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Abstract

Category-level object recognition is a fundamental capability for the poten-
tial use of robots in the assistance of humans in useful tasks. There have been
numerous vision-based object recognition systems yielding fast and accurate
results in constrained environments. However, by depending on visual cues,
these techniques are susceptible to object variations in size, lighting, rotation,
and pose, all of which cannot be avoided in real video data. Thus, the task of
object recognition still remains very challenging.

My thesis work builds upon the fact that robots can observe humans inter-
acting with the objects in their environment. We refer to the set of objects,
which can be involved in the interaction as ‘interactionable’ objects. The in-
teraction of humans with the ‘interactionable’ objects provides numerous non-
visual cues to the identity of objects.

In this thesis, I will introduce a flexible object recognition approach called
Multiple-Cue Object Recognition (MCOR) that can use multiple cues of any
predefined type, whether they are cues intrinsic to the object or provided by
observation of a human.

In pursuit of this goal, the thesis will provide several contributions: A rep-
resentation for the multiple cues including an object definition that allows for
the flexible addition of these cues; Weights that reflect the various strength
of association between a particular cue and a particular object using a prob-
abilistic relational model, as well as object displacement values for localizing
the information in an image; Tools for defining visual features, segmentation,
tracking, and the values for the non-visual cues; Lastly, an object recognition
algorithm for the incremental discrimination of potential object categories.

We evaluate these contributions through a number of methods including
simulation to demonstrate the learning of weights and recognition based on an
analytical model, an analytical model that demonstrates the robustness of the
MCOR framework, and recognition results on real video data using a number
of datasets including video taken from a humanoid robot (Sony QRIO), video
captured from a meeting setting, scripted scenarios from outside universities,
and unscripted TV cooking data.

Using the datasets, we demonstrate the basic features of the MCOR algo-
rithm including its ability to use multiple cues of different types. We demon-
strate the applicability of MCOR to an outside dataset. We show that MCOR
has better recognition results over vision-only recognition systems, and show
that performance only improves with the addition of more cue types.
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Chapter 1

Introduction

1.1 Thesis Problem

The ability for an agent to accomplish a variety of tasks in an environment depends heavily
on the reliability of visual recognition with regards to objects in that environment. Object
recognition in the field of computer vision focuses on the task of identifying and locating
a set of objects in an image or video sequence. The precise definition of object recognition
can vary significantly depending upon the definition of “identify” and “locate”. For our
thesis work, we focus on category-level identification of the objects, in which the goal is
to determine what category or class segmented regions belong to in an image. We define
recognition as successful if the correct category label is attached to a point or region
that lies somewhere within the true segmentation of that object in an image. Figure 1.1
demonstrates an example result.

Figure 1.1: Example of category-level object recognition

We make an additional distinction between object recognition with images and object
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recognition with video. Object recognition has proven to be a significantly difficult chal-
lenge especially with the complexity of real world data, in which there is great variation
in both the appearance of objects within a single object class (e.g., mugs may come in
many shapes and colors - Figure 1.2), and in the appearance of the same object under
various circumstances (e.g., the same object can appear different with changes in pose,
size and lighting - Figure 1.3 top-left, bottom-left, and right respectively). The varying
appearances and circumstances can extremely change the pixel values in an image for
the same object. Static-image object recognition, as well as some video-based ones, have
dealt with this complexity by focusing on learning robust visual features. Although great
progress has been made along these lines, there is still much to be done in order to build
an object recognition system that can be used under various real world scenarios. Our
thesis attempts to address this problem by further utilizing the additional properties and
information provided by the multimedia, temporal and sequential nature of video data.

Figure 1.2: Example of the many possible shapes and appearances of a single object

Figure 1.3: Example of numerous poses, sizes, and lighting effects for an object

When utilizing video information, we are particularly interested in the important observa-
tion that the environment and context around an object can provide numerous non-visual
cues towards the identity of the objects, such as the interaction of humans with those
objects. In this thesis, we build upon such interactions to improve object recognition. The
agent can use activity recognition, speech recognition, and any other recognition system
readily available to extract information from the interaction. For our thesis, we provide a
framework that allows for the integration of these non-visual activity cues, speech cues, and
other cues along with vision cues to produce more informed and robust object recognition,
which we call Multiple-Cue Object Recognition (MCOR) .
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Since Multiple-Cue Object Recognition can utilize information obtained through the ob-
servation of interactions with an object by a human or any other agent, we define the term
‘interactionable’ objects for the set of objects that can obtain the greatest benefit from
this algorithm for lack of an equivalent term currently existing. We define ‘interactionable’
objects as those which can be interacted with or can interact. Interaction in this definition
means speaking about objects, having sounds coming from the objects, objects being acted
upon, objects acting, and any other possible manipulation done to or by the objects.

Thus, MCOR is able to utilize the additional information and cues provided by videos
of a human interacting with objects. Video data of predominantly static subject matter
(such as data from a Mars Rover or of a landscape containing objects such as rocks, trees,
or mountains) does not provide the additional interaction information utilized by MCOR.
The determination of whether an object is interactionable or not is dataset-specific: Some
objects may be interactionable in one dataset and not interactionable in another.

It is still possible to use the vision cue aspect of the MCOR algorithm to identify non-
interactionable objects such as the tree example mentioned above. However, MCOR would
only be as good as the vision cues it was given and thus would be on par with other
visual recognition systems using those same cues. Thus, it would not be best utilized in
that case. MCOR gains its advantage when used with a set of interactionable objects.
‘Interactionable’ may also be a useful term for other methods that depend on some type of
interaction to aid in recognition such as in Functional Recognition, albeit not as extensively
as MCOR.

This thesis work, thus, attempts to utilize the properties of video and interactionable ob-
jects in order to address the difficulties facing object recognition and the varying appearance
of objects in real world data.

1.2 Thesis Approach

Our novel approach is to include multiple cues of any type for efficient and robust object
recognition, whether they are vision cues intrinsic to the object or non-visual cues provided
by the environment and interaction of humans. This approach includes:

Multiple Cues We create an object definition for each object category that allows for
the inclusion of any number of cues of any type, such as activity, speech, vision, and
gesture. Our object definition allows cues to be taken into account without special
modification to the object recognition algorithm. In order to do this, we contribute
a uniform cue representation, in which cues are organized with different types and
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values. The representation of the cue requires a mapping to the image using object
displacement values. Furthermore, multiple cues are weighted differently to capture
the relative strength of the association from cue to object.

Probabilistic Weight Representation We recognize the interesting and challenging
fact that some cues may be more indicative of an object category than others and
thus the evidence given by that cue should have greater influence in the recognition
of that object. In order to reflect this fact, we include weights whose values represent
the strength of the association between a particular cue and object category for
each possible cue and object class. We use probabilistic relational models (PRMs)
to determine the strength of the association between a particular cue and an object
category. The thesis work also utilizes a simulator for the generation of training
and test data with cues based on real recognition systems. In addition, we use the
simulator to test the accuracy of the probabilistic relational model for weights.

Utilization of Video We take advantage of the use of video rather than static single
images to recognize objects. Video provides far more comprehensive information for
the cues and allows for the use of several streams of information without limiting us
to visual features, enabling the use of the information provided by the interaction of
humans with the objects. In addition, video allows for the incremental discrimination
of potential object categories, providing cue-driven equivalence classes where objects
in the same equivalence classes, given a cue, can be distinguished with the addition
of new cue information provided at each time step in the video.

Evaluation We use several methods and datasets in order to show the advantage of
using multiple cues for object recognition including analytical, and experimental
evaluations.

Several video datasets are used in these evaluations:

Meeting Data - There are two sets of meeting data: (1) video data taken from
an omnidirectional camera consisting of a single person interacting with objects
in office scenarios and (2) data taken from a Panasonic digital video camera
consisting of multiple people interacting with objects in office scenarios. This
data is used to demonstrates key advantages of using multiple cues.

QRIO(Humanoid Robot) - Video data was taken from a single camera eye of a
QRIO Robot. This data is used to demonstrate the incremental discrimination
of object labels based on cues.

Gupta & Davis [23] - Video data was taken from another research dataset [23],
where a single person manipulates objects in a laboratory setting. This data is
used to demonstrate MCOR on an outside data source.
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Cooking Data - Video data was taken from DVDs of actual cooking shows aired
on TV, as well as from scripted kitchen scenarios from the LACE dataset from
the University of Rochester [47]. This data allows for learning based on real
training data and shows recognition on a large dataset.

1.3 Thesis Contributions

This thesis makes several main contributions to object recognition with interactionable
objects. These contributions consist of:

� An effective representation of each object class, cues, and the association between
the cues and object categories.

� A probabilistic mechanism for the calculation of weights reflecting the strength of
association between a cue and an object category.

� A recognition algorithm, MCOR (Multiple-Cue Object Recognition) that utilizes
the representation of cues and weights to determine the evidence for the presence
of an object of a particular category and generalizes new cues found in the recently
recognized object to all objects of the same class, i.e., the object definition is changed
to include the new information.

� The utilization of vision and image processing tools including tracking, segmentation,
visual features, and scene gist information in order to take advantage of video for
better object recognition.

� An analytical evaluation as a mathematical model representing the behavior of the
multiple cue framework as the accuracy and configuration of the cue information
varies. We show that, at worst, the introduction of inaccurate multiple cues does
no additional harm to the recognition performance, while the inclusion of accurate
multiple cues provides a significant improvement.

� Key scenarios where multiple cues provide a distinctive advantage over vision-only
recognition in a number of empirical demonstrations, providing a validation of the
multiple cue framework and the inclusion of vision, activity, gesture, and speech cues.

� Experimental results of the MCOR system showing a significant improvement in
performance when comparing vision-only and multiple cue performance on a large
video dataset.

5



1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 - Background and Related Work We give an overview of related work
pertaining to this thesis.

Chapter 3 - MCOR Representation We provide a framework for the representation
of cues and object definitions to allow for the flexible integration of multiple cues,
and specify the cue types and values used.

Chapter 4 - Learning Weights and Dictionary Properties We present the Proba-
bilistic Relational model framework used to calculate the weight association between
a particular cue and object, and object displacement values for the localization of
object category evidence in an image.

Chapter 5 - Cues, Segmentation, and Tracking We explain the various vision and
image processing tools used in the MCOR algorithm for tracking, segmentation and
the creation of visual features. We define the cue values and method used to obtain
those values for each of the cue types.

Chapter 6 - Incremental Discrimination and Recognition We present the recog-
nition algorithm which makes up MCOR and integrates the multiple cue represen-
tation, weights, and visual information in a coherent system utilizing incremental
discrimination to determine object labels.

Chapter 7 - Recognition Robustness, Analysis and Cue Accuracy We provide an
analytical evaluation of the robustness of the multiple cues in MCOR by using a per-
formance metric on varying levels of cue accuracy.

Chapter 8 - Experiments and Evaluation We demonstrate the recognition capabil-
ities of MCOR utilizing real video datasets obtained from internal and external re-
search scripted scenarios and unscripted video datasets.

Chapter 9 - Conclusion We summarize major contributions and discuss future work.
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Chapter 2

MCOR Representation

In order to perform category-level object recognition, the object recognition framework
must have a model for each of the object categories that need to be found. This model
defines which cues and features are used when determining the presence of an object
belonging to a particular category. In most work, the model representation restricts the
type of features and cue information used to recognize an object. In the MCOR framework,
the fundamental model is an object definition. Each object definition contains a set of
cues, each with a specified set of properties. This structure, called the object dictionary,
allows for the inclusion of any number of cues of any type (e.g., activity, speech, vision,
and sound) in the object models without special modification to the object recognition
algorithm. In this chapter, we first define the dictionary structure used by the object
recognition algorithm to access information about the object categories, including object
definitions and cue representations. We then outline the probabilistic relational framework
used to fill in the object dictionary definitions from video data information.

2.1 MCOR Object Dictionary Structure

In this section, we define the terms that make up the object dictionary structure used by
MCOR to reference model information about each object category. This object dictionary
structure consists of a set of object definitions, which in turn consists of a set of definition
cues. The complex back structure used to fill in these object dictionary values is discussed
in the next section.

Formally, we define an object dictionary as the set of object definitions for each category,
oi , from the set of all object categories, O given. Each object definition represents the
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model of each object category.

2.1.1 Object Definition

In previous object recognition methods, an object model consists of a rigid specification of
the types of cues and features used to represent an object category, e.g., a graph of visual
features [45] or, as in the FOCUS algorithm [70], a functional and visual description. For
these methods, the value of the features and cues can be adjusted to represent different
object categories, but the type of features and cues that compose the model cannot. This
inability to flexibly adjust the composition of the object model has two disadvantages: (1)
It prevents the application of the framework to domains which may not have available the
type of feature and cue information required by the model and (2) it lacks the potential
of utilizing the full set of information provided by cue types which may be available in a
domain but not used in the object model. In this thesis, we address these disadvantages
by providing a flexible object model with the ability to represent object categories using
an adjustable set of multiple cue types. We refer to the adjustable set for a particular
object category as an object definition . This flexibility is provided by representing each
object definition as a set of cues, Ci for the ith object category, oi that can be of any size
and contain any type of cue information. We call these cues definition cues , i.e., cue
information taken from the object definition. The definition cues are distinguished from
the extracted cues taken from the video data, which we discuss later. For the unified
use of the various cue types, each cue must follow a specified representation.

2.1.2 Definition Cue Representation

In order to integrate the evidence from multiple sources i.e., from multiple cue types,
we introduce a standard representation for all cue types in the object dictionary. More
specifically, all definition cues must define a set of properties:

� Cue Type and Value - Defines the type of the information provided by the cue
and the value of the cue depending on the type.

� Object Displacement Values - Provide the spatial and temporal location of the
object segment within a video for which the cue information is ascribed.

� Weight - Provides the strength of the association between a cue and an object class.
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In Figure 2.1, we present a diagram of the object dictionary structure, including the cue
representation properties defined by each definition cue. For each object category, our
framework defines a set of definition cues that comprise an object definition. The object
dictionary then consists of the entire set of object definitions provided for each object
category. The cue properties of the individual definition cues in the structure consist of:
the cue type and value, the object displacement values (including spatial and temporal
offset information) and the weight. The definition cue property values are filled in using
the probabilistic relational framework (defined in Section 2.3) based on the objects and
extracted cues from data. We describe each of the dictionary components in the following
subsections.

Figure 2.1: Object dictionary structure used by the MCOR algorithm

2.1.3 Cue Type and Value

The cue type and value properties of the definition cue representation identify the kind of
information provided by the cue. The cue type is the recognition framework or features
used to extract cue information. For instance, an activity cue type uses an activity recog-
nition system to extract information. The cue value is then the content of the extracted
information. For the activity cue case, the cue values consist of the activity recognition
labels such as Sit, Stand, Eat, and Write. Each of the cue types defines the set of possible
cue values.

In our work, we draw from the set of cue types, {activity, speech, color and shape, texture,
sound}. The details of the set of values for each of these cue types is given in detail in
Chapter 4. Object displacement values and weights are defined for each of these cue values.

9



2.1.4 Object Displacement Values

In order to utilize the object definition and cue information provided for object recognition
in a video, the information needs to be attached to particular pixel locations in the video.
We introduce object displacement values that localize in the video the actual pixel locations
in space and time of the object region associated with a cue.

Spatial Association

In order to determine the location of objects in a video, we need to determine where cue
information should be localized. We define the spatial association , ∆p , as the difference
between the current cue’s position (a cue-specific calculation)and the expected location of
the object to which the cue is associated. Figure 2.2 gives an example: if the location of the
speech cue value, “laptop”, was defined as the center of the face of the person speaking,
then the spatial association would be the distance between the center point of the face
and the expected position of the laptop. The arrow in the figure represents the spatial
association between the speech cue and the object it should be associated with. This
property will be used to determine which segmented region in the scene the cue belongs
to.

Figure 2.2: Demonstration of spatial association for a speech cue

In initial experiments, where the number of objects and scenarios were limited, we defined
the spatial association for each cue and object by hand. In later experiments with larger
datasets, we learned the spatial association from a training set, as we discuss in Chapter
3.
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Temporal Association

We introduce a temporal association , ∆f , to represent the difference between the
frame associated with the extracted cue and the frame where the object is clearly visible.
This property is primarily important for cues that, in the process of being produced, might
obscure the object they indicate. Figure 2.3 gives an example of the temporal association:
the activity of sitting may obscure the chair for which it is providing evidence, i.e., when
the person was sitting, the chair being interacted with was not visible. A clear view of the
object is necessary in order for that object to be segmented and recognized. Thus, it is
necessary to go about 4 frames previous to see the object. The 4 frames is the temporal
association for the Sit cue value.

Figure 2.3: Demonstration of temporal association for an activity cue

As with the spatial association, in initial experiments where the number of objects and
scenarios were limited, we defined the temporal association by hand for each cue and object.
In later experiments where the datasets were larger, we learned the temporal association
from a training set as we later discuss.

2.1.5 Weights

In order to reflect the fact that different cues may be more indicative of an object class than
others, we introduce weights ascribed to each cue within each object definition. In Figure
2.4, we provide a visual representation of the varying strength of weights for a particular
cue value (the color Orange) and object categories (chair and orange). Weights represent
the strength of the association between that cue and the object. Objects that are more
highly associated with a cue (such as the orange object and orange color cue) have higher
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values, while those less strongly associated (such as the chair object and orange color cue)
have smaller values. We determine the weight, wi,j, by the probability of the object, oi,
being present given the cue value, cvj, i.e., P(oi|cvj).

Figure 2.4: Example of varying weight values for a cue value

The calculation of the weight value is discussed later in Chapter 3. Given the information
provided by the weight value, object displacement values, cue type and cue values, an
object dictionary can be created for utilization by the object recognition algorithm.

2.1.6 Depictions of an Object Dictionary Instance and Dictio-
nary Presence in Recognition

In this section, we provide a demonstration of an object dictionary with filled-in cue rep-
resentation properties, and we show where the object dictionary lies in the process of
recognition by the MCOR algorithm.

In order to depict all of the components of the object dictionary structure combined, we
demonstrate in Figure 2.5 an instance of an object dictionary with filled in cue repre-
sentation properties and object definitions. In Figure 2.5(a)., an object dictionary with
definitions for two object categories, laptop and chair, are given with cue types, cue values,
and weights labeled. Note how the Sit cue value for the laptop object category has a
smaller weight value than the same cue value for the chair object category, since you would
expect the activity of sitting to have a greater association with a chair than you would
with a laptop. In Figure 2.5(b.), a more detailed look at the properties for a particular
definition cue is given. In the example, the cue type and value, object displacement values
and weight are defined for the Sit activity cue value in the chair object category definition.
Spatial association is set to 0 since the activity of sitting occurs directly on top of the
object, and the temporal association is set to 4 since it is necessary to go back 4 frames in
order to see the object.
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Figure 2.5: Example of object dictionary structure and detailed example of a definition
cue with filled in properties

An object dictionary such as the one demonstrated in Figure 2.5 contributes to the overall
object recognition algorithm as represented in the flow diagram in Figure 2.6. We provide
the details of the MCOR algorithm in Chapter 5. As an overview, the MCOR algorithm
(Algorithm 4) starts by extracting cues from the video (Figure 2.6(1.) & (2.)) based on
recognition systems available, such as an activity recognizer, speech recognizer and sound
recognition system. These extracted cues are then attached to segmented regions in the
video based on the object displacement values described below (Figure 2.6 (3.)). Object
recognition is then based on the collection of evidence for each extracted cue associated
with each segmented region weighted by the values in the object dictionary (Figure 2.6 (4.)
& (5.)). The object dictionary is then updated based on the recognition results to allow
for generalization and updated weight values.

Using this framework and cue properties defined below, segmented regions in the image
can then be recognized as objects by comparing the extracted cues from the scene with
the definition cues in the object dictionary. This object dictionary structure allows for a
recognition algorithm that is independent of the type and number of cues available and
thus can utilize the wide variety and varying cues humans provide in their interaction with
an object.

In the next section, we describe how the extracted cues and objects from video data are
represented in a probabilistic relational framework in order to determine the values for the
cue properties found in the object dictionary. In the next chapter, we go into more detail
on how these values are calculated.
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Figure 2.6: Flow of MCOR framework

2.2 Probabilistic Relational Models from Video Data

In this section, we describe the framework, Probabilistic Relational Models (PRMs),
used to determine the representation properties of a definition cue in the object dictionary
structure, i.e., the temporal association, spatial association, and weight. We use PRMs
because they can easily represent relational information such as the information provided
by the different object categories and cues in a set of videos. In addition, the probabilis-
tic relational model framework provides the advantage of representing multiple complex
relationships that can be learned.

In order to determine the definition cue property values, we learn the values from data.
This requires obtaining information from the objects, extracted cues, and humans in the
video data. In this section, we define the probabilistic relational framework outlining the
attributes taken from each of these sources and their relationships to each other.
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2.3 Overview of Probabilistic Relational Models

The Probabilistic Relational Model [18, 19] can handle the inclusion of relation information
of data as an extension of standard Bayesian networks. PRMs can learn associations
between classes, attributes within a classes, and attributes related to another class rather
than the flat, attribute-value data of Bayes nets. In this thesis, we use PRMs to represent
and learn our proposed definition cue properties, which reflect the relationship of the
various properties of the cues and objects. We first review the PRM framework:

Within a relation model, a schema consists of several components: A set of classes,

X = X1, ..., Xn

each of which has a set of attributes ,

A(Xi) = Xi.a1, ..., Xi.a2

The attributes can be fixed , deterministic, or probabilistic. Fixed attributes have
unchanging values and identify entities of a class. Deterministic attributes have values
which are directly determined by the entity itself; once determined, their value does not
change. The values of probabilistic attributes can vary based on the other attributes of
the class or of related classes. In terms of notation, we use EI(Xi) to refer to all entities
of the class, Xi in instance I. A single entity of a class can be referenced by the value
of a fixed attribute belonging to that class, e.g., xdk.aj represents an entity with fixed
attribute value xdk and attribute aj. Classes are given in upper case, Xi; attributes are
given in lower case, aj; fixed attribute values which identify entities of a class are given in
lower case bold, xdk.

The second component is the set of relations ,

R = R1, ..., Rm

that defines the relationship between two classes. Relationships are significant in that the
value of attributes in one class can depend not only on the other attributes of that class,
but on the attributes of any related class.

The ability to depend on attributes from other classes is represented by the concept of
slots . If R[X1, ..., Xk] is any relation among classes X1, ..., Xk, we can project R onto the
ith and jth classes to obtain a binary relation, R(f ,g), between entities f and g. f ∈ EI(Xi)
and g ∈ EI(Xj) and R(f ,g) = 1 when entity f and g are related through relation R,
otherwise, R(f ,g) = 0. We refer to f .R as a slot of Xi. In order to refer to the nth

attribute, an of an entity of class Xj, we write f .R.g.an. In some cases, we wish to refer
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to the set of all entities which relate to the entity f , i.e., for any f ∈ EI(Xi), we let f .R
denote all entities g ∈ EI(Xj) such that R(f, g) holds. We then denote f .R.an as the nth

attribute of class Xj for all entities g ∈ EI(Xj).

The notion of aggregation from database theory is used by PRMs to summarize the set
of attribute values returned by a slot, f .R.an. Aggregation of the set of values from a slot
is represented by γH , where H is an aggregation function that defines how the set of values
are summarized, γH(f .R.an). There are many natural and useful functions for aggregation
such as mean and median. Our schema uses a number of aggregation values seen in Figure
3.1. The aggregated value can be used to determine the value of a related attribute.

Our object dictionary provides the structure of the network.

2.4 Object and Cue Representation

We can now describe the model used to represent the relationship between the various
extracted cues and objects in order to determine the object definition property values. The
object and cue classes defined here should not be confused with the object definitions and
definition cues belonging to the object dictionary. Although they are linked to each other,
the classes outlined here describe the information taken from objects and cues extracted
from the data. This information is then processed in order to be used to fill in the property
values in the object dictionary.

MCOR Schema To begin, we must first define the set of classes used by the MCOR
schema and their attributes (see Figure 2.7). In terms of the classes, we define an OBJECT
class, a class for each cue type <CUETYPE>, a PERSON class, and a SEGMENT class.
We now describe the attributes for each of these classes.

We define an OBJECT class in order to describe the location, visibility and category for
each object in the dataset. Thus, the OBJECT class has the following attributes:

object id, od (fixed) The identifier of an object entity.

object category, og (probabilistic) The object category for an object entity.

object location, ol (deterministic) The location of the object as given by a vector of 4
items describing the location and size of the bounding box on the image.
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Figure 2.7: PRM schema of the extracted cues and objects used for determining definition
cue properties

object visibility, ov (deterministic) The array of start and end frame number pairs for
each consecutive set of frames the object is visible.

In addition, we have a class for each extracted cue type, <CUETYPE>. Each class has
the same set of attributes:

cue id, cd (fixed) The identifier of an extracted cue entity.

cue value, cv (probabilistic) The value of the cue. The range of values depends on the
cue type.

cue type confidence, cc (deterministic) The confidence in each cue type. Details are
given in the next chapter.

cue frame number, cf (deterministic) The frame number the cue was extracted from.

cue location, cl (deterministic) The location of the extracted cue. Some cue types have
location information given explicitly (for instance, vision cues provide bounding box
and location information). All other cues are attached to the bounding box around
the person’s face whose interaction caused the cue.

The next class is the PERSON class. This gives information needed for determining loca-
tion information. Thus, the attributes are:
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person id, pd (fixed) The identifier of the specific person interacting.

face bounding box location, pl (deterministic) The bounding box location around the
face of the person in the image.

face bounding box size, pz (deterministic) The bounding box size around the face of
the person in the image.

The last class, SEGMENT, represents segment information, namely where the segment
used for recognition should be located. Unlike the OBJECT, CUE, and PERSON classes,
there is only one entity of this class, which is related to all the cues. It can be thought of
as a global class. The attributes are as follows:

segment id, sd (fixed) The identifier of a segment entity. Since there is only one entity
of this class, there is only one segment id.

frames to visible, sf (probabilistic) The number of frames till the object is visible given
a cue value.

location offset, so (probabilistic) The location offset for an object category given a cue
value.

These classes are related to each other through the relationships: OBJECT-CUE (OC),
SEGMENT-CUE (SC), and PERSON-CUE (PC), as illustrated in Figure 3.1.

Through these relationships various dependencies define the calculation of the weights,
spatial association, temporal association, and type confidence, as we introduce in the next
chapter.

2.5 Conclusion

Using the object definitions and cue representations and properties, we utilize the resulting
object dictionary for the core models for the object recognition algorithm. By defining an
object as a flexible set of cues, we allow for the the use of multiple cues of varying types
to provide as much evidence for determining object classes as possible. Requiring cues to
define a cue type, values, object displacement values, and weights, we have the information
needed to use cue information to localize and identify objects in a video.
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Chapter 3

Learning Weights and Dictionary
Properties

In this chapter, we define how the definition cue property values found in the object
dictionary are learned using the PRM model of the data. We deal with the concept that
not all cues are associated with a particular object class with the same strength. In terms
of the cue representation and object dictionary this translates to the weight property. We
define how this weight is calculated using the probabilistic relational models. We allow for
the incremental update of these weights as well as the addition of new cue types during
the recognition process.

In addition, since the probabilistic relational model framework provides the advantage of
representing multiple complex relationships that can be learned simultaneously, we describe
how the probabilistic models are used to learn temporal and spatial associations in addition
to cue type confidence.

We demonstrate the learning of these property values using both simulated and real data.

3.1 Learning with PRMs

In this section, we describe how the probabilistic relational representation of the data
is used to learn the property values for each definition cue. To begin, we define the
probabilistic framework of PRMs:

PRMs describe a probability model over entities of a relational schema. An instance, I, of
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the relational schema consists of the set of entities of each class,

Eσ(Xi) = e1, ..., ep

, where the attributes are defined and which relationships exist between them. A relational
skeleton, σ, is when only the fixed attributes of the entities are defined. In our case, an
instance would consist of all the objects in a scene, all the extracted cues in the scene,
and the association between any of the extracted cues or objects. Some of the attributes
however are not easily defined, such as the object category, and thus, it is necessary to
determine the probability distribution of its values. A relational skeleton σ is then a partial
instance where the probabilistic attributes are undefined. Some of these probabilities may
depend on attributes from within the same class or from any other class related to it
through one of the defined relationships. The set of dependencies between the attributes is
referred to as the dependency structure , S. The attributes that are depended upon are
called the parent attributes. Thus, given a defined entity, ek, and probabilistic attribute,
aj, the parent attributes are defined as pa(ek.aj). The dependency structure and parents
for the MCOR schema can be seen in Figure 3.1. Dependencies between attributes are
shown with arrows, and aggregate functions for related slots are shown with boxes. Arrows
marked with a circle represent the dependencies used to calculate the weight value; Arrows
marked with a star represent the dependencies for the spatial association; Arrows marked
with a triangle represent the dependencies for the temporal association; Arrows marked
with a square represent the dependencies for the type confidence. As is the common
case with Bayesian networks, each of the dependencies has parameters which represent
the conditional probability of obtaining a particular attribute value given the value of the
parents. The set of conditional probability distributions (CPDs) for each of the attributes
makes up the parameters, δS, that are learned by the network.

PRMs then define the distribution of instantiations of attributes as:

P (I|σ, S, δS) =
∏
Xi∈X

∏
aj∈A(Xi)

∏
ek∈Eσ(Xi)

P (Iek.aj |Ipa(ek.aj)) (3.1.1)

Given a training set, I, the parameters, δS, can be learned according to the following
equation:

l(δS|I, σ, S) = logP (I|σ, S, δS) (3.1.2)

l(δS|I, σ, S) =
∑
Xi

∑
aj∈A(Xi)

 ∑
ek∈Eσ(Xi)

logP (Iek.aj |Ipa(ek.aj))

 (3.1.3)
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Figure 3.1: PRM schema of cues and objects showing dependencies and aggregate functions
for related slots

Each of the terms in the square brackets can be maximized independently of the rest.
Thus, maximum likelihood estimation reduces to an independent maximization problem,
one for each CPD.

When dealing with multinomial CPDs, maximum likelihood estimation can be done through
counts CXi.aj [v, ~u] of the different values of v, ~u, which the attribute Xi.aj and its parents

can jointly take. The maximum likelihood parameter setting θ̂S is

P (Xi.aj = v|Pa(Xi.aj) = ~u) =
CXi.aj [v, ~u]∑
v′ CXi.aj [v

′, ~u]
(3.1.4)

In order to learn the parameters online, we utilize a well established method of updating
these conditional probabilities called the m-estimate of probability [40]. Using the learned
parameters as priors,αXi.aj [v, ~u], we use a virtual training dataset size, m, called the equiv-
alent sample size constant to determine how heavily to weight the prior relative to the
observed data: The larger m, the more observed examples need to be seen in order to
adjust the weights. In our experiments, we set m to the actual training dataset size since
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we have that information.

The conditional probabilities are then updated with the introduction of the new data, I,
as follows:

P (Xi.aj = v|Pa(Xi.aj) = ~u|I) =
CXi.aj [v, ~u] + αXi.aj [v, ~u] ∗m∑

v′ CXi.aj [v
′, ~u] +m

(3.1.5)

Weights As mentioned previously, we would like to calculate the weight, wi,j, as the
probability of an object category, oi, being present given a cue value, cvj, i.e., P (oi|cvj).

In this schema, this relationship can be defined using the probabilities: P(OBJECT.ogi),
P(CUETYPE.cvj), and P(CUETYPE.cvj|OBJECT.ogi) as given by the dependencies and
attributes defined above. Note that there is a conditional table for each cue type across
each of its values. Given a training set, the parameters δS are learned according to the
equations defined above.

The other dependencies in the schema can then be used to calculate the spatial and tem-
poral association and cue type confidence.

Spatial and Temporal Association As mentioned in Chapter 2, we need a method of
determining the spatial and temporal association associated between each cue and potential
object. We utilize the PRM schema to provide such values. We take advantage of the
aggregation ability of PRMs to calculate the probability of getting different location offsets
and number of frames until object is visible.

Given video data, we define the function, SOFFSET, which takes as a parameter an extracted
cue entity, cd, from the data. It returns the spatial offset by taking the difference between
a cue location, cl, of a related object (through the OBJECT-CUE relationship, OC). The
cue location is either given by the cue or defined by the location, pl, of a person related to
that cue (through the PERSON-CUE, PC, relationship), depending on the cue type. For
instance, a COLOR&SHAPE cue type would return the location defined by the center of
its boundaries, while a SPEECH cue type would define its location by the location of the
person speaking. This value is scaled by the size of the bounding box around that persons
head, pz:

SOFFSET(cd.cl) =
1

cd.PC.pd.pz
(cd.PC.pd.pl− cd.OC.od.ol)

The spatial offsets are potential spatial associations that can be used to locate the position
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of a segment in an image and relate it to a specific cue.

Figure 3.2: Spatial association probability (P(∆p|cvj) for Close, Pour and Bring activity
cue value.

We then use the aggregation of the spatial offsets through the SEGMENT-CUE (SC)
relationship to get an average (mu), standard deviation (std), and covariance (cov), of
all the cue locations i.e., sd.so = γstd,mu,cov(SOFFSET(sd.CS.cl)). As a reminder, the

aggregate value, γ(x.R.aj) obtains all the values of attribute, aj, for all entities related
to entity x through relationship R. These values are summarized/aggregated, using a
specified function. In our case, we take the average and standard deviation of the spatial
offsets related to the segment entity. Since, the segment class has the unique characteristic
of having only one entity and being related to all the cue entities, the aggregation takes
the average of all the cue locations.

We then use the mean, sd.somu, covariance, and standard deviation, sd.sostd, of the cue
locations to determine the probability of these candidate spatial associations for a particular
cue value. Because the spatial offset values of the spatial association are continuous, we use
a continuous 2D Gaussian distribution to represent the probability of getting a particular
offset given a cue value, P (∆p|cvj), since we can assume each spatial association instance
is an independent event given a cue value, cvj. Figure 3.2 shows example distributions of
the spatial association probability calculated from the Rochester dataset for the (a.)Close,
(b.)Pour, and (c.)Bring activity cue values. These examples show activity cues whose
probabilities vary from most variance to least. We then choose a spatial association, ∆p∗,
for each cue value as the offset with the greatest probability (Since the distribution is a
Gaussian, this corresponds to mu):

∆p∗ = argmax∆pP (∆p|cvj) (3.1.6)

While we chose to define the spatial association used in the object dictionary as the off-
set with the greatest probability, an alternative strategy would include segmenting at all
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locations touched by spatial association defined in the Gaussian and scaling the evidence
by the probability of each. We decided to go with the former strategy as the majority of
our datasets dealt with spatial association, which fell somewhere within the segmentation
of the object.

Note that with our method, error rates (based on the percentage of times the maximum
offset missed the object) grows with an increase in variance and with the size of the object.
Large objects which tend to be around the same position given a particular cue value show
a small variance and thus a large probability that the offset will fall around the learned
position. Also, larger objects provide a larger margin of error as we only require the offset
to hit somewhere on the object. On the opposite end, small objects, which vary a lot in
terms of position given a cue value, will be harder to learn with the large variance and
provide a smaller margin of error. The consequence of a mistaken offset could be corrected
in MCOR through the introduction of more cues (see Chapter 6).

We go through a similar process in order to get the probability distribution for the temporal
association values. Replacing the subtraction of the spatial offset with a temporal offset,
i.e. function, TOFFSET, returns the difference between the current cue frame and the frame
where the object was last visible:

TOFFSET(cd.cf) = cd.cf− L(cd.OC.ov)

where the function L() returns the last frame where the object was visible before the cue
frame number. Using the aggregation of these temporal offsets through the SEGMENT-
CUE relationship, we have:

sd.sf = γstd,mu(TOFFSET(sd.CS.cf))

We then use the mean, sd.sfmu and standard deviation, sd.sfstd, of the temporal offsets
to determine the probability of these candidate temporal associations for a particular cue
value. Because the temporal offset values of the temporal association are continuous and
since we can assume each temporal association instance is an independent event given a
cue value, cvj, we use a continuous Gaussian distribution to represent the probability of
getting a particular offset given a cue value, P (∆f |cvj). We then choose the temporal
offset with the highest probability as the temporal association, ∆f ∗ entered into the object
dictionary.

∆f ∗ = argmax∆fP (∆f |cvj) (3.1.7)
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The temporal and spatial properties can then be used in the recognition algorithm to
determine where to segment for possible objects.

Cue Type Confidence The last value that can be calculated from this schema is the
cue type confidence term. This attribute defines the amount of confidence one can have in
the entire cue type. This confidence is calculated by determining the mutual information
provided by the cue values of a specified cue type and the object categories. We use mutual
information since it tells us how much information one variable can give about another.
We determine a good cue type to be one that gives a lot of information about an object.

We calculate this mutual information, MI(), for each cue type class, [CT1, ..., CTm]:

MI(OBJECT.og;CTi.cv) =
∑

∀c∈CTi.cv=c

∑
∀o∈OBJECT.og=o

P (o, c)log
P (o, c)

P (o)P (c)
(3.1.8)

In order to standardize this information and possibly use it as a confidence weight, we nor-
malize the mutual information to a value of [0,1]. This normalized mutual information
(NMI) provides the value for the cue type confidence CTi.cc:

CTi.cc = NMI(OBJECT.og;CTi) =
MI(OBJECT.og;CTi)

min[H(OBJECT.og), H(CTi)]
(3.1.9)

where, H() is the entropy function:

H(X) = −
∑

x∈V (X)

p(x) log(p(x))

Although the schema provides the potential for using this term, it is not currently being
used since the implicit strength of association is given through the P (oi|cvj). This, however,
could be a useful term for future work in context learning, i.e., determining which cue types
are beneficial for different contexts and possibly initializing weights with the confidence
values until additional data can be found to refine the benefit of individual cue values, as
well as for possible uses in additional confidence weighting.

Using the schema, relationship, and dependencies defined above, we can learn and test the
parameters and probabilities of this model. In the first experiment, we use simulated data
to show the accuracy of the learned model given a known model. In the second experiment,
we show the weights that are learned using real data.

25



3.2 Simulation

We begin with the simulated data. In order to determine, how weight learning would
occur using different recognition systems, we developed a simulator that could represent
the generation of cues based on the performance results of real existing systems. We define
below the five cue types used:

ACTIVITY The activity class consists of the set of possible activities that can be rec-
ognized. The activity class provides important information as to the function of
an object. Since in many cases, while visual attributes may vary, the functional
characteristics often do not. The possible cue values are based off of two different
recognition systems the activity system developed by Gupta et al. [23] with activi-
ties: Eat, Drink, Bring, Return, Open, Close, Pour, Mix* and a recognition rate of
76.6 percent, and the system developed by Rybski and Veloso [60] which provides
Walk, Stand, and Sit activity recognition. One can imagine adding additional values
with input from additional activity recognition systems as is available.

SPEECH Speech consists of words or phrases that could be extracted by a speech rec-
ognizer. There are actually numerous speech recognition systems [10, 27] that can
recognize a large portion of the English vocabulary, thus to limit the amount of
variables, we focus just on the words pertaining to the objects being recognized.
According to a survey of speech recognition error rates [73], error rates for word
recognition varies from 8.2 percent to 12.3 percent for n-gram and HMM systems.

COLOR For Color, we use a discretized version of the HSV (Hue Saturation Value)
color space where there will be 9 categories of colors: Red, Yellow, Orange, Green,
Cyan, Blue, Magenta, Black and White. Each color, except Black and White, can be
determined according to the hue color scale which ranges from 0 to 360. White and
Black are determined by the value (or brightness). If the value is above 90 percent,
the color will be labeled White. If it is below 10 percent, it is labeled Black.

SHAPE The shape cue value is determined by the shape aspect ratio of a tight bounding
box around the object/segmented region i.e.,

Aspect Ratio = Bounding Height/Bounding Length

We can then discretize the range from 0 to Image Height to get our categories. For
now, we will assume an image of size 1085x260 pixels and where we will want 8
categories. We will start with an even division of the range, but future cut off points
can be chosen by looking at a histogram of the objects and their aspect ratios, so
more categories can be placed in higher density regions for better distinction.
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SOUND For sound, a list of possible sounds that could be made by the object is used.
These values are determined by the UPC AED/C (Acoustic Event Detection and
Classification) System [67], which had the lowest error rate of any other system as
tested by [68]. The system can detect 12 classes of sounds including Knock, Door
Slam, Steps, Keyboard Typing, and Phone Ringing, which has a recognition rate of
88.6 percent. As well as the Speech recognition system developed by [74] with kitchen
sounds: Cut, Pour, Mix, and Stir.

Additional classes can be added as needed or available.

The set of objects used in the simulation is represented by: Bowl, knife, chair, cereal,
spoon, phone, laptop, and orange.

Now that we have a clear definition of possible cues and their values, we can build a
simulator to generate scenarios the agent may encounter. Given the set of objects, the
simulator generated cues based on a predetermined model that represents the probabilities
of a cue being produced given the presence of an object. It is the weights of this model
that we attempt to learn.

In order to mimic the imperfection of the real world, noise was added to the data generated
by the simulator according to the error rate of the recognition systems that the cues were
based on, whenever applicable.

3.3 Results From Simulation

Using the cues and relationships defined above, we created various model representations
that could represent the real world model of the interaction and dependencies between all
the entities.

In order to test the parameters learned by the simulation, the true model used to generate
the cues were compared with the probabilities learned from the data generated by the
simulator. The error rate (the normalized sum of the absolute difference between the
learned and true parameters) was then calculated for dataset sizes ranging from 1 to 100.
As can be seen from Figure 3.3, the error rate somewhat plateaus after a data set size of
50. Note how the plateau occurs at an error rate of .3. This is because the error rate for
the recognition systems which max out at around a .3 percent error rate interferes with
the learning.

The fact that the weights include the error rate when learning the values, however, is not
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Figure 3.3: Error rate of learned parameters against dataset size using simulator

a bad thing. Actually, it allows the error rate to be a part of determining the amount of
dependence that should be placed on that cue type. In Chapter 6, we see how a weight
value that includes error can neutralize the effects of a bad cue type.

3.4 Learning from Real Data

In this section, we show training using real data. First, we show the labeling of data to be
used in the training.

3.4.1 Labeling using ViPER

There are a number of video labeling products, but we chose to use Video Performance
Evaluation Resource (ViPER) [33] by the Language And Media Processing (LAMP)
at the University of Maryland because it allows you to easily define your own schema of
labeling as well as allows for duplication and interpolation when labeling an object across
a large number of frames.

Using ViPER, we developed an interactionable schema that can provide useful information
about objects and their interactions. Thus, we labeled the following:
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� Person

– Face: Bounding box around frontal face

– Body: Bounding box encompassing entire body seen

– Hands: Bounding box around left and right hand

� Object

– Label: Object class of that object

– Location: Bounding box around object

– Segment: Polygon around the true segmentation of the object.

– Visibility: Vector that keeps track of frames where object visible.

� <Cue> - can be replaced with any cue type, ex: Activity.

– Value: Value of the cue

– Person: Person providing or related to the cue

– Objects: Objects being affected or generating the cue

This schema allows for a large variety of learning opportunities. For example one could
learn the average distance of an activity cue as related to the person doing the activity
(for instance, the location of the face) from an object. This information can then be used
to reduce the search area of the segment of the object being recognized.

We then can create using this schema and ViPER, XML files for easy processing which can
then be used for easy training and performance evaluation. An example of such labeling
can be seen in Figure 3.4.

3.4.2 Results

Training was done on two main sources:

� Rachel Ray dataset: Learning was done on 50 video clips from 1 to 30s, from 3
half-hour videos. Scenarios were unscripted.

� LACE dataset, University of Rochester [47]: Learning was done on 32 video clips
from 1 to 3mn. Scenarios were scripted.
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Figure 3.4: Example of labeling using ViPER

Figure 3.5: (Example of captured video frame from Rachel Ray cooking dataset and LACE
Dataset

In Figure 3.5, an example video frame taken from each dataset is shown with the Rachel
Ray example frame shown on the left, and the LACE dataset on the right.

In Figures 3.6 and 3.7, we provide tables showing the weights learned from the XML data
generated by our ViPER schema. The weights represent probabilities, P (oi|cvj), where
oi is the object category and cvj is the cue value. For the tables shown, we focus on the
activity cue values. For the Rachel Ray dataset, we labeled activity cue values: Twist,
Smash, Shake, Drop/Add, Cut, Mix, Pour, Squeeze, Pick up, Put down, Point, Scoop. The
object categories consisted of: Bowl, knife, oil jar, spice, wine bottle, cutting board, plate,
grill, pan, and spoon. For the LACE dataset, we labeled the activity cue values: Eat,
Drink, Bring, Return, Open, Close, Pour, and Mix. All the activity cue values except for
Mix were taken from activity cue values labeled by the University of Rochester laboratory.

30



The object categories, also taken from the labels in the LACE dataset were: Bowl, knife,
cup, cereal, spoon, cutting board, jug, fridge, place and cupboard.

In the results, one can see how certain activities are more strongly associated with a
particular object such as Pour to bowl with a value of .8, while other activities such as Put
down are more widely distributed across all the objects and thus less weighted when giving
evidence for any particular object. Similar weights were learned for the speech, sound and
vision cues.

In the LACE dataset, we see that some objects, which may be easily recognizable in the
Rachel Ray dataset such as knife because of the strong association of Cut to knife may not
be so in other datasets. Knife does not have a strong association with any activity value
in the LACE dataset. This demonstrates how the weights for the object dictionary can be
adapted to the given context based on the cue information available. On the other hand,
since the interactions in the LACE dataset were scripted and the same set of interactions
occurred with each object, there were a greater number of weights with value 1 than in
the Rachel Ray dataset.

Figure 3.6: Learned weights (P (oi|cvj)) for the Rachel Ray dataset and activity cue values

Figure 3.7: Learned weights (P (oi|cvj) for the LACE dataset and activity cue values

This training data then provided the weight values that were then used in the MCOR
algorithm when recognizing objects (see Chapter 7).
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3.5 Conclusion

In this chapter, we have provided a probabilistic framework for representing the interesting
and challenging fact that some cues may be more indicative of an object category than
others. We did so through the use of probabilistic relational models, which not only
provided a way to learn these weights, but allowed for the learning of spatial and temporal
associations and a confidence value based on the cue type.

We demonstrated the learning of these weights both on simulated data and data taken
from real video datasets.

This framework allows for future flexibility in context learning as well as more complex
association and relationships between entities such as object to object relationships yet to
be explored.
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Chapter 4

Segmentation, Tracking, and Cues

In this chapter, we focus on the tools used to segment and extract visual features and other
cues for recognition and tracking. Since this thesis is focused on how the combination of
multiple cue types can aid in the robust recognition of objects, we primarily focus on visual
features and cue recognition systems which are simple to implement and can run in real
time during recognition. Other works have focused their attention on the development of
more advanced visual features and cue information (see related work), but the focus of
this thesis is exactly on showing that simple visual features can be implemented with other
cues. However, such advanced visual features and cues can be incorporated at any time
into MCOR.

We begin by describing the segmentation technique, followed by the visual features we
extract for use in recognition and tracking. Finally, we define the other cue types and
systems used in MCOR.

4.1 Segmentation

In order to localize the cue information in an image for recognition, we need to be able
to draw a bounding box around at least a portion of the object we wish to identify.
Segmentation of objects is triggered by the extraction of a cue that is not already associated
with a segmented region in the image. We use two techniques for segmentation: Scale-
Invariant Feature Transform (SIFT) and a region growing algorithm. We use the
SIFT method when possible, because of its robustness and high descriptive ability. If
however, no match is found using SIFT, we use a color segmentation method.
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4.1.1 Segmentation with SIFT

In this section, we describe how SIFT features are used in the segmentation. Section 4.2.2
provides the details on the calculation and training of the SIFT features. For this section,
we can assume we are given an object dictionary with SIFT features already learned from
a training set. The algorithm for segmentation with SIFT (Alg. 1) then goes as follows:
First, we begin with the extraction of SIFT features (details in Section 4.2.2). These
SIFT features are compared with those found in the object dictionary using the SIFT
similarity measure defined in Section 4.2.2. If a match is found above a given threshold,
the training image saved in the object dictionary used for the learned SIFT features is
oriented and scaled to match the recognized region using an affine transformation specified
by the Hough transform used in the SIFT object recognition (see Section 4.2.2). This
boundary represents the location of the candidate object. Color region growing is then
used to extract color and shape information. If however, no match is found, segmentation
is based on the color region growing algorithm outlined below.

Algorithm 1: SIFT Segmentation

Given:
- object dictionary, OD, with learned SIFT features and object categories, O;
- set of extracted SIFT features, T ;
- SIFT similarity threshold, θ;
- SIFT similarity measure, SIFTSimilarity (T, oi, OD);
- frame f from video
for each oi ∈ O do

s = SIFTSimilarity (T,oi,OD);
if s > θ then

I ← getImage(OD,oi,T);
// Get SIFT training image saved in dictionary which matches

extracted features

It ← transform(I,Hough(T));
// Transform the image according to Hough transform parameters

segment ← apply(It,f);
// The segment is then the location of the transformed training

image in the frame

colorshapeFeature ← extractColorShapeInfo(segment);
save(colorshapeFeature,oi,OD);
return;

end

end
Go to color region growing segmentation;
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4.1.2 Segmentation with Color Region Growing

For the color and shape segmentation, we use a standard color region growing algorithm
(Alg. 2), where the segmented region grows until it reaches neighboring pixels that are not
of a similar color.

Algorithm 2: Color Region Growing

Given:
- pixel p at location x,y with RGB colors: p.r, p.g, p.b;
- empty region, S;
- threshold, θ;
- unchecked-8-Neighbors(p), returns set of pixel neighbors to pixel p that has not
been checked for color similarity
while not empty do

for n ∈ unchecked-8-Neighbors(p) do

edist =
√

(p.r − n.r)2 + (p.g − n.g)2 + (p.b− n.g)2;
if edist < θ then

add n to S;
RegionGrowing (n);

end

end

end

More specifically, the algorithm works by starting with a single defined pixel. This pixel
is specified using the spatial association offset with the maximum probability value, ∆p∗,
given the cue value that initiated the segmentation. This probability value was given by
the Gaussian distribution learned from the training dataset described in Chapter 3:

∆p∗ = argmax∆pP (∆p|cvj) (4.1.1)

Then, for each neighbor in the 8-connected neighbor pixels that are unchecked, i.e. have
not already been checked for color similarity, surrounding the target pixel, we determine
whether they are within a Euclidean distance from the color of the chosen pixel. If it is,
the pixel is added to the region. If not, the algorithm stops.

In Matlab, this algorithm is slightly modified to take advantage of Matlab’s matrix opti-
mizations. We do this by first determining the Euclidean distance of all the pixels in the
image generating the distance matrix, E. We then compare this matrix to the threshold
value returning a binary matrix, where values are 1 for pixels, whose Euclidean color dis-
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Figure 4.1: Example of color segmentation results used in color and shape visual features
for a knife, cereal box, and cup

tance is above the threshold, and 0 for all others. We then return all the connected regions
(through the 8-neighbor method defined above) using a predefined Matlab function. The
Matlab optimization not only runs quickly for segmenting the target region, it returns other
potential object locations based on the color cue. This allows us to skip an additional step
of finding all other segments with the learned vision cue at a separate time point in the
MCOR recognition algorithm.

For segments which are not visible at the time of the cue occurrence, the algorithm goes
back the number of frames specified by the temporal association described in Chapter 3.
Visual features are then learned from that segment, the segment is assumed to be in that
location until another cue interacts with it in which case it is assumed visible again and
can be tracked.

Using this segmentation technique, we are able to localize candidate object locations. In
addition, based on the color segment extracted, we can retrieve color and shape visual fea-
tures. An example of color segmentation can be seen in Figure 4.1. Segmented regions in
the figure are filled in with a uniform color (red). The figure shows example segmentation
results for a knife (left), cereal box (middle) and cup (bottom). Note the better segmen-
tation of the homogeneous colored knife and the less precise segmentation of the more
textured cereal box. The color segmentation results provide color and shape information
used in MCOR as a visual feature.
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4.2 Visual Features

There are two types of visual features currently implemented in the MCOR framework:
(1) Color and shape features and (2) Scale-Invariant Feature Transform (SIFT) features.
The first provides a good reflection of objects with large homogeneous color regions. The
second provides a representation of objects with texture.

4.2.1 Color and Shape

The color and shape feature we use is based on the visual features of the segmented region.
It is a simple calculation, which allows faster processing during recognition.

Rather than simply use the color or shape features alone, we combine them into one in
order to provide greater discrepancy, i.e. to reduce the set of object classes which may have
the same color or the same shape to those which must have both. Since segmentation only
occurs when cues are extracted, having the greater number of less-discriminative, separated
color and shape features would result in a greater number of needless regions that have to
be assessed for recognition. Combining the two features into one cue also cuts down the
dimensionality of the potential object candidates that needs to be recognized.

While this vision cue provides a good description of objects with large homogeneous color
regions, problems occur when dealing with objects that have a lot of texture and color
variation. To address this weakness, we introduce the use of SIFT features.

4.2.2 Scale-Invariant Feature Transform in MCOR

Previously, when a visual description of the object being identified was grabbed, the visual
description consisted of color information and the aspect ratio of the bounding-box around
the segment produced by a region growing color segmentation algorithm [1]. In this section
we describe another visual feature, in addition to the color and shape information, where
we grab SIFT (Scale-Invariant Feature Transform) features.

SIFT Features

SIFT features [39] are well-known descriptors used widely through computer vision and
object recognition tasks. These features are useful because they provide highly descriptive
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texture-based features which are robust to most changes in scale and rotation.

Because it would be too computationally intensive and unnecessarily repetitive to calculate
a feature for every pixel location, we calculate SIFT features only at interest points in the
image such as areas with rapid intensity change called “corners” [24]. There are numerous
corner detectors that can be used. We focused our approach on the common Harris corner
detector [24], defined by the equation below:

A =
∑
u

∑
v

G(u, σ)

[
I2
x IxIy

IxIy I2
y

]
=

[
< I2

x > < IxIy >
< IxIy > < I2

y >

]

A is a Harris matrix whose eigenvectors and values can be used to determine areas of
interest, i.e. if the first and second eigenvalues have a zero response, there are no features
of interest. If one of the eigenvalues has a large response, an edge is present. If both
eigenvalues have a large response, a corner is found. Brackets, <>, indicate averaging over
the summation of all pixel locations, u, and G(u, v) corresponds to the Gaussian function
used.

In SIFT, key locations are further deciphered by using the maxima and minima of the
results of the difference of Gaussians, which are applied in scale space to a series of smoothed
and sampled images in an image pyramid [39].

Dominant orientations are assigned to each interest point using a 128 dimensional vector
formed from a histogram of image gradients in the neighborhood of the interest point [39].
This produces key points that are more stable and robust to changes in orientation and
scale.

Object Recognition with SIFT Features

Object recognition then occurs by first computing the SIFT features as outlined above.
Each key point specifies 4 parameters: 2D location, scale and orientation. To increase
recognition robustness, a Hough transform is used to identify the cluster of matches that
vote for a particular object pose. Each keypoint then votes for the set of object poses
that are consistent with the keypoint’s location, scale, and orientation. Locations in the
Hough accumulator that accumulates at least 3 votes (3 was selected by Lowe as the
optimum minimum amount of features needed to robustly recognize an object) are selected
as candidate object matches. Each cluster identified by the Hough transform undergoes a
geometric verification step in which a least-squares solution is performed for the best affine
projection parameters relating the training image to the new image. This also allows us to

38



segment the object around the now matched and oriented training image. Features that
do not fall within half the error range based on the least-squares solution are rejected as
outliers.

The final decision to accept or reject a model hypothesis is then based on a probabilistic
model defined by Lowe [38]. Appendix D provides the details of this probabilistic model.
As an overview, given the projected size of the model (larger models expect to have more
false positives), the number of features within a region, and the accuracy of the fit, the
model computes the expected number of false matches to the model pose. A Bayesian
analysis then gives the probability an object model (as taken from the object dictionary)
is present based on the actual number of matching features found.

We use this probability as the SIFT similarity measure when determining its vote, both for
recognition and segmentation. For segmentation, we use the .98 threshold used by Lowe
[39].

In MCOR, we start with a set of initial training images for each object from which SIFT
features are taken and stored in a database in the object definition, i.e. a 128 dimensional
vector for each of the features extracted from the training images are saved into the object
dictionary. Figure 4.2 shows examples of SIFT models extracted from training images for
the object categories, knife (top-left), cereal box (top-right), and wine bottle (bottom).
Each point in the figure corresponds to the location of an extracted SIFT feature. An
enlarged version of the cereal box model is given in Figure 4.3. The original training image
is shown on the left and the model with the SIFT features of the model (marked with
circles) is on the right. Note how the objects with a more interesting texture pattern (such
as the cereal box) provides more interest points for the SIFT model.

In the MCOR framework, additional model images are added to the database if a segment
is recognized as a particular object category by the MCOR algorithm. In this way, new
visual features can be learned for each object definition as recognition occurs.

Figure 4.2: Examples of SIFT models extracted from a training example of a knife, cereal
box, and a wine bottle
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Figure 4.3: Enlarged example of cereal box SIFT model extracted from a training example

If a model of an object is already stored in the object dictionary, then we look for that
object in each of the frames. Figure 4.4 shows the extracted SIFT features taken from
a frame during recognition. These key points are then compared with the key points
saved in each object dictionary using the Hough transform and SIFT similarity measure
to determine the strength of the match. The similarity is used in the evidence equation
for recognition (Equation 5.1.1). We assume that a SIFT model of an object is strongly
associated with that object, i.e., we assume the value of the weight is set to 1. Similarity
then determines the extent of the evidence provided by the SIFT response.

The inclusion of the SIFT features provides an added benefit to the MCOR algorithm by
providing the ability to recognize textually complex objects which could not be effectively
represented with color region segmentation. Figure 4.4 shows examples of extracted SIFT
features, represented by + signs, from frames taken during recognition. The example
frames contain a knife (top-left), cereal box (top-right), and wine bottle (bottom). Note
the large number of matched SIFT features for the cereal box because of its large amounts
of texture (an enlarged example is given in Figure 4.5), and the small number for the less
textured knife. Complex textured items such as the cereal box are recognized well using a
SIFT model, since it provides numerous distinctive texture features that can be used for
recognition. When color region segmentation is used on textually complex objects such
as the cereal box (see Figure 4.1 for example), small and irregular regions result, making
recognition for these objects based solely on color segmentation information unreliable.
With the inclusion of SIFT features, these objects are better recognized in the MCOR
framework.

It is important to note, however, that using the SIFT features alone also does not provide
enough information to reliably recognize all objects. In some cases, features taken from
color region segmentation provide a more reliable description of some objects than a SIFT

40



Figure 4.4: Example of extracted SIFT features for frames containing a knife, cereal box,
and wine bottle

Figure 4.5: Enlarged example of extracted SIFT features from a frame taken during recog-
nition
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model. Color segmentation provides better features for objects that are made of a large
homogeneous color region, for instance, the knife in Figure 4.4. Because of the smooth
texture of the knife, the SIFT features are not reliable enough to find the knife in the
frame. Color segmentation through region growing, however, is able to provide a more
comprehensive representation of the knife (represented in red in Figure 4.1).

Thus, MCOR is able to utilize various visual descriptors, in addition to non-visual cues,
to more robustly recognize objects of differing appearances and properties. SIFT features
provide strong visual evidence for textually complex objects, while region growing color
segmentation information provides good visual descriptors of objects that contain a large
homogeneous color region.

4.3 Tracking

The problem still remains of tracking these segments and visual features across the different
video frames. To deal with this issue we use a dual tracking system that changes from SIFT
tracking to contiguous color region tracking depending on the reliability of the features
available.

Based on which visual features were used to segment the region as described in the Seg-
mentation section, either SIFT features or the color region is used for tracking.

4.3.1 SIFT Tracking

If SIFT features were used to segment the object, then tracking is done by looking for the
matched SIFT features in the next image. Matching is done using the the SIFT similarity
measure described above. Tracking is then done by determining the corresponding region in
the next frame. This region is determined by the similarity measure used in the proximity
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algorithm defined in algorithm 3.

Algorithm 3: Proximity Algorithm

Given:
- region, r, to track;
- object dictionary with SIFT features,OD;
- clusters, C, given by Hough Transform;
for c ∈ C do

sc = SIFTSimilarity (c);
MaxMatchedRegions = all argmaxc∈CS(c);
for cc ∈ MaxMatchedRegions do

OD(cc) =
√

(cc.centroid.x− r.centroid.x)2 + (cc.centroid.y − r.centroid.y)2;
end
r = argmaxi ∈ maxMatchedRegions D(i) ;

end

4.3.2 Contiguous Region Tracker

In the case when segmentation was done using the region growing algorithm, we use the
contiguous region tracking code developed by Felix von Hundelshausen [72], which tracks
contiguous regions of similar color by growing or shrinking the region accordingly. The
segments are then tracked from image to image so a re-segmentation is not needed.

This algorithm however only works when the region being tracked has an area of overlap
between its current position and its position in the next frame. If a gap occurs, than a
research of the space is required to find the segment again.

When this occurs, we search the space using the proximity algorithm 3 outlined in the
SIFT section, except rather than using the SIFT matching criteria, we use the Euclidean
color distance between the two regions.

The proximity algorithm for both SIFT and color region growing fails when there is an
object with an equivalent appearance (either in terms of SIFT features or color and shape)
is closer to the region being tracked than the object being moved. This can be solved using
a prediction model such as the Kalman or particle filtering. Since this scenario, did not
come up frequently, we leave this to future work.
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4.3.3 Tracking Avoidance

In addition, if the camera viewing angle of the video data is known to be stationary, the
MCOR algorithm takes advantage of the fact that the objects being recognized will not
move in the scene unless interacted with by a human. Not all cue types have the capability
to move an object (for instance, speech cues never cause an object to be moved), however
other cues (such as activity cues) can; we call these types of cues, mover cues. Since
during recognition we know when a particular cue begins and ends, we can determine when
this interaction occurs. We then turn off tracking at any point in time a mover cue is not
currently in progress. This method helps reduce the computational costs of tracking during
that time. Table 4.1 shows the reduction in tracking time averaged across all objects for
the meeting dataset, cooking dataset and Gupta dataset.

Dataset Meeting Rochester TV Cooking Gupta
% Reduction of Tracking 70 72 1 9

Table 4.1: Percent Reduction of Tracking Time By Taking Advantage of Mover Cues

Note how the meeting and Rochester datasets have a larger reduction in tracking time.
The greater reduction occurs because these datasets contain more objects in the dictionary,
which are interacted with, but only for short periods of time. The rest of the time the
objects stand static. In the Gupta dataset, there is only one object per video found in the
object dictionary and this object is always the one being moved. Thus, tracking occurs
much of the time. For the TV Cooking dataset, there is a constant slight camera movement
requiring tracking to be consistently on, thus there is such a small percentage (1 percent)
of reduction.

4.4 Non-Visual Cue Types and Values

This section provides a description of the cue types and values that we used for my thesis
work. For each cue source, we describe the exact output including what cue information
is given and used by the MCOR algorithm.

4.4.1 Speech and Sound

There was some cue information which needed to be inputed manually. This includes
speech and sound information. Note, at any point in time, it is possible to replace any of
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the hand encoded information by an automated system.

Speech Information This gives cue information in imitation of speech recognition sys-
tems. At base levels, the set of words that can be returned will correspond to the object
labels of the objects to be recognized. It is possible for particular datasets to include such
phrases as “look that up” in order to identify a laptop. These speech cues will be clearly
indicated when results are given. For each frame, a phrase or word is returned along with
a pixel location representing the source of the speech (such as the mouth of a person as
located by hand).

Sound Information This gives cue information in imitation of sound recognition sys-
tems. More specifically, we primarily used cues that could be recognized by the UPC
AED/C (Acoustic Event Detection and Classification) System [67]. Thus, labels repre-
senting 12 possible classes of sounds including Knock, Door Slam, Steps, Keyboard Typing,
and Phone Ringing will be returned. For each frame, a label indicating one of the 12 sound
classes will be returned along with a pixel location representing the source of the sound
(such as the center point of the phone that is ringing, which will be located by hand).

4.4.2 Activity

In order to get the MCOR algorithm to work on real robot data, it is necessary to have cues
that can provide useful information. The most difficult of these to obtain is the activity
recognition. In order to make the algorithm practical for real-time data, we created a
simple activity recognizer. From these systems, the MCOR algorithm can extract activity
cues, i.e., for every frame, we get an activity label associated with each person in the scene
and a pixel value representing the location of the label.

Activity Recognition Using Face Displacement

One of the systems we employ to get activity information is a system designed by Rybski et
al. [60]. This is an activity recognition which can label the activities of multiple people in
a scene, as long as their faces are pointed towards the camera. At each frame, the system
outputs one of six activity labels (Sit, Stand, Fidget Left, Fidget Right, Walk Left, Walk
Right) for each person at a given pixel value (determined by the location of the person’s
face)[60].

45



Activity Recognition using Colored Hand Band

The standard approach to activity recognition is an HMM based on observations such as
the change in the x and y position of a particular tracking point. There are many advanced
activity recognition systems out there, but since our focus is primarily on the use of the cue,
rather then developing an incredibly intricate cue recognition system, we have developed
an activity recognition algorithm that can produce quick and simple results for some key
activities.

We based the algorithm on HMMs and Viterbi algorithm, but doing so through a hierarchi-
cal structure. Below we first describe this model, then show how it is used for recognition.

Hierarchal Model Many of the activities we are interested in tend to be larger activities.
Initially, we attempted to recognize using a single tier recognition system where large
activities movements were attempted to be recognized by classifying the change in the x
and y movement of the centroid of the region being tracked. In our case, the region is a
bright pink wristband worn by the subject.

This approach, however, presented a problem, since for such activities as eating, you would
get a very large distribution in the change of activities. In order to solve this problem, we
divided the activities into smaller movements, which would later be used as observations
for the larger activities.

Small Movements The smaller movements consisted of Pick Up, Put Down, Move Left,
Move Right, and Stay. These movement distributions could then be easily separated and,
thus, more easily recognized.

The HMM used to describe the small movement states is shown in Figure 4.7. Dx, dy
represent the change in x and y coordinates. In order to do the recognition, we used the
Baum-Welch algorithm to learn the parameters of the HMM (see Figure 4.8), including
both the emission and transition probabilities. We then used the Viterbi algorithm (see
Figure 4.9) to recognize the small movements.

In order to make the recognition online, we used a very small window for the Viterbi
algorithm. Figure 4.9 shows an example of the recognition of a small movement. The
Viterbi algorithm generated results with a .96 accuracy.

Large Activities The larger activities, Eating, Writing, Talking, and Other states (other
states include all small movements), could then be recognized using the smaller movements
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Figure 4.6: Gaussian Models of the observations representing the small movements

Figure 4.7: HMM representing the small movement states and their observations

as observations. The technique was the same as that used for the smaller movements, i.e.,
use the Baum-Welch algorithm to calculate the parameters of the HMM (see Figures 4.10
and 4.11), including both the emission and transition probabilities. We then used the
Viterbi algorithm for recognition.

Activity Recognition By Hand

We label any additional activity information that falls out of the scope of the two activity
recognition systems (Rybski and Color-band defined above) by hand. This includes activ-
ities difficult for current fast activity recognition algorithms, such as Put Down. This is
also useful for simulated data in which the typical video data would not be available for
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Figure 4.8: Parameters learned for the HMM model of the small movements using the
Baum-Welch algorithm

the activity recognition systems. The set of possible activities are: Sit, Stand, Erasing,
Pointing, Put Down, Talking, Writing, Pick Up, Drinking, and Eating.

In some cases, we simulate activity recognition results of real systems, when the systems
themselves are not available. This is the case with the Gupta Dataset [23].

4.5 Conclusion

In this chapter, we have outlined the vision and cue tools used to segment the image,
extract visual features, and track segments across image sequences, as well as recognize
the various cue values. We have shown the usefulness of using both color segmentation
and color-shape visual information for identifying objects with large homogeneous colored
regions and using SIFT features for textually complex features. These tools can then be
utilized in the MCOR recognition algorithm for localizing information in the image and
finding new object candidates based on learned visual descriptions.
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Figure 4.9: An example of the activity recognition of a small movement on data from the
Sony QRIO observing a human

Figure 4.10: HMM representing the large activity states and their observations
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Figure 4.11: Parameters learned for the HMM model of the larger activities using the
Baum-Welch algorithm
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Chapter 5

Incremental Discrimination and
Recognition

In this chapter, we present the recognition algorithm which makes up MCOR. This chapter
describes how all the previous pieces including the multiple cue representation, weights,
and visual information are integrated in a coherent framework. The chapter then describes
how the algorithm’s use of the sequential introduction of cues can be used to disambiguate
object categories in an incremental discrimination framework. Visual data captured by the
Sony humanoid QRIO robot is used to demonstrate this discrimination.

5.1 MCOR Algorithm

The ability to recognize objects using multiple sources of information is rooted in the
MCOR algorithm. In this section, we describe all the primary steps of the recognition al-
gorithm including: region extraction, calculation of evidence, object recognition, and gen-
eralization. The overall algorithm for object recognition with multiple cues, i.e., Multiple-
Cue Object Recognition (MCOR), can be found in Algorithm 4.
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Algorithm 4: Multiple-Cue Object Recognition

Given: an object dictionary (Chapter 2), with:
- a definition for each object, oi, in the set of object categories, O;
- a set of definition cues for each object, Ci;
- a cue value, cvj for each definition cue, cj ∈ Ci;
- a spatial association, ∆pj;
- a temporal association, ∆fj;
- a weight, wi,j;
- a similarity measure, sj,l between definition cue cj and extracted cue cl;
for each frame of video, Ft do

Extract all cues that belong to
⋃
iCi;

for each new cue extracted, cl, with cue value, cvl and matching definition cue,
cj∗ do

Get current position, Pl;
if Pl −∆pj∗ at ft−∆fj∗ is within any region rk ∈ R, where R is the set of

segmented regions then
Store cl in Ck, the set of cues attached to that region;

else
Extract a new region, rk, at position Pj −∆pj∗ and frame Ft−∆fj∗ and

store it in R;
Store cl in the currently empty Ck;

end

end
for each region, rk ∈ K do

for each object, oi ∈ O do
// Calculate the evidence, ek,i, that region rk is object oi:
ek,i =

∑
cj∈Ci

∑
cl∈Ck wi,jsj,l if the cue type of cj is not the same as cl,

then sj,l = 0;

end
// Region rk is then recognized as the object with the greatest

evidence, if it is above a threshold, θ:
labelk ← argmaxi ek,i, if max ek,i > θ ;
Add all cues, cl ∈ Ck, to the set of cues in the object definition, Clabelk , if
∨cj ∈ Clabelk , sj,l 6= 1;
if current label, i.e., labelk at ft is different from labelk at ft−1 and labelk at
ft−1 exists then

Remove all cl ∈ Ck added before ft from Coold , where oold = labelk at ft−1

;

end

end

end 52



Given an object dictionary (as defined in Chapter 2) with a set of definition cues , Ci,
associated with each object category, oi, in the set of object categories specified, O, and a
video, we can begin object recognition:

For each frame of the video, Ft, the first step is to extract all cues which belong to the
union of the set of all cues in all of the object definitions, i.e.,

⋃
iCi. In addition, the type of

cues are extracted is dependent upon which tools are available. For instance, if an activity
recognizer is implemented, it could be used to extract activity cues. If a speech recognizer
is implemented, speech cues can be extracted, and so on. That is the major benefit of this
algorithm: it does not require any specific type of extraction method, but rather utilizes
whatever is available. It is this characteristic which allows the algorithm to be run by any
robot or computer under any circumstances. In addition, it is the various recognizers that
will track and extract cues from the interaction of humans with the object.

5.1.1 Region Extraction

Processing then continues with each new cue extracted, where a new cue is defined as a
cue that was not present in the previous frame, Ft−1, with the same cue value cvl and at a
position Pl less than a cue-specific distance away. Then, for each new cue, cl, the current
position, Pl will be retrieved. This calculation is also cue-specific. Figure 5.1 gives an
example of cue extraction on a frame taken during recognition. In the example, an activity
cue is extracted with a cue value of Sit. The object dictionary with the object categories,
cue values, and weights used during recognition at that time step is shown in the top-left
corner.

Figure 5.1: Example of cue extraction by the MCOR algorithm
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In order to determine the spatial and temporal association to find the region where the
extracted cue information should be attached, we retrieve the matching definition cue,
cj∗ in the object dictionary, which matches the extracted cue value cvl. We know that a
match must be found, because only extracted cue information, whose value is present in
the object dictionary, is used as outlined in the previous section. If the predicted location
of the object belonging to that extracted cue specified by the spatial association,∆pj∗ ,
i.e., Pl − ∆pj∗ is within a region, rk, from the set of segmented regions to be recognized
as objects, K, that cue, cl, is stored in a set of cues that belong to that region, rk, i.e.,
Ck. If, however, Pl −∆pj∗ does not fall within an already segmented region, a new region
will be segmented at that location, but from frame Ft−∆fj∗ , where the object is clearly
visible. This new region is then stored in K. As described in Chapter 4, there are two
possible segmentation method SIFT and color. The segmentation method used depends
on the availability of the SIFT features. An example of region extraction through color
segmentation is shown in Figure 5.2.

Figure 5.2: Example of segmentation for region extraction by the MCOR algorithm

With the regions extracted, we determine the evidence for each object category using the
cues extracted.
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5.1.2 Calculation of Evidence

In order to determine the presence of an object, we use an accumulator array as defined
by the Hough transform approach (see Related Work Chapter 8)

In a typical use of the Hough transform, each feature/cue votes for a set of parameters. For
object recognition, features often vote for a set of object properties such as pose position,
scale, rotation, category and x,y location of the object center.

In a typical framework, a 3-dimensional Hough transform is used consisting of the object
category, x location, and y location of the object center. The Hough transform is repre-
sented by an accumulator array, where the 3-d space is divided into bins of a given size
(Size produces a trade off between evidence strength and location accuracy). Each feature
extracted from an image then adds a weighted vote to a bin specified by the learned offset
between a feature and an object center from training data. An object is then given the
label to the bin that has the highest activation value, which is above a given threshold.

In MCOR, we use a modified version of this Hough transform space, where instead of
dividing the entire image into corresponding bins in the accumulator array, bins represent
each region currently segmented by the MCOR algorithm. Thus, we have a 2-d Hough
transform consisting of the segmented region (position) parameter and object category
parameter. Position parameter information for each cue is given by the spatial association.
Currently, the spatial association represent the most likely offset between a cue value
location and object location association as defined in Chapter 3. In future work, this can
be extended be modified to vote for all regions within a given probability range and scaled
according to the probability of the offset.

Using this Hough transform, the calculation of evidence is done by taking each region, rk,
in K, and each object category, oi, in O to calculate the evidence, ek,i, that rk should be
labeled oi according to the following equation:

ek,i =
∑
j∈Ci

∑
l∈Ck

wi,jsj,l (5.1.1)

where wi,j, as described earlier in Chapter 3, is the predefined weight representing the
strength of the association between the cue, j, in the object definition, Ci, and the object
category, oi. sj,l is the similarity between the cue, cj, and the cue, cl, belonging to Ck. If
the cues are not of the same type, then sj,l = 0. This value is multiplied by the probability
of the spatial association.
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5.1.3 Object Recognition

We use the calculated evidence to determine which object category to assign each region,
i.e. region, rk, is then recognized as the object with the greatest evidence, if it is above a
given threshold, θ, i.e.,

labelk ← argmaxi ek,i, if max ek,i > θ

The threshold is learned based on training data. See Chapter 6, for details on how this value
is calculated. Once each of the regions above the threshold value is assigned a category,
generalization of new cues is possible. Figure 5.3 shows an example of recognition and
generalization. In the figure, a segment (the segment is behind person in this frame)
is recognized as a chair by the MCOR algorithm based on the calculation of evidence.
The evidence calculation is found in the top right corner. Based on this calculation, the
chair object category has the greatest amount of evidence because of the extracted Sit cue
value. Generalization then occurs, where color and shape information are grabbed from the
recognized region and added to the chair definition in the object dictionary. This allows
other chairs in the scene to be recognized.

Figure 5.3: Example of recognition and generalization by the MCOR algorithm
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5.1.4 Generalization

An important part of the algorithm is its ability to take cues, which may not have been
previously associated with an object definition, and add them to object categories. This
provides two important properties: (1) the ability to ascribe cue values to new object
categories for additional evidence and (2) the ability to utilize cue types which were not
found in the training dataset. This is done by the following method:

All the extracted cues, cl, in the set, Ck, of cues belonging to the region, rk, will now be
added to the object definition of olabelk , i.e., Clabelk , if there is no definition cue in the object
dictionary with the same cvl, since duplicate cues are not allowed, i.e., ∨cj ∈ Clabelk , sj,l 6= 1.
If the same cue value is found, we can use this value to strengthen the weight for that value
based on the weight update method found in Chapter 3. This step generalizes the cues
learned from this particular object to all objects of the same class, so now new objects
based on the newly added attributes can be found. For cue values belonging to cue types
that are not found in the training dataset, and thus have no corresponding weights, we
use a predefined default starting weight, which can then be updated as new examples are
seen. Depending on the fact that objects of the same category within the same context
often have similar features, we use a high (above threshold) value for the new cue types.
Thus, with this method, we are able to not only generalize known cue values to new object
categories, but we are also able to utilize new cue types which are not found in the training
set.

If the algorithm were to stop here, however, there would be a problem if the region, rk, had
been previously labeled as another object, i.e., labelk at Ft−1 6= labelk at Ft (For simplicity,
we will call the old object label, labelk at Ft−1, oold). The problem occurs because all the
cues belonging to that region, except those that were newly extracted at the current frame,
would have been added to oold’s definition with the previous iteration. We now can assume,
since the object label was changed with the addition of more evidence, that it was the wrong
object label. Thus, the cues of that region should not belong to oold’s definition. It is then
necessary to remove any cues that were added to rk before the current time step from the
definition of oold, i.e., remove all cues, cl ∈ Ck added before Ft from Coold .

With this algorithm, a sequential disambiguation of the possible object categories that can
be ascribed to a segmented region is possible. This ability can be cast in the framework of
incremental discrimination. We describe this further in the next section.
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5.2 Incremental Discrimination

We now present a framework, which shows how any set of objects similar to each other
given any cue can be incrementally divided through the addition of various cue types, until
each set contains only one object, and thus can be recognized apart from the others. The
recognition system provides cue-driven equivalence class discrimination, where objects in
the same equivalence classes, given a cue, can be distinguished. We first describe the cue-
based equivalence classes, followed by the incremental discrimination of these classes, and
then finally show object recognition results with the QRIO humanoid robot video dataset
demonstrating this concept.

5.2.1 Cue-Based Equivalence Classes

As mentioned earlier, we present a framework for describing the incremental discrimination
of a set of objects similar to each other given a cue. This set of objects are what determines
an equivalence class. We then start by formally defining equivalence.

Equivalence

An equivalence class is defined as the set of all objects that contain the same property
given a specific cue. In typical object recognition, the cues are usually based on visual
cues, such as color or texture. These, however, often produce classes that will encompass
more than one type of object, and thus errors in recognition will occur. The goal then
is to continually separate the objects into classes of smaller and smaller size until the set
remaining has cardinality of one.

In terms of the algorithm, we define an equivalence class, eqk, as the set of object categories
that are applicable to the kth region, which we would like to recognize.

An object category is determined to be applicable, if it satisfies the condition that the
evidence provided by an extracted cue from the data is very close to the evidence given by
the object category with the greatest amount of evidence, i.e., only object categories close
to the highest evidence value will be placed in that equivalence class. Hence, equivalence
is determined. The following gives the equation:

eqk ←
{
x|ek,x −max

i
ek,i < ε

}
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i.e., an equivalence class for the kth region, eqk is the set of categories x whose evidence is
“close”, i.e., a small ε value away from the largest evidence value, argmaxiek,i.

The evidence mentioned above is calculated by the following equation:

ek,i = wi,lsj,l

i.e., the evidence ek,i that region k is labeled as the ith object category. Evidence is
determined by the product of wi,j, the weight between object i and cue j, and sj,l, the
similarity between the extracted cue l and the corresponding cue j in the dictionary.
Calculation of the weight and similarity is outlined in previous sections and chapters.

Thus, the equivalence class for a particular region, eqk, will consist of all the object cate-
gories which are applicable to that region given the cues seen thus far by the robot.

5.2.2 Incremental Discrimination

We introduce the idea of equivalence class separation through the addition of more cues.
In this process, the algorithm begins with the equivalence classes outlined above where
every region begins with all possible object categories. These categories are then divided
with the introduction of a cue. Objects with the same property are then pooled together.
The process continues until each object is in its own equivalence class or until all cues are
utilized. Figures 5.4 and 5.5 provide diagrams of the incremental discrimination process
and separation of equivalence classes with the introduction of various cues. Figure 5.4 gives
a model of equivalence class separation starting with the application of the activity cue.
In the first level, we have a circle containing the set of all potential object categories for
a given segmented region. When no cues are scene, the set includes all object categories.
The dotted line represents the application of a cue to the set; in the first step, an activity
cue is applied. The original set is then divided into three smaller sets containing objects
that are similar given that cue. For instance, pen and paper are grouped together because
they are both associated with the Writing activity. The application of another cue, shape,
represented by the second dotted line, further divides the sets based on those with similar
shapes. Since this cue separates all the objects into their own individual sets, it allows
them to be distinguished completely from one another for identification.
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Figure 5.4: Equivalence class separation starting with the application of an activity cue

Figure 5.5: Equivalence class separation starting with the application of a shape cue

5.2.3 Results from QRIO

In order to demonstrate the concept of incremental discrimination on real robot data, we
ran the MCOR algorithm on video from the Sony QRIO, a humanoid robot. Figure 5.6
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shows a picture of the Sony QRIO. For each frame of the video retrieved from the QRIO, the
equivalence class algorithm was applied with the weights calculated according the MCOR
algorithm, using any of the cues outlined above, recognized by the QRIO at each time
frame. The addition of each cue allowed the equivalence classes to be narrowed down until
objects could be recognized. The equivalence classes and incremental discrimination of the
MCOR algorithm allow information from multiple cues to be utilized incrementally as the
data from the QRIO robot is processed.

Figure 5.6: Sony QRIO humanoid robot

Figure ?? shows the object dictionary weight values used in the QRIO experiments.
Weights represent the probability of an object category given a cue value as defined in
Chapter 3.

MCOR was run on approximately four minutes of video. Results are given in the next
subsections. We illustrate three scenarios that demonstrate the concept of the equivalence
classes described and the robustness of the algorithm in dealing with ambiguous cues. In
the first instance, we illustrate its ability to recognize objects with similar shape. In the
second, its ability to recognize objects with ambiguous activities, and in the third, its
ability to recognize objects that can be recognized without ambiguity.

61



Figure 5.7: Object dictionary used by QRIO experiments

Distinguishing Ambiguous Shapes

In this first scenario, we demonstrate how objects with ambiguous shapes are distinguished
by the algorithm. There were two possible sets of objects that could be confused based on
shape: the fork and pen (which are both long and thin) and the plate and paper. Because
the shape measure is based on the aspect ratio of the bounding box, the shape of the
plate and paper come out to about the same shape. If more complicated shape recognition
was used, it is possible to distinguish them without having to add additional cues. These
results demonstrate how the algorithm can compensate for the weak cue method with the
introduction and use of cue information provided by additional cue types. The activity of
Eating distinguishes the segmented region of the fork from the pen object category. The
segmented region of the fork is distinguished based on the introduction of color information,
where the fork and pen are different colors. Figure 5.8 gives recognition results of the fork
and pen scenario. Results of the object recognition algorithm are given as labels embedded
on to each frame of the video. Video is taken from the left-eye camera of a QRIO robot.
The plate and paper yielded similar results.
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Figure 5.8: Recognition results of objects with ambiguous shapes: fork and pen

Distinguishing Ambiguous Activity

In the second scenario of ambiguous activities (see Figure 5.9 for an example of the results),
we have two sets of objects: Fork and plate, and pen and paper. In each of these instances,
the same activity (Eating in the former case, Writing in the latter) is associated strongly
with both objects. Since our algorithm takes into account both color and shape, it can
easily resolve these differences. With the equivalence classes, either cue type, i.e., color or
shape, would be enough to put the objects in their separate classes. In Figure 5.9, results
of the object recognition algorithm are given as labels embedded on to each frame of the
video. Video is taken from the left-eye camera of a QRIO robot.

No Ambiguity

In the third task, we wanted to illustrate that the MCOR algorithm can recognize objects
on the first shot, without having to disambiguate between other objects.

In Figure 5.10, the results of the algorithm are illustrated, where a cellphone was success-
fully recognized without ambiguity with another object, taking advantage of the fact that
it has a very distinctive property not shared by the other objects, i.e., its lone association
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Figure 5.9: Recognition of objects with ambiguous activity: pen and paper

with the Talking activity. Results of the object recognition algorithm are given as labels
embedded on to each frame of the video. Video is taken from the left-eye camera of a
QRIO robot.

Thus, the algorithm was able to demonstrate its use in real robot data. Overall, every
object was eventually correctly identified.

Figure 5.10: Recognition results for object with unambiguous cue information: cellphone.
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5.3 Conclusion

In this chapter, we presented the MCOR algorithm which integrated the object and cue
representations, weights, and visual features to produce a framework that can incrementally
integrate information from multiple sources to disambiguate potential object categories.
In addition, the MCOR algorithm has the ability to generalize learned cue values to new
object categories for additional evidence, as well as the ability of using and learning the
association of cue types not found in the original training dataset.

In the next chapters, we demonstrate the robustness of this MCOR algorithm using an
analytical model (Chapter 6) and real recognition results (Chapter 7).
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Chapter 6

Recognition Robustness, Analysis
and Cue Accuracy

In this chapter, we present an analytical model demonstrating the robustness of the MCOR
algorithm. This analytical model is important since in many of the real data experiments we
hand-labeled the data, and so the benefit of multiple cues in cases when the cue accuracy
is not perfect may not be clear from those results. Thus, we developed an analytical
model, which shows mathematically the benefit of using the MCOR algorithm even in
cases when cue uncertainty is increased. The goal of this analysis is to show that the use
of multiple cues improves recognition performance given varying levels of cue noise. We
do so by showing (1) a representation of the activation used for recognition, (2) how the
distribution of this activation can be used to develop metrics for the performance of the
system as represented by the rate of false positives and false negatives, (3) analytical and
experimental evaluations using this metric to determine the advantage of using multiple
cues over a single cue, and (4) a discussion and conclusion with future work based on these
findings.

6.1 Object Recognition Activation Value

In order to determine how the recognition performance is affected by different levels of cue
noise and the use of multiple cues, we need a mathematical model of the recognition process.
The key component of this recognition is the activation value. Thus, in this section, we
define the activation value and corresponding model. The activation value represents the
evidence that an unknown segment in an image is a particular object category. The higher
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the activation value, the more likely that object category belongs to that segment.

6.1.1 Activation Value

In Chapter 5, we introduced the equation of the evidence for a particular object category
(Section 5.1.1). We can use the evidence to show how the activation value, ai, for the ith

object category is calculated. While the evidence calculation represents the incremental ac-
cumulation of the evidence at each point in the video, this activation formula demonstrates
the calculation of evidence at the end of the entire video:

ek,i =
∑
j∈Ci

∑
l∈Ck

wi,jsj,l (6.1.1)

As a reminder, here is the evidence equation, where for the kth region, rk, and for ith object,
the algorithm calculates the evidence, ek,i, that region rk should be labeled with object
category oi.

where wi,j, is the weight representing the strength of the association between the cue, j, in
the set of cues in the object definition, Ci, and the object, i. sj,l is the similarity between
the cue j and the cue, l, belonging to the set of extracted cues, Ck. If the cues are not of
the same type, then scj ,cuel = 0.

For the activation equation, we assume for simplicity that each of the extracted cues is
found in the object dictionary with similarity of 1, as represented by C. We then modify
the evidence equation, so that we are summing the evidence across the entire video, as
represented by nz. nz holds the number of times that the zth cue value occurred throughout
the entire video. This is multiplied by the weight, wi,z is the weight or association strength
between the ith object category and the zth cue value in the set of extracted cues found in
the object dictionary, C:

ai =
∑
z∈C

wi,znz (6.1.2)

We focus on the maximum activation value ai∗ where i∗ is the object category with the
maximum activation value, since the maximum activation value determines which object
category is given and thus effects recognition performance.
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i∗ = arg max
j

∑
z∈C

wj,znz

ai∗ = wi∗,znz (6.1.3)

6.1.2 Threshold

Since recognition only occurs if the activation value is above a threshold, we define the
calculation representing this threshold in this subsection. Given the maximum activation
value, an object is recognized (i.e., the segment is given an object category) when the
value is above a given threshold. The threshold can be determined by using a Maximum
A Posteriori (MAP) estimation [45].

Let ai∗ be a continuous random variable corresponding to the activation value, and let Oi∗

be a Bernoulli random variable describing the presence of the object with the i∗th category
that has the maximum activation value. The MAP estimator, Ôi∗ is then:

Ôi∗ = arg max
Oi∗

P (ai∗|Oi∗)P (Oi∗)

(6.1.4)

=

{
0 : P (ai∗|0)P (0) ≥ P (ai∗ |1)P (1)
1 : P (ai∗ |0)P (0) < P (ai∗ |1)P (1)

(6.1.5)

Since each activation value event of whether an object is present or not is independent of any
other activation event, we assume based on the central limit theorem that P (ai∗|Oi∗ = o i∗)
is a Gaussian distribution. Figure 6.1 give a depiction of the Gaussian probability densities
for P (ai∗|Oi∗ = o i∗)P (Oi∗ = o i∗), where o i∗ ∈ 1, 0 and the MAP optimal threshold, θ.
Error regions representing the false positives (light gray), and false negatives (dark gray)
are also highlighted. We define the optimal threshold as the point, where it is more probable
that the object is present in the scene for ai∗ > θ and it is more probable that the object
is absent for ai∗ < θ, i.e. the ai∗ value where:

P (ai∗ |Oi∗ = 0)P (Oi∗ = 0) = P (ai∗|Oi∗ = 1)P (Oi∗ = 1) (6.1.6)

We can determine the curves by knowing the first and second order moments, µ, σ when
Oi∗ = 1 and µ′, σ′ when Oi∗ = 0. The threshold value can then be calculated by solving
the quadratic equation [45]:
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1− q√
2πσ′2

exp
− (θ−µ′)2

2σ′2 =
q√

2πσ2
exp−

(θ−µ)2

2σ2 (6.1.7)

where q = P (Oi∗ = 1). Assuming that when the object is present there is a higher
activation distribution than when it is not, i.e. µ > µ′, the solution would then be:

θ =
−b±

√
b2 − 4ac

2a
(6.1.8)

where

a = σ′2 − σ2

b = 2(µ′σ2 − µσ′2)

c = µ2σ′2 − µ′2σ2 + 2σ′2σ2 ln

(
(1− q)

√
2πσ2

q
√

2πσ′2

)

We then choose the root that lies between µ′ and µ.

Figure 6.1: Gaussian probability densities for activation value when object present and not
present, optimal threshold and error regions (false positive and negative rates)

With the threshold and activation distributions, a performance metric using the false
positives and false negatives can be developed to measure recognition performance.
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6.2 Performance Metric

In order to show the robustness of the MCOR system to cue noise with the use of multiple
cues, we need a metric which can reflect the recognition performance.

6.2.1 Error Calculation

With the activation distributions and best threshold, we can determine the error value.
Given the threshold, the false positive rate (fp) can be determined by the area under the
N(µ′, σ′) curve where ai∗ > θ and false negative rate (fn) by the area under the N(µ, σ)
curve where ai∗ < θ, i.e.

fp =

∫ ∞
θ

N(µ′, σ′)

fn =

∫ θ

−∞
N(µ, σ) (6.2.1)

(6.2.2)

In Figure 6.1, the false positive and false negative areas are filled in with light and dark
gray.

6.2.2 Metric

The main goal then is to show that these two regions are smaller or, in worst case, equal
in the case when multiple cues are used, and larger when only a single cue is used. One
metric we use for the comparison is the error rate (ER). The error rate is calculated as
follows:

ER =
fp+ fn

2
(6.2.3)

where the false positive and false negative rate are averaged together. We then determine
that this value is smaller in the multiple cue case, then in the single cue case.
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Another metric we utilize is the disparity metric (D), which takes advantage of the ob-
servation that these two regions can be minimized by reducing the amount of overlap
between these two curves, i.e. increasing the disparity. This is represented by the following
calculation:

D = (µ− σ)− (µ′ + σ′) (6.2.4)

Figure 6.2 shows a visual depiction of this metric. The advantage of this metric is that
when the curves do not intersect, where the error rate simply shows zeros for all cases, this
metric shows you how large the discrepancy is between the two curves. Thus, showing how
likely a zero or one error rate is.

For the results, we show a graph of both metrics. Our goal is then to show that the metrics
for the multiple cue case, Dm and ERm have better or equal scores than the single cue
case Ds and ERs, For the error rate, smaller values are better. For the disparity metric,
larger values shows better performance:

Ds ≤ Dm (6.2.5)

ERs ≥ ERm (6.2.6)

Figure 6.2: Graphical depiction of the metric, D, used to evaluate performance

6.2.3 Activation Distribution Model

We now need to look in more detail into the mean and standard deviation which define
the shape of the activation distributions, i.e. P (ai∗|Oi∗). As a reminder, if we take a look
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at the activation calculation for one object category i∗, we have:

ai∗ =
∑
z∈C

wi∗,znz (6.2.7)

We then need to calculate the mean and standard deviation for this activation. To get the
mean and standard deviation, we then need a way to model the nz term. We do this by
using Nz to capture the number of times the zth cue value is found for a particular object
label. Let Nz be a binomial random variable describing the total unweighted activation
value provided by cue value z for a given segment given that an object with category i∗ is
present.

As a reminder, for a Binomial distribution consider an experiment with two possible out-
comes (success and failure), where success happens with a probability p, and failure with a
probability 1-p. If the experiment is repeated n times, a binomial random variable, which
we call X, counts the number of successes. The probability of having x successes is defined
as

P (X = x) =

(
n

x

)
∗ (p)x ∗ (1− p)n− x

the expected value is given by
E(X) = np

and the variance by
V ar(X) = np(1− p)

The probability of success is defined as the probability that the unweighted activation value
is increased, i.e. frame f contains a cue value z that provides evidence that the segment
belongs to object category i∗. The probability of success, P (X

(f)
z = 1), is given by pz and

the probability of failure, P (X
(f)
z ), by 1−pz, where X

(f)
z is a random variable representing

success or failure, i.e.:

X(f)
z =

{
1 if frame f contains cue z for object category i∗

0 otherwise
(6.2.8)

Each activation value increase is assumed statistically independent. Similar variables can
be defined for the case when Oi∗ = 0 for frame f : N ′z, X

′(f)
z and p′z.

Let F be the set of frames for any given video 1. Let Fi∗ then be the set of frames where

1For simplicity, we assume all videos are of the same length. It is possible to include variable length
videos into the equations, but it should not affect the main conclusions of this analysis.
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Oi∗ = 1, i.e. an object with category i∗ is present and F ′i∗ the set of frames where Oi∗ = 0.
We assume we are given all prior distributions for each object category P (Oi∗ = 1) and
P (Oi∗ = 0). For shorthand, we use P (o i∗) for P (Oi∗ = 1) and P (o ′i∗) for P (Oi∗ = 0).

To determine the probability of success, P (X
(f)
z ), we use an association term and cue

accuracy term. The association term defines the probability that a cue value is generated
given the presence of an object, P (cz|oi). The cue accuracy term is how we vary cue
uncertainty in our experiments and is defined by the probability a cue value, cz is observed
as itself ĉz plus all the times a different cue value, cj, was seen as cz. This can be put
together in the following manner:

P (X(f)
z = 1) = pz = P (cz|o i∗)P (ĉz|cz) +

∑
j 6=z

P (ĉz|cj)P (cj|o i∗) (6.2.9)

We do a similar calculation for the case when the object is not present, using the same cue
accuracy terms:

P (X ′
(f)
z = 1) = p′z = P (cz|o′i∗)P (ĉz|cz) +

∑
j 6=z

P (ĉz|cj)P (cj|o′i∗)

Using the expectation of the Binomial term, Nz, we can calculate the mean and standard
deviation terms that define the activation distributions when only a single cue type is used
and when multiple cue types are used. The derivation of these terms are defined in the
next two subsections.

6.2.4 Single Cue Type Activation Distributions

Based on the Binomial random variable for the cue count, Nz, cue association and accuracy,
we can calulate the mean and standard deviation for the activation distributions for a single
cue type.

The mean and standard deviations for the single cue is then:
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µs = E[ai∗ ] = E

∑
z∈Cs

∑
f∈Fi∗

wi∗,zX
(f)
z


= E[ai∗ ] =

∑
z∈Cs

wi∗,zE

∑
f∈Fi∗

X(f)
z


= E[ai∗ ] =

∑
z∈Cs

wi∗,zE [Nz]

= E[ai∗ ] =
∑
z∈Cs

wi∗,z(|Fi∗|pz)

σs =
√
V ar[ai∗ ] =

√√√√√V ar

∑
z∈Cs

∑
f∈Fi∗

wi∗,zX
(f)
z

 (6.2.10)

=
√
V ar[ai∗ ] =

√√√√√∑
z∈Cs

w2
i∗,zV ar

∑
f∈Fi∗

X
(f)
z


=

√
V ar[ai∗ ] =

√∑
z∈Cs

w2
i∗,zV ar [Nz]

=
√
V ar[ai∗ ] =

√∑
z∈Cs

w2
i∗,z(|Fi∗|pz(1− pz))2 (6.2.11)

µ′s = E[ai∗ ]
′ =

∑
z∈Cs

wi∗,z(|F ′i∗|p′z)

σ′s =
√
V ar[ai∗ ]′ =

√∑
z∈Cs

w2
i∗,z(|F ′i∗|p′z(1− p′z))2 (6.2.12)

(6.2.13)

75



P (X(f)
z = 1) = pz = P (cz|o i∗)P (ĉz|ck) +

∑
j 6=z

P (ĉz|cj)P (cj|o i∗)

=
∑
l∈Cs

P (ĉz|cl)P (cl|o i∗)

P (X ′
(f)
z = 1) = p′z = P (cz|o′i∗)P (ĉz|cz) +

∑
j 6=z

P (ĉz|cj)P (cj|o′i∗)

=
∑
l∈Cs

P (ĉz|cl)P (cl|o′i∗)

(6.2.14)

V is the set of videos used for current recognition session. We assume that we are given
the probability that a particular cue cz is produced given the presence of an object o i∗ ,
i.e. P (cz|o i∗) and the prior probabilities for each cue value, i.e. P (cz).

In addition, the weight between an object and a cue, wi∗,z, are learned. The weights
represent the probability of an object oi∗ being present given a particular cue cz, i.e.
P (o i∗|cz). In order to reflect the strength of the association between a cue and object.

6.2.5 Multiple Cue Type Activation Distributions

The mean and standard deviations for the multiple cue case is calculated in a similar
manner, using the expectation of Nz, cue association and accuracy:
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µm = E[ai∗ ] = E

∑
z∈Cm

∑
f∈Fi∗

wi∗,zX
(f)
z


= E[ai∗ ] =

∑
z∈Cm

wi∗,z(|Fi∗|pz)

σm =
√
V ar[ai∗ ] =

√√√√√V ar

∑
z∈Cm

∑
f∈Fi∗

wi∗,zX
(f)
z

 (6.2.15)

=
√
V ar[ai∗ ] =

√∑
z∈Cm

w2
i∗,z(|Fi∗|pz(1− pz))2 (6.2.16)

µ′m = E[ai∗ ]
′ =

∑
z∈Cm

wi∗,z(|F ′i∗|p′z)

σ′m =
√
V ar[ai∗ ]′ =

√∑
z∈Cm

w2
i∗,z(|F ′i∗ |p′z(1− p′z))2 (6.2.17)

(6.2.18)

P (X(f)
z = 1) = pz = P (cz|o i∗)P (ĉz|cz) +

∑
j 6=z

P (ĉz|cj)P (cj|o i∗)

=
∑
l∈Cm

P (ĉl|cz)P (cl|o i∗)

P (X ′
(f)
z = 1) = p′z = P (cz|o′i∗)P (ĉz|cz) +

∑
j 6=z

P (ĉz|cj)P (cj|o′i∗)

=
∑
l∈Cm

P (ĉz|cl)P (cl|o′i∗)

(6.2.19)
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6.3 Evaluation and Experimentation

Using the theoretical foundation outlined above, we now provide experimental evaluations
demonstrating the advantages of the multiple cue framework. More precisely, there are
three conclusions we demonstrate:

1. With increasing cue accuracy and number of cue types, performance is increased.

2. The addition of multiple cue types with better accuracy than a single cue type im-
proves the performance.

3. The addition of multiple cue types with worse accuracy than a single cue type does
not hurt performance.

We demonstrate these conclusions under three different scenarios in each of the subsections
below:

� Single cue value association: A single cue value is associated with the given object
within each cue type.

� Multiple cue value associations: Every cue value is associated with the given object,
with different distributions for each cue type.

� Ambiguous/Misleading cue values: Cue values for a single cue type are ambiguous
or misleading.

For each of these scenarios, we graph the performance results as given by the disparity and
error rate metrics. In addition to the graphical representation of the analytical functions as
defined by the parameters below. We provide simulation and accuracy variation to affirm
the accuracy of the mathematical results and graphs.

To begin, we need to define the constants, parameters, and functions used to determine the
value of the terms outlined in the equations above in order to calculate the experimental
results. We summarize here how each of these terms are determined:

CONSTANTS

|F| : Number of frames, |F| = 10000
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P (o i∗) : Prior probability for the presence of object, P (o i∗) = .2, except in Section 6.3.3,
where P (o i∗) = .5

V : Number of cue values in each type. For simplicity, all cue types have the same number
of cue values, V = 4

PARAMETERS

M : Number of cue types.

P (ĉl|cj) : Matrix which determines cue accuracy, where all elements on the diagonal, i.e.
l, j ∈ C where l = j, have P (ĉl|cj) = α. α is the accuracy value which varies from
0 to 1. All l, j ∈ C, where l 6= j, then have P (ĉl|cj) = (1 − a)/V . Cue values from
different cue types cannot be confused. (see Figure 6.3 for an example)

P (cz|o i∗) : Probability of getting a cue value, cz, given object presence, o i∗ .

FUNCTIONS

P (cz) : Prior probability for each cue value, where P (cz|o i∗)P (o i∗) ≤ P (cz) ≤ P (cz|o i∗),
since we would expect there to be less cues when the object is not present than when
it is, but more than just the cues generated by the object due to noise. Thus we
calculate P (cz) = P (cz|o i∗)P (o i∗)+δ. For all cases, except for Section 6.3.3, δ = .01.

P (cz|o ′i∗) : Probability that a cue is seen given o i∗ is not present. This can be calculated

using the terms above, P (cz|o ′i∗) = P (cz)−P (cz |o i∗ )P (o i∗ )
1−P (o i∗ )

wi,z : Bayesian weights with noise included in the learning. Thus, wi,z = P (o i∗ |cz) =
P (cz |o i∗ )P (ĉz |cz)P (o i∗ )

P (cz)

Figure 6.3 gives an example of various matrices representing P (ĉz|cj). Cue accuracy, α
increases from left to right. First row contains graphs for one cue type, M=1. Second
row contains graphs for five cue types, M=5. Note how in the five cue type, there are
diagonal square patches with values; this is because cue values from one cue type can not
be confused with cue values from another cue type. We now utilize these terms in the
following experimentation and evaluations.

6.3.1 Single Cue Value Association

In this first experiment, we start with the simplest scenario, i.e. a single cue value for
each object type associated with the object (as in the Gupta and Davis experiment). This
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Figure 6.3: Example of various matrices representing cue accuracy, i.e., P (ĉz|cj)

means, given no noise, we should be able to determine the presence of an object based on
the presence of a single cue value. However, in order to demonstrate the noise one would
normal find in a real world scenario, we use varying values of cue accuracy, α as defined
above, with values ranging from 0 to 1. In Figure 6.3, examples of the accuracy used in
the following experiments is given.

In addition, in Figure 6.4, examples of the parameters P (cz|o i), wi,z for M = 1 and M = 5
and varying levels of accuracy is given. Note how for each cue type a single cue value is
given .9 association value. Also, note that the value of the weight depends both on P (cz|o i)
and the level of cue accuracy. For instance, when α = 0, all weights are 0, despite the
P (c1|o i) = .9.

If the multiple cue framework is beneficial, we would then expect to see an improvement
in performance according to the three conclusions outlined above.

Varying Cue Accuracy

We now demonstrate that performance improves with increasing cue accuracy as well as
with an increasing number of cue types. In Figure 6.5, we see that as accuracy is increased,
the performance metric for all number of cue types also increases. This is a confirmation
of what one would expect with an improvement in accuracy. Two metrics are shown:
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Figure 6.4: Example of association strength, P (cz|o i∗), and weight, wi,z, for
single cue value association. First column corresponds to a single cue type (M=1), sec-
ond column corresponds to five cue types (M=5). Rows correspond to accuracy: (a)&(b)
α = 0, (c)&(d) α = .4, (e)&(f) α = 1.

81



disparity and error rate.

The interesting point to note is that as the number of cue types increases, there is an overall
increase in performance, i.e., a decrease in error rate. Thus, while it took .9 accuracy for
a single cue to get a disparity of 1000 and an error rate of 0, 20 cue types only needed a
.2 accuracy and 10 cue types, a .3. Thus, you can get the same level of performance with
less accuracy by using multiple cue types.

Cue Accuracy Cue Accuracy

ONE ASSOC.: Comparison of Cue Accuracy and Performance

D
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er
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ric
)
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ro
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e 
(fp
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n)
/2

Figure 6.5: Comparison of cue accuracy and performance results for single cue value asso-
ciation in analytical model

Additional Cue Types have Better Accuracy than Single

We now show that with the addition of multiple cue types that have higher cue value
accuracy than a single cue type, we gain in performance results. To demonstrate this, we
set the accuracy for the single cue type to 0, and all additional cues to 1 (see Figure 6.6).
The corresponding weights and association strengths are show in the same figure. Note
that the weights for the additional cues are much higher than the single cue, due to the
much higher accuracy.

In Figure 6.7, we see the results, where as the number of cue types increase, the performance
metric D increases and error rate decreases. This shows that the use of additional cues
helps the overall performance for recognition. Two metrics are shown: disparity and error
rate.

In Figure 6.8, we show the error rate for the single cue value association case, where a
moderate increase (α = 0.3) is used, rather than the high accuracy (α = 1) used in the
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Figure 6.6: Parameters used for single cue value association with one inaccurate (α = 0)
single cue and accurate (α = 1) additional cues. Accuracy shown in (a). Association
strength, P (cz|o i∗), and weight, wi,z, shown for (b) a single cue type (M=1) and (c) five
cue types (M=5).
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Figure 6.7: Comparison of performance for single cue type with poor accuracy (α = 0)
and additional cue types with good accuracy (α = 1) for single cue value association

previous experiment. This moderate increase shows how the reduction in the error rate
significantly decreases with increases in accuracy. The moderate increase does not show
the near 0 error rate of the high accuracy, but it makes clear that as the number of cue
types increase, the error rate can approach 0.
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ONE ASSOC.: Comparison of Performance for Single Cue With Poor Accuracy (0) 
and Additional Cues with Moderatly Increased Accuracy (0.3)

Figure 6.8: Comparison of performance for single cue type with poor accuracy (α = 0)
and additional cue types with moderately increased accuracy (α = 0.3)
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Single Cue Type has Better Accuracy than Additional

We now demonstrate that if the additional cues being added have a worse accuracy (in
this case, the worst case scenario of α = 0), than there is no harm done to the performance
results of the single cue alone. This is important as it demonstrates that the addition of
multiple cues can only benefit the overall performance.

In Figure 6.9, the parameters used to define this scenario are given. Note that the single
cue has better accuracy (α = 1) than all the additional cues. The weights match this
accuracy as well as the single cue value association of this scenario.

Figure 6.10 demonstrates that as the inaccurate additional cue types are added the overall
performance stays at the level of the accurate single cue type. This means that given the
worst case scenario, the algorithm will only ever do as bad as its best cue type. Additional
inaccurate cue types will not bring the performance down. This property is due to the
weights used in the framework. Since the weights are learned from training samples taken
from the same scenario as the testing circumstance (reflected by the inclusion of inaccuracy
in the weight term), the weights can counteract the effect of inaccurate cue types (see Figure
6.9 for weight values).

6.3.2 Multiple Cue Value Association

In this next scenario, we remove the single cue value restriction and allow multiple cue
values within the same cue type to be associated with the given object. We do this by
assigning a random value from 0 to 1 to each cue value. Cue values under the same cue type
must add up to 1, since the cue values for one cue type are mutually exclusive. Figure 6.11
provides examples of the parameters P (cz|o i∗) and wi,z, reflecting the randomly generated
values of multiple cue value association in each cue type for M = 1 and M = 5. This
scenario reflects a more real world scenario where different cue values with the same cue
type may contribute evidence to the presence of an object. For instance, an eraser board
may get evidence from both the activity of erasing and the activity of writing. As in the
scenario before, we vary the cue accuracy from 0 to 1 as show in Figure 6.3.

Despite the removal of the one cue value association, we would still expect to see an
improvement in performance according to the three conclusions outlined above in order to
show the usefulness of the MCOR framework.
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Figure 6.9: Parameters used for single cue value association with one accurate (α = 1)
single cue and inaccurate (α = 0) additional cues. Accuracy shown in (a). Association
strength, P (cz|o i∗), and weight, wi,z, shown for (b) a single cue type (M=1) and (c) five
cue types (M=5).
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ONE ASSOC.: Comparison of Performance for Single Cue With Good Accuracy (1) and Additional Cues with Poor Accuracy (0)

Figure 6.10: Comparison of performance of a single cue type with good accuracy (α = 1)
and additional cue types with poor accuracy (α = 0)

Varying Cue Accuracy

As expected, the performance values still go up with the increase in accuracy (Figure
6.12. One difference, however, is that while the performance increased exponentially in the
one cue value association case (Figure 6.5), the performance now increases much slower.
This makes sense, however, as with the addition of multiple cue association, there is an
increase in the standard deviation of the activation curve. There is more variation in the
activation values since there are more combinations of cue values to deal with. An increase
in standard deviation, according to the disparity performance metric, means a reduction
in performance as overlap increases.

However, the more important point to note is the still overall increase in performance with
the addition of more cue types. Thus, you can still get to the same level of performance
with less accuracy by using multiple cue types.

Additional Cue Types have Better Accuracy than Single

We now show that with the addition of multiple cue types that have higher cue value
accuracy than a single cue type, we gain in performance results. To demonstrate this, we
set the accuracy for the single cue type to 0, and all additional cues to 1 (see Figure 6.13).
The corresponding weights and association strengths are shown in the same figure. Note
that the weights for the additional cues are much higher than the single cue, due to the
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Figure 6.11: Example of association strength, P (cz|o i∗), and weight, wi,z, for
multiple cue value association. First column corresponds to a single cue type (M=1), sec-
ond column corresponds to five cue types (M=5). Rows correspond to accuracy: (a)&(b)
α = 0, (c)&(d) α = .4, (e)&(f) α = 1.
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Figure 6.12: Comparison of cue accuracy and performance for multiple cue value associa-
tion

much higher accuracy.

In Figure 6.14, we see the results, where as the number of cue types increase, the perfor-
mance metric D increases. This shows that the use of additional cues helps the overall
performance for recognition even with multiple cue value associations.

Single Cue Type has Better Accuracy than Additional

We now demonstrate that the addition of inaccurate cue types (α = 0) does not worsen the
performance results of the single cue alone in the multiple cue value association scenario.
This is important as it demonstrates that the addition of multiple cue types can only
benefit the overall performance.

In Figure 6.15, the parameters used to define this scenario are given. Note that the single
cue has better accuracy (α = 1) than all the additional cues. The weights match this
accuracy as well as the multiple cue value association of this scenario.

Figure 6.16 demonstrates that as the inaccurate additional cues are added the overall
performance stays at the level of the accurate single cue. This means that given the worst
case scenario, the algorithm will only ever do as bad as its best cue even with multiple cue
values associated for each type.
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Figure 6.13: Parameters used for multiple cue value association with one inaccurate (α =
0) single cue and accurate (α = 1) additional cues. Accuracy shown in (a). Association
strength, P (cz|o i∗), and weight, wi,z, shown for (b) a single cue type (M=1) and (c) five
cue types (M=5).
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Figure 6.14: Comparison of performance for a single cue type with poor accuracy (α = 0)
and additional cues with good accuracy (α = 1)

6.3.3 Ambiguous/Misleading cue values

In this section, we model two typical scenarios seen in our real data experiments. The first
is the case when we have the same cue value associations for two different objects given
the same cue type (For example, both a projector screen and eraser board having the same
shape cue aspect ratios). In this case, it is not possible to recognize the objects based on
the single shape cue alone, additional cues are needed to disambiguate the two. The second
is the case of a misleading cue, i.e. someone incorrectly uses an object leading to the belief
that it may be the incorrect object class (For example, if someone were repeatedly sitting
on a table). It is then necessary to have additional cue types to correct for this mistake.

In both these instances, we can reflect the addition of extra cue representations besides
those generated by the true object class or noise, by increasing the value of P (cv|o ′i∗) for the
given ambiguous or misleading cue value, cv. More specifically, we set P (cv) = P (cv|o i∗)
so that P (cv|o ′i∗) = P (cv|o i∗). We use single cue value associations for each type in order
to focus on the effect of the ambiguity caused by the increase in P (cv|o ′i∗). Figure 6.17
shows examples of the parameters P (cv|o i∗) and wi,v, reflecting the ambiguous/misleading
cue value association in each cue type for M = 1 and M = 5.
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Figure 6.15: Parameters used for multiple cue value association with one accurate (α = 1)
single cue and inaccurate (α = 0) additional cues. Accuracy shown in (a). Association
strength, P (cz|o i∗), and weight, wi,z, shown for (b) a single cue type (M=1) and (c) five
cue types (M=5).
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MULTIPLE ASSOC.: Comparison of Performance for Single Cue With Good Accuracy (1) and Additional Cues with Poor Accuracy (0)

Figure 6.16: Comparison of performance for a single cue type with good accuracy (α = 1)
and additional cue types with poor accuracy (α = 0)

Varying Cue Accuracy

Figure 6.18 demonstrates the performance results with varying cue accuracy for the am-
biguous cue value association case. Two metrics are shown: disparity and error rate. The
results show an increase in performance as additional cue types are added to help disam-
biguate the originally confusing cue data. As expected, with the addition of more and
more information, i.e. a larger set of cue types, we have better performance results, which
only increases as the accuracy increases.

An interesting results to note, is that in the one cue type case, you actually have a reduction
in performance with an increase in accuracy. This makes sense since the cue is found both
when an object is there and when it is not, more accuracy only pronounces this ambiguity.

Additional Cue Types have Better Accuracy than Single

As in the other two scenarios, we see how performance is affected with the addition of
multiple cue types with high accuracy (α = 1) (see Figure 6.19 for parameters). The
corresponding weights and association strengths are shown in the same figure. Note that
the weights for the additional cues are much higher than the single cue, due to the much
higher accuracy.

In Figure 6.20, we see the results, where as the number of cue types increase, the perfor-
mance metric D increases. This shows that the use of additional cues helps the overall
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Figure 6.17: Example of association strength, P (cz|o i∗), and weight, wi,z, for
ambiguous/misleading cue value association. First column corresponds to a single cue type
(M=1), second column corresponds to five cue types (M=5). Rows correspond to accuracy:
(a)&(b) α = 0, (c)&(d) α = .4, (e)&(f) α = 1.
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Figure 6.18: Comparison of cue accuracy and performance for ambiguous cue value asso-
ciation

performance for recognition when ambiguous or misleading cues exist.

Single Cue Type has Better Accuracy than Additional

We now demonstrate that the addition of inaccurate cue types (α = 0) does not worsen
the performance results of the single cue alone even with ambiguous cue association values.

In Figure 6.21, the parameters used to define this scenario are given. Note that the single
cue has better accuracy (α = 1) than all the additional cues. The weights match this
accuracy as well as the multiple cue value association of this scenario.

Figure 6.22 demonstrates that as the inaccurate additional cues are added the overall
performance stays at the level of the accurate single cue. This means that given the worst
case scenario, the algorithm will only ever do as bad as its best cue even with multiple cue
values associated for each type.

Thus, the multiple cue framework provides the ability to disambiguate the recognition of
objects where a single cue is too ambiguous to distinguish between them.
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Figure 6.19: Parameters used for ambiguous/misleading cue value association with one
inaccurate (α = 0) single cue and accurate (α = 1) additional cues. Accuracy shown in
(a). Association strength, P (cz|o i∗), and weight, wi,z, shown for (b) a single cue type
(M=1) and (c) five cue types (M=5).
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Figure 6.20: Comparison of performance for single cue type with poor accuracy (α = 0)
and additional cue types with good accuracy (α = 1) for ambiguous cue value association

6.4 Simulated Results

In order to illustrate the mathematical formulas and analytical model of the mean and
standard deviation with simulated results, we ran each of the scenarios in a simulator based
on the same probabilities and parameters outlined above. The results of this simulation
should correspond with the performance results predicted by the analytical model.

Figure A.1 show simulation accuracy results for the single cue value association, multiple
cue value association, and ambiguous cue value scenarios for both the disparity and error
rate metrics. These graphs confirm the accuracy of the previous analytical graphs. In
Figure A.1, we see that when we varied the accuracy, the disparity and error rate results of
the simulation showed the same pattern described by the analytical model of the graphs:
For the single cue value association, we see that there is slightly exponential improvement
in performance (i.e., increased disparity, decreased error rate) as accuracy increases and
overall better performance with the addition of more cue types. Similarly for the multiple
cue value and ambiguous cue scenarios, except with a more linear improvement as accuracy
increases for the multiple cue value scenario.

The simulation also illustrates an increase in performance with additional cue types when
accuracy for those cue types are larger than a single cue type. FigureA.2 shows simulation
results where additional cue types have greater accuracy than the single cue type for
the single cue value association, multiple cue value association, and ambiguous cue value
scenarios for both the disparity and error rate metrics.
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Figure 6.21: Parameters used for ambiguous/misleading cue value association with one
accurate (α = 1) single cue and inaccurate (α = 0) additional cues. Accuracy shown in
(a). Association strength, P (cz|o i∗), and weight, wi,z, shown for (b) a single cue type
(M=1) and (c) five cue types (M=5).
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AMBIGUOUS ASSOC.: Comparison of Performance for Single Cue With Good Accuracy (1) and Additional Cues with Poor Accuracy (0)

Figure 6.22: Comparison of performance for a single cue type with good accuracy (α = 1
and additional cue types with poor accuracy (α = 0) for ambiguous cue value association

In addition, no degradation in performance is shown when the accuracy of the additional
cues are less than the single cue type. Figure A.3 show the simulation results where
additional cue types have worse accuracy than a single cue type for the single cue value
association, multiple cue value association, and ambiguous cue value scenarios for both the
disparity and error rate metrics.

6.5 Non-Uniform Accuracy Distribution

Another aspect we illustrate is how the analytical results are affected when cue accuracy
is not uniformly spread across all non-diagonal accuracy associations, i.e., P (ĉj|ci) where
i 6= j.

In the previous sections, accuracy was calculated by setting the diagonal to an accuracy
value and then dividing the rest of the value across the non-diagonal cue values. In these
experiments, we choose a non-uniform distribution of the remaining accuracy, favoring
some non-diagonal cue values over others. Intuitively, this represent the case when one
cue value is more likely to be mistaken for another. For instance, if it was more likely to
mistake the speech cue “mug” for ‘‘jug” than for “whiteboard”.

We calculate the submatrix for each cue type for this non-uniform accuracy probability,
P (ĉj|ci) as follows:
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index diff |i− j| = 0 |i− j| = 1 |i− j| = 2 ... |i− j| = g − 1
probability α a1β a2β ... agβ

where there are g cue values for each cue type and:

∑
m

am = 1 (6.5.1)

β = 1− α (6.5.2)

Figure 6.23 shows an example of the accuracy values used where α = 0, g = 4, and
[a1...ag] = [.6.3.1].

Figure 6.23: Example of non-uniform accuracy matrix P (ĉj|ci), where α = 0, g = 4, and
[a1...ag] = [.6.3.1].

We ran experiments with the single cue value, multiple cue value association, and ambigu-
ous value scenarios. We found the same pattern of results as with the uniform case (see
Figures A.4, A.5, and A.6).

100



6.6 Relationship to Real Data Results

In this section, we compare the calculated analytical model error rate (AER) with real
recognition error rates (RER) found in Chapter 7. We use the recognition results of the
cooking video datasets, more specifically, we look at the error rate for individual cues vs.
all cues with 100% spatial accuracy for .1(low), system, and 1(high) cue accuracy (Figure
7.15). We focus on 100% accuracy because the anaytical model does not include error from
an incorrect spatial association.

The system cue accuracy, i.e., the accuracy based on real cue recognition systems, are
based on the values shown in Table 7.2: Activity accuracy is .77, visual accuracy is .98,
speech accuracy is .88, and sound accuracy is .89.

To implement the real recognition results in the analytical model, we take the weight values
and prior probabilities learned from the probabilistic relational models learned in Chapter
3 and plug them into the analytical model. The number of cue values for each cue type
are defined by the dataset cue values defined in Section 7.4.

In Table 6.1, we show a comparison of the error rate for the real recognition and the
analytical model for experiment: Error rate for individual cues vs. all cues with 100%
spatial accuracy for .1(low), system, and 1(high) cue accuracy. From the results, we see
that the analytical error rate is a lot smaller than the real recognition error results with
an average of .310 difference between the error rates. This is expected as the analytical
model does not have to deal with as much noise as that found in real data. The important
thing to note, however, is that the error rate for each case follow roughly the same pattern,
where the speech cue typically has the greatest error rate, followed by the sound cue, then
activity, and lastly, vision. The only exception is the low accuracy case, where in the real
experiment activity has a slighlty higher error rate than sound. This is not unexpected
as sound and activity have a fairly similar error rate, and thus any fluctuation in noise
with the real recognition data could cause one to be slightly higher than the other. The
analytical model, not subject to the same noise, remains steady across accuracy in regards
to this pattern. Also, note that the highest analytical error rate for the individual cues
with low accuracy is .24. This is consistent with the analytical results for the multiple cue
value association figure (Figure 6.11), in which the error rate for a single cue is around
.25 for the same cue accuracy. When all cues were used in recognition, the analytical rate
dropped to .0. This is also consistent with Figure 6.11. This low error rate also corresponds
to the signficantly lower all cue error rate for the real recognition results.

From these results, we see that the analytical model can be used to describe the overall pat-
tern of error rate for the varying cue accuracy and number of cue types for real recognition
results after some adjustment to noise.
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Accuracy .1(low) system 1(high)

Cue Type RER AER RER AER RER ARE
Activity .545 .17 .335 .14 .255 .14
Speech .525 .15 .210 .08 .140 .08
Vision .690 .24 .410 .23 .400 .23
Sound .530 .18 .335 .17 .295 .17
All .460 .0 .125 .0 .095 .0

Table 6.1: Comparison of Analytical Error Rate and Real Error Rate for Individual Cue
Types vs. All Cue Types

6.7 Conclusion

In this chapter, we have demonstrated the key concept that multiple cue information can
only improve performance regardless of circumstance, where, at worse case, scenario when
additional cue types have worse accuracy than the original signal cue type, performance
does as well as the single cue. We have also shown that scenarios where a single cue
type may be ambiguous or misleading for particular objects, multiple cues can help in
disambiguating and correcting the error leading to better performance.

We demonstrated these finding using an analytical model, illustrated by simulation results.
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Chapter 7

Experiments and Evaluation

In order to assess our framework, we provide four main methods of evaluation using different
datasets: First, we provide empirical results which demonstrate the basic features and use
of the MCOR algorithm using a data from a meeting setting (Meeting dataset, Section
7.2). Second, we demonstrate the use of the MCOR algorithm on a dataset used by
another object recognition system which uses activity recognition information [23](Gupta
dataset, Section 7.3), as well as comparing the MCOR algorithm to vision-only recognition
methods. Third, we provide a more extensive exploration of MCOR’s ability to recognize
under varying conditions including the effect of varying cue and spatial association accuracy
(Cooking dataset, Section 7.4). Lastly, we show results demonstrating the advantages of
the MCOR framework with multiple people (Meeting Extended dataset, Section 7.5).

7.1 Experiment Process and Training

Before we go over the results of each experiment, we give a brief overview of the experiment
process and training.

As mentioned in earlier chapters, we need an initial object dictionary before recognition can
begin. The object dictionary tells us how strongly associated various cue values are with
each object category, represented by the weight values. The set of cue values and object
categories varies with each experiment. We summarize the set of cue values and object
categories for each experiment. In some of these experiments, these object dictionaries were
hand-defined (Meeting, Gupta, and Meeting Extended datasets), while, in others (Cooking
dataset), the dictionaries were learned from data. For all of the experiments, during
recognition, an update of the object dictionary occurred according to the generalization
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process.

We now go over the experimental process. We then describe how training occurred for each
experiment giving an example of an initial object dictionary and final object dictionary.
To see the complete set of object dictionaries used for each dataset, see Appendix B.

7.1.1 Experimental Process

Although we describe in detail each experiment in the sections below, we give a brief outline
of the experiment steps used in each of the experiments with an overview of the values.

� Collect video dataset.

Meeting dataset Video taken from omnidirectional camera consisting of three 30-
60s videos in a meeting setting with a single person in each video.

Gupta dataset Video taken from University of Maryland dataset consisting of
forty-six 5-10s videos in a laboratory setting with a single person in each video.

Cooking dataset Video taken from three sources: Rachel Ray TV cooking show,
LACE dataset (University of Rochester), and Gia De Laurentiis TV cooking
show. Cooking datasets consist of fifty 1-30s videos, forty 1-60s videos, and
twenty-five 1-20s videos in a kitchen setting with a single person in each video.

Meeting Extended dataset Video taken from digital video camera consisting of
five 10-60s videos in a meeting setting with multiple people.

� Define cue values and object categories.

Meeting dataset Object categories and cue values for Meeting dataset consist of :
Object categories: laptop, chair, projector screen, whiteboard, table
Activity cue values: sit, walk, stand, point, erase, write, putdown (Rybski recognizer)
Speech cue values: “look that up”
Color cue values: hsv color
Shape cue values: aspect ratio of bounding box

(Note: cue values are hand-labeled unless otherwise specified)

Gupta dataset Object categories and cue values for Gupta dataset consist of :
Object categories: cup, flashlight, phone, spray can
Activity cue values: drink, pour, light, answer, spray
Color cue values: hsv color
Shape cue values: aspect ratio of bounding box
SIFT cue values: SIFT features

(Note: cue values are

hand-labeled unless otherwise specified)
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Cooking dataset Video taken from three sources: Rachel Ray TV cooking show,
LACE dataset (University of Rochester), and Gia De Laurentiis TV cooking
show. Cooking datasets consist of fifty 1-30s videos, forty 1-60s videos, and
twenty-five 1-20s videos in a kitchen setting with a single person in each video.

Rachel Ray and Gia De Laurentiis Datasets

Object categories: bowl, knife, oil jar, wine bottle, cutting board, plate, grill,
pan, spoon

Activity cue values: twist, smash, shake, drop/add, cut, mix, pour, squeeze,
pick up, put down, scoop, point

Speech cue values: “bowl”,“knife”, “oil jar”, “wine bottle”, “cutting board”,
“plate”, “grill”, pan”, “spoon”

Sound cue values: pour, sizzle, mix, chop
Color cue values: hsv color
Shape cue values: aspect ratio of bounding box
SIFT cue values: SIFT features

LACE dataset

Object categories: bowl, knife, cup, cereal, spoon, cutting board, jug, fridge,
plate, cupboard

Activity cue values: eat, drink, bring, return, open, close, pour, mix
Speech cue values: “bowl”,“knife”, “cup”, “cereal”, “spoon”, “cutting board”,

“jug”, “fridge”, “plate”, “cupboard”
Sound cue values: pourLiquid, pourSolid, mix
Color cue values: hsv color
Shape cue values: aspect ratio of bounding box
SIFT cue values: SIFT features

(Note: cue values are hand-labeled unless otherwise specified)

Meeting Extended dataset Video taken from digital video camera consisting of
five 10-60s videos in a meeting setting with multiple people.

Object categories: chair, mug/cup, pen
Activity cue values: sit, drink, write
Speech cue values: “chair”, “pen”, “cup”, “mug”
Color cue values: hsv color
Shape cue values: aspect ratio of bounding box

� Define object dictionary. (see next subsection for training)

� Recognize specified object categories using defined object dictionary and cue values.
(see Sections 7.2,7.3, 7.4, 7.5)
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7.1.2 Training

In this subsection, we outline how training was done for each of the datasets (Meeting,
Gupta, Cooking, and Meeting Extended) in order to determine the weight value in the
object dictionary. The weight specifies the strength of the association between an object
and a cue value (i.e., p(oi|cvj). Training for each of the datasets occurred as follows:

Meeting dataset The initial object dictionary values were hand-defined. The initial
object dictionary consisted of activity and speech information. Through generalization
during recognition, visual cues (color and shape) were learned from objects recognized by
the initial dictionary. New cues added to a definition were given a predefined value (.8). In
Figure 7.1, we show an example of the initial object dictionary with weights hand-defined.
In Figure 7.2, we see the final object dictionary where learned visual descriptors were
added to the dictionary with the predefined weight. In order to make the color and shape
information readable in the figure, we represented the HSV values with color names and
indicated the different shapes through numbering.

Figure 7.1: Initial object dictionary for Meeting dataset

Gupta dataset The initial object dictionary values were hand-defined. The initial object
dictionary consisted of association specified by the Gupta dataset where each activity was
associated with only one object. Through generalization during recognition, visual cues
(color and shape) were learned from objects recognized by the initial dictionary. New cues
added to a definition were given a predefined value of .8. (see Appendix B for actual object
dictionaries)
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Figure 7.2: Final object dictionary for Meeting dataset

Cooking dataset The initial object dictionary was learned using a training dataset.
The training dataset consisted of hand-labeled objects, activity information, speech infor-
mation, and sound information using the ViPER software (described later) from a subset
of the Cooking dataset videos. The object dictionary was updated based on recognized
objects from the initial dictionary. How the object dictionary was affected by the learning
during the recognition process depended on the experiment. In experiments where the
initial object dictionary was learned from a training dataset where all cue types were in-
cluded in the training dataset, only slight updates to the weight values occurred during
recognition. Thus, the initial and final dictionaries did not differ much from each other. In
Figure 7.3, a comparison of the activity weights in the object dictionary for the initial and
final dictionaries of the Rachel Ray dataset are shown. For the full dictionaries including
all cue types, see the appendix (Appendix B).

In other experiments where single or multiple cue types were left out of the training dataset.
Final versions of the object dictionary included cue values not found in the initial dictionary.
In Figure 7.4, we see an example of this updated dictionary where speech information was
left out of the training dataset. The figure just focuses on the learning of the speech
information at different points in the recognition process (i.e., percentage of video data
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Figure 7.3: Comparison of initial and final activity object dictionary when training includes
all cue types

seen): 0 percent (initial object dictionary without speech information), 50 percent, and
100 percent (final dictionary after all videos in the dataset was seen). As described in
Chapter 3, weight updating occurs by updating the count estimates. In this case, where
speech was left out, each time an object was recognized and a speech cue was associated
with that object, the count for that object category was increased for that speech cue.
From this figure, we can see how from recognition results based on multiple cues, new cues
can be learned and their weights updated.

Meeting Extended dataset Initial object dictionary values were hand-defined. The
initial object dictionary consisted of activity and speech information. Through generaliza-
tion during recognition, visual cues (color and shape) were learned from objects recognized
by the initial dictionary. New cues added to a definition were given a predefined value (.8).
(see Appendix B for actual object dictionaries)

Using the experimental process and training we described in this section, we were able to
produce recognition results demonstrating various aspects of the MCOR algorithm. We
take about each of these aspects in the following sections.
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Figure 7.4: Comparison of initial, mid, and final speech object dictionaries when initial dictionary based on training
data without speech

7.2 MCOR Basic Features

In this section, we demonstrate the feasibility of the MCOR algorithm on a meeting dataset
taken from an omnidirectional camera (CAMEO) from the CALO project. We show results
on three videos of 3̃0-60 seconds long. Weights were hand-defined and learned through
simulation as described in the next section. Activity, speech, and color and shape cue
types were used. Activity information was extracted using an activity recognizer designed
by [60], which included the activities cue values: Sit, Stand, Walk Left, Walk Right, Fidget
Left, and Fidget Right. Additional cue values were added and labeled manually including:
Pointing, Erasing, Writing, and Put Down. Speech cues consisted of one cue value: “Look
that up”, which was manually labeled. Color and shape information was taken from the
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color segmentation and region growing technique described in Chapter 4.

These results illustrate the feasibility of the MCOR framework. Three object recognition
tasks were given to test various capabilities of the algorithm: the first demonstrates how
the algorithm can deal with an unreliable cue type, the second demonstrates how the
algorithm resolves cases where the same cue indicates the presence of different objects,
and the third demonstrates how the algorithm deals with a misleading cue.

All the tasks started off with object definitions which contained cues that could be observed
from the interaction of a human with the object and a weight value corresponding to the
strength of the association between the cue and the object. The definitions are begun with
cues that involve human interaction since those cues tend to be more obviously associated
with the object since humans usually interact with the object in a manner implicit to its
definition. For instance, most interactions tend to portray the function of the object which
is usually an important part of its definition. Additional cue types are learned by the
algorithm and added to the object definition through the video (see Figure 7.8(b,e) and
Figure 7.9(b,d)) according to the generalization method described earlier.

For all recognition tasks, segmentation is based on a color-based region growing algorithm,
described in detail in Chapter 4. The similarity measure for the activity and vision cues
will be binary, where scj ,cl = 1, if the cues are the same, 0 otherwise. ‘Same’ for the activity
cue means that the activity label is the same for each cue and ‘same’ for the vision cue
means the color distance between the cues and the shape ratio are within a threshold, tc.
Hence, the value of the evidence will simply depend on the sum of the weights of the cues
found in the definition. For simplicity, we will not refer to the value or multiplication of
scj ,cl in the sum, although it is implicitly there.

7.2.1 Weight Learning

In order to illustrate how the weight values for each cue and object could be learned, syn-
thetic data was generated by a simulator. Given a set of objects, the simulator generated
cues based on predetermined model which represents the probabilities of a cue being pro-
duced given the presence of an object. It is this model which the weights attempt to learn
using the PRM technique outlined below.

In order to demonstrate how the weights used in the real data scenarios described below
could have been learned, the simulator was set up using the predefined weights shown in the
next section as the model. Thus, three scenarios were produced by the simulator matching
the three scenarios of the real data. The weights generated by the PRM learning are then
compared with the true model values as shown in Figures 7.5, 7.6, 7.7. The simulation
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generated 100 runs for each scenario in order to learn the weights. No cue error is assumed.

In the first scenario, there were two objects, a whiteboard and a projector screen, with
activity cue values, i.e., Pointing, Erasing, and Writing. Their probabilities are represented
in Figure 7.7, in addition to the learned weights. In the second scenario, there were two
objects, laptop and chair. The extracted cues consisted of a speech and an activity cue,
i.e., “look that up” and Sit. The third scenario consisted of a table and chair with the cues
being the actions, Put Down and Sit.

With an average error of .003 between the true and the learned weights, one can see that
the PRM learning technique was able to successfully learn the true model used by the
simulator.

Figure 7.5: Comparison of learned weights to true weights in first scenario of meeting
dataset experiment

Figure 7.6: Comparison of learned weights to true weights in second scenario of meeting
dataset experiment
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Figure 7.7: Comparison of learned weights to true weights in third scenario of meeting
dataset experiment

Unreliable Cue Type

For the first object recognition task, the goal was to recognize two objects: a whiteboard
and a projector screen, which tend to have very similar visual features, in this case, similar
color and shape–a task which most vision-based object recognition systems would have
extreme difficulty with. In both cases, however, MCOR was able to successfully label each
object (see Figure 7.8(e)). Figure 7.8(a) illustrates how a new cue, a vision Color&Shape
cue, is added to the definition of the projector screen. The figure shows each key time step
as a row. In the row from right to left is a frame from the video, the status of the object
definitions, and the current calculation of evidence. A key time step is when a new cue is
extracted, since otherwise there is no change in the evidence and everything remains the
same. In each frame, segmented regions are surrounded with a border and filled with a
solid color, activity cues are labeled with all letters capitalized next to a box surrounding
the face of the person doing the action, speech cues are white with quotes and object labels
are white with all letters capitalized. In each object definition box, each object is in bold
followed by the cues associated with it: the type of cue, the cue value, and the weight.
The evidence column shows the current calculation of evidence that a particular region,
rn, is a particular object, oi, for each region and each object. This step leads to an initial
mislabeling of the whiteboard (see Figure 7.8(b)) as a projector screen. At this point, most
vision-based recognition systems would have no recourse to correct the mislabel. MCOR,
however, is able to overcome the obstacle by taking into account evidence from other types
of cues (see Figure 7.8(c-d)), in this case, pointing, writing, and erasing activity cues.

Thus, more robust object recognition can be produced when the ability to include cues of
various types is provided. This approach allows the system to be less dependent on the
weaknesses of any single type.
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Figure 7.8: Meeting experiment recognition result for unreliable cue type scenario

Same Cue Associated with Different Objects

In the second task, two types of objects were to be recognized: laptops and chairs. An
additional difficulty was added by having both the laptop and chair objects associated with
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the same activity, i.e., Sitting. Figure 7.9(d) shows the results of the object recognition
task, where despite the difficulty, the two laptops in the scene and a number of chairs
were correctly labeled (Some chairs were missed because they were neither sat upon nor
matched with the vision cue. Thus, additional cues would have to be learned or provided
to recognize the rest).

Although initially both objects were labeled chair (see Figure 7.9(c)), due to the only cue
provided thus far being associated with both objects, this ambiguity was able to be resolved
by the algorithm’s ability to take evidence from multiple cues, (in this case, additional
evidence was given by a speech cue: see Figure 7.9(d)) which aided in distinguishing the
laptops from the chairs.

Thus, having the same cue belong to multiple object definitions can lead to ambiguity in
the recognition. This is, however, a realistic representation of the world, where it is very
likely that the same cue may be correctly ascribed to more than one object, i.e., the set
of cues belonging to each object will never be completely disjunct in real world scenarios,
and so an algorithm must be able to handle such ambiguity. MCOR is able to do so, as
demonstrated, by collecting evidence from multiple cues to decipher the difference.

Misleading Cue

In the third task, the table was to be recognized, although a chair definition was also
provided. For added difficulty, a misleading cue was given. Although in most cases humans
interact with objects according to their definition, on occasion, a human may misuse an
object or interact act with it in an unconventional manner producing a misleading cue.

In this case, the misleading cue was produced by having the human sit on the table, an
activity clearly attached to the function and definition of a chair, but somewhat adverse to
that of a table. Initially, the algorithm is indeed confused and incorrectly labels the table,
a chair (see Figure 7.10(a)). Although Sitting is a strong indication of a chair (as shown
by the high value of its weight: Figure 7.10). The algorithm is able to take advantage of
the fact that people tend to do the correct action far more frequently than the incorrect,
as seen by the Put Down activities in Figure 7.10(b-d), to correct the mistake caused by
the misleading cue (see Figure 7.10(d)).

In addition, Figure 7.10 shows how the color and shape of the table which was originally
and incorrectly associated with the chair was placed in the proper definition after the
correction of the label. A similar case can be noted in Figure 7.9.

Thus, the algorithm was able to demonstrate its robustness to misleading cues through the
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Figure 7.9: Meeting experiment recognition result for same cue Associated with different
objects scenario

multiple cue framework.

7.3 Comparison to Other Methods

In this section, we demonstrate MCOR’s ability to run on a datasets used by another object
recognition system by Gupta et al. [23] which uses activity information. We compare the
recognition rate and features of the MCOR algorithm as compared to the Gupta system
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Figure 7.10: Meeting experiment recognition result for misleading cue scenario

as well as compared to the vision-only recognition system based on the popular SIFT [39]
feature recognition.

We show that the recognition rate of the Gupta framework and MCOR to be comparably
high. We show that MCOR provides an added feature, however, where visual features
learned from one video can be generalized to recognize objects in another. We then show
MCOR’s improvement in recognition as compared to a vision-only system such as SIFT.

The dataset consist of forty-six videos that were five to ten seconds long. Frame size was
640x480 pixels.
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The Gupta dataset is an optimal choice for frameworks interested in interactionable objects,
i.e., objects that are interacted with and interact, such as the MCOR algorithm. The
Davis’s group used these videos to do activity recognition and then object recognition
based on these activities. Here is an overall description of the dataset:

� Number of Videos: 46 videos each about 5-10 secs

� Objects Recognized: Spray can, Phone, Cup, Flashlight

� Activities Recognized: 5 activities: Spraying, Answering, Lighting, Pouring, Drinking

Gupta was able to recognize 98.67% of the objects using activity information based on a
histogram of oriented gradients using an adaboost classifier [23], this was an improvement
over the 78.33% recognition rate without activity information.

We did not have access to their activity recognition, so for our object recognition and
for comparison with the results from Gupta, we manually created the activity recognition
information for each of the videos according to the activities outlined by [23].

MCOR provides a color-based region segmentation and tracking algorithm that can seg-
ment objects in the images using color-based region growing. It then tracks that region
according to proximity, shape and color.

We then ran the MCOR algorithm using the automated visual object segmentation and
tracking and the manually annotated activity information.

Given an object dictionary with the activity information and the visual information, MCOR
was able to achieve a 100% recognition rate, as the manual annotations on activity had no
noise.

Both my 100% and the Gupta reported 96.67% object recognition excellent performance,
are not surprising as this Gupta dataset has a one-to-one association of an activity to an
object. Example of our results can be found in Figures 7.11 and 7.12.

Figure 7.11 shows captured frames taken from two different videos from the Gupta and
Davis dataset. On the left, the 150th frame was captured at the point when the activity
of Pouring was recognized. This allowed the cup to be recognized and the visual features
to be stored in the cups dictionary. Thus, when the next video was processed with the
updated definition. The cup was able to be recognized on the first frame without any other
cue information.

Figure 7.12 shows captured frames taken from results video generated after processing
various video clips from the Gupta and Davis Dataset. Each frame shows the point in the
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Figure 7.11: Gupta experiment results for recognition based on activity and generalized
vision cues

video when an activity cue was recognized, which allowed for the object being used to be
recognized and the color and shape information (top right of each frame) to be stored.

Based on the average recognition rate across all the objects in the Gupta dataset (Table
7.1), we found that there was a recognition rate of .47 for recognition based on color region
features with a false positive rate of .1. The reason for the low recognition rate is because
of the high propensity for the color region feature to recognize false positives, since color
and shape information can be easily applied to a number of objects if the threshold is high
enough. Thus, we chose to use a high threshold in order to keep the false positive rate
under .15. Using the SIFT features, we found there to be a .63 recognition rate with no
false positives due to the high matching requirement. Since, however, the objects which
are easily recognized by one type are not easily recognized by the other. The combined
recognition rate when using both features (taking preference over SIFT features when
there is a good match) gives us 81%, where there is only a 29% of overlap between the two
features. The false positive rate also gets reduced to .05, since 63% of the recognition rate
was produced by the SIFT feature, not the color region feature.

Visual Feature TP Rate FP Rate
Color Region .47 .13
SIFT .63 0
Both .81 .05

Table 7.1: Object Recognition Results for Visual Features

Thus, with by using the entire MCOR framework for object recognition, we can increase
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Figure 7.12: Gupta experiment recognition results for various video clips from dataset

this recognition rate by 19%.

One of the strengths of the MCOR approach is that it allows a many-to-many weighted
associations between objects and cues, which is not tested or demonstrated with the Gupta
dataset. Furthermore, another main contribution of MCOR is the ability to learn an
association and generalize from it to similar visual situations.

Interestingly, using the Gupta dataset, after MCOR recognizes an object through the
association of activity cues, it is able to generalize and recognize objects solely from their
updated visual description without the need for the use of the activity information and
without offline training beforehand. For example, the white cup in one video (captured
frame shown in left image in Figure 7.11) was actually recognized based on the color and
shape information learned from the recognition results of another video (captured frame
shown in right image in Figure 7.11).

In summary, with this dataset, we have shown that the MCOR algorithm can utilize
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datasets outside those generated by our own work. MCOR got comparable results and
showed its generalization capabilities.

7.4 Evaluation of MCOR Performance

In this section, we show the performance results for the MCOR algorithm using kitchen
setting dataset with a complex background. These datasets were processed and labeled
using a ViPER [33] as described in Chapter 3. With these datasets and labels, we are able
to vary the cue accuracy, object dictionary, and spatial association accuracy to see how
performance changed with the MCOR algorithm.

We use two datasets, all of which have a kitchen setting. We chose a kitchen setting because
these videos are most likely to have a person interacting with objects in front of them. One
dataset is taken from a kitchen simulated laboratory setting. The other dataset is taken
from cooking TV show DVDs. Both these datasets have a complex environment setting
(i.e. no color screen for background). Cooking shows were chosen because in addition to
the activity cues that are provided by the constant interaction, the actors are constantly
talking about the objects that they are holding, identifying them. As well as the sounds
provided by cooking. Thus, they provide a rich source of multiple types of cue information
that can be utilized. Here is a summary of the datasets used:

LACE Dataset [47] : 50 video clips around 1 to 60 seconds long of different people
(one per video) performing similar scenarios of removing a box of cereal, retrieving
a spoon, knife, bowl, jug and cutting board. Opening and closing cabinets.

� ACTIVITY CUE VALUES: Eat, Drink, Bring, Return, Open, Close, Pour,
Mix*
All activity cue values were labeled by the Rochester group except for Mix.

� SPEECH CUE VALUES: Word for each object category.

� VISION CUE VALUES: SIFT and Color region growing values

� SOUND CUE VALUES: Pour, Mix

� OBJECT CATEGORIES: Bowl, Knife, Cup, Cereal, Spoon, CuttingBoard, Jug,
Fridge, Plate, Cupboard

Rachel Ray Dataset [55] : 50 video clips, around 1 to 30 seconds long of one person,
Rachel Ray, performing and describing cooking recipes.

� ACTIVITY CUE VALUES: Twist, Smash, Shake, Drop/Add, Cue, Mix, Pour,
PickUp, PutDown, Point, Scoop
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� SPEECH CUE VALUES: Word for each object category.

� VISION CUE VALUES: SIFT and Color region values

� SOUND CUE VALUES: Sizzle, Chop, Mix, Pour

� OBJECT CATEGORIES: Bowl, Knife, OilJar, Spice, WineBottle, Cutting-
Board, Plate, Grill, Pan, Spoon

A few videos were taken from another cooking TV show with Gia De Laurentiis [34] for a
demonstration in some experiments.

Figure 7.13: Example frames from cooking datasets: (Left) Rachel Ray cooking dataset,
(Middle) LACE Dataset, (Right) De Laurentiis Dataset

Using these datasets, we now present the recognition results in several experiments. To
begin, we first pre-process the video data to group like viewing angles and to add labels.
We then compare the performance results under four main varying conditions: a variation
in cue accuracy and spatial association accuracy, a variation in the initial object dictionary
and current number of videos seen, and finally a variation in the initial object dictionary
when recognizing on a different dataset.
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7.4.1 Pre-Processing

For the datasets, pre-processing of the videos occurred before hand in order to provide
labels for training and evaluation. For the cooking dataset, addition processing had to
be done in order to sort videos into different camera angles, so camera shifts would not
interrupt the results. We then labeled all the datasets using ViPER.

Scene Sorting

We want training datasets which are primarily generated from real world datasets in order
to show the advantages of the MCOR algorithm in the real world. The problem is most real
world video datasets, except for those filmed in a restricted laboratory, consist of frequent
shifts in camera angles (think of any real world TV show such as cooking shows). In order
to compensate for these sudden shifts in camera angle, we outline a scene gist algorithm
we developed to sort different camera angles or scenes into bins with similar scenes, so they
can be processed using the same tracking or computer vision parameters that would need
to be adjusted if the scene were constantly shifting.

In our scene sorting algorithm (Alg. 5), we use local-intensity histograms to separate
viewing angles. This is done by dividing images into four 2x2 quadrants. A gray value
histogram of each section is then taken. The image is divided into four regions in order to
provide some spatial information, if a single histogram was used for the entire image all
spatial information would be lost. See Figure 7.14 for an example of the gist descriptor.
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Algorithm 5: Scene Sorting

Given:
- set of videos V to cut and sort;
- empty set, CV, of average image for each camera view;
- threshold to determine same camera view, θ;
for v ∈ V do

pf← 0;
/* previous frame */

diff← 0;
/* difference between histograms */

clip← ∅;
/* set of current frames in clip */

for f ∈ frames(v) do
/* determine if this is the end of same camera view */

diff = euclideanHistDist (f,pf);
if diff > θ then a new camera view has begun

cv ← findMatch(CV);
/* find matching camera view if available, 0 otherwise */

if cv == 0 then
cv = cv ∪ pf;
saveClip (clip,pf)

else
saveClip (clip,cv) clip ← f;

end

else
clip ← f;

end

end

end
function diff = euclideanHistDist (I1,I2)
[I1.q1, I1.q2, I1.q3, I1.q4] = quadrants (I1); [I2.q1, I2.q2, I2.q3, I2.q4] = quadrants

(I2);
for i = 1 : 4 do

h(i) = hist (rgb2gray(f.qi)) diff = diff + euclideanDist (h(i),ph(i))
end
return diff;
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The histogram is then compared to a database of stored histogram values using the sum
of square difference between each histogram bin. If the histogram is similar to one already
found in the database it is labeled under the same scene category. If it is different then
any other histogram according to a particular histogram, it is then added to the database
as a new scene category.

Figure 7.14: Gist information extracted and used in order to separate different scenes in
cooking dataset.

Once the video clips are properly sorted into their corresponding scene/camera viewing
angle categories, we then need a way to label each of the clips with all the information
that would be useful for learning for an interactionable based algorithm.

Labeling using ViPER

In order to provide training and testing datasets for these experiments, videos were labeled
with the Video Performance Evaluation Resource (ViPER). The details as well as the
schema used for labeling are provided in Section 3.4.

As a reminder, all objects, cues, and people interacting in the scene were labeled along
with there values and locations.

Using these processed datasets, we can now determine the performance results under vary-
ing conditions.
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7.4.2 Error Rate with Varying Cue Accuracy and Spatial Asso-
ciation Accuracy

We start by comparing a baseline error rate of each of the individual cue types if object
recognition was done with a single cue types as compared with recognition using all cue
types.

Baseline Individual Cue Type Rates and All Cue Types Error Rate

We compare these error rates to that of the entire MCOR system using all cue types .
These results are determined with a varying cue accuracy and learned spatial association
(Figure 7.15).

In these figures, we see that sound and speech cue types have the best overall individual
cue error rate, followed by activity, and then vision cues. Error rate was calculated by
determining the number of objects that were missed over the total number of objects
present (false negative rate) and the number of objects that were incorrectly labeled over
the number of objects (false positive rate). We then add these two values up to get the
total error rate and divide by two so error ranges from [0,1]. Speech and Sound most likely
have a better error rate given a cue accuracy because these values are the most specific
to a particular sort of object given the dataset and cues. In the graph, we show how the
error rate changes when each cue had an accuracy rate of 100%, system estimated and
1%. The system estimated values follow the accuracy rate described by each of the cue
systems based on an actual system. The system accuracy values are based on are described
in Chapter 3. Table 7.2 summarizes the cue accuracy for all the cue systems.

Activity 76.7
Vision 98.3
Speech 87.7
Sound 88.6

Table 7.2: Accuracy Rate for Cue Recognition Systems

Figure 7.15 show the (a) error rate for each cue type and all cue types against cue accuracy
with a 100% accurate spatial association and (b) the error rate for each cue type and all
cue types against cue accuracy with learned spatial association. White portions indicate
false negative rate. Colored portions indicate false positive rate. From Figure 7.15, we can
see that the error rate for MCOR as a whole (i.e. error rate when all cues are used) is
consistently lower than any of the individual features by themselves.
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Figure 7.15: Cooking experiment error rate comparing individual cue types and all cue
types with 100% spatial accuracy and learned spatial accuracy

This makes sense since MCOR is able to combine the set of object recognizable by each of
the cue types to boost its recognition rate. For example, even though activities overall error
rate is around 51% for 100% cue accuracy, if we look at the error rate for recognizing just
the objects the activity cue interacts with (Figure 7.16), we see a much higher recognition
rate. This is because most of the missed objects for the activity error rate were because
the cue activity had no interaction with them. For the color cue, on the other hand, all
these objects can be recognized but since the color cue is not a particularly good indicator
for all objects in the datasets, it misses alot of the objects which the activity cue finds
easy to recognize. Since MCOR uses both of these cues, we get the advantage of both.
This unfortunately means a slight disadvantage as well as MCOR is affected by the false
positive rates as well. This increase, however, is less than the combined false positive rate
of the individual features due to the weeding out of misclassified segments through the
evidence given by other cues. Thus, the overall performance is better than any individual
cue.

Another aspect to note is the effect of spatial association accuracy on the overall error
rates. We can see that with the learned spatial association accuracy some of the error
rates are scaled up. This scaling up is based on the probability of the spatial association
with the maximum accuracy not hitting an object based on the cue value. The scaling
value for each of the cue type taken from data is shown as follows:
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Figure 7.16: Cooking experiment error rate of activity cue for set of objects accuracy cue
interacted with

Activity .23
Vision 0
Speech .33
Sound .36

Since spatial association effects the recognition results by scaling the values up or down,
improved recognition can occur with better methods of associating a cue with an object
location. For cue types like the visual features, no improvement in spatial association is
needed since the cues are derived directly for the location of the object. These results,
however, do not detract from the main advantage of the MCOR algorithm, i.e. better
error rates are still seen by using multiple cue values over any single cue type.

Leave-One Cue Type Out

In this next experiment, we demonstrate how the error rate for object recognition is affected
by the addition of each cue. In Figure 7.17, we see how error rate is affected when each
of the cue types are removed from recognition for 100% cue accuracy. Lower cue accuracy
results are not shown since results are proportional to 100% accuracy.

From the results, we see that each of the cues provide some additional improvement to the
performance results. In other words, the more cues that are added the better the overall
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Figure 7.17: Cooking experiment error rate when one cue type is left out of object dictio-
nary and recognition with 100 % cue accuracy

performance. This demonstrates the advantage of MCOR’s ability to include all of these
types, where most other systems would just include a select subset.

While including a number of beneficial cues is obviously an advantage as shown by the
results above, Figure 7.18 shows that the inclusion of a cue with low accuracy will not
harm the recognition rate. Lower cue accuracy results for single cue not shown since
results are proportional to 100% accuracy.

In this experiment, we show the error rate when all but one of the cue types have a low
accuracy of 0%. We see that the error rate is then defined by the best cue. The best cue
is varied to each of the cue types.

We now take a look into how error rate varies as the number of videos seen during recog-
nition is increased.
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Figure 7.18: Cooking experiment error rate when all cue types have poor accuracy (0%)
except for one cue type (100% cue accuracy)

7.4.3 Varying Initial Cues in Object Dictionary with Error Rate
over Videos Seen

In this experiment, we show how the MCOR algorithm can improve the error rate of
recognition as the number of video seen increases. Figure 7.19 show the results from this
graph. Each of the results represent the error rate when recognition is begun where the
object dictionary only contains the values from one cue type. As more videos are seen,
new cues are learned and generalized by the MCOR algorithm.

Note how the recognition rate depends on the strength of the initial cue in the beginning.
This strength corresponds to the average cue type confidence value weighted by the number
of each object in the dataset (i.e. the mutual information provided by the cue type to an
object. Objects are uniformly distributed in our case). The false positive rate of the initial
cue type determines the rate for all the cue types. With the learning of more cues as more
videos are seen, the number of missed objects decreases. Thus, the overall recognition rate
with the number of video data seen goes down.

As these results show, MCOR is able to utilize the videos it has seen to find more objects
in later videos. This demonstrates the ability of MCOR to begin with information that a
person may know about an object and improve the recognition results from it. Thus, unlike
many other frameworks, MCOR can take whatever knowledge is available and increase the
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Figure 7.19: Cooking experiment recognition rate comparing initial object dictionary be-
ginning with each cue type and all cue types against the percentage of video data seen at
the time

recognition rate.

7.4.4 Using Object Dictionary of One Dataset on Another

In this last experiment, we show how object dictionaries built from previous databases can
be used as an initial point for recognition in a new database. We do this by taking the
object dictionaries built from the Rachel Ray dataset to recognize similar object categories
in the Gia De Laurentiis dataset. Table 7.3 shows the results.

Initial Weights Recognition Rate
Uniform .27
Direct .51
Scaled .69

Table 7.3: Object Recognition Rate with Varying Initial Weight Values

In the figure, we show the recognition rate for three cases: (1) using an initial uniform
weight distribution, (2) using the object dictionary values directly from the previous
databases, (3) using the object dictionary values weighted by the cue type confidence.

We see from these results a slight increase in performance when using the object dictionary
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values directly as compared to a uniform weight distribution. We see an even higher
improvement for the case that includes the cue type confidence values. This makes sense
considering that some of the cue values, such as color maybe more specific to the objects
found in the Rachel Ray dataset, while the values for activity would be especially useful
in the Laurentiis dataset.

These results begin the initial investigation in the use of using cue values learned from
previous datasets for application in new contexts. This leads the way into an exploration
of the learning of a general representation of weights that can be applied in any scenario
while being update for specific contexts when available. The use of the cue type confidence
term can be a useful term for this exploration.

7.4.5 Summary

Thus, across all the experiments, we have successfully exhibited the benefit of using as
many cue types as are available. Since our MCOR framework provides the ability to this,
we have show the great advantage of utilizing such a framework. More specifically, we have
shown the improvement in error rate through the use of all cue types with varying amounts
of cue accuracy and spatial association accuracy. In addition, we have shown that MCOR
can take advantage of the videos which it sees during recognition time to improve its rate.
We have also shown the possibility of utilizing object dictionaries from one datasets to help
aid in the recognition of objects in another.

7.5 Advantage of Multiple Cues

In these experiments, we demonstrate the flexibility of MCOR due to its use of multiple
cues. Videos were taken using a Panasonic Digital Camcorder with 700x500 resolution
frames. Data was taken from different office settings located in Carnegie Mellon University.
These videos demonstrate four key concepts: (1)the ability of MCOR to utilize multiple
cues from multiple people, (2) the ability to recognize objects based on vision cues learned
from a previous video, (3) the ability to recognize an object after it has returned within
view after being off screen, and (4) the ability to recognize the different appearances of an
object within the same class based on multiple cues of the same type as well as cues of
different types.
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7.5.1 Utilizing Cues from Multiple People

In this demonstration, we demonstrate the ability to recognize categories of objects despite
the variance of appearance of particular instances of those objects through the interaction
of multiple people. In this scenario, the object dictionary contains a pen object definition
which contains one cue value, Writing, from the activity cue type. The video for evaluation
contains two people, pa1 and pa2. Pa1 first interacts with a highlighter pen by writing.
This allows the MCOR algorithm to grab the color and shape information from the pink
highlighter. Using this information, MCOR then recognized the other pink highlighter on
the table. Pa2 then writes with a highlighter of another color. The MCOR algorithm then
generalizes this color to the pen object definition. The other two yellow highlighters were
then recognized using this updated definition.

In Figure 7.20, a frame capture of the resulting video is given which demonstrates MCOR’s
use of the activity cues from two different people. Thus, the figure shows the ability of
MCOR to utilize multiple cues (two activity cues) from multiple people to recognize pen
objects of different appearances (pink and yellow).

Figure 7.20: Meeting experiment with multiple people recognition result using multiple
activity cues for objects of different appearances

In the second demonstration (see Figure 7.21), a similar scenario is given where an object,
cup, has multiple visual appearances (red and blue). The object dictionary contains the
object category, cup, with the activity cue, Drinking, and the speech cue, “cup”. In this
demonstration, there are two people, pb1 and pb2. Pb1 first generates a speech cue by
using the word “cup” while talking about the cup. Pb2 simultaneously drinks from the
cup generating an activity cue. Based on these two cues, MCOR segments around those
regions and recognizing each of the different cups as a cup. The Red and Blue color and
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shape visual descriptors are then added to the object definition of cup. This allows all
the other cups in the scene to be recognized. Thus, MCOR is able to recognize objects
utilizing not only the activity information of one person to recognize all the blue cups, but
its able to recognize all the red cups because of the speech cue given by another person.

Figure 7.21: Meeting experiment with multiple people recognition result using different
cue types to recognize different object appearances

With these demonstrations, we show how the MCOR algorithm was able to recognize not
only the objects being interacted with, but additional objects in the scene based on visual
descriptions learned from the initial interaction. This interaction was able to utilize both
multiple people as well as multiple cue types.

7.5.2 Recognition Using Learned Vision Cues

In this demonstration, we show MCOR’s ability to utilize the updated dictionary definition
from the first demonstration to recognize objects in a new scene without the need of
additional interactions.

Figure 7.22 show the ability to recognize objects based on vision cues learned from a
previous video (Figure 7.20).

In the video for this scenario, we have a completely different context from the first demon-
stration with a different room, table, and people. MCOR uses the dictionary with the
updated pen visual features learned from the earlier video. Using this dictionary, the al-
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gorithm has the ability to recognize all the pen objects without the need of additional
cues.

Figure 7.22: Meeting experiment with multiple people recognition result using vision cues
learned from previous video

Thus, we are able to show MCOR’s ability to recognize objects based on vision cues learned
from a previous video.

7.5.3 Handling Off Screen

With this demonstration, we show the use of MCOR to re-recognize objects that may go
off screen with a panning camera.

Figure 7.23 show the ability to recognize an object after it has returned in view after being
off screen.

In the video used for this evaluation, we have one chair object in the scene and one person.
The object dictionary contains the a chair definition with the sitting activity cue value
associated with it. The person then sits on the chair, allowing the chair to be recognized.
The Red visual features and shape of the chair are then added to the definition. The
camera then pans to the left such that the chair object moves off screen. When the camera
pans back, so that the chair is back into full view, MCOR is able to re-recognize the object.
The image captures from this video are shown in Figure 7.23.
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Figure 7.23: Meeting experiment with multiple people demonstrating robustness to mo-
mentarily off screen objects
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Using this example, we were able to show the advantage of using MCOR in re-recognizing
objects which may have panned off screen for a period of time.

7.5.4 Handling Multiple Object Appearances

In the final demonstration of the advantages of the MCOR algorithm (Figure 7.24), we
show the ability of the framework to recognize the very different appearances of an object
within the same class based on multiple cues of the same type as well as cues of different
types.

In the video, we have four people all with very different looking mugs. The object dictionary
contains the mug object category which has the drinking activity cue value and the “mug”
speech cue value associated with it. Because we have multiple people, all interacting with
each of the mugs, MCOR is able to very quickly recognize all the mugs despite their vary
different appearances. This was possible because of MCOR’s ability to use the interaction
of multiple people as cues for the identity of each of mugs.

7.6 Conclusion

In conclusion, we have demonstrated the ability of the MCOR framework to recognize
multiple object categories using cues of various types. We demonstrated this by providing
empirical results which showed the basic features of the MCOR algorithm. We showed how
MCOR could be used to recognize objects in outside datasets successfully with the added
ability of being able to generalize other cue information. We showed how the performance
rate varies with a change in cue and spatial association accuracy. Finally, we gave video
results demonstrating the advantages of the MCOR algorithm to handle object categories
with varying appearances, objects that move off screen, and objects in different contexts.
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Figure 7.24: Meeting experiment with multiple people using multiple cues of the same type
and of different types
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Chapter 8

Background and Related Work

In this chapter, we discuss related work to this thesis. We start by placing the concept of
multiple-cue object recognition in the context of related object recognition work (Section
8.1). We focus on the areas of vision-based object recognition, multiple feature, functional
recognition and multi-modal object recognition.

We then provide background and related work for the tools and methods used in our
MCOR framework (Section 8.2). This includes the probabilistic relational model used for
object and cue representation, the Hough transform used for the collection of evidence
during recognition, discrimination used to define the recognition process and tracking and
segmentation used to ground the information in video data.

8.1 Object Recognition and Relationship to MCOR

Object recognition is concerned with identifying and locating an object within an image
or video frame.

The openness of the term ‘identify’ in this definition has led to a number of object recogni-
tion types. The MCOR framework focuses on one type of object recognition, category-level
object recognition. Category-level recognition determines whether or not an image contains
a specific category of object. This differs from instance-based recognition which attempts
to focus only on recognizing particular object instances. There are many ways to represent
a category of objects, such as shape analysis, bag of words models, or local descriptors.

Object recognition encompasses a vast field and set of approaches, the entirety of which
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would be impossible to cover here. Since our object thesis focuses on the integration of
multiple cues of various types, we organize this section with an increase in the type of cue
information utilized for recognition: we start with vision-only recognition systems, followed
by approaches based on visual and functional cue information, and finally, working our way
up to multi-modal object recognition approaches.

Thus, we begin by focusing on conventional vision-based recognition approaches. We focus
on key concepts, which have provided the foundation for substantial progress in the area
of object recognition.

8.1.1 Vision-based Object Recognition

In this subsection, we summarize object recognition techniques which use visual informa-
tion alone. There are a variety of approaches to vision-based object recognition. Model-
based approaches represent objects as a collection of three-dimensional, geometrical prim-
itives (e.g., spheres, cylinders, boxes, cones). Appearance-based models use extracted
features from the image and shape of an object as templates for matching [12, 22, 39]. In
our thesis, visual features are based on the latter model.

In shape and feature-based models, a model of an object is typically built from interest
points found on the object. Interest points are often located by corner detectors [24]. From
the interest points features consisting of visual descriptions are extracted. Features are
often color and texture information generated by a number of methods including geometric
blur [6], pyramidal histograms of oriented gradients [8] and histograms [39]. For category-
level recognition, a model for each object appearance in an object category is attempted
to be learned. These features are typically learned from training data. [17].

Most visual features, however, are very susceptible to one, if not all of the following changes:
scale, noise, illumination, geometric distortion, clutter, and occlusion. A number of ap-
proaches attempt to avoid these problems by confining their techniques to training and
test data where only a single object is found in the image on a solid background for easy
segmentation [42, 71].

Robust Feature Building

There have been a number of works that have attempted to develop more robust visual
features. One such well-known method is SIFT or Scale-Invariant Feature Transform [39].
This technique attempts to find highly distinctive features by matching individual features
to a database of features from known objects using a fast nearest-neighbor algorithm, fol-
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lowed by a Hough transform to identify clusters belonging to a single object, and finally
performing verification through least-squares solution for consistent pose parameters. The
features are invariant to image scale and rotation, and are shown to provide robust match-
ing across a substantial range of affine distortion, change in 3D viewpoint, addition of noise,
and change in illumination. However, it can only partially handle changes in lighting and
pose. In MCOR, we use SIFT as only one of the set of cues used to identify an object
category.

There are several alternative methods such as RIFT, a rotation-invariant generalization
of SIFT using circular normalized patches divided into concentric rings of equal width,
where the orientation is measured at each point relative to the direction pointing outward
from the center in order to maintain the rotation-invariance [35] and SURF or Speeded
Up Robust Features, which relies on integral images for image convolutions to reduce the
computation time of the other methods [5].

Others visual systems have tried reducing the amount of storage needed by the robust
feature descriptions in order to gain an edge and compact as much information as possible.
Such methods often do this compression through shared features or object parts [2, 45, 54].

These techniques however still limit the type of information that can be used to visual
information and thus is still susceptible to the inherent weaknesses of that cue type.

Integration of Multiple Visual Cues

While the previous techniques attempted to build feature descriptors that were robust, a
number of techniques have attempted to address the problem by building methods that
could better integrate information from various visual cue types.

One method which attempts to do so using a generalized feature is G-RIF, or Gener-
alized Robust Invariant Feature, which uses a general context descriptor which encodes
edge orientation, edge density and hue information in a unified form combining percep-
tual information with spatial encoding. The object recognition scheme uses neighboring
context-based voting to estimate object models [30].

Numerous works have described techniques for integrating multiple visual cues such as
texture, shape, color, and brightness. [13, 46, 56].

Multiple techniques do so by accumulating the various types of information, i.e., they
accumulate cues by summing probabilities or by joint regularization. [3, 53, 69]

These methods however tend to work with very simplistic data.
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8.1.2 Functional Recognition

In order to compensate for the weakness of visual features, another form of recognition,
functional recognition, attempts to use identify objects based on their function. A func-
tional definition categorizes and defines objects according to their potential uses and their
utility in performing a task [64]. In figure 8.1, the differences between a functional and
a classic categorization of objects is shown. Note that a functional category may put to-
gether two objects that would normally be categorized separately as in the mug and the
water-can and classic object categories may include several function categories. Thus, if
one wanted to give the objects classic object recognition labels, one could not do so on the
basis of a functional definition alone.

Figure 8.1: Classic object categories (left) vs. functional object categories (right) [64]

The functional definition of object categories depends on the notion of affordances intro-
duced by [20, 21]. In Gibsons theory of affordances, certain aspects of an objects form
can be used to determine their function. Affordances were ‘action possibilities’ defined
in relation to the actor and thus, the actors capabilities. So, if we are talking about a
human, a door knob affords the ability to be turned because of its form, i.e. its a turnable
object for that human. (For a bird on the other hand, the door knob would not provide
the same affordance since its form does not lend to the birds ability to turn it. However,
we will stick with the perspective of an adult human as that makes most sense in terms of
most object recognition problems). Thus, affordance properties are how an object can be
interfaced with, defining the objects utility. For object recognition, this is a useful concept
as it allows the approach to use affordance properties or cues to determine the function
of an object. For example, in some works affordance properties are defined as the relative
spatial locations of an object’s components [7].

Functional recognition then uses these affordance properties to determine the function and
finally the identity of the object. In most functional recognition approaches, the interaction
of a human with an object is used in order to identify in the object either in place of or
in conjunction with its visual attributes. In many cases, visual recognition techniques are
used first to recognize parts of an object in order to determine its use (and thus functional
object category) [59, 64, 76], with one of the first being [75], who used visual properties
in order to determine geometric properties to inform the function of the objects, such as
the bent (arch) nature of a handle on a cup or watering-can, which allows for grasping. In
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some cases, the affordance properties are used first in order to identify objects from which
visual properties are taken to find additional objects [70]. But under almost all cases, an
object is labeled according to its functional definition, not the classical.

8.1.3 Multi-Modal Object Recognition

Other approaches to object recognition use alternate sources of non-visual information
outside of or in addition to the functional definition. These approaches, along with our
thesis approach, identify the fact that humans usually do not recognize objects in isolation.
Objects are often being used, talked about, and touched – all of which provide additional
cues to the label of the object. In fact, in laboratory studies where much of the context
is removed and a person is only shown an image of the object to be recognized, if that
object is in a non-canonical position, it becomes more difficult for the person to name it,
as shown by an increase in response time [50]. Although there are numerous theories as to
why that maybe [14, 52], most would agree it seems highly unlikely that a person would
no longer recognize the teapot he/she was pouring tea from simply because they are just
now viewing it from a non-canonical viewpoint. Other non-visual cues associated with the
object allow the person to be confident that the object he/she is holding is a teapot, even
though the visual cues of the object itself may be lacking when looked at in isolation.

Through the utilization of different modalities, such as speech, activity, and sound, object
recognition systems can progress towards the same level of robust recognition human’s
have.

Other attempts have tried to compensate for the weaknesses by including a cue that does
not depend on the visual properties of the object itself. One method uses scene context
information [44] to provide additional evidence for the presence of an object. For instance,
if one were in an office, one could expect to see a computer screen or keyboard. The scene
context, the office, can thus provide evidence for those two objects in addition to their
particular visual features. Graphical models are used to describe the relationship between
the ‘gist’ of the scene, a feature vector extracted from the entire image, and the objects.
This method, however, lends a way for incorrect classification or a missed recognition
caused by an object being placed in a scene it normally is not found.

Others such as [43] attempt to add a completely non-visual cue, i.e., activities, in addition
to the visual properties. However, it also depends on a training set of the visual appearance
of the object, albeit less strongly than visual-based approaches alone. It also depends on
learning the background before hand and removing it when doing the recognition. This
approach limits its ability to be placed in any given room to recognize objects, and thus
makes it harder to be applied to real world situations.
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Although there are numerous other attempts which have included other non-visual cue
information: activity [70, 77], speech [61, 63], touch [26], knowledge [9, 41]. Every type
of cue in isolation has its own set of problems and weaknesses. For instance, with speech
cues, although there are a number of instances where its linguistic content can be used
to disambiguate objects in a picture [63], it is far from a perfected science and chances
of false positives or failures in a real-world situation is not unexpected. If one were to
use activity cues alone, there would also be numerous possibilities of error such as how to
deal with an activity that could describe more than one object or false positives caused by
an activity that misused an object. Other types of cues have similar weaknesses. Thus,
in our framework, we attempt to include information from any and all types of cues, so
that the weakness of one can be compensated by another. While category-level objection
recognition is a well-studied problem, to the best of our knowledge, no other work has
combined it with a flexible framework, which can include information taken from a large
variety of modalities.

Multi-modal recognition systems can fall under two broad categories: early fusion and
late fusion [61]. In early fusion, low-level features, which would be used in the recognizer
of an individual cue type are used directly. For instance, motion features used by an
activity recognizer are used to directly in the object definition for recognition, rather than
the activity labels generated by the activity recognizer. In late fusion, the classification
results of the recognition system (e.g. activity labels) for each modality/cue type are
used in the object definition. In our thesis work, we utilize late fusion. An advantage
of using late fusion is the greater compartmentalization of the different modalities. The
compartmentalization allows each modalities/cue type to be weighted. This reduces the
computational cost of weighting each individual low-level feature, while still retaining the
advantage of having the different modalities weighted separately from one another. The
trade off between computational efficiency of the late fusion and potential accuracy gain of
using early fusion is left for future work (Chapter 9). For our current work, we preferred
to err on the side of computational efficiency since we would like to be as close to real-time
during recognition of the video.

In the next section, we describe the work related to the methods and tools used to learn
the weight values for each cue, to represent each object model, and to recognize the object
categories in a given video.
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8.2 Methods and Tools

In this section, we provide the background and related work for the methods and tools used
in our MCOR framework (Section 8.2). This includes the probabilistic relational model
we use for object and cue representation, the Hough transform used for the collection of
evidence during recognition, the discrimination approach used to define the recognition
process and tracking and segmentation used to ground the information in video data.

8.2.1 Probabilistic Relational Models

An important aspect of the integration of the information is determine how much weight
to give to each of the different type of cues, since it would be unrealistic to assume that
each type of cue provides an equal indication of the presence of a particular object. There
are multiple probabilistic techniques [40]which could be used to determine the weight of
the association between a cue and an object such as voting algorithms [51]. One of the
most popular techniques is the use of Bayesian networks [11, 29].

In all probabilistic work, the structure and representation of the probabilistic relationship
need to be defined. The standard approach is to utilize a Bayesian probabilistic model.
Bayesian networks allows us to provide a compact representation of a complex probability
distribution over some fixed set of attributes or random variables. The representation
exploits the locality of influence that is present in many domains.

Numerous methods have used Bayesian models [29] including many of the methods de-
scribed above for integrating multi-modal cue information,e.g., [44]. However, most of
these techniques operate under very strict assumptions [32]. One assumption in particular,
that the data is not relational, does not apply well to real world data and the relationship
between objects and cues in a real world environment.

Probabilistic relational models (PRMs) [18, 19] can handle the inclusion of relation infor-
mation of data as an extension of standard Bayesian networks. PRMs can learn associations
between classes, attributes within a classes, and attributes related to another class rather
than the flat, attribute-value [18] data that Bayes nets must use. In addition, PRMs pro-
vide a framework for representing database-like structures, such as the object dictionary
of the MCOR framework. PRMs provide the necessary tools and concepts for learning the
multiple relationships between the various object, cue, human, and segment properties,
allowing not only for the probabilistic learning of the weight values, but for the learning
of the object displacement values (spatial and temporal association) needed to ground the
evidence information to a location in the image and for the learning of cue type confidence
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values, which can be used to scale the information coming from the various modalities.

As a reminder, within the relation model, a schema is defined containing several compo-
nents: The set of classes,

X = X1, ..., Xn

each of which has a set of attributes,

A(Xi) = Xi.a1, ..., Xi.a2

. The attributes can be either fixed, deterministic, or probabilistic. Fixed attributes are
there to identify instances of the class (referred to as entities) and thus their value does
not change. The value of probabilistic attributes however can vary based on the other
attributes of the entity or of related entities. It is this affect that we attempt to model and
learn the parameters.

The second component is the set of relations,

R = R1, ..., Rm

which defines the relationship between two classes. Relationships are significant in that
the value of attributes in one class can depend not only on the other attributes of that
class, but on the attributes of any related class.

While PRMs learn the dependency structure, S, between the attributes of the classes using
heuristic structure search and an adaptation of Bayesian model selection [18], the MCOR
framework had a known dependency structure, which did not need to be learned.

PRMs then describe a probability model over instances of a relational schema. An instance,
I, of the relational schema consists of the set of entities of each class,

Oσ(Xi) = e1, ..., ep

, where the attributes are defined and which relationships exist between them. A skeleton,
σ, is when only the fixed attributes of the entities are defined. In our case, an instance
would consist of all the objects in a scene, all the cues in the scene, and the association
between any of the cues or objects. Some of the attributes however are not easily defined
such as the object label and thus it is necessary to determine the probability distribution
of its values. A relational skeleton σ is then a partial instance where the probabilistic
attributes are undefined.

PRM then defines the distribution of instantiations of attributes as:

P (I|σ, S, δS) =
∏
Xi∈X

∏
aj∈A(Xi)

∏
ek∈Oσ(Xi)

P (Iek.aj |Ipa(ek.aj)) (8.2.1)
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Given a training set, the parameters δS can be learned according to the following equation:

l(δS|I, σ, S) = logP (I|σ, S, δS) (8.2.2)

l(δS|I, σ, S) =
∑
Xi

∑
A∈A(Xi)

 ∑
x∈Oσ(Xi)

logP (Ix.a|Ipa(x.a))

 (8.2.3)

Standard maximum likelihood estimation can then be applied where δ is chosen in order
to maximize l.

Although PRMs have been used in a number of other domains such as the web [66], movies
[18], and genes [18], the application of PRMs for object recognition using multiple cues is
a novel one.

With the probabilistic representation of the weight and object displacement values, a frame-
work is needed to determine the evidence that an object category is present given the weight
features and location information.

8.2.2 Hough Transform

There are a vast number of recognition schemas. In our framework, we need a recognition
approach that can efficiently cluster evidence for object category hypothesis as well as
possible segmentation locations. The generalized Hough transform [4, 25] is a well estab-
lished framework that does just that. The Hough transform has been used in a number of
applications varying from line detection to activity recognition [4, 25, 78]. A popular use
of the Hough transform is in object recognition [37, 39, 45].

A major advantage of the Hough transform is its built in capability to localize evidence
information in an image, while determining evidence for a particular object category. The
Hough transform works by creating an accumulator array with dimensions corresponding
to the different parameter information desired for recognition of an object. In a typical
object recognition Hough transform, parameters can consist of pose, scale, rotation, po-
sition, and object category. Each feature/cue then votes for a set of parameters. The
bin in the accumulator array with the greatest value determines the most likely object
category and parameter values. Weighted votes are often used in the Hough transform
recognition schemas to adjust the value placed on different features/cues. The method of
weight calculation vary depending on the approach. In a shared-feature object recognition
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approach[45], the log-likelihood ratio of the probability of a feature given the presence of
an object and given the absence of the object is used to weight each vote. In another ap-
proach [36, 37], the votes are weighted by P (oi|Ij, l), the probability of an object category,
oi, given a codebook interpretation, Ij observed at location l. A codebook interpretation
is a shape cue that is matched to a learned set of codebook entries that can be used to
describe each object. A similar approach is used in our thesis, where votes are weighted
by P (oi|cvj), i.e. the weight value calculated using the probabilistic relational model.

As an example of the use of the Hough transform, in the shared-feature object recognition
system introduced by [45], a 3-dimensional Hough transform is used consisting of the object
label, x location, and y location of the object center in an image. The Hough transform is
represented by an accumulator array, where the 3-d space is divided into bins of a given size
(Size produces a trade off between evidence strength and location accuracy). The position
dimensions in the accumulator array cover the entire image. Each feature extracted from
an image then adds a weighted vote to a bin specified by the learned offset between a
feature and an object center from training data. An object is then given the label to the
bin that has the highest activation value, which is above a given threshold.

In MCOR, we use a modified version of this Hough transform space, where instead of
dividing the entire image into corresponding bins in the accumulator array, bins represent
each region currently segmented by the MCOR algorithm. Position parameter information
for each cue is given by the spatial association. The threshold is determined by a maximum
a posteriori estimate given a training dataset (see Chapter 6).

Using the Hough voting strategy to determine the evidence towards each object category,
we use a recognition algorithm that incrementally discriminates between potential object
categories based on the cues received across time from a given video. We know define the
work related to this incremental discrimination process.

8.2.3 Discrimination

In the thesis work, the ability to discriminate between each of the objects is an important
ability necessary for a fast and accurate recognition process. This section describes the
basis for such discriminative techniques.

The foundation of most of these techniques is found in the EPAM model [15, 16, 57]. EPAM
(Elementary Perceiver and Memorizer) is a psychological theory of learning and memory
implemented as a computer program. Originally designed by Herbert Simon and Edward
Feigenbaum to simulate phenomena in verbal learning, it has been later adapted to account
for data on the psychology of expertise and concept formation. In EPAM, learning consists

148



in the growth of a discrimination net, where words are recalled through the comparison of
an encoding of the word to each node of a discrimination net (tree) that contain feature
tests until a match is found; if by the end of the tree, no match is found, the features of
the word are added to the net. The primary concept to note is the incremental comparison
of the word stimulus to features until recognition occurs. The addition of features to the
net corresponds to the generalization technique of the MCOR algorithm.

Another approach [46] combines decision trees, support vector machines (SVM), and the
probabilistic cue evidence accumulation schema defined by [3, 53, 69]. The method uses
the discriminative classifier defined by the SVM for each of the cues to generate object
classifications. Each of the cue classifier then vote for the presence of an object. A decision
tree is used to reduce the dimensionality problem when there is a large set of object
categories. The method creates a decision tree, which splits the object classes into two
subsets at each step. The splitting is determined by the standard information theory
method. The cue accumulation recognition algorithm is then preformed at each node of
the tree. Thus, at each step only two classification labels are considered.

While these works attempt to discriminate on the basis of information theory, my thesis
work will be focused more on taking advantage of the sequential nature of data in order to
choose the order of cue introduction as the discriminating factor. This method eliminates
the need for extra calculation in terms of information gain and possible tree configurations.

With a method for determining the recognition process, we now go over work related
to the grounding of the recognition information to pixel locations in the image, i.e. the
segmentation and tracking methods used to extract and localize regions for recognition.

8.2.4 Segmentation and Tracking

Since the exact methods for segmentation and tracking are described in detail in Chapter
4, we focus in this subsection on a general summary of the methods used and a brief
overview of related work in each of the areas. As with the cue recognition systems, the
focus of MCOR is not to use the most advanced methods in tracking and segmentation,
but rather to demonstrate the ability of producing robust recognition results through the
combination of these systems despite their weaknesses. We outline here some of the more
advanced approaches in these areas, which could be implemented in future work.

In our thesis work, segmentation was done using a color region growing approach [72]. This
method provided the color and shape information used for our visual cues, as well as pro-
viding the foundation for the region tracking algorithms used. Segmentation, however, does
not have to be based on color. Other approaches use characteristics such as intensity and
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texture. These approaches can be useful when dealing with objects with non-homogeneous
color regions. We deal these objects by creating segments based on the affine transforma-
tion parameters identified by the SIFT features. In future work, it would be interesting
to see if other texture based segmentation algorithm would prove more accurate. We used
the SIFT approach, since SIFT features were already extracted for recognition evidence,
and so segmentation did not add much computational cost. Other advanced segmenta-
tion techniques include graph partitioning methods, such normalized graph cuts [62]. This
method has proven very effective for segmenting objects from their background. The al-
gorithm, however, primarily works on figure-ground segmentation. Since there are often
multiple objects in the scene, the current method would not be as useful in the MCOR
framework. There are numerous other segmentation methods, such as model-based seg-
mentation, segmentation based on motion cues [65], histogram-based segmentation, and
clustering methods, which we cannot cover all here [48].

Tracking was done using a two-fold method: (1) Region- or blob-based tracking based on
the tracking of color segmentation regions (contiguous region tracking code by Felix von
Hundelshausen [72] was used along with Matlab code developed by ourselves - Chapter
4), and (2) feature-based tracking using SIFT features as the template for matching across
scenes. Other tracking methods include model-based tracking, where object models are
compared with each frame to determine the location of an object and active contour-
based tracking, which represents objects as bounding contours and updating such contours
dynamically in successive frames.

In both the color region and SIFT feature tracking methods, we used a standard approach
of proximity matching [17] to determine the location of the tracked object in the next
frame. More advanced technique in tracking predict the movement of the tracked region
through model estimation techniques such as the Kalman [28] filter, which uses an optimal
recursive Bayesian filter for linear functions subjected to Gaussian noise and the more
sophisticated, particle filter [31], which samples the underlying stat-space distribution of
non-linear, non-Gaussian processes. While these methods can produce fast and accurate
results, they also tend to be more computationally complex [49].

8.3 Summary

Although there has been significant contributions to the area of category-level object recog-
nition. The problem still remains exceedingly challenging.

In our work, we realize the world does not provide clean-cut definitions of what an object
is. The world is made up of “messy concepts” [58]. Concepts that are gray at the borders,

150



that are changing, and contain exceptions, so attempting to recognize an object based on
any one single aspect or cue can be a problem.

We understand the difficulty of using multi-modal information, where each cue recognition
system, segmentation, and tracking are all complex problems in themselves. With this
thesis work, we combine these different components with PRMs, Hough transforms, and
incremental discrimination to produce a framework that can yield the best recognition
performance results possible despite the inaccuracies of the subcomponents.
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Chapter 9

Conclusion

Flexibility and robustness are the major goals of the multiple-cue object recognition ap-
proach and thesis work. Although there are a large number of works that provide accurate
recognition results in very specific environments, none provide a cohesive way to combine
all the various types of information available given any environment.

In my thesis, I attempt to take advantage of the vast amount of cues human interaction
and video data provide in revealing the identity of an object. Although any particular
cue may fail, the evidence provided by numerous other types can compensate. Thus, we
have shown in this thesis an object recognition algorithm which can use multiple cues of
different types and number.

9.1 Contributions

The main contributions of this thesis can then be summarized as:

� We provided an object definition and cue representation for the utilization of the
resulting object dictionary for robust multi-cue object recognition. By defining an
object as a flexible set of cues, we allow for the the use of multiple cues of varying types
to provide as much evidence for determining object classes as possible. Requiring
cues to define a cue type, values, object displacement values, and weights, we have
the information needed to use cue information to localize and identify objects in a
video.

� We provided a probabilistic framework for representing the important fact that some
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cues may be more indicative of an object category than others. We did so through
the use of probabilistic relational models (PRMs) which not only provided a way to
learn these weights, but allowed for the learning of spatial and temporal associations
and a confidence value based on the cue type. We demonstrated the learning of these
weights both on simulated data and data taken from real video datasets.

� We outlined vision tools used to segment the image, extract visual features, and track
segments across image sequences. We have shown the usefulness of using both color
segmentation and color-shape visual information for identifying objects with large
homogeneous colored regions and using SIFT features for textually complex features.
These tools can then be utilized in the MCOR recognition algorithm for localizing
information in the image and finding new object candidates based on learn visual
descriptions.

� We presented MCOR algorithm which integrated the object and cue representations,
weights, and visual features to produce a framework that can integrate information
from multiple sources to incrementally discriminate potential object categories. In
addition, the MCOR algorithm has the ability to generalize learned cue values to
new object categories for additional evidence in addition to the ability of using and
learning the association of cue types not found in the original training dataset.

� We demonstrated using a detailed analytical model, supported by simulation results,
the key concept that multiple cue information improves performance regardless of
a variation in cue accuracy. In the worse case scenario, where additional cue types
have worse accuracy than the original single cue type, performance does as well as
the single cue. Thus, performance results are never as bad as its best cue. We have
also shown that scenarios where a single cue type may be ambiguous or misleading
for particular objects, multiple cues can help in disambiguating and correcting the
error leading to better performance.

� We demonstrated the ability of the MCOR framework to recognize multiple object
categories using cues of various types. We demonstrated this by providing empirical
results which showed the basic features of the MCOR algorithm. We showed how
MCOR could be used to recognize objects in outside datasets successfully, with the
added ability of being able to generalize other cue information. We showed how
the performance rate varies with a change in cue and spatial association accuracy.
Finally, we gave video results demonstrating the advantages of the MCOR algorithm
to handle object categories with varying appearances, objects that move off screen,
and objects in different contexts.

Representation Representations that can provide beneficial, complex information, while
allowing flexibility, which includes an object definition and cue representation which allows
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for the addition of multiple cue of any type, the learning of weights and relationships be-
tween the various cues and objects using Probabilistic Relational Models, and increasingly
complex hierarchies.

Recognition Recognition algorithms which can utilize the information provided by the
various representations in order to accurately identify objects, which includes the Multiple-
Cue object recognition (MCOR) algorithm which takes advantage of the object definition
and weights to determine the identity of an object, the integration of the more complex
representation of cues and objects in that recognition, the incremental discrimination for
faster recognition results, and the use of context-based information for better recognition
given an environment.

9.2 Future Directions

There are a number of possible future directions for this work:

� Improved Segmentation, Tracking, and Spatial Association Accuracy

There are a number of engineering issues which would could be used to improve over-
all recognition rate, one of these include an improved segmentation method. Better
segmentation can improve recognition by providing a better platform for learning
visual features. This would be especially helpful for texture based features such
as SIFT, in this case a full segmentation of the object will increase the number of
available features for building the object model and also for matching. In addition,
improved segmentation would help extend the MCOR framework from focusing on
labeling object categories with localization focused on finding a point or region some-
where on the object, to a framework which can return a more complete boundary of
the object location. Because of the utilization of human interaction with the objects,
we have a unique position of utilizing this information for finding seed points to begin
segmentation. Currently, our seed points were generated by the spatial association
term, which we calculated by finding the offset with the greatest likelihood given a
cue value. It would be interesting to find a better method of determining the position
of the object in relation to the human. This can be done by looking into other hu-
man parts which maybe more consistent in the location of the object, such as hands.
Since our datasets were focused on scenarios where most objects being interacted
with was in front of the human, this was not a problem, but one can imagine other
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datasets where head position would not be a very good indicator of object place-
ment. Further work could explore the possibilities of better features and calculation
methods. Along these lines, the burden of re-recognizing objects after they have been
lost by the tracking algorithm can be greatly reduced by a more advanced tracking
technique. The more successful tracking is, the less need there is to repeatedly find
the objects.

� Cue Recognition Systems and Dynamic Features

Although the cue recognition systems used by MCOR are not the primary focus of our
thesis work, future work could include finding more robust, accurate, and informative
cue systems. One of the advantages of MCOR is its ability to use whatever recognition
systems are available, but an improvement of the overall recognition rate through
an improvement in the cue recognition systems plugged in would be interesting to
determine how MCOR could preform on even more complex datasets using these
more enhanced cues. Along these lines, it would be interesting to explore the use of
the dynamic features used by activity recognition systems directly to see if it results
in an improvement in performance, rather than the activity labels generated by the
system. This engineering enhancement would be an interesting next step for a wider
application of the system.

� Probabilistic Representation and Weight

In regards to the weights and probabilistic relational models, future work can be
focused on taking further advantage of the relational aspect provided by the PRM
model and new areas of weighting methods. The PRM model could be used in future
work to not only include cue information but also to use the known presence or likely
presence of other objects in order to provide evidence for an object category. For
instance, the evidence for a table could be increased given that a laptop is found in a
region above. Distance and position of these objects and cues can be another source
of additional information that the algorithm could use to identify possible object
regions. The use of negative weights is another potential use of the probabilistic
model, since its possible that the presence of some items may help eliminate otherwise
potential object category labels. For instance, the presence of a car would decrease
the likelihood of getting a car.

� Extension of Application
As briefly mentioned earlier, another interesting area of future work would be the
exploration of MCOR on more extended applications. This includes video datasets
such as more general How-to videos (not just those focused on kitchen settings) as
well as more datasets that include the interactions of multiple people simultaneously
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from an outside data source. In addition, further progression can lead to the testing
of the approach on a mobile platform such as a robot. The MCOR algorithm would
then have to include

� Automatic Labeling of Training Data
While some aspects of the training data used had automatic labels (such as some
of the activity labels and face bounding boxes), it would be a greater advantage to
have a more automatic process of labeling the training data, such as using the range
of color in human skin to recognize not only face, but hand locations automatically.
In cases when automatic labeling is not possible, having a large unrelated group of
people labeling items would remove an element of bias from the data and also would
allow learning of weights for more general datasets, such that the association between
activities and cues could be determined by a vast input of worldly knowledge from
the general public. Amazon’s mechanical turk would be a good option for collecting
such data.

� Inclusion of Cue Type Confidence

As briefly mentioned in an earlier chapter, the cue type confidence calculated using
the PRM model would be an interesting source of future work, as there are a number
of possible uses for this information. Since the cue type confidence provides the
normalized mutual information between each object label and cue type in general. It
would be interesting to explore uses of the confidence value to start prior values for
unlearned cue values from other datasets. For instance, we could determine that a
color cue provides no evidence to the presence of a pen, so there is no need to extract,
learn, or use the evidence provided by any particular color value when looking for a
pen. Thus, the use of entire cue class can be eliminated, or highly valued. In addition,
the cue type value could be a useful term when it comes to context learning.

� Context
An area of exploration that would be intriguing for future work would be developing
an algorithm, which can give an accurate reflection of the relationship between the
general and context-specific information. More specifically however, further extension
could include: (1) a more robust and flexible context-based algorithm, (2) adaptation
to dynamic contexts, and (3) the evaluation across various contexts.

Context-Based Algorithm An important aspect of the future thesis work is the de-
velopment of a robust, flexible context-based algorithm. In preliminary work C, the
algorithm learned the weights for each of the contexts by treating each individual con-
text as a separate learning problem. Thus, it simply replaced the general dictionary
values with its own.
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In future work, I propose a greater interaction between the general and the context-
specific object dictionaries, where there will be a weighted contribution between the
general definition and the context. This approach will allow the general definition to
be more slowly molded to fit each individual as more evidence is accumulated, rather
than the blind and total dependence on the context information.

Dynamic Contexts Future work could also explore the idea of changing contexts,
i.e., how the definitions for a context-specific dictionary can be adjusted to not just
contexts which remain the same within themselves, but which take into account the
fact that the context may change.
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Appendix A

Additional Results from Analytical
Model
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SIMULATION: Comparison of  Cue Accuracy and Performance :  150 Trials

Cue Accuracy Cue Accuracy Cue Accuracy

One Cue Value Association Multiple Cue Value Association Ambiguous Cue Value 

Figure A.1: Comparison of cue accuracy and performance for simulation results of single,
multiple, and ambiguous cue value associations
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SIMULATION: Comparison of Performance for Single Cue With Poor Accuracy (0) and Additional Cues with Good Accuracy (1) :  150 Trials
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Figure A.2: Comparison of performance for a single cue type with poor accuracy (α = 0)
and additional cue types with good accuracy (α = 1) from simulation of single, multiple,
and ambiguous cue value associations
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SIMULATION: Comparison of Performance for Single Cue With Good Accuracy (1) and Additional Cues with  Poor Accuracy (0) :  150 Trials
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Figure A.3: Comparison of performance for a single cue type with good accuracy (α = 1)
and additional cue types with poor accuracy (α = 0) for simulation of single, multiple, and
ambiguous cue value association
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NON-UNIFORM ACCURACY: Comparison of  Cue Accuracy and Performance

Cue Accuracy Cue Accuracy Cue Accuracy

Figure A.4: Comparison of cue accuracy and performance for non-uniform accuracy for
the single, multiple, and ambiguous cue value association
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NON-UNIFORM ACCURACY: Comparison of Performance for Single Cue With Poor Accuracy (0) and Additional Cues with Good Accuracy (1) 
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Figure A.5: Comparison of performance for a single cue type with poor accuracy (α = 0)
and additional cue types with good accuracy (α = 1) for non-uniform accuracy of single,
multiple, and ambiguous cue value association
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Figure A.6: Comparison of performance for a single cue type with good accuracy (α = 1)
and additional cue types with bad accuracy (α = 0) for non-uniform accuracy of single,
multiple, and ambiguous cue value association
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Appendix B

Object Dictionaries

In this appendix, we provide the object dictionaries for each of the experiments. In cases
where the object dictionary was updated during recognition, we first provide the initial
object dictionary followed by the updated one. The object dictionaries given here come
from the following datasets: Meeting dataset, QRIO dataset, Gupta dataset, Cooking
dataset, and Meeting extended dataset.

B.1 Meeting dataset dictionaries

The initial object dictionary values were hand-defined. The initial object dictionary con-
sisted of activity and speech information. Through generalization during recognition, visual
cues (color and shape) were learned from objects recognized by the initial dictionary. New
cues added to a definition were given a predefined value (.8).

B.2 QRIO object dictionary

The initial object dictionary values were hand-defined. The initial object dictionary con-
sisted of all cues used during recognition: activity, shape, and color cues.
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Figure B.1: Initial object dictionary for Meeting dataset

B.3 Gupta dataset dictionaries

The initial object dictionary values were hand-defined. The initial object dictionary con-
sisted of association specified by the Gupta dataset where each activity was associated
with only one object. Through generalization during recognition, visual cues (color and
shape) were learned from objects recognized by the initial dictionary.

B.4 Cooking dataset dictionaries

The initial object dictionary was learned using a training dataset. The training dataset
consisted of hand-labeled objects, activity information, speech information, and sound
information using the ViPER software from a subset of the Cooking dataset videos. The
object dictionary was updated based on recognized objects from the initial dictionary.
Initial dictionary shown here was learned on a training dataset using all cues found during
recognition. Thus, only slight updates to the weight values occurred during recognition,
i.e., the initial and final dictionaries did not differ much from each other. This is especially
apparent in the LACE dataset, which consisted of a laboratory setting where actions were
scripted and objects consistent, thus cue values were the same for training and testing
datasets.
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Figure B.2: Final object dictionary for Meeting dataset

B.5 Extended Meeting dataset

Initial object dictionary values were hand-defined. The initial object dictionary consisted
of activity and speech information. Through generalization during recognition, visual cues
(color and shape) were learned from objects recognized by the initial dictionary. New cues
added to a definition were given a predefined value (.8).
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Figure B.3: Object dictionary used by QRIO experiments

Figure B.4: Initial object dictionary for Gupta dataset
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Figure B.5: Final object dictionary for Gupta dataset
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Figure B.6: Initial object dictionary for Cooking/Rachel Ray dataset
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Figure B.7: Final object dictionary for Cooking/Rachel Ray dataset
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Figure B.8: Initial object dictionary for Cooking/LACE dataset
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Figure B.9: Final object dictionary for Cooking/LACE dataset
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Figure B.10: Initial object dictionary for Meeting Extended dataset
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Figure B.11: Final object dictionary for Meeting Extended dataset
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Appendix C

Context Learning

We demonstrate in the appendix some initial experiments into the idea of context learning
for MCOR. Context learning focuses on two aspects: (1) adaptation of the weights learned
to a specific context and (2) the building of a general object definition which can serve as
a good starting point for all contexts based on the general properties.

C.1 Adaptation to Specific Contexts

Within each object dictionary, there is a list of each of the objects to be recognized. For
each object, the cues associated with that object are listed along with the weight of the
association between the object and cue (valued between 0 and 1). See Figure C.1 for an
example. In most cases, if the weight is equal to 0, the cue is not shown in that object’s
definition.

In this initial model of context-specific dictionaries, the general object dictionary is updated
for a particular context by recalculating the probability based on that context specific
data alone, i.e., the weight, wi,j,k for the object class, oi, the cue cj, and the context xk is
calculated using the following equation:

wi,j,k = #(ci,j,k)/#(oi,k)

where #(ci,j,k) is the number of cues counted from the context-specific data with the value
j and associated with the ith object class and #(oi,k) is the number of objects in the
context-specific data that falls under the object class, oi.
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Figure C.1: Example of an object dictionary. Specifically, this is the general object dictio-
nary that is later updated in Figure C.3.

C.2 Building a General Definition

The general definition is updated in a similar manner: To calculate the weights, a similar
count is done as in the equation above for each cue and object association, except across
all the contexts, i.e.,

wi,j =
∑
k

#(ci,j,k)/#(oi,k)

Below we give a small demonstration of the two techniques.

C.3 Experiment and Results

In the experiments below, video was taken from a Panasonic hand-held digital video cam-
era.

C.3.1 Adaptation to Specific Contexts

In this first demonstration, we illustrate adaptation of the general object dictionary to a
context-specific one. The original dictionary can be found in Figure C.1. Note that there
is an equal value across all the color value weights for chair, since generally chairs come in
all colors without preference.
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However, in a specific context, as that shown in Figure C.2, chairs can often come in a
single color, (in this case, black) making it a good indicator for the chair class. Because of
the general dictionary (Figure C.1), the first chair can be recognized based on the activity
cue of sitting alone (Figure C.2).

Figure C.2: Demonstration of sitting cue extracted from video recorded in the first context.

The other chairs can then be recognized based on the additional cue of color learned from
the labeling (see Figure C.3). The object dictionary is then updated for this specific context
accordingly (Figure C.3): The weight for black is changed to 1, since all the chairs in the
context that are recognized are black, and all other colors are changed to 0.

We can now use this updated context-specific dictionary to recognize objects from different
video sequences which were taken in the same context (Figure C.4). Thus, the chairs were
able to be correctly recognized even without activity cue, which would have been necessary
previously, thus taking advantage of the context-specific information learned previously.
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Figure C.3: Recognition results of the chair in the first context, and the updated context
definition. Original dictionary can be found in figure C.1

C.3.2 Building a General Definition

In the results below, we show a simple demonstration of the learning of the general dictio-
nary from multiple context data. In the original dictionary (Figure C.5) the weights were
hand labeled.

An updated general dictionary was then learned using two different contexts, both contain-
ing a chalkboard, which could be recognized by the original dictionary information. Thus,
additional cue information (color) was added to the general dictionary looking across con-
texts.

C.4 Conclusion

In the preliminary results above, previous work showed only two contexts. For future thesis
work, The inclusion of various buildings (e.g.,Wean, Newel-Simon) and various room style
(e.g.,classroom, conference room, atrium) allows for the investigation of the relationship
of the objects and cues across each of the types of contexts. For instance, it may be that
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Figure C.4: Recognition results for ‘chair’ based on the context-specific dictionary learned
from the previous video sequence in the same context (see Figure C.3)

color of chairs in Wean are all the same regardless of room style, while the shape of all
tables in conference rooms are the same regardless of the building.

In addition, further progression could lead to the testing of the approach on a mobile
platform such as a robot. This evaluation will test the ability of the algorithm to recognize
objects as it moves from room to room.
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Figure C.5: Demonstration of the learning of a general trait from multiple contexts. The
original general dictionary is found at the top of the figure, the updated version is found
on the center-right. The new dictionary was calculated from the data provided by context
1 and context 2.
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Appendix D

Probability Model for SIFT
Similarity

In Chapter 4, we used SIFT features as one of the vision cues used in our multiple-cue
object recognition (MCOR). In our MCOR framework, each cue must define how the
similarity between an extracted cue taken from an image and a definition cue taken from
the object dictionary are compared in order to determine a match. For the SIFT features,
we use Lowe’s probabilistic verification model [38], which determines the probability of
the presence of an object model (taken from the object dictionary) based on the actual
number of matching features found, to determine the similarity measure for a SIFT visual
cue. This appendix, thus, outlines the probabilistic model given by Lowe and used for our
similarity calculation for the SIFT visual cue.

In Lowe’s work, object model verification is determined by the probability: P (m|f), where
m is the presence of the model at a given pose and f is the set of k features that have been
matched between a model and an image (i.e. a definition cue and an extracted cue in the
MCOR framework). It is this probability, which we use as the SIFT similarity measure.

P (m|f) can be determined using the Bayes’ theorem:

P (m|f) =
P (f |m)P (m)

P (f)
(D.0.1)

=
P (f |m)P (m)

P (f |m)P (m) + P (f |¬m)P (¬m)
(D.0.2)

According to Lowe, P (f |m) and P (¬m) can be approximated as 1. For the former, this
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is possible because we normally expect to see at least k features present when the model
is present (for the small values of k for which this evaluation is relevant). For the latter,
there is a very low prior probability of a model appearing at a particular pose. Thus, we
can approximate P (f |m) as:

P (m|f) ≈ P (m)

P (m) + P (f |¬m)
(D.0.3)

We let P (f |¬m) be the probability that the matched features, f , would arise by accident
if the model, m, is not present. The model assumes that the k features matches arose from
n possible features, each of which matches by accident with probability, p. The cumulative
binomial distribution can then be used to calculate, P (f |¬m):

P (f |¬m)
n∑
j=k

(
n

j

)
pj(1− p)n−j (D.0.4)

We let p be the probability of accidentally matching a single image feature to the current
object model. p can be calculated as follows:

p = dlrs (D.0.5)

where d is the probability of accidentally selecting a database match to the current object
model. d is given by the fraction of the database (i.e. object models saved in the object
dictionary) occupied by features from this model view. l, r, and s are the probabilities
of satisfying the geometric constraints (location, orientation, and scale respectively). As
defined by Lowe, we constrain the location, l, to 20 percent of the average model size
in each direction, i.e. l = 0.22 = 0.04. Orientation is constrained to a range of 30
degrees: r = 30/360 = 0.085. Scale, s, is estimated as 0.5 since keypoint scale can only be
constrained within a one-octave range due to inaccuracy in scale measurements and since
most keypoints are detected at the finest scales.

P (m) is calculated by taking the ratio of correctly matched features to all matched features
in a typical image. This gives the probability that a single feature match is correct. This
corresponds to the probability of an object model since we can assume that one matching
features is used to determine the initial pose hypothesis (incorporated into m), and the
remaining features are used for verification (reducing k by 1).

Using P (m) and P (f |¬m) in the Bayesian equation, the resulting P (f |m) can be used as
the similarity measure for the SIFT vision cue.
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Appendix E

List of Notation

O Set of all object categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
oi ith object category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Ci Set of definition cues for ith object category . . . . . . . . . . . . . . . . . . . . . . . . 8
wi,j Weight strength between the ith object category and jth cue value .12
∆p Spatial association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
∆f Temporal association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
∆p∗ Spatial association with greatest likelihood . . . . . . . . . . . . . . . . . . . . . . . . 23
∆f ∗ Temporal association with greatest likelihood . . . . . . . . . . . . . . . . . . . . . 24
cvj jth cue value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
X Set of classes for PRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I
Instance of a PRM schema with a set of entities and all attributes filled
in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

σ
Partial specification of an instance for a PRM schema, only fixed at-
tributes filled in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A(Xi) Attributes for ith class in PRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
EI(Xi) All entities of instance, I, for class, Xi, in PRM . . . . . . . . . . . . . . . . . . . 15
Eσ(Xi) All entities of skeleton, σ, for class, Xi, in PRM . . . . . . . . . . . . . . . . . . . 20
xdk.aj Entity with fixed attribute value, xdk, and attribute, aj, in PRM . 15
xdk kth fixed attribute with value xd in PRM . . . . . . . . . . . . . . . . . . . . . . . . . 15

f .R.an
Slot for Xi, i.e., all entities ∈ Xi whose attribute is an ∈ A(Xi) related
to entity, f , through relation, R, in PRM . . . . . . . . . . . . . . . . . . . . . . . . . .16

γH() Aggregation of a slot using a function, H, in PRM . . . . . . . . . . . . . . . . 16
od Object id for entity in OBJECT class in PRM . . . . . . . . . . . . . . . . . . . . 16
og Object category for entity in OBJECT class in PRM . . . . . . . . . . . . . .16

ol Object location (bounding box) for entity in OBJECT class in PRM
16

ov Object visibility for entity in OBJECT class in PRM . . . . . . . . . . . . . .17
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cd Cue id for entity in <CUETYPE> class in PRM . . . . . . . . . . . . . . . . . .17
cv Cue value for entity in <CUETYPE> class in PRM . . . . . . . . . . . . . . 17
cc Cue type confidence for entity in <CUETYPE> class in PRM . . . . 17
cf Frame number of entity in <CUETYPE> class in PRM . . . . . . . . . . 17
cl Location (bounding box) of entity in <CUETYPE> class in PRM 17
pd Person id for entity in PERSON class in PRM . . . . . . . . . . . . . . . . . . . . 18
pl Location (bounding box) for entity in PERSON class in PRM . . . . .18
pz Location (bounding box) of entity in PERSON class in PRM . . . . . 18
sd Segment id for entity in SEGMENT class in PRM . . . . . . . . . . . . . . . . 18

sf
Frame offset until object visible for entity in SEGMENT class in PRM
18

so Location offset of entity in SEGMENT class in PRM . . . . . . . . . . . . . .18
OC OBJECT-CUE relationship in PRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SC SEGMENT-CUE relationship in PRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PC PERSON-CUE relationship in PRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
S Dependency structure of PRM schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
pa(aj) Parent attributes of attribute aj in PRM . . . . . . . . . . . . . . . . . . . . . . . . . .20
δS Parameters for dependency structure, S, in PRM . . . . . . . . . . . . . . . . . 20
CXi.aj [v, ~u] Number of entities, where Xi.aj = v and pa(Xi.aj) = ~u in PRM . . . 21
MI() Mutual information function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
H() Entropy function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Ck Set of extracted cues for kth segmented region . . . . . . . . . . . . . . . . . . . . .54
ek,i Evidence for kth segmented region and ith object category . . . . . . . . 55
sj,l Similarity between definition cue, cj, and extracted cue, cl . . . . . . . . 55
Ft tth frame in video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
θ Threshold for evidence to determine recognition . . . . . . . . . . . . . . . . . . .56
eqk kth equivalence class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
ai Activation value for ith object category . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ai∗
Activation value for the ith object category with the maximum activa-
tion value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

rk kth segmented region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
C Set of extracted cues found in object dictionary . . . . . . . . . . . . . . . . . . . 68
nz Number of times zth cue value was seen in video . . . . . . . . . . . . . . . . . . 68

Oi∗
Bernoulli random variable indicating presence of object of ith category
with maximum activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

o i∗
Indicates presence of object of ith category with maximum activation
74

o ′i∗ Indicates absence of object of ith category with maximum activation 74
Ôi∗ MAP estimator for the presence of an object category . . . . . . . . . . . . .69
µ Mean for activation value given presence of object . . . . . . . . . . . . . . . . 69
σ Standard deviation for activation value given presence of object . . . 69
µ′ Mean for activation value given absence of object . . . . . . . . . . . . . . . . . 69
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σ′ Standard deviation for activation value given absence of object . . . . 69
fp False positive rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
fn False negative rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ER Error rate metric for recognition performance . . . . . . . . . . . . . . . . . . . . . 71
D Disparity metric for recognition performance . . . . . . . . . . . . . . . . . . . . . . 72

Nz
Binomial random variable representing total unweighted activation
value provided by cue value, z given object present . . . . . . . . . . . . . . . .73

X
(f)
z

Random variable representing success or failure of cue value, z, found
on frame, f given object present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

pz Probability of success, i.e. P (X
(f)
z ) = 1 given object present . . . . . . . 73

N ′z
Binomial random variable representing total unweighted activation
value provided by cue value, z given object absent . . . . . . . . . . . . . . . . 73

X ′(f)
z

Random variable representing success or failure of cue value, z, found
on frame, f given object absent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

p′z Probability of success, i.e. P (X
(f)
z ) = 1 given object absent . . . . . . . 73

F Set of frames from a given video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Fi Set of frames where object of ith category is present . . . . . . . . . . . . . . . 73
F ′i Set of frames where object of ith category is absent . . . . . . . . . . . . . . . .74
V Number of cue values for each cue type in analytical model . . . . . . . 79
M Number of cue types in analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . 79
α Parameter for cue accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ĉ Cue value observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
c Actual cue value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
RER Real error rate for recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
AER Analytical error rate for recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
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