1
−CUSTN
−INETN

zebra ↑

bgpd 	
bgp ↓R

bgp ↓C

bgp ↑R

+INET1/R

+INET1

+INETN/R

bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.R

+CUSTN.R

+CUST1
+CUSTN
∼CUSTN
∼CUST1
+INETN

customer
router

bgp ↓ISP

−INET1
−INETN

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

3 33
INET→ CUSTN

2 33
INET→ CUST1

3 35
CUST→ INETN

1 25
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(b) High Spec nodes

Figure .: Comparison of restart behavior with a single BGP customer with dynamic routing,
for different computing hardware. The remote router is omitted from the charts, as it does not
contribute significantly to the observed behavior. Full versions of these charts are provided as
Figures A. and A..



C . B

. Conclusion
In this chapter, we set out to understand the impact of restarting one router in a system of BGP
routers. Using real-world traces, and  MHz Pentium III processors, we showed that the outage
times vary from  to  seconds, depending on routing strategy.

Digging more deeply, we identified several avenues for improvement, including: i) isolating
the customer from the restart-related computation on the initial router, ii) reducing computation
on the customer router, iii) optimizing BGP processing on the ISP router, and iv) reducing the time
taken to re-establish BGP peerings. We pursue these improvements in Chapters , , , and ,
respectively.

Of course, before pursuing these changes, it is important to consider whether our problems
could be solved more simply through the use of faster computing hardware. To that end, we re-
peated our experiments with  GHz Xeon processors, and with . GHz quad-core Xeon proces-
sors. The systems represent five years, and a full decade, of advancement in computing hardware,
respectively. Unfortunately, however, neither system can achieve “five-nines” reliability for cus-
tomers using BGP with dynamic routing, in the face of a routing software upgrade once every 2½
months.

Before proceeding, we note that in subsequent chapters, we focus solely on BGP customers using
dynamic routing. We choose to focus on these customers as i) they have the largest outage times,
and ii) they subsume the effects observed for statically routed customers, and BGP customers with
default routing.



All problems in computer science can be solved by another level of indirection.
David Wheeler

3
Rehoming

O  of Chapter , which quantified the effects of restarting an access router, rev-
eled that such a restart can cause mean outage times of approximately  to  seconds,

depending on the routing strategy employed by the customer. Our analysis of those experiments
identified several bottlenecks, including restart-induced computation on the initial router.

In this chapter, we seek to eliminate that bottleneck. Our strategy for doing so is to migrate, or
rehome, the customer from the router to be restarted, known as the initial router, to a spare router,
known as the target router. After the migration is complete, the initial router can be restarted
without disrupting connectivity for the customer.

To that end, we introduce two rehoming schemes, called “naïve”, and “clean shutdown”. We
show that the simpler scheme, naïve, eliminates ISP-side computation as a bottleneck. However,
it introduces complications which result in a net increase in outage times. The clean shutdown
scheme, though somewhat more complex, avoids these complications. Thus, clean shutdown both
eliminates ISP-side computation as a bottleneck, and achieves a net reduction in outage times.

The remainder of this chapter is structured as follows:

• In Section ., we speak to the need for our solution to be deployable and usable, and the
constraints those goals imply.

• In Section ., we introduce the naïve rehoming scheme, evaluate it experimentally, and iden-
tify avenues for improvement.

• In Section ., we present and evaluate the clean shutdown scheme, which addresses prob-
lems of the naïve scheme. We then suggest further avenues for improvement.

• In Section ., we summarize our findings, and preview our next step in reducing downtime.



C . R

bridge initial target
start

move link enable NIC
enable BGP

done

Figure .: Naïve rehoming procedure. The column for each node lists the steps taken on that node.
Gray horizontal bars indicate barriers used to synchronize actions across nodes. Steps between
barriers are unordered with respect to actions of other nodes.

. Rehoming Goals

Our primary goal, of course, is to increase Internet reliability in general, and reduce the downtime
caused by planned maintenance specifically. However, there are two important subgoals that we
highlight here: deployability and usability. To maximize deployability, we will seek minimally
intrusive changes to the existing software. And, in particular, we require that our solution not
require any modifications to the software on the customer router.

To maximize usability, we require that our solution not require any action on the part of the
customer. In particular, establishing the BGP peering session between the customer router and
the target router should not require any reconfiguration of the customer router. This both, avoids
customer frustration, and limits the possibility of errors. The latter is particularly relevant, given
that operator error is a significant source of failures in computer systems [].

This second goal drives an important design decision. Specifically, we choose to have the target
router use the same IP address, on its customer-facing interface, as the initial router uses on its
customer-facing interface. In Section .., we will identify and resolve a complication that this
decision introduces for BGP session establishment.

. Naïve rehoming

In this section, we present experimental results for rehoming with a very simple rehoming proce-
dure, which we name naïve. In this procedure, which we illustrate in Figure ., the bridge and
the target router simultaneously execute commands to reconfigure layer  and layer  network el-
ements. Specifically: the bridge reconfigures the layer  link between the customer router and the
ISP routers, by removing the initial router from the bridge group containing the customer router,
and then adding the target router to the same group; the target router reconfigures layer  connec-
tivity by enabling its interface to the customer, and reconfigures layer  connectivity by enabling
its BGP peering with the customer.

By default, a new port in a bridge group starts in learning mode. In this mode, the bridge listens for traffic on the
port, but does forward any frames out through the port. In order to avoid the outage this would cause for traffic from the
customer to the Internet, we use the brctl command to configure the “forwarding delay” on the port to zero.



.. N 

restart naïve
internet to  58.19 150.24
internet to  54.15 150.25
customer to  73.69 65.12
customer to  129.67 64.57
any 143.17 156.43

Table .: Comparison of mean outage times, in seconds, and over ten trials, for router restart and
naïve rehoming. Data for router restart are copied from Table ..

.. High-level comparison to router restart
We compare the outage times for router restart and naïve rehoming in Table .. The results are
rather surprising. While the outage times for traffic outbound from the customer to the Internet
have improved, the outages times for traffic inbound from the Internet to the customer are signif-
icantly longer than before. Additionally, the overall outage times are longer with naïve rehoming
than with router restart. To understand why, we again return to our system charts.

.. In-depth comparison of trials with the shortest overall outage times
We present system charts for the trials of router restart and naïve rehoming with the shortest overall
outages times in Figures . and ., respectively. We first make some general observations about
the differences between these two experiments, and then attempt to explain why some of the outage
times have increased.

Our general observations are as follows:

. As desired, eliminating the restart on the initial router has largely eliminated CPU activity
on that router.

. The pattern of CPU utilization exhibited by the bgpd process on the remote router, following
the re-establishment of the BGP peering between the remote router and the initial router
(denoted by bgp ↑), is no longer present on the remote router. However, a similar pattern is
now seen on the target router, following bgp ↑. We hypothesize that this pattern reflects the
work done to generate and transmit routing advertisements to the peer router.

. For rehoming, there is a surprising amount of CPU load due to the zebra process on the
target router. We will examine this more deeply in Chapter .

. The total CPU load on the customer router appears to be roughly the same between router
restart and naïve rehoming. As indicated in the conclusion of Chapter , we will address
CPU load on the customer router in Chapter .

While these observations are useful for understanding the system generally, they do not explain
the increase in outage times. To understand the increase in outage times for traffic inbound to the
customer, we focus on the Figure ., and note that the outages for both  and  end at
timeout, the time that the initial router times out its peering with the customer router. It is only
following this timeout that the remote router updates its FIB entries for the customer routes, as



C . R

load 0

load 1remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

∼CUST1
∼CUSTN

+INET1.I

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN

−INETN

bgpd 	
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1
+CUSTN

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INET1.C +INETN/R +INETN

+INETN.C

target
router

customer
router

bgp ↓ISP

−INET1
bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

−INETN

+INET1/ISP

+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

6 36
INET→ CUSTN

6 36
INET→ CUST1

14 133
CUST→ INETN

1 59
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for router restart, for the trial with the minimum overall outage
time. This chart repeats data from Figure .(c), adding the timeseries for the remote and target
routers. The complete system chart is available as Figure A..

denoted by the ∼ and ∼. This is true despite the fact that the fact that the remote
router has received new advertisements for  and  much earlier, as denoted by +/

and +/.
The cause of the delay between the remote router’s receipt of advertisements for  and

, and its updating of the corresponding FIB entries, is as follows. Until the initial router times
out its peering with the customer router, and generates withdrawals for  and , the re-
mote router has two routes to the customer prefixes: one through the initial router, and another
through the target router. Because the routes have the same path attributes, the remote router
selects between them based on the tie-breaking rules in the BGP decision process []. Specifi-
cally, the remote router selects the route through the initial router, because that router has a lower
router-id than the target router.

This hypothesis is confirmed by Figure ., in which we configure the initial router to have a

These withdrawals are denoted -. and -. on the time-series for the initial router, respectively.



.. N 

load 0

load 1remote
router

+CUST1/T

+CUSTN/T

-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN

+INET1.C

+CUST1.R

+CUSTN.R

+INETN.C

customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP +INET1
−INETN

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

1 123
INET→ CUSTN

1 123
INET→ CUST1

1 119
CUST→ INETN

1 66
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for naïve rehoming, for the trial with the minimum overall outage
time. Note that the bridge node is omitted, as it does not contribute significantly to the observed
behavior. The complete system chart is available as Figure A..

higher router-id than the target router. With this change in place, the outages for traffic to the
customer end as the remote router receives advertisements from the target router, as denoted by
+/ and +/, rather than being delayed until the remote router has received withdrawals
from the initial router.

We see, then, that the ordering of router-ids between the initial router and the target router
can significantly alter the outage times experienced by traffic inbound to the customer. Returning
to Figures . and ., however, we note that the increase in outage time for inbound traffic does not
explain the increase in overall outage time. In fact, focusing on the trials with the shortest outages,
the total outage time for naïve rehoming is lower than that for router restart. To understand the
increase in mean outage times, we turn instead to the system charts for the trials of router restart

In our initial experiments, we set router-ids based on the public-facing IP addresses assigned to nodes by Emulab.
After noticing a discrepancy between experiments, we modified our code to always generate the worst case behavior for
rehoming, by setting the router-id of the initial router to be lower than that of the target router. Except for the experiment
illustrated in Figure ., all experiments in this dissertation have a lower router-id on the initial router.



C . R

load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

customer
router

bgp ↓ISP

−INET1
reject peer

open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

−INETN
+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

1 31
INET→ CUSTN

1 31
INET→ CUST1

1 124
CUST→ INETN

1 70
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for naïve rehoming, with the initial router configured to have a
higher router-id than the target router. This chart illustrates the trial with the minimum overall
outage time. The full system chart is provided as Figure A..

and naïve rehoming with the longest overall outage times.

.. Comparison of trials with the longest overall outage times
To compare the trials with the longest overall outage times, we present Figure .. Looking at this
figure, we make two observations:

. With naïve rehoming, the outage time for traffic inbound to  and  alone, is greater
than the total outage time for router restart. Because this outage time is determined in large
part by the initial router’s timing out of its peering with the customer router, it is important
for us to understand this timeout behavior.

. A significant portion of the increase in outage times is due to delays in the establishment of
a new peering session between the ISP router and the customer router. In the router restart
experiment, the new session is established approximately  seconds after the start of the
experiment, as denoted by bgp ↑. If we could bring the session up earlier, we could likely
improve outage times by shifting some of the computation that occurs between time  and
 seconds on the customer into the idle time between  seconds and  seconds.

Accordingly, we now turn to understanding BGP timeout behavior, and then to understanding
session establishment behavior.



.. N 

.. BGP timeout behavior
To understand BGP timeout behavior, we compare the trials of naïve rehoming with the shortest
and longest outage times, as presented in Figure .. In the trial with the shortest outage time, we
observe that the initial router times out the BGP peering with the customer router, as denoted by
the timeout annotation, near time  seconds. For the trial with the longest outage time, timeout

occurs at approximately  seconds.
What causes this difference in timeout detection? That is, why does the initial router sometimes

take  seconds to time out its peering with the customer router, but take  seconds at other
times? The answer lies in the BGP timeout mechanism. Per the BGP specification [],

.. Hold Timer Expired Error Handling
If a system does not receive successive KEEPALIVE, UPDATE, and/or NOTIFICATION
messages within the period specified in the Hold Time field of the OPEN message, then
the NOTIFICATION message with the Hold Timer Expired Error Code is sent and the
BGP connection is closed.

Quagga defaults to a Hold Time of  seconds, and a KEEPALIVE interval of  seconds. In
cases where we began rehoming immediately after the customer router transmitted a keepalive, we
would expect the initial router to wait approximately  seconds to time out its peering with the
customer router. Similarly, in the cases where we began rehoming immediately before the customer
router was about to transmit its next keepalive (i.e., approximately  seconds after the previous
keepalive), we would expect the initial router to wait approximately  seconds to time out the
peering. Because we conduct multiple trials of each experiment, with randomized sleep intervals
between trials, we are able to observe this full range of behaviors.

.. BGP session establishment behavior
We now turn our attention to the delay in establishing the BGP peering between the target router
and the customer router. Focusing on Figure .(b), we note the presence of four reject peer anno-
tations on the time-series for the customer router, indicating that the customer router rejected four
attempts, by its ISP-side peer, to open a peering session.

The first three of these four rejections are consistent with Section . of the BGP specifica-
tion [], which states:

Unless allowed via configuration, a connection collision with an existing BGP connec-
tion that is in the Established state causes closing of the newly created connection.

However, the last of these rejections occurs after bgp ↓, which indicates that the customer router
has taken down its side of the peering with the initial router. To understand this unexpected be-
havior, we turn our attention to the log file messages generated by bgpd on the customer router.
Therein, we find the exact text of the logfile messages which were denoted as reject peer on the
system chart:

BGP: %NOTIFICATION: sent to neighbor ... / (OPEN Message Error/Bad BGP Identifier)
 bytes c a  
BGP: %NOTIFICATION: sent to neighbor ... / (OPEN Message Error/Bad BGP Identifier)
 bytes c a  



C . R

load 0

load 1customer
router

−INET1
bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

−INETN

+INET1/ISP

+INET1
+INETN/ISP

+INETN

50 100 150 200 215
time (sec)

reachability

13 54
INET→ CUSTN

8 54
INET→ CUST1

14 153
CUST→ INETN

1 79
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(a) router restart

load 0

load 1remote
router

+CUST1/T

+CUSTN/T

-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUSTN
∼CUST1

customer
router

reject peer
reject peer

reject peer

bgp ↓ISP

−INET1
reject peer

−INETN bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1

+INETN/ISP

+INETN

50 100 150 200 215
time (sec)

reachability

1 180
INET→ CUSTN

1 180
INET→ CUST1

1 213
CUST→ INETN

1 141
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(b) naïve rehoming

Figure .: Partial system charts comparing router restart and naïve rehoming, for the trials with
the longest overall outage times. For the complete system charts, see Figures A. and A..



.. N 

load 0

load 1initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

50 100 150 200 215
time (sec)

reachability

1 123
INET→ CUSTN

1 123
INET→ CUST1

1 119
CUST→ INETN

1 66
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) shortest outage

load 0

load 1initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUSTN
∼CUST1

50 100 150 200 215
time (sec)

reachability

1 180
INET→ CUSTN

1 180
INET→ CUST1

1 213
CUST→ INETN

1 141
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) longest outage

Figure .: Partial system charts comparing the trials of naïve rehoming with the shortest and
longest outages. Note that timeout occurs at about  seconds in the case of the short outage,
and at about  seconds in the case of the longest outage. For the complete system charts, see
Figures A. and A..



C . R

1 /* remote router-id check. */
2 if (remote_id.s_addr == 0
3 || ntohl (remote_id.s_addr) >= 0xe0000000
4 || ntohl (peer->local_id.s_addr) == ntohl (remote_id.s_addr))
5 {
6 if (BGP_DEBUG (normal, NORMAL))
7 zlog_debug ("%s bad OPEN, wrong router identifier %s",
8 peer->host, inet_ntoa (remote_id));
9 bgp_notify_send_with_data (peer,

10 BGP_NOTIFY_OPEN_ERR,
11 BGP_NOTIFY_OPEN_BAD_BGP_IDENT,
12 notify_data_remote_id, 4);
13 return -1;
14 }

Listing .: Source code that might generate “Bad BGP Identifier” messages, from the function
bgp_open_receive in bgp_packet.c.

BGP: %NOTIFICATION: sent to neighbor ... / (OPEN Message Error/Bad BGP Identifier)
 bytes c a  
BGP: %NOTIFICATION: sent to neighbor ... / (OPEN Message Error/Bad BGP Identifier)
 bytes c a  

To better understand these messages, we examine the source code for bgpd, and identify two
segments of source code that might generate these log files messages. These are reproduced in
Listings . and .. The code of Listing . can not be the source of the Bad BGP Identifier messages
in our experiments, because the router-id on the target is .... This is neither equal to ...
(as checked at line ), nor greater than ... (as checked at line ), nor equal to the customer
router’s router-id (as checked at line ).

Instead, based on the comment at line  in Listing ., we infer that the customer router is
rejecting the peering request from the target router because the target router’s router-id differs
from that of the initial router. To verify this hypothesis, we patch bgpd on the target router to
support spoofing of its router-id on a per-connection basis, with the patch of Listing .. This
patch is modeled after existing code in Quagga, which enables the administrator to modify the
local AS number on a per-peer basis.

After patching the source code, we configured the target router to use the same router-id as the
initial router, for its peering with the customer router. For its other peerings, namely the peerings
with the initial router and the remote router, the target router continues to use its own router-id.
With this patch in place, we return to the question of why the customer router rejects the target
router’s peering request even after the customer router has terminated its peering with the initial
router.

After confirming that the trial, of this new experiment, with the longest outage time also exhibits
In this experiment, the customer router’s router-id was ....
We choose to modify the router-id on a per-connection basis, because we do not want to change the target router’s

router-id on its peering with the remote router. Doing so might confuse the remote router, because both the initial router
and the target router would have the same router-id.

Note that this patch is applied only on the target router.



.. N 

1int as = 0;
2

3realpeer = peer_lookup_with_open (&peer->su, remote_as, &remote_id, &as);
4

5if (! realpeer)
6{
7/* Peer's source IP address is check in bgp_accept(), so this
8must be AS number mismatch or remote-id configuration
9mismatch. */
10if (as)
11{
12if (BGP_DEBUG (normal, NORMAL))
13zlog_debug ("%s bad OPEN, wrong router identifier %s",
14peer->host, inet_ntoa (remote_id));
15bgp_notify_send_with_data (peer, BGP_NOTIFY_OPEN_ERR,
16BGP_NOTIFY_OPEN_BAD_BGP_IDENT,
17notify_data_remote_id, 4);
18}
19else
20{
21if (BGP_DEBUG (normal, NORMAL))
22zlog_debug ("%s bad OPEN, remote AS is %u, expected %u",
23peer->host, remote_as, peer->as);
24bgp_notify_send_with_data (peer, BGP_NOTIFY_OPEN_ERR,
25BGP_NOTIFY_OPEN_BAD_PEER_AS,
26notify_data_remote_as, 2);
27}
28return -1;
29}

Listing .: Source code that generates the “Bad BGP Identifier” messages observed in our experi-
ments. This code is from the function bgp_open_receive in bgp_packet.c.



C . R

1 stream_putw (s, (local_as <= BGP_AS_MAX) ? (u_int16_t) local_as
2 : BGP_AS_TRANS);
3 stream_putw (s, send_holdtime); /* Hold Time */
4 stream_put_in_addr (s, &peer->local_id); /* BGP Identifier */
5 if (peer->change_local_id.s_addr) /* BGP Identifier */
6 stream_put_in_addr (s, &peer->change_local_id);
7 else
8 stream_put_in_addr (s, &peer->local_id);
9

10 /* Set capability code. */
11 bgp_open_capability (s, peer);

Listing .: Core source code for patch to enable router-id spoofing. This portion of the patch mod-
ifies the function bgp_open_send in bgp_packet.c. Unmodified lines are shown in gray, removed
lines are shown in gray with a horizontal bar, and added lines are shown in bold. Modified lines
are indicated by a deletion followed by an addition. The complete patch is provided as Listings B.
through B..

load 0

load 1customer
router

reject peer
reject peer

reject peer
bgp ↓ISP

−INET1
reject peer

open.ISP −INETN open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1

+INETN/ISP

+INETN

50 100 150 200 215
time (sec)

reachability

1 170
INET→ CUSTN

1 170
INET→ CUST1

1 202
CUST→ INETN

1 129
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for naïve rehoming with router-id spoofing, for the trial with the
longest overall outage time. For the complete system chart, see Figure A..

a reject peer after bgp ↓ (see Figure .), we examine the log file messages for bgpd on the customer
router. Therein, we find the following messages:

BGP: %NOTIFICATION: sent to neighbor ... / (Cease/Connection Rejected)  bytes
BGP: %NOTIFICATION: sent to neighbor ... / (Cease/Connection Rejected)  bytes
BGP: %NOTIFICATION: sent to neighbor ... / (Cease/Connection Rejected)  bytes
BGP: %NOTIFICATION: sent to neighbor ... / (Cease/Connection Rejected)  bytes

Unfortunately, these messages fail to explain why the customer router rejects the fourth con-
nection attempt. In order to gather more data, we re-run the experiment, with the “debug bgp”
and “debug bgp events” options enabled for bgpd on the customer router. Examining the log files
for that experiment, we find two additional messages, which explain the rejection of the fourth
connection attempt:

BGP: ... peer status is Established close connection
BGP: ... peer status is Clearing close connection



.. C  

Of the  “Connection Rejected” messages logged over the ten trials of this experiment,  were
preceded by the “peer status is Established” message, while  were preceded by the “peer status
is Clearing” message. Based on this data, and the observation that the fourth connection attempts
in Figures .(b) and . occur while bgpd is busy on the CPU, we conclude that the fourth reject
peer event is due to bgpd refusing a new connection until it has finished clearing out the state from
the old connection.

.. Avenues for improvement
Based on the above analysis, we conclude that naïve rehoming, which does not explicitly tear down
the BGP peering between the initial router and the customer router, prolongs outages due to the
time taken by the initial router and the customer router to detect the peering failure.

On the initial router, the delay in the detection of peering loss means that the initial router does
not withdraw its routes for the customer prefixes until it (the initial router) has timed out its peering
with the customer router. This, in turn, means that the remote router continues to route traffic for
the customer through the initial router.

On the customer router, the delay in peering loss detection increases the time taken to establish
a BGP peering between the customer router and the target router. This, in turn, delays the receipt
and processing of route advertisements from the target router, prolonging the outage for traffic
from the customer to the Internet.

An obvious way to eliminate these problems is to explicitly shut down the peering between the
customer router and the initial router during rehoming. We now turn our attention to this idea,
which we call “clean shutdown”.

. Clean shutdown rehoming
As with the naïve rehoming procedure, we begin our presentation by detailing the procedure itself.
We then present an overview of the experimental results, followed by an in-depth analysis of the
experiments. Finally, we conclude the section with a discussion of avenues for improvement.

.. Rehoming procedure
We illustrate the clean shutdown rehoming procedure in Figure .. As compared to the naïve
rehoming procedure, there are two differences. First is that we explicitly disable the peering session
on the initial router before reconfiguring the layer two link. The second is that we explicitly disable
the customer-facing interface on the initial router.

Note that after disabling the peering, we wait for bgpd to issue another command prompt. We
do this to give bgpd the opportunity to complete the termination of the peering session. In partic-
ular, we do not want to reconfigure layer two connectivity before the initial router has transmitted
the BGP NOTIFICATION CEASE message. Were we to reconfigure the layer two link before the
transmission of the NOTIFICATION CEASE message, the customer router will not know the ses-
sion had been terminated.

Clearing out the old state would include, for example, deleting the ≈ 300, 000 routes advertised by the initial router
from bgpd’s RIB, and instructing zebra that these routes are no longer available.



C . R

bridge initial target
start

disable peering enable NIC
wait for prompt enable peering

peering terminated
move link disable NIC

done

Figure .: Clean shutdown rehoming procedure. The column for each node lists the steps taken
on that node. Gray horizontal bars indicate barriers used to synchronize actions across nodes; thin
lines delimit multiple steps on a single node. Steps between barriers are unordered with respect to
actions of other nodes.

router clean
restart naïve shutdown

internet to  58.19 150.24 37.52
internet to  54.15 150.25 37.50
customer to  73.69 65.12 58.82
customer to  129.67 64.57 61.61
any 143.17 156.43 120.20

Table .: Comparison of mean outage times, in seconds, and over ten trials, for router restart, naïve
rehoming and clean shutdown rehoming. Data for router restart and naïve rehoming are copied
from Table ..

.. Empirical results
We summarize the empirical results in Table .. From the data in the table, we see that clean
shutdown rehoming performs much better than naïve rehoming for traffic to  and , and
much better than router restart for traffic to , with improvements of 75% and 52%, respec-
tively. Differences in overall outage times are less dramatic, with clean shutdown providing a 16%
improvement over router restart, and a 23% improvement over naïve rehoming.

To verify that clean shutdown addresses the issues identified in Section .., we compare the
system charts for naïve rehoming and clean shutdown rehoming. We present these charts in Fig-
ure .. We first observe that the -. and -. events on the initial router occur much
earlier with clean shutdown, demonstrating that clean shutdown addresses the route withdrawal
delay on the initial router. We then observe that the bgp ↑ event on the customer router occurs
much earlier with clean shutdown, demonstrating that clean shutdown addresses the session es-
tablishment delay.

.. Avenues for improvement
Although the clean shutdown procedure provides some improvement over the naïve procedure,
there is still significant room for improvement. If, for example, an ISP were to target “five nines”
reliability, a single rehoming would consume over one third of the annual outage budget.



.. C  

load 0

load 1initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

customer
router

reject peer
reject peer

reject peer
bgp ↓ISP

−INET1
reject peer

open.ISP −INETN open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1

+INETN/ISP

+INETN

50 100 150 200205
time (sec)

reachability

1 170
INET→ CUSTN

1 170
INET→ CUST1

1 202
CUST→ INETN

1 129
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(a) naïve rehoming with router-id spoofing

load 0

load 1initial
router

bgp ↓C

-CUST1.R

-CUSTN.R

disable nic
−CUST1
∼CUSTN

+CUST1
∼CUST1
∼CUSTN

customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP +INET1
−INETN

+INETN/ISP

+INETN

50 100 150 200205
time (sec)

reachability

3 34
INET→ CUSTN

3 34
INET→ CUST1

3 124
CUST→ INETN

2 68
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(b) clean shutdown rehoming

Figure .: Partial system charts comparing naïve rehoming with router-id spoofing, and clean
shutdown rehoming, for the trials with the longest overall outage times. Events referenced from
the text are shown in bold. For the complete system charts, see Figures A. and A..



C . R

load 0

load 1initial
router

bgp ↓C

-CUST1.R

-CUSTN.R

disable nic
−CUST1
∼CUSTN

+CUST1 ∼CUST1
∼CUSTN

target
router

enable nic
enable peering

∼CUST1
∼CUSTN

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN

+INET1.C

+CUST1.R

+CUSTN.R

+INETN.C

customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1
−INETN

+INETN/ISP +INETN

20 40 60 80 100 120125
time (sec)

reachability

3 34
INET→ CUSTN

3 34
INET→ CUST1

3 124
CUST→ INETN

2 68
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for clean shutdown rehoming, for the trial with the longest outage
time. The complete system chart is provided as Figure A.. Note that the variance in outage
times for this experiment is low, with a minimum of . seconds and a maximum of .
seconds. Thus the outage time for this trial is only slightly larger than the mean outage time of
. seconds, given in Table ..



.. C

Accordingly, we consult a partial system chart of clean rehoming, Figure ., to identify the
avenues for improvement. From this figure, we see that we have achieved our goal of eliminating
the initial router as a bottleneck in the rehoming process. Substantially all of the outage time can
be explained by CPU utilization at the customer router.

An obvious approach for further improvements, would, then, be to optimize the routing soft-
ware for this use case. For example, the figure shows that a significant fraction of the CPU time is
spent by zebra running kernel functions. This is likely due to calls to add and remove routes from
the kernel’s forwarding information base. Accordingly, it might be possible to reduce outage time
by optimizing the user/kernel interface for route manipulation.

We might, however, be able to do better. We observe that much of the work that the customer
router is doing is not strictly necessary. Assuming that the initial router and target router have
approximately the same routing table, the customer router spends all of its time removing routes,
only to add the same routes back shortly thereafter. If we could instruct the customer router to
retain its routes during rehoming, we could completely eliminate the cost of route manipulation.
Moreover, such an optimization would not depend on a specific user/kernel interface.

. Conclusion
In this chapter, we set out to eliminate ISP-side computation as a source of downtime during
planned maintenance on an access router. We proposed a simple scheme, called naïve rehoming,
and found that it met this goal. Unfortunately, however, it introduced complications related to BGP
session timeout behavior, and BGP session establishment behavior. As a result, naïve rehoming
results in longer outages than simple router restart.

To address this problem, we devised a second rehoming scheme, called clean shutdown. This
scheme coordinates the actions amongst the routers, and ensures that the BGP peering between
the initial router and the customer router is terminated before the link is migrated. Consequently,
it avoids the session timeout and session establishment complications observed with the naïve
scheme. Thus, clean shutdown both eliminates the ISP-side bottleneck, and results in a net reduc-
tion in outage time, as compared to router restart.

Following the elimination of the ISP-side bottleneck, we noted that nearly all of the remaining
outage time could be accounted for by computation on the customer router. We observed that
while we might tackle this bottleneck by optimizing the kernel’s FIB updates, it is possible that
we could eliminate the need for the FIB updates entirely. To do so, we would need a mechanism
for instructing the customer router to retain the routes learned from the initial router, until the
rehoming process was complete.

As it turns out, there is an existing mechanism for instructing a BGP peer to retain routes across
a peering failure. This mechanism is known as Graceful Restart []. Accordingly, in the next
chapter, we turn our attention to Graceful Restart, and how it can help reduce down time during
rehoming.

Or, to encompass hardware routers, a specific control plane/forwarding plane interface.





Waste not, want not.

4
Graceful Rehoming

B  our experiments in Chapter , we know that rehoming can eliminate ISP-side com-
putation as the dominant source of downtime during planned maintenance. Specifically, we

saw, in Figure ., that the remaining downtime can be explained in terms of computation on
the customer router. We then suggested, in Section ., that we could eliminate this bottleneck by
instructing the customer router to retain the routes learned from the initial router, during the re-
homing process. We further noted that there is an existing mechanism, called Graceful Restart [],
which may be useful in this endeavor.

Accordingly, in this chapter, we evaluate the combination of Graceful Restart and rehoming,
which we call Graceful Rehoming. Before we begin, we note a potential pitfall in our use of Graceful
Restart. Namely, while Graceful Restart was designed for restoring a peering to the same router,
we seek to restore the peering on to a different router. Thus, complications may arise. For example,
can we be sure that the customer router will reach a routing state that is consistent with the ISP,
even if there are inconsistencies between the RIBs on the initial router?

The remainder of this chapter is structured as follows:
• In Section ., we explain the Graceful Restart facility, give an example of how it functions

in normal operation, and then describe how it can be used to safely restore a peering session
onto a different router.

• In Section ., we explain configuration details about our use of Graceful Restart, and discuss
some of the issues we found in Quagga’s implementation of the feature.

• In Section ., we evaluate the use of Graceful Restart with clean shutdown. We show that
clean shutdown is, unfortunately, incompatible with Graceful Restart.

• In Section ., we evaluate the use of Graceful Restart with naïve rehoming and router-id
spoofing. We find that this configuration yields a substantial improvement in outage times
for traffic from the customer to the Internet. Unfortunately, however, outage times for traffic
from the Internet to the customer remain an issue.



C . G R

• In Section ., we improve the outage times for traffic to the customer by using BGP’s LO-
CAL_PREF attribute to accelerate the remote router’s selection of routes through the target
router.

• In Section ., we consider an alternative solution to the incompatibility discovered in Sec-
tion ., and argue for the advantages of the solution developed in Sections . and ..

• In Section ., we consider our improvements in the context of the overall reliability goal, and
identify opportunities for further improvement.

• In Section ., we summarize and conclude.

. Introduction to Graceful Restart
To explain Graceful Restart, we first give describe the roles of BGP peers during Graceful Restart,
and the mechanisms that Graceful Restart provides to minimize disruption during a peering loss.
After the overview, we walk through an example of Graceful Restart in normal operation, explain
how it can be used to safely reduce down time during rehoming, and then illustrate the use of
Graceful Restart in the rehoming process.

.. Overview of Graceful Restart
At a high level, Graceful Restart defines two roles, and provides four key signaling mechanisms.
We begin with the roles, as they are necessary to explain how the mechanisms are implemented.
There are two roles in Graceful Restart. Each router is either a restarting router, or a receiving router.
As expected, a router is a restarting router if it is recovering from a crash, and a receiving router
otherwise.

In addition to these two roles, Graceful Restart defines four mechanisms. These mechanisms
are used at peering session establishment, and only at the time the session is established. We first
enumerate the mechanisms, and then explain how they are used.

The four mechanisms are ) a way for a router to signal to a peer that the peer should retain
advertised routes if the peering fails, ) a way to signal whether or not the router retained its state,
relative to the prior peering, ) a way to signal that the router intends to wait for routing informa-
tion from peers, before sending its own routing updates, and ) a way to signal that a router has
completed transmission of its current routing state.

Regarding the first mechanism, when should a router ask its peer to retain routes across a fail-
ure? Because this signaling is done at the start of a peering session, the cause of the peering failure
cannot be anticipated. Thus, it is typically left as a configuration option whether or not a router
should ask its peers to retain routes.

The second mechanism, which enables a router to inform its peer whether or not state was
preserved across the peering loss, comes into play when the peer is functioning as a receiving
router. In this case, the signal determines when the receiving router deletes routes learned from
the prior peering (referred to hereafter as stale routes). If the state was not preserved, the receiving
router will delete stale routes immediately as the new peering session is established. Otherwise,
the receiving router will wait until the restarting router has transmitted its state.

The third mechanism and fourth mechanisms are the most subtle of the set. The key idea behind
these two mechanisms is that a restarting router is likely to reconsider many of its routing decisions
as it learns routes from its multiple peers. If the router were to transmit its routing information



.. I  G R

immediately, many routes would be advertised repeatedly, as the router’s decisions changed. To
reduce route churn, the router instead waits until all peers have signaled that they have completed
the transmission of their routing information.

Note that, in general, a router may play either role during Graceful Restart, without regard to the
role played by the other router. For example, if a peering loss were due to a transient connectivity
failure, rather than a router reboot, both peers would assume the role of receiving router. Similarly,
if two routers rebooted simultaneously, both routers would assume the role of restarting router.

.. Graceful Restart in Practice
Having given an overview of Graceful Restart, we now describe Graceful Restart in normal opera-
tion, explain how it can be safely used for rehoming, and then illustrate the use of Graceful Restart
during rehoming.

Normal Operation

We now work through an example of Graceful Restart in normal operation, as depicted in Fig-
ure .. To aid the understanding of the state changes illustrated in that figure, we also provide
flowcharts of the operation of a restarting router and a receiving router, in Figures . and .
respectively.

For ease of explication, we consider a system of only two routers. Accordingly, the routers peer
with each other, but not with any other routers. We assume that the restart process completes
without exception. This means, for example, that the timers illustrated in the flowcharts due not
expire.

At the beginning of our example, the peering between the restarting router (router A) and the
receiving router (router B) has been established, the peers have indicated to each other that routes
should be retained across any failures, and the peers have transmitted their routes to each other.
The local state on each router is as depicted in step  of Figure ..

Next, at step , router A is configured to filter advertisements for . Accordingly, A deletes
 from its RIB. However, before it can send the corresponding BGP UPDATE to router B, router
A fails. Some time later, router B detects the failure of router A. Upon detecting the failed peering,
router B retains the routes advertised by router A, but marks them as stale. The system state is now
as illustrated at step .

Subsequently, router A restarts, and the two routers reestablish their peering. Router A indi-
cates that it has retained its routing state, and that, as the restarting router, it will wait for updates
from router B, before sending its own routing information. Router B indicates that it has also re-
tained its routing state (this is trivially true, as the router did not crash), but that, as the receiving
router, it will not wait for updates from router A. This yields the system state depicted at step .

At this point, step , router B transmits its routing information base, or RIB, to router A. Because
router B’s RIB included  and , router A no longer considers these prefixes stale. Next, at
step , router B sends router A an “end-of-RIB marker”, to indicate that it has finished sending all
of its routing information.

Of course, if both routes were to behave this way, the peering session would deadlock. Thus, if a peer has signaled its
intention to wait for routes from others, others will not wait for its routes.

The flowcharts illustrate the most relevant portions of Graceful Restart. For a complete specification, we refer the reader
to [].

The mechanism for failure detection is outside the scope of the Graceful Restart specification.



C . G R

Having received the end-of-RIB marker from all of its peers, router A proceeds to transmit
its own RIB to router B. As router B receives advertisements from router A, it removes the stale
marking from . These actions are illustrated as step . Finally, in the last step, step , router
A sends its end-of-RIB marker, causing router B to delete the router for .

Safety of Graceful Rehoming

From the preceding example, we see that Graceful Restart can be used to safely achieve our goals.
Namely, because routes are not removed due to the peering loss, we can use Graceful Restart to
eliminate the time that zebra spends removing routes from, and adding routes to, the kernel’s
FIB. Also, because stale routes are removed at the end of the Graceful Restart process, we can be
confident that the customer router will have correct routing state at the end of rehoming, even if
the routing information at the initial and target routers differ, or if routing state changes while
rehoming is in progress.

Illustration of Graceful Rehoming

We illustrate the operation of Graceful Rehoming in Figure .. In this example, we assume an
inconsistency between the initial router, and the target router. Despite the inconsistency, however,
the customer router converges to a RIB which correctly reflects the routing state of the target router.

Because this example is similar to illustration of Graceful Restart, we do not belabor the steps
here. However, we highlight three important steps as follows: at step , traffic destined to the
customer prefixes can be delivered properly; at step , traffic from the customer to  will no
longer be drawn in to a “blackhole”; and at step , other customers of the initial router can again
reach the customer being rehomed.

. Experiment Setup
In order to conduct our experiments with Graceful Restart, we needed to make some modifications
to Quagga. We also needed to decide the value of the forwarding state parameter in the Graceful
Restart capability advertisement. We detail these changes, and our choice for the forwarding state
parameter, herein.

.. Code Modifications
Note that, while Quagga .. can be configured to recognize and support a request from a peer
to retain advertised routes across a peering failure, it does not itself request that its peers do the
same. Additionally, during the course of earlier experiments, we found several defects in Quagga’s
support for Graceful Restart. To address these issues, we have modified Quagga as follows:

• We added the ability for Quagga to request that its peers retain routes across a peering failure.
(See Listing B..)

• We fixed a defect in Quagga’s parsing of Graceful Restart capability advertisements.
(See Listing B..)



.. E S

restarting peer (A) receiving peer (B)
step RIB-in B loc-RIB RIB-in A loc-RIB
. start 















. A configured
to filter 

















. A fails <down> <down> <down> *
*




. A restarts,
and peering
is restored

<empty> 
*
*

<empty> *
*



. B sends RIB 






<empty> *
*



. B sends
end-of-RIB








<empty> *
*



. A sends RIB 






 *





. A sends
end-of-RIB








 




Figure .: Example of Graceful Restart in operation. The “RIB-in” contains routes received from
the identified peer. The “loc-RIB” contains routes that have been selected for use by this router.
These routes may have been originated locally, or learned from peers. Asterisks denote stale routes,
and gray backgrounds highlight changes between steps.



C . G R

initial router (I) customer router (C) target router (T)
step RIB-in C loc-RIB RIB-in ISP loc-RIB RIB-in C loc-RIB
. start 




-
-









<down> 
-
-

. T opens
peering
with C






-
-

<empty> *
*




<empty> 
-
-

. C sends RIB 




-
-

<empty> *
*







-
-

. C sends
end-of-RIB






-
-

<empty> *
*







-
-

. T sends RIB 




-
-

 *









-
-

. T sends
end-of-RIB






-
-

 








-
-

. I detects
failed
peering

<empty> 

-*
-*

 







-
-

. Restart Time
or Stale
Route Time
expires at I

<empty> 

-
-

 







-
-

Figure .: Example of Graceful Restart applied to rehoming. Where present, suffixes on the loc-
RIB entries denote the next-hop router for that prefix. Note that the target router initially learns of
the customer routes through a peering with the initial router. The RIB-in columns for this peering
are omitted due to space. Further note that the total order depicted in this figure is for illustrative
purposes. Relative ordering of events on different nodes may differ. For example, while step 
necessary follows step , step  might precede step .



.. E S

Restart

Mark retained routes stale,

continue to use for forwarding

Send to peer:

restarted=true

forwarding state=F

restart time=T

Receive from peer:

restarted=R

forwarding state=F

restart time=T

R==true?

Perform route selection

Selection Deferral

Timer expired

Receive from peer:

Routing Information Base,

End-of-RIB marker

No

Yes

Send to peer:

Routing Information Base,

End-of-RIB marker

Delete stale routes

No

Figure .: Flowchart for a restarting router during Graceful Restart. The clock indicates processing
that may occur due to a timer-driven event. R, F, and T denote variables that depend on the state
of the router sending the Graceful Restart capability advertisement.



C . G R

Old peering up?

New peering

Terminate old peering

Mark old routes stale,

continue to use for forwarding

Send to peer:

restarted=false

forwarding state=F

restart time=T

Receive from peer:

restarted=R

forwarding state=F

restart time=T

F==valid?Delete stale routes

Send to peer:

Routing Information Base,

End-of-RIB marker

Receive from peer:

Routing Information Base,

End-of-RIB marker

Delete stale routes

Yes

No

No

Yes

Stale Route Timer

Expired

Delete stale routes

Restart Time

expired

Delete stale routes

Old peering

timed out

Mark old routes stale,

continue to use for forwarding

Figure .: Flowchart for a receiving router during Graceful Restart. Clocks indicate processing
that may occur due to timer-driven events. R, F, and T denote variables that depend on the state of
the router sending the Graceful Restart capability advertisement.



.. G R   

clean
shutdown

clean + spoofing
shutdown + graceful

internet to  37.52 30.85
internet to  37.50 30.90
customer to  58.82 54.08
customer to  61.61 63.16
any 120.20 117.30

Table .: Comparison of mean outage times, in seconds, and over ten trials, for clean shutdown,
and clean shutdown with router-id spoofing and graceful restart. Data for graceful restart are
copied from Table ..

• We fixed a defect in the handling of new peering requests that arrive while an old session is
still active. Our change makes Quagga compliant with Section . of the Graceful Restart
specification []. (See Listing B..)

• We resolved a race condition in Quagga’s code for marking routes as stale. (See Listing B..)

• We resolved a problem in Quagga’s code for deleting stale routes. (See Listing B..)

All of our results with Graceful Restart include these modifications. Note that these modifications
are applied to all the routers in the experiment, including the customer router. However, with a
more complete, and more throughly tested, implementation of Graceful Restart, no changes would
be necessary on the customer router.

.. Forwarding State Parameter
One question that arises in our use of Graceful Restart is whether or not the target router should
indicate that state was retained. Strictly speaking, we cannot be sure that the initial router and
target router have consistent state. So we might be inclined to indicate that state was not retained.
Doing so, though, would cause a receiving router to delete the routes from the previous peering,
prior to receiving routes on the new peering. This argues for indicating that state was retained.

Fortunately, as indicated in the flowcharts of Figures . and ., a peer will always delete stale
routes at the end of the Graceful Restart process. Consequently, we can safely signal that routes
were retained, without fear of introducing persistent routing inconsistencies. Thus, we set that
forwarding state parameter to indicate that forwarding state was retained.

. Graceful Restart with clean shutdown
We present the results of rehoming with Graceful Restart and clean shutdown in Table .. Sur-
prisingly, the data show that adding Graceful Restart to the clean shutdown rehoming procedure
provides little benefit. To investigate, we consult Figure ., a partial system chart for the trial with
the lowest outage time.



C . G R

load 0

load 1customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

−INETN
+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120
time (sec)

reachability

3 30
INET→ CUSTN

3 30
INET→ CUST1

61 118
CUST→ INETN

2 61
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for clean shutdown rehoming with router-id spoofing and Graceful
Restart, for the trial with the minimal overall outage time. The full system chart is available as
Figure A..

The figure illustrates that, as the customer router detects the peering loss (denoted by the bgp ↓

annotation), the customer router deletes the routes that the initial router had advertised. Unfortu-
nately, however, nothing in the figure explains why the customer router does so. To answer this
question, we consult the specification for Graceful Restart [].

We find, in Section  of the specification, that if a peering is terminated due to a BGP NOTIFI-
CATION message, the peer receiving the message must terminate the peering session, and delete
all routes received through that session. Thus, our clean shutdown procedure is incompatible with
Graceful Restart.

The same section of the specification, however, offers a way forward. Specifically, it indicates
that, if graceful restart is enabled for a peering, and a new session establishment request is received
for that peering, the router receiving the request should terminate the old peering session, and
accept the new peering session. This essentially reverses the behavior of BGP without Graceful
Restart, which would maintain the old peering session, and reject the new one.

With this knowledge in hand, we revisit our naïve rehoming procedure. Our hope is that naïve
rehoming can be combined with Graceful Restart to eliminate computation on the customer router
as a cause of down time during rehoming. Note that, based on the lesson learned in Section ..,
we use naïve rehoming with router-id spoofing.

. Graceful Restart with naïve rehoming
As we can see in Table ., the combination of naïve with router-id spoofing and Graceful Restart
provides a significant benefit. Specifically, the outage time for traffic from the customer to 
and  drops to tens of milliseconds. This is a dramatic improvement over both naïve, and
clean shutdown. Unfortunately, however, the outage time for traffic from the Internet to  and
 remains substantial. The net result is that mean overall outage times are greater for naïve
with Graceful Restart, than for clean shutdown.

To understand why, we examine Figure .. As with Figure ., we observe that the outages for
traffic to  and custn continue until the remote router receives route withdrawal messages from
the initial router (-/ and -/), and updates its FIB (∼ and ∼). The problem,



.. G R  -

naïve
clean + spoofing

shutdown naïve + graceful
internet to  37.52 150.24 158.46
internet to  37.50 150.25 158.47
customer to  58.82 65.12 0.06
customer to  61.61 64.57 0.05
any 120.20 156.43 158.48

Table .: Comparison of mean outage times, in seconds, and over ten trials, for clean shutdown,
naïve, and naïve with router-id spoofing and Graceful Restart. Data for graceful restart and naïve
are copied from Table ..

as noted in Section .., is that the remote router will prefer the routes advertised by the initial
router, as long as they are still viable.

Two straightforward possibilities for addressing this problem are i) change the remote router’s
preferences, or ii) force the routes advertised by the initial router to be invalidated sooner. The
former possibility can be realized, for example, by using BGP’s LOCAL_PREF attribute to instruct
the remote router that the routes to  and  advertised by the target router should be
favored over those advertised by the initial router. The latter possibility could be realized, for
example, by instructing the initial router to terminate its BGP session with the customer router,
after the layer-two connectivity had been reconfigured.

We choose to employ LOCAL_PREF, to address a subtle issue that we have thus far ignored.
Namely, if the initial router withdraws advertisements for  and  before the remote router
has received new advertisements for them (from the target router), then the remote router will
propagate these withdraws to its external BGP peers. This would expose effects of rehoming to
systems outside of the ISP’s network. We discuss this further in Sections .., and ...

By using LOCAL_PREF instead, we avoid the need for the initial router to withdraw its routes.
We simply let both routes exist in the network, but instruct the remote router to choose the target
router’s advertisements for  and  over those of the initial router. As long as the adver-
tisements from the target router are received before the initial router times out its peering with the
customer, external peers need not be informed of a routing change.

. Graceful Restart with local-preference

The LOCAL_PREF attribute can be applied in a number of different ways. Accordingly, before
presenting our experimental results, we first discuss the range of alternatives, and explain the con-
figuration that we choose to evaluate. Following that discussion, we present both high-level results,
and in-depth analysis.

Terminating the peering before reconfiguring layer-two would risk having the customer router delete the routes adver-
tised by the initial router, as observed in our experiments with clean shutdown and Graceful Rehoming.



C . G R

load 0

load 1remote
router

+CUST1/T

+CUSTN/T
-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

20 40 60 80 100 120 130
time (sec)

reachability

1 128
INET→ CUSTN

1 128
INET→ CUST1

1.00 to 1.04
CUST→ INETN

1.00 to 1.04
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure .: Partial system chart for naïve rehoming with router-id spoofing and Graceful Restart.
The trial with the minimal outage time is depicted. The full system chart is available as Figure A..

.. Configuration Notes

There are two principal choices with respect to the use of the LOCAL_PREF attribute. These are:
which routers will set the attribute; and whether the attribute should be set “inbound”, mean-
ing on receipt of the advertisements for the customer routes, or “outbound”, meaning before the
propagation of these advertisements to peers.

Considering the three ISP-side routers in our experiment (the initial router, target router, and
remote router), we first rule out setting LOCAL_PREF on the remote router, for two reasons. First,
in real world topologies, there will be many remote routers. Thus, this approach would be overly
burdensome, in terms of the changes required to the network configuration. Second, at the remote
router, it is non-trivial to even identify which routes belong to the customer being rehomed.

The choice between initial router and target router is less clear. We could configure the initial
router to set a lower-than-default LOCAL_PREF for its routes to the customer prefixes, or we could
configure the target router to set a higher-than-default LOCAL_PREF for these routes. We some-
what arbitrarily choose to apply the LOCAL_PREF attribute on the target router, but note that this
has the benefit of keeping configuration changes located on the “active” router for a customer.

The remaining choice is whether to apply the LOCAL_PREF setting inbound, or outbound. We
apply this setting inbound, for reasons similar to those driving our choice not to apply changes
to LOCAL_PREF on the remote router. First, if we were to apply the setting outbound, it would
need to be applied on all peerings, except for the one with the customer router. Second, in order to
apply the setting on the outbound side, we would need to do additional work to identify the routes
learned from the peering with the customer.

Another potential reason for choosing to apply LOCAL_PREF inbound would be to force the target router to prefer its
route for the customer prefixes, learned from its peering with the customer router, over that of the initial router. However,
we do not need LOCAL_PREF to force this decision, as EBGP routes are preferred over equivalent IBGP routes by default.



.. G R  -

naïve
naïve + spoofing

clean + spoofing + graceful
shutdown + graceful + localpref

internet to  37.52 158.46 23.17
internet to  37.50 158.47 21.77
customer to  58.82 0.06 0.05
customer to  61.61 0.05 0.05
any 120.20 158.48 23.18

Table .: Outage times, in seconds, and over ten trials, for naïve rehoming using router-id spoof-
ing, Graceful Restart and local-preference. For ease of comparison, the mean outage times for clean
shutdown, and naïve with router-id spoofing and Graceful Restart (but without local-preference)
are copied here from Table ..

.. Empirical Results
We begin our presentation of the results with Table .. This table presents outages times with
LOCAL_PREF, and compares them to the outage times of the clean shutdown, and naïve without
LOCAL_PREF. At a high level, we see that this new method of rehoming reduces downtime for
traffic both inbound to, and outbound from, the customer.

As desired, the application of LOCAL_PREF has dramatically improved the outage time for
 and , as compared to naïve rehoming with Graceful Restart, but without LOCAL_PREF.
Perhaps surprisingly, however, we find that this new configuration also improves outage times for
these prefixes over clean shutdown. To understand why, we turn to Figure ..

Therein, we examine the timing of the events critical to the propagation of  from the cus-
tomer router to the remote router. In particular, we are interested in the bgp ↓ and bgp ↑ events
on the customer router, the +/ and +. events on the target router, and the end of the
outage for traffic to , on the reachability graph. Focusing on the events, we make the following
observations:

. The time between bgp ↓ and bgp ↑ is much longer for clean shutdown, than for naïve.
This can be explained by the fact that, as explained in Section ., Graceful Restart enables
the customer router to accept a new peering immediately. In contrast, as explained in Sec-
tion .., without Graceful Restart, the router may reject new peerings while it clears state
from previous ones.

. The time between bgp ↑ and +/ appears about the same for both experiments.

. The time between +/ and +. is considerably longer for naïve, than for clean shut-
down. This may be due to contention for the CPU. In the clean shutdown case, we observe
that zebra is not active during this interval. In the naïve case, in contrast, both zebra and
bgpd are consuming CPU cycles between +/ and +..

. In both cases, the outage for traffic to  ends shortly after +..

. The reduction in the delay between bgp ↓ and bgp ↑ is larger than the reduction in the



C . G R

load 0

load 1target
router

enable nic
enable peering

∼CUST1
open.C

∼CUSTN

open.C

open.C

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN

+CUST1.R

+CUSTN.R

+INET1.C

+INETN.C

customer
router

bgp ↓ISP

−INET1
reject peer

open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

−INETN
+INET1

+INETN/ISP +INETN

20 40 60 80 100 120125
time (sec)

reachability

3 33
INET→ CUSTN

3 33
INET→ CUST1

63 121
CUST→ INETN

2 63
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(a) clean shutdown with router-id spoofing

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

∼CUSTN

+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

∼CUST1

+INETN.C

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

20 40 60 80 100 120125
time (sec)

reachability

1 20
INET→ CUSTN

1 22
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.01 to 1.06
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

(b) naïve rehoming with router-id spoofing, Graceful Restart, and LOCAL_PREF

Figure .: Partial system charts for clean shutdown with router-id spoofing, and naïve rehoming
with router-id spoofing, Graceful Restart and LOCAL_PREF, for the trials with the minimal overall
outage times. For the complete system charts, see Figures A. and A..



.. D 

length of the  →  outage. This is likely due to the CPU contention identified in
observation .

Based on the above observations, we conclude that the improvement in outage times, over clean
shutdown, for traffic to  and , is due to the reduction in time taken to establish the new
peering session.

Before proceeding, we make one more observation about the effects of Graceful Restart. Fo-
cusing on the customer router timeseries in Figure .(b), we see that while Graceful Restart has
eliminated the computation for the zebra process, the bgpd process still consumes a significant
amount of CPU time. The key, however, is that much of that computation is no longer on the
critical path. That is, connectivity is restored long before the computation completes.

This parallels the optimization strategy we will pursue in Chapters  and . Namely, in Chap-
ter , we seek out code optimization, to reduce computation time on the target router. After ex-
hausting the most promising code optimizations, we continue, in Chapter , with scheduling op-
timizations to move computation off the critical path.

. Design discussion
Having demonstrated the feasibility of employing Graceful Restart to improve down time during
rehoming, we now pause for a moment, and consider our design choices. In particular, we ask if
the constraints that led us to switch from clean shutdown to naïve rehoming are fundamental, or
if we might do better to relax those constraints.

In Section ., we identified an incompatibility between our clean shutdown rehoming pro-
cedure, and the Graceful Restart specification. Namely, because Graceful Restart requires a peer
receiving a BGP NOTIFICATION message to delete all routes from the peer transmitting the NO-
TIFICATION, clean shutdown can not eliminate the work done by the customer router to delete,
and then re-install routes.

An alternative solution, then, would be to revise Graceful Restart to allow the customer to retain
routes in this case. However, we argue against such a revision, for two reasons. First, in cases where
a network operator terminates a peering session without the intent to restore that peering, it is
important that the customer router remove the associated routes promptly. Second, terminating the
BGP session on the initial router would cause it inform its peers that the customer routes were no
longer valid. This would expose the effects of rehoming to systems outside of the ISP, as explained
in Section ..

. Avenues for improvement
As shown in Table ., we can leverage Graceful Restart to dramatically reduce the downtime dur-
ing rehoming, as compared to clean shutdown. Specifically, the total outage time falls from a mean
of . seconds, to a mean of . seconds. Thus, with a target of “five nines” reliability, a single
rehoming event would consume only .% of the annual outage budget.

Nonetheless, we would like to do better. Consider, for example, the impact of our current re-
homing design when used to reduce the impact of router software upgrades. If we assume that
rehoming is used to move customers to a temporary router, and then back to their original router,
each upgrade would require two rehomings, and thus consume .% of the annual outage budget.



C . G R

Based on Cisco’s IOS release history [], and the above assumption, keeping routing software up
to date would require % of the annual outage budget. This would leave little room for outages
due to hardware upgrades, unexpected failures, and the like.

To identify avenues for improvement, we consult Figure .(b). Examining the reachability
graph and the timeseries for the target router, we note that the outage time can be largely explained
by CPU processing delays on the target router. That is, with Graceful Restart having eliminated
much of the processing on the customer router, the target router is once again the bottleneck. Thus,
to further reduce outage time, we should optimize the computation on the target router.

. Conclusion
We set out, in this chapter, to employ Graceful Restart to reduce the down time caused by com-
putation on the customer router. Our initial results were discouraging: we found that clean shut-
down, the rehoming procedure that performed best in Chapter , was incompatible with Graceful
Restart. Pushing forward, however, we found that the naïve rehoming procedure, in combination
with router-id spoofing, Graceful Restart, and BGP LOCAL_PREF, reduces mean overall down
time to under  seconds.

Recall that in Section .., we found that the mean overall time for “bgp + dynamic” customers,
on Low Spec hardware, was  seconds. Thus, we now have a rehoming process that yields an %
reduction in outage time over router restart. Even compared to High Spec hardware, as evaluated
in Section .., our rehoming process yields a % improvement.

Nonetheless, work remains. Despite our improvements, the frequency of routing software up-
dates means that an ISP targeting “five-nines” reliability could spend nearly three-fourths of its
annual outage budget on software updates alone. In order to address this, we must solve the prob-
lem of delays caused by computation on the target router. Accordingly, in Chapter , we will
examine where the CPU cycles are spent, and whether it is feasible to optimize zebra and bgpd to
reduce their CPU demands.



Measure twice, cut once.

5
On Code

H , in Chapter , that rehoming can remove the ISP-side router as the source of out-
age time during software upgrades, we proceeded, in Chapter , to optimize BGP processing

on the customer router. We showed that Graceful Restart could eliminate CPU delays due to the
zebra process, and shift much of the computation of the bgpd process off of the critical path. With
these improvements in the behavior of the customer router, we find that the ISP-side router is, once
again, the bottleneck in the system.

Accordingly, we now turn our attention to the activities of the zebra and bgpd processes on the
target router. Through the use of existing profiling tools, logfiles, and two new pieces of instru-
mentation, we identify hotspots in these processes. We then develop and empirically evaluate two
simple patches to improve their performance. We show that these patches can reduce the CPU time
used by zebra and bgpd by %, and %, respectively. These processing improvements yield a
reduction in overall outage time of %, as compared to the best results of Chapter .

The remainder of this chapter is structured as follows:
• In Section ., we introduce OProfile [], one of the principal tools we use in our optimization

efforts.
• In Section ., we use profiling data from OProfile, log file messages generated by zebra,

existing and new scheduling statistics, and inspection of source code to identify a defect in
Quagga’s work queue code. We show that a single line change resolves this defect, conse-
quently yielding a % reduction in the CPU time used by zebra, during rehoming.

• In Section ., we use OProfile data and new instrumentation to identify a performance issue
due to the sizing of hash tables in bgpd. We show that enlarging some of its hash tables can
reduce the CPU time required by bgpd, during rehoming, by %.

• In Section ., we summarize and conclude.



C . O C: P O

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

∼CUSTN
+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

∼CUST1 +INETN.C

5 10 15 20 25 30 35
time (sec)

reachability

1 20
INET→ CUSTN

1 22
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.01 to 1.06
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

Figure .: Partial system chart for naïve rehoming with Graceful Restart and LOCAL_PREF, for
the trial with the minimal overall outage time. This chart repeats data from Figure .(b), but with
the time scale narrowed to provide greater detail. For the complete system chart, see Figure A..

. CPU Profiling With OProfile

A good profiling tool is essential for any CPU optimization task. For profiling CPU time in our work
here, we use OProfile []. OProfile is a hardware performance counter-based, whole-system pro-
filer. It is similar, in many respects, to the Digital Continuous Profiling Infrastructure []. OProfile
has three key features that make it well suited for our task, as we detail below.

First, OProfile supports whole-system profiling, including time spent in kernel mode. The abil-
ity to profile kernel-mode computation is vital to our efforts, as can be seen in Figure ., a system
chart for our rehoming solution with Graceful Restart. In this figure, we see that most of the CPU
time used by zebra is attributed to system mode (dark green), rather than user mode (light green).

Second, OProfile allows profiling to be started and stopped at arbitrary points in time. In con-
trast, process profiling tools like gprof [], report profiling data for the entire process lifetime. In
our case, that would include, for example, the computation required to load the Internet routes on
to the target router from the remote router. As can be seen in Figure ., that computation dwarfs
the computation required during rehoming.

Third, because OProfile uses hardware performance counters, it can provide fine-grained re-
porting with low overhead. Low profiling overhead is valuable generally, because it enables pro-
filing runs to complete in a reasonable amount of time. In our case, low overhead profiling is
important for an additional reason. Namely, large perturbations in running time might change the
influence of BGP timers on system behavior.

OProfile offers a wealth of performance metrics, including counts of clock cycles, instructions
retired, cache misses, branch mispredictions, memory stalls, pipeline stalls, and more. In our opti-
mization efforts, we use the simplest of these metrics: clock cycle counts. Any of these counts can
be reported on a per-binary, per-function, or per-line basis; we use the per-function and per-line
data.

Based on our measurements of CPU utilization from /proc/stat data, we find that zebra uses
an average of . seconds during the rehoming process, while bgpd uses an average of .

We note that Figure . presents measurements of the initial router, rather than the target router. However, the two
routers are symmetric with regard to their roles relative to the remote router.



.. O zebra

load 0

load 1initial
router

zebra ↓
−INET1

zebra ↑
−CUST1
−CUSTN
−INETN

+CUSTN
+CUST1

bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

20 40 60 80 100 120 135
time (sec)

reachability

13 38
INET→ CUSTN

8 38
INET→ CUST1

14 109
CUST→ INETN

1 39
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

Figure .: Partial system chart for router restart with a single static customer. Focusing on bgp ↑,
near time  seconds, and +, near  seconds, we see the initial router requires approxi-
mately  seconds to learn Internet routes from the remote router. This chart repeats Figure .(a).
For the complete system chart, see Figure A..

seconds. Accordingly, we first attempt to optimize zebra, and then pursue optimizations in bgpd.

. Optimizing zebra
In this section, we undertake the optimization of the CPU time used by zebra. We first use OProfile
data to locate functions that account for a significant fraction of CPU time. After finding that the
function with the most CPU time is not easily optimized, we use log file data, existing and new
instrumentation, and source code inspection, to devise a strategy for reducing the frequency with
which the hot spot function is called. We then assess our improvements, and suggest opportunities
for further optimization.

.. Finding hot-spots with OProfile
We begin our optimization efforts by using OProfile to identify “hot spots”: locations in the soft-
ware which account for significant fractions of the total program execution time. Note that, as seen
in Figure ., the program execution time for zebra includes a significant amount of time spent
executing kernel code. Fortunately, OProfile can generally attribute kernel-mode execution time
to the appropriate user process.

In Table ., we present OProfile for execution time by function name. We truncate the data
to focus on the top ten functions. Examining the data, we note that the list of top ten functions is
very surprising. While we might expect zebra to be exercising functions related to the inspection
or manipulation of the kernel’s routing information, zebra is, instead, spending one-third of its
execution time in the function acpi_pm_read_verified. This is promising, in that optimizing this
single piece of code could significantly improve performance. At the same time however, kernel
code is often difficult to optimize. And any such optimization would be specific to the Linux kernel.

For details on the collection of /proc/stat data, see Section ...
A notable exception is time spent processing hardware interrupts. For example, time spent processing an input packet

would not necessarily be attributed to the process that eventually receives the packet.



C . O C: P O

function object file CPU seconds
acpi_pm_read_verified vmlinux 4.50
system_call vmlinux 0.52
getnstimeofday vmlinux 0.41
copy_to_user vmlinux 0.36
clock_gettime librt-..so 0.32
thread_fetch libzebra.so... 0.26
nexthop_active_update zebra 0.25
do_select vmlinux 0.25
prefix_match libzebra.so... 0.24
vdso vdso 0.23

Table .: Top ten functions called by zebra, in terms of CPU time. Note that vdso refers to a page
in memory which contains the CPU instructions used to initiate system calls [, ].

Nonetheless, we proceed to examine the code for acpi_pm_read_verified, provided here as
Listing .. Note that this listing includes per-line execution time data from OProfile, to the left of
each line of source code. As noted in the caption for the listing, the reference to the BUILDIO macro
generates the inl function. With this information, and the comment at lines –, we conclude that
nearly all of the time for acpi_pm_read_verified, and approximately % of zebra’s execution
time during rehoming, is spent reading the time from the hardware clock.

As expected, then, the opportunities for optimizing this function are limited. Thus, we turn our
attention instead, to improving execution time by reducing the number of times this function is
called. To do so, we need to determine which function, or functions, call acpi_pm_read_verified.
An ideal approach to determining this would be to use a call-graph profiler. And indeed, OProfile
does offer call-graph profiling. Unfortunately, in our experiments, we were unable to obtain call-
graph data from OProfile.

Faced with the inability to generate a call-graph profile, we take a closer look at the data of Ta-
ble .. Therein, we note that in addition to acpi_pm_read_verified, the list of top ten functions
includes system_call, and do_select in the kernel binary, and thread_fetch in the zebra binary.
Based on this list, and the knowledge that the select system call is often used to wait until net-
work sockets are ready for input/output, or until a timeout occurs, we hypothesize that the calls
to acpi_pm_read_verified are due to the thread_fetch function.

Accordingly, we turn our attention to the OProfile-annotated source for thread_fetch, ex-
cerpted here as Listing .. Therein, we observe that the thread_fetch does call select. But we
see that the function explicitly sets the file descriptors to be watched by select (at lines –), and
that the function also explicitly sets the timeout parameter for the system call (at lines  and , as
appropriate). Thus, the thread_fetch function exhibits no obvious errors in its invocation of the
select system call.

We find ourselves, then, at a standstill. We know that acpi_pm_read_verified is a hot spot in
zebra. And we believe this hot-spotting is caused by excessive calls to select by thread_fetch.
Having found, however, no obvious defects in thread_fetch, we must look elsewhere. Accord-
ingly, we now switch gears. In the next subsection, we use logfile messages to understand the

Specifically, no matter how large the callgraph depth we specified when starting OProfile, the output data contained
only a single level of stack information.



.. O zebra

133.9092 :BUILDIO(l, , int)
2

3:static inline u32 read_pmtmr(void)
4:{
5: /* mask the output to 24 bits */
60.0180 : return inl(pmtmr_ioport) & ACPI_PM_MASK;
7:}
8

9:u32 acpi_pm_read_verified(void)
100.1248 :{ /* acpi_pm_read_verified total: 38329 34.4193 */
11: u32 v1 = 0, v2 = 0, v3 = 0;
12:
13: /*
14: * It has been reported that because of various broken
15: * chipsets (ICH4, PIIX4 and PIIX4E) where the ACPI PM clock
16: * source is not latched, you must read it multiple
17: * times to ensure a safe value is read:
18: */
19: do {
20: v1 = read_pmtmr();
21: v2 = read_pmtmr();
22: v3 = read_pmtmr();
230.1787 : } while (unlikely((v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1)
24: || (v3 > v1 && v3 < v2)));
25:
26: return v2;
270.1895 :}

Listing .: Source code of acpi_pm_read_verified and related functions, as annotated by OPro-
file. The number at the left of each line indicates the percentage of total program execution time
attributed to that line. BUILDIO is a macro which is used to generate the inl function. Note that
both read_pmtmr and inl are inline functions. Accordingly, in the per-function report of Table .,
their execution times appear as part of acpi_pm_read_verified, rather than being broken out sep-
arately. The annotated source is from the trial with the minimal total outage time.



C . O C: P O

1 : /* Structure copy. */
2 0.3215 : readfd = m->readfd;
3 0.3403 : writefd = m->writefd;
4 0.3314 : exceptfd = m->exceptfd;
5 :
6 : /* Calculate select wait timer if nothing else to do */
7 0.0045 : quagga_get_relative (NULL);
8 : timer_wait = thread_timer_wait (&m->timer, &timer_val);
9 : timer_wait_bg = thread_timer_wait (&m->background, &timer_val_bg);

10 :
11 9.0e-04 : if (timer_wait_bg &&
12 : (!timer_wait || (timeval_cmp (*timer_wait, *timer_wait_bg) > 0)))
13 : timer_wait = timer_wait_bg;
14 :
15 0.0377 : num = select (FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait);

Listing .: Excerpted source code of thread_fetch, as annotated by OProfile. This code executes
within the body of a while(1) loop. The number at the left of each line indicates the percentage
of total program execution time attributed to that line. In this excerpt, no single line accounts for
even % of the execution time. The annotated source is from the trial with the minimal total outage
time.

processing that zebra performs during our rehoming process.

.. Gleaning behavior from logfile messages
Having failed to identify a viable optimization strategy from CPU profiling data alone, we now
turn to a very naïve method to gain more insight into program behavior. Specifically, we repeat
our experiment, with all possible debugging options enabled for zebra. While the overhead of
generating and recording the debug messages does threaten to perturb system behavior, the logfile
messages may prove valuable nonetheless.

Running our rehoming process with full debugging enabled for zebra generates a  MB log
file, with about . million lines. To reduce this data to a manageable size, we sample the first mes-
sage of each  second interval, where each interval begins at a timestamp that is evenly divisible
by  seconds. We present the reduced data in Listing ..

This listing suggests that zebra performs four phases of processing. First, at time ::
(line ), zebra receives a RTM_NEWADDR message from the kernel, indicating that an IP address
has been added to a network interface. Second, at time :: (line ), many prefixes are queued
for processing via rib_meta_queue_add. Third, at time :: (line ), many prefixes are queued
for processing via rib_queue_add. Finally, at time :: (line ), processing is performed via
rib_process.

Apart from providing us with a sliver of insight into what zebra is doing, these log file messages
also offer another angle of attack for our theory about acpi_pm_read_verified, and the scheduling
code in zebra. Namely, if there were a problem with the work queue referenced in the log messages,
the problem might manifest as an excessive number of calls to select. To test this hypothesis,
we re-run the experiment, capturing work queue statistics, before and after rehoming, using the



.. O zebra

11 22:34:17 ZEBRA: Vty connection from 127.0.0.1
2127898 22:34:44 ZEBRA: netlink_parse_info: netlink-listen type RTM_NEWADDR(20), …
3178339 22:34:50 ZEBRA: rib_meta_queue_add: 74.62.144.0/20: queued rn 0xba4d2e28 into …
4233116 22:35:00 ZEBRA: rib_meta_queue_add: 160.130.51.0/24: queued rn 0xbb5b7cd0 …
5270351 22:35:10 ZEBRA: rib_meta_queue_add: 207.163.110.0/23: queued rn 0xbcceb9f8 …
6268155 22:35:20 ZEBRA: rib_queue_add: 89.34.100.0/23: work queue added
7210926 22:35:30 ZEBRA: rib_queue_add: 200.68.64.0/22: work queue added
845396 22:35:40 ZEBRA: rib_process: 41.235.187.0/24: Updating existing route, select …
951661 22:35:50 ZEBRA: rib_process: 65.205.251.0/24: Updating existing route, select …
1049359 22:36:00 ZEBRA: rib_process: 72.95.99.0/24: rn 0xba520e90 dequeued
1192984 22:36:10 ZEBRA: rib_process: 86.106.75.0/24: Updating existing route, select …
12109338 22:36:20 ZEBRA: rib_process: 124.105.64.0/19: Updating existing route, select …
13112422 22:36:30 ZEBRA: rib_process: 192.85.78.0/24: rn 0xbbd5d688 dequeued
14127223 22:36:40 ZEBRA: rib_process: 202.255.102.0/24: rn 0xbc843378 dequeued
1518464 22:36:50 ZEBRA: rib_process: 217.23.70.0/24: Updating existing route, select …
162 22:37:02 ZEBRA: zebra message comes from socket [11]
173 22:38:02 ZEBRA: zebra message comes from socket [11]
181 22:42:26 ZEBRA: Vty connection from 127.0.0.1

Listing .: Sampling of logfile messages generated by zebra during rehoming. The first entry
of every  second interval is provided. The numbers at left indicate the total number of log file
messages during each interval. Ellipsis denote that a line has been truncated to fit the page width.
These logfile messages come from the trial with the minimal overall outage time.

show work-queues command in zebra.

We present the data from show work-queues in Table .. While zebra provides many statistics
on the work queues, the statistic of particular interest to our optimization task is the number of
times the work queue was run. This statistic is listed under the “Q. Runs Total” column in the table.
Examining the data in the table, we observe that the work queue was run approximately ,
times during the course of rehoming. Given that our ISP-side RIB trace has , prefixes (see
Table .), this suggests that zebra is processing only one prefix per queue run. And, depending
on how the work queue interacts with the program’s scheduler, zebra may be processing only one
prefix for each call that it makes to select.

List (ms) Q. Runs Cycle Counts
P Items Hold Total Best Gran. Avg.

before rehoming 0 10 5370247 1 1 1
after rehoming 0 10 5686145 1 1 1

Table .: Work-queue statistics for the route_node processing workqueue in zebra. These statis-
tics come from the show work-queues command in zebra’s command-line interface, for the trial
with the minimal overall outage time. Note that the “before rehoming” statistics reflect the side-
effects of previous trials, and work done during experiment setup.



C . O C: P O

1 if (wq->cycles.granularity == 0)
2 wq->cycles.granularity = WORK_QUEUE_MIN_GRANULARITY;
3

4 ++(wq->qlen_hist[MIN(get_order(listcount(wq->items)),
5 sizeof(wq->qlen_hist) / sizeof(wq->qlen_hist[0]))]);
6 for (ALL_LIST_ELEMENTS (wq->items, node, nnode, item))
7 {
8 assert (item && item->data);

Listing .: Core source code for patch to capture work queue length statistics. The complete patch
is provided as Listings B.–B..

1

2 wq->runs++;
3 wq->cycles.total += cycles;
4 wq->yields += yielded;
5

6 #if 0
7 printf ("%s: cycles %d, new: best %d, worst %d\n",

Listing .: Core source code for patch to capture work queue yield counts. The complete patch is
provided as Listings B., B., and B..

.. Deeper insight from instrumentation and code inspection
While the work queue statistics have provided a promising lead, they do not tell us why the work
queue is run often. For example, the work queue might have to be run so often because there is
only a single item in the queue each time. On the other hand, it might be the case that the queue
has multiple items, but the queue processing code yields after processing a single item.

To provide more insight in to the behavior of the work queues, we instrumented zebra to cap-
ture two additional statistics about its work queues. The first of these statistics is a histogram, with
exponentially-sized bins, of the work queue length before each run of the queue. The second of
these statistics is a count of the number of times the workqueue processing code determined that
it should yield before processing any further entries. These statistics are captured via the patches
of Listings . and ., respectively.

Over ten trials, we found that the average yield count was ., and that there was never more
than one item in the queue. These statistics are seemingly contradictory. If the queue length never
contains multiple items, why is the yield count non-zero? This contradiction can be explained by
noting that the determination of whether or not to yield is made before checking if there are any
remaining items on the queue. Thus, a work queue run which exceeds the scheduling quantum
will be counted in the yield count, even if there are no further items to process.

With the contradiction resolved, an important question remains. Namely, why is the queue so
small? Given the logfile messages of Listing ., we would expect all the prefixes to be present on
the queue before rib_process is called. To answer this question, we examine the source code of
rib_queue_add, which we provide here as Listing .. The comment at lines – of that listing
explains that prefixes are not queued directly onto the work queue itself. Instead, the work queue



.. O zebra

1/* Add route_node to work queue and schedule processing */
2static void
3rib_queue_add (struct zebra_t *zebra, struct route_node *rn)
4{
5

6if (IS_ZEBRA_DEBUG_RIB_Q)
7{
8char buf[INET6_ADDRSTRLEN];
9

10zlog_info ("%s: %s/%d: work queue added", __func__,
11inet_ntop (rn->p.family, &rn->p.u.prefix, buf, INET6_ADDRSTRLEN),
12rn->p.prefixlen);
13}
14

15/*
16* The RIB queue should normally be either empty or holding the only
17* work_queue_item element. In the latter case this element would
18* hold a pointer to the meta queue structure, which must be used to
19* actually queue the route nodes to process. So create the MQ
20* holder, if necessary, then push the work into it in any case.
21* This semantics was introduced after 0.99.9 release.
22*/
23if (!zebra->ribq->items->count)
24work_queue_add (zebra->ribq, zebra->mq);
25

26rib_meta_queue_add (zebra->mq, rn);
27}

Listing .: Source code of rib_queue_add, from zebra_rib.c. The log file messages in Listing .
suggest that this function is called frequently during rehoming.

holds a pointer to a meta-queue, which then contains the queued prefixes. As such, the work queue
either holds a single item, or is empty.

While the comment in rib_queue_add explains why our histogram reported that the work
queue never contained more than one item, we have yet to find an explanation for why zebra pro-
cesses, on average, only a single prefix for each work queue run. Based on the log file messages of
Listing ., we would now expect the prefixes to be queued on the meta-queue. And, presumably,
the function servicing the meta-queue would process multiple items on each meta-queue run.

To determine whether or not this is, in fact, the case, we examine the source code for the func-
tion which services the meta-queue, meta_queue_process. We provide the code for this func-
tion here as Listing .. Examining the main loop of this function, at lines –, we see that
meta_queue_process processes at most a single item, from the lowest numbered of MQ_SIZE sub-
queues. Afterwards, at line , the function checks if the meta queue contains any more items. If
so, the function returns WQ_REQUE, indicating that the current work queue item should be enqueued
back on to the queue from which it was taken.

The purpose of the subqueues is to enforce a priority ordering amongst routing protocols. For example, RIB updates
sent to zebra from OSPF are processed before the RIB updates sent from BGP. For further details, see [].



C . O C: P O

1 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and data
3 * is pointed to the meta queue structure.
4 */
5 static wq_item_status
6 meta_queue_process (struct work_queue *dummy, void *data)
7 {
8 struct meta_queue * mq = data;
9 unsigned i;

10

11 for (i = 0; i < MQ_SIZE; i++)
12 if (process_subq (mq->subq[i], i))
13 {
14 mq->size--;
15 break;
16 }
17 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
18 }

Listing .: Source code of meta_queue_process, from zebra_rib.c. Our reading of the zebra
source code indicates that this function services the items enqueued by rib_queue_add (see List-
ing .).

Depending on how this requeue functionality interacts with the thread scheduler implemented
in thread_fetch, our understanding of meta_queue_process may validate our theory that exces-
sive calls to select are the root cause of the disproportionately large amount of CPU time used
by acpi_pm_read_verified. Specifically, if thread_fetch calls select after the requeuing action,
rather than immediately rerunning the work queue processing thread, then it would follow that
zebra executes one call to select for every prefix.

To understand how requeuing interacts with the thread scheduling code in zebra, we examine
the source code for the function that processes work queues, work_queue_run. To facilitate that
examination, we present an abstracted version of work_queue_run as Listing .. In this listing, we
focus specifically on lines , , , and .

Line  defines a loop that iterates over all of the elements of the work queue. Line  calls the
function that processes items for the work queue in question, and captures the return value in ret.
If ret equals WQ_REQUE, line  requeues the item. Line  schedules the work queue processing
thread for execution, if any items remain on the work queue after exiting the for loop. Note, how-
ever, that line  is outside the body of the for loop defined at line . Hence, requeued items should
be processed before rescheduling the work queue processing thread.

Before concluding that the problem lies elsewhere, however, we check for one more possi-
ble error. Note that the code at line  modifies the very same linked list that the for loop at
line  is actively iterating over. Without due care, this combination could very well cause er-
roneous behavior. To determine whether or not that is the case here, we inspect the code for
work_queue_item_requeue, and ALL_LIST_ELEMENTS. We provide the source for this function and
macro as Listings . and ., respectively.

Note that the break statement at line  breaks out of the switch construct, rather than the for loop.



.. O zebra

1int work_queue_run (struct thread *thread) { …
2for (ALL_LIST_ELEMENTS (wq->items, node, nnode, item)) { …
3if (item->ran > wq->spec.max_retries) { …
4work_queue_item_remove (wq, node);
5continue;
6} …
7

8do {
9ret = wq->spec.workfunc (wq, item->data);
10item->ran++;
11}
12while ((ret == WQ_RETRY_NOW) && (item->ran < wq->spec.max_retries));
13

14switch (ret) {
15case WQ_QUEUE_BLOCKED: …
16case WQ_RETRY_LATER: goto stats;
17case WQ_REQUEUE: {
18item->ran--;
19work_queue_item_requeue (wq, node);
20break;
21}
22case WQ_RETRY_NOW: …
23case WQ_ERROR: …
24case WQ_SUCCESS:
25default: {
26work_queue_item_remove (wq, node);
27break;
28}
29} …
30

31cycles++; …
32if (!(cycles % wq->cycles.granularity) && thread_should_yield (thread)) {
33goto stats;
34}
35}
36

37stats: …
38if (listcount (wq->items) > 0)
39work_queue_schedule (wq, 0);
40else if (wq->spec.completion_func)
41wq->spec.completion_func (wq); …
42}

Listing .: Abstracted source code of work_queue_run, from workqueue.c. Ellipsis denote that
one or more lines have been omitted. Note, however, that all lines affecting the control flow of the
function have been retained in this listing. Our reading of the zebra source code indicates that this
function interfaces between the scheduling code in thread_fetch and the meta-queue servicing
code in meta_queue_process (see Listing .).



C . O C: P O

1 static void
2 work_queue_item_requeue (struct work_queue *wq, struct listnode *ln)
3 {
4 LISTNODE_DETACH (wq->items, ln);
5 LISTNODE_ATTACH (wq->items, ln); /* attach to end of list */
6 }

Listing .: Source code of work_queue_item_requeue, from workqueue.c. This function is called
by work_queue_run (see Listing .), when meta_queue_process (see Listing .) returns before
processing all the items on the meta-queue.

1 /* List iteration macro.
2 * Usage: for (ALL_LIST_ELEMENTS (...) { ... }
3 * It is safe to delete the listnode using this macro.
4 */
5 #define ALL_LIST_ELEMENTS(list,node,nextnode,data) \
6 (node) = listhead(list); \
7 (node) != NULL && \
8 ((data) = listgetdata(node),(nextnode) = listnextnode(node), 1); \
9 (node) = (nextnode)

Listing .: Source code of ALL_LIST_ELEMENTS, from linklist.h. This macro is used to iterate
over queued items in work_queue_run (see Listing .).

From these listings, we observe that work_queue_item_requeue simply removes the given item
from the workqueue, and then appends the item to the tail of the list. Assuming, then, that the
linked list manipulation macros LISTNODE_DETACH and LISTNODE_ATTACH operate correctly, the
code for work_queue_item_requeue is error-free. Rather than inspect those macros now, we pro-
ceed under the assumption that they are correct, and turn our attention to ALL_LIST_ELEMENTS.

We first observe that the code for ALL_LIST_ELEMENTS, is not quite as simple as the code for
work_queue_item_requeue. As noted in the comment at line , this code is intended to correctly
handle the case where the current list item is removed. To do so, the code pre-fetches the next node
pointer at the top of the loop (using the code at line ), and uses the prefetched pointer to set the
current node pointer before the next loop iteration (using the code at line ).

In most cases, this code should perform correctly. Namely, if the current element is deleted,
the loop should proceed to iterate over subsequent elements. However, in our particular case,
where the work queue contains a single element, this code will fail to provide the desired iteration
semantics. Because the queue contains a single element, the prefetched value, at line  of the source
code for ALL_LIST_ELEMENTS, will be NULL. Accordingly, list iteration will terminate, even if the call
to work_queue_item_requeue properly requeues the work quite item inside the body of the for
loop.



.. O zebra

1

2++(wq->qlen_hist[MIN(get_order(listcount(wq->items)),
3sizeof(wq->qlen_hist) / sizeof(wq->qlen_hist[0]))]);
4while (listcount(wq->items))
5for (ALL_LIST_ELEMENTS (wq->items, node, nnode, item))
6{
7assert (item && item->data);

Listing .: Complete source code for patch to resolve the hot-spot in zebra. This patch prevents
work_queue_run from returning prematurely. The patch is also available as Listing B..

before with absolute %
while while change change

work-queue runs 315898.50 90.50 −315808.00 −100
total CPU seconds 13.49 1.74 −11.75 −87
overall outage seconds 23.27 15.91 −7.36 −32

Table .: Improvement due to the patching of work_queue_run, with the change of Listing ..
All measurements reported are mean values over ten trials. Note that the data for “before while”
come from the experiment of Section ...

.. Resolving the hot-spot, and assessing our improvements

We now test our theories by applying a change which should, if our theories are correct, remedy
the observed behavior. This patch, provided here as Listing ., simply wraps the for loop with a
while loop. The outer loop continues so long as the work queue is non-empty. Note that there are
two cases where the for loop should terminate even though the queue is non-empty. These are at
lines  and  of Listing .. However, in both cases, the code exits the loop via an explicit goto,
rather than a break statement. Hence, our change should not alter the behavior of work_queue_run
in these cases.

We present the results of our change in Table .. This table provides a before and after com-
parison of the system behavior. From this table, we make three observations. First, the number of
work queue runs is dramatically reduced. Second, the total CPU time used by zebra is reduced by
. seconds, or %. Third, the overall outage time is also significantly reduced, by . seconds.

The second and third observations, however, raise some questions of their own. First, why
is the improvement in outage time greater than the total CPU usage of acpi_pm_read_verified,
which was reported as . seconds in Table .? Second, why is there a large gap, of . seconds,
between the improvement in zebra processing time, and the improvement in overall outage time?
We now consider these questions in turn.

To explain the greater-than-expected improvement, we present Table ., a before and after
comparison of the top ten functions, in terms of CPU time used. Comparing Tables .(a) and .(b),
we note that, in addition to acpi_pm_read_verified, many other functions no longer rank in the
top ten. Rather than simply reduce the cost due to acpi_pm_read_verified, we have reduced the
cost due to all of the functions on the path to acpi_pm_read_verified, including thread_fetch,
system_call, and others.



C . O C: P O

function CPU seconds
acpi_pm_read_verified 4.50
system_call 0.52
getnstimeofday 0.41
copy_to_user 0.36
clock_gettime 0.32
thread_fetch 0.26
nexthop_active_update 0.25
do_select 0.25
prefix_match 0.24
vdso 0.23

(a) before patch

function CPU seconds
route_lock_node 0.21
meta_queue_process 0.20
prefix_match 0.20
rib_queue_add 0.19
nexthop_active_update 0.17
route_node_match 0.17
route_next 0.15
malloc_consolidate 0.10
work_queue_run 0.04
_int_malloc 0.04

(b) with patch

Table .: Top ten functions called by zebra, before and after our patch to work_queue_run, in
terms of CPU time. Subtable (a) repeats data of of Table ..

Having resolved the question of how our optimization efforts performed better than might be
expected, according to our best data at the outset, we now turn to the question of why the opti-
mization is not quite as effective as might now be expected. Namely, we want to understand the
gap between the reduction in CPU time used by zebra, and the reduction in overall outage time.

To do so, we examine the system chart for this experiment, and contrast it to the system chart
for an experiment before our patch. We present these paired charts as Figure .. A comparison
of the CPU activity on the target router, between the two subfigures, yields a simple explanation
for this gap. Namely, there is now a significant amount of idle time on the target router, as zebra
completes its work by about  seconds after the start of the experiment, while bgpd does not ramp
up its work until approximately  seconds after the start of the experiment.

.. Avenues for improvement

The data of Table . and Figure . suggest two principal avenues for improvement. First, based
on Table ., we could attempt to further optimize the CPU time used by zebra. Second, based
on Figure .(b), we could attempt to optimize the idle time between the enable nic and +/

events during rehoming.
From Table ., we expect that the CPU time optimization would yield an outage time improve-

ment of no more than . seconds. Moreover, such optimization could be difficult, as none of the
top ten functions in Table .(b) individually accounts for more than . seconds of CPU time.

In comparison, based on the gap between the improvement in CPU usage due to the patch of
Listing ., and the improvement in outage time due to the same patch, we believe that addressing
the idle time could yield an improvement of up to . seconds.

Given the greater opportunity of improvement with the latter approach, we set aside further
CPU optimization for zebra. Instead, we will pursue idle time reductions. Before doing so, how-
ever, we first examine and optimize the CPU utilization of bgpd.



.. O zebra

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

∼CUSTN
+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

∼CUST1 +INETN.C

5 10 15 20 25 30 35
time (sec)

reachability

1 20
INET→ CUSTN

1 22
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.01 to 1.06
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) before while patch

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

∼CUST1
∼CUSTN

+CUST1.R

+CUSTN.R

+CUST1.I

+CUSTN.I

+INETN.C

5 10 15 20 25 30 35
time (sec)

reachability

1 15
INET→ CUSTN

1 15
INET→ CUST1

1.02 to 1.05
CUST→ INETN

1.02 to 1.05
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) with while patch

Figure .: Partial system charts for rehoming with and without the patch of Listing ., for the
trials with the minimal overall outage times. Subfigure (a) repeats the chart of Figure .. For the
complete system charts, see Figures A. and A..



C . O C: P O

function object file CPU seconds
hash_get libzebra.so... 1.98
_int_malloc libc-..so 0.70
malloc_consolidate libc-..so 0.69
bgp_route_next bgpd 0.49
bgp_best_selection bgpd 0.34
calloc libc-..so 0.32
free libc-..so 0.26
_int_free libc-..so 0.25
bgp_scan_timer bgpd 0.24
hash_release libzebra.so... 0.22

Table .: Top ten functions called by bgpd, in terms of CPU utilization. Values reported are means
over ten trials. Note that the hash_get function alone accounts for approximately % of the total
CPU time used by bgpd during rehoming.

. Optimizing bgpd
We now turn our attention to optimizing the CPU time used by bgpd. As with our optimization
efforts for zebra, we begin by using OProfile to detail where CPU time is being spent. We then in-
strument bgpd to collect statistics validating the hypothesis suggested by the OProfile data. After
confirming the hypothesis, we develop a patch to optimize the offending code, assess our improve-
ments, and suggest opportunities for further optimization.

.. Finding the hot-spot
We present the top ten functions called by bgpd, in terms of CPU time used, as Table .. As with
zebra, we find a significant hot-spot in the code. Namely, the hash_get function accounts for .
seconds of CPU time, or about % of the total CPU time used by bgpd during rehoming.

For more detail on where the time is being spent, we turn, once again, to line-by-line profiling
data from OProfile. We present the data here as Listing .. We observe that a single line of
code, Line  of this listing, accounts for approximately % of the total CPU time used by bgpd.
This line of code checks if a hash bucket contains the item that is being requested by the caller
of hash_get. In order to carry out this task, the code first checks if the hash value of the bucket
(expression backet->key) matches the hash value of the item specified by the caller (expression
key). If the values match, the code proceeds with a full comparison of the bucket’s key (expression
backet->data), and the item’s key (expression data).

While the bottleneck could be either the initial check, or the call to the full comparison function,
Table . suggests that the initial check is the culprit. Our reasoning is as follows. Observe that
the full comparison function is addressed via a variable (in the expression (*hash->hash_cmp)).
Because the function to be called is not known at compile time, the callee cannot be inlined. Hence,
while the cost of jumping to the full comparison function might affect the CPU time attributed to
this line of code, the actual execution time of that function will be accounted for separately. Thus,

Note that the keys are opaque to the hash_get function, and extracted from the item data by the hash_cmp function
specific to the given hash table. Hence the confusing reference to an item’s key through a symbol named data.



.. O bgpd

1:/* Lookup and return hash backet in hash. If there is no
2: corresponding hash backet and alloc_func is specified, create new
3: hash backet. */
4:void *
5:hash_get (struct hash *hash, void *data, void * (*alloc_func) (void *))
60.1383 :{ /* hash_get total: 17151 16.5817 */
7: unsigned int key;
8: unsigned int index;
9: void *newdata;
10: struct hash_backet *backet;
11:
120.0164 : key = (*hash->hash_key) (data);
13: index = key % hash->size;
14:
151.1186 : for (backet = hash->index[index]; backet != NULL; backet = backet->next)
1615.1847 : if (backet->key == key && (*hash->hash_cmp) (backet->data, data))
170.0087 : return backet->data;
18:
190.0271 : if (alloc_func)
20: {
21: newdata = (*alloc_func) (data);
220.0048 : if (newdata == NULL)
23: return NULL;
24:
250.0068 : backet = XMALLOC (MTYPE_HASH_BACKET, sizeof (struct hash_backet));
269.7e-04 : backet->data = newdata;
270.0174 : backet->key = key;
28: backet->next = hash->index[index];
299.7e-04 : hash->index[index] = backet;
300.0019 : hash->count++;
310.0039 : return backet->data;
32: }
33: return NULL;
340.0512 :}

Listing .: Line-by-line CPU time for hash_get, as called by bgpd. The number at the left of each
line indicates the fraction of total program execution time attributed to that line. This listing reports
data for the trial with the minimal outage time.



C . O C: P O

1 backet->next = hash->index[index];
2 hash->index[index] = backet;
3 hash->count++;
4 hash->high_count = MAX(hash->high_count, hash->count);
5 return backet->data;
6 }
7 return NULL;

Listing .: Core source code for patch to capture hash table statistics. The complete patch is
provided as Listings B.–B..

max primary
name items now items ever buckets
cpu_record 15 15 1011
aspath 48482 48482 32767
attr 107591 107593 1024
baa (null) / 0 53795 1024
baa (null) / 0 1 1024
baa (null) / 0 1 1024

Table .: Hash table statistics for bgpd, at the completion of rehoming. The “attr” hash relates to
path attributes received from peers, while the “baa” hashes are used for packing together outbound
updates for prefixes which share path attributes. There is one “baa” hash for each peer and address
family. The peer names appear as “(null)” due to a bug in our hash statistics patch. The address
family “/” refers to IPv Unicast. Hash statistics for other address families are omitted here, as
the item count is always zero. Due to a bug which prevented the capture of statistics for the trial
with the minimal overall outage time, we present statistics from an alternate trial here.

such a function ought to appear in the top ten list of Table .. Since none of the function names in
Table . seem likely candidates for use as hash_cmp, we conclude that the full comparison functions
are unlikely to be bottlenecks.

To confirm this hypothesis, we repeat our experiment, with some additional instrumentation.
The core code for this new instrumentation, provided here as Listing ., simply maintains a count
of the maximum number of items ever present in each hash table instance. The data generated by
this new instrumentation, provided here as Table ., demonstrate that some of the hash tables
in bgpd are significantly undersized. For example, the “attr” hash contains, at peak, over ,
items. Because the hash contains only  hash buckets, a successful lookup would require, on
average, searching approximately  items.

.. Resolving the hot-spot, and assessing our improvements

To remedy this problem, we patch bgpd to allocate a larger number of hash buckets for these two
hash tables. For the “baa” hashes, the number of buckets is chosen to be slightly larger than the
number of unique path attributes in our trace, as reported in Table .. For the “attr” hash, we



.. O bgpd

1static void
2attrhash_init (void)
3{
4attrhash = hash_create (attrhash_key_make, attrhash_cmp);
5/* NB: make the hash twice as large as the number of expected attributes,
6to account for copies made due to, e.g., next-hop-self.
7(mukesh.20100815) */
8attrhash = hash_create_size (BGP_ATTR_UNIQ_COUNT_EST * 2,
9attrhash_key_make, attrhash_cmp);
10}

Listing .: Core source code, part  of , for patch to resolve the hot-spot in bgpd. This code
increases the size of the hash table used to store received path attributes.

1FIFO_INIT (&sync->withdraw);
2FIFO_INIT (&sync->withdraw_low);
3peer->sync[afi][safi] = sync;
4peer->hash[afi][safi] = hash_create (baa_hash_key, baa_hash_cmp);
5if ((afi == AFI_IP) && (safi == SAFI_UNICAST)) {
6peer->hash[afi][safi] = hash_create_size (BGP_ATTR_UNIQ_COUNT_EST,
7baa_hash_key, baa_hash_cmp);
8} else {
9peer->hash[afi][safi] = hash_create (baa_hash_key, baa_hash_cmp);
10}
11}
12}

Listing .: Core source code, part  of , for patch to resolve the hot-spot in bgpd. This code
increases the size of the hash tables used when packing outbound advertisements for IPv Unicast
addresses. The complete patch is provided as Listings B.–B..

double this count to accommodate a detail of our bgpd configuration. The core code for this patch
is provided here as Listings ., and ..

To assess the impact of this change, we present Table ., which compares memory utilization,
CPU time, and outage time, before and after application of the patch. We find that the patch yields
a % reduction in the CPU time used by bgpd, and a % reduction on overall outage time, at a
cost of an approximately % increase in memory utilization.

While these improvements are welcome, the raw differences (“absolute change” in Table .)
do raise some questions. First, why has memory usage increased? Second, why is the reduction
in CPU time used (. seconds, according to Table .) greater than the total time used by the
hash_get function (. seconds, as reported in Table .)? Third, why is the improvement in overall
downtime greater than the reduction in CPU time used? We consider each of these questions in
turn.

Specifically, our configuration uses the next-hop-self directive to modify the next-hop attribute of received routes,
replacing the received value with the receiving router’s own IP address. This requires the creation of a new path attribute
for each received route.



C . O C: P O

before with % absolute
resizing resizing change change

max resident set size (MiB) 117.42 118.41 +1 +0.99
total CPU seconds 12.93 10.47 −20 −2.46
overall outage seconds 15.86 12.91 −19 −2.95

Table .: Cost of, and improvement due to, the resizing of hash tables. All measurements reported
are mean values over ten trials.

A naïve explanation for the increased memory utilization is that it results directly from the
increase in the number of hash buckets for the “attr” and “baa” hashes. Given that we now allocate
, additional buckets when creating the “attr” hash, and an additional , buckets when
creating each of the “baa” hashes listed above, and that each hash bucket consumes  bytes, we
might expect an increase of . MiB. However, this both, disagrees with the observed change,
and neglects an important detail.

The neglected detail is that, if the additional hash buckets are not allocated at the time the
hash table is created, they are allocated on demand, and chained in to the existing hash table via
next pointers from the primary hash buckets for each hash value. Thus, our change only increases
memory utilization for hash tables that did not previously exceed their initial allocation.

Focusing on the hash tables that do not exceed their initial allocation, specifically, the second
and third “baa” hashes listed in Table ., we expect memory use to increase by , buckets of
 bytes each, or . MiB. This is within approximately % of the observed value. The remain-
ing difference might be explained, for example, by the fact that the large initial allocation of hash
buckets avoids the fragmentation that can occur with small dynamic memory allocations.

For the greater-than-expected reduction in CPU time, our measurements do not provide robust
data with which to draw a conclusion. However, we speculate that the more compact layout of
hash table buckets resulting from the large initial allocation may have reduced the cache footprint
of the hash table, thereby improving the performance of code outside of the hash_get function.
We leave verification of this hypothesis for future work.

To understand why the reduction in outage time is greater than the reduction in CPU time, we
consult Figure ., which presents system charts for experiments with and without the increase in
initial hash table size. Comparing the minimal trials for these conditions, we observe that, in the
latter case, there is a shorter delay between the time at which routes are received from the customer
router (+/), and the time when they are sent upstream, to the remote router (+.).

It is unclear, from the data presented here, whether the difference in this route propagation
delay is caused by the increase in hash table size, or due to other reasons. The difference might, for
example, result from timer variation. In Chapter , we will more throughly investigate the cause
of this delay, and how to reduce it.

.. Avenues for improvement
We begin our search for further improvements with CPU profiling data. Specifically, we consult
Table ., which presents the top ten functions, in terms of CPU time used, after our patches to in-

Each bucket contains an unsigned int key, a pointer to the data item, and a next pointer used for chaining overflow
buckets. Thus, on the IA- platform, a single bucket consumes  bytes.



.. O bgpd

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1

∼CUSTN
+INET1.C

+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

+INETN.C

5 10 15 20 25 30
time (sec)

reachability

1 14
INET→ CUSTN

1 14
INET→ CUST1

1.01 to 1.05
CUST→ INETN

1.01 to 1.04
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) default hash table sizing

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

+CUST1.R

∼CUST1
∼CUSTN
+CUSTN.R

+CUST1.I

+CUSTN.I

+INETN.C

5 10 15 20 25 30
time (sec)

reachability

1 11
INET→ CUSTN

1 11
INET→ CUST1

1.00 to 1.05
CUST→ INETN

1.01 to 1.07
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) with resized hash tables

Figure .: Partial system charts for rehoming with and without the hash table resizing patches of
Listings . and ., for the trials with the minimal overall outage times. For the complete system
charts, see Figures A. and A..



C . O C: P O

function object file CPU seconds
malloc_consolidate libc-..so 0.79
_int_malloc libc-..so 0.70
bgp_route_next bgpd 0.56
bgp_best_selection bgpd 0.39
calloc libc-..so 0.32
bgp_scan_timer bgpd 0.27
_int_free libc-..so 0.26
free libc-..so 0.25
prefix_match libzebra.so... 0.23
bgp_process bgpd 0.22

Table .: Top ten functions called by bgpd, in terms of CPU utilization, with resized hash tables.
Values reported are means over ten trials.

crease the sizes of the “attr” and “baa” hashes. Therein, we observe that no single function accounts
for more than . seconds of CPU time. Thus, we turn our focus away from micro-optimization,
and consider broader optimizations instead.

To search for higher-level optimizations, we consult Figure .(b). Examining the timeseries
for the target router, we observe that a significant fraction of the outage time can be attributed to
the delay between the +/ event, when the target router receives the first advertisement from
the customer router, and the +. event, when the target router propagates this advertisement
upstream to the remote router.

The reason for this delay is unclear. But given that the customer router advertises only nine
routes, it is unlikely that the CPU time used during this interval is due principally to processing of
the route advertisement from the customer, or the propagation of these advertisement upstream.

In Chapter , we will study what causes this delay, and what we might due to reduce it.

. Conclusion
In this chapter, we set out to address the target router as a cause of downtime during rehoming.
We chose, in particular, to focus on improvements that we could achieve by optimizing the code
for zebra and bgpd.

For zebra, the path to optimization was intricate. We consulted a variety of data, including
statistics on CPU use by function, CPU use by line of source code, log file messages, existing in-
strumentation of the work queue code in zebra, and new instrumentation of the same code. We
inspected source code across three layers of scheduling code: the core scheduler, implemented in
thread_fetch; the work queue scheduler, implemented in work_queue_run, and the meta-queue
scheduler, implemented in meta_queue_process. The gains from these efforts were substantial: a
% reduction in the CPU time used during rehoming, and a % reduction in mean overall outage
time.

For bgpd, the road from profiling data to optimization was substantially shorter. We were able to
proceed rapidly from the listing of top ten functions, by CPU time, to the profiler-annotated source

For further details on the customer routes, see Table ..



.. C

for hash_get, the single function consuming the most CPU time, to a patch with implemented
new instrumentation to verify our hypothesis about the cause of the hot spot in hash_get. After
developing a patch to address this hot spot, we noted a % reduction in the CPU time used during
rehoming, and a % reduction in mean overall outage time.

With the benefit of both of these two micro-optimizations, we have reduced the mean overall
outage time caused by rehoming from . seconds to . seconds. In the context of routing
software upgrades, we can now say that keeping a router up-to-date, assuming the historical re-
lease schedule for Cisco IOS, and assuming that customers are moved to a temporary router, and
back, would consume % of the annual outage budget. Were rehoming to be applied to other
maintenance events as well, we could support seven such events while staying within the outage
budget.

While these numbers are a marked improvement from our starting point, and could allow for
five-nines reliability given the rate of software updates today, we would prefer a solution with more
head room. This head room would be useful i) to cope with effects not observed in our laboratory
setup, ii) to allow for a faster pace of software updates in the future, and iii) to permit a greater
margin of error.

To provide this greater head room, we identified two possibilities for further improvement.
In Section .., we noted that there is a considerable amount of idle time for the CPU on the
target router. In Section .., we observed a significant delay between the receipt of routes from a
customer, and the propagation of those routes upstream. In Chapter , we pursue improvements
on both of these fronts.





Life is about timing.
Carl Lewis

6
On Timing

T , we have employed a variety of techniques to reduce the down time caused by routing
software upgrades, from approximately  seconds, to about  seconds. Specifically, we

began, in Chapter , by leveraging the level of indirection provided by reconfigurable transport
networks to isolate the ISP customer from the effects of restarting the initial router. We continued
our optimization efforts, in Chapter , by using Graceful Restart to eliminate unnecessary com-
putation on the customer router. We then turned, in Chapter , to micro-optimizations to reduce
the CPU time expended on the target router. We concluded Chapter  having exhausted the most
promising micro-optimizations.

For further improvements, we turn now to scheduling. Our efforts here are guided by two
insights from Chapter . First, we observed, in Section .., that a significant fraction of the re-
maining downtime can be attributed to the delay between enabling the customer-facing network
interface on the target router, and the establishment of the BGP peering session between the tar-
get router and the customer router. Second, we noted in, Section .., that the delay between the
time that the target router receives advertisements from the customer router, and the time that the
target router propagates these routes to the remote router, is out of proportion with the very small
number of routes originated by the customer router.

Based on these observations, we first address the delay in establishment of the BGP peering
session between the target router, and the customer router. We demonstrate that this change re-
duces the down time during rehoming by %. We then focus on the delay between receiving and
propagating customer routes. We develop a series of scheduling changes which further reduce the
down time of rehoming by %.

The remainder of this chapter is structured as follows:
• In Section ., we introduce the framework that we will use to evaluate the effectiveness of

our changes. This framework decomposes the down time in to session establishment delay,
We assume that our techniques are used to rehome a customer to a target router, and then, following the upgrade of

the initial router, back to the initial router.



C . O T: S O

component from to time (sec)
session establishment outage start bgp ↑ 6.72
route reception bgp ↑ +/ 1.61
route processing +/ ∼ 1.77
route propagation ∼ +. 2.73
other +. outage end 0.08

Table .: Breakdown of outage time before any improvements. All values are means over ten
trials. Because we detect the ∼ event by polling once-per-second, we adjust the raw route
processing value by subtracting . seconds, and adjust the raw route propagation value by adding
. seconds, before reporting them here.

route reception delay, route processing delay, and route propagation delay.
• In Section ., we identify the source of session establishment delay, develop a patch to ad-

dress it, and demonstrate the effectiveness of our patch.
• In Section ., we identify the source of route propagation delay, and develop a patch to

address it. Observing that the patch does not actually improve route propagation delay, we
hypothesize that this failure is due to deferred processing of routing updates.

• In Section ., we confirm our hypothesis that routing updates are not processed immediately,
and develop a patch to address the issue. We observe that the patch, in conjunction with the
patch of Section ., improves route propagation delay. We find that it does not, however,
improve route processing delay. We conclude the section with a hypothesis that this failure
is due to computation time required by other code in bgpd.

• In Section ., we identify a likely cause of the hypothesized computation delay, and develop
a patch to move that computation off of the critical path. We demonstrate the effectiveness
of the patch, discuss alternative approaches, and then consider avenues for further improve-
ment.

• In Section ., we summarize and conclude. Our primary conclusion is that the patches of this
chapter yield a viable rehoming solution. The solution greatly reduces the availability impact
of routing software upgrades. And, if extended for use in other scenarios, the solution could
provide five-nines availability even if a router were to fail, or be taken offline, once every 
days.

. Evaluation Framework
Our primary metric for judging the effectiveness of our optimizations is, of course, the down time
observed by the customer during rehoming. However, in order to better understand the system be-
havior, and the means by which our optimizations affect that behavior, we introduce an additional
framework for evaluating our optimizations.

In this additional framework, we decompose the downtime into a set of components. These
components are: session establishment, route reception, route processing, route propagation, and
“other”. Each component is defined by a start event, and an end event. For an example of our de-
composition, and the events defining the components, we present Table .. This table decomposes
the outage time prior to any scheduling optimizations.



.. O S E

With the exception of the “outage start” and “outage end” events, the events used in the de-
composition are observed on the target router, and come from the set of events illustrated on our
system charts, and enumerated in Table A.. The “outage start” and “outage end” events reflect
the time of the first missing ICMP packet, and the time of the packet after the last missing ICMP
packet, respectively. The observation point for these events is the customer sink.

Note that because the ∼ event is based on polling for a change once-per-second, we adjust
the route processing times by subtracting . seconds from our raw data, and we adjust the route
propagation times by adding . seconds to our raw data. This compensates for the fact that, in
expectation, we record the ∼ event . seconds after it occurs.

Before proceeding, we make two further observations. First, with the exception of the bgp ↑

event, all of the events defining the component-wise decomposition of down time are external
to the routing software. Thus, they reflect an abstract model of BGP processing, rather than any
implementation decisions specific to Quagga. Second, session establishment clearly dominates all
other components of down time. Hence, it is a good starting point for the optimization efforts of
this chapter.

. Optimizing Session Establishment
Our goal, in this section, is to reduce the downtime caused by delays in the establishment of the
peering session between the target router and the customer router. To do so, we analyze log file
data to determine the cause of the delay, and develop a patch to address the problem. We then
evaluate the effectiveness of our patch, and identify avenues for further improvement.

.. Finding the problem
In order to understand the cause of the problem, we consult log file data for the experiment with
the minimal outage time. We examine all of the log messages generated by bgpd on the target
router, between the start of the outage for traffic to , and the successful establishment of the
peering with the customer router. Therein, we find the following messages:

::. BGP: Vty connection from ...
::. BGP: %ADJCHANGE: neighbor ... Up

The first log message denotes the time at which our experiment code logged in to bgpd, to enable
the peering with the customer router. The second log message indicates when bgpd completed
establishment of the new peering session. We observe a delay of . seconds between these two
events. In order to gain further insight in to the cause of the delay, we repeat the experiment, but
with all possible debugging options enabled for bgpd.

With debugging enabled, we examine the log messages from the start of the outage for traffic
to , until the target router has sent its BGP OPEN message to the customer router, for the trial
with the minimal overall outage time. This subsequence of messages corresponds to . seconds
of the . second session establishment delay observed in this trial. We present the log messages
in Listing ..

Examining Listing ., we focus on lines –. We observe that bgpd does not attempt to estab-
lish the peering until the message at line , and that this occurs shortly after the expiration of the

We omit the  messages corresponding to the remaining . seconds, for clarity of presentation.



C . O T: S O

1 10:38:26.360195 BGP: Zebra rcvd: router id update 10.1.8.2/32
2 10:38:26.360601 BGP: Zebra rcvd: interface eth2 address add 10.1.8.2/24
3 10:38:26.388306 BGP: Zebra rcvd: interface eth2 up
4 10:38:26.441180 BGP: Vty connection from 127.0.0.1
5 10:38:27.480817 BGP: Zebra rcvd: interface eth2 up
6 10:38:31.452902 BGP: 10.1.8.3 [FSM] Timer (start timer expire).
7 10:38:31.453058 BGP: 10.1.8.3 [FSM] BGP_Start (Idle->Connect)
8 10:38:31.453149 BGP: 10.1.8.3 [Event] Connect start to 10.1.8.3 fd 12
9 10:38:31.453323 BGP: 10.1.8.3 [FSM] Non blocking connect waiting result

10 10:38:31.453365 BGP: 10.1.8.3 went from Idle to Connect
11 10:38:31.459217 BGP: 10.1.8.3 [FSM] TCP_connection_open (Connect->OpenSent)
12 10:38:31.459330 BGP: 10.1.8.3 open active, local address 10.1.8.2
13 10:38:31.459474 BGP: 10.1.8.3 sending OPEN, version 4, my as 701, holdtime 180, id …

Listing .: Log file messages from bgpd, from the start of the outage for traffic to , until
bgpd has sent its BGP OPEN message to the customer router. For clarity of presentation, we omit
messages relating to other peers. Ellipsis denote that a line has been truncated to fit the page width.
These logfile messages come from the trial with the minimal overall outage time.

start timer, at line . The timer expiration itself comes . seconds after line , where our exper-
iment script logs in to bgpd, to enable the peering with the customer router. This suggests that
the session establishment delay is largely due to the start timer. Other trials further support this
hypothesis, with the start timer accounting for a mean of . seconds out of a . second mean
session establishment delay observed with debugging enabled.

.. Our Patch
Based on our examination of log file data above, we believe that bgpd does not attempt to establish a
new peering session immediately after the operator enables the peering. Instead, bgpd sets a timer,
and waits for the timer to expire before opening the peering session. The reason for this behavior
is unclear, though we speculate that the delay might help avoid the premature establishment of a
peering that it in the midst of being configured.

To resolve this problem, we developed a patch which allows an operator to request that a BGP
peering be established as soon as possible, rather than waiting for a timer. This patch provides
similar functionality to the ManualStart event described in Sections .. and .. of the BGP-
specification [], and would not be required with a BGP implementation that supports the Man-
ualStart event. We present the core of this patch in Listing ..

Before proceeding to evaluate the effectiveness of this patch, we explain a subtlety of this patch,
and its implication. Specifically, the patch does not directly call the function that establishes a
new peering session. Instead, it sets the session establishment timer (peer->v_start) to zero, and
generates an event to force the finite state machine for the BGP peering into the Stop state.

The reason for this implementation is that the current state of the finite state machine may not
allow for the establishment of a new peering session. For example, if the router is already in the

The Quagga CLI does not provide support for changing multiple configuration parameters atomically. Thus, one must
first issue a command to create a peering, and then set each of the parameters for the peering one-by-one. Without the
delay, bgpd might open a peering, only to reset it soon after, due to parameter changes.



.. O S E

1int
2peer_open (struct peer *peer)
3{
4/* force back to idle, but set timer to zero, for immediate open */
5peer->v_start = 0;
6BGP_EVENT_ADD (peer, BGP_Stop);
7return 0;
8}

Listing .: Core source code for our patch to improve BGP session establishment time. This patch
adds a new function peer_open, to bgpd.c. The complete patch is provided as Listings B.–B..

before with
patch patch

internet to  12.82 7.54
internet to  12.90 7.54
customer to  0.05 0.04
customer to  0.05 0.04
any 12.91 7.55

Table .: Comparison of mean outage times, in seconds, and over ten trials, before, and with, the
patch of Listing ..

midst of establishing a peering session at the time the operator issues the command to establish a
peering, directly calling the session establishment code might confuse the router’s state.

A consequence of this implementation is that when bgpd is in the Clearing state, as observed in
Section .., there may be a delay until the new peering can be established. This occurs because
bgpd will not transition out of its Clearing state until it has finished cleaning up the state of the
previous BGP session.

.. Evaluation and Avenues for Improvement

To evaluate the effectiveness of our patch, we present Tables . and .. The former shows that
our patch reduces the mean outage time of rehoming by . seconds, or %. The latter shows
that, as expected, the improvement in down time comes from a reduction in the time required to
establish the new peering session.

Table . also provides guidance for further optimizations. We observe that, while session es-
tablishment does require a non-negligible amount of time, route propagation accounts for a signif-
icantly larger proportion of the total down time. Specifically, while session establishment requires
. seconds, route propagation % more time, or . seconds. Accordingly, we next shift our
focus to route propagation delay.



C . O T: S O

before with
component from to patch patch
session establishment outage start bgp ↑ 6.72 1.69
route reception bgp ↑ +/ 1.61 1.36
route processing +/ ∼ 1.77 1.28
route propagation ∼ +. 2.73 3.14
other +. outage end 0.08 0.08

Table .: Breakdown of outage time after application of the patch in Listing .. All values are
means over ten trials. Because we detect the ∼ event by polling once-per-second, we adjust
the raw route processing value by subtracting . seconds, and adjust the raw route propagation
value by adding . seconds, before reporting them here. We repeat the data of Table ., in the
“before patch” column, for ease of reference.

. Optimizing Route Propagation
Having optimized session establishment, we found that the largest remaining bottleneck was due
to route propagation. Accordingly, we now focus our efforts on optimizing route propagation.
We first examine log file data to determine the cause of route propagation, which is that route
propagation is driven by periodic timers. We then develop a patch to address the problem, by
transmitting routing updates as soon as the customer router has sent its End-of-RIB marker to the
target router.

Unfortunately, in our evaluation of the patch, we find that it does not directly improve route
propagation times. Using log file data to diagnose this failure, we find that the code from our
patch to accelerate route propagation likely runs before routing updates have been processed. We
conclude that the patch itself is likely correct, but that its effect will be seen only after addressing
route processing delay.

.. Finding the problem
Because the events that define our decomposition of outage time, as well as the events on our
system charts, are generally based on observations external to Quagga, they do not provide the
detail necessary to understand the source of route propagation delay within bgpd. Accordingly,
we turn instead to log file data.

Taking a similar approach to our efforts towards understanding zebra in Section .., we repeat
our experiment with all possible debugging options enabled for bgpd. This generates a log file of
about  MB, containing approximately , log messages. To reduce this data to a manageable
size, we extract those messages most directly related to ∼ and +., the events defining
route propagation delay.

To gather messages related to ∼, we extract messages from bgpd to zebra, as bgpd uses
zebra to effect changes to the kernel FIB. To gather messages relating to +., we extract mes-
sages that contain the IP address of the remote router. We then truncate the data, removing mes-
sages before the first message to zebra, and after the last BGP UPDATE transmitted to the remote

Note that this was not feasible prior to the development of Graceful Restart, as the End-of-RIB marker was introduced
as part of Graceful Restart [].



.. O R P

105:34:34.253537 BGP: Zebra send: IPv4 route add 128.2.0.0/16 nexthop 10.1.8.3 metric 0
205:34:34.254096 BGP: Zebra send: IPv4 route add 209.129.244.0/23 nexthop 10.1.8.3 …
305:34:34.254300 BGP: Zebra send: IPv4 route add 204.194.28.0/22 nexthop 10.1.8.3 …
405:34:34.254446 BGP: Zebra send: IPv4 route add 192.80.210.0/24 nexthop 10.1.8.3 …
505:34:34.254591 BGP: Zebra send: IPv4 route add 192.58.107.0/24 nexthop 10.1.8.3 …
605:34:34.254731 BGP: Zebra send: IPv4 route add 192.12.32.0/24 nexthop 10.1.8.3 …
705:34:34.254882 BGP: Zebra send: IPv4 route add 128.237.0.0/16 nexthop 10.1.8.3 …
805:34:35.117124 BGP: 10.1.6.3 [FSM] Timer (routeadv timer expire)
905:34:35.119214 BGP: 10.1.6.3 send UPDATE 128.2.0.0/16
1005:34:35.119251 BGP: 10.1.6.3 send UPDATE 128.237.0.0/16
1105:34:35.119283 BGP: 10.1.6.3 send UPDATE 192.12.32.0/24
1205:34:35.119315 BGP: 10.1.6.3 send UPDATE 192.58.107.0/24
1305:34:35.119347 BGP: 10.1.6.3 send UPDATE 192.80.210.0/24
1405:34:35.119378 BGP: 10.1.6.3 send UPDATE 204.194.28.0/22
1505:34:35.119411 BGP: 10.1.6.3 send UPDATE 209.129.244.0/23

Listing .: Log file messages from bgpd, relating to the ∼ and +. events. Ellipsis
denote that a line has been truncated to fit the page width. These logfile messages come from the
trial with the minimal overall outage time.

router. We present the resulting data, for the trials with the minimal and maximal outage times,
in Listings . and ., respectively.

Our primary observation from the data of these listings is that, in both cases, the BGP UPDATEs
are sent to the remote router after the expiration of the routeadv timer. In the case of the trial with
the shortest overall outage time, this timer expires approximately ms after bgpd instructs zebra
to add a route for . For the trial with the longest overall outage time, the routeadv timer
expires twice before updates are transmitted to the remote router. The first timer expiration occurs
ms after bgpd instructs zebra to add the route for , while the second expiration occurs an
additional  seconds later.

Based on correlation of the routeadv timer with the generation of BGP UPDATEs, and the fact
that the timer interval matches the  seconds suggested for the default value of the MinRouteAd-
vertisementIntervalTimer in the BGP specification [], we infer that the routeadv timer in bgpd
implements the limitation on routing update frequency described in Section ... of the RFC
defining BGP- [].

.. Our Patch
Based on our analysis of log file messages, we believe that the route propagation delay we have
observed can be attributed to the need to wait for a timer event before transmitting route advertise-
ments to the remote router. This is likely due to a feature of BGP intended to limit the frequency of
routing updates. While this is appropriate for autonomous operation, we would like a deliberate
action like rehoming to proceed more quickly.

To allow rehoming to proceed more quickly, we developed a patch which transmits routing ad-
vertisements without waiting for the routeadv timer. We present the core code of that patch here,
as Listing .. This patch alters the receive path for BGP updates, in bgp_update_receive. Specif-
ically, when bgp_update_receive function receives and End-of-RIB marker from the customer



C . O T: S O

1 05:20:21.837676 BGP: Zebra send: IPv4 route add 128.2.0.0/16 nexthop 10.1.8.3 metric 0
2 05:20:21.837968 BGP: Zebra send: IPv4 route add 209.129.244.0/23 nexthop 10.1.8.3 …
3 05:20:21.838134 BGP: Zebra send: IPv4 route add 204.194.28.0/22 nexthop 10.1.8.3 …
4 05:20:21.838473 BGP: Zebra send: IPv4 route add 192.80.210.0/24 nexthop 10.1.8.3 …
5 05:20:21.838684 BGP: Zebra send: IPv4 route add 192.58.107.0/24 nexthop 10.1.8.3 …
6 05:20:21.838985 BGP: Zebra send: IPv4 route add 192.12.32.0/24 nexthop 10.1.8.3 …
7 05:20:21.839174 BGP: Zebra send: IPv4 route add 128.237.0.0/16 nexthop 10.1.8.3 …
8 05:20:21.839337 BGP: 10.1.6.3 [FSM] Timer (routeadv timer expire)
9 05:20:26.843757 BGP: 10.1.6.3 [FSM] Timer (routeadv timer expire)

10 05:20:26.846585 BGP: 10.1.6.3 send UPDATE 128.2.0.0/16
11 05:20:26.846620 BGP: 10.1.6.3 send UPDATE 128.237.0.0/16
12 05:20:26.846652 BGP: 10.1.6.3 send UPDATE 192.12.32.0/24
13 05:20:26.846685 BGP: 10.1.6.3 send UPDATE 192.58.107.0/24
14 05:20:26.846717 BGP: 10.1.6.3 send UPDATE 192.80.210.0/24
15 05:20:26.846750 BGP: 10.1.6.3 send UPDATE 204.194.28.0/22
16 05:20:26.846782 BGP: 10.1.6.3 send UPDATE 209.129.244.0/23

Listing .: Log file messages from bgpd, relating to the ∼ and +. events. Ellipsis
denote that a line has been truncated to fit the page width. These logfile messages come from the
trial with the maxmimal overall outage time.

before with
patch patch

internet to  7.54 8.26
internet to  7.54 8.26
customer to  0.04 0.04
customer to  0.04 0.05
any 7.55 8.27

Table .: Comparison of mean outage times, in seconds, and over ten trials, before, and with, the
patch of Listing .. Data for the before case are copied from Table ..

router, our patch checks the peer structure for each peer, to determine if there are any pending
updates for that peer. If so, the patch calls _bgp_write to transmit those messages immediately.

.. Evaluation
To evaluate the effectiveness of our patch, we consider the overall outage time, and its component-
wise breakdown, which we present in Tables . and ., respectively. Surprisingly, we find that
the mean overall outage time has increased by ms, and that the bulk of the increase in outage
time occurs in the route processing.

We consider two potential explanations for the increase in outage time. Specifically, the increase
might be due to a greater CPU demand by bgpd during rehoming, or it might be due to variation
in the time that bgpd waits for the routeadv timer to expire. Because we can only measure timer
variation for experiments with debugging enabled, we begin with an examination of CPU demand.

To test if our patch has increased CPU demand, we examine the CPU time used by bgpd, zebra,



.. O R P

1if (! attribute_len && ! withdraw_len)
2{
3struct listnode *node, *nnode;
4struct peer *p;
5

6/* End-of-RIB received */
7SET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],
8PEER_STATUS_EOR_RECEIVED);
9

10/* NSF delete stale route */
11if (peer->nsf[AFI_IP][SAFI_UNICAST])
12bgp_clear_stale_route (peer, AFI_IP, SAFI_UNICAST);
13

14for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
15{
16struct thread t;
17time_t oldsync;
18

19oldsync = p->synctime;
20t.arg = p;
21

22p->synctime = bgp_clock() + 1;
23if (bgp_write_proceed(p))
24{
25/* cancel any pending write thread, since we're taking
26care of writes here. (mukesh.20100819). */
27BGP_WRITE_OFF(p->t_write);
28_bgp_write(&t, 0);
29}
30p->synctime = oldsync;
31}
32

33if (BGP_DEBUG (normal, NORMAL))
34zlog (peer->log, LOG_DEBUG, "rcvd End-of-RIB for IPv4 Unicast from %s",
35peer->host);
36}

Listing .: Core source code for our patch to improve route propagation delay. This patch modifies
bgp_update_receive in bgp_packet.c. The complete patch is provided as Listings B.–B..



C . O T: S O

before with
component from to patch patch
session establishment outage start bgp ↑ 1.69 1.78
route reception bgp ↑ +/ 1.36 1.35
route processing +/ ∼ 1.28 1.83
route propagation ∼ +. 3.14 3.22
other +. outage end 0.08 0.08

Table .: Breakdown of outage time after application of the patch in Listing .. All values are
means over ten trials. Because we detect the ∼ event by polling once-per-second, we adjust
the raw route processing value by subtracting . seconds, and adjust the raw route propagation
value by adding . seconds, before reporting them here. We repeat the data of Table ., in the
“before patch” column, for ease of reference.

before with
patch patch

bgpd 0.51 0.59
zebra 0.00 0.10
other processes 0.77 1.13
idle time 0.00 0.02
total 1.28 1.84

Table .: Comparison of CPU time used by routing processes before and after application of the
patch in Listing .. Values reported are in seconds, and are mean times over ten trials.

and other processes, between the +/ and ∼ events. We present the data in Table ..
From the data in the table, we observe that both bgpd and zebra exhibit some increase in their CPU
utilization during route processing.

The bulk of the increase, however, comes from other processes. Because other processes in the
system should not be affected by the transmission of BGP updates from bgpd, we proceed under
the assumption that the increase we observe in CPU time used during route processing is due
primarily to experimental variation.

Even with our assumption that the increase in route processing time is due to experimental
variation, an important question remains. Namely, why does the patch fail to accelerate route
propagation? To answer this question, we repeat our experiment with all possible debugging op-
tions enabled, and then consult the log file data.

When examining the log file data, however, we make one important change. In addition to mes-
sages logging communication with zebra, and messages containing the IP address of the remote
router, we also extract lines matching the message generated by lines –  of Listing .. Because
these lines execute after our new code, seeing the corresponding log file message will assure us
that our code was reached.

We present the extracted data in Listing .. Focusing on lines  and  of this listing, we observe
that our new code must have executed before bgpd instructed zebra to install routes for the prefixes
advertised by the customer. This suggests that, at the time our code is reached, bgpd has not yet
processed the routing updates from the customer router. Accordingly, we set aside our concern



.. O R P, P I

110:23:38.198513 BGP: rcvd End-of-RIB for IPv4 Unicast from 10.1.8.3
210:23:38.198858 BGP: Zebra send: IPv4 route add 128.2.0.0/16 nexthop 10.1.8.3 metric 0
310:23:38.199121 BGP: Zebra send: IPv4 route add 209.129.244.0/23 nexthop 10.1.8.3 …
410:23:38.199320 BGP: Zebra send: IPv4 route add 204.194.28.0/22 nexthop 10.1.8.3 …
510:23:38.199474 BGP: Zebra send: IPv4 route add 192.80.210.0/24 nexthop 10.1.8.3 …
610:23:38.199613 BGP: Zebra send: IPv4 route add 192.58.107.0/24 nexthop 10.1.8.3 …
710:23:38.199748 BGP: Zebra send: IPv4 route add 192.12.32.0/24 nexthop 10.1.8.3 …
810:23:38.199885 BGP: Zebra send: IPv4 route add 128.237.0.0/16 nexthop 10.1.8.3 …
910:23:38.200036 BGP: 10.1.6.3 [FSM] Timer (routeadv timer expire)
1010:23:38.200655 BGP: 10.1.6.3 send UPDATE 128.2.0.0/16
1110:23:38.200726 BGP: 10.1.6.3 send UPDATE 128.237.0.0/16
1210:23:38.200758 BGP: 10.1.6.3 send UPDATE 192.12.32.0/24
1310:23:38.200790 BGP: 10.1.6.3 send UPDATE 192.58.107.0/24
1410:23:38.200822 BGP: 10.1.6.3 send UPDATE 192.80.210.0/24
1510:23:38.200854 BGP: 10.1.6.3 send UPDATE 204.194.28.0/22
1610:23:38.200885 BGP: 10.1.6.3 send UPDATE 209.129.244.0/23

Listing .: Log file messages from bgpd, relating to the ∼ and +. events, following
application of the patch in Listing .. Ellipsis denote that a line has been truncated to fit the page
width. These logfile messages come from the trial with the minimal overall outage time.

about route propagation delay for now, and focus instead of route processing delay.

. Optimizing Route Processing, Part I
In the previous section, we attempted to optimize route propagation delays. We analyzed the
source of the problem, and then developed and tested a patch to address it. After finding the patch
to be ineffective, we again analyzed the system behavior, and concluded that an effective patch for
improving route propagation delay depends on first addressing route processing delay.

Accordingly, in this section, we attempt to address route processing delay. We first analyze
the source code of bgpd, to locate the source of route processing delays. From this analysis, we
conclude that rather than processing updates immediately as they are received, bgpd queues the
updates on to a work queue, for background processing. We then develop a patch to address the
problem. The key idea of the patch is to process any pending updates from a peer immediately
after the peer has sent its End-of-RIB marker.

Empirically, we find that our patch does improve mean overall outage time. Investigating the
source of the improvement, we find that, as expected, route propagation time improves after the
application of our patch. This validates our hypothesis that the failure of our route propagation
patch alone was due to the fact that the routing updates from the customer router had not been
processed at the time that the code of Listing . executed.

Surprisingly, however, we find that our patch fails to improve route processing time. To under-
stand why, we consult log file data, and identify a discrepancy between our external observations,
and the events reported by bgpd. Based on this discrepancy, and CPU utilization data from a sys-

As in Section ., we note that this was not feasible prior to the development of Graceful Restart, as the End-of-RIB
marker was introduced as part of Graceful Restart [].



C . O T: S O

tem chart, we conclude that the route processing delay is due to bgpd performing other tasks before
processing the routing updates from its peer. We leave identification of those tasks, however, for
the next section.

.. Finding the problem, and our patch

In order to locate the problem, we studied the code of bgp_update_receive, to determine why the
routing updates from the customer router were not processed by the time the End-of-RIB message
was received. We found that bgp_update_receive passes the routing update to bgp_nlri_parse,
which leads, after a chain of three more function calls, to bgp_process.

Unfortunately, although the name might suggest otherwise, bgp_processdoes not immediately
process a routing update. Instead, as shown at line  of Listing ., this function simply enqueues
the routing update on to a work queue. To resolve this problem, our patch simply services the
relevant work queue after the customer router has sent its End-of-RIB marker, but before the code
from our patch of Listing .. The core code for this patch is provided here as Listing ..

.. Evaluation

To evaluate the effects of this patch, we again consider the overall outage time, and its component-
wise breakdown. We present these measurements in Tables . and ., respectively. The former
table brings us the good news that our patch has reduced outage time by . seconds over the
previous patch. The latter table brings us two pieces of news, as we next elaborate.

The first bit of news from Table . is that processing routing updates upon the receipt of the
End-of-RIB message from the customer router has, in combination with the patch of Listing .,
eliminated route propagation delay. This is consistent with our hypothesis in Section .., that
the reason bgpd did not transmit routing updates sooner was that the updates had not yet been
processed.

The second bit of news is surprising, and less pleasant. It appears that our patch to reduce route
processing delay has failed to achieve its goal. In fact, route processing delay is longer with this
patch, than before the patch was applied. While we could ask why this delay has increased, the
more pressing question at hand is why a delay exists at all. Accordingly, we next turn to under-
standing the cause of this delay.

.. Diagnosis

To understand why we observe a route processing delay after our patch of Listing ., we examine
the full set of log file messages generated by bgpd on the target router, between the time when
bgpd reports that the peering session with the customer router is established, and the time when it
reports that it has updated the kernel routing table entry for .

We present this sequence of log messages, for the trial with the minimal outage time, in List-
ing .. From these messages, we make two important observations. First, examining lines  and ,
we observe a route reception delay of almost . seconds. This is much longer than the . second

The full call chain, starting from bgp_update_receive, is bgp_nlri_parse, bgp_update, bgp_update_main, and then
bgp_process.



.. O R P, P I

1void
2bgp_process (struct bgp *bgp, struct bgp_node *rn, afi_t afi, safi_t safi)
3{
4struct bgp_process_queue *pqnode;
5

6/* already scheduled for processing? */
7if (CHECK_FLAG (rn->flags, BGP_NODE_PROCESS_SCHEDULED))
8return;
9

10if ((bm->process_main_queue == NULL) ||
11(bm->process_rsclient_queue == NULL))
12bgp_process_queue_init ();
13

14pqnode = XCALLOC (MTYPE_BGP_PROCESS_QUEUE,
15sizeof (struct bgp_process_queue));
16if (!pqnode)
17return;
18

19/* all unlocked in bgp_processq_del */
20bgp_table_lock (rn->table);
21pqnode->rn = bgp_lock_node (rn);
22pqnode->bgp = bgp;
23bgp_lock (bgp);
24pqnode->afi = afi;
25pqnode->safi = safi;
26

27switch (rn->table->type)
28{
29case BGP_TABLE_MAIN:
30work_queue_add (bm->process_main_queue, pqnode);
31break;
32case BGP_TABLE_RSCLIENT:
33work_queue_add (bm->process_rsclient_queue, pqnode);
34break;
35}
36

37return;
38}

Listing .: Source code of bgp_process, from bgp_route.c. This function is called during the
execution of bgp_update_receive.



C . O T: S O

1 if (! attribute_len && ! withdraw_len)
2 {
3 struct listnode *node, *nnode;
4 struct peer *p;
5 struct thread t;
6 int res;
7

8 /* End-of-RIB received */
9 SET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],

10 PEER_STATUS_EOR_RECEIVED);
11

12 /* NSF delete stale route */
13 if (peer->nsf[AFI_IP][SAFI_UNICAST])
14 bgp_clear_stale_route (peer, AFI_IP, SAFI_UNICAST);
15

16 res = WQ_SUCCESS;
17 t.arg = bm ? bm->process_main_queue : NULL;
18 while (bm && bm->process_main_queue && bm->process_main_queue->items
19 && listcount(bm->process_main_queue->items) &&
20 (res == WQ_SUCCESS))
21 res = work_queue_run(&t);
22

23 for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
24 {

Listing .: Core source code for our first patch to improve route processing delay. This patch
modifies bgp_update_receive in bgp_packet.c. The complete patch is provided as Listings B.–
B..

before with
patch patch

internet to  8.26 5.51
internet to  8.26 5.52
customer to  0.04 0.05
customer to  0.05 0.05
any 8.27 5.52

Table .: Comparison of mean outage times, in seconds, and over ten trials, before, and with, the
patch of Listing .. Data for the before case are copied from Table ..



.. O R P, P I

before with
component from to patch patch
session establishment outage start bgp ↑ 1.78 1.74
route reception bgp ↑ +/ 1.35 1.61
route processing +/ ∼ 1.83 2.14
route propagation ∼ +. 3.22 −0.05
other +. outage end 0.08 0.07

Table .: Breakdown of outage time after application of the patch in Listing .. All values are
means over ten trials. Because we detect the ∼ event by polling once-per-second, we adjust
the raw route processing value by subtracting . seconds, and adjust the raw route propagation
value by adding . seconds, before reporting them here. We repeat the data of Table ., in the
“before patch” column, for ease of reference.

external bgpd
component from to data log data
session establishment outage start bgp ↑ 1.39 1.39
route reception bgp ↑ +/ 1.32 3.19
route processing +/ ∼ 1.71 0.29
route propagation ∼ +. 0.45 0.00
other +. outage end 0.06 0.06

Table .: Comparison of breakdown of outage times, using external and internal observations,
for our first patch for improving route processing delay, and with full logging enabled. The tables
presents data for the trial with the minimal overall outage time. Because we detect the ∼
event by polling once-per-second, we adjust the raw route processing value by subtracting . sec-
onds, and adjust the raw route propagation value by adding . seconds, before reporting them
here.

mean route reception delay of Table .. Second, examining lines  and , we observe a route pro-
cessing delay of  milliseconds. This is much shorter than the . second mean route processing
delay of Table .. We now investigate these surprises more deeply.

A number of factors might explain the discrepancy between the delays observed in the log file
data of Listing . and the data computed from external observations in Table .. First, because the
data in Table . come from experiments without logging enabled, the difference might be due to
perturbation caused by logging. Second, because the table reports mean data over multiple trials,
whereas the log file comes from a single trial, the difference might be due to experimental variation.

To eliminate both of these possibilities, we compute the component-wise breakdown of outage
time for the trial whose log file data is shown in Listing .. We present this breakdown as Table ..
Examining the route reception and route propagation delays reported in this table, we observe
that the discrepancies remain. That is, even when comparing external and logfile data for a single
trial with debugging enabled, the route reception delay from the log messages is higher than that
from the external observations, and the route processing delay is lower than that from the external
observations.

The existence of a discrepancy between these two sources of data is not, in itself, cause for



C . O T: S O

1 12:45:56.714471 BGP: %ADJCHANGE: neighbor 10.1.8.3 Up
2 12:45:56.714513 BGP: 10.1.8.3 sending KEEPALIVE
3 12:45:56.714537 BGP: 10.1.8.3 send message type 4, length (incl. header) 19
4 12:45:59.905761 BGP: Import timer expired.
5 12:45:59.906387 BGP: 10.1.8.3 rcv message type 4, length (excl. header) 0
6 12:45:59.906441 BGP: 10.1.8.3 KEEPALIVE rcvd
7 12:45:59.906777 BGP: 10.1.2.2 [FSM] Timer (routeadv timer expire)
8 12:45:59.906895 BGP: [AS4SEG] Parse aspath segment: got total byte length 6
9 12:45:59.906927 BGP: [AS4SEG] Parse aspath segment: got type 2, length 1

10 12:45:59.906962 BGP: [AS4SEG] Parse aspath segment: Bytes now: 6
11 12:45:59.907026 BGP: 10.1.8.3 rcvd UPDATE w/ attr: nexthop 10.1.8.3, origin i, path 9
12 12:45:59.907790 BGP: 10.1.8.3 rcvd 128.2.0.0/16
13 12:45:59.907919 BGP: 10.1.8.3 rcvd 209.129.244.0/23
14 12:45:59.907974 BGP: 10.1.8.3 rcvd 204.194.28.0/22
15 12:45:59.908026 BGP: 10.1.8.3 rcvd 192.80.210.0/24
16 12:45:59.908077 BGP: 10.1.8.3 rcvd 192.58.107.0/24
17 12:45:59.908128 BGP: 10.1.8.3 rcvd 192.12.32.0/24
18 12:45:59.908178 BGP: 10.1.8.3 rcvd 128.237.0.0/16
19 12:45:59.908369 BGP: 10.1.6.3 [FSM] Timer (routeadv timer expire)
20 12:46:00.198020 BGP: Zebra send: IPv4 route add 128.2.0.0/16 nexthop 10.1.8.3 metric 0
21 12:46:00.198532 BGP: Zebra send: IPv4 route add 209.129.244.0/23 nexthop 10.1.8.3 …

Listing .: Log file messages from bgpd, between the +/ and ∼ events. Ellipsis denote
that a line has been truncated to fit the page width. These logfile messages come from the trial with
the minimal overall outage time



.. O R P, P II

concern. But it is important for us to understand the cause of the difference. In particular, given
that the TCP stack receives the packet containing the advertisement for  at some time x, why
is it that bgpd does not report receiving the advertisement until . seconds later?

We consider two possible explanations for the delay between the advertisement being received
by the TCP stack, and the processing of the advertisement by bgpd. First, the delay might be due
to a bgpd idling while waiting for a timer event. Second, the delay might be due to computation
delays. To determine which is more likely, we further consult the log file data.

Examining Listing . again, we focus on the messages between between session establishment,
at line , and route reception, at line . We observe a gap of . seconds between lines  and .
This accounts for the essentially the entire route reception delay reported in the log file. Given that
line  reports a timer expiration event, the log file data suggests that the delay between receipt of
the advertisement by the TCP stack, and its processing by bgpd is due to timer delays.

Before attempting to address this problem, however, we check the data from the other trials of
this experiment. Rather than examine the log file entries for each of these other nine trials manually,
we examine them in aggregate by computing the mean elapsed time between the establishment of
the BGP session with the customer, and the expiration of the import timer. We then compute the
mean route reception delay for all trials with debugging enabled, and compare this with the mean
import timer expiration delay.

We find that the mean import timer expiration delay is . seconds, and that the mean route
reception delay from log file data is . seconds. Given that the mean route reception delay is lower
than the mean import timer delay, our theory that route reception happens only after expiration of
the import timer does not hold. We conclude that bgpd can, and does, receive routes independently
of the import timer.

To test our alternate theory, that route reception by bgpd is delayed due to computation time,
we consult the system chart for this same experiment. We present a partial system chart for the
trial with the minimal outage time here as Figure .. Note that in addition to the events depicted
in our other system charts, this chart has the event B+/, denoting when the advertisement
for  is received by bgpd.

Examining the system chart, we observe that, during the time between the bgp ↑ and B+/

events on this chart, the processor on the target router is fully utilized. We further note that bgpd
accounts for one-half or more of the load during this interval. This provides support for our second
theory, that the delay between lines  and  of Listing . is due to computation time. Accordingly,
in the next section, we will locate the source of this computation, and determine whether it can be
removed from the critical path.

. Optimizing Route Processing, Part II
In Section ., we introduced a patch to reduce route processing delays during rehoming, but found
that it did not improve route processing delays. Thereafter, we diagnosed the problem, finding that
there is a delay between the time that the TCP stack receives a route advertisement from the cus-
tomer router, and the time when bgpd receives that advertisement. We further found that this delay
was due to computation time. Accordingly, our goal in this section is to locate this computation,
and to remove it from the critical path for rehoming.

In order to achieve our goal, we first consult source code, and log file data to determine where
the CPU time is being spent. We then develop a patch which defers this computation until after



C . O T: S O

load 0

load 1target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

B+CUSTN/C

+CUST1.I

+CUSTN.I

B+CUSTN.R

+CUST1.R

+CUSTN.R

∼CUSTN

∼CUST1
+INET1.C

+INETN.C

5 10 15 20 25
time (sec)

reachability

1 6
INET→ CUSTN

1 6
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.01 to 1.06
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

Figure .: Partial system chart following the application of the patch in Listing .. Note that full
debugging is enabled for bgpd. This chart presents the the trial with the minimal overall outage
time. For the complete system chart, see Figure A..

the routing advertisements from the customer router have been processed. After demonstrating
that the patch achieves its goal, we discuss alternative approaches, and, finally, consider avenues
for further improvement.

Before proceeding, we note that, whether we classify the problem as route reception delay or
route processing delay depends on our vantage point. From external observations, the delay is best
classified as route processing delay, while from the bgpd log messages, the delay is best classified
as route reception delay. For consistency with the rest of this chapter, we classify the delay based
on external observations, and refer to it as route processing delay.

.. Finding the problem, and our patch
In order to locate the source of the delay, we consult the source code for bgpd, using log file messages
to guide our search. In particular, we recall, from Section .., that much of the delay that we seek
to address can be explained by the gap of . seconds between lines  and  of Listing .. Having
observed, in Section .., that line  does not well correlate with observed delays, we focus on
locating code that generate the message of line .

A quick grep of the source code reveals that the message of line  might be generated by five dif-
ferent functions. These are: bgp_keepalive_send, bgp_open_send, bgp_notify_send_with_data,
bgp_route_refresh_send, and bgp_capability_send. To narrow our search, we note that the
message at line  can only be generated by bgp_keepalive_send. This function is, in turn, called
by three different functions: bgp_fsm_open, bgp_fsm_keepalive_expire, and bgp_establish. Of
these three functions, only bgp_establish can generate the message of line .

Based on the preceding analysis, we hypothesize that the sequence of messages observed be-
tween lines  and  are due to bgp_establish. Because this is the last function executed before the
. second gap, we examine its source code, looking for any potentially long-running computa-
tions. We present an excerpt of the source code for bgp_establish as Listing .. Note that due to
the length of the function, we omit the code that generates the log file message of line , and focus
on the portion from the code that generates the message of line , through the end of the function.

Examining Listing ., we observe a call to bgp_announce_route_all at line . This function
calls bgp_announce_route, which, in turn, calls bgp_announce_table. Accordingly, we inspect the



.. O R P, P II

1if (peer->v_keepalive)
2bgp_keepalive_send (peer);
3

4/* First update is deferred until ORF or ROUTE-REFRESH is received */
5for (afi = AFI_IP ; afi < AFI_MAX ; afi++)
6for (safi = SAFI_UNICAST ; safi < SAFI_MAX ; safi++)
7if (CHECK_FLAG (peer->af_cap[afi][safi], PEER_CAP_ORF_PREFIX_RM_ADV))
8if (CHECK_FLAG (peer->af_cap[afi][safi], PEER_CAP_ORF_PREFIX_SM_RCV)
9|| CHECK_FLAG (peer->af_cap[afi][safi], PEER_CAP_ORF_PREFIX_SM_OLD_RCV))
10SET_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_ORF_WAIT_REFRESH);
11

12bgp_announce_route_all (peer);
13

14BGP_TIMER_ON (peer->t_routeadv, bgp_routeadv_timer, 1);
15

16return 0;

Listing .: Excerpted source code of bgp_establish, from bgp_fsm.c. The call to the function
bgp_keepalive_send, at line , generates the log messages at lines  and  of Listing ..

source code for bgp_announce_table, to determine whether that function might account for the
. second delay observed in the log file data. We present the source for bgp_announce_table as
Listing ..

Examining Listing ., we focus on the loop that begins at line . We observe that it iterates
over bgp_node elements, and includes, at line , a nested loop over bgp_info elements. For each
of these bgp_info elements, the nested loop checks, at line , if the bgp_info element has the
BGP_INFO_SELECTED flag set. If so, and if bgp_announce_check returns true, at line , the function
calls bgp_adj_out_set, at line .

Assuming that the bgp_node elements represent IP address prefixes, that the bgp_info ele-
ments represent different routes to those prefixes, and that bgp_adj_out_set generates an out-
bound advertisement for a prefix, we conclude that this function identifies the routes that should
be advertised to a peer, and generates routing advertisements for each of those routes.

Given the relatively large number of routes that the target router must advertise to the customer
router, it is reasonably likely that this function accounts for the . second delay observed in List-
ing .. Accordingly, to address the delay, we developed a patch which delays the execution of
bgp_announce_table. We present the core source code for this patch as Listing ..

The patch of Listing . prevents bgp_announce_route from calling bgp_announce_table, un-
less bgpd has received an End-of-RIB marker from its peer router. This patch functions in con-
junction with the patches of Listings . and .. The former ensures that received updates are
processed by the time that the End-of-RIB marker is received, while the latter ensures that any
updates resulting from the received advertisements are propagated upstream as the End-of-RIB
marker is received. Because bgp_announce_table will execute only after the End-of-RIB marker is
received, it will no longer affect the critical path.

Before proceeding, we note that this patch implements behavior similar to that specified for the
role of a restarting router in Graceful Restart. Specifically, as explained in Section .., a restarting
router will defer transmission of its routing table to its peers, until it has received the End-of-RIB



C . O T: S O

1 static void
2 bgp_announce_table (struct peer *peer, afi_t afi, safi_t safi,
3 struct bgp_table *table, int rsclient)
4 {
5 struct bgp_node *rn;
6 struct bgp_info *ri;
7 struct attr attr = { 0 };
8

9 if (! table)
10 table = (rsclient) ? peer->rib[afi][safi] : peer->bgp->rib[afi][safi];
11

12 if (safi != SAFI_MPLS_VPN
13 && CHECK_FLAG (peer->af_flags[afi][safi], PEER_FLAG_DEFAULT_ORIGINATE))
14 bgp_default_originate (peer, afi, safi, 0);
15

16 for (rn = bgp_table_top (table); rn; rn = bgp_route_next(rn))
17 for (ri = rn->info; ri; ri = ri->next)
18 if (CHECK_FLAG (ri->flags, BGP_INFO_SELECTED) && ri->peer != peer)
19 {
20 if ((rsclient) ?
21 (bgp_announce_check_rsclient (ri, peer, &rn->p, &attr, afi, safi))
22 : (bgp_announce_check (ri, peer, &rn->p, &attr, afi, safi)))
23 bgp_adj_out_set (rn, peer, &rn->p, &attr, afi, safi, ri);
24 else
25 bgp_adj_out_unset (rn, peer, &rn->p, afi, safi);
26

27 bgp_attr_extra_free (&attr);
28 }
29 }

Listing .: Source code of bgp_announce_table, from bgp_route.c. This function is reached
from the call to bgp_announce_route_all at line  of Listing ...



.. O R P, P II

1/* First update is deferred until ORF or ROUTE-REFRESH is received */
2if (CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_ORF_WAIT_REFRESH))
3return;
4

5/* First update is deferred until peer has sent End-of-RIB */
6if (CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_EOR_WAIT))
7return;
8

9if (safi != SAFI_MPLS_VPN)
10bgp_announce_table (peer, afi, safi, NULL, 0);
11else
12for (rn = bgp_table_top (peer->bgp->rib[afi][safi]); rn;
13rn = bgp_route_next(rn))
14if ((table = (rn->info)) != NULL)
15bgp_announce_table (peer, afi, safi, table, 0);

Listing .: Core source code for our second patch to improve route processing delay. This patch
modifies bgp_announce_route in bgp_route.c. The complete patch is provided as Listings B.–
B..

before with
patch patch

internet to  5.51 3.52
internet to  5.52 3.52
customer to  0.05 0.04
customer to  0.05 0.05
any 5.52 3.53

Table .: Comparison of mean outage times, in seconds, and over ten trials, before, and with, the
patch of Listing .. Data for the before case are copied from Table ..

marker from all of its peers. Our patch follows a similar strategy, but applies it only to the peer
being rehomed.

.. Evaluation, and Design discussion
As with our other patches in this chapter, we evaluate the effectiveness of this patch by comparing
the total downtime before and after the patch, and by examining the component-wise decomposi-
tion of down time. We present the total downtime in Table ., and the decomposition of down
time in Table .. We observe that the patch has reduced mean overall outage time by approx-
imately  seconds. Further, as expected, the improvement comes primarily from a reduction in
route processing delay.

Having demonstrated that our patch achieves its goal, we now discuss alternative approaches to
achieving the same goal. In particular, instead of removing bgp_announce_table from the critical
path, we might pursue one of two other alternatives. First, we might simply optimize the function,
to reduce its running time. Second, we might modify the function to yield periodically, rather than



C . O T: S O

before with
component from to patch patch
session establishment outage start bgp ↑ 1.74 1.73
route reception bgp ↑ +/ 1.61 1.38
route processing +/ ∼ 2.14 0.44
route propagation ∼ +. −0.05 −0.11
other +. outage end 0.07 0.08

Table .: Breakdown of outage time after application of the patch in Listing .. All values are
means over ten trials. Because we detect the ∼ event by polling once-per-second, we adjust
the raw route processing value by subtracting . seconds, and adjust the raw route propagation
value by adding . seconds, before reporting them here. We repeat the data of Table ., in the
“before patch” column, for ease of reference.

running to completion. We consider these in turn.

If there were straightforward means to significantly reduce the processing time required by
bgp_announce_table, we might prefer that optimization to our patch. However, a quick inspection
of the source code for this function, as provided in Listing ., gives us little hope that such means
can be found. There are two reasons for our pessimism, as we next explain.

We first consider optimizing bgp_announce_table. Examining the code of its main loop, start-
ing at line  of Listing ., we find that the loop simply iterates over the relevant data structures,
calling other functions to do the bulk of the work. Thus, there is no obvious optimization to be
made in bgp_announce_table itself.

We next consider optimizing the functions called by bgp_announce_table. Note that these
functions, bgp_route_next, bgp_announce_check, and bgp_adj_out_set, are at the core of what
bgpd does. Because they represent the common-case code paths, it is likely that they are already
well optimized, and that any further optimization would be difficult and intrusive.

While it might not be feasible to reduce the running time of bgp_announce_table, we might
reduce its impact on route processing delay by modifying bgp_announce_table to yield during its
execution, rather than running to completion. The key challenge to such a modification is guar-
anteeing that the function correctly generates the appropriate route advertisements, even if other
functions modify the routing table.

As it turns out, the BGP software in XORP [] uses such a strategy. Accordingly, to assess the
difficulty of implementing such a change, we consult the design document for the XORP BGP dae-
mon []. In this document, the authors of XORP enumerate the complications that arise from this
strategy, and note that their code for handling those complications is “perhaps the most complex
part of the BGP machinery.”

Given that the XORP developers found supporting a concurrent RIB dumping strategy a com-
plex task in a clean slate design, we expect retrofitting such a change on to an existing router to be
impractical. Thus, we conclude that neither reducing the running time of bgp_announce_table,
nor reducing its impact by causing it to yield periodically, is a viable strategy.



.. O R P, P II

δt sender description
0.00 target BGP OPEN
1.26 customer BGP OPEN
0.00 target BGP KEEPALIVE
0.00 customer BGP KEEPALIVE
0.00 target BGP KEEPALIVE
0.33 customer BGP KEEPALIVE
1.00 customer BGP UPDATE

Figure .: Sequence of packets exchanged by the target router and the customer router, between
the start of the outage for traffic to , and +/. The left-most column provides the elapsed
time, in seconds, between a message and its predecessor. This figure presents data from the trial
with the minimal overall outage time.

.. Avenues for improvement

Turning our attention to avenues for further improvement, we examine the breakdown of outage
time in Table ., and note that the dominant factors are now session establishment delay, and
route reception delay. To understand the source of these remaining delays, we consult our packet
captures. We begin with the packet capture for the trial with the minimal outage time.

Figure . presents the sequence of packets transmitted during session establishment and route
reception, for the trial with the minimal outage time, and as captured on the target router. Exam-
ining the left-most column, we observe that all of the inter-packet delays occur before the trans-
mission of a packet from the customer router. This suggests that much of the remaining session
establishment and route reception delays are due to the customer router.

To verify this hypothesis, we sum the δt values, for packets transmitted by the customer router,
for each trial. We then compute the mean of this sum, over all trials. This yields a mean customer-
side delay of . seconds. Given that Table . reports a mean session establishment delay of .
seconds, and a mean route reception delay of . seconds, we conclude that both of these delays
are largely attributable to the customer router.

The finding that much of the remaining outage time is due to the customer router might sug-
gest that we must modify the customer router in order to make further improvements. After all,
the customer router is the authoritative source of information about which prefixes are reachable
through the customer network. Without advertisements from the customer router, how can the
target router know which packets to forward to the customer router?

To answer this question, we revisit our example of Graceful Rehoming, from Chapter . In
particular, we illustrate the initial state of the initial, customer, and target routers with an excerpt
from Figure .. We present the excerpt here as Figure .. We observe that the loc-RIB at the
target router initially includes  and , due to advertisements that the target router has
received from the initial router. We might, then, be able to use this routing information until the
target router has established its own peering with the customer router, and received routes from
the customer router.



C . O T: S O

initial router (I) customer router (C) target router (T)
step RIB-in C loc-RIB RIB-in ISP loc-RIB RIB-in C loc-RIB
start 




-
-









<down> 
-
-

Figure .: Excerpted example of Graceful Rehoming, illustrating initial system state. Suffixes on
loc-RIB entries denote the next-hop router for the respective prefixes. For the full example, see
Figure ..

. Conclusion
We set out, in this chapter, to further improve the down time caused by the target router. Hav-
ing exhausted the most promising micro-optimizations in Chapter , we turned our attention to
scheduling optimizations. We first showed that simply giving the operator control over when the
target router initiates a new peering session with the customer router improves outage time by
%. We then showed that modifying the scheduling of route processing and route propagation
further improved outage time by %.

With these optimizations, we have improved mean overall outage time during rehoming from
. seconds to just . seconds. Consequently, assuming that we move customers to a temporary
router and back, we can now support historical rates of routing software upgrades using only %
of our annual outage budget. Applying rehoming to other maintenance events as well, we could
support  such events without exceeding our annual outage budget.

Based on the numbers above, we believe that the optimizations presented in this chapter yield
a viable rehoming solution. The solution greatly reduces the impact of planned maintenance due
to software upgrades. And, if our solution were extended to apply to other sources of downtime, it
could deliver five-nines availability even if a router experienced a failure, or required maintenance,
every  days.

Extending our solution to apply to other sources of downtime is beyond the scope of this work,
though we do present our thoughts on such extensions in Section ... In the next chapter, we
turn instead to a more readily addressed issue. In particular, we explore whether we can exploit
the observation of Section .. to make rehoming transparent to real-time applications. To do
so, we will need to reduce the down time of a rehoming event from our current . seconds, to
sub-second levels.



To infinity… and beyond!
Buzz Lightyear

7
ZIRO

F   experiments in Chapter , to our scheduling improvements in Chapter , we
have made great strides in reducing the down time caused by routing software upgrades. In

Chapter , we established that, with Low Spec hardware, a customer using BGP with dynamic rout-
ing would experience a mean down time of approximately  seconds. In Chapter , we explained
the concept of rehoming, and showed that we could rehome a customer with approximately 
seconds of down time. While this was not a viable solution in itself, it set us on the right path.

In order to make rehoming viable, we pursued a series of optimizations. First, in Chapter ,
we showed how rehoming could be combined with Graceful Restart [], to reduce overall outage
time to approximately  seconds. Next, in Chapter , we showed how to dramatically reduce the
CPU time used by Quagga during rehoming, and thereby reduce down to time to approximately
 seconds. Finally, in Chapter , we demonstrated that scheduling changes could further reduce
down time, bringing our mean overall outage time to approximately . seconds.

Our work in the preceding chapters is valuable not only for the improvements in down time, but
for the insight it has given us in to what occurs when a BGP peering is established, or torn down.
In Chapter , we observed that rehoming imposed tens of seconds of CPU load on the customer
router, and hypothesized that this might be improved by eliminating the need to remove and re-
install routes. In Chapter , we saw that Graceful Rehoming greatly reduced the CPU time used on
the customer router, thereby confirming our hypothesis that route removal and route installation
can be expensive operations.

Chapters  and  yielded valuable insights as well. In Chapter , we learned that not all of
the CPU load incurred during rehoming is fundamental. In particular, we found that much of
the CPU time used by zebra on the target router was due to a bug in a portion of the scheduling
code. In Chapter , we found that the timing of different phases of BGP processing in Quagga is
non-intuitive, and that the interactions between these phases is intricate.

In this chapter we build on the improvements of, and use the lessons learned from, previous



C . ZIRO: Z I R

chapters, to develop a rehoming scheme that delivers sub-second outage times. We then further
leverage our new-found knowledge of router behavior to simplify this rehoming scheme. Sub-
sequently, we investigate the performance of our scheme for a customer with  times as many
routes, again demonstrating sub-second outage times. Finally, we argue that sub-second outage
times allow for practically zero interruption to network traffic, and then conclude.

The remainder of this chapter is structured as follows:
• In Section ., we introduce soft handoff, our scheme for achieving sub-second outage times.

We first explain soft handoff in principle, then detail our implementation.
• In Section ., we evaluate soft handoff in combination with the rehoming solution devel-

oped through Chapter . We call this combination ZIRO. We find that our initial design of
soft handoff, as presented in Section . increases mean overall outage time by nearly an or-
der of magnitude, to . seconds. However, a modification to the rehoming procedure of
Section .. resolves the issue, yielding a mean overall outage time of . seconds.

• In Section ., we first show that our scheduling patch for ZIRO subsumes, or obviates the
need for, many of the scheduling patches of Chapter . We then show that, because ZIRO
moves nearly all control place processing off of the critical path, we can remove the CPU
optimizations of Chapter . These changes can be made without increase outage times, but
they have the effect of increasing completion times.

• In Section ., we evaluate the performance of ZIRO for an autonomous system that origi-
nates  times as many prefixes as the network evaluated in all previous experiments in this
dissertation. We show that outage times do not increase significantly, and speculate on the
reason for this surprising result.

• In Section ., we present our argument for the claim that ZIRO allows for practically zero
interruption of network traffic. This argument considers three types of network traffic, and
analyzes the expected impact based on transport protocol dynamics and human factors.

• In Section ., we summarize and conclude. We offer two primary conclusions. The first is
that ZIRO readily achieves the five-nines reliability goal. ZIRO enables an ISP to keep cur-
rent with routing software releases, while consuming only .% of the annual outage budget.
Further, if extended to other use cases, ZIRO could support five-nines availability even in the
face of a failure or maintenance event nearly every day. Our second conclusion is that a ZIRO
rehoming event will likely be unnoticed by most users.

. The Soft Handoff Concept
We concluded Chapter  with a mean outage time of . seconds, and the observation that the
remaining down time was largely attributable to delays on the customer router. We presented the
result, and the observation, in Sections .., and .., respectively. In Section .., we also hy-
pothesized that we might be able to avoid the delays caused by the customer, by exploiting routing
information from the initial router.

This key insight of Section .. derives from our illustration of the state of the routing system
during graceful rehoming, first presented in Figure .. We repeat and elaborate the initial state
from that figure here, as Figure .. Examining this figure, we observe that, even without a direct
peering with the customer router, the target router knows routes for the customer prefixes. These
prefixes are learned from the target router’s peering with the initial router, as illustrated by the
 and  entries in the RIB-in I. Our challenge is to exploit this information to implement



.. T S H C

initial router (I) customer router (C) target router (T)
step RIB-in C loc-RIB RIB-in ISP loc-RIB RIB-in I RIB-in C loc-RIB
start 




-
-












<down> 
-
-

Figure .: Excerpted example of Graceful Rehoming, illustrating initial system state. Suffixes on
loc-RIB entries denote the next-hop router for the respective prefixes. For the full example, see
Figure ..

a soft handoff of customer-bound traffic from the initial router to the target router.
In order to effectively exploit this knowledge of the customer prefixes, the target router must

perform three tasks. First, it must identify the subset of the RIB entries that correspond to prefixes
routable through the customer router. Second, it must reprocess these RIB entries, as though they
had been received directly from the customer router. Third, it must immediately propagate the
resulting changes to other BGP peers.

We accomplish the first task through the use of a “route-map.” We accomplish the second and
third tasks, jointly, through a patch to bgpd, and a change to our rehoming procedure. We now
explain the route-map, our patch, and the change to the rehoming procedure, in turn. Note that
our patch depends crucially on the understanding of scheduling behavior that we developed in
Chapter .

.. Our route-map
In Quagga, as in Cisco IOS, a route-map is key building block of router configuration. A route-
map specifies criteria for matching some set of routes, and the actions to be taken for the matched
routes. For example, a route-map might match prefixes reserved for private use [], and take the
action of filtering those routes. Similarly, a route-map might be used to lengthen the AS PATH on
outbound routing advertisements, to implement ingress traffic engineering [].

For our soft handoff scheme, our route-map must perform three tasks. First, it must match
the routes sent by the customer router. Second, because these routes were learned from the ini-
tial router, our route-map must override their next-hop information, directing packets using these
routes to the customer-facing interface, rather than the interface to the initial router. Third, be-
cause default BGP behavior does not allow the target router to propagate routes learned from the
initial router, to the remote router, our route-map must override this default behavior.

These tasks are accomplished by lines , , and  of Listing ., respectively. Line  identifies
routes from the customer router by checking the first entry in the AS path. If the first entry in the

We assume that the routes arrive at the target router with the next-hop attribute set to the address of the initial router.
When this is not the case, such as configurations in which the route to the customer interface is propagated through BGP,
this step is not required.

In an archetypal BGP deployment, all of the BGP routers within an autonomous system peer directly with each other.
Hence, propagating the routes advertised by one internal BGP peer to another internal BGP peer would cause unnecessary
processing load.

Note that this method would not be sufficient for a customer with multiple connections to the ISP.



C . ZIRO: Z I R

1 ip as-path access-list SOFT-HANDOFF-9 permit ^9_
2 route-map SOFT-HANDOFF-9 permit 10
3 match as-path SOFT-HANDOFF-9
4 set local-preference 1000
5 set ip next-hop 10.1.8.3
6 set reflect

Listing .: The route-map used to identify customer routes, and mark them for soft handoff. Note
that ˆ9_ is a regular expression that matches strings beginning with the digit , followed immedi-
ately by a space.

AS path matches the customer’s AS number, the route will be modified by the actions of lines –.
Line  is not specific to our soft handoff scheme, but instead implements the same modification
to the LOCAL_PREF attribute as described in Section .. Line  directs packets to the customer-
facing interface. Finally, line  works with the patch of the following subsection, to allow the target
router to propagate the matching route to the remote router.

.. Our patch
While the route-map of the preceding section provides a method for selecting routes, and modi-
fying their attributes, it remains to actually reprocess the received advertisements for these routes,
and to propagate the resulting changes to BGP peers. In order to accomplish these goals, we use
the soft-reconfiguration feature in Quagga, which allows an operator to modify the routing policy
applied to an established peering. To use this feature effectively, however, we must make some
modifications to bgpd.

The first of our modifications, provided in Listing ., addresses an obstacle to the propagation
of routes learned from the peering with the initial router, as discussed in Section ... Namely, per
Section . of the BGP- specification [], a router does not ordinarily propagate a route learned
from one internal BGP peer, on to other internal BGP peers. Our modification allows a network
operator to override this rule by flagging routes in the manner of line  of Listing .. When a route
is so flagged, bgpd skips the IBGP reflection check at lines – of Listing ..

Our second modification, provided in Listing ., addresses the need to reprocess routes, and to
propagate the resulting updates promptly on to peers. This modification is motivated by the lessons
of Sections . and .. Namely, in Section ., we learned that bgpd sends updates periodically,
based on a timer, rather than transmitting them as they are generated. And in Section ., we
learned that rather than processing routing updates immediately, bgpdplaces them in a work queue
for background processing

To address these issues, the modifications of Listing . apply the patches of Listings . and .
to the soft reconfiguration code in bgpd. Lines – repeat the changes of Listing ., which im-
mediately services the work queue of pending routing updates. Lines – repeat the changes of
Listings ., which immediately transmit any pending outbound updates.

The last of our modifications does not affect soft handoff directly. Instead, it addresses a concern
about the broader rehoming procedure. Namely, while routing information from the initial router
is valuable substitute when information is not yet available directly from the customer router, the
routes from the initial router should not continue to override those from the customer router, after



.. T S H C

1/* Route-Reflect check. */
2if (peer_sort (from) == BGP_PEER_IBGP && peer_sort (peer) == BGP_PEER_IBGP)
3/* NB: special-case prefixes with LOCAL_FLAG_REFLECT, as though they were
4originated by us, rather than reflected by us. (mukesh.20100823) */
5if ((peer_sort (from) == BGP_PEER_IBGP && peer_sort (peer) == BGP_PEER_IBGP)
6&& !(ri->attr->local_flags & LOCAL_FLAG_REFLECT))
7reflect = 1;
8else
9reflect = 0;
10

11/* IBGP reflection check. */
12if (reflect)
13{
14/* A route from a Client peer. */
15if (CHECK_FLAG (from->af_flags[afi][safi], PEER_FLAG_REFLECTOR_CLIENT))
16{
17/* Reflect to all the Non-Client peers and also to the
18Client peers other than the originator. Originator check
19is already done. So there is noting to do. */
20/* no bgp client-to-client reflection check. */
21if (bgp_flag_check (bgp, BGP_FLAG_NO_CLIENT_TO_CLIENT))
22if (CHECK_FLAG (peer->af_flags[afi][safi], PEER_FLAG_REFLECTOR_CLIENT))
23return 0;
24}
25else
26{
27/* A route from a Non-client peer. Reflect to all other
28clients. */
29if (! CHECK_FLAG (peer->af_flags[afi][safi], PEER_FLAG_REFLECTOR_CLIENT))
30return 0;
31}
32}

Listing .: Core source code, part  of , for patch to implement soft handoff. This code modifies
the function bgp_announce_check, in bgp_route.c. The complete soft handoff patch is provided as
Listings B.–B..



C . ZIRO: Z I R

1 if (safi != SAFI_MPLS_VPN)
2 bgp_soft_reconfig_table (peer, afi, safi, NULL);
3 else
4 for (rn = bgp_table_top (peer->bgp->rib[afi][safi]); rn;
5 rn = bgp_route_next (rn))
6 if ((table = rn->info) != NULL)
7 bgp_soft_reconfig_table (peer, afi, safi, table);
8

9 res = WQ_SUCCESS;
10 t.arg = bm ? bm->process_main_queue : NULL;
11 while (bm && bm->process_main_queue && bm->process_main_queue->items
12 && listcount(bm->process_main_queue->items) &&
13 (res == WQ_SUCCESS))
14 res = work_queue_run(&t);
15

16 for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
17 {
18 if (p->status != Established)
19 continue;
20

21 t.arg = p;
22 p->synctime = bgp_clock() + 1;
23 /* cancel any pending write thread, since we're taking
24 care of writes here. (mukesh.20100625). */
25 BGP_WRITE_OFF(p->t_write);
26 bgp_write(&t);
27 }

Listing .: Core source code, part  of , for patch to implement soft handoff. This patch modifies
the function bgp_soft_reconfig_in, bgp_route.c. The complete soft handoff patch is provided as
Listings B.–B..



.. T S H C

1if (! attribute_len && ! withdraw_len)
2{
3…
4if (BGP_DEBUG (normal, NORMAL))
5zlog (peer->log, LOG_DEBUG, "rcvd End-of-RIB for IPv4 Unicast from %s",
6peer->host);
7

8if (bgp_flag_check (peer->bgp, BGP_FLAG_LOG_NEIGHBOR_CHANGES))
9zlog_info ("rcvd End-of-RIB for IPv4 Unicast from %s", peer->host);
10}

Listing .: Core source code, part  of , for patch to implement soft handoff. This code modifies
the function bgp_update_receive, in bgp_packet.c. The complete soft handoff patch is provided
as Listings B.–B.. Ellipsis denote where one or more lines of the original source have been
omitted, for clarity of presentation.

bridge initial target remote
start

move link enable NIC new  in bgpd?
start soft handoff

new route
enable BGP

received end-of-RIB?
stop soft handoff

done

Figure .: Soft handoff rehoming procedure. The column for each node lists the steps taken on
that node. Gray horizontal bars indicate barriers used to synchronize actions across nodes. Steps
between barriers are unordered with respect to actions of other nodes. Differences from the naïve
rehoming procedure of Figure . are emphasized in italics.

the peering between the target router and the customer router is established.
In order to prevent this situation from arising, our rehoming procedure will remove the route-

map after the target router has received routing information from the customer router. To do so, the
rehoming script needs to know when bgpd has processed the End-of-RIB marker from the customer
router. Accordingly, the code of Listing . generates a log file message when bgpd receives the
End-of-RIB marker.

.. Our rehoming procedure
In order for our route-map, and our patch, to take effect, we must modify our rehoming procedure.
Most obviously, the rehoming procedure must first initiate soft handoff, and, following the receipt
of routing advertisements from the customer router, terminate soft handoff. We illustrate these,
and the rest of our changes, relative to the naïve rehoming procedure of Figure ., in Figure ..



C . ZIRO: Z I R

Focusing on the steps emphasized in italics, we note four changes. First, after enabling the
customer-facing interface card on the target router, we initiate the soft handoff process. Second,
before instructing the target router to enable its BGP peering with the customer router, we wait
for the remote router to receive the routing updates generated by the soft handoff process. Third,
after enabling the BGP peering, we wait for bgpd on the target router to report that it has received
the End-of-RIB marker from the customer router. Fourth, after the End-of-RIB marker has been
received, we terminate the soft handoff process.

The need for the first of these changes is self-evident, and the purpose of the third and fourth
changes was explained at the conclusion of Section ... Accordingly, we will not belabor them
here. The second change, which delays enabling the BGP session with the customer router until
after the remote router has received routing updates resulting from soft handoff, however, merits
elaboration.

This second change is motivated by the desire to eliminate a race condition, which might expose
effects of rehoming to systems outside of the ISP’s network. Specifically, in order to keep rehoming
transparent to other autonomous systems, we must ensure that the remote router does not gener-
ate withdrawal messages for the customer prefixes. This, in turn, requires that the remote router
always have a viable route to the customer prefixes during the rehoming process.

We might expect that the remote router would, in fact, always have a viable route to the cus-
tomer prefixes. Specifically, in Section ., we designed a solution that would establish a route to
the customer prefixes through the target router, without explicitly invalidating the routes through
the initial router. Our previous rehoming process does, however, implicitly invalidate the routes
through the initial router. This implicit invalidation occurs when the initial router processes the ad-
vertisements, from the target router, for  and . We will explain the cause of this implicit
validation shortly.

Whether or not the implicit invalidation causes the remote router to generate withdrawal mes-
sages to its external BGP peers, for  and , depends on message ordering. We illustrate
the possible outcomes in Figures .(a) and .(b). We first explain the sequence of events that oc-
curs in Figure .(a), which illustrates the case where rehoming proceeds transparently. We then
explain the key difference in the unsuccessful case, illustrated in Figure .(b). In the successful
case, rehoming proceeds as follows:

. We initiate soft handoff on the target router. This causes the target router to generate and
transmit advertisements for the customer routes, such as , to the remote router. Note
that the target router does not send the same advertisements to the initial router, as the routes
triggering the advertisements originated from the initial router.

. The target router establishes a new peering with the customer router, and receives the cus-
tomer router’s advertisement for . Because this advertisement originated from the cus-
tomer router, the target router propagates the advertisement to both, the initial router, and
the remote router.

. The initial router processes the advertisement, for , from the target router. Because this
route has a higher LOCAL_PREF value than the route learned from the customer router, the
initial router selects this route. The initial router then sends withdrawal messages for ,
to both the target router, and the remote router.

That the initial router generates a withdrawal message in step  might run counter to intuition.
Specifically, we might expect the initial router to advertise the selected route to the remote router.
However, as discussed in Section .., rules for internal BGP peerings prohibit the initial router
from propagating an advertisement received from the target router, on to the remote router. Thus,



.. ZIRO R

the initial router generates a withdrawal message for .
The timing of this withdrawal message is, in turn, the key to understanding the unsuccessful

case. In Figure .(b), we execute the same sequence of steps as in Figure .(a), and the routers
within the ISP generate the same set of messages to each other. However, the messages from the
target router to the remote router are delayed, such that they arrive after the withdrawal of 
from the initial router. In this case, the remote router will send a withdrawal for  to its external
peers.

It is to eliminate the possibility of this occurrence that our rehoming procedure waits for the
remote router to receive the new routes, through the target router, before enabling the BGP peer-
ing between the target router and the customer router. We claim that with this barrier in place, the
remote router cannot process the withdrawal from the initial router before processing the adver-
tisement from the target router.

Our argument proceeds as follows. First, note that the initial router’s withdrawal, at step , is
triggered by the events of step . Second, note that the barrier ensures that step  occurs only after
the remote router has processed the advertisements generated at step . Now, as step  depends on
step , and step  depends on the remote router processing the advertisements of step , it follows
that the remote router cannot process the withdrawal of step  before the advertisement of step .

. ZIRO Results
Having explained the soft handoff concept, and its implementation, we turn now to evaluating our
idea in practice. We first show that the scheme, as explained in Section ., actually increases mean
overall outage time, from . seconds to . seconds. We then diagnose the problem through the
use of log file data and code inspection. Based on this diagnosis, we revise the rehoming procedure
of Section .., and demonstrate that this revised procedure achieves a mean overall outage time
of . seconds. Finally, we conclude the section with a brief design discussion.

.. Evaluation
We present mean overall times for ZIRO in Table .. We note that the mean outage times reported
in this table are troubling. Instead of improving down time, our soft handoff scheme has increased
it from . seconds to . seconds. To determine the cause for this highly unexpected increase,
of nearly an order of magnitude, we consult the system charts for the trials with the shortest and
longest overall outage times, We present these charts as Figures .(a), and .(b), respectively.

Examining these charts, we make three observations. First, the outage time is highly variable.
In the trial with the minimal outage time, the overall outage time is approximately  seconds. In
contrast, the trial with the maximal overall outage time sees an outage of approximately  seconds.
Second, we observe that the CPU on the target router is largely idle during these outages. Third,
we note that the ∼ and +. events both occur much later than the start handoff event.

We observed this behavior while examining the full set of system charts for the experiments of Section .. Specifically,
in some trials, we observed a brief restoration of connectivity to  and , as the remote router continued to route
through the initial router, after the initial router had selected the route through the target router. Shortly thereafter, the
remote router would process the withdrawal from the initial router. Connectivity would then be lost, until the remote
router processed the advertisements, from the target router, for  and . We provide the system chart for one such
trial as Figure A..



C . ZIRO: Z I R

target remote initial target

1. start handoff +CUSTN

2. target receives
end-of-RIB

+CUSTN +CUSTN

3. initial receives
+CUSTN

-CUSTN -CUSTN

(a) successful case, transparent to external peers

target remote initial target

1. start handoff

+
CU

STN
2. target receives
end-of-RIB +CUSTN

+CUSTN

3. initial receives
+CUSTN

-CUSTN -CUSTN

(b) unsuccessful case, where external peers would receive a withdrawal for 

Figure .: Illustration of race condition that would exist without the “new route” barrier in the
soft handoff rehoming procedure of Figure ..

before with
soft handoff soft handoff

internet to  3.52 31.35
internet to  3.52 32.85
customer to  0.04 0.06
customer to  0.05 0.05
any 3.53 32.85

Table .: Comparison of mean outage times, in seconds, and over ten trials, before, and with soft
handoff.



.. ZIRO R

load 0

load 1target
router

enable nic
start handoff

+CUST1.R

∼CUST1
∼CUSTN

+CUSTN.R

enable peering
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.I

+CUSTN.I

+INET1.C

end handoff
+INETN.C

20 40 60 80 95
time (sec)

reachability

1 13
INET→ CUSTN

1 8
INET→ CUST1

1.09 to 1.13
CUST→ INETN

1.08 to 1.15
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) shortest outage

load 0

load 1target
router

enable nic
start handoff

∼CUSTN
∼CUST1

+CUST1.R

+CUSTN.R

enable peering
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.I

+CUSTN.I

+INET1.C

end handoff

+INETN.C

20 40 60 80 95
time (sec)

reachability

1 64
INET→ CUSTN

1 64
INET→ CUST1

1.07 to 1.15
CUST→ INETN

1.08 to 1.15
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) longest outage

Figure .: Partial system charts comparing trials of ZIRO, using the rehoming procedure of Fig-
ure .. The figure illustrates the trials with the shortest and longest outages. For the complete
system charts, see Figures A. and A..



C . ZIRO: Z I R

message delay
Performing BGP general scanning 1.80
scanning IPv Unicast routing tables 0.49
routeadv timer expire 1.86
BGP connection from host ... n/a
BGP connection IP address ... is Idle state n/a

Table .: Mean delay, over ten trials, between various log file messages and the FIB update for
. For messages that did not occur in one or more trials, the delay is listed as “n/a”.

Because the ∼ event should be a direct consequence of our soft handoff code, and not
depend on other routers in the system, we hypothesize that the cause of the delay is local to the
target router. That the outages end soon after the +. event provides further support for the
hypothesis that the problem is localized to the target router, rather than, for example, being due to
the remote router. That the delay is highly variable, even though the CPU is idle, suggests that a
timer may be involved. We next investigate this hypothesis in depth.

.. Diagnosis
To test our hypothesis that the delay is due to a timer, we repeat the experiment, with all possible
debugging options enabled for bgpd. We then examine the log file data for the trial with the maxi-
mal overall outage time, focusing on the five seconds prior to the enable peering event. We focus
on the messages immediately prior to this event, because this event occurs soon after the remote
router has received the target router’s advertisements for  and . Thus, this event occurs
soon after soft handoff has completed its work.

We present the relevant log file messages in Listing ., noting that the last line in the listing
corresponds to the enable peering event. Examining the rest of the listing, we observe that bgpd
updates the local FIB entries for the customer routes at lines –. Approximately . seconds
later, at lines –, bgpd transmits advertisements for the prefixes to the remote router. In order to
explain the  seconds outage, then, we must determine why the local FIB entries are not updated
earlier.

The simplest explanation, given the data before us, is that the FIB updates are triggered by
the import timer expiration that immediately precedes them, at line . To test this hypothesis, we
consult the log files for the other nine trials. Specifically, we compute the mean delay between the
last expiration of the import timer before the update to the FIB entry for , and the time of the
update to the FIB entry for  itself. This analysis yields a mean delay of . seconds, casting
considerable doubt on our hypothesis.

Given this rather large mean delay, we repeat our analysis for the the other messages of lines –
 in Listing ., in search of a more likely explanation. We present the results of this analysis in
Table .. Examining that table, we note that the message that occurs most closely before the FIB
updates, over all ten trials is the message regarding scanning of IPv Unicast routing tables. The
mean delay between that message, and the beginning of FIB updates, is . seconds.

Based on the mean delay data, we now hypothesize that the FIB updates are triggered by the
IPv Unicast scan. We note that our hypothesis is not entirely satisfying, as the log messages

The overall outage time for this trial was . seconds.



.. ZIRO R

110:07:39.035483 BGP: Performing BGP general scanning
210:07:40.196898 BGP: scanning IPv4 Unicast routing tables
310:07:40.197175 BGP: 10.1.2.2 [FSM] Timer (routeadv timer expire)
410:07:40.197320 BGP: [Event] BGP connection from host 10.1.8.3
510:07:40.197359 BGP: [Event] BGP connection IP address 10.1.8.3 is Idle state
610:07:40.526530 BGP: Import timer expired.
710:07:40.611136 BGP: Zebra send: IPv4 route add 128.2.0.0/16 nexthop 10.1.8.3 metric 0
810:07:40.612871 BGP: Zebra send: IPv4 route add 128.237.0.0/16 nexthop 10.1.8.3 …
910:07:40.753265 BGP: Zebra send: IPv4 route add 192.12.32.0/24 nexthop 10.1.8.3 …
1010:07:40.758005 BGP: Zebra send: IPv4 route add 192.58.107.0/24 nexthop 10.1.8.3 …
1110:07:40.760130 BGP: Zebra send: IPv4 route add 192.80.210.0/24 nexthop 10.1.8.3 …
1210:07:40.980994 BGP: Zebra send: IPv4 route add 204.194.28.0/22 nexthop 10.1.8.3 …
1310:07:41.086341 BGP: Zebra send: IPv4 route add 209.129.244.0/23 nexthop 10.1.8.3 …
1410:07:42.672505 BGP: 10.1.6.3 [FSM] Timer (routeadv timer expire)
1510:07:42.672764 BGP: 10.1.6.3 send UPDATE 128.2.0.0/16
1610:07:42.672810 BGP: 10.1.6.3 send UPDATE 209.129.244.0/23
1710:07:42.672843 BGP: 10.1.6.3 send UPDATE 204.194.28.0/22
1810:07:42.672876 BGP: 10.1.6.3 send UPDATE 192.80.210.0/24
1910:07:42.672908 BGP: 10.1.6.3 send UPDATE 192.58.107.0/24
2010:07:42.672940 BGP: 10.1.6.3 send UPDATE 192.12.32.0/24
2110:07:42.672973 BGP: 10.1.6.3 send UPDATE 128.237.0.0/16
2210:07:43.741184 BGP: Vty connection from 127.0.0.1

Listing .: Log file messages from bgpd, for the five seconds prior to the enable peering event.
Ellipsis denote that a line has been truncated to fit the page width. These logfile messages come
from the trial with the maxmimal overall outage time.



C . ZIRO: Z I R

at lines – of Listing . show other activities between the scan message, and the FIB updates.
Nonetheless, we proceed with this hypothesis, as it is the most promising at hand. We will return
to the other log messages before concluding the subsection.

Examining the source code for bgpd, we find that the message regarding the IPv Unicast scan is
generated by the function bgp_scan, in bgp_nexthop.c. We present the core loop of that function
here, as Listing .. We shall now proceed to explain this loop. We will assume, as we did in
Section .., that the rn variable loops over IP address prefixes, and that the bi variable iterates
over different routes to a given prefix.

We first observe that the code checks each potential route to each prefix, at lines –, to de-
termine if the next hop IP address for that prefix is valid. Later, at line , the code checks if the
validity of the nexthop differs from its previous value. If the validity state has changed, the code
modifies the BGP_INFO_VALID flag for the prefix and route, at line , or . Finally, at line , the
code calls bgp_process, to effect any necessary changes.

Based on the above explanation of the code, we hypothesize that the FIB updates occur after the
bgp_scan code has set the BGP_INFO_VALID flag to true, and bgp_process has effected the relevant
changes. This would be consistent with Section ... of the BGP- specification [], which states
that BGP implementations should not select routes for which the next hop IP address can not be
resolved through the current routing table. Further, our maximal outage time of  seconds agrees
well with the default bgp_scan interval of  seconds in bgpd.

This explanation assumes that the next hop IP addresses of  and  are unreachable
at the time that our soft handoff code executes. We hypothesize that this is true, and that this
occurs because of a race condition between the execution of our soft handoff code in bgpd, and the
execution of the code in zebra that informs bgpd that the interface to the customer router is ready
for use.

In the next subsection, we consider and evaluate a solution to the extended outages, under the
assumption that the above hypothesis holds. Before proceeding, however, we note that line line 
of Listing . provides an explanation for the messages we observed between the start of the IPv
Unicast scan, and the FIB updates. Namely, as noted in Section .., bgp_scan does not process
changes immediately. Instead, it queues the change for processing at background priority. Thus,
timers and other events may interrupt this processing.

.. Revision and Re-evaluation

In the previous subsection, we hypothesized that the extended outage that we observe with soft
handoff are due to two factors. First, at the time that our soft handoff code executes, the next hop
IP address of the routes to  and  are not reachable. Second, because bgpd evaluates next
hop changes every  seconds, there can be a significant delay between the time that an IP address
becomes reachable, and the time when routes using that next hop are selected for use.

In order to resolve these problems, we modify our rehoming procedure once again. We make
three changes, as we illustrate in Figure .. This includes two changes on the target router, and
one change on the bridge. On the target router, we insert two steps between enabling the customer-
facing interface card, and initiating soft handoff. In the first new step, we wait for the CPU to
become idle. This gives zebra to complete the processing that occurs after an interface state change.

Note that the most current validity state is in the variable valid, while the prior validity state is in the unfortunately
named variable current.



.. ZIRO R

1for (rn = bgp_table_top (bgp->rib[afi][SAFI_UNICAST]); rn;
2rn = bgp_route_next (rn))
3{
4for (bi = rn->info; bi; bi = next)
5{
6next = bi->next;
7

8if (bi->type == ZEBRA_ROUTE_BGP && bi->sub_type == BGP_ROUTE_NORMAL)
9{
10changed = 0;
11metricchanged = 0;
12

13if (peer_sort (bi->peer) == BGP_PEER_EBGP && bi->peer->ttl == 1)
14valid = bgp_nexthop_check_ebgp (afi, bi->attr);
15else
16valid = bgp_nexthop_lookup (afi, bi->peer, bi,
17&changed, &metricchanged);
18

19current = CHECK_FLAG (bi->flags, BGP_INFO_VALID) ? 1 : 0; …
20if (valid != current)
21{
22if (CHECK_FLAG (bi->flags, BGP_INFO_VALID))
23{
24bgp_aggregate_decrement (bgp, &rn->p, bi,
25afi, SAFI_UNICAST);
26bgp_info_unset_flag (rn, bi, BGP_INFO_VALID);
27}
28else
29{
30bgp_info_set_flag (rn, bi, BGP_INFO_VALID);
31bgp_aggregate_increment (bgp, &rn->p, bi,
32afi, SAFI_UNICAST);
33}
34} …
35}
36}
37bgp_process (bgp, rn, afi, SAFI_UNICAST);
38}

Listing .: Source code for the core loop of bgp_scan, in bgp_nexthop.c. Ellipsis denote omitted
lines. Note, however, that the omitted lines do not affect the control flow of the function.



C . ZIRO: Z I R

bridge initial target remote
start

enable NIC new  in bgpd?
CPU idle?

NIC up NIC up
move link start soft handoff

new route
enable BGP

received end-of-RIB?
stop soft handoff

done

Figure .: Revised soft handoff rehoming procedure. The column for each node lists the steps
taken on that node. Gray horizontal bars indicate barriers used to synchronize actions across nodes.
Steps between barriers are unordered with respect to actions of other nodes. Differences from the
original soft handoff rehoming procedure of Figure . are emphasized in italics.

before with with revised
soft handoff soft handoff soft handoff

internet to  3.52 31.35 0.64
internet to  3.52 32.85 0.69
customer to  0.04 0.06 0.04
customer to  0.05 0.05 0.05
any 3.53 32.85 0.70

Table .: Comparison of mean outage times, in seconds, and over ten trials, before soft handoff,
with soft handoff, and with revised soft handoff.

In the second new step, we signal to the bridge that we have completed interface bring-up. The
bridge, in turn, waits for this signal before moving the customer link to the target router.

We present the mean outage times for this rehoming procedure, as compared to previous ex-
periments in Table .. We observe that this change resolves the extended outage times previously
observed with soft handoff. Moreover, this change enables soft handoff to reduce down time, as
compared to our best previous result. Specifically, mean overall outage time drops from . sec-
onds, to just . seconds. We will investigate the source of the remaining down time in Section .,
after first simplifying our solution in Section ..

.. Design Discussion
Having demonstrated the effectiveness of our solution for the nexthop validity problem, we pause
to consider an alternative solution. Namely, we might configure bgpd to run bgp_scan more fre-
quently. Based on log file messages that indicate when bgp_scan starts, and when it completes,
however, we believe doing so would be impractical. Specifically, we find that, bgp_scan takes, on
average, . seconds to complete. In order to simply equal our mean outage time to below our pre-



.. S ZIRO

vious best, of . seconds, we would need to run bgp_scan every . seconds. Doing so would,
however, consume over % of the CPU time available.

To make the above strategy more viable, we might optimize next hop validity scanning by main-
taining an index from next hop IP addresses, to routes using those next hops. Then, when examin-
ing routes to determine if their next hops were valid, we could analyze only those routes for which
the next hop status had changed since the last call to bgp_scan. In our situation, doing so would
reduce the number of routes to be analyzed from over ,, to just . This change would be
similar to the next-hop address tracking feature introduced by Cisco, in IOS version .()S [].
The change, would, however, be significantly larger, and more complex, than our solution.

Before concluding our design discussion, we note a limitation of our solution. Specifically, for
certain network architectures, our solution might disrupt traffic to the customer, while waiting
for the CPU on the target router to idle. This will occur in architectures where a route to the IP
address of the customer-facing interface is propagated in to the ISP backbone. In such cases, the
initial router will re-route customer-bound traffic to the target router, before the target router is
ready to forward such traffic to the customer. Due to the fact that such architectures increase the
size of the routing table for ISP routers, however, we expect them to be uncommon.

. Simplifying ZIRO

While we have demonstrated a rehoming solution that can achieve sub-second outage times, it
includes a rather intricate set of changes to improve the scheduling policy of bgpd, as well as some
smaller changes to improve the CPU consumption of zebra, bgpd. While we believe that none of the
changes are overly burdensome, we would like to minimize the changes that our solution requires.

Accordingly, in this section, we evaluate the performance of soft handoff when these changes
are omitted. We first remove the changes to improve the scheduling behavior of bgpd, and show
that the outage times do not increase. We then repeat the exercise for our changes to the improve
the CPU consumption of zebra and bgpd. We again show that outage times do not suffer, though
the total time required to complete rehoming does increase.

.. Removing changes to scheduling policy

In our attempt to simplify our solution, we first remove the scheduling changes to bgpd. This reverts
all of the patches introduced in Chapter . We present the mean outage times that result from
reverting these patches in Table .. We find, rather surprisingly, that the mean overall outage time
has decreased, from . seconds to . seconds.

To understand the source of this apparent improvement, we consult the system charts for re-
homing, before and after the removal of the patches of Chapter . We present the system charts for
the trials with the maximal overall outage times as Figure .. We note that the maximal outage
time with the scheduling changes present is approximately  seconds, while the maximal outage
time with the changes removed is approximately  ms.

This significant difference in outage times for the trials with the maximal outage times suggests
that unexpected improvement may, in fact, be due to the out-lier observed in the experiment with
the scheduling patches present. To verify this hypothesis, we examined the outage time for the
remaining nine trials. Amongst these trials, we found a maximal outage time of  ms, and a



C . ZIRO: Z I R

load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

target
router

enable nic
start handoff

+CUST1.R

+CUSTN.R

∼CUSTN
∼CUST1

enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.I

+CUSTN.I

+INET1.C

end handoff

+INETN.C

5 10 15 20 25 30 35
time (sec)

reachability

5 7
INET→ CUSTN

5 7
INET→ CUST1

CUST→ INETN

CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) with changes to bgpd scheduling policy

load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

target
router

enable nic
start handoff

+CUST1.R

+CUSTN.R

∼CUST1
∼CUSTN

enable peering bgp ↑C

+CUST1/C

+CUSTN/C

end handoff
+CUST1.I

+CUSTN.I

+INET1.C +INETN.C

5 10 15 20 25 30 35
time (sec)

reachability

4.65 to 5.15
INET→ CUSTN

4.65 to 5.13
INET→ CUST1

CUST→ INETN

CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) without changes to bgpd scheduling policy

Figure .: Partial system charts comparing ZIRO with and without changes to bgpd scheduling
policies. For the complete system charts, see Figures A. and A..



.. S ZIRO

before after
removal removal

internet to  0.64 0.41
internet to  0.69 0.42
customer to  0.04 0.05
customer to  0.05 0.05
any 0.70 0.43

Table .: Comparison of mean outage times, in seconds, and over ten trials, before and after re-
moval of scheduling policy changes.

before after
removal removal

internet to  0.41 0.42
internet to  0.42 0.41
customer to  0.05 0.05
customer to  0.05 0.05
any 0.43 0.43

Table .: Comparison of mean outage times, in seconds, and over ten trials, before and after re-
moval of CPU optimizations.

mean outage time of  ms. We thus conclude that the apparent improvement is, in fact, due to
experimental variation.

As for the source of this variation, we examine sub-figure (a), and note that the increased outage
time can be attributed to the delay between the +/ and ∼ events on the remote router.
Noting that the CPU on the remote router is active during much of this time, we hypothesize that
the delay observed in this trial is due to periodic processing. This might, for example, be due to
the bgp_scan function discussed in Section ...

Though we have argued that removing our scheduling policy changes for bgpd has not actually
improved outage times, a question remains. That is, why do outage times not increase upon the
removal of those optimizations? The answer is simply that, with soft handoff in place, the bgp ↑

event, and all subsequent processing by bgpd on the target router, are no longer on the critical path.

.. Removing CPU optimizations
Having shown that our changes to the scheduling policies of bgpd can be removed without increas-
ing outage times, we now turn to the CPU optimizations we introduced in Chapter . We remove
the patches introduced therein, and repeat our experiment. We present the mean outage times for
this condition in Table .. Comparing the outage times before and after this change, we observe
that outage times do not increase due to the removal of our CPU optimizations.

To explain why the CPU optimizations do not affect outage times, we compare the system charts
for the experiments with and without the CPU optimizations, for the trials with the maximal overall
outage times. We present these charts in Figure .. We first observe that, although zebra requires
significantly more CPU time without the CPU optimizations, such time elapses between the enable



C . ZIRO: Z I R

CMU Google
internet to  0.42 0.43
internet to  0.41 0.43
customer to  0.05 0.05
customer to  0.05 0.04
any 0.43 0.44

Table .: Comparison of mean outage times, in seconds, and over ten trials, for CMU (AS ) and
Google (AS ). Google originates  prefixes, whereas CMU originates just .

nic event on the target router, and the move link event on the bridge. Accordingly, it is not on the
critical path. Similarly, the additional CPU time used due to sub-optimal hash table sizing in bgpd
occurs after the bgp ↑ event, which itself occurs after soft handoff has completed.

Our examination of system charts explains why our CPU optimizations do not affect outage
times, with the soft handoff scheme. We note however, that the system chart of Figure .(b) illus-
trates the cost of eliminating the CPU optimizations. Specifically, the time to complete rehoming
increases significantly. We briefly note that reintroducing only the zebra optimization patch of
Listing ., and the session establishment patch of Listing ., would reduce the mean time be-
tween the enable nic and +. events from . seconds to . seconds, while still avoiding
the most intricate changes. We leave a fuller examination of completion times for future work.

. ZIRO at Scale
Thus far, we have conducted all of the experiments in this dissertation with a customer trace con-
taining  prefixes. As noted in Section .., this represents an autonomous system at the nd

percentile, in terms of the number of prefixes originated. Given the results we have achieved to
this point, we now consider the performance we can achieve for larger autonomous systems. In
particular, we use a customer trace based on routes announced by AS  (Google). This trace
contains  prefixes, and ranks at the th percentile.

We present the mean outage times with this trace in Table .. We find, perhaps surprisingly,
that the -fold increase in the number of prefixes originated does not dramatically increase mean
outage times. Specifically, we observe an increase of only  ms. To understand why this is the
case, we repeat the experiment, profiling the bgpd process using OProfile. We present the top five
functions, in terms of CPU time used during soft handoff, in Table ..

Examining the CPU time reported in Table ., we observe that the function bgp_route_next
accounts for approximately one-third of the down time observed. Based on our reading of the
source code, we hypothesize that this function is a hot spot due to the frequency with which it is
called. Specifically, during the soft handoff process, the main loop of bgp_soft_reconfig_table
iterates through the entire routing table, of over , entries.

We leave validation of this hypothesis, and optimization of this bottleneck for future work.
Before proceeding, however, we note two possible optimizations. First, and most obviously, we
might optimize the running time of bgp_route_next itself. If this were to prove infeasible, however,
we might improve performance by splitting soft handoff into two phases. The first phase, to be

See Section . for further details on OProfile.



.. ZIRO  S

bridge

move link

target
router

enable nic
start handoff
+CUST1.R

+CUSTN.R

∼CUST1
∼CUSTN

enable peering
bgp ↑C

+CUST1/C

+CUSTN/C

end handoff
+CUST1.I

+CUSTN.I

+INET1.C
+INETN.C

10 20 30 40 50 55
time (sec)

reachability

4.65 to 5.15
INET→ CUSTN

4.65 to 5.13
INET→ CUST1

CUST→ INETN

CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(a) with CPU optimizations

bridge

move link

target
router

enable nic start handoff
+CUST1.R

+CUSTN.R

∼CUST1
∼CUSTN

enable peering

TCP syn.C

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

end handoff

+CUST1.I

+CUSTN.I
+INETN.C

10 20 30 40 50 55
time (sec)

reachability

19.77 to 20.46
INET→ CUSTN

19.77 to 20.47
INET→ CUST1

19.75 to 19.81
CUST→ INETN

19.76 to 19.81
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

(b) without CPU optimizations

Figure .: Partial system charts comparing ZIRO with and without CPU optimizations in zebra
and bgpd. Note that subfigure (a) repeats Figure .(b), but with the time scale adjusted to match
subfigure (b). For the complete system charts, see Figures A. and A..



C . ZIRO: Z I R

function object file CPU seconds
bgp_route_next bgpd 0.15
bgp_scan_timer bgpd 0.09
bgp_soft_reconfig_table bgpd 0.07
work_queue_add libzebra.so... 0.02
bgp_unlock_node bgpd 0.01

Table .: Top five functions called by bgpd during soft handoff, when rehoming Google (AS ).
Values reported are means over ten trials.

executed prior to link migration, would scan the routing table, identifying the routes that need to
be processed during handoff. The second phase, to be executed as the link is moved, would execute
the actual handoff.

. ZIRO Interruption
Thus far, we have evaluated our rehoming solutions in terms of the five-nines reliability goal. Af-
ter demonstrating a solution that met that goal, in Chapter , we argued for the value of further
improvements. In particular, we contended that sub-second outage times would make rehoming
transparent to even demanding real-time applications. Having achieved sub-second outage times,
we now substantiate our claim.

Herein, we consider the disruption caused by ZIRO, for three types of network traffic: web
browsing, streaming video-on-demand, and real-time video conferencing. As web browsing and
video-on-demand both employ TCP as their transport protocol, we first examine empirical TCP
behavior during a ZIRO event. We then evaluate the end-user impact of this behavior, arguing that
it will not significantly degrade the web-browsing, or video-on-demand, experience. Finally, we
consider video conferencing, again concluding that ZIRO will not significantly degrade the end-
user experience.

.. Impact of ZIRO on TCP streams
To evaluate the impact of ZIRO in TCP streams, we repeat the experiment of Section .., with
some additional instrumentation. Specifically, on the “customer sink” and the “sink” nodes, which
previously measured end-to-end connectivity via ICMP messages, we add a pair of nuttcp pro-
cesses, and another tcpdump process. The nuttcp process on the sink generates a constant bitrate
TCP stream which is received by the corresponding process on the customer sink. The tcpdump
process, on the customer sink, captures the packet headers for this stream.

During a ZIRO event, our TCP stream will experience lost packets, employ standard loss detec-
tion and recovery mechanisms to retransmit the lost packets, and then employ standard congestion
avoidance and control mechanisms to resume transmission at the maximal rate permitted by the
application, end-hosts, and network.

Given this behavior, we quantify the disruption caused by a ZIRO event by computing the
elapsed time between the first lost ICMP packet from the Internet to , and the first  ms
interval during which the customer sink receives stream data at a rate greater than, or equal to, the



.. ZIRO I

bitrate (Kbps)
round-trip time       

 ms 0.67 0.90 0.94 1.20 1.32 1.32 1.33
 ms 1.19 1.13 1.25 1.30 1.31 1.63 1.76

 ms 1.34 1.55 2.04 1.71 1.49 5.58 3.61

Table .: Disruption experienced, in seconds, and over ten trials, for a constant bitrate stream
delivered over TCP. Each row provides data for a given round-trip latency, while each column
provides data for a given bitrate. For example, the mean latency for a  Kbps stream, delivered
over a connection with  ms round-trip latency, was . seconds.

average data rate from the start of the stream until the loss of connectivity. Note that this overstates
actual disruption, as it ignores the data transmitted as TCP ramps up to the full bitrate.

We evaluate this disruption for three different round-trip latencies, and seven different bitrates,
presenting the results in Table .. Overall, we find that the mean disruption time varies between
. and . seconds. With respect to trends, we find that disruption time increases with both
round-trip time, and stream bitrate. These trends are as expected, given TCP’s algorithms for con-
gestion avoidance and control.

.. Impact of ZIRO on TCP applications
Given our empirical results, above, on the transport-layer disruption impact of rehoming, we now
consider the application-layer impact of rehoming. We consider two common interactive applica-
tions, both of which employ TCP as their transport protocol: web browsing, and video-on-demand.
We first consider the impact for these applications in today’s networks, and then speculate on the
impact in future networks, with greater link capacities.

For today’s networks, we assume the  Mbps average throughput reported by Akamai Tech-
nologies for client requests in the United States [], and the . ms mean latency reported by
AT&T, for its US backbone []. Given these parameters, our empirical results in Table . predict a
mean disruption of  seconds or less.

For web browsing, we acknowledge that a delay of  seconds is significant. However, much
prior work demonstrates that users will tolerate delays of between . and  seconds before expe-
riencing dissatisfaction or losing focus, with higher tolerances when the system provides indication
of progress [, , , ]. Thus, the additional delay experienced during a rehoming event will
be tolerable for all but those web pages already near the threshold of user dissatisfaction.

For video-on-demand, we note that applications typically maintain a buffer of received data,
specifically to avoid disruption from network effects such as loss and jitter. Thus, the disruption
caused by ZIRO depends on the amount of video buffered by the client. In particular, if the client
buffers more than  seconds of video, the user will experience no disruption at all. Noting that
the Adobe Flash video player, which dominates the online video market [], defaults to buffering
 seconds of video [], we conclude that the outage time observed during ZIRO rehoming will not
interrupt most video-on-demand streams.

Having argued that ZIRO rehoming will not significantly degrade the end-user experience for
web browsing or video on demand, in today’s networks, we now consider the impact of ZIRO
rehoming in future networks. Specifically, we note that our empirical results, in Table ., indicate



C . ZIRO: Z I R

mean disruptions of up to . seconds, for very high bitrate streams over high latency connections.
Accordingly, techniques to minimize latency, such as the use of Content Delivery Networks, may
be required to mask the disruption of rehoming.

.. Impact on video conferencing
Turning to video conferencing applications, we note an important difference between video con-
ferencing, and other network applications. Namely, for video conferencing, timeliness is more
important than reliable delivery. Accordingly, video conferencing applications are likely to use
UDP for their transport protocol, rather than TCP.

With UDP, the data lost due to rehoming will not be retransmitted. Instead, the end-user will
observe . seconds of frozen video, and silent audio. While this is certainly long enough to be
perceptible, we expect the glitch to be short enough that affected participants can simply ask the
other parties to repeat themselves.

. Conclusion
In this chapter, we set out to achieve sub-second outage times during rehoming. Our key insight
towards this goal, presented in Section .., was that much of the remaining down time, following
all of our previous optimizations, was due to the customer router. In particular, the target router
could not propagate the customer routes upstream more quickly, simply because the target router
had to wait to receive the routes from the customer router.

To resolve this problem, we designed an implemented a soft handoff procedure. This procedure
leverages the fact that, by virtue of the redundancy inherent in network routing, the target router
can determine the customer routes before the establishment of a peering session with the customer
router. To do so, the target router leverages the fact that these routes will have been advertised to
the target router by the initial router.

Empirically, we demonstrated that soft handoff could reduce mean outage times to sub-second
levels. Specifically, for an autonomous system originating  prefixes, we observed a mean overall
outage time of . seconds. Simplifying our solution, by removing the scheduling policy changes
of Chapter , and then the CPU optimizations of Chapter , we observed a mean overall outage
time of . seconds. We argued that this was not an improvement due to the simplification, but
simply that the difference was due to experimental variation.

We then investigated the performance of our solution for an autonomous system originating a
larger number of routes. To do so, we repeated our experiments using a trace of AS . This
system originates  prefixes, a -fold increase over the  prefixes originated in all previous exper-
iments. We found, however, that the outage times did not increase significantly. We hypothesized
that the outage time was dominated by other factors, such as the time taken to scan the full routing
table, to identify the routes associated with the customer.

ZIRO readily achieves the five-nines availability goal. Assuming that customers are moved to
a temporary router and back, and assuming historical rates of routing software upgrades, ZIRO
can enable an IP network operator to keep its network up to date, using only .% of the annual
outage budget. Additionally, if ZIRO were extended to apply to other sources of down time, it
could deliver five-nines availability even if a router failed, or required maintenance, nearly every
day.



.. C

In addition to achieving the five-nines availability goal, ZIRO causes only minimal interruption
of service during rehoming. This is true for a variety of activities, such as web browsing, video-
on-demand, and even real-time video conferencing. Web browsing activities will experience some
delay. However, unless server response time is already near the user tolerance threshold, the ad-
ditional delay does not impact user satisfaction. Video-on-demand experiences a similar delay,
which can be readily accommodated with standard buffering techniques. Video conferencing ap-
plications experience data loss. These losses will, however, be brief enough that participants can
simply ask their peers to repeated the missed portion of the conversation.





Begin at the beginning and go on till you come to the end; then stop.
Lewis Carroll

This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of
the beginning.

Winston Churchill

8
Dénouement

I  , we have made significant progress towards understanding, and resolving,
one of the key obstacles to a highly reliable Internet. From Chapter , where we established base-

line performance, through Chapter , where we presented a rehoming solution with sub-second
outage times, we have exploited rigorous experimentation, and the study of source code, to un-
derstand and reduce the down time caused by routing software upgrades. The net result of our
efforts is a practical and economical method to mitigate the down time caused by such upgrades,
and thereby greatly improve Internet reliability.

Having achieved this significant advance, we now consider our work in a broader context. We
begin by abstracting our rehoming solution, to identify design principles for rapid recovery of
routing sessions. We then discuss related work, including alternative solutions, and other studies
of BGP behavior. Next, we offer suggestions for future work, both closely related to our rehoming
solution, and farther afield. Finally, we offer our concluding remarks.

. Design Principles

In order to identify design principles for rapid recovery from the failure of routing sessions, we
abstract from the design of ZIRO, as presented in Chapter . We focus on the simplified solution
of Section .., as this minimal solution captures the essential elements of our technique. We
enumerate the resulting design principles, along with the solution elements which they generalize,
in Table ..

We observe that our solution exhibits three key design principles: manual control, synchronous
processing, and the aggressive exploitation of best-available data. We next elaborate each of these
principles. Note that, in some cases, our application of these principles contradicts normal-case
router behavior. Accordingly, our elaborations include arguments for such choices, as appropriate.



C . D

design principle example rationale
provide manual control BGP LOCAL_PREF attribute Sections . and .

reflection policy override Section ..
router-id spoofing Sections .. and .
end-of-RIB log message Section ..

allow synchronous processing synchronous update processing Sections . and ..
synchronous update propagation Sections . and ..

exploit best-available data retained routes in Graceful Restart Section ., Chapter 
IBGP routes in Soft-Handoff Sections .. and .

Table .: Design principles for rapid recovery of routing sessions

Manual Control

The first design principle of Table . is manual control. We recommend manual control for re-
covery scenarios because autonomous controls, lacking cross-layer knowledge of system state, are
often designed to behave conservatively. For example, following the failure and recovery of a link,
a router might delay reestablishing a BGP peering over the restored link. Doing so would limit
route flapping, in the case the link failed again.

In operator-initiated recovery scenarios, however, the operator may have broader system knowl-
edge that renders such safety measures unnecessary. For example, if a peering failure is caused by
a maintenance activity, the new peering can be established as soon as the maintenance is complete.
Or, in our rehoming scenarios, the peering can be established as soon as the customer router has
been rehomed to the target router.

Synchronous Processing

The second design principle of Table . is synchronous processing. Synchronous processing runs
counter to the default behavior of Quagga, and some versions of IOS, which queue updates for
batched, asynchronous processing. Such processing may make more efficient use of CPU cycles,
by reducing overheads and collapsing multiple inbound updates into a single outbound update.

While efficient use of CPU resources is important, rapid recovery, requires that other factors be
considered. First, as observed in Chapter , asynchronous processing can complicate the proper
prioritization of critical messages over less urgent messages. Second, timer-driven batched pro-
cessing introduces undesirable latency into the recovery process.

Best-Available Data

The second design principle of Table . is exploitation of best-available data. In general, to avoid
problems such as persistent black-holes, routing systems should rely only on data that is known
to be current. In soft-state protocols, this is ensured by timing out routing state that has not been
refreshed. In hard-state protocols, such as BGP, this is ensured by removing routes when a peering
fails.



.. R W

As noted in Table ., both Graceful Restart and Soft Handoff exploit best-available, though
possibly stale, data. Accordingly, they may cause the black-holing of some traffic during recovery.
However, both techniques limit the time during which they rely on the potentially stale data. Thus,
they will not induce persistent black-holes.

. Related Work
Given the importance of the Internet to contemporary society, it should come as no surprise that our
work is far from the first to tackle the problems of understanding and improving Internet reliability.
Herein, we discuss the most salient of the prior work. We begin our discussion with work on
methods to improve Internet reliability. We then discuss work towards understanding the behavior
of BGP, as it significantly influences Internet reliability. We conclude our discussion of related work
with pointers to information on the design and implementation of BGP routers, and a comparison
of our system charts to previous visualizations.

.. Internet Reliability
Successful end-to-end communication on the Internet depends on the correct, or sufficiently cor-
rect, operation of many components. These components include the networking software on end
hosts, physical links, routers on the path between the end hosts, and ancillary services such as
domain name servers. Based on studies which indicate that IP routers are a significant source of
overall down time [, ], this dissertation focused on reducing the down time caused by failures
and maintenance of IP routers. Accordingly, we focus herein on work which addresses the down
time caused by router, or routing, failures.

General Reliability

A natural method for mitigating the impact of failures is to employ redundancy. In the context
of IP networking, this can be accomplished with various means, depending on the location of the
fault. These means include multi-homing, redundant backbone links, and overlay networks. Multi-
homing addresses failures of access links and access routers, redundant backbone links address
the corresponding link and router failure, and overlay networks address a broad range of routing
failures, including the preceding failures as well as peering link and peering router failure. We
elaborate each method in turn.

As the name suggests, a multi-homed network maintains multiple connections to the Internet
at large. This might, for example, mean subscribing to service from two ISPs, such as AT&T and
Sprint. When the link to one ISP fails, the customer router re-routes traffic through the other ISP.
This provides immediate recovery for outbound traffic. Inbound traffic, will however, be disrupted,
as BGP propagates the routing change through the Internet.

Backbone link redundancy masks the failure of ISP-internal links from external networks, such
as customers and peers. When a backbone link fails, and an alternative path is available, the in-
terior gateway protocol, such as OSPF [], routes around the failed link. Additionally, network
operators can manually exploit backbone link redundancy, to reduce downtime during mainte-
nance, by “costing-out” a link. This method simply increases the cost metric for links incident to
the router subject to maintenance, causing other routers to avoid paths through that router.



C . D

Overlay networks, such as RON [] and MONET [], address a broader class of faults, subject
to the existence of alternate routes through overlay members. Whereas multi-homing and back-
bone link redundancy improve reliability by changes to IP routers, overlay networks construct a
logical network using end-hosts. These Internet end-hosts operate as overlay routers, cooperating
to identify overlay routes that offer better availability or performance than direct Internet routes.

While all of the above schemes improve Internet reliability, none of them address outages
caused by access link failure, or access router failure, for singly-homed customers. Solutions to
address this class of Internet reliability problems fall in to two broad groups: those that improve
the reliability of a single router, and those that redirect around failed access routers. We first detail
related work on router reliability, and then detail work on avoiding failed access routers.

Router Reliability

Router vendors have proposed a number of solutions for improving IP router reliability, gener-
ally through the use of : hardware redundancy. We focus here on the offerings of Cisco, the
dominant vendor of IP routers. High reliability offerings from Cisco include Automatic Protec-
tion Switching [], Route Processor Redundancy [], Router Processor Redundancy Plus [],
Stateful Switchover [, ], and Nonstop Forwarding [, , ]. We next elaborate each, in turn.

Automatic Protection Switching [] employs redundant line cards, to improve reliability in the
face of line card, or link, failures. Both line cards are connected to an add-drop multiplexer, which
duplicates inbound data. In the event that the primary (“working”) card, or link, fails, the router
detects the failure, and switches to the backup (“protect”) link. APS is expensive to implement,
as it requires a dedicated backup network port for every primary network port to be protected.
Moreover, it does not address down time due to software upgrades, software failures, or failures
of other hardware components.

Router Processor Redundancy [] employs redundant route processors to improve reliability
in the face of control plane failures. In the event that the hardware or software on the primary route
processor fails, the secondary route processor assumes control of the system. The secondary route
processor then completes the system bootstrap process. This includes reading configuration data,
initializing line cards, and establishing BGP peerings. Because most resources are reset, RPR can
provide only modest improvements in reliability. In particular, it eliminates the time that would
have been required to boot the primary route processor to the equivalent of the standby state.

Route Processor Redundancy Plus [] improves on RPR, by synchronizing configuration state
across the primary and secondary route processors. This enables the secondary processor to pro-
ceed farther in the boot process, thereby reducing the switchover delay. Additionally, on some
routers, RPR+ eliminates the line card reboot. RPR+ does, however, still require the clearing of
FIB tables, and the reset of BGP peerings. Given our experimental results in Chapter , regard-
ing the time required to establish and quiesce BGP peerings, it is unlikely that RPR+ could enable
five-nines reliability.

Stateful Switchover [, ] improves on RPR+, by synchronizing some line card and link layer
protocol state between the primary and secondary route processors. This synchronization avoids
the need to re-establish layer- links with peers. Additionally, on the  series and  series
routers, SSO eliminates the clearing of FIB tables during route processor switchover. In [], Cisco
reports that the enhancements enable the router to resume packet forwarding  seconds after a
switchover. However, as with RPR+, BGP peerings must be re-established after the switchover.

For details on the offerings of other vendors, we recommend Reardon’s article on IP reliability [].



.. R W

Nonstop Forwarding [, , ] improves Stateful Switchover with the addition of Graceful
Restart support. As we have shown, Graceful Restart dramatically reduces the impact of BGP peer-
ing loss. Thus, NSF could be used to minimize the outage caused by routing software upgrades.
Indeed, testing by the European Advanced Networking Test Center has shown that some Cisco
routers can support software upgrades with down times of  nanoseconds, or less [, ].

With outages of  nanoseconds, NSF clearly provides less disruptive failover than our rehom-
ing solution. However, NSF suffers from two important limitations. First, NSF requires redundant
hardware in each router. Second, NSF can not be readily extended for use in other scenarios, such
as chassis failure, or disaster recovery.

In contrast, our rehoming solution improves reliability through the use of a separate router. This
provides two benefits. First, it enables a single router to serve as a backup for multiple routers. Such
multiplexing reduces capital costs over solutions requiring redundant components in each router.
Second, because our recovery process does not depend on any components of the failed router, our
solution can be extended for use in scenarios such as chassis failure, and disaster recovery.

Avoiding Failed Access Routers

In order to reduce the cost of providing high availability, as well as to provide a more general
solution, a number of researchers have proposed solutions based on link migration. These solutions
first leverage the reconfigurability of the transport network, which provides the physical layer link
between the customer router and the ISP access router, to migrate the physical layer link to an
alternate access router. The solutions then employ a variety of techniques to minimize the impact
of higher layer reconfiguration. We discuss the most closely related work herein.

Early Work The earliest work on IP link migration, of which we are aware, is a proposal by Sebos
et al. [] for reducing the outage time caused by access router failures. The experimental evalua-
tion therein quantifies the outage experienced as an access router fails, and a customer is migrated
to a backup router. The data in the paper indicate an overall outage time of approximately 
seconds in a simple implementation, or approximately  seconds with the use of Graceful Restart.

A direct comparison to our results is difficult, due to the difference in scenarios, and the fact
that the paper does not report important parameters, such as the routing table size, the routing
software used, and the CPU speed. Nonetheless, we note that the  second outage time observed
with Graceful Restart is similar to our result in Section ... Our end result in Chapter  achieves
a much lower overall outage time, of approximately . seconds.

In addition to improving outage times, our work presents another important benefit over that
of Sebos et al. In particular, the solution proposed in [] requires modification of the customer
router, to avoid the router-id conflict we discuss in Section ... In our work, we resolve the conflict
by introducing router-id spoofing, which only requires modifications on the target router. Thus, it
is possible for customers to enjoy the benefit of our solution, without having to first upgrade their
own routers. Or, viewed from the ISP perspective, it enables an ISP to offer an improvement that
requires no work on the part of the customer.

RouterFarm In our own previous work [], called RouterFarm, we evaluated link migration with
commercial routers. Using Cisco routers, and a SONET physical layer, we reported mean overall

Note that we refer to the links provided by the transport network as physical layer links, reflecting the perspective of
the IP routers.



C . D

outage times of approximately  seconds with  customer routes, and  ISP routes. With 
customer routes, and  ISP routes, this outage time increased to approximately  seconds.
While we made efforts to understand the cause of the observed outage times, based on external
observations, the closed nature of the commercial routers made it difficult to reach a deep under-
standing of underlying causes.

Our work here both deepens our understanding of system behavior, and improves overall out-
age times. Exploiting the open nature of the Linux operating system, and the Quagga routing
software suite, we captured extensive data on system behavior. By examining this data, and the
source code for Linux and Quagga, we were able to explain and improve CPU consumption, and
scheduling behavior. Furthermore, the insights from those investigations enabled us to design a
solution that forgoes the CPU optimizations, and scheduling changes, while achieving mean over-
all outage times of less than one second.

VROOM In [], Wang et al. propose the VROOM scheme for router migration. This scheme
achieves migration by decoupling logical routing functionality from the hardware on which the
functionality is realized. VROOM implements router migration through a combination of transport
network link reconfiguration, virtual machine migration, and the use of a data plane hypervisor.
The data plane hypervisor abstracts the interface between control and data planes, enabling data
plane migration across different data plane architectures. Their experimental evaluation demon-
strates that their prototype implementation can achieve zero packet loss.

Unfortunately, however, VROOM imposes a burdensome requirement on the transport net-
work, hinders the evolution of network services, and introduces a non-trivial amount of new com-
plexity. Specifically, because VROOM migrates at the router granularity, migration requires trans-
port network capacity in proportion to the total traffic flowing through the router. Additionally,
new services can not be deployed until hypervisor support for these services is standardized. Fi-
nally, VROOM introduces significant complexity, due to the need to maintain synchronization of
data plane state, across the initial and target routers, during the migration process.

Rather than take the extreme position that migration be fully transparent to network traffic,
we leverage the “best-effort” IP service model, and construct a solution that is practically trans-
parent. Our solution supports link-by-link migration, which reduces transport network capacity
requirements. Additionally, our solution introduces no new synchronization requirement across
routers. We note that our solution does require ongoing support, in terms of Graceful Restart sup-
port for new BGP address families. However, such support is already required for existing vendor
offerings, such as Cisco’s Nonstop Forwarding.

Router Grafting In [], Keller et al. propose a BGP session migration scheme called Router
Grafting. This technique support link-by-link migration through the use of reconfigurable trans-
port networks, and control plane state migration. The physical layer migration technique is similar
to other schemes. Control plane state is migrated by serializing TCP and BGP state at the initial
router, and deserializing this state at the target router. Router Grafting uses tunneling to minimize
the outage caused by the transient inconsistencies between physical layer links, and higher layer

The outage time achieved is not directly comparable to our results in [], due to differences in hardware, software,
and routing table sizes. Note, however, that our unoptimized solution, of Chapter , experienced a mean overall outage
time greater than that in our previous work, while our end result achieves overall outage times substantially less than our
previous work.

Alternatively, routers using new services can not be migrated until hypervisor support for these services is available.



.. R W

state. The paper quantifies state serialization and deserialization time, but provides no end-to-end
measurements of packet loss.

A key challenge for Router Grafting is that, while BGP state is reasonably well-defined, TCP
state is not. This arises because while only a single version of BGP is widely used, TCP has many
variants. These variants differ in their congestion control algorithms [, , ], data acknowl-
edgement behavior [], security features [], or other respects. Accordingly, the widespread
deployment of Router Grafting depends on the standardization and debugging of techniques for
migration of TCP sessions across systems that differ in their support for these features.

In addition to facing this important deployment obstacle, Router Grafting introduces changes
that may compromise network reliability and performance. Reliability is threatened, because BGP
is a hard state protocol. Thus, any control plane state corruption caused by errors in the design or
implementation of the migration code may persist for an unbounded period of time. Performance
is challenged by the use of tunneling to mask transient cross-layer inconsistencies. This change
in data plane configuration might cause packets to be processed in software, rather than using
optimized hardware paths.

Our approach, which simply initializes fresh control plane state, avoids the deployment and
reliability challenges posed by state migration. Our use of Graceful Restart mechanism does intro-
duce the possibility of transient inconsistencies. However, because Graceful Restart retransmits all
routing data, and subsequently clears previous state, the system converges to the correct state after
the exchange of routing data between the target router and the customer router. Additionally, be-
cause our approach minimizes the duration of routing inconsistencies to levels that are practically
transparent, it does not require data plane reconfiguration that might compromise performance.

.. BGP Behavior and Performance
One of the keys to developing our rehoming solution was understanding BGP behavior and per-
formance. Of course, given the importance of BGP to the Internet, our work is far from the first to
investigate these aspects of BGP in practice. Previous work has included both, studies of large-scale
behavior, and studies of detailed, small-scale behavior. We first discuss the studies of large-scale
behavior, to provide broad context. We then discuss prior work on small-scale behavior, for its
direct relevance to our work.

Large-scale behavior and performance

Amongst the earliest studies of large-scale BGP behavior is work by Labovitz et al., which charac-
terized routing updates observed at public Internet exchange points between  and  [, ].
Their work found that most routing updates were pathological, in the sense that they did not re-
flect a change in a route’s availability or path attributes. Based on discussions with router vendors,
their work identified routing software changes to reduce the frequency of pathological updates.

Later work by Labovitz and colleagues quantified Internet route convergence behavior through
a fault injection study []. This study found that changes announcing a new, or improved, route
generally converged in  seconds; changes withdrawing a route generally required  minutes or
more. The paper also reports that BGP can, in the worst case, require the exchange of n! mes-
sages before reaching convergence, where n is the number of autonomous systems in a network.
The paper explains that use of a MinRouteAdvertisementIntervalTimer can reduce the number of
messages exchanged during reconvergence, but may extend the time required for reconvergence.



C . D

In [], Griffin and Premore studied the effects of the MinRouteAdvertisementIntervalTimer
through simulation. Analyzing four different network topologies, and several different network
sizes, they showed that each network had an optimal setting for the timer interval. Below these
optimal values, more messages are exchanged, and convergence is significantly delayed. Above
these optimal values, the number of messages does not change significantly, but convergence time
increases.

In [], Teixeira et al. examined the interaction between Interior Gateway Protocol changes,
and BGP changes. Their work included both, a large-scale field study, and small-scale testbed
experimentation. In the field study, of  days of routing data from the AT&T backbone, they
found that BGP generally reacted to IGP changes within  seconds. In the testbed setting, they
observed similar delays, of up to  seconds, and hypothesized that this delay was due to timers
in the routing software.

Small-scale behavior and performance

Amongst studies of small-scale behavior, the work most relevant to our won is that of Wu et al. [].
In a benchmark scenario which exercised routers similarly to the way Graceful Rehoming exercises
the customer router, they observed update processing rates of – updates per second, de-
pending on router hardware and software. For XORP running on an  MHz Pentium III pro-
cessor, they reported a processing rate of approximately  updates per second. Our results in
Figure .(b), using Quagga and an  MHz Pentium III processor, indicate a processing rate of
over , updates per second. This suggests that significant differences exist in the performance
of different BGP implementations.

Other measurements on BGP processing speed include a test of the Cisco CRS- router by the
European Advanced Networking Test Center [], and a field study of BGP table transfer time by
Zhang et al. []. The former reports that the CRS- router was able to process , routing
updates in  seconds, for a rate of approximately , updates per second. The latter analyzes
data from peering sessions between RouteViews [] and a number of ISPs, finding that most table
transfers take either  to  seconds, or  to  seconds. Direct comparison with these results
is not possible, due to differences in, or uncertainty about, router hardware.

Other work on BGP performance, more broadly, includes Maennel et al. [], which described
the design, implementation, and validation, of a tool for generating benchmark BGP workloads;
Feldmann et al. [], which experimentally measured the time required for a Cisco -series
router to propagate a single BGP routing update; Agarwal et al. [], which studied the CPU load
due to BGP processing, in routers across the Sprint backbone; and Chang et al. [], which quanti-
fied the capacity, in number of prefixes, of different BGP routers.

.. Other Related Work
Much of the technical work in this dissertation, particularly in Chapter , has dealt with under-
standing the design and implementation of the Quagga routing software suite. While we are not
aware of any similarly detailed publication on Quagga, some information on its multi-process ar-
chitecture, as well as its user/kernel interface, can be found in the source code distribution for
Quagga itself []. For information on other BGP routing software, we recommend the XORP BGP
design document [], slides from the authors of OpenBGPD [], and the programmer’s documen-
tation for BIRD []. For case studies on the impact of implementation choices, we recommend the



.. F W

studies on real-world BGP behavior by Labovitz et al. [, , ].
Much of our ability to understand the behavior of Quagga’s BGP implementation comes from

our system charts. These charts bear resemblance to the graphs of per-process CPU activity in Wu
et al.’s work on BGP performance [], and benefit greatly from the ideas and recommendations of
Tufte [, , , ]. As compared to the graphs in Wu et al. [], our system charts graph multiple
nodes in the system, thereby providing a broader view of system behavior. Our charts also include
annotations of key events across layers in the system, which enable deeper insights into the root
causes of the observed behaviors.

. Future Work
Having discussed prior work, we now turn to future work. We group future work in to five areas:
additional experimental validation, support for additional usage scenarios, coping with configura-
tion issues in rehoming, generalizing to other BGP routers, and improving BGP implementations.
The first four areas are specific to our rehoming solution, while the last area considers broader
implications of our work.

.. Experimental Validation
While we have conducted an extensive experimental evaluation of our ideas, our experiments omit
some potentially important real-world phenomena. These include transport network reconfigura-
tion delays, the effect of rehoming on EBGP peers, BGP route reflectors, background BGP traffic,
and network latency between ISP routers. We discuss each of the first two phenomena individually,
and the remaining phenomena collectively.

With regard to transport network reconfiguration delay, we have simplified our experiment
topology by using a programmable Ethernet bridge to emulate physical layer link migration. In
practice, this link migration might be accomplished using a number of techniques, depending on
access network technologies. We expect that the choice of migration technique will not affect our
results, unless the link migration time is greater than the time required for the target router to
process its RIB, and advertise routes for the customer prefixes.

Concerning the effect of rehoming on EBGP peers, we note that without due care, a rehoming
solution might cause the remote router to withdraw its advertisements for customer prefixes. As
explained in Section .., our solution takes great care to avoid this possibility. While Section ..
argued for the correctness of our solution, and the experiments of Chapter  do not exhibit the
problematic withdrawals, a more direct verification of correctness is possible. To do so, we would
add an EBGP peering between the remote router and another router. We would then verify that
no withdrawals were sent from the remote router to this new router, during rehoming.

We now turn to the remaining phenomena: route reflectors, background BGP traffic, and net-
work latency between ISP routers. Each of these phenomena influence route propagation delay.
Route reflectors and background BGP traffic may increase propagation delay, due to the Min-
RouteAdvertisementInterval timer. Wide-area network latency will increase outage times, as that
latency directly increases route propagation delay over the values observed in our testbed envi-

While the remote router does maintain an EBGP peering with the sink node in our topology, this peering is used only
to inject Internet routes into the routing system. The remote router is configured not to advertise routes to the sink node.



C . D

ronment. We do not expect these factors to compromise the ability to achieve five-nines reliability.
They may, however, limit the transparency of our solution for some applications.

.. Usage Scenarios
Throughout this dissertation, we have focused on rehoming as a technique to reduce the down time
caused by planned maintenance, for singly-homed customers. Given the results we have achieved,
it may be beneficial to apply rehoming in other scenarios. We now consider three dimensions
in which we might extend our rehoming techniques. These are multihomed customers, failure
recovery, and peering link protection. We elaborate each, in turn.

Multihomed Customers

With respect to multihomed customers, we expect that our solution will work for these customers,
but that it may be more disruptive than necessary. Specifically, our use of LOCAL_PREF, to direct
the remote router to prefer routes through the target router, may override existing multihoming
arrangements. In particular, if the customer maintains connections to both, the initial router, and
the remote router, the use of LOCAL_PREF may cause the remote router to forward customer-
bound traffic through the target router, rather than through its own connection to the customer.
This complication with rehoming and multihomed customers might be resolved through the use
of a Custom Decision Process [], as we next explain.

The Custom Decision Process of [] offers operators finer control over path selection than of-
fered by the LOCAL_PREF attribute. In particular, the default BGP Decision Process [] compares
LOCAL_PREF values before any other path attribute, causing LOCAL_PREF to override other con-
siderations. In contrast, the Custom Decision Process allows an operator to specify both, a cost
metric, and a “point of insertion”. All steps in the default decision process up to, and including,
the point of insertion are considered before the cost metric. With the ability to specify that the cost
metric be considered immediately before the router-id comparison, our rehoming solution could
avoid the router-id complications of Section ., without affecting multihomed customers.

Failure Recovery

Turning our attention to failure recovery, we note that failure scenarios, such as a software crash,
present challenges not present in planned maintenance scenarios, such as software upgrades. The
fundamental challenge posed by failure scenarios is that we cannot presume that the initial router
is functional. This challenge has two important consequences. First, the routing information about
customer prefixes may no longer be available on the initial router. Second, delays in migrating one
customer may increase the down time for all subsequent customers.

Concerning the first issue, possible strategies for coping with the loss of routing information
on the initial router will depend on the nature of the failure. In the case of a fail-stop condition,
and assuming that the failure is detected before other routers time out their peering with the initial
router, we can continue to exploit the observation of Section ., that the necessary routing data
exists on other routers in the network. In the case of Byzantine failure, or if failure detection time
exceeds BGP peering time-out thresholds, alternative solutions will be required.

See Section . for details on our use of LOCAL_PREF.



.. F W

With regard to the second issue, the downtime experienced by latter customers, when migrating
multiple customers off of a failed router, our concerns arise due to two factors. First, a single router
may serve many customers. While there is little public data on the number of customers typically
homed on a single access router, even a small number of BGP customers per router could limit the
viability of our rehoming solution for failure recovery. In particular, given our results of Chapter ,
which show that rehoming completes in approximately  to  seconds, serially rehoming 
customers would yield an outage time of greater than 4½ minutes for the last customer.

It may be possible to avoid these extended outages by optimizing scheduling. For example,
because Graceful Restart moves the transmission of the Internet routes to the customer routers off
the critical path, a rehoming solution for failure recovery might transmit all customer routes to
upstream routers, before transmitting any Internet routes to customer routers. Additionally, as the
profiling of Section . suggest that much of the delay for transmitting customer routes to upstream
routers is due to the time to scan the RIB, it may be beneficial to transmit all customer routes with
a single RIB scan. This would improve on the naïve serial implementation, which requires a RIB
scan per customer.

Peering Router Protection

As compared to access routers, peering routers pose a significant performance challenge. The key
difference between access routers and peering routers is that access routers receive only a small
number of routes from their BGP neighbors. As noted in Section .., even Google, which ranks
at the th percentile in terms of the number of prefixes it originates, advertises only  routes.
In contrast, peer ISPs will advertise routes to the complete set of Internet prefixes. Thus, peering
routers will receive over , routes from each of their BGP neighbors.

We have conducted some preliminary experimentation with peering router protection, which
indicates that our solution can achieve down times of approximately  seconds. This is signifi-
cantly lower than the approximately  seconds of down time experienced using the router restart
technique, for the much less demanding case of access routers. Nonetheless, given that the failure
of a peering router may affect large amounts of network traffic, further performance improvements
may be required to make rehoming an attractive option. Further study is required to determine the
most promising optimizations.

.. Configuration Management

As part of the re-homing process, the target router must be configured to serve the customer being
rehomed. This configuration includes physical link parameters, IP addresses, and BGP configu-
ration. The configuration process is complicated by the diversity of link types, and the fact that
common router configuration languages lack any formal grammar or underlying model []. Ac-
cordingly, we expect initial use of our techniques will depend on the creation of procedures to
handle these tasks for a small set of widely used common services and options, such as described
by Gottlieb et al. []. Further improvements might be made by applying clustering techniques to
router configuration files, to identify common configuration patterns.



C . D

.. Generalizing to Other BGP Implementations
Throughout this dissertation, we have presented empirical results from experiments using the
Quagga software routing suite. While focusing on a single implementation enables to develop
a deep understanding of its behavior, this focus leaves open to question the generalizability of
our results. In particular, would our techniques be necessary, and applicable, for other routers?
Though experimental study of these questions is well beyond the scope of our work here, we argue
that existing data indicates that our techniques are both necessary, and applicable.

Concerning the necessity of our techniques, we note that one of the key challenges addressed by
our solution is that the time taken to process BGP updates, following a session reset, is far too long
to afford five-nines reliability. Thus, whether or not our methods are necessary for other routers
depends on the speed at which they process BGP updates. Any router that does not process up-
dates significantly faster than Quagga will require some techniques to avoid the downtime caused
by BGP processing.

As noted in Section .., we have observed that Quagga, running on an  MHz Pentium III
processor, handles approximately , BGP updates per second. In a similar scenario, Wu et
al. [] reported that XORP, running on an  MHz Pentium III processor, handled approximately
 updates per second. Wu et al. [] also reported that a Cisco  router, with an  MHz MIPS
R processor, handled about  updates per second. Thus, we conclude that other routers will
require some method of minimizing the down time caused by BGP processing.

Having argued for the necessity of some optimization on other routers, we now consider the
feasibility of implementing our changes on other routes. We note that our changes consist of three
sets of patches. The first set resolves issues in Quagga’s Graceful Restart support. The second set
implements router-id spoofing. The third, and final, set provides support for selectively reflecting
routes, and expedites processing of routing policy changes.

We believe the first set of changes will be unnecessary for routers with more mature Graceful
Restart support, and that the second set is straightforward. The third set is more challenging, as it
requires a deep understanding of potentially intricate scheduling mechanisms. However, given our
success in developing a solution, despite the complexity of Quagga’s scheduling mechanisms, and
without prior knowledge of Quagga’s BGP implementation, we believe that porting our changes
to other routing implementations will be quite feasible for their maintainers.

.. Improving BGP Implementations
While important work remains towards the goal of achieving five-nines reliability in the Internet, it
would be short-sighted for us not to consider other opportunities to improve the Internet. Thus, we
now broaden our perspective, and discuss future work orthogonal to five-nines reliability. Specifi-
cally, based on the lessons we have learnt from our work, we discuss three directions for improving
BGP routers.

Tracing Improvements

A key challenge in our work has been developing a sufficiently rich understanding of router be-
havior, to optimize the rehoming process. To that end, we have employed a number of techniques,
such as monitoring CPU utilization, monitoring inter-process communication, analyzing hardware
performance counter data, and analyzing log file messages generated by the routing software. The
last of these techniques was complicated by the sheer volume of data generated. In particular, the



.. C R

generation of this log file data introduced significant new CPU load, and the analysis of this data
required the development of data reduction techniques.

Based on our experience, we believe the data generation and data reduction issues could be
eliminated by adding filtering functionality to the logging facility of the routing software. Specifi-
cally, many parts of the routing software generate a message for each prefix processed. However,
when many prefixes are given the same treatment, detailing the processing of each prefix is unnec-
essary. Instead, we might choose just to log the processing of the first and last prefixes. Doing so
would reveal all of the processing steps, as well as the time required to complete processing, while
reducing the quantity of log file data by up to a factor of ,.

Scheduling Control

Our work in Chapters  and  demonstrated that careful scheduling is a key element of optimiz-
ing the rehoming process. Specifically, in order to facilitate low impact rehoming, we have made
a number of changes to the scheduling behavior of Quagga’s BGP implementation. While our
changes have been designed to address the scheduling issues specific to rehoming, it might be
desirable to provide more general control of scheduling behaviors. Such control might allow a
network operator to suspend the processing of individual threads, or queues.

A key challenge in providing such control will be to design a control interface that is safe to use,
without requiring in-depth knowledge of the default scheduling strategy. While we have not yet
explored the design space for scheduling control interfaces, we note that one possibility might be
to limit the duration of time for which a thread can be suspended. After this time limit, the system
would revert to known safe, autonomous behavior.

Processing Speed

As noted in Sections .. and .., comparison of our empirical results with those of Wu et al. []
suggests that there are order of magnitude differences in processing speed between different BGP
implementations running on similar hardware. This leads us to wonder about the source of the
performance differences, and about the fundamental limit of BGP processing speed. A deeper
understanding of BGP performance could help improve existing implementations. Such improve-
ments could yield a number of benefits, such as helping cope with the growth of the number of
Internet prefixes [, ], eliminating the need for complicated scaling band-aids, such as route-
reflectors and confederations [, ], or enabling radically new, and simpler, routing architec-
tures [, , ].

. Concluding Remarks
We have, in this dissertation, made significant progress towards understanding, and resolving, one
of the key obstacles to a highly reliable Internet. In particular, we have shown that there exists a
set of modest, software-only changes, which can reduce the down time caused by routing soft-
ware upgrades from minutes, to hundreds of milliseconds. As software upgrades are one of the
leading causes of outages in the Internet, our changes could significantly improve Internet reliabil-
ity. Moreover, we believe our solution for mitigating the outages resulting from routing software
upgrades can be extended to address other causes of router outages.



C . D

Looking beyond the issue of router outages, we observed that our empirical results, when con-
trasted with benchmarking of BGP performance by others, suggest that there exist order of mag-
nitude differences in route processing speeds. This, in turn, suggests that, despite much work on
BGP performance in the large, there is much yet to be understood about the fundamental limits of
BGP processing speeds. We believe this is a promising area of research, which could profoundly
simplify intra-AS routing. These simplifications might include eliminating the need for compli-
cated scaling band-aids such as route reflectors and confederations, and enabling radically simpler
routing architectures.



Afterword

after Randall Munroe, xkcd.com



http://xkcd.com/54



A
Supplemental
System Charts

T this dissertation, we have presented partial system charts. These charts focus omit
some nodes, in order to focus attention on the nodes most relevant to the salient aspects of an

experiment. In addition, in order to facilitate comparison between experiments, the partial system
charts for pairs or groups of experiments are often set on a common time scale.

While those choices are appropriate for supporting the conclusions drawn from the experi-
ments, they limit the reader’s ability to explore a broader picture of an experiment. To remedy
this deficiency, we present, herein, full system charts corresponding to all of the partial system
charts provided in the body of the dissertation. The charts presented here include all nodes except
the sink and customer sink. Further, each chart is set on the smallest time scale that spans the
experiment duration.



A A. S S C

Reading System Charts
A system chart provides a wealth of information, including detailed resource utilization data for
each node, significant process and protocol events on each node, and measurements of end-to-end
reachability. We detail the presentation of each type of information in turn.

The top five graphs present the CPU load on all of the nodes in the experiment, except the sink
and the customer sink. The shaded areas indicate CPU load for the bgpd and zebra processes,
broken down by user mode and system mode time, as denoted in the legend. The light dotted line
indicates total CPU load. In cases where CPU load is due to some process other than bgpd or zebra,
the dotted line exceeds the sum of the blue and green shaded areas.

In most cases, the timeseries chart for the customer router also present measurements of the
link load, at that router, due to BGP messages. These measurements are provided by the blue and
green timeseries, for messages inbound and outbound to the customer router, respectively. Note
however, that the link load is generally insignificant.

In addition to the illustrating the CPU load, each of the top five graphs also illustrates the tim-
ing of important events during the rehoming process. For each such event, we place an annotation
on the graph for the node where the event occurred, and at the x-axis position for the time at which
the event occurred. For example, zebra ↓, the leftmost label and marker on the graph labeled “ini-
tial router” in Figure A., indicates that the experiment framework signalled the zebra process to
terminate one second after the start of the experiment. We describe the complete set of events
illustrated in our system charts, including how they are captured, and the precision of their times-
tamps, in Table A..

Finally, the bottommost graph indicates the reachability of different IP address prefixes, as mea-
sured from two vantage points. Green areas denote times during which packets are delivered suc-
cessfully, and red areas denote times during which packets are lost. For example, in Figure A.,
the large red region in the series labeled  → , indicates that from time  seconds to time
 seconds, packets sent from the customer sink towards  were not received at “sink”.

Note that the scale of the x-axis often differs between charts. Accordingly, the time at the end
of the outage is emphasized with larger text.

The exception is those experiments involving customers with static routing.
The ordering of closely spaced events can be determined by their vertical positioning. The later event will appear above

the earlier event, except in the case where the earlier event occupies the topmost position in the graph. In such cases, the
later event occupies the bottommost position.



description capture method precision
bgpd 	 the framework restarted the bgpd process experiment logfile nanosecond
bgp ↓ the BGP peering with the customer went down

(also initial router, remote router, and ISP router.)
bgpd log file microsecond

bgp ↑ the BGP peering with the customer came up
(also initial router, remote router, and ISP router.)

bgpd log file microsecond

∼ the nexthop IP address of the kernel FIB entry
for  has changed
(also , , and )

polling kernel FIB
(once per second)

nanosecond

− the kernel FIB entry for  has been removed
(also , , and )

polling kernel FIB
(once per second)

nanosecond

+ a kernel FIB entry for  has been added
(also , , and )

polling kernel FIB
(once per second)

nanosecond

+/ a BGP advertisement for  was received
from the customer router
(with variations for different prefixes and BGP peers)

packet capture microsecond

+. a BGP advertisement for  was sent to the
ISP router
(with variations for different prefixes and BGP peers)

packet capture microsecond

-/ a BGP withdrawal for  was received from
the initial router (also )

packet capture microsecond

-. a BGP withdrawal for  was sent to the
remote router (also )

packet capture microsecond

disable nic the framework disabled the customer-facing
network card

experiment logfile nanosecond

enable nic the framework enabled the customer-facing
network card

experiment logfile nanosecond

enable
peering

the framework enabled a BGP peering between
the ISP and the customer

experiment logfile nanosecond

move link the framework reconfigured the layer- link
between the ISP and the customer

experiment logfile nanosecond

open. a BGP OPEN message was received from the
customer router

packet capture microsecond

reject peer the customer router rejected a peering request
from the ISP

bgpd log file microsecond

zebra ↓ the framework signalled the zebra process to
terminate

experiment logfile nanosecond

zebra ↑ the framework started a new zebra process experiment logfile nanosecond

Table A.: Key to events depicted on system charts.



A


A
.

S


S
C



load 0

load 1remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

∼CUST1
∼CUSTN
+INET1.I

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN
−INETN

+CUSTN
+CUST1

bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

target
router

bridge

customer
router

20 40 60 80 100 110
time (sec)

reachability

13 38
INET→ CUSTN

8 38
INET→ CUST1

14 109
CUST→ INETN

1 39
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

Figure A.: Full system chart for router restart with a single statically routed customer. This chart illustrates the trial with the
shortest overall outage time.



load 0

load 1remote
router

bgp ↓I

∼CUSTN
∼CUST1

bgp ↑I

+CUST1/I

+CUSTN/I

+INET1.I

∼CUST1
∼CUSTN

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN
−INETN

bgpd 	
bgp ↑C

+CUST1/C

+CUSTN/C

+CUSTN
+CUST1

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INETN/R +INETN

target
router

bridge

customer
router

bgp ↓ISP bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

20 40 60 80 100 110
time (sec)

reachability

6 38
INET→ CUSTN

6 37
INET→ CUST1

14 108
CUST→ INETN

1 37
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for router restart with a single BGP customer, using default routing for outbound traffic. This
chart illustrates the trial with the shortest overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

∼CUST1
∼CUSTN
+INET1.I

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1

−CUSTN
−INETN

bgpd 	
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1
+CUSTN

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1

+INET1.C +INETN/R +INETN

+INETN.C

target
router

bridge

customer
router

bgp ↓ISP

−INET1
bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

−INETN
+INET1/ISP

+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 135
time (sec)

reachability

6 36
INET→ CUSTN

6 36
INET→ CUST1

14 133
CUST→ INETN

1 59
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for router restart with a single BGP customer, using dynamic routing for outbound traffic. This
chart illustrates the trial with the shortest overall outage time.



load 0

load 8remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+CUST1/I

+CUSTN/I

+INET1.I

∼CUST1
∼CUSTN

+INETN.I

initial
router

zebra ↓
−INET1
−CUST1
−INETN
−CUSTN

zebra ↑

+CUSTN
+CUST1

bgpd 	
bgp ↓R

bgp ↑R

+CUST1.R

+CUSTN.R

+INET1/R

+INET1
+INETN/R

+INETN

target
router

bridge

customer
router

5 10 15 20 25 30 35
time (sec)

reachability

3 16
INET→ CUSTN

2 16
INET→ CUST1

3 29
CUST→ INETN

1 16
CUST→ INET1

all bgpd system bgpd user zebra system zebra user

Figure A.: Full system chart for router restart with a single static customer, on High Spec hardware. This chart illustrates the
trial with the shortest overall outage time.



A


A
.

S


S
C



load 0

load 8remote
router

bgp ↓I

∼CUST1
∼CUSTN

bgp ↑I

+INET1.I
+INETN.I

+CUST1/I

+CUSTN/I

∼CUST1
∼CUSTN

initial
router

zebra ↓
−INET1
−CUST1
−CUSTN
−INETN

zebra ↑

bgpd 	
bgp ↓R

bgp ↓C

bgp ↑R

+INET1/R

+INET1

+INETN/R

bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.R

+CUSTN.R

+CUST1
+CUSTN

∼CUSTN
∼CUST1
+INETN

target
router

bridge

customer
router

bgp ↓ISP

−INET1
−INETN bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1
+INETN/ISP

+INETN

5 10 15 20 25 30 35 40
time (sec)

reachability

3 33
INET→ CUSTN

2 33
INET→ CUST1

3 35
CUST→ INETN

1 25
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for router restart with a single BGP customer, using dynamic routing for outbound traffic, on High
Spec hardware. This chart illustrates the trial with the shortest overall outage time.



load 0

load 1remote
router

+CUST1/T

+CUSTN/T
-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN
+INET1.C

+CUST1.R

+CUSTN.R

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP +INET1
−INETN

+INETN/ISP

+INETN

20 40 60 80 100 120125
time (sec)

reachability

1 123
INET→ CUSTN

1 123
INET→ CUST1

1 119
CUST→ INETN

1 66
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming, for the trial with the minimum overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

open.C

open.C

open.C

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUSTN

∼CUST1
+INET1.C

+CUST1.R

+CUSTN.R +INETN.C

bridge

move link

customer
router

bgp ↓ISP

−INET1
reject peer

open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP
−INETN
+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 130
time (sec)

reachability

1 31
INET→ CUSTN

1 31
INET→ CUST1

1 124
CUST→ INETN

1 70
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming, with the initial router configured to have a higher router-id than the target
router. This chart illustrates the trial with the shortest overall outage time.



load 0

load 1remote
router

bgp ↓I

∼CUSTN
∼CUST1

bgp ↑I

+INET1.I

+CUST1/I

+CUSTN/I

∼CUSTN
∼CUST1

+INETN.I

initial
router

zebra ↓
−INET1

zebra ↑
−CUST1
−CUSTN
−INETN

bgpd 	
bgp ↓R

bgp ↑R

bgp ↑C

+INET1/R

+INET1
+CUST1/C

+CUSTN/C

+CUST1
+CUSTN
+CUST1.R

+CUSTN.R
+INET1.C

+INETN/R +INETN

+INETN.C

target
router

bridge

customer
router

−INET1
bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

−INETN
+INET1/ISP

+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120 140 155
time (sec)

reachability

13 54
INET→ CUSTN

8 54
INET→ CUST1

14 153
CUST→ INETN

1 79
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for router restart, with a single BGP customer, using dynamic routing for outbound traffic, for the
trial with the longest overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T
-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUSTN
∼CUST1

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN
+INET1.C

+CUST1.R

+CUSTN.R

+INETN.C

bridge

move link

customer
router

reject peer
reject peer

reject peer

bgp ↓ISP

−INET1
reject peer

−INETN bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1

+INETN/ISP

+INETN

50 100 150 200 215
time (sec)

reachability

1 180
INET→ CUSTN

1 180
INET→ CUST1

1 213
CUST→ INETN

1 141
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming, for the trial with the longest overall outage time.



load 0

load 1remote
router

+CUST1/T

+CUSTN/T
-CUST1/I

-CUSTN/I

∼CUST1
∼CUSTN

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

open.C

open.C

open.C open.C open.C

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUSTN
∼CUST1

+INET1.C

+CUST1.R

+CUSTN.R

+INETN.C

bridge

move link

customer
router

reject peer
reject peer

reject peer
bgp ↓ISP

−INET1
reject peer

open.ISP −INETN open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1

+INETN/ISP

+INETN

50 100 150 200205
time (sec)

reachability

1 170
INET→ CUSTN

1 170
INET→ CUST1

1 202
CUST→ INETN

1 129
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming with router-id spoofing, for the trial with the longest overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

-CUST1/I

-CUSTN/I

∼CUST1
∼CUSTN

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

initial
router

bgp ↓C

-CUST1.R

-CUSTN.R

disable nic
−CUST1
∼CUSTN

+CUST1 ∼CUST1
∼CUSTN

target
router

enable nic
enable peering

∼CUST1
∼CUSTN

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN
+INET1.C

+CUST1.R

+CUSTN.R

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INET1
−INETN

+INETN/ISP +INETN

20 40 60 80 100 120125
time (sec)

reachability

3 34
INET→ CUSTN

3 34
INET→ CUST1

3 124
CUST→ INETN

2 68
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for clean shutdown rehoming, for the trial with the longest outage time.



load 0

load 1remote
router

-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

initial
router

bgp ↓C

-CUST1.R

-CUSTN.R

disable nic
−CUST1
∼CUSTN

+CUST1
∼CUST1
∼CUSTN

target
router

enable nic
enable peering

∼CUST1
∼CUSTN

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN
+CUST1.R

+CUSTN.R

+INET1.C

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

−INET1
reject peer

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

−INETN
+INET1

+INETN/ISP

+INETN

20 40 60 80 100 120
time (sec)

reachability

3 30
INET→ CUSTN

3 30
INET→ CUST1

61 118
CUST→ INETN

2 61
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for rehoming with Graceful Restart and clean shutdown, for the trial with the minimal outage
time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T
-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

initial
router

timeoutC

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUSTN
∼CUST1

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

+CUST1.R

+CUSTN.R

∼CUSTN
∼CUST1

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

20 40 60 80 100 120 130
time (sec)

reachability

1 128
INET→ CUSTN

1 128
INET→ CUST1

1.00 to 1.04
CUST→ INETN

1.00 to 1.04
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming with Graceful Restart. This chart illustrates the trial with the shortest overall
outage time.



load 0

load 1remote
router

-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

initial
router

bgp ↓C

-CUST1.R

-CUSTN.R

∼CUSTN
disable nic
−CUST1

+CUST1 ∼CUST1
∼CUSTN

target
router

enable nic
enable peering

∼CUST1
open.C

∼CUSTN

open.C

open.C

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1
∼CUSTN

+CUST1.R

+CUSTN.R

+INET1.C

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

−INET1
reject peer

open.ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

−INETN
+INET1

+INETN/ISP +INETN

20 40 60 80 100 120125
time (sec)

reachability

3 33
INET→ CUSTN

3 33
INET→ CUST1

63 121
CUST→ INETN

2 63
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for clean shutdown with router-id spoofing. This chart illustrates the trial with the shortest overall
outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

-CUST1/I

-CUSTN/I

∼CUSTN
∼CUST1

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

∼CUSTN
+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

∼CUST1 +INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP +INETN/ISP

5 10 15 20 25 30 35
time (sec)

reachability

1 20
INET→ CUSTN

1 22
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.01 to 1.06
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming with router-id spoofing, Graceful Restart and LOCAL_PREF, for the trial with
the minimal overall outage time.



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

-CUST1/I

-CUSTN/I

∼CUST1
∼CUSTN

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

∼CUST1
∼CUSTN

+CUST1.R

+CUSTN.R

+CUST1.I

+CUSTN.I

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30
time (sec)

reachability

1 15
INET→ CUSTN

1 15
INET→ CUST1

1.02 to 1.05
CUST→ INETN

1.02 to 1.05
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for naïve rehoming with router-id spoofing, Graceful Restart, LOCAL_PREF, and the scheduling
patch of Listing .. This chart illustrates the trial with the minimal overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

-CUST1/I

-CUSTN/I

∼CUST1
∼CUSTN

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1

∼CUSTN
+INET1.C

+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30
time (sec)

reachability

1 14
INET→ CUSTN

1 14
INET→ CUST1

1.01 to 1.05
CUST→ INETN

1.01 to 1.04
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for rehoming with default hash table sizing in bgpd. This chart illustrates the trial with the
minimal overall outage time.



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

+CUST1.R

∼CUST1
∼CUSTN

+CUSTN.R

+CUST1.I

+CUSTN.I

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30
time (sec)

reachability

1 11
INET→ CUSTN

1 11
INET→ CUST1

1.00 to 1.05
CUST→ INETN

1.01 to 1.07
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for rehoming with increased hash table sizing in bgpd. This chart illustrates the trial with the
minimal overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

-CUST1/I

-CUSTN/I

∼CUST1
∼CUSTN

initial
router

+CUST1/T

+CUSTN/T

∼CUST1
-CUST1.R

-CUSTN.R

∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

B+CUSTN/C

+CUST1.I

+CUSTN.I

B+CUSTN.R

+CUST1.R

+CUSTN.R

∼CUSTN

∼CUST1
+INET1.C

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25
time (sec)

reachability

1 6
INET→ CUSTN

1 6
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.01 to 1.06
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for rehoming following the patch of Listing ., our first patch to reduce route processing delay.
Note that debugging is enabled for bgpd on the target router. The chart illustrates the trial with the minimal overall outage time.



load 0

load 1remote
router

+CUST1/T

∼CUST1
+CUSTN/T

∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
start handoff

+CUST1.R

∼CUST1
∼CUSTN

+CUSTN.R

enable peering
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.I

+CUSTN.I

+INET1.C

end handoff

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30 35 40 45
time (sec)

reachability

1 13
INET→ CUSTN

1 8
INET→ CUST1

1.09 to 1.13
CUST→ INETN

1.08 to 1.15
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for rehoming with our initial soft handoff rehoming procedure, of Figure .. This chart illustrates
the trial with the minimal overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUSTN
∼CUST1

target
router

enable nic
start handoff

∼CUSTN
∼CUST1

+CUST1.R

+CUSTN.R

enable peering
bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.I

+CUSTN.I

+INET1.C

end handoff

+INETN.C

bridge

move link

customer
router

bgp ↓ISP bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

20 40 60 80 95
time (sec)

reachability

1 64
INET→ CUSTN

1 64
INET→ CUST1

1.07 to 1.15
CUST→ INETN

1.08 to 1.15
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for rehoming with our initial soft handoff rehoming procedure, of Figure .. This chart illustrates
the trial with the maximal overall outage time.



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
start handoff

+CUST1.R

+CUSTN.R

∼CUSTN
∼CUST1

enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

+CUST1.I

+CUSTN.I

+INET1.C

end handoff
+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30
time (sec)

reachability

5 7
INET→ CUSTN

5 7
INET→ CUST1

CUST→ INETN

CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for ZIRO, with our changes to bgpd scheduling policies. This chart illustrates the trial with the
maximal overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUSTN
∼CUST1

target
router

enable nic
start handoff

+CUST1.R

+CUSTN.R

∼CUST1
∼CUSTN

enable peering bgp ↑C

+CUST1/C

+CUSTN/C

end handoff
+CUST1.I

+CUSTN.I

+INET1.C +INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30 35
time (sec)

reachability

4.65 to 5.15
INET→ CUSTN

4.65 to 5.13
INET→ CUST1

CUST→ INETN

CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for ZIRO, following the removal of our changes to bgpd scheduling policies, but with our CPU
optimizations for zebra and bgpd in place. This chart illustrates the trial with the maximal overall outage time.



load 0

load 1remote
router

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

-CUST1/I

-CUSTN/I

initial
router

+CUST1/T

+CUSTN/T

∼CUST1
-CUST1.R

-CUSTN.R

∼CUSTN

target
router

enable nic start handoff
+CUST1.R

+CUSTN.R

∼CUST1
∼CUSTN
enable peering

TCP syn.C

bgp ↑C

+CUST1/C

+CUSTN/C

+INET1.C

end handoff

+CUST1.I

+CUSTN.I
+INETN.C

bridge

move link

customer
router

TCP syn/T

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

10 20 30 40 50 55
time (sec)

reachability

19.77 to 20.46
INET→ CUSTN

19.77 to 20.47
INET→ CUST1

19.75 to 19.81
CUST→ INETN

19.76 to 19.81
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for ZIRO, following the removal of our CPU optimizations for zebra and bgpd. This chart
illustrates the trial with the maximal overall outage time.



A


A
.

S


S
C



load 0

load 1remote
router

-CUST1/I

-CUSTN/I

∼CUST1
∼CUSTN

+CUST1/T

+CUSTN/T

∼CUST1
∼CUSTN

initial
router

+CUST1/T

+CUSTN/T

-CUST1.R

-CUSTN.R

∼CUST1
∼CUSTN

target
router

enable nic
enable peering

bgp ↑C

+CUST1/C

+CUSTN/C

∼CUST1

∼CUSTN
+INET1.C

+CUST1.I

+CUSTN.I

+CUST1.R

+CUSTN.R

+INETN.C

bridge

move link

customer
router

bgp ↓ISP

bgp ↑ISP

+CUST1.ISP

+CUSTN.ISP

+INET1/ISP

+INETN/ISP

5 10 15 20 25 30
time (sec)

reachability

1 10
INET→ CUSTN

1 10
INET→ CUST1

1.01 to 1.06
CUST→ INETN

1.02 to 1.07
CUST→ INET1

all bgpd system bgpd user link in link out zebra system zebra user

Figure A.: Full system chart for a trial of rehoming following the patch of Listing .. This trial exhibits the unsuccessful case
of the race condition illustrated in Figure .(b).



B
Source

Code

T this dissertation, we have presented source code listings for our changes to Quagga.
In order to focus attention on the most important aspects of our changes, these listings have

limited the amount of context they provide, and excluded those changes not directly related to our
core insights.

While appropriate for explaining our insights, the code listings in the body of this dissertation
due not provide sufficient detail to reproduce our results. To resolve this limitation, we now pro-
vide the full source code for our modifications to Quagga. These listings provide greater context
for our changes, and detail ancillary changes required to support our core changes.

The listings herein employ the same typographical conventions as those in the body of the
dissertation. Specifically: unmodified lines are shown in gray, removed lines are shown in gray
with a horizontal bar, and added lines are shown in bold. Modified lines are indicated by a deletion
followed by an addition.



A B. S C

B. Implementation of router-id Spoofing

B.. Core functionality

1 void
2 bgp_open_send (struct peer *peer)
3 {
4 struct stream *s;
5 ...
6

7 /* Set open packet values. */
8 stream_putc (s, BGP_VERSION_4); /* BGP version */
9 stream_putw (s, (local_as <= BGP_AS_MAX) ? (u_int16_t) local_as

10 : BGP_AS_TRANS);
11 stream_putw (s, send_holdtime); /* Hold Time */
12 stream_put_in_addr (s, &peer->local_id); /* BGP Identifier */
13 if (peer->change_local_id.s_addr) /* BGP Identifier */
14 stream_put_in_addr (s, &peer->change_local_id);
15 else
16 stream_put_in_addr (s, &peer->local_id);
17 ...
18 }

Listing B.: Patch to bgp_open_send, in bgp_packet.c

1 /* BGP neighbor structure. */
2 struct peer
3 {
4 ...
5 /* Local router ID. */
6 struct in_addr local_id;
7

8 /* Local router ID. */
9 struct in_addr change_local_id;

10

11 ...
12 };
13

Listing B.: Patch to struct peer, in bgpd.h



B.. I  - S

B.. Configuration handling

1DEFUN (neighbor_local_id,
2neighbor_local_id_cmd,
3NEIGHBOR_CMD2 "local-id A.B.C.D",
4NEIGHBOR_STR
5NEIGHBOR_ADDR_STR2
6"Specify a local-id\n"
7"IP address used as local router-id\n")
8{
9struct peer *peer;
10struct in_addr id;
11int ret;
12

13peer = peer_and_group_lookup_vty (vty, argv[0]);
14if (! peer)
15return CMD_WARNING;
16

17ret = inet_aton (argv[1], &id);
18if (! ret)
19{
20vty_out (vty, "%% Malformed bgp router identifier%s", VTY_NEWLINE);
21return CMD_WARNING;
22}
23

24ret = peer_local_id_set (peer, &id);
25return bgp_vty_return (vty, ret);
26}

Listing B.: Patch to neighbor_local_id, in bgp_vty.c



A B. S C

1 int
2 peer_local_id_set (struct peer *peer, struct in_addr *id)
3 {
4 struct bgp *bgp = peer->bgp;
5 struct peer_group *group;
6 struct listnode *node, *nnode;
7

8 if (peer_group_active (peer))
9 return BGP_ERR_INVALID_FOR_PEER_GROUP_MEMBER;

10

11 if (peer->change_local_id.s_addr == id->s_addr)
12 return 0;
13

14 peer->change_local_id = *id;
15

16 if (! CHECK_FLAG (peer->sflags, PEER_STATUS_GROUP))
17 {
18 if (peer->status == Established)
19 {
20 peer->last_reset = PEER_DOWN_RID_CHANGE;
21 bgp_notify_send (peer, BGP_NOTIFY_CEASE,
22 BGP_NOTIFY_CEASE_CONFIG_CHANGE);
23 }
24 else
25 BGP_EVENT_ADD (peer, BGP_Stop);
26

27 return 0;
28 }
29

30 group = peer->group;
31 for (ALL_LIST_ELEMENTS (group->peer, node, nnode, peer))
32 {
33 peer->change_local_id = *id;
34

35 if (peer->status == Established)
36 {
37 peer->last_reset = PEER_DOWN_RID_CHANGE;
38 bgp_notify_send (peer, BGP_NOTIFY_CEASE,
39 BGP_NOTIFY_CEASE_CONFIG_CHANGE);
40 }
41 else
42 BGP_EVENT_ADD (peer, BGP_Stop);
43 }
44

45 return 0;
46 }

Listing B.: Patch to peer_local_id_set, in bgpd.c



B.. I  - S

1void
2bgp_vty_init (void)
3{
4...
5install_element (BGP_NODE, &no_neighbor_peer_group_cmd);
6install_element (BGP_NODE, &no_neighbor_peer_group_remote_as_cmd);
7

8/* "neighbor local-id" commands. */
9install_element (BGP_NODE, &neighbor_local_id_cmd);
10

11/* "neighbor local-as" commands. */
12install_element (BGP_NODE, &neighbor_local_as_cmd);
13install_element (BGP_NODE, &neighbor_local_as_no_prepend_cmd);
14...
15}

Listing B.: Patch to bgp_vty_init, in bgp_vty.c

1static void
2bgp_config_write_peer (struct vty *vty, struct bgp *bgp,
3struct peer *peer, afi_t afi, safi_t safi)
4{
5...
6if (afi == AFI_IP && safi == SAFI_UNICAST)
7{
8...
9/* local-as. */
10if (peer->change_local_as)
11if (! peer_group_active (peer))
12vty_out (vty, " neighbor %s local-as %u%s%s", addr,
13peer->change_local_as,
14CHECK_FLAG (peer->flags, PEER_FLAG_LOCAL_AS_NO_PREPEND) ?
15" no-prepend" : "", VTY_NEWLINE);
16

17/* local-id */
18if (peer->change_local_id.s_addr)
19if (! peer_group_active (peer))
20vty_out (vty, " neighbor %s local-id %s%s", addr,
21inet_ntoa(peer->change_local_id), VTY_NEWLINE);
22

23...
24}
25...
26}

Listing B.: Patch to bgp_config_write_peer, in bgpd.c



A B. S C

1 static void
2 peer_global_config_reset (struct peer *peer)
3 {
4 peer->weight = 0;
5 peer->change_local_as = 0;
6 peer->change_local_id.s_addr = 0;
7 ...
8 }

Listing B.: Patch to peer_global_config_reset, in bgpd.c

1 static void
2 peer_group2peer_config_copy (struct peer_group *group, struct peer *peer,
3 afi_t afi, safi_t safi)
4 {
5 ...
6 conf = group->conf;
7 ...
8

9 /* remote-as */
10 if (conf->change_local_as)
11 peer->change_local_as = conf->change_local_as;
12

13 /* change_local_id */
14 if (conf->change_local_id.s_addr)
15 peer->change_local_id.s_addr = conf->change_local_id.s_addr;
16

17 ...
18 }

Listing B.: Patch to peer_grouppeer_config_copy, in bgpd.c



B.. I  - S

1int
2bgp_router_id_set (struct bgp *bgp, struct in_addr *id)
3{
4struct peer *peer;
5struct listnode *node, *nnode;
6...
7

8/* Set all peer's local identifier with this value. */
9for (ALL_LIST_ELEMENTS (bgp->peer, node, nnode, peer))
10{
11if (peer->change_local_id.s_addr != 0)
12continue;
13

14IPV4_ADDR_COPY (&peer->local_id, id);
15...
16}
17return 0;
18}

Listing B.: Patch to bgp_router_id_set, in bgpd.c

1extern int peer_allowas_in_set (struct peer *, afi_t, safi_t, int);
2extern int peer_allowas_in_unset (struct peer *, afi_t, safi_t);
3

4extern int peer_local_id_set (struct peer *, struct in_addr *);
5

6extern int peer_local_as_set (struct peer *, as_t, int);
7extern int peer_local_as_unset (struct peer *);

Listing B.: Patch to toplevel of bgpd.h



A B. S C

B. Improvements to Quagga’s Graceful Restart Implementation

1 void
2 bgp_open_capability (struct stream *s, struct peer *peer)
3 {
4 ...
5 /* Graceful restart capability */
6 if (bgp_flag_check (peer->bgp, BGP_FLAG_GRACEFUL_RESTART))
7 {
8 size_t cap_len_pos, cap_len_pos_2, cap_end;
9

10 SET_FLAG (peer->cap, PEER_CAP_RESTART_ADV);
11 stream_putc (s, BGP_OPEN_OPT_CAP);
12 cap_len_pos = stream_get_endp(s);
13 stream_putc (s, CAPABILITY_CODE_RESTART_LEN + 2);
14 stream_putc (s, CAPABILITY_CODE_RESTART);
15 cap_len_pos_2 = stream_get_endp(s);
16 stream_putc (s, CAPABILITY_CODE_RESTART_LEN);
17 /* NB: also encodes restart flags (mukesh.20100419) */
18 stream_putw (s, peer->bgp->restart_time);
19 }
20

21 for (afi = AFI_IP ; afi < AFI_MAX ; afi++)
22 for (safi = SAFI_UNICAST ; safi < SAFI_MAX ; safi++)
23 if (peer->afc[afi][safi])
24 {
25 stream_putw (s, afi);
26 stream_putc (s, safi);
27 /* flag: state is preserved (mukesh.20100518) */
28 stream_putc (s, RESTART_F_BIT);
29 }
30

31 cap_end = stream_get_endp(s)-1;
32 stream_putc_at (s, cap_len_pos, cap_end-cap_len_pos);
33 stream_putc_at (s, cap_len_pos_2, cap_end-cap_len_pos_2);
34 }
35 ...
36 }

Listing B.: Patch to bgp_open_capability, in bgp_open.c



B.. I  Q’ G R I

1static int
2bgp_capability_restart (struct peer *peer, struct capability_header *caphdr)
3{
4struct stream *s = BGP_INPUT (peer);
5...
6while (stream_get_getp (s) + 4 < end)
7while (stream_get_getp (s) + 4 <= end)
8{
9afi_t afi = stream_getw (s);
10safi_t safi = stream_getc (s);
11u_char flag = stream_getc (s);
12

13...
14if (!bgp_afi_safi_valid_indices (afi, &safi))
15{
16...
17}
18else if (!peer->afc[afi][safi])
19{
20...
21}
22else
23{
24...
25SET_FLAG (peer->af_cap[afi][safi], PEER_CAP_RESTART_AF_RCV);
26if (CHECK_FLAG (flag, RESTART_F_BIT))
27SET_FLAG (peer->af_cap[afi][safi], PEER_CAP_RESTART_AF_PRESERVE_RCV);
28

29}
30}
31return 0;
32}

Listing B.: Patch to bgp_capability_restart, in bgp_open.c



A B. S C

1 static int
2 bgp_open_receive (struct peer *peer, bgp_size_t size)
3 {
4 ...
5 /* Hack part. */
6 if (CHECK_FLAG (peer->sflags, PEER_STATUS_ACCEPT_PEER))
7 {
8 if (realpeer->status == Established
9 && CHECK_FLAG (realpeer->sflags, PEER_STATUS_NSF_MODE))

10 {
11 realpeer->last_reset = PEER_DOWN_NSF_CLOSE_SESSION;
12 SET_FLAG (realpeer->sflags, PEER_STATUS_NSF_WAIT);
13 bgp_clear_route_all(realpeer);
14 }
15 ...
16 }
17 ...
18 return 0;
19 }

Listing B.: Patch to bgp_open_receive, in bgp_packet.c



B.. I  Q’ G R I

1static void
2bgp_clear_route_table (struct peer *peer, afi_t afi, safi_t safi,
3struct bgp_table *table, struct peer *rsclient,
4enum bgp_clear_route_type purpose)
5{
6struct bgp_node *rn;
7

8...
9for (rn = bgp_table_top (table); rn; rn = bgp_route_next (rn))
10{
11struct bgp_info *ri;
12struct bgp_adj_in *ain;
13struct bgp_adj_out *aout;
14

15...
16for (ri = rn->info; ri; ri = ri->next)
17if (ri->peer == peer || purpose == BGP_CLEAR_ROUTE_MY_RSCLIENT)
18{
19struct bgp_clear_node_queue *cnq;
20

21/* both unlocked in bgp_clear_node_queue_del */
22bgp_table_lock (rn->table);
23bgp_lock_node (rn);
24cnq = XCALLOC (MTYPE_BGP_CLEAR_NODE_QUEUE,
25sizeof (struct bgp_clear_node_queue));
26cnq->rn = rn;
27cnq->purpose = purpose;
28work_queue_add (peer->clear_node_queue, cnq);
29if (CHECK_FLAG (peer->sflags, PEER_STATUS_NSF_WAIT)) {
30/* queueing this request may lead to unexpected behavior,
31if PEER_STATUS_NSF_WAIT changes. instead, process
32immediately. (mukesh.20100610) */
33bgp_clear_route_node(peer->clear_node_queue, cnq);
34XFREE (MTYPE_BGP_CLEAR_NODE_QUEUE, cnq);
35} else {
36bgp_lock_node (rn);
37work_queue_add (peer->clear_node_queue, cnq);
38}
39break;
40}
41...
42}
43return;
44}

Listing B.: Patch to bgp_clear_route_table, in bgp_route.c



A B. S C

1 /* Finite State Machine structure */
2 static const struct {
3 int (*func) (struct peer *);
4 int next_state;
5 } FSM [BGP_STATUS_MAX - 1][BGP_EVENTS_MAX - 1] =
6 {
7 ...
8 {
9 /* Established, */

10 {bgp_ignore, Established}, /* BGP_Start */
11 {bgp_stop, Clearing}, /* BGP_Stop */
12 {bgp_stop, Clearing}, /* TCP_connection_open */
13 {bgp_stop, Clearing}, /* TCP_connection_closed */
14 {bgp_stop, Clearing}, /* TCP_connection_open_failed */
15 {bgp_stop, Clearing}, /* TCP_fatal_error */
16 {bgp_stop, Clearing}, /* ConnectRetry_timer_expired */
17 {bgp_fsm_holdtime_expire, Clearing}, /* Hold_Timer_expired */
18 {bgp_fsm_keepalive_expire, Established}, /* KeepAlive_timer_expired */
19 {bgp_stop, Clearing}, /* Receive_OPEN_message */
20 {bgp_fsm_keepalive, Established}, /* Receive_KEEPALIVE_message */
21 {bgp_fsm_update, Established}, /* Receive_UPDATE_message */
22 {bgp_stop_with_error, Clearing}, /* Receive_NOTIFICATION_message */
23 {bgp_ignore, Idle}, /* Clearing_Completed */
24 {bgp_ignore, Established}, /* Clearing_Completed */
25 },
26 ...
27 };

Listing B.: Patch to static const struct FSM, in bgp_fsm.c



B.. U CPU U

B. Understanding CPU Utilization

B.. Capturing scheduler statistics

1int
2work_queue_run (struct thread *thread)
3{
4...
5++(wq->qlen_hist[MIN(get_order(listcount(wq->items)),
6sizeof(wq->qlen_hist) / sizeof(wq->qlen_hist[0]))]);
7for (ALL_LIST_ELEMENTS (wq->items, node, nnode, item))
8{
9...
10}
11

12stats: ...
13wq->runs++;
14wq->cycles.total += cycles;
15wq->yields += yielded; ...
16}

Listing B.: Patch to work_queue_run, in workqueue.c

1static inline unsigned int
2get_order (unsigned int num)
3{
4unsigned int order = 0;
5assert(num);
6num = num / 2;
7while (num)
8{
9++order;
10num = num / 2;
11}
12return order;
13}

Listing B.: Patch to get_order, in workqueue.c



A B. S C

1 struct work_queue
2 {
3 ...
4 /* remaining fields should be opaque to users */
5 struct list *items; /* queue item list */
6 unsigned long runs; /* runs count */
7

8 unsigned long yields; /* yield count */
9 /* histogram of log2(listcount(items)) when work_queue_run is called */

10 unsigned long qlen_hist[sizeof(unsigned int)*8];
11

12 ...
13 };

Listing B.: Patch to struct work_queue, in workqueue.h



B.. U CPU U

1DEFUN(show_work_queues,
2show_work_queues_cmd,
3"show work-queues",
4SHOW_STR
5"Work Queue information\n")
6{
7struct listnode *node;
8struct work_queue *wq;
9unsigned int i;
10

11vty_out (vty,
12"%c %8s %5s %8s %21s%s",
13' ', "List","(ms) ","Q. Runs","Cycle Counts ",
14VTY_NEWLINE);
15vty_out (vty,
16"%c %8s %5s %8s %7s %6s %6s %s%s",
17"%c %8s %5s %8s %7s %6s %6s %6s %s%s",
18'P',
19"Items",
20"Hold",
21"Total",
22"Best","Gran.","Avg.",
23"Yields",
24"Name",
25VTY_NEWLINE);
26

27

28for (ALL_LIST_ELEMENTS_RO ((&work_queues), node, wq))
29{
30vty_out (vty,"%c %8d %5d %8ld %7d %6d %6u %s%s",
31vty_out (vty,"%c %8d %5d %8ld %7d %6d %6u %8ld %s%s",
32(CHECK_FLAG (wq->flags, WQ_UNPLUGGED) ? ' ' : 'P'),
33listcount (wq->items),
34wq->spec.hold,
35wq->runs,
36wq->cycles.best, wq->cycles.granularity,
37(wq->runs) ?
38(unsigned int) (wq->cycles.total / wq->runs) : 0,
39wq->yields,
40wq->name,
41VTY_NEWLINE);
42for (i=0; i < sizeof(wq->qlen_hist)/sizeof(wq->qlen_hist[0]); ++i) {
43vty_out (vty, "%lu ", wq->qlen_hist[i]);
44}
45vty_out (vty, "Qlen Histogram (1/2/4/../2%̂d)%s",
46sizeof(wq->qlen_hist)/sizeof(wq->qlen_hist[0])-1, VTY_NEWLINE);
47}
48

49return CMD_SUCCESS;
50}

Listing B.: Patch to show_work_queues, in workqueue.c



A B. S C

B.. Capturing hash table statistics
Core code

1 struct hash
2 {
3 ...
4 /* Backet alloc. */
5 unsigned long count;
6 unsigned int count;
7

8 /* Highwater mark. */
9 unsigned int high_count;

10

11 /* Name. We own the memory. */
12 char *name;
13 };

Listing B.: Patch to struct hash, in hash.h

1 /* Lookup and return hash backet in hash. If there is no
2 corresponding hash backet and alloc_func is specified, create new
3 hash backet. */
4 void *
5 hash_get (struct hash *hash, void *data, void * (*alloc_func) (void *))
6 {
7 ...
8 if (alloc_func)
9 {

10 ...
11 hash->index[index] = backet;
12 hash->count++;
13 hash->high_count = MAX(hash->high_count, hash->count);
14 return backet->data;
15 }
16 return NULL;
17 }

Listing B.: Patch to hash_get, in hash.c



B.. U CPU U

1#include "hash.h"
2#include "memory.h"
3#include "linklist.h"
4#include "command.h"
5

6static struct list *hash_table_list = NULL;

Listing B.: Patch to toplevel of hash.c

1/* Allocate a new hash. */
2struct hash *
3hash_create_size (unsigned int size, unsigned int (*hash_key) (void *),
4int (*hash_cmp) (const void *, const void *))
5int (*hash_cmp) (const void *, const void *),
6const char *name)
7{
8...
9hash->count = 0;
10hash->high_count = 0;
11hash->name = XSTRDUP (MTYPE_HASH_NAME, name);
12

13if (!hash_table_list)
14hash_table_list = list_new();
15listnode_add(hash_table_list, hash);
16

17return hash;
18}

Listing B.: Patch to hash_create_size, in hash.c

1struct hash *
2hash_create (unsigned int (*hash_key) (void *),
3int (*hash_cmp) (const void *, const void *))
4int (*hash_cmp) (const void *, const void *),
5const char *name)
6{
7return hash_create_size (HASHTABSIZE, hash_key, hash_cmp);
8return hash_create_size (HASHTABSIZE, hash_key, hash_cmp, name);
9}

Listing B.: Patch to hash_create, in hash.c



A B. S C

1 /* Free hash memory. You may call hash_clean before call this
2 function. */
3 void
4 hash_free (struct hash *hash)
5 {
6 listnode_delete(hash_table_list, hash);
7 XFREE (MTYPE_HASH_INDEX, hash->index);
8 XFREE (MTYPE_HASH_NAME, hash->name);
9 XFREE (MTYPE_HASH, hash);

10 }

Listing B.: Patch to hash_free, in hash.c

1 DEFUN(show_hash_tables,
2 show_hash_tables_cmd,
3 "show hash-tables",
4 SHOW_STR
5 "Hash Table information\n")
6 {
7 struct listnode *node;
8 struct hash *hash;
9

10 vty_out (vty, "%8s %8s %8s %s%s",
11 "ItemsNow",
12 "ItemsEver",
13 "Buckets",
14 "Name",
15 VTY_NEWLINE);
16

17 for (ALL_LIST_ELEMENTS_RO (hash_table_list, node, hash))
18 {
19 vty_out (vty, "%8u %8u %8u %s%s",
20 hash->count,
21 hash->high_count,
22 hash->size,
23 (hash->name ? hash->name : "(unnamed)"), VTY_NEWLINE);
24 }
25

26 return CMD_SUCCESS;
27 }

Listing B.: Patch to show_hash_tables, in hash.c



B.. U CPU U

Naming hash table allocations

1void
2bgp_sync_init (struct peer *peer)
3{
4#define STRLEN_NUM(num) (sizeof(#num)-1)
5afi_t afi;
6safi_t safi;
7struct bgp_synchronize *sync;
8char baa_hash_name[SU_ADDRSTRLEN +
9STRLEN_NUM(AFI_MAX) +
10STRLEN_NUM(SAFI_MAX) +
11sizeof("baa /") + 1];
12

13for (afi = AFI_IP; afi < AFI_MAX; afi++)
14for (safi = SAFI_UNICAST; safi < SAFI_MAX; safi++)
15{
16snprintf(baa_hash_name, sizeof(baa_hash_name),
17"baa %s %d/%d", peer->host, afi, safi);
18sync = XCALLOC (MTYPE_BGP_SYNCHRONISE,
19sizeof (struct bgp_synchronize));
20FIFO_INIT (&sync->update);
21FIFO_INIT (&sync->withdraw);
22FIFO_INIT (&sync->withdraw_low);
23peer->sync[afi][safi] = sync;
24peer->hash[afi][safi] = hash_create (baa_hash_key, baa_hash_cmp);
25peer->hash[afi][safi] = hash_create (baa_hash_key, baa_hash_cmp,
26baa_hash_name);
27}
28#undef STRLEN_NUM
29}

Listing B.: Patch to bgp_sync_init, in bgp_advertise.c



A B. S C

1 void
2 aspath_init (void)
3 {
4 ashash = hash_create_size (32767, aspath_key_make, aspath_cmp);
5 ashash = hash_create_size (32767, aspath_key_make, aspath_cmp, "aspath");
6 }

Listing B.: Patch to aspath_init, in bgp_aspath.c

1 static void
2 cluster_init (void)
3 {
4 cluster_hash = hash_create (cluster_hash_key_make, cluster_hash_cmp);
5 cluster_hash = hash_create (cluster_hash_key_make, cluster_hash_cmp,
6 "cluster");
7 }

Listing B.: Patch to cluster_init, in bgp_attr.c

1 static void
2 transit_init (void)
3 {
4 transit_hash = hash_create (transit_hash_key_make, transit_hash_cmp);
5 transit_hash = hash_create (transit_hash_key_make, transit_hash_cmp,
6 "transit");
7 }

Listing B.: Patch to transit_init, in bgp_attr.c

1 static void
2 attrhash_init (void)
3 {
4 attrhash = hash_create (attrhash_key_make, attrhash_cmp);
5 attrhash = hash_create (attrhash_key_make, attrhash_cmp, "attr");
6 }

Listing B.: Patch to attrhash_init, in bgp_attr.c



B.. U CPU U

1community_init (void)
2{
3comhash = hash_create ((unsigned int (*) (void *))community_hash_make,
4(int (*) (const void *, const void *))community_cmp);
5(int (*) (const void *, const void *))community_cmp,
6"community");
7}

Listing B.: Patch to community_init, in bgp_community.c

1void
2ecommunity_init (void)
3{
4ecomhash = hash_create (ecommunity_hash_make, ecommunity_cmp);
5ecomhash = hash_create (ecommunity_hash_make, ecommunity_cmp, "ecommunity");
6}

Listing B.: Patch to ecommunity_init, in bgp_ecommunity.c

1distribute_list_init (int node)
2{
3disthash = hash_create ((unsigned int (*) (void *)) distribute_hash_make,
4(int (*) (const void *, const void *)) distribute_cmp);
5(int (*) (const void *, const void *)) distribute_cmp,
6"distribute");
7...
8}

Listing B.: Patch to distribute_list_init, in distribute.c

1void
2if_rmap_init (int node)
3{
4ifrmaphash = hash_create (if_rmap_hash_make, if_rmap_hash_cmp);
5ifrmaphash = hash_create (if_rmap_hash_make, if_rmap_hash_cmp, "if_rmap");
6if (node == RIPNG_NODE) {
7install_element (RIPNG_NODE, &if_ipv6_rmap_cmd);
8install_element (RIPNG_NODE, &no_if_ipv6_rmap_cmd);
9} else if (node == RIP_NODE) {
10install_element (RIP_NODE, &if_rmap_cmd);
11install_element (RIP_NODE, &no_if_rmap_cmd);
12}
13}

Listing B.: Patch to if_rmap_init, in if_rmap.c



A B. S C

1 /* Allocate new thread master. */
2 struct thread_master *
3 thread_master_create ()
4 {
5 if (cpu_record == NULL)
6 cpu_record
7 = hash_create_size (1011, (unsigned int (*) (void *))cpu_record_hash_key,
8 (int (*) (const void *, const void *))cpu_record_hash_cmp);
9 (int (*) (const void *, const void *))cpu_record_hash_cmp,

10 "cpu_record");
11

12 return (struct thread_master *) XCALLOC (MTYPE_THREAD_MASTER,
13 sizeof (struct thread_master));
14 }

Listing B.: Patch to thread_master_create, in thread.c



B.. U CPU U

B.. Miscellany

1/* Initialize command interface. Install basic nodes and commands. */
2void
3cmd_init (int terminal)
4{
5...
6if (terminal)
7{
8...
9install_element (VIEW_NODE, &show_hash_tables_cmd);
10install_element (ENABLE_NODE, &show_hash_tables_cmd);
11}
12srand(time(NULL));
13}

Listing B.: Patch to cmd_init, in command.c

1extern struct hash *hash_create (unsigned int (*) (void *),
2int (*) (const void *, const void *));
3int (*) (const void *, const void *),
4const char *name);
5extern struct hash *hash_create_size (unsigned int, unsigned int (*) (void *),
6int (*) (const void *, const void *));
7int (*) (const void *, const void *),
8const char *name);
9..
10/* Helper, exported for command.c */
11extern struct cmd_element show_hash_tables_cmd;

Listing B.: Patch to toplevel of hash.h



A B. S C

1 struct memory_list memory_list_lib[] =
2 {
3 ...
4 { MTYPE_HASH, "Hash" },
5 { MTYPE_HASH_BACKET, "Hash Bucket" },
6 { MTYPE_HASH_INDEX, "Hash Index" },
7 { MTYPE_HASH_NAME, "Hash Name" },
8 ...
9 };

Listing B.: Patch to struct memory_list, in memtypes.c

1 #include "memory.h"
2 #include "log.h"
3 #include <lib/version.h>
4 #include "thread.h"
5 #include "vector.h"
6 #include "vty.h"
7 #include "command.h"
8 #include "workqueue.h"
9 #include "hash.h"

Listing B.: Patch to toplevel of command.c



B.. R CPU U

B. Reducing CPU Utilization

B.. Resolving scheduler bug

1int
2work_queue_run (struct thread *thread)
3{
4...
5++(wq->qlen_hist[MIN(get_order(listcount(wq->items)),
6sizeof(wq->qlen_hist) / sizeof(wq->qlen_hist[0]))]);
7while (listcount(wq->items))
8for (ALL_LIST_ELEMENTS (wq->items, node, nnode, item))
9{
10...
11}
12...
13}

Listing B.: Patch to work_queue_run, in workqueue.c



A B. S C

B.. Improving hash table performance

1 ...
2 #define BGP_ATTR_UNIQ_COUNT_EST 55000
3 ...

Listing B.: Patch to toplevel of bgp_attr.h

1 void
2 bgp_sync_init (struct peer *peer)
3 {
4 afi_t afi;
5 safi_t safi;
6 struct bgp_synchronize *sync;
7

8 for (afi = AFI_IP; afi < AFI_MAX; afi++)
9 for (safi = SAFI_UNICAST; safi < SAFI_MAX; safi++)

10 {
11 ...
12 peer->hash[afi][safi] = hash_create (baa_hash_key, baa_hash_cmp);
13 if ((afi == AFI_IP) && (safi == SAFI_UNICAST)) {
14 peer->hash[afi][safi] = hash_create_size (BGP_ATTR_UNIQ_COUNT_EST,
15 baa_hash_key, baa_hash_cmp);
16 } else {
17 peer->hash[afi][safi] = hash_create (baa_hash_key, baa_hash_cmp);
18 }
19 }
20 }

Listing B.: Patch to bgp_sync_init, in bgp_advertise.c



B.. R CPU U

1static void
2attrhash_init (void)
3{
4attrhash = hash_create (attrhash_key_make, attrhash_cmp);
5/* NB: make the hash twice as large as the number of expected attributes,
6to account for copies made due to, e.g., next-hop-self.
7(mukesh.20100815) */
8attrhash = hash_create_size (BGP_ATTR_UNIQ_COUNT_EST * 2,
9attrhash_key_make, attrhash_cmp);
10}

Listing B.: Patch to attrhash_init, in bgp_attr.c



A B. S C

B. Scheduling Optimizations

B.. Improving session establishment time
Core functionality

1 int
2 peer_open (struct peer *peer)
3 {
4 /* force back to idle, but set timer to zero, for immediate open */
5 peer->v_start = 0;
6 BGP_EVENT_ADD (peer, BGP_Stop);
7 return 0;
8 }

Listing B.: Patch to peer_open, in bgpd.c



B.. S O

User interface

1DEFUN (open_ip_bgp_peer,
2open_ip_bgp_peer_cmd,
3"open ip bgp (A.B.C.D|X:X::X:X)",
4OPEN_STR
5IP_STR
6BGP_STR
7"BGP neighbor IP address to open\n"
8"BGP IPv6 neighbor to open\n")
9{
10return bgp_open_vty (vty, argv[0]);
11}

Listing B.: Patch to open_ip_bgp_peer, in bgp_vty.c

1static int
2bgp_open_vty (struct vty *vty, const char *arg)
3{
4struct bgp *bgp;
5

6bgp = bgp_get_default ();
7if (bgp == NULL)
8{
9vty_out (vty, "No BGP process is configured%s", VTY_NEWLINE);
10return CMD_WARNING;
11}
12

13return bgp_open (vty, bgp, arg);
14}
15

Listing B.: Patch to bgp_open_vty, in bgp_vty.c



A B. S C

1 static int
2 bgp_open (struct vty *vty, struct bgp *bgp, const char *arg)
3 {
4 int ret;
5 struct peer *peer;
6 union sockunion su;
7

8 /* Make sockunion for lookup. */
9 ret = str2sockunion (arg, &su);

10 if (ret < 0)
11 {
12 vty_out (vty, "Malformed address: %s%s", arg, VTY_NEWLINE);
13 return CMD_WARNING;
14 }
15 peer = peer_lookup (bgp, &su);
16 if (! peer)
17 {
18 vty_out (vty, "%%BGP: Unknown neighbor - \"%s\"%s", arg, VTY_NEWLINE);
19 return CMD_WARNING;
20 }
21

22 ret = peer_open (peer);
23

24 if (ret < 0)
25 bgp_open_vty_error (vty, peer, ret);
26

27 return CMD_SUCCESS;
28 }

Listing B.: Patch to bgp_open, in bgp_vty.c

1 static void
2 bgp_open_vty_error (struct vty *vty, struct peer *peer, int error)
3 {
4 vty_out (vty, "%%BGP: unable to open %s%s", peer->host, VTY_NEWLINE);
5 }

Listing B.: Patch to bgp_open_vty_error, in bgp_vty.c



B.. S O

1void
2bgp_vty_init (void)
3{
4...
5/* "clear ip bgp commands" */
6install_element (ENABLE_NODE, &clear_ip_bgp_all_cmd); ...
7

8install_element (ENABLE_NODE, &open_ip_bgp_peer_cmd);
9

10/* "clear ip bgp neighbor soft in" */
11install_element (ENABLE_NODE, &clear_ip_bgp_all_soft_in_cmd);
12...
13}

Listing B.: Patch to bgp_vty_init, in bgp_vty.c



A B. S C

Miscellany

1 extern int peer_maximum_prefix_set (struct peer *, afi_t, safi_t, u_int32_t, u_char, int, u_-
int16_t);

2 extern int peer_maximum_prefix_unset (struct peer *, afi_t, safi_t);
3

4 extern int peer_open (struct peer *);
5

6 extern int peer_clear (struct peer *);
7 extern int peer_clear_soft (struct peer *, afi_t, safi_t, enum bgp_clear_type);

Listing B.: Patch to toplevel of bgpd.h

1 #define NO_STR "Negate a command or set its defaults\n"
2 #define REDIST_STR "Redistribute information from another routing protocol\n"
3 #define CLEAR_STR "Reset functions\n"
4 #define OPEN_STR "Open functions\n"
5 #define RIP_STR "RIP information\n"
6 #define BGP_STR "BGP information\n"
7 #define OSPF_STR "OSPF information\n"

Listing B.: Patch to toplevel of command.h



B.. S O

B.. Improving route propagation delay

1int
2bgp_write (struct thread *thread)
3static int
4_bgp_write (struct thread *thread, unsigned int max_packets)
5{ ...
6unsigned int count = 0; ...
7/* Nonblocking write until TCP output buffer is full. */
8while (1)
9{ ...
10s = bgp_write_packet (peer); ...
11writenum = stream_get_endp (s) - stream_get_getp (s); ...
12num = write (peer->fd, STREAM_PNT (s), writenum); ...
13if (++count >= BGP_WRITE_PACKET_MAX)
14if ((max_packets) && (++count >= max_packets))
15break;
16}
17...
18}
19

20int
21bgp_write (struct thread *thread)
22{
23_bgp_write(thread, BGP_WRITE_PACKET_MAX);
24}
25

Listing B.: Patch to bgp_write, in bgp_packet.c



A B. S C

1 static int
2 bgp_update_receive (struct peer *peer, bgp_size_t size)
3 {
4 ...
5 /* NLRI is processed only when the peer is configured specific
6 Address Family and Subsequent Address Family. */
7 if (peer->afc[AFI_IP][SAFI_UNICAST])
8 {
9 ...

10 if (! attribute_len && ! withdraw_len)
11 {
12 struct listnode *node, *nnode;
13 struct peer *p;
14

15 /* End-of-RIB received */
16 SET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],
17 PEER_STATUS_EOR_RECEIVED);
18

19 /* NSF delete stale route */
20 if (peer->nsf[AFI_IP][SAFI_UNICAST])
21 bgp_clear_stale_route (peer, AFI_IP, SAFI_UNICAST);
22

23 for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
24 {
25 struct thread t;
26 time_t oldsync;
27

28 oldsync = p->synctime;
29 t.arg = p;
30

31 p->synctime = bgp_clock() + 1;
32 if (bgp_write_proceed(p))
33 {
34 /* cancel any pending write thread, since we're taking
35 care of writes here. (mukesh.20100819). */
36 BGP_WRITE_OFF(p->t_write);
37 _bgp_write(&t, 0);
38 }
39 p->synctime = oldsync;
40 }
41

42 if (BGP_DEBUG (normal, NORMAL))
43 zlog (peer->log, LOG_DEBUG, "rcvd End-of-RIB for IPv4 Unicast from %s",
44 peer->host);
45 }
46 }
47 ...
48 }

Listing B.: Patch to bgp_update_receive, in bgp_packet.c



B.. S O

B.. Improving route processing delay, Part I

1static int
2bgp_update_receive (struct peer *peer, bgp_size_t size)
3{ ...
4/* NLRI is processed only when the peer is configured specific
5Address Family and Subsequent Address Family. */
6if (peer->afc[AFI_IP][SAFI_UNICAST])
7{ ...
8if (! attribute_len && ! withdraw_len)
9{ ...
10struct thread t;
11int res;
12

13/* End-of-RIB received */
14SET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],
15PEER_STATUS_EOR_RECEIVED); ...
16

17res = WQ_SUCCESS;
18t.arg = bm ? bm->process_main_queue : NULL;
19while (bm && bm->process_main_queue && bm->process_main_queue->items
20&& listcount(bm->process_main_queue->items) &&
21(res == WQ_SUCCESS))
22res = work_queue_run(&t);
23

24for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
25{
26struct thread t;
27time_t oldsync;
28

29if (p == peer) /* expedite "upstream", not "downstream". */
30continue; /* (mukesh.2010020) */
31...
32} ...
33}
34} ...
35}

Listing B.: Patch to bgp_update_receive, in bgp_packet.c



A B. S C

1 int
2 work_queue_run (struct thread *thread)
3 {
4 ...
5 while (listcount(wq->items))
6 for (ALL_LIST_ELEMENTS (wq->items, node, nnode, item))
7 {
8 ...
9 do

10 {
11 ret = wq->spec.workfunc (wq, item->data);
12 item->ran++;
13 }
14 while ((ret == WQ_RETRY_NOW)
15 && (item->ran < wq->spec.max_retries)); ...
16 }
17 ...
18 return 0;
19 return ret;
20 }

Listing B.: Patch to work_queue_run, in workqueue.c

1 #include "thread.h"
2 #include "workqueue.h"
3 #include "stream.h"
4 #include "network.h"

Listing B.: Patch to toplevel of bgp_packet.c



B.. S O

B.. Improving route processing delay, Part II
Core functionality

1void
2bgp_announce_route (struct peer *peer, afi_t afi, safi_t safi)
3{
4...
5/* First update is deferred until ORF or ROUTE-REFRESH is received */
6if (CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_ORF_WAIT_REFRESH))
7return;
8

9/* First update is deferred until peer has sent End-of-RIB */
10if (CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_EOR_WAIT))
11return;
12

13if (safi != SAFI_MPLS_VPN)
14bgp_announce_table (peer, afi, safi, NULL, 0);
15...
16}

Listing B.: Patch to bgp_announce_route, in bgp_route.c



A B. S C

1 static int
2 bgp_update_receive (struct peer *peer, bgp_size_t size)
3 { ...
4 if (peer->afc[AFI_IP][SAFI_UNICAST])
5 { ...
6 if (! attribute_len && ! withdraw_len)
7 { ...
8 /* End-of-RIB received */
9 SET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],

10 PEER_STATUS_EOR_RECEIVED);
11

12 /* NSF delete stale route */
13 if (peer->nsf[AFI_IP][SAFI_UNICAST])
14 bgp_clear_stale_route (peer, AFI_IP, SAFI_UNICAST);
15

16 res = WQ_SUCCESS; ...
17 for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
18 { ...
19 }
20

21 if (CHECK_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],
22 PEER_STATUS_EOR_WAIT))
23 {
24 UNSET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],
25 PEER_STATUS_EOR_WAIT);
26 bgp_announce_route (peer, AFI_IP, SAFI_UNICAST);
27 if (bgp_write_proceed(peer))
28 BGP_WRITE_ON(peer->t_write, bgp_write, peer->fd);
29 }
30 ...
31 }
32 } ...
33 }

Listing B.: Patch to bgp_update_receive, in bgp_packet.c



B.. S O

Core support: Deadlock avoidance

1void
2bgp_open_capability (struct stream *s, struct peer *peer)
3{ ...
4/* Graceful restart capability */
5if (bgp_flag_check (peer->bgp, BGP_FLAG_GRACEFUL_RESTART))
6{ ...
7SET_FLAG (peer->cap, PEER_CAP_RESTART_ADV);
8stream_putc (s, BGP_OPEN_OPT_CAP);
9cap_len_pos = stream_get_endp(s);
10stream_putc (s, CAPABILITY_CODE_RESTART_LEN + 2);
11stream_putc (s, CAPABILITY_CODE_RESTART);
12cap_len_pos_2 = stream_get_endp(s);
13stream_putc (s, CAPABILITY_CODE_RESTART_LEN);
14/* NB: also encodes restart flags (mukesh.20100419) */
15stream_putw (s, peer->bgp->restart_time);
16

17/* NB: restart_time also encodes restart flags (mukesh.20100822) */
18if (CHECK_FLAG (peer->flags, PEER_FLAG_RECEIVE_FIRST)) {
19stream_putw (s, peer->bgp->restart_time | RESTART_F_BIT);
20} else {
21stream_putw (s, peer->bgp->restart_time);
22}
23...
24}
25...
26}

Listing B.: Patch to bgp_open_capability, in bgp_open.c



A B. S C

1 static int
2 bgp_capability_restart (struct peer *peer, struct capability_header *caphdr)
3 {
4 struct stream *s = BGP_INPUT (peer); ...
5

6 SET_FLAG (peer->cap, PEER_CAP_RESTART_RCV);
7 restart_flag_time = stream_getw(s);
8 if (CHECK_FLAG (restart_flag_time, RESTART_R_BIT))
9 restart_bit = 1;

10 {
11 restart_bit = 1;
12 SET_FLAG (peer->sflags, PEER_STATUS_NSF_RESTARTED);
13 }
14 UNSET_FLAG (restart_flag_time, 0xF000);
15 peer->v_gr_restart = restart_flag_time;
16 ...
17 }

Listing B.: Patch to bgp_capability_restart, in bgp_open.c

1 static int
2 bgp_establish (struct peer *peer)
3 {
4 ...
5 if (CHECK_FLAG (peer->flags, PEER_FLAG_RECEIVE_FIRST) &&
6 ! CHECK_FLAG (peer->sflags, PEER_STATUS_NSF_RESTARTED))
7 for (afi = AFI_IP ; afi < AFI_MAX ; afi++)
8 for (safi = SAFI_UNICAST ; safi < SAFI_MAX ; safi++)
9 if (CHECK_FLAG (peer->af_cap[afi][safi], PEER_CAP_RESTART_AF_RCV))

10 SET_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_EOR_WAIT);
11

12 bgp_announce_route_all (peer);
13 ...
14 }

Listing B.: Patch to bgp_establish, in bgp_fsm.c



B.. S O

Core support: Update suppression

1static int
2bgp_process_announce_selected (struct peer *peer, struct bgp_info *selected,
3struct bgp_node *rn, afi_t afi, safi_t safi)
4{
5...
6/* First update is deferred until ORF or ROUTE-REFRESH is received */
7if (CHECK_FLAG (peer->af_sflags[afi][safi],
8PEER_STATUS_ORF_WAIT_REFRESH))
9return 0;
10

11/* First update is deferred until peer has sent End-of-RIB */
12if (CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_EOR_WAIT))
13return 0;
14

15switch (rn->table->type)
16{
17case BGP_TABLE_MAIN:
18/* Announcement to peer->conf. If the route is filtered,
19withdraw it. */
20if (selected && bgp_announce_check (selected, peer, p, &attr, afi, safi))
21bgp_adj_out_set (rn, peer, p, &attr, afi, safi, selected);
22else
23bgp_adj_out_unset (rn, peer, p, afi, safi);
24break;
25...
26}
27...
28}

Listing B.: Patch to bgp_process_announce_selected, in bgp_route.c



A B. S C

1 static struct stream *
2 bgp_write_packet (struct peer *peer)
3 { ...
4 for (afi = AFI_IP; afi < AFI_MAX; afi++)
5 for (safi = SAFI_UNICAST; safi < SAFI_MAX; safi++)
6 {
7 if (CHECK_FLAG (peer->cap, PEER_CAP_RESTART_RCV) &&
8 CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_EOR_WAIT))
9 continue;

10

11 adv = FIFO_HEAD (&peer->sync[afi][safi]->withdraw);
12 if (adv)
13 {
14 s = bgp_withdraw_packet (peer, afi, safi);
15 if (s)
16 return s;
17 }
18 }
19

20 for (afi = AFI_IP; afi < AFI_MAX; afi++)
21 for (safi = SAFI_UNICAST; safi < SAFI_MAX; safi++)
22 {
23 if (CHECK_FLAG (peer->cap, PEER_CAP_RESTART_RCV) &&
24 CHECK_FLAG (peer->af_sflags[afi][safi], PEER_STATUS_EOR_WAIT))
25 continue;
26

27 adv = FIFO_HEAD (&peer->sync[afi][safi]->update);
28 if (adv)
29 { ...
30 if (s)
31 return s;
32 }
33 ...
34 }
35 ...
36 }

Listing B.: Patch to bgp_write_packet, in bgp_packet.c



B.. S O

Configuration handling

1/* neighbor receive-first */
2DEFUN (neighbor_receive_first,
3neighbor_receive_first_cmd,
4NEIGHBOR_CMD2 "receive-first",
5NEIGHBOR_STR
6NEIGHBOR_ADDR_STR2
7"wait for peer end-of-rib before sending out routes\n"
8"requires graceful restart\n")
9{
10return peer_flag_set_vty (vty, argv[0], PEER_FLAG_RECEIVE_FIRST);
11}

Listing B.: Patch to neighbor_receive_first, in bgp_vty.c

1void
2bgp_vty_init (void)
3{
4...
5/* "neighbor receive-first" commands. */
6install_element (BGP_NODE, &neighbor_receive_first_cmd);
7

8/* "neighbor passive" commands. */
9install_element (BGP_NODE, &neighbor_passive_cmd);
10install_element (BGP_NODE, &no_neighbor_passive_cmd);
11...
12}

Listing B.: Patch to bgp_vty_init, in bgp_vty.c



A B. S C

1 static void
2 bgp_config_write_peer (struct vty *vty, struct bgp *bgp,
3 struct peer *peer, afi_t afi, safi_t safi)
4 {
5 ...
6 /************************************
7 ****** Global to the neighbor ******
8 ************************************/
9 if (afi == AFI_IP && safi == SAFI_UNICAST)

10 {
11 ...
12 /* Local interface name. */
13 if (peer->ifname)
14 vty_out (vty, " neighbor %s interface %s%s", addr, peer->ifname,
15 VTY_NEWLINE);
16

17 /* Receive first. */
18 if (CHECK_FLAG (peer->flags, PEER_FLAG_RECEIVE_FIRST))
19 if (! peer_group_active (peer) ||
20 ! CHECK_FLAG (g_peer->flags, PEER_FLAG_RECEIVE_FIRST))
21 vty_out (vty, " neighbor %s receive-first%s", addr, VTY_NEWLINE);
22

23 /* Passive. */
24 if (CHECK_FLAG (peer->flags, PEER_FLAG_PASSIVE))
25 if (! peer_group_active (peer) ||
26 ! CHECK_FLAG (g_peer->flags, PEER_FLAG_PASSIVE))
27 vty_out (vty, " neighbor %s passive%s", addr, VTY_NEWLINE);
28 ...
29 }
30 ...
31 }

Listing B.: Patch to bgp_config_write_peer, in bgpd.c



B.. S O

Miscellany

1static const struct peer_flag_action peer_flag_action_list[] =
2{
3{ PEER_FLAG_PASSIVE, 0, peer_change_reset },
4{ PEER_FLAG_SHUTDOWN, 0, peer_change_reset },
5{ PEER_FLAG_DONT_CAPABILITY, 0, peer_change_none },
6{ PEER_FLAG_OVERRIDE_CAPABILITY, 0, peer_change_none },
7{ PEER_FLAG_STRICT_CAP_MATCH, 0, peer_change_none },
8{ PEER_FLAG_DYNAMIC_CAPABILITY, 0, peer_change_reset },
9{ PEER_FLAG_DISABLE_CONNECTED_CHECK, 0, peer_change_reset },
10{ PEER_FLAG_RECEIVE_FIRST, 0, peer_change_none },
11{ 0, 0, 0 }
12};

Listing B.: Patch to struct peer_flag_action, in bgpd.c

1/* BGP neighbor structure. */
2struct peer
3{ ...
4/* Peer status flags. */
5u_int16_t sflags; ...
6#define PEER_STATUS_NSF_MODE (1 << 5) /* NSF aware peer */
7#define PEER_STATUS_NSF_WAIT (1 << 6) /* wait comeback peer */
8#define PEER_STATUS_NSF_RESTARTED (1 << 7) /* peer set R bit in NSF
9capability. */
10

11/* Peer status af flags (reset in bgp_stop) */
12u_int16_t af_sflags[AFI_MAX][SAFI_MAX]; ...
13#define PEER_STATUS_EOR_SEND (1 << 5) /* end-of-rib send to peer */
14#define PEER_STATUS_EOR_RECEIVED (1 << 6) /* end-of-rib received from peer */
15#define PEER_STATUS_EOR_WAIT (1 << 7) /* waiting for end-of-rib from
16peer before sending updates
17to peer. */
18...
19}

Listing B.: Patch to struct peer, in bgpd.h



A B. S C

B. Soft Handoff
Core functionality

1 static int
2 bgp_announce_check (struct bgp_info *ri, struct peer *peer, struct prefix *p,
3 struct attr *attr, afi_t afi, safi_t safi)
4 { ...
5 /* Route-Reflect check. */
6 if (peer_sort (from) == BGP_PEER_IBGP && peer_sort (peer) == BGP_PEER_IBGP)
7 /* NB: special-case prefixes with LOCAL_FLAG_REFLECT, as though they were
8 originated by us, rather than reflected by us. (mukesh.20100823) */
9 if ((peer_sort (from) == BGP_PEER_IBGP && peer_sort (peer) == BGP_PEER_IBGP)

10 && !(ri->attr->local_flags & LOCAL_FLAG_REFLECT))
11 reflect = 1;
12 else
13 reflect = 0;
14

15 /* IBGP reflection check. */
16 if (reflect)
17 {
18 /* A route from a Client peer. */
19 if (CHECK_FLAG (from->af_flags[afi][safi], PEER_FLAG_REFLECTOR_CLIENT))
20 { ...
21 if (bgp_flag_check (bgp, BGP_FLAG_NO_CLIENT_TO_CLIENT))
22 if (CHECK_FLAG (peer->af_flags[afi][safi], PEER_FLAG_REFLECTOR_CLIENT))
23 return 0;
24 }
25 else
26 {
27 /* A route from a Non-client peer. Reflect to all other
28 clients. */
29 if (! CHECK_FLAG (peer->af_flags[afi][safi], PEER_FLAG_REFLECTOR_CLIENT))
30 return 0;
31 }
32 }
33 ...
34 return 1;
35 }

Listing B.: Patch to bgp_announce_check, in bgp_route.c



B.. S H

1void
2bgp_soft_reconfig_in (struct peer *peer, afi_t afi, safi_t safi)
3{
4struct bgp_node *rn;
5struct bgp_table *table;
6struct listnode *node, *nnode;
7struct peer *p;
8struct thread t;
9int res;
10

11if (peer->status != Established)
12return;
13

14if (safi != SAFI_MPLS_VPN)
15bgp_soft_reconfig_table (peer, afi, safi, NULL);
16...
17

18res = WQ_SUCCESS;
19t.arg = bm ? bm->process_main_queue : NULL;
20while (bm && bm->process_main_queue && bm->process_main_queue->items
21&& listcount(bm->process_main_queue->items) &&
22(res == WQ_SUCCESS))
23res = work_queue_run(&t);
24

25for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
26{
27if (p->status != Established)
28continue;
29

30t.arg = p;
31p->synctime = bgp_clock() + 1;
32/* cancel any pending write thread, since we're taking
33care of writes here. (mukesh.20100625). */
34BGP_WRITE_OFF(p->t_write);
35bgp_write(&t);
36}
37}

Listing B.: Patch to bgp_soft_reconfig_in, in bgp_route.c



A B. S C

1 static int
2 bgp_update_receive (struct peer *peer, bgp_size_t size)
3 { ...
4 if (peer->afc[AFI_IP][SAFI_UNICAST])
5 { ...
6 if (! attribute_len && ! withdraw_len)
7 { ...
8 /* End-of-RIB received */
9 SET_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],

10 PEER_STATUS_EOR_RECEIVED);
11

12 /* NSF delete stale route */
13 if (peer->nsf[AFI_IP][SAFI_UNICAST])
14 bgp_clear_stale_route (peer, AFI_IP, SAFI_UNICAST);
15

16 res = WQ_SUCCESS; ...
17 for (ALL_LIST_ELEMENTS (peer->bgp->peer, node, nnode, p))
18 { ...
19 }
20

21 if (CHECK_FLAG (peer->af_sflags[AFI_IP][SAFI_UNICAST],
22 PEER_STATUS_EOR_WAIT))
23 { ...
24 }
25

26 if (BGP_DEBUG (normal, NORMAL))
27 zlog (peer->log, LOG_DEBUG, "rcvd End-of-RIB for IPv4 Unicast from %s",
28 peer->host);
29

30 if (bgp_flag_check (peer->bgp, BGP_FLAG_LOG_NEIGHBOR_CHANGES))
31 zlog_info ("rcvd End-of-RIB for IPv4 Unicast from %s", peer->host);
32 }
33 }
34 ...
35 }

Listing B.: Patch to bgp_update_receive, in bgp_packet.c



B.. S H

Configuration handling

1/* For reflect set. */
2static route_map_result_t
3route_set_reflect (void *rule, struct prefix *prefix, route_map_object_t type, void *object)
4{
5struct bgp_info *bgp_info;
6

7if (type == RMAP_BGP)
8{
9bgp_info = object;
10bgp_info->attr->local_flags |= LOCAL_FLAG_REFLECT;
11}
12

13return RMAP_OKAY;
14}
15

16/* Set reflect rule structure. */
17struct route_map_rule_cmd route_set_reflect_cmd =
18{
19"reflect",
20route_set_reflect,
21NULL,
22NULL,
23};
24

Listing B.: Patch to route_set_reflect, in bgp_attr.h



A B. S C

1 DEFUN (set_reflect,
2 set_reflect_cmd,
3 "set reflect",
4 SET_STR
5 "Local flag indicating route should be reflected to IBGP peers\n")
6 {
7 return bgp_route_set_add (vty, vty->index, "reflect", NULL);
8 }

Listing B.: Patch to set_reflect, in bgp_attr.h

1 DEFUN (no_set_reflect,
2 no_set_reflect_cmd,
3 "no set reflect",
4 NO_STR
5 SET_STR
6 "Local flag indicating route should be reflected to IBGP peers\n")
7 {
8 return bgp_route_set_delete (vty, vty->index, "reflect", NULL);
9 }

Listing B.: Patch to no_set_reflect, in bgp_attr.h

1 void
2 bgp_route_map_init (void)
3 {
4 ...
5 route_map_install_set (&route_set_ecommunity_rt_cmd);
6 route_map_install_set (&route_set_ecommunity_soo_cmd);
7 route_map_install_set (&route_set_reflect_cmd);
8 ...
9 install_element (RMAP_NODE, &no_set_originator_id_cmd);

10 install_element (RMAP_NODE, &no_set_originator_id_val_cmd);
11 install_element (RMAP_NODE, &set_reflect_cmd);
12 install_element (RMAP_NODE, &no_set_reflect_cmd);
13 ...
14 }

Listing B.: Patch to bgp_route_map_init, in bgp_attr.h



B.. S H

Miscellany

1...
2/* Local flags for BGP paths. */
3#define LOCAL_FLAG_REFLECT 0x01
4...
5struct attr
6{
7...
8/* Path origin attribute */
9u_char origin;
10

11/* Local flags */
12u_char local_flags;
13};
14...

Listing B.: Patch to toplevel of bgp_attr.h





Bibliography

[] Adobe Systems. Adobe Flash Media Server ActionScript . Language Reference / Ac-
tionScript . Language Reference / NetStream class / NetStream.bufferTime. API docu-
mentation, retrieved March , . http://livedocs.adobe.com/flashmediaserver/3.0/
hpdocs/help.html?content=00000175.html#157469. (Cited in Section ...)

[] Adobe Systems. Adobe Unveils Flash Media Server . Software. Press Release. http://www.
adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200811/111708AdobeFMS35.pdf,
November . (Cited in Section ...)

[] Sharad Agarwal, Chen-Nee Chuah, Supratik Bhattacharyya, and Christophe Diot. Impact of
BGP dynamics on router CPU utilization. In Passive and Active Measurement Workshop, .
(Cited in Section ...)

[] Mukesh Agrawal, Susan R. Bailey, Albert Greenberg, Jorge Pastor, Panagiotis Sebos, Srini-
vasan Seshan, Kobus van der Merwe, and Jennifer Yates. RouterFarm: Towards a dynamic,
manageable network edge. In Proceedings of the ACM SIGCOMM Workshop on Internet Network
Management, September . (Cited in Sections .. and .)

[] Akamai Technologies. The State of the Internet. Whitepaper. http://www.akamai.com/
dl/whitepapers/Akamai_state_of_internet_q32010.pdf, rd Quarter . (Cited in Section
...)

[] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient
Overlay Networks. In Proceedings of the th ACM Symposium on Operating Systems Principles
(SOSP ’), pages –, Banff, Canada, October . (Cited in Section ...)

[] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Rohit Rao. Improving Web
availability for clients with MONET. In nd Symposium on Network Systems Design and Imple-
mentation (NSDI ), Boston, MA, May . (Cited in Sections  and ...)

[] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R. Hen-
zinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger, and
William E. Weihl. Continuous profiling: where have all the cycles gone? ACM Transactions on
Computer Systems, ():–, . (Cited in Section ..)

[] AT&T. Global IP Network Averages. Web site, retrieved March , . http://ipnetwork.
bgtmo.ip.att.net/pws/averages.html, . (Cited in Section ...)

[] Tony Bates, Ravi Chandra, and Enke Chen. BGP route reflection — An alternative to full mesh
IBGP. RFC , April . (Cited in Section ...)



http://livedocs.adobe.com/flashmediaserver/3.0/hpdocs/help.html?content=00000175.html#157469
http://livedocs.adobe.com/flashmediaserver/3.0/hpdocs/help.html?content=00000175.html#157469
http://www.adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200811/111708AdobeFMS35.pdf
http://www.adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200811/111708AdobeFMS35.pdf
http://www.akamai.com/dl/whitepapers/Akamai_state_of_internet_q32010.pdf
http://www.akamai.com/dl/whitepapers/Akamai_state_of_internet_q32010.pdf
http://ipnetwork.bgtmo.ip.att.net/pws/averages.html
http://ipnetwork.bgtmo.ip.att.net/pws/averages.html

A B. B

[] Glenn Gabriel Ben-Yosef. The evolution of resiliency. http://www.networkworld.com/supp/
ii2003/0224intelinfranetwork.html, February . (Cited in Section ...)

[] Peter Bickford. Worth the wait? Netscape DevEdge: View Source, October . (Cited in Section
...)

[] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the eye of the beholder: meeting
users’ requirements for internet quality of service. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages –, . (Cited in Section ...)

[] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New Techniques
for Congestion Detection and Avoidance. In Proceedings of the SIGCOMM ’ Symposium on
Communications Architectures and Protocols, August . (Cited in Section ...)

[] Henning Brauer. A Secure BGP Implemenation. EuroBSDCon . http://quigon.bsws.
de/papers/euroBSDCon2004/index.html. (Cited in Section ...)

[] Henning Brauer and Claudio Jeker. OpenBGPD. http://www.openbgpd.org/. (Cited in Section
...)

[] Di-Fa Chang, Ramesh Govindan, and John Heidemann. An empirical study of router repsonse
to large BGP routing table load. In Proceedings of the nd ACM SIGCOMM Workshop on Internet
Measurement, pages –, Marseille, France, . (Cited in Section ...)

[] Cisco Systems. Cisco Nonstop Forwarding for BGP: Deployment & Troubleshooting. http:
//www.cisco.com/en/US/products/ps6550/products_white_paper09186a008016317c.
shtml. (Cited in Sections . and ...)

[] Cisco Systems. GRP redundant processor support. http://www.cisco.com/en/US/
products/sw/iosswrel/ps1824/products_feature_guide09186a00800a17ca.html. (Cited in
Section ...)

[] Cisco Systems. Route processor redundancy plus for the Cisco  series In-
ternet router. http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120limit/120st/120st17/rpr_plus.htm. (Cited in Section ...)

[] Cisco Systems. Stateful switchover. http://www.cisco.com/univercd/cc/td/doc/product/
software/ios120/120newft/120limit/120s/120s22/sso120s.htm. (Cited in Section ...)

[] Cisco Systems. A brief overview of Packet over SONET APS. Cisco website, Document ID
, July . (Cited in Section ...)

[] Cisco Systems. Cisco Nonstop Forwarding with Stateful Switchover Deployment
Guide. http://www.cisco.com/en/US/technologies/tk869/tk769/technologies_white_
paper0900aecd801dc5e2.pdf, August . (Cited in Section ...)

[] Cisco Systems. Cisco IOS IP Routing: BGP Command Reference. http://www.cisco.com/
en/US/docs/ios/iproute_bgp/command/reference/irg_bgp1.pdf, July . (Cited in Section
...)



http://www.networkworld.com/supp/ii2003/0224intelinfranetwork.html
http://www.networkworld.com/supp/ii2003/0224intelinfranetwork.html
http://quigon.bsws.de/papers/euroBSDCon2004/index.html
http://quigon.bsws.de/papers/euroBSDCon2004/index.html
http://www.openbgpd.org/
http://www.cisco.com/en/US/products/ps6550/products_white_paper09186a008016317c.shtml
http://www.cisco.com/en/US/products/ps6550/products_white_paper09186a008016317c.shtml
http://www.cisco.com/en/US/products/ps6550/products_white_paper09186a008016317c.shtml
http://www.cisco.com/en/US/products/sw/iosswrel/ps1824/products_feature_guide09186a00800a17ca.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1824/products_feature_guide09186a00800a17ca.html
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st17/rpr_plus.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st17/rpr_plus.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s22/sso120s.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s22/sso120s.htm
http://www.cisco.com/en/US/technologies/tk869/tk769/technologies_white_paper0900aecd801dc5e2.pdf
http://www.cisco.com/en/US/technologies/tk869/tk769/technologies_white_paper0900aecd801dc5e2.pdf
http://www.cisco.com/en/US/docs/ios/iproute_bgp/command/reference/irg_bgp1.pdf
http://www.cisco.com/en/US/docs/ios/iproute_bgp/command/reference/irg_bgp1.pdf

[] Cisco Systems. Cross-platform release notes for Cisco IOS release . T, part : Caveats
for .()T through .()T. http://www.cisco.com/en/US/docs/ios/12_4t/release/
notes/124TCAVS.html, August . (Cited in Sections  and ..)

[] Rohit Dube. A comparison of scaling techniques for BGP. Computer Communication Review,
():–, . (Cited in Section ...)

[] European Advanced Networking Test Center. Cisco XR series service separation architec-
ture tests. http://www.eantc.de/fileadmin/eantc/downloads/test_reports/2003-2005/
EANTC-Summary-Report-Cisco-12kXR.FINAL.pdf, May . (Cited in Section ...)

[] Kevin Fall and Sally Floyd. Simulation-based Comparisons of Tahoe, Reno, and Sack TCP.
Computer Communication Review, ():–, July . (Cited in Section ...)

[] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jacobus van der
Merwe. The case for separating routing from routers. In Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, August . (Cited in Section ...)

[] Anja Feldmann, Hongwei Kong, Olaf Maennel, and Alexander Tudor. Measuring BGP pass-
through times. In Passive and Active Measurement Workshop, April . (Cited in Section ...)

[] Jay Fenlason. Gnu gprof. http://sourceware.org/binutils/docs/gprof/index.html,
. (Cited in Section ..)

[] Ondrej Filip, Libor Forst, Pavel Machek, Martin Mares, and Ondrej Zajicek. The BIRD internet
routing daemon. http://bird.network.cz. (Cited in Section ...)

[] Ondrej Filip, Pavel Machek, Martin Mares, and Ondrej Zajicek. BIRD Programmer’s Docu-
mentation. http://bird.network.cz/?get_doc&f=prog.html. (Cited in Section ...)

[] Sally Floyd, Tom Henderson, and Andrei Gurtov. The NewReno Modification for TCP’s Fast
Recovery Algorithm. RFC , April . (Cited in Section ...)

[] Ruomei Gao, Constantinos Dovrolis, and Ellen W. Zegura. Interdomain ingress traffic en-
gineering through optimized as-path prepending. In In Proceedings of IFIP Networking, .
(Cited in Section ...)

[] Joel Gottlieb, Albert Greenberg, Jennifer Rexford, and Jia Wang. Automated provisioning of
BGP customers. IEEE Network magazine, Nov/Dec . (Cited in Section ...)

[] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Geoffrey
Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate D approach to network control and
management. In ACM SIGCOMM Computer Communication Review, October . (Cited in
Section ...)

[] Timothy G. Griffin and Brian J. Premore. An experimental analysis of BGP convergence time.
In th International Conference on Network Protocols, . (Cited in Section ...)

[] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin Radoslavov. Desigin-
ing extensible IP router software. In nd Symposium on Network Systems Design and Implemen-
tation (NSDI ), . (Cited in Sections .. and ...)



http://www.cisco.com/en/US/docs/ios/12_4t/release/notes/124TCAVS.html
http://www.cisco.com/en/US/docs/ios/12_4t/release/notes/124TCAVS.html
http://www.eantc.de/fileadmin/eantc/downloads/test_reports/2003-2005/EANTC-Summary-Report-Cisco-12kXR.FINAL.pdf
http://www.eantc.de/fileadmin/eantc/downloads/test_reports/2003-2005/EANTC-Summary-Report-Cisco-12kXR.FINAL.pdf
http://sourceware.org/binutils/docs/gprof/index.html
http://bird.network.cz
http://bird.network.cz/?get_doc&f=prog.html

A B. B

[] Andy Heffernan. Protection of BGP Sessions via the TCP MD Signature Option. RFC ,
August . (Cited in Section ...)

[] John A. Hoxmeier and Chris Dicesare. System response time and user satisfaction: An ex-
perimental study of browser-based applications. In Proceedings of the Association of Information
Systems Americas Conference, pages –, . (Cited in Section ...)

[] Geoff Huston. BGP in . RIPE  Meeting. http://www.ripe.net/ripe/meetings/
ripe-60/presentations/Huston-BGP_in_2009.pdf, May . (Cited in Section ...)

[] Gianluca Iannaccone, Chen-Nee Chuah, Supartik Bhattacharyya, and Christophe Diot. Feasi-
bility of IP restoration in a tier- backbone. In IEEE Networks Magazine, Special Issue on Protec-
tion, Restoration and Disaster Recovery, March . (Cited in Sections  and ...)

[] International Telecommunication Union. World telecommunication/ICT development re-
port  – monitoring the WSIS targets. http://www.itu.int/dms_pub/itu-d/opb/ind/
D-IND-WTDR-2010-PDF-E.pdf. (Cited in Section .)

[] Internet Systems Consortium. ISC domain survey. http://ftp.isc.org/www/survey/
reports/2010/07/. (Cited in Section .)

[] Kunihiro Ishiguro. GNU Zebra. http://www.zebra.org. (Cited in Section ...)

[] Paul Jakma, Vincent Jardin, Denis Ovsienko, Andrew Schorr, Hasso Tepper, Greg Troxel, and
David Young. Quagga current releases. http://www.quagga.net/download/. (Cited in Section
...)

[] Paul Jakma, Vincent Jardin, Denis Ovsienko, Andrew Schorr, Hasso Tepper, Greg Troxel, and
David Young. Quagga routing software suite. http://www.quagga.net. (Cited in Section ...)

[] Paul Jakma, Denis Ovsienko, and Joakim Tjernlund. Wishlist for any future redesign of the
Zebra RIB. https://bugzilla.quagga.net/show_bug.cgi?id=431, . (Cited in Section .)

[] Eric Keller, Jennifer Rexford, and Jacobus van der Merwe. Seamless BGP migration with router
grafting. In th USENIX Symposium on Networked Systems Design and Implementation, . (Cited
in Sections . and ...)

[] D. Richard Kuhn. Sources of Failure in the Public Switched Telephone Network. IEEE Com-
puter, :–, April . (Cited in Section .)

[] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed Internet routing
convergence. In Proceedings of the SIGCOMM  Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages –, Stockholm, Sweden,
. (Cited in Sections .. and ...)

[] Craig Labovitz, Abha Ahuja, and Farnam Jahanian. Experimental study of internet stability
and backbone failures. In Proceedings of the Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing, June . (Cited in Section .)

[] Craig Labovitz and Masaki Hirabaru. Routing technology final report (NCR-). (Cited
in Section ...)



http://www.ripe.net/ripe/meetings/ripe-60/presentations/Huston-BGP_in_2009.pdf
http://www.ripe.net/ripe/meetings/ripe-60/presentations/Huston-BGP_in_2009.pdf
http://www.itu.int/dms_pub/itu-d/opb/ind/D-IND-WTDR-2010-PDF-E.pdf
http://www.itu.int/dms_pub/itu-d/opb/ind/D-IND-WTDR-2010-PDF-E.pdf
http://ftp.isc.org/www/survey/reports/2010/07/
http://ftp.isc.org/www/survey/reports/2010/07/
http://www.zebra.org
http://www.quagga.net/download/
http://www.quagga.net
https://bugzilla.quagga.net/show_bug.cgi?id=431

[] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet Routing Instability. In Pro-
ceedings of the SIGCOMM ’ Symposium on Communications Architectures and Protocols, Cannes,
France, . (Cited in Sections .. and ...)

[] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Origins of Internet Routing Instability.
In Proceedings of IEEE INFOCOM , New York, NY, . (Cited in Sections .. and ...)

[] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Kleinrock, Daniel C.
Lynch, Jon Postel, Lawrence G. Roberts, and Stephen Wolff. A brief history of the Internet.
http://www.isoc.org/internet/history/brief.shtml. (Cited in Section .)

[] John Levon. OProfile internals. http://oprofile.sourceforge.net/doc/internals/
index.html, . (Cited in Sections  and ..)

[] Olaf Maennel and Anja Feldmann. Realistic BGP traffic for test labs. In Proceedings of the
SIGCOMM ’ Symposium on Communications Architectures and Protocols, August . (Cited in
Section ...)

[] David A. Maltz and Pravin Bhagwat. MSOCKS: An architecture for transport layer mobility.
In Proceedings of IEEE INFOCOM , March . (Cited in Section ..)

[] David A. Maltz, Jibin Zhan, Geoffrey Xie, Hui Zhang, Gisli Hjalmtysson, Albert Greenberg,
and Jennifer Rexford. Structure Preserving Anonymization of Router Configuration Data. In
Proceedings of ACM Internet Measurement Conference , Sicily, Italy, . (Cited in Section ...)

[] David Meyer, Lixiz Zhang, and Kevin Fall. Report from the IAB Workshop on Routing and
Addressing. RFC , September . (Cited in Section ...)

[] Robert B. Miller. Response time in man-computer conversational transactions. In Proceedings
of the December -, , Fall Joint Computer Conference, Part I, AFIPS ’, pages –. (Cited
in Section ...)

[] John Moy. OSPF version . RFC , April . (Cited in Section ...)

[] David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do Internet services
fail, and what can be done about it? In Proc. of the th USENIX Symposium on Internet Technolo-
gies and Systems, . (Cited in Section ..)

[] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James Cutler,
Patricia Enriquez, Armando Fox, Emre Kıcıman, Matthew Merzbacher, David Oppenheimer,
Naveen Sastry, William Tetzlaff, Jonathan Traupman, and Noah Treuhaft. Recovery Oriented
Computing (ROC): Motivation, Definition, Techniques, and Case Studies. Technical Report
UCB//CSD--, University of California at Berkeley, Berkeley, CA, March . (Cited in
Section ..)

[] Johan Petersson. What is linux-gate.so.1? http://www.trilithium.com/johan/2005/08/
linux-gate/, . (Cited in Section ..)

[] Marguerite Reardon. IP reliability. Light Reading, March . (Cited in Sections , .., and .)

[] Yahov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol  (BGP-). RFC ,
January . (Cited in Sections .., .., .., .., .., .., .., .., and ...)



http://www.isoc.org/internet/history/brief.shtml
http://oprofile.sourceforge.net/doc/internals/index.html
http://oprofile.sourceforge.net/doc/internals/index.html
http://www.trilithium.com/johan/2005/08/linux-gate/
http://www.trilithium.com/johan/2005/08/linux-gate/

A B. B

[] Yakov Rekhter, Robert G Moskowitz, Daniel Karrenberg, Geert Jan de Groot, and Eliot Lear.
Address allocation for private internets. RFC , February . (Cited in Section ...)

[] Alvaro Retana and Russ White. BGP Custom Decision Process. Internet Draft. http://tools.
ietf.org/html/draft-retana-bgp-custom-decision-00, October . (Cited in Section ...)

[] Carsten Rossenhövel. -Gig Router Test Results. Light Reading, November . (Cited in
Sections .. and ...)

[] Srihari R. Sangle, Yakov Rekhter, Rex Fernando, John G. Scudder, and Enke Chen. Graceful
restart mechanism for BGP. RFC , January . (Cited in Sections ., , .., .., ., ., .,
and .)

[] Panagiotis Sebos, Jennifer Yates, Guangzhi Li, Dan Rubenstein, and Monica Lazer. An inte-
grated IP/optical approach for efficient access router failure recovery. In Optical Fiber Com-
munications Conference. IEEE, . (Cited in Sections . and ...)

[] Ian Shields. Learn Linux, : Manage shared libraries. http://www.ibm.com/
developerworks/linux/library/l-lpic1-v3-102-3/, . (Cited in Section ..)

[] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford. Dynamics of hot-potato
routing in IP networks. In Proceedings of the International Conference on Measurements and Mod-
eling of Computer Systems, . (Cited in Section ...)

[] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
Conn., . (Cited in Section ...)

[] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, Conn., . (Cited in Section
...)

[] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics
Press, Cheshire, Conn., . (Cited in Section ...)

[] Edward R. Tufte. Beautiful Evidence. Graphics Press, Cheshire, Conn., . (Cited in Section
...)

[] University of Oregon Advanced Network Technology Center. University of Oregon Route
Views Project. http://www.routeviews.org/. (Cited in Sections .. and ...)

[] J. Van der Merwe, A. Cepleanu, K. D’Souza, B. Freeman, A. Greenberg, D. Knight, R. McMil-
lan, D. Moloney, J. Mulligan, H. Nguyen, M. Nguyen, A. Ramarajan, S. Saad, M. Satterlee,
T. Spencer, D. Toll, and S. Zelingher. Dynamic connectivity management with an intelligent
route service control point. In Proceedings of the  SIGCOMM Workshop on Internet Network
Management, INM ’, pages –. ACM, . (Cited in Section ...)

[] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe, and Jennifer Rexford. Virtual
routers on the move: Live router migration as a network-management primitive. In Proceedings
of the SIGCOMM  Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, August . (Cited in Sections . and ...)



http://tools.ietf.org/html/draft-retana-bgp-custom-decision-00
http://tools.ietf.org/html/draft-retana-bgp-custom-decision-00
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.routeviews.org/

[] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment for dis-
tributed systems and networks. In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, pages –, Boston, MA, December . USENIX Association.
(Cited in Section ...)

[] Qiang Wu, Yong Liao, Tilman Wolf, and Lixin Gao. Benchmarking BGP routers. In Proc.
of IEEE International Symposium on Workload Characterization (IISWC), Boston, MA, September
. (Cited in Sections .., .., .., .., and ...)

[] XORP, Inc. XORP BGP routing daemon, version .. http://xorp.org/releases/1.6/docs/
bgp/bgp.pdf, . (Cited in Sections .. and ...)

[] Beichuan Zhang, Vamsi Kambhampati, Mohit Lad, Daniel Massey, and Lizia Zhang. Identi-
fying BGP routing table transfers. In ACM SIGCOMM  Workshop on Mining Network Data,
pages –, Philadelphia, Pennsylvania, . (Cited in Section ...)



http://xorp.org/releases/1.6/docs/bgp/bgp.pdf
http://xorp.org/releases/1.6/docs/bgp/bgp.pdf

Colophon
This document was prepared with GNU Emacs, and set
using XƎLTEX. System charts were produced using the
matplotlib plotting package, with text rendered by LTEX.
Various other illustrations were created with Dia, GIMP,
Graphviz, Inkscape, matplotlib, and OpenOffice. The text
is set primarily in TEX Gyre Pagella, with the Hindi text in
the dedication set in Kalimati, and the stylized signature
in the acknowledgements set in Zapfino.

	1 Introduction
	1.1 Existing Solutions
	1.2 Our Thesis
	1.3 Our Approach
	1.4 Scope
	1.5 Our Contributions
	1.6 Dissertation Roadmap

	2 Baseline
	2.1 Experiment Environment
	2.1.1 Network Model
	2.1.2 Experimental Network Topology
	2.1.3 Routing Tables
	2.1.4 Software
	2.1.5 Measurement Apparatus
	2.1.6 Experiment Framework

	2.2 Restart Procedure
	2.3 Experimental Results
	2.3.1 Outage times on Low Spec hardware
	2.3.2 Benefits of faster hardware

	2.4 Conclusion

	3 Rehoming
	3.1 Rehoming Goals
	3.2 Na rehoming
	3.2.1 High-level comparison to router restart
	3.2.2 In-depth comparison of trials with the shortest overall outage times
	3.2.3 Comparison of trials with the longest overall outage times
	3.2.4 BGP timeout behavior
	3.2.5 BGP session establishment behavior
	3.2.6 Avenues for improvement

	3.3 Clean shutdown rehoming
	3.3.1 Rehoming procedure
	3.3.2 Empirical results
	3.3.3 Avenues for improvement

	3.4 Conclusion

	4 Graceful Rehoming
	4.1 Introduction to Graceful Restart
	4.1.1 Overview of Graceful Restart
	4.1.2 Graceful Restart in Practice

	4.2 Experiment Setup
	4.2.1 Code Modifications
	4.2.2 Forwarding State Parameter

	4.3 Graceful Restart with clean shutdown
	4.4 Graceful Restart with na rehoming
	4.5 Graceful Restart with local-preference
	4.5.1 Configuration Notes
	4.5.2 Empirical Results

	4.6 Design discussion
	4.7 Avenues for improvement
	4.8 Conclusion

	5 On Code: Processing Optimizations
	5.1 CPU Profiling With OProfile
	5.2 Optimizing zebra
	5.2.1 Finding hot-spots with OProfile
	5.2.2 Gleaning behavior from logfile messages
	5.2.3 Deeper insight from instrumentation and code inspection
	5.2.4 Resolving the hot-spot, and assessing our improvements
	5.2.5 Avenues for improvement

	5.3 Optimizing bgpd
	5.3.1 Finding the hot-spot
	5.3.2 Resolving the hot-spot, and assessing our improvements
	5.3.3 Avenues for improvement

	5.4 Conclusion

	6 On Timing: Scheduling Optimizations
	6.1 Evaluation Framework
	6.2 Optimizing Session Establishment
	6.2.1 Finding the problem
	6.2.2 Our Patch
	6.2.3 Evaluation and Avenues for Improvement

	6.3 Optimizing Route Propagation
	6.3.1 Finding the problem
	6.3.2 Our Patch
	6.3.3 Evaluation

	6.4 Optimizing Route Processing, Part I
	6.4.1 Finding the problem, and our patch
	6.4.2 Evaluation
	6.4.3 Diagnosis

	6.5 Optimizing Route Processing, Part II
	6.5.1 Finding the problem, and our patch
	6.5.2 Evaluation, and Design discussion
	6.5.3 Avenues for improvement

	6.6 Conclusion

	7 ZIRO: Ziro Interruption Rehoming
	7.1 The Soft Handoff Concept
	7.1.1 Our route-map
	7.1.2 Our patch
	7.1.3 Our rehoming procedure

	7.2 ZIRO Results
	7.2.1 Evaluation
	7.2.2 Diagnosis
	7.2.3 Revision and Re-evaluation
	7.2.4 Design Discussion

	7.3 Simplifying ZIRO
	7.3.1 Removing changes to scheduling policy
	7.3.2 Removing CPU optimizations

	7.4 ZIRO at Scale
	7.5 ZIRO Interruption
	7.5.1 Impact of ZIRO on TCP streams
	7.5.2 Impact of ZIRO on TCP applications
	7.5.3 Impact on video conferencing

	7.6 Conclusion

	8 Dénouement
	8.1 Design Principles
	8.2 Related Work
	8.2.1 Internet Reliability
	8.2.2 BGP Behavior and Performance
	8.2.3 Other Related Work

	8.3 Future Work
	8.3.1 Experimental Validation
	8.3.2 Usage Scenarios
	8.3.3 Configuration Management
	8.3.4 Generalizing to Other BGP Implementations
	8.3.5 Improving BGP Implementations

	8.4 Concluding Remarks

	A Supplemental System Charts
	B Source Code
	B.1 Implementation of router-id Spoofing
	B.1.1 Core functionality
	B.1.2 Configuration handling

	B.2 Improvements to Quagga's Graceful Restart Implementation
	B.3 Understanding CPU Utilization
	B.3.1 Capturing scheduler statistics
	B.3.2 Capturing hash table statistics
	B.3.3 Miscellany

	B.4 Reducing CPU Utilization
	B.4.1 Resolving scheduler bug
	B.4.2 Improving hash table performance

	B.5 Scheduling Optimizations
	B.5.1 Improving session establishment time
	B.5.2 Improving route propagation delay
	B.5.3 Improving route processing delay, Part I
	B.5.4 Improving route processing delay, Part II

	B.6 Soft Handoff

	Bibliography

