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Abstract

IP networking is a spectacular success, catalyzing thasilifi of data networking across academic insti-
tutions, governments, businesses, and homes worldwide.d¥spite the fundamental importance of this
infrastructure, today’s networks are surprisingly fragihd increasingly difficult to configure, control, and
maintain. As our dependence on data networking grows, sti@oigks of security breaches, large-scale
outages, and service disruptions.

We believe that the root of these problems lies in the conifglekthe control and management planes—
the software and protocols coordinating network elemeatse-particularly the way the decision logic and
the distributed-systems issues are inexorably intertvinEhe research community advocates a complete
refactoring of the functionality and proposes a new archiie which they call “4D,” after the architecture’s
four planes: decision, dissemination, discovery, and.dHEt& 4D architecture pulls decision-making logic
out of the network elements to create a logically centrdlidecision plane, where network-level objectives
and policies are specified and enforced by direct configuraif state on individual network elements.

While the 4D vision is conceptually appealing, it has raiaeslide range of practical concerns related
to robustness, flexibility, scalability, and security. Qhesis is that it is actually possible to build a 4D
network that is as scalable and robust as traditional IP ret but greatly simplifies network control and
managemeiit To prove this thesis, we must address the following teciinthallenges:

1. What kind of decision-plane framework will enable thetealization and composition of multiple
network control functions for sophisticated network cof#tr

2. How can we provide reliable connectivity to remotely ngandistributed network elements without
relying on the communication services that are being maifage

3. Is there an efficient way to disseminate control messages €entral decision servers to a large
number of network elements?

We believe that answering the above questions is key to tbeesaful deployment of 4D networks.
In this dissertation, we tackle those challenges by bujldirdD network control platform called Tesseract
and demonstrating that Tesseract enables both simplergatetthat do not have to embed decision-making
logic, and more powerful decision algorithms for impleniegtsophisticated goals. The main target of our

work is to turn the revolutionary 4D concept into a practivakking system.
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Chapter 1

Introduction

Although IP networking has been wildly successful, theee serious problems lurking “under the hood”.
IP networks exhibit a defining characteristic of unstablmplex systems — a small local event (e.g., mis-
configuration of a routing protocol on a single interfaceh tave severe, global impact in the form of a
cascading meltdown. In addition, individual Autonomousi8yns (ASes) must devote significant resources
to “work around” the constraints imposed by today’s prote@nd mechanisms to achieve their goals for
traffic engineering, survivability, security, and poliayfercement. In seeking cures, the research community
is exploring a clean slate re-design of the Internet archite that greatly simplifies network control and
management by centralizing architectural intent and tirexpressing operational constraints. While the
clean slate architecture is conceptually appealing, ataotigl number of technical challenges (e.g., scala-
bility) must be addressed before the concept can be prowtdvalely accepted. This thesis demonstrates
thatit is actually possible to build a flexible centralized catsystem for a single network domain that is

as scalable and robust as traditional IP networks but greatmplifies network control and management

1.1 Problems

The Internet architecture bundles control logic and pabkeidling into the individual routers distributed
throughout an AS. As a result, each rodtparticipates in distributed protocols that implicigynbedthe

decision logic. For example, within an IP network domain gath-computation logic is governed by

We use the terms “network element”, “router”, and “switchtaérchangeably throughout the thesis.
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distributed protocols such as OSPF, IS-1S, and EIGRP. Théng protocols dictate not only how the
routers learn about the topology, but also how they seldtisp&imilarly, in Ethernet networks, the path-
computation logic is embedded in the Spanning Tree protfidol Many of today’s data networks must
support network-level objectives and capabilities far ensophisticated than best-effort packet delivery.
These ever-evolving requirements have led to incremehta@es in the control-plane protocols, as well as
complex management-plane software that tries to “coaxttmrol plane into satisfying the network objec-
tives. The resulting complexity is responsible for the @asing fragility of IP networks and the tremendous
difficulties people face when trying to understand and marthgir networks.

In data networks, the functionality that controls the netwis split into three main planes: (i) trdata
planethat handles the individual data packets; (e.g., packetdating, packet filtering, queue management,
and link scheduling); (ii) theontrol planethat implements the distributed routing algorithms acrbes
network elements (e.g., routing protocols, path-compartadlgorithms, and logic for merging multiple
routing tables into a single forwarding table); and (iii¢ thanagement plandat monitors the network and
configures the data-plane mechanisms and control-platiegote. While the original IP control plane was
designed to have singledistributed algorithm to maintain tHerwardingtable in the data plane, today’s IP
data, control, and management planes are far more comphexddta plane needs to implement, in addition
to next-hop forwarding, functions such as tunneling, as@estrol, address translation, and queuing. The
states used to implement these functions are governed Hipfawdntities and must be configured through
a rich set of individual, interacting commands. Even for fibivarding state, multiple routing processes
usually are running on the same router/switch.

While there are many dependencies among the states andgibeujfzdating the states, most of the
dependencies amot maintained automatically. For example, controlling rogtiand reachability today
requires complex arrangements of commands to tag routes,rbutes, and configure multiple interacting
routing processes, all while ensuring that no router is édstidrandle more routes and packet filters than it
has resources to cope with. A change in any one part of thegtmafion can easily break other parts.

The problem is exacerbated as packet delivery cannot coegenettil the routing protocols create the
necessary forwarding tables, and the management planetceeach the control plane until the routing
protocols are configured. Resolving this Catch-22 dilemetaires installing a significant amount of con-
figuration information on IP routers before deploymétudies of production networks show them requir-

ing hundreds of thousands of lines of low-level configurattommands distributed across all the routers

2This problem is so profound that, whenever possible, remmiters are plugged into telephone modems so that the Public
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Figure 1.1: Enterprise network with two locations, eaclatmn with a front office and a data-center.

in the network [2]. These configurations and the dynamic &ding state they generate require a myriad
of ad hoc scripts and systems in the management plane taiglichonitor, and update. The result is a

complex and failure-prone network.

We present two examples that illustrate the network friggidlaused by today’s complex and unwieldy
control and management infrastructure. The exampledréitesshow the lack of coordination between rout-
ing and security mechanisms can result in a fragile netwarki how today’s control and management

infrastructure makes it difficult to properly coordinate timechanisms.

Reachability Control in Enterprises Today, many enterprise networks attempt to control whict$o
and services on the network can communicate (i.e., readhather) as part of their security strategy [2].
They implement their strategies using a combination ofingupolicy and packet filters, but this approach

is fraught with peril even in simple networks.

Consider the example enterprise network in Figure 1.1. Tdmepany has two locations, A and B.
Each location has a number of “front-office” computers usgthle sales agents (AF1-2 and BF1-2). Each
location also has a data center where servers are kept (A BD1-2). Initially, the two locations are
connected by a link between the front-office routers, R2 afiddver which inter-office communications

flow. The Interior Gateway Protocol (IGP) metric for eactklis shown in italics.

Switched Telephone Network provides a management commitimicpath of last resort. Before making configuration clesntg
the router over the Internet via Telnet or ssh, operatoenatouble-check that the modem connection is still funatignlest an

unfortunate configuration mistake leave them with no othey t@ contact the router, short of physical access to theotens
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The company’s security policy is for front office computavde able to communicate with other loca-
tions’ front-office computers and the local data centen'sess, but not the data center of the other location.
Such policies are common in industries such as insurancerenhe sales agents of each location are effec-

tively competing against each other even though they warki®same company.

The security policy is implemented using packet filters aa thuters controlling entrance to the data
centers to drop packets that violate the policy. Interfdcg iis configured with a packet filter that drops all

packets from the BF subnet, and interface i3.1 drops allgtadkom the AF subnet.

The network functions as desired, until the day when the-dager staff decides to add a new, high-
capacity dedicated link between the data centers (shownlasheed line between R1 and R3 — perhaps they
have decided to use each other as remote backup locatidnsgerhs reasonable that with packet filters
protecting the entrances to the data centers, the new litvkelee data centers should not compromise the
security policy. However, the new link changes the routinghsthat packets sent from AF to BD will travel
from R2 to R1 to R3 to BD — completely avoiding the packet filtestalled on interface i3.1 and violating
the security policy. When the designers eventually disctlve security hole, probably due to an attack
exploiting the hole, they would typically respond by cogyihe packet filter from 3.1 to i3.2, so that it now
also drops packets from AF. This filter design does plug thar#tg hole, but it means that if the front-office
link from R2 to R4 fails, AF will be unable to reach BF. Even tigh the links from R2 to R1 to R3to R4

are all working, the packet filter on interface i3.2 will drthge packets from subnet AF.

In this example, the problems arise because the ability aftevark to carry packets depends on the
routing protocols and the packet filters working in concéhthile routing automatically adapts to topol-
ogy changes, there is no corresponding way to automatiealapt packet filters or other state. It could
be argued that a more “optimal” placement of packet filterghe use of multi-dimensional packet filters
(i.e., filters that test both source and destination addrtaspacket) would fix the problems shown in this
example. However, as networks grow in size and complexiynfthe trivial example used here for illustra-
tive purposes, finding these optimal placements and maintathe many multi-dimensional packet filters
they generate requires developing and integrating eytirelv sets of tools into the network’s management
systems. Since these tools will be separate from the pristdicat control routing in real time, they will
perpetually be attempting to remain synchronized withinguprotocols by trying to model and guess the

protocols’ behavior.
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Figure 1.2: Autonomous Systems (ASes) peering with eactr afla external BGP (eBGP) sessions. AS1
must place packet filters on its ingress links to prevent AS8Bfsending packets to destinations for which
AS1 has not agreed to provide transit.

Peering Policies in Transit Networks Routing policy is based on the premise that a router that does
announce aroute to a destination to a peer will not be sekemafor that destination by that peer. However,
the routing system does nothing to prevent an unscrupuleas fpom sending packets to that destination
anyway. Enforcing routing policy is nearly impossible witiday’s control and management planes.

Figure 1.2 shows an example of three Autonomous SystemssjAfeering with each other via three
external BGP sessions (one eBGP session along each ofkkeshiown in the figure). Assume that AS1 is
a major transit network, and it announces a route to degimdtin its eBGP session with AS2. If AS1’s
policy is to not provide AS3 with transit service fdy it does not announcé in its eBGP sessions with
AS3. However, if AS3 wishes to be unscrupulous (e.g., use f@sfransit service without paying), it can
assume AS1 does know a waydde.g., so that AS1’s own customers can redrhlf AS3 sends packets
for d to br.nyc.as1, they will definitely be delivered, as br.agd must have a route tbin order to handle
legitimate traffic from AS2.

Enforcing routing policy requires installing packet fikeio drop packets to destinations that have not
been announced as reachable. As the announcements aweddagian AS, and the AS’s own topology
changes over time, the announcements sent by the AS willgehand the packet filters must be moved
correspondingly. Implementing such functionality by adpanother ad hoc script to the management plane
is essentially impossible today. Even if it were possiblevtite a script that snoops on the eBGP announce-

ments sent to each neighboring border router and instatleepélters on the ingress interface as appropriate,
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the script would be extremely dangerous as it would not pippeder the packet filter installation/removal
with the BGP announcements. For example, it would be badrtolarce to a neighbor border router a route

to a destination before removing the packet filters that dneackets sent to the destination.

Beyond ordering issues, transit networks handle a largebeumi destinations, and each packet filter
applied to an interface consumes forwarding resources edutes the effective capacity of the interface.
It might be desirable to move packet filters into the netwolhenever possible, away from the ingress

interfaces, so that one packet filter can enforce the BGRypfair multiple ingress interfaces.

Enforcing routing policy requires dynamically placing geatfilters to respond to the continually chang-
ing routes selected by that policy. Correctly and optimplicing the filters requires that the placement be
synchronized with the announcement of routing decisiomstlat the placement algorithms have access to

the complete routing topology of the network.

Same Problems, Many Guises There are many data networks, designed and managed byediffer-
ganizations with different goals. Individual networks\aeradically different purposes; in addition to the
familiar backbone networks, there are access, metro,@iger and data-center networks. In each of these
settings, the network administrators struggle to “prodgrémir networks, integrating a diverse set of tech-
nologies and protocols, and artfully setting the configlergdarameters that determine the network’s func-

tionality and dynamics.

While the specific context, technology, and mechanisms rhapge from network to network, there is
commonality among the problems. For example, while Ethewnae initially designed to run on a shared
medium, it has since evolved into a networking technologyh aifull package of data plane, control plane,
and management plane to rival IP. Just as IP has many routingcpls to compute the forwarding table,
Ethernet has many variations of the spanning tree prot@&oUust as IP networks have mechanisms such
as MPLS to control the paths that packets take, EthernetiiagM_ANs (and VLANs-in-VLANSs). Just
as IP networks have needed to implement sophisticatedidmadity, including traffic engineering, security
policies, and fast restoration, these same needs are bajogred of Ethernet in many contexts, such as
enterprises, data centers [4], and metro/access netwakkdyst as ad hoc management capabilities need
to be overlaid on top of the IP control plane, achieving adeafunctionality in Ethernet networks has led
to increasingly ad hoc and complex management systems. uFfent architecture forces these systems to

operate outside Ethernet’s control plane, where they afbeme into conflict with it.
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1.2 Thesis

We argue that the root cause of these problems lies in theatquiéne running on the network elements
and the management plane that monitors and configures thieenkely to solving the problems is to create
a way for the architectural intent and operational constsagoverning the network to be expressed directly,
and then automatically enforced by setting data-planesta the individual routers/switches. Until this
occurs, we expect the design and operation of robust neswtorkemain a difficult challenge, and the state
of the art to remain a losing battle against a trend where-gsleer and more complex state and logic are

embedded in distributed protocols or exposed through beatinterfaces.

There is an emerging trend for revisiting the division ofdtionality and advocating an extreme design
point that turns anetwork’s decision logiérom distributed processes that run on individual routats &

centralized control service

In the envisioned control paradigm, a logically centralizatity, called the decision element, is respon-
sible for creating all the state at every router. As a resuly, conflicts between the policy objectives can be
detected at the time of state creation. With today’s mutiptlependent and distributed mechanisms, these
conflicts often only appean vivo after some part of the configuration state has been changedebgf the

mechanisms.

The centralized control paradigm also simplifies the rotuectionality. Because algorithms making
control decisions are no longer run at switches, the onlyibiged functions to be implemented by switches
are those that discover the neighborhood status at eaathswaitd those that enable the control communica-
tions between the decision element and the switches. Tieisptiter software can be very light-weight. Yet

sophisticated control algorithms can easily be implerneentigh this minimal set of distributed functions.

While the centralized control vision is conceptually apipeg providing a platform to support central-
ized network control has not been attempted, and is tedhnidaallenging. For example, it is generally
considered not scalable to compute routing tables and gwesh to thousands of routers in the network
from a single server; remotely configuring a network using letwork being configured appears to be a
chicken-and-egg problem; and it is unclear whether sigjftiantrol logic from distributed routers to a cen-
tralized server makes the server too complex to build andat@eThe natural question then is: is it actually

practical to run a network with centralized control?
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In this dissertation we answer this question affirmativelyobilding a centralized network control plat-
form and showing that the platform can support some of the nepsesentative network control functional-
ity with high performance. Our thesis statement is tligis“actually possible to build a centralized control
platform that is as scalable and robust as traditional IPwetks but greatly simplifies network control and

managemefit

1.3 Contributions

The main contribution of this dissertation is poovide a robust and scalable system to enable flexible
centralized network control In particular, we build, extend, and evaluate a centrdlizetwork control

system calledesseracto answer the following questions:

1. How to make centralized control flexible?Flexibility represents the ability of the system to support
different types of control logic and network technologi€s.answer this question, we use experiments
to demonstrate that the Tesseract system can seamlessiyaitet most useful control functionality,
such as shortest path routing, packet filtering, and traffgireeering. We also show that the same
control logic can operate on both IP and Ethernet networkspalticular, we apply shortest path
routing to Ethernet to increase throughput performanckauit compromising the Ethernet plug-and-

play feature.

2. How to make centralized control robust? Robustnessepresents the ability of the system to survive
failures and attacks. We answer this question by simulatetgvork failures and attacks and mea-
suring the impact on Tesseract. For example, we take dowworletinks and measure the time it
takes the platform to re-compute routes and re-install gve loutes on the affected routers. Having
realized the importance of having a robust communicati@nobl for network control, we develop a
generic remote management communication system based @dagheract dissemination component.
We call it the Meta-Management System (MMS). The MMS is bmiltvith a recursive authentica-
tion algorithm and a variety of liveness mechanisms to ensurehadslity between the centralized

network decision servers and routers in the event of netfadltkres and DDoS attacks.

3. How to make centralized control scalable?Scalabilityrepresents the ability to support the increas-

ing size of networks. We develop an efficient disseminatigordghm to make dissemination load



1.4. ACKNOWLEDGEMENTS 9

increase sub-linearly with the number of nodes in its cdrdmmain. We leverage an insight that
network state pushed to different routers can be similat,veeexplore the similarity to significantly

improve dissemination scalability.

In answering the above three questions, we use the Emulaleg@jed to conduct intensive experi-
ments with topologies of real production backbone and priter networks. We also build simple analytical
models and use theoretical analysis to derive the time aaxiiplof centralized computation. We verify the
analytical results using experimental data. For exampleyaluating our recursive authentication algorithm
for the Meta-Management System we build a model to deriveithe it takes for a single central server to
authenticaten network nodes. We run experiments on different-sized nétwapologies to verify that the

experimental results agree with our theoretical analysis.

The most critical step we take to enable extensive expetethemaluation is a Linux implementation
of the Tesseract system. We present the implementatiofisdietshis dissertation and we open-source the

code in http://www.cs.cmu.edudd.

1.4 Acknowledgements

The initial idea of network-wide decision-making is propdsby Jennifer Rexford et al. [7]. The idea is
crystallized and turned into the clean slate network desigtept by Albert Greenbert et al. [8]. This thesis
work is part of the effort to develop a practical system ahllesserac{9]. The Tesseracproject is joint

work with David Maltz at Microsoft Research and T. S. Eugemgeelal. at Rice University.

1.5 Organization

The rest of this dissertation is organized as follows:

Chapter 2 places this thesis work in the context of cengdlizetwork control and explains how 4D/Tesseract

is different from other centralized network control franoeks.

Chapter 3 describes the basic framework of our solution Té#sseract system. We use experimental
results to show the new system is comparable performanse-with the traditional distributed network

control system while providing a variety of appealing neatailities.
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Chapter 4 addresses the robustness problem of 4D diss@nindfe design and implement a Tesseract
dissemination subsystem called the Meta-Management 18ydtés equipped with a recursive authentica-

tion algorithm and protective APIs for surviving severewatk failures and DDoS attacks.

Chapter 5 addresses the scalability problem of 4D dissdiminaWe conceive an efficient dissemi-
nation algorithm to improve scalability. Experimental uks show that the new algorithm reduces server

dissemination load by 97%.



Chapter 2

A Taxonomy of Centralized Network

Control

The focus of this thesis work is a centralized network cdslystem and its dissemination component, which
is designed to also serve other network control systems cFtapter provides the context of this thesis work
by giving an overview of developments concerning netwonktid and management, especially centralized
network control systems. As outlined in Figure 2.1, we posibur system in the context of network control
and management and describe how it differs from other egistentralized network control systems. We
also compare our work on network control dissemination wiibr work to show where our contribution

lies.

2.1 State-of-the-art

In a running network, control and management systems apomeible for maintaining distributed state
at switches and routers in the presence of dynamic trafficr@tdork conditions. In data networks, the
network control system includes the routing protocols drartconfiguration. The management system
is realized by the people and programs that track networkvdehand adapt the configuration over time.
The control and management systems are where networkigetede lies, and so are fundamental to the

operation of the overall network.

11
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Network Control Systems

— include

Centralized Distributed

‘ RCP ‘ ‘ SANE ‘ ‘ Tesseract
A A A

‘ Network Control Dissemination ‘

Figure 2.1: A taxonomy of network control systems. This ilhé@splements the shadowed boxes: Tesseract
and Network Control Dissemination. Tesseract is one of thegering implementations of the centralized
network control architecture. Tesseract distinguishgslfifrom other prototypes by (i) providing a plat-
form to compose a variety of network control algorithms amaperate different types of networks (e.g.,
IP and Ethernet); (ii) providing a generic disseminatiorviee for other centralized network control and
management systems.

2.1.1 Distributed Control and Centralized Management

There are two important distinctions between the contrdlmanagement systems. First is the timescale on
which they operate. To be responsive, the IP routing présoexchange messages, re-compute distributed
state, and take actions on a relatively fast timescale. Témagement system, on the other hand, usually
operates on a slower timescale. Second is how the fundtipiwhithe system is implemented. The control

system, due to the requirement for rapid response, is tjypicaplemented in a distributed fashion, where

intelligence or control logic resides with each router anotqrcols are used to coordinate the actions of all
routers. The coordinations are fully automatic. In cortfrée management system is usually implemented
via a client-server architecture, where a centralizedesgwhich can be made highly available by standard
techniques) collects information from all routers, congsuand generates actions (possibly with the input

of a human operator), and sends management commands trsroute

2.1.2 Problem

Historically, IP networks were designed to provide bestréfservice. Initially, support for management

was minimal, with most of the intelligence residing withfretrouting protocols, which were first designed
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Network Type Domain Dissemination Decision
Tesseract| IP/Ethernet Intra-domain Logically Out-of-Band | Programmable Platform
RCP IP Inter-domain iBGP BGP Route Selection
SANE | Ethernet Enterprise Spanning Tree Security Policy Enforcement
SS7 Circuit Switching | Telecommunication Physically Out-of-Band Call Management

Table 2.1: Side-by-side comparison between Tesseractthed @entralized network control systems.

to provide resiliency under link and router failures. As I€tworks became more mainstream, manage-
ment interfaces such as SNMP were added to routers, but ergehe management system remains very
primitive. At the same time, a large number of features sgchupport for traffic engineering, policy rout-
ing, network maintenance, VPN, etc., have been added totifories, primarily by extending the control

system.

Adding features by extending the distributed control systequires enhancing the existing routing
protocols in order to (i) propagate more dynamic metrichsaglink load in the case of traffic engineering;
and (ii) perform more functions, such as computing new pathshe traffic load changes. Despite the
conceptual appeal of this approach, overloading routirogols introduces substantial complexity and
state in the control system, which negatively affects $ulilg robustness, and performance. Over time,

adding features becomes more difficult, as each new featus¢inmteroperate with all the previous ones.

2.2 Exploration of Centralized Control

In exploring a revolutionary solution to enhance netwondlionality without overloading networks with
distributed control state, the researchers propose tatigate centralized network control architectures.
The Routing Control Platform (RCP) [10, 11] was the first ptgpe that explored centralizing network
control. The concept of lifting network control logic fromstributed network elements into a logically
centralized decision element was explicitly called out presented as the 4D architecture [7, 8]. The main

contribution of this thesis is turning 4D into a real systemfier Tesseraét

2.2.1 Prior Centralized Network Control Systems

Centralized network control systems that precede 4D ircthd Routing Control Platform, Signaling Sys-

tem 7 and the Intelligent Network, and policy-based netwayk

1The tesseract is the 4-dimensional hypercube.
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Routing control platform (RCP): RCP is a solution for controlling inter-domain routing in ift-
works, and replaces today’s distributed BGP routing cowrjiuts. RCP computes the BGP routes for an
Autonomous System (AS) at centralized servers to give tieeadprs of transit networks greater control over

how BGP routing decisions are made.

Traditional telecommunications networks: The concept of centralization is heavily used in many
management paradigms for telecommunications networksl]lysased on circuit-switched technology [12].
Signaling System 7 (SS7) [13, 14] keeps communication aklarfior management information isolated
from the paths used by user data, and takes the approach af sdparation between management and user
data into separate links or channels. The Intelligent NekwiiN) architecture [15] supports extension of
network functionality by enabling user data (call placetagto trigger Detection Points that escape out of

normal call handling and that invoke per-service code.

Management tools for a distributed control plane: Many tools have been developed to ease the config-
uration of the existing architecture for control and mamaget, which depends on individually configured
switches/routers running a distributed control plane. &@pproaches, such as those adopted by Cplane
and Orchestream, developed frameworks to solve the praebieherent in configuring large numbers of
distributed switches/routers that may use different comarlanguages. Other tools focus on specific op-
erational tasks, such as traffic engineering or mitigatibBenial-of-Service (DoS) attacks. For example,
Cariden’s MATE [16] and OpNet’s SP Guru [17] products caret@SPF costs or MPLS Label Switched
Paths to the prevailing traffic, and ArborNetwork’s PeakiIDoS [18] product detects DoS attacks and
generates filters to block the offending traffic. The genamgroach of policy-based networking (PBN)
has been studied to automate provisioning and network neamagft in applications such as QoS [19].
Network-management tools and PBN approaches usually asthéenexisting control-plane protocols, focus
on a small portion of the configuration state (e.g., packedré) but not routing), and do not consider the

interactions among multiple mechanisms.

2.2.2 4D/Tesseract

4D for the first time presents a centralized network controhigecture in a systematic way, and Tesseract
is a pioneering 4D implementation. Tesseract provides nuangfully designed features to achieve the

goals we set in 4D, and demonstrates that, as we will showisrttiasis, it is actually practical to build a
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centralized network control system that is as responsideralpust as existing distributed network control

frameworks, while offering many new network functionagi

4D stands for four key network planes: tbata, Discovery, Dissemination, and Decisiomn the
traditional network architecture, a router generally haly awo planes: thelata and control planesin
contrast to the traditional network, where each individuaiter runs complicated routing decision logic,
the 4D architecture lifts the decision logic from the indival routers’ distributed control planes to create
a logically centralized decision plane. Routers are sigguifily simplified; instead of making independent
routing decisions, their job is to take instructions frore ttentralized decision plane and forward packets
based on the centrally made decisions. The decision plama hatwork-wide view of the topology and
traffic, and exerts direct control over the operation of théadblane. No decision logic is hardwired in
protocols distributed among the network elements. Theutuipthe decision logic is communicated to
routers by the dissemination plane. By pulling all of theisien logic out of the routers, 4D enables both
simpler protocols and more sophisticated algorithms fovirty the operation of the data plane. The 4D

concept outlines a clean-slate approach to data-netwartkai@nd management.

4D/Tesseract distinguishes itself from prior centralinetivork control systems in the following ways.

2.2.2.1 New Concept of Clean-Slate Design

4D advocates redesigning the control and management dmsctrom the ground up. We believe that a
clean-slate approach based on sound principles will, anhiheanum, provide an alternative perspective and
shed light on fundamental trade-offs in the design of netwaamtrol and management functions. More
strongly, we believe that such an approacmeésessaryto avoid perpetuating the substantial complexity
of today’'s control plane. Fortunately, we can make significdundamental changes in the control and
management of IP networkgthout changing the format of the data packefkis enables network evolution

and provides a key lever for substantial innovation in therimet architecture. A good example of this
principle is the Ethernet technology, which has succelgs@yolved from a shared-medium network to a
switched network with new control-plane protocols basedeaming and spanning trees, all while leaving

the packet format unchanged.

Rather than exploring incremental extensions to today'groband management planes, 4D proposes a
clean-slaterepartitioning of functionality. We believe that a greeeldi approach based on sound principles

is necessary to avoid perpetuating the substantial coitypliextoday’s design. We have developed the 4D
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architecture as apxtreme design poirthat completely separates the decision logic from the uyider
protocols. We deliberately chose an extreme design as vieveehat it crystallizes the issues, so that
exploring the strengths and weaknesses of this architeutililead to important network-level abstractions

and a deeper understanding of the essential functionadiged in the underlying routers.

2.2.2.2 Sound Design Principles

The rich literature on the complexity of today’s control andnagement planes has led us to the following
three principles that we believe are essential to dividmgresponsibility for controlling and managing a

data network:

Network-level objectives: Each network should be configured via specification of thaireqents and
goals for its performance. Running a robust data networkép on satisfying objectives for performance,
reliability, and policy that can (and should) be expressgzhgately from the network elements. For example,
a traffic-engineering objective could be stated as “keepirdds below 70% utilization, even under single-
link failures.” A reachability policy objective could beaged as “do not allow hosts in subnet B to access
the accounting servers in subnet A.” Today's networks meqgthiese goals to be expressed in low-level
configuration commands on the individual routers, incregashe likelihood that the objectives are violated

due to semantic mistakes in translating the network-lelgaiives into specific protocols and mechanisms.

Network-wide views: Our notion of a network-wide view is borrowed from the datsdaommunity
and means having assembled a coherent snapshot of thefstattnmetwork component. Timely, accurate,
network-wide views of topology, traffic, and events are @ufor running a robust network. The network-
wide view must accurately reflect the current state of tha gieine, including information about each device,
including its name, resource limitations, and physicailattes. Armed with the topology, traffic matrix,
state, and inventory information about a network, algamghcan be written to compute how the network
should meet its objectives. However, today’s control plaasnot designed to provide these network-wide
views, forcing substantial retro-fitting to obtain themstiead of adding measurement support to the system
as an afterthought, we believe that providing the infororatiecessary to construct a complete, consistent,

network-wide view should be one of the primary functionshaf touters and switches.

Direct control: Direct control means that the control and management syskemld have both the
ability and the sole responsibility for setting all the st&t the data plane that directs packet forwarding.

The decision logic should not be hardwired in protocolsriisted among routers. Rather, only the output
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Figure 2.2: New 4D architecture with network-level objees, network-wide views, and direct control

of the decision logic should be communicated to the netwdeknents. Satisfying network-level objec-
tives is much easier with direct control over the configaratf the data plane. IP and Ethernet originally
embedded the path-computation logic in simple distribgtedocols that incrementally grew more compli-
cated, as discussed earlier. Because of the difficulty efnehihg the distributed control protocols to support
sophisticated network-level objectives such as traffidre®ying or reachability control, the management
plane is typically used to implement these additional caépials. With only indirect influence over the
network, today’s management plane must replicate the atatdogic of the control plane and perform a
complex “inversion” of the functionality. The problem wadube much easier to solve if the management
plane could compute the forwarding tables and install thethe routers. For direct control to be meaning-
ful, it must be complete. If configuration commands or mudtipntities can affect the state in the network
elements, then yet more entities are required for audi@ingl Correcting) the settings [20, 21, 22] to ensure

the network-level objectives are met.

In addition to these three principles, any design must atswider traditional systems requirements,
such as scalability, reliability, and consistency. Ouethprinciples attempt to capture the issues specific
to the control and management of networks. By separatingehgork-specific issues from the traditional
systems requirements, we can apply existing techniques dtber areas of distributed computing research

to the traditional systems problems while exposing for@l@srutiny the network-specific ones.
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2.2.2.3 New Architecture

Although the three principles could be satisfied in many wakshave deliberately made the 4D architecture
an extreme design point where all control and managemeilgides are made in a logically centralized
fashion by servers that have complete control over the n&telements. The routers and switches only
have the ability to run network discovery protocols and ategplicit instructions that control the behavior
of the data plane, resulting in network devices that are-aatdigurable. Our architecture has the following

four components, as illustrated in Figure 2.2:

Decision plane The decision plane makedl decisions driving network control, including reachalgilit
load balancing, access control, security, and interfacéiguration. Replacing today’'s management plane,
the decision plane operatesregal timeon a network-wide view of the topology, the traffic, and thpadail-
ities and resource limitations of the routers/switchese @hacision plane uses algorithms to turn network-
level objectives (e.g., reachability matrix, load-balagogoals, and survivability requirements) directly into
the packet-handling state that must be configured into tteemane (e.g., forwarding table entries, packet
filters, queuing parameters). The algorithms in the decipiane may be customized based on knowledge
of the network structure (e.g., a network with a ring topgla@gn use a simpler path-computation algo-
rithm than a network with a mesh topology). The decision @leonsists of multiple servers called decision

elements that connect directly to the network.

Dissemination plane:The dissemination plane provides a robust and efficient comcation substrate
that connects routers with decision elements. While coitformation may traverse the same set of phys-
ical links as the data packets, the dissemination paths amgamed separately from the data paths so they
can be operational without requiring configuration or ssstl establishment of paths in the data plane. In
contrast, in today’s networks, control and management al&aarried over the data paths, which need to
be established by routing protocols before use. The disgdion plane moves management information
created by the decision plane to the data plane, and stattfielé by the discovery plane to the decision

plane, but does not create state itself.

Discovery plane: The discovery plane is responsible for discovering the jghy€omponents in the
network and creating logical identifiers to represent th&he discovery plane defines the scope and persis-
tence of the identifiers, and carries out the automatic gesycand management of the relationships between
them. This includes box-level discovery (e.g., what ir#teels are on this router? How many FIB entries

can it hold?), neighbor discovery (e.g., what other routlrss this interface connect to?), and discovery
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of lower-layer link characteristics (e.g., what is the aafyaof the interface?). The decision plane uses
the information learned from the discovery plane to comstnetwork-wide views. In contrast, in today’s

IP networks, the only automatic mechanism is neighbor @&sgobetween two preconfigured and adja-
cent IP interfaces; physical device discovery and assoombetween entities are driven by configuration

commands and external inventory databases.

Data plane: The data plane handles individual packets based on theth&gttés output by the deci-
sion plane. This state includes the forwarding table, pafikers, link-scheduling weights, and queue-
management parameters, as well as tunnels and networksaddaaslation mappings. The data plane may
also have fine-grain support for collecting measuremer8sq@ behalf of the discovery plane. Although
the 4D architecture can be realized with the data planeableilin today’s networks, enhancements to the
functionality in the data plane could help in simplifyingettogic of the decision plane. For example, an
integrated mechanism for forwarding, filtering, and transfing packets would simplify the problem of

realizing a reachability matrix.

The 4D architecture embodies our three principles. Thesg@eiplane logic operates on a network-wide
view of the topology and traffic, with the help of the discovptane in collecting the measurement data, to
satisfy network-level objectives. The decision plane hieescticontrol over the operation of the data plane,
obviating the need to model and invert the actions of therobptane. Pulling much of the control state and
logic out of the routers enables both simpler protocols dioatot have to embed decision-making logic, and

more powerful decision algorithms for implementing sofibéed goals.

2.2.2.4 Advantages

Our 4D architecture offers several important advantages tmday’s division of functionality:

Separates networking logic from distributed systems issige The 4D architecture does not and cannot
eliminate all distributed protocols, as networks fundatalninvolve routers distributed in space. Rather,
the 4D proposes separating the logic that controls the mkhsach as route computation, from the protocols
that move information around the network. This separati@ates an architectural force opposing the box-
centric nature of protocol design and device configurati@t tauses so much complexity today. The 4D
tries to find the interfaces and functionality we need to ngan@omplexity—i.e., that factor out issues not
unique to networking, and enable the use of existing disteith systems techniques and protocols to solve

these problems.



20 CHAPTER 2. A TAXONOMY OF CENTRALIZED NETWORK CONTROL

Higher robustness: By simplifying the state and logic for network control, anasaring the internal
consistency of the state, our architecture greatly redtioedragility of the network. The 4D architec-
ture raises the level of abstraction for managing the nd¢wallowing network administrators to focus
on specifying network-level objectives rather than coriigy specific protocols and mechanisms on in-
dividual routers and switches. Network-wide views provédeonceptually appealing way for people and
systems to reason about the network without regard for casnmtotocol interactions among a group of
routers/switches. Moving the state and logic out of the nétvelements also facilitates the creation of new,

more sophisticated algorithms for computing the datagktate that are easier to maintain and extend.

Improved scalability: The decision plane can introduce new levels of hierarchiyaitenot available in
today’s protocols. For example, the decision plane coutdnporate structures such as Point-of-Presence,
geographic region, and institution that drive so much ofwoek design, without being constrained by pro-

tocol abstractions such as area or Autonomous System.

Better security: Security objectives inherently are network-level goalor Example, the decision
plane can secure the network perimeter by installing pditests on all border routers. Managing network-
level objectives, rather than the configuration of indigdtouters, reduces the likelihood of configuration

mistakes that can compromise security.

Accommodating heterogeneity:The same 4D architecture can be applied to different netwgrnvi-
ronments but with customized solutions. For example, insdhbackbone with many optimization criteria
and high reliability requirements, the decision plane magsist of several high-end servers deployed in
geographically distributed locations. A data-center mmuinent with Ethernet switches may require only
a few inexpensive PCs, yet still achieve far more sophistcc@apabilities (e.g., traffic engineering with

resilience) than spanning tree or static VLAN configuratian provide today.

Network evolution. A thin control plane could migrate much of the software cesible for controlling
a network to common server platforms. This provides a unapportunity to revisit the design of network
control software with a clean slate, without requiring graental changes in the installed base of existing

routers.

Enabling of innovation and network evolution: Separating the network control from the routers/switches
and protocols is a significant enabler for innovation anavoet evolution. The decision plane can incorpo-
rate new algorithms and abstractions for computing the plai@e state to satisfy a variety of network-level

objectives,without requiring a change in eithafata packet formats ocontrol protocols(dissemination
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and discovery plane protocols in the case of 4D). In additioaving the control functionality out of the
router software enables new players (e.g., the researcmuoaity and third-party software developers) to

contribute to the creation of these algorithms.

2.2.3 Side-by-Side Comparison

Tesseract is one member of the family of centralized networkrol systems. The Routing Control Platform
(RCP) [10, 11] and Secure Architecture for the NetworkedeEprise (SANE) [24] are the most notable
examples of control systems that share conceptual elemathtJesseract. We next distinguish Tesseract

from its peers listed in Table 2.1.

In contrast to traditional telecommunications networkshsas SS7, Tesseract focuses on packet-switching
data networks that have more complex data-plane primifees, packet forwarding based on longest-prefix
matching, access control, NAT, and tunnels) and higher ort@ynamics. Unlike SS7, which uses separate
management links or channels, the Tesseract architectpleres a softer logical separation appropriate for

links such as Ethernet.

Compared to the existing centralized network managemets, tim Tesseract the decision elements use
network-wide views to manage all network state—it exgljoéistablishes the decision plane as the place in
the architecture for coordinatirgll of the data-plane mechanisms and provides the decisioe plédh the

information it needs to operate.

RCP focuses on the control of inter-domain routing, whilssegact focuses on control and management
within a single network. While RCP is designed to be backveartpatible with BGP, Tesseract is designed
as a clean-slate control plane. RCP only considers BGP getdesingle part of the total state used by
the data-plane to direct packets through the network. Tasiseontrols multiple data-plane forwarding
mechanisms including packet-filters. RCP assumes routet@r@ady correctly configured with significant
amounts of state, such as IP addresses and an Interior Gi&@eatacol (IGP). Tesseract addresses kevo
pre-configuration of routers/switches can be achievedoBeaygonsidering only IP networks, Tesseract also

addresses how a single management architecture coulakdifterent types of networks such as Ethernet.

SANE is a solution for enforcing security policies in an eptese network. In a SANE network, com-
munications between hosts are disabled unless they arigymllowed by the domain controller. To

permit a data flow, the domain controller issues a certifietigesource route to the end host. Switches
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only forward packets that have authentic secure sourcesaittached to them. The domain controller in
the SANE architecture has a role similar to the decisionglartD. For communications between switches
and the domain controller, SANE constructs a spanning treted at the domain controller in a distributed
fashion similar to the IEEE 802.1D spanning tree. This spantree has a role similar to the dissemination

plane in Tesseract.

Tempest [25] proposes an alternate framework for networkroh where each switch is divided into
switchlets and the functionality of each switch is exposedugh a common interface called Ariel. Tempest
allows multiple control planes to operate independentghecontrolling its own virtual network composed
of the switchlets, and the framework has been used on bothSvi#id ATM data planes. Tesseract’s
dissemination plane provides a complete bootstrap salutidhere Tempest’'s implementation assumed
a pre-existing IP-over-ATM network for communication withmote switches. While both projects ab-
stract switch functionality, Tesseract does not assuntesthigches can be fully virtualized into independent

switchlets, but leaves resource allocation to the decisigit.

FIRE [26] presents a framework to ease the implementatiaistributed routing protocols by providing
a secure flooding mechanism for link-state data, as well akgim which route computation algorithms can
be attached, and a separate FIB used for downloading canéhmtouter. Tesseract eases the implementa-
tion of centralized network control algorithms by assempla network-wide view, enabling direct control
via a robust and self-bootstrapping dissemination plané,pgioviding redundancy through the election of

the central control servers.

CONMan [27] reduces the need to configure network elememtead hosts by augmenting them with
protocols so that they can negotiate configuration detailsrey themselves under high-level direction from
a network manager. CONMan also provides mechanisms by witéechetwork manager can automatically
choose the best high-level directions to give network et@mafter discovering the features the elements
support. CONMan depends on a separate management comtiom@gtgnnel between routers and network

managers.

Significant prior work attempted to define an open routerrfate analogous to OS interfaces at end-
systems [28, 29, 30]. Whereas these systems provide thentlsgmework and modules needed to create
easily extensible routers, Tesseract attempts to providelegant framework for an easily extensible and

robust network.
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Most centralized network control systems share the dedigapgarating the computation of routes from
the individual switches, or creating a minimal kernel of dtianality implemented on each switch to be
invoked from another location [31]. Tesseract presentsnaptete design that realizes these goals, with
the added difference that it can automatically bootstregdfitvithout requiring a pre-configured lower-layer
system to route control messages between switches. Tességa describes how functionality beyond

routing, such as packet filters, should be controlled, andtalo this for both IP and Ethernet networks.

The idea of direct control has continued to advance sinc&ésseract work. In Chapter 3, we will

discuss open standards [32] and commercial products [@BEthbrace the direct control concept.

2.3 Network Control Dissemination

The Tesseract system adopts an external control model wisdweork control decisions are made by a
controller remotely connected to network elements. Sustesys critically depend on a robust, secure, and

low latency communication channel between the externaralber and the network elements.

Unfortunately, computer networks today lack an autonomécimanism to support management plane
communications, and the stopgap solutions used in praciicewidely. Many commercial networks still
rely on dial-up modems to access the serial console portuténs for control; this method has poor perfor-
mance and is clearly not self-healing or self-optimizindteAnatively, many networks rely on an orthogonal
Ethernet network to access the special management Ethmaretof routers for control; however, Ethernet
is insecure, and not self-protecting or self-optimizingh& networks even rely on in-band connectivity to
control routers (i.e., control communication is mixed witker data communication and relies on the same
IP routing tables); this method is dangerous, as it riskisi¢pgemote access with no recourse if the router is

accidentally misconfigured.

Technologies such as MPLS [34] and GMPLS [35] use IP prososach as OSPF and IS-IS to es-
tablish logically out-of-band communications paths fomagement. Using IP routing protocols to carry

management traffic re-introduces the circular dependeratylgm which we will elaborate in Section 4.1.

Much work has been done to address the scalability probledistifouting contents from a small num-
ber of sources to a large number of recipients. Among thelstiaus, the best-known are reliable multi-

cast [36] and peer-to-peer protocols such as BitTorrerit [Bdth multicast and peer-to-peer aim to solve
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the problem where all recipients receive the same dataiiaysare not directly applicable to our problem,

where different recipients may need different data.

A variation of BitTorrent called SET (Similarity Enhancedansfer) [38] allows similar objects to be
utilized to speed up transfer. Both BitTorrent and SET usepthll model in which the data receivers try
to identify usable data sources from which to download dati instead use a push model to globally
optimize the total dissemination cost in terms of both teadind time. We will further compare SET with

our dissemination approach in Chapter 5.

Another category of related work provides redundancy elation services to reduce network traffic.
It includes early LBFS (low-bandwidth network file systendni [39] as well as very recent EndRE (end-
system redundancy elimination service) projects [40]. BBfhd EndRE both treat network traffic as byte
streams and seek compression schemes that work for geeéniork traffic, whereas we focus on solving
the problem of distributing a specific type of payload - rogttables. Instead of attempting to develop a
new generic redundancy elimination service with a smarefipgnting scheme, we let the application, in
this case the network decision element, decide how to caripet difference across data sent to different
receivers. As we show in Chapter 5, domain knowledge helpsdue compression rate when the bytes that
carry the payload cannot be effectively fingerprinted byageenschemes such as Robin fingerprinting. An-
other difference between EndRE and our effort is that EndREiges an “intra-host” solution to eliminate
redundancy between a client and a server, while we aim t@ soivinter-host” problem by reducing traffic
load between a server and a large number of clients. We wardnpare the performance of our system

with other “inter-host” solutions when they become pulylialailable.



Chapter 3

Tesseract

Previous position papers [7, 8] have laid down the concéftamework of 4D. This chapter answers the
guestion of how to make 4D a flexible system that greatly sirepl network control by providing the
details of an implementation and applications of the firstptbtotype, Tesseract. The target of Tesseract
is to enable thalirect control of a computer network that is under a single administratioeain. The
term direct control refers to a network control paradigm imak adecision elemendirectly and explicitly
creates the forwarding state at the network nodes, ratharitidirectly configuring other processes that then

compute the forwarding state. This paradigm can signifigantnplify network control.

In a typical IP network today, the desired control policy ofaministrative domain is implemented via
the synthesis of several indirect control mechanisms. ¥amele, load balanced best-effort forwarding may
be implemented by carefully tuning OSPF link weights toliadily control the paths used for forwarding.
Inter-domain routing policy may be indirectly implementley setting OSPF link weights to change the
local cost metric used in BGP calculations. The combinatibsuch indirect mechanisms creates subtle
dependencies. For instance, when OSPF link weights argebtdo load balance the traffic in the network,
inter-domain routing policy may be impacted. The outcomthefsynthesis of indirect control mechanisms

can be difficult to predict, and exacerbates the complexityebwork control [41].

The direct control paradigm avoids these problems becatiseés the dependencies between control
policies to become explicit. In direct control, a logicatlgntralized entity, called the decision element, is
responsible for creating all the state at every router. Assalt, any conflicts between the policy objectives

can be detected at the time of state creation. With todayl§pteiindependent and distributed mechanisms,

25
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these conflicts often only appeiarvivo after some part of the configuration state has been changedeby

of the mechanisms.

The direct control paradigm also simplifies the router fiorlity. Because algorithms making control
decisions are no longer run at routers, the only distribdtetttions to be implemented by routers are
those that discover the neighborhood status at each raudehase that enable the control communications
between the decision element and the routers. Thus, therreaftware can be very light-weight. Yet

sophisticated control algorithms can be easily implengntigh this minimal set of distributed functions.

This chapter presents the design, implementation, evaiysand demonstration of the Tesseract sys-
tem. To guide our design, we explicitly select a set of goald devise solutions to address them. We
deploy Tesseract on Emulab [6] to evaluate its performai¢ée.show how Tesseract can rapidly react to
link, node, and decision element failures and efficienthcoafigure network routers in response. Also,
micro-benchmark experiments show that the system carydwsildle the intra-domain routing control for

a thousand-node network.

We demonstrate Tesseract's flexibility by showing its agglons in joint packet forwarding and policy-
based filtering in IP networks, and in link-cost-driven Etied packet forwarding. Both applications are
simple to implement in the decision element of Tesseragitiethe fact that the applications operate in

different data plane layers.

3.1 From Architecture to System

Tesseract is based on the general 4D architectural conbeptiese concepts admit a wide variety of design
choices. We used the following goals to guide our decisionigevdesigning Tesseract, and these goals can
be roughly grouped into three categories. The first categangerns objectives for system performance and

robustness:

Timely reaction to network changes: Planned and unplanned network changes, such as switchemaint
nance and link failures, can cause traffic disruption. Tesseshould be optimized to react to network

changes quickly and minimize traffic disruption.

Resilient to decision plane failure: Tesseract should provide built-in support for decisiompleedundancy

so that it can survive the failure of a decision element.
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Robust and secure control channels:The logical channels for control communications maintaitg
Tesseract should continue to function in the presence opoomised switches, decision elements, or failed

links/nodes.
The next set of goals concerns making Tesseract easy toydeplo

Minimal switch configuration: The Tesseract software on each switch should require no ahanofig-
uration prior to deployment except for security keys thaniafy the switch. We do, however, assume that

the underlying switch allows Tesseract to discover thedvdtproperties at run-time.

Backward compatibility: Tesseract should require no changes to the end host softeativare, or pro-

tocols. Thus, Tesseract can be deployed as the networlotsgstem transparently to the end users.
The final set of goals concerns making Tesseract a flexibtéopha

Support diverse decision algorithms:Tesseract should provide a friendly platform on which deealgo-

rithms can be easily implemented to control networks.

Support multiple data planes: Tesseract should support heterogeneous data plane gsofeap, IP or
Ethernet). Thus, the system should not assume particuiaiptine protocols, and the dissemination service

should be agnostic to the semantics of the control commtioisa

3.2 Design and Implementation of Tesseract

In this section, we present the design and implementatidres$eract. We first provide an overview of the

software architecture, and then discuss each componem sf/stem in detail.

3.2.1 System Overview

The Tesseract system is composed of two applications ingsieed on Linux. These applications are called
theSwi t ch and the Decision ElemenDE). Figure 3.1 illustrates the software organization of ¢hagpli-

cations.

The discovery plane implementation currently deals onthweighbor node discovery. It includes two
modules, one for discovering hosts connected to the switchtlae other for discovering other switches.

The switch discovery module exchanges hello messages wiighloor switches to detect them, and creates
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Figure 3.1: High-level overview of Tesseract.
Link State Advertisements (LSAS) that contain the statugsahterfaces and the identities of the switches
connected to the interfaces. The generated LSAs are rejprieE via the dissemination plane. To avoid
requiring changes to hosts, the discovery plane identifiest Wosts are connected to a switch by snooping

the MAC and IP addresses on packets received on the interflageare not connected to another switch.

The dissemination plane is cooperatively implemented tth Bwi t ch and DE. The dissemination
service is realized by a distributed protocol that mairgabust logical communication channels between

the switches and decision elements.

Swi t ch leverages existing packet forwarding and filtering comptsi¢o implement the data plane.
Swi t ch interacts withDE in the decision plane through the node configuration servitaface. The
interface is implemented by data plane drivers, which tedegyeneric configuration commands fr@&

into specific configurations for the packet forwarding angfihg components.

DE implements the discovery, dissemination and decisiongslanThe discovery and dissemination
plane functions are as outlined above. The decision planstieets an abstract network model from the

information reported by the switches and computes switaifigoration commands for all the switches
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Figure 3.2: The network model separates general-purpgseithims from network-specific mechanisms.
based on the specific decision algorithm used. The computiéchsconfiguration commands are sent to the

switches via the dissemination service.

3.2.2 Decision Plane: Versatility, Efficiency and Survivabity

The decision plane implements a platform for the deployneénetwork control algorithms. In addition, it
implements mechanisms that enable the replication of thiside logic among multiple decision elements

(DEs) so that DE failures can be tolerated.

Support diverse network control algorithms: In designing the decision plane, our focus is not to hard-
wire sophisticated network decision logics into the systémstead, our goal is to make the decision plane
a friendly platform where any network control algorithm da easily integrated and used to control any
suitable network technology. Toward this end, we introdacebstract network model to separate generic
network control algorithms (e.g., shortest path compaoatioad balancing) from network-specific mecha-

nisms (e.g., IP, Ethernet).

Figure 3.2 illustrates the abstract network model. The rhoalesists of node element and link interface
objects, and is constructed from information discovered r@ported by switches (e.g., LSA) through the
dissemination service. Operating on this model, Tessewacently implements four generic algorithms:

incremental shortest path, spanning tree, joint packet/itiuting (Section 3.4.1), and link-cost-based traffic
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engineering (Section 3.4.2). Finally, technology-spe@fug-ins translate the general control decisions into
network-specific configuration commands that are sent teckes via the dissemination service. These

commands are then processed by the node configuration esaviedividual switches.

As an example, we implement an incremental shortest pathritdgy [42] on the abstract network
model, and the same code can be used to generate either ifyrtalile in IP networks or Ethernet for-

warding entries in Ethernet.

Efficient network event processing:The DE must efficiently handle multiple simultaneous netngiranges,

which the DE will receive as events communicated over theetignation plane. We chose a different event
processing architecture than that used in typical impleatem of OSPF, where a hold-down timer is used
to delay the start of route recomputation after an eventestio force the batching of whatever events arrive

during the hold-down window.

Instead, the Tesseract DE usepush timer The DE runs a decision thread that processes all queued
events to update the network-wide view, starts the pushrtamsea deadline for pushing out new switch
configuration commands, and then enters its computatiole.cydter the computation of new forwarding
state finishes, the DE will immediately push out the new comsaf the push timer has expired, if the
event queue is empty, or if the queued events do not changetiverk-wide view used in the computation.

Otherwise, the DE will dequeue all pending events and repcie

We use a push timer instead of a fixed hold-down timer for tvasoes. In the common case where
a single link fails, the push timer avoids unnecessary ngitiThe first LSA announcing the failure starts
the route recomputation, and subsequent LSAs announcengaime failure do not change the network-
wide view and so are ignored. In the less common case of rfauliiilures, a push timer may result in
recomputation running more than once for the same eventekensince recomputation has latency on the
same order as typical hold-down timers, and DEs are unliteelye CPU-limited, it is reasonable to trade

extra computation for faster reconvergence.

The DE also records the state that has been pushed to each swit uses delta-encoding techniques
to reduce the bandwidth required for sending configuratmmroands to the switches. Acknowledgments
between DE and the node configuration service on each switstre the delta-encoded commands are

received.

Provide decision plane resiliency: Our decision plane copes with DE failures using hot-staadbixt

any time a single master DE takes responsibility for coniiguthe network switches, but multiple DEs
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can be connected to the network. Each standby DE receivesathe information from the switches and
performs the same computations as the master. Howeveriaheby DEs do not send out the results of

their computations.

The master DE is selected using a simple leader electiongobbased on periodic DE heartbeats that
carry totally ordered DE priorities. Each DE has a uniquernisi, and at boot time it begins flooding its
priority with a heartbeat message every heartbeat perigd @ ms). Each DE listens for heartbeats from
other DEs for at least five times the heartbeat period (wenasshat 5 times heartbeat period will be greater
than the maximum latency of a packet crossing the networK)erAhis waiting period, the DE that has
the highest priority among all received heartbeats dediolé® the master and begins sending commands
to switches. When the master DE receives a heartbeat from wibEa higher priority than its own, it
immediately changes into a standby DE and ceases sendingaoas to switches. A DE also periodically
floods a path explorer message, which has the effect of tilggewitches to reply with their current state.
In this way, a new DE can gather the latest switch state. 8estsimply process commands from any DE.

Authentication is handled by the dissemination plane awlikisussed next.

3.2.3 Dissemination Plane: Robustness and Security

The goal of the dissemination plane is to maintain robustssedire communication channels between each
DE and the switches. With respect to robustness, the dissgion plane should remain operational under
link and node failure scenarios. With respect to securitg, ietwork should remain operational when a

switch or even a DE is compromised.

Observing that the traffic pattern in dissemination plarfewsto-many (switches communicate not with
each other, but only with the DESs), we adopt an asymmetrigdeshere the dissemination module at a DE

node implements more functionality than the disseminatiaaule at a switch.

Dissemination plane design overviewTesseract’s dissemination plane is implemented usingsaoutes.
Each control message is segmented into dissemination $raamel each frame carries in its header the
identity of the source, destination, and the series of swicthrough which it must pass. We choose a
source routing solution because: (1) It requires the mihimmaount of routing state and functionality in
each switch. Each switch needs only to maintain the routdsetdEs. (2) Source routes provide very

flexible control over routing, as a different path can be Bjgetfor each destination, making it easy to take
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advantage of preferred paths suggested by the decisioa. {BnCombining source routing with the few-to-
many communication pattern enables us to design a disstaonir@ane with desirable security properties,
as discussed below. To protect control communications freen data traffic, the queuing of dissemination
frames is separate from user data traffic, and dissemin&iones have higher transmission priority. To
protect the source routes from being misused by adversasete the network, we encrypt them at each

hop before they are forwarded.

Threat model: Tesseract is designed to cope with the following threatsA@versaries can compromise
a switch, gaining full control over It, including the abjlito change the way dissemination packets are
forwarded. (2) A compromised switch can piggyback data arkeis to collude with other compromised
switches downstream. (3) A compromised switch can peekdissemination plane data to try to learn the
network topology or location of critical resources. (4) &dsaries can compromise a DE and use it to install

bad forwarding state on the switches.

Bootstrapping security: The Tesseract trust model is based ameawork certificatgi.e., a signed public

key for the network) — all the other keys and certificates aéved from the network certificate and can
be replaced while the network continues operating. Switeti# accept commands from any DE holding a
DE certificate that is signed by the network certificate. Ttegpe key of the network certificate is secret-
shared [43] among the DEs, so that any quorum of DEs can caigergenerate a new DE certificate when

needed.

When a switch is first deployed, the network certificate andeacPrtificate are installed into it. This
is done by plugging a USB key containing the certificates @#&oh switch, or as part of the default factory
configuration of the switch before it is deployed in the fi€lthe switch then constructs a DevicelD, which
can be as simple as a randomly generated 128-bit number, piidhte/public key pair. The switch stores
the network and DE certificates, its DevicelD, and its key p#b nonvolatile memory. The switch then
encrypts the information with the public key of the DE, andteg it back onto the USB key. When the
USB key is eventually inserted into a DE, the DE will have arlsechannel to each device and a list of the
valid DevicelDs. As each switch communicates with a DE far fiinst time, it uses ISAKMP [44] and its
private/public keys to establish a shared-secret key knamiy by that switch and the DE. All subsequent

dissemination plane operations use symmetric cryptograph

Computing dissemination plane routes:Dissemination plane routes are computed by each decisgn el

ment flooding a path explorer message through the networkn3are fast recovery from link failures, the
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path explorer is sent periodically every 20 ms in our prgietyand can be triggered by topology updates.

Onion-encryption(or encapsulated encryption) is used in path explorerspgpat dissemination secu-
rity. The DE initiates the path explorer by embedding its iDelD as the source route and flooding it over
all its ports. When a switch receives the path explorer)iotionally verifies the route to the DE contained
in the path explorer; (2) records the source route; (3) guisrthe existing source route using the secret key
it shares with the DE that sent the path explorer; (4) appésdsvn DevicelD to the path explorer in plain
text; and (5) floods the path explorer out to its other intefa Path explorers carry sequence numbers so

that switches can avoid unnecessary re-flooding.

To send data to a DE, a switch uses the encrypted source toatoided from a path explorer sent by
that DE. When an upstream switch receives the message,ritpdgethe source route using its secret key.
This reveals the ID of the next-hop switch along the path éoDE. By successive decryption of the source
route by the on-route switches, dissemination plane packet delivered to the DE. Since the DE knows

the secret key of every switch, it can construct an oniomygated route to any switch it desires.

As part of the negotiation of its secret key over ISAKMP, eaulitch learns whether it is required to
perform the optional source route verification in step (Ipleforwarding a path explorer. If verification is
required, the switch first checks a cache of source routes finat DE to see if the source route has already
been verified. If the source route is not known to be valid stigch forwards the source route to the DE in a
signed \ERIFY packet. Since the DE knows the secret keys of all the swiféhesn iteratively decrypt the
source route and verify that each hop corresponds to thétlivds learned about in an LSA. Once verified,
the DE sends a FRIFYOK message to the switch using the extracted source routerroamdi the validity
of the route. The DE confirmation is signed with an HMAC congolaising the secret key of the destination

switch to prevent it from being tampered or forged.

Security properties: The optional verification step exposes a classic tradeaiffiéen security and perfor-
mance. In Tesseract, we provide a dissemination plane wihdifferent levels of security. The network

operator can choose the semantics desired.

The basic security property is that a compromised switcim@aarder other switches to install invalid
forwarding state or forge LSAs from other switches. Thisdhiaved by each switch having a secret key

shared only with the DE.

If path explorers areotverified before being forwarded, a compromised switch cagefpath explorers

that artificially shorten its distance to the DE and attragsemination plane traffic from other switches (e.g.,
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so the attacker can drop or delay the traffic). Compromisettises can also communicate with each other

over the dissemination plane to coordinate attacks.

If path explorersare verified before being forwarded, a compromised switch calmabout its distance
to the DE. Also, compromised switches are prevented fromneonicating arbitrarily over the dissemina-
tion plane unless they are directly connected. This is mx#ue DE will not validate a source route that
originates and ends at switches. A switch also cannot desdbe identity or connectivity of another switch
that is two or more hops away. This prevents attackers frantifying and targeting critical resources in

the network.

The cost of the extra security benefits provided by verifysogirce routes is the extra latency during
reconvergence of the dissemination plane. If a link breakisseswitch receives path explorers over a source
route it has not previously verified, it must wait a roungb-time for the verification to succeed before the
switches downstream can learn of the new route to the DE. @m®ach to minimize this penalty is for the
DE to pre-populate the verified source route tables of sw#ahith the routes that are most likely to be use
in failure scenarios. A triggered path explorer flooded /B in response to link failure will then quickly

inform each switch which preverified routes are currentlykiray.

Surviving DE compromise: As a logically centralized system, if a DE were compromisedopuld order
switches to install bad forwarding state and wreak havochendata plane. However, recovery is still
possible. Other DEs can query the forwarding state instalteach switch and compare it to the forwarding
state they would have installed, allowing a compromised isbghaving DE to be identified. Because the
private key of the network certificate is secret-sharedpag ks a quorum of DEs remain uncompromised
they can generate a new DE certificate and use the disseomméine to remotely re-key the switches with

this new DE certificate.

Notice that while a compromised DE can Completely disruga gdane traffic, itcannotdisrupt the
dissemination traffic between other DEs and the switcheds iBhone of the benefits of having control
traffic traverse a secured dissemination plane that isddlgiseparate from paths traversed by data packets.

Once re-keyed, the switches will ignore the compromised.DEs

As a point of comparison, in today’s data networks recogefiiom the compromise of a manage-
ment station is difficult, as the compromised station calbtbe uncompromised ones from reaching the
switches. At the level of the control plane, the security &RF today is based on a single secret key stored

in plain text in the configuration file. If any switch is compnsed, the key is compromised, and incorrect
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LSAs can be flooded through the network. The attacker cowd oS all the switches by forcing them
to continually rerun shortest path computation or drawfitrad itself by forging LSAs. Since a distributed
link-state computation depends on all-to-all commundaratiamong the switches, one alternative to using a
single shared key is for each switch to negotiate a secret/kbyevery other switch. Establishing thix(n?)
mesh of keys requires every switch to know the public key efgwther switch. Both key establishment

and revocation are more complex when compared to the dioet¢tat paradigm of Tesseract.

3.2.4 Discovery Plane: Minimizing Manual Configurations

The discovery plane supports three categories of actvitig) providing the DE with information on the
state of the network; (2) interacting with external netvgoakd informing the DE of the external world; and

(3) bootstrapping end hosts into the network.

Gathering local information: Since misconfiguration is the source of many network outaipes4D ar-
chitecture eliminates as much manually configured statessilgle. In the long term vision, the switch
hardware should self-describe its capabilities and pewvidh-time information such as traffic load to the
discovery plane. The current Tesseract implementatiopatgp the discovery of physical switch neigh-
bors via periodic HLLO message exchanges. Switches are identified by the sameell®vised in the

dissemination plane.

Interacting with external networks: The DE directs the border switches that peer with neighbtwaris

to begin eBGP sessions with the neighbor switches. Thrdugipéeering, the DE discovers the destinations
available via the external networks. Rather than procgdsie BGP updates at the switches, the switches
simply report them to the DE via the dissemination service, e DE implements the decision logic for
external route selection. The DE sends the appropriate e®@lies to the border switches, as well as
configuring external routes directly into all the switchésthe dissemination service. RCP [10] has already
demonstrated that the overall approach of centralized Bgbfpatation is feasible, although they continue

to use iBGP for backward compatibility with existing rowger

It is important to note that an internal link or switch fadumn a Tesseract network does not lead to
massive updates of external routes being transmitted fnerdE to the switches. The reason is that external
routes identify only the egress points. External and irgleroutes are maintained in two separate tables and

are combined locally at switches to generate the full rgutable. This is identical to how OSPF and BGP
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computed routes are combined today. In general, an inténkadr switch failure does not change external

routes and thus no update to them is necessary.

Bootstrapping end hosts: For backward compatibility, end hosts do not directly m#ptte in Tesseract

discovery plane.

In networks running IP, the discovery plane acts as a DHCRyprohe DE configures each switch to
tunnel DHCP requests to it via the dissemination serviceeielier a host transmits a DHCP request, the
DE learns the MAC address and the connection point of theihdlse network. The DE can then assign the

appropriate IP address and other configuration to the host.

In networks operating as a switched Ethernet LAN, the disgpplane of a switch reports the MAC
address and the connection point of a newly appeared enddtise DE. The DE then configures the
network switches appropriately to support the new host.ti@e8.4.2 describes how we use Tesseract to

control a switched Ethernet LAN and provide enhancements.

3.2.5 Data Plane: Support Heterogeneity

The data plane is configured by the decision plane via the wcodéiguration service exposed by the
switches. Tesseract abstracts the state in the data plamewitch as a lookup table. The lookup table
abstraction is quite general and can support multiple teldgnes such as the forwarding of IPv4, IPv6, or

Ethernet packets, or the tunneling and filtering of pacledts,

Tesseract’s data plane is implemented using existing Lkamel and Click components. For each
component, we provide a driver to interface the componetit thie Tesseract decision plane as shown in
Figure 3.1. The drivers model the components as lookupsatrid expose a simpl i t eTabl e interface
to provide the node configuration service to the DE. For examphen the DE decides to add or delete an
IP routing or Ethernet forwarding table entry, it sendsadnl t abl e entry ordel et e t abl e entry
command through thé/ i t eTabl e interface, and the driver is responsible for translatinggdcbmmand
into component-specific configurations. This allows theatgms plugged into the DE to implement net-
work control logic without dealing with the details of eachta-plane component. We implemented three
drivers and describe their details next.

Linux IP forwarding kernel: The Linux kernel can forward packets received from one nekwaerface
to another. To determine the outgoing network interface Ltinux kernel uses two data structures: a For-

warding Information Base (FIB) that stores all routes, anolging cache that speeds up route search. Asin



3.2. DESIGN AND IMPLEMENTATION OF TESSERACT 37

all Tesseract data plane drivers, the driver for the Linuoli®arding kernel implements th& i t eTabl e
interface. The driver interprets commands from the DE,tesear t ent r y structure with the route to add
or delete, and invokes theoct | system call to modify the FIB. To make sure that the routingheais
flushed immediately after the FIB is modified, we petoc/ sys/ net /i pv4/ rout e/ m ndel ay to

Zero.

Click router: We use Click for forwarding Ethernet frames. The driver fdickCincludes two parts:

an implementation of th&V i t eTabl e interface, and a Click element package called 4mSwi t ch

that is integrated into Click. The implementation\&fi t eTabl e parses commands and executes those
commands by exchanging control messages with the 4DSwiliécheat in the Click process via a TCP
channel. ThetDSwi t ch element maintains an Ethernet forwarding table and updagstable according

to the received control messages. To control the data fdimgbehavior of Click, th&dDSwi t ch element
overrides the Cliclel enent : : push function and directs incoming traffic to the outgoing parf(secified

in the4DSwi t ch forwarding table.

netfilter/iptables: Tesseract uses netfilter/iptables to implement reachaloitintrol in IP networks. The
driver for netffilter/iptables translates commands intalyis rules (e.g:,A FORWARD -s 10.1.1.0/ 24
-d 10.1.2.0/24 -i ethO -j DROP)and forks an iptables process to install the rules.

3.2.6 Decision/Dissemination Interface

In designing the interface between the decision plane andifisemination plane, there is a tension between
the conflicting goals of creating a clean abstraction wigfidriseparation of functionality, and the goal of

achieving high performance with the cooperation of thegleniand dissemination planes.

The key consideration is that the dissemination plane maistote to function independently of the de-
cision plane. Our solution is to build into the disseminat@ane a completely self-contained mechanism
for maintaining connectivity. This makes the disseminajtane API very simple, giving the basic deci-
sion plane only three interface functiorSend( buf , dst ) , which sends control information to a specific
switch,Fl ood( buf ) , which floods control information to all switches, aRelgi st er UpCal | (*func()),

which identifies the decision plane function that handlesming information.

However, to optimize the performance of the disseminatitamgy we add two interface functions:

Li nkFai | ure(li nk), which the DE uses to identify a known failed link to the disgsation plane
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so the dissemination plane can avoid it immediately, Bnéf er r edRout e( dst, sour ceRout e),
which the DE uses to suggest a specific source route for ogrggntrol information to switckist . This
solution enables a sophisticated DE to optimize the dissation plane to its liking, but also allows the

simplest DE to fully function.

3.3 Performance Evaluation

In this section, we evaluate Tesseract to answer the follpwuestions: How fast does a Tesseract-controlled
network converge upon various network failures? How largetaork can Tesseract scale to, and what are

the bottlenecks? How resilient is Tesseract in the presehdecision-element failures?

3.3.1 Methodology

We perform both emulation and simulation experiments. Wekmmulab to conduct intra-domain routing
experiments using two different topologies. The first togglis an ISP backbone network (AS 3967) from
Rocketfuel [45] data that spans Japan, U.S., and Europe anitaximum round-trip delay of 250 ms. The

other is a typical enterprise network with negligible prgaton delay from our earlier study [2].

that have more than 4 interfaces are modeled by chaininghegeCs to create a “supernode” (e.g., a
router with 8 interfaces will be represented by a string oh@utab PCs). As a result, the backbone network
is emulated by 114 PCs with 190 links, and the enterprise ar&tis emulated by 40 PCs with 60 links.
For each Tesseract experiment, there are 5 decision elemeltttese run on “pc3000” machines that have
a 3GHZ CPU and 2GB of RAM. To inject a link failure, we bring dowhe interface with thef confi g
down command. To inject a switch failure, we abruptly termindtete relevant software running on a

switch.

To ensure that we evaluate the worst-case behavior of thieotpfane, we measure the time required for
the entire network to reconverge after an event. We calculate this ertwonvergence time as the elapsed
time between the event occurring and the last forwardinig stadate being applied at the last switch to be
updated. We use Emulab’s NTP (Network Time Protocol) sert@esynchronize the clocks of all the nodes

to within 1 millisecond.

As a point for comparison, we present the performance daggressively tune@®SPF control plane

called Fast OSPF. Fast OSPF’s convergence time represenbest possible performance achievable by
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Figure 3.3: CDF of convergence times for single link faikine enterprise and backbone networks. We pick
one link to fail at a time and we enumerate all the links to getdistribution of convergence times. The

zero convergence times are caused by failures discongesstiiiches at the edge of the network.

OSPF, and is determined by the time to detect a link failucetha one-way propagation delay required for
the LSA flood. Such uniform and aggressive tuning might nqtiaetical in a real network, as it could lead

to CPU overload on older routers, but Fast OSPF serves asu bheechmark.

We implemented Fast OSPF by modifying Quagga 0.99.4 [46lippart millisecond timer intervals.
There are four relevant timers in Quagga: (1) the hello tithat sets the frequency ofglLO messages;
(2) the dead timer that sets how long after the last it is received the link is declared dead; (3) the delay
timer that sets the minimum delay between receiving an LSdatgpand beginning routing computation;
and (4) the hold-down timer that sets the minimum intervahieen successive routing computations. For
Fast OSPF, we use hello timer = 20 ms, dead timer = 100 ms, tiglay= 10 ms (to ensure a received LSA
is flooded before routing computation begins), and 0 ms ferhibld-down timer. Tesseract uses the same
hello and dead timer values to make direct comparison pessilhere is no need for the delay timer or the

hold-down timer in Tesseract.

3.3.2 Routing Convergence

Common concerns with using a logically centralized DE tovigte direct control are that reconvergence

time will suffer, or that the DE will attempt to control thetm@rk using an out-of-date network view. To



40 CHAPTER 3. TESSERACT

evaluate these issues, we measure intra-domain routingiEnce after single link failures, single switch
failures, regional failures (i.e., simultaneous multiplgtch failures in a geographic region), and single link
flapping.

Single link failures: Figure 3.3 shows the cumulative distribution of convergetimes of Tesseract and
Fast OSPF for all single link failures in both topologiesnf@convergence times are 0 because the link
failure partitioned a stub switch and no forwarding statdaips were required). Even though Tesseract
uses a single DE machine to compute all the routes, its pedioce is nearly identical to that of Fast
OSPF, thanks to the use of an efficient dynamic shortest pgdhnitam and the delta encoding of switch
configurations. The only observable difference is that 8iest’s convergence time has a slightly larger

variance due to the variability of the dynamic shortest @éddgjorithm on different failed links.

In the backbone network scenario, propagation delay bes@mémportant factor as switch-to-switch
RTT ranges from 1 ms to 250 ms. Tesseract’s convergenceresdhie link state update to be transmitted
to the DE, and the new switch configurations to be transmitck to the switches. On the other hand,
Fast OSPF only requires one-way flooding of the link stateatgad This is why Tesseract’s convergence
time is roughly a one-way delay slower than Fast OSPF. Homvé@veeturn, the direct control paradigm
enabled by Tesseract allows other control functions sugaelset filtering to be implemented together with

intra-domain routing in a simple and consistent manner.

Switch failures and regional failures: Next, we examine the convergence time under single swittiréa
and regional failures. To emulate regional failures, weddivthe backbone topology into 27 geographic
regions with each region containing a mean of 7 and a maxinfuth switches, and we simultaneously fall

all switches in a region.

Figure 3.4 compares the cumulative distributions of caysece times of Tesseract and Fast OSPF on
switch and regional failures. In the enterprise networlgimgthe performance of Tesseract is very similar
to that of Fast OSPF. In the backbone network, the differdseteieen Tesseract and Fast OSPF is still
dominated by network delay, and both are able to gracefuahdle bursts of network state changes. There
are two additional points to make. First, Fast OSPF has namescwhere the convergence time is zero. This
is because the 10 ms delay timer in Fast OSPF is acting as albald timer. As a result, Fast OSPF does
not react immediately to individual link state updates fopepletely failed switch, and sometimes this can
avoid unnecessary configuration changes. In Tesserat,itheo hold-down timer, so it reacts to some link

state updates that are ultimately inconsequential. Sedorsbme cases Tesseract has faster convergence
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Figure 3.4: CDF of convergence times for single switch fa#uand regional failures.

time in regional failure than in single switch failure. Theason is that the large number of failed switches

in regional failure reduces the number of configuration tgsldesseract needs to send.

Link flapping: From the earliest days of routing in the Internet there has lsencern that a rapidly flapping
link could overload the control plane and cause a widespratabe worse than the failure of that single link.
Using Emulab we conduct an experiment to show the effectisloflapping on the end-to-end behavior of
Tesseract. On the emulated backbone networkpiweg the Tokyo node from the Amsterdam node at an
interval of 10 ms and measure the RTT. We start to flap the lgtlwben Santa Clara and Herndon 2 seconds
into the experiment. The flapping link is up for 100 ms and tdewn for 2 seconds. As the link flaps,
the route from Tokyo to Amsterdam oscillates between a I®D4bath traversing Santa Clara, Herndon,
Weehawken, and London with an average RTT of 240 ms, and afZth through San Jose and Oak

Brook with an average RTT of 246 ms, as shown in Figure 3.5.

This experiment demonstrates that a logically centralgaestem such as Tesseract can handle continual
network changes. It is also worth mentioning that the Tessatecision plane makes it easy to plug-in

damping algorithms in order to handle this situation in aeriotelligent way.

3.3.3 Scaling Properties

An additional concern with a logically centralized systarmtsas Tesseract is whether it can scale to the size

of today’s networks, which often contain more than 1,000dvés. Since Emulab experiments are limited
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Figure 3.5: Effects of link flapping on ICMP packets sent ate of 100 packets/sec.

to at most a few hundred switches, we perform several siioualakperiments to evaluate Tesseract’s scaling
properties. This evaluation uses a DE running the same autléardware as the previous evaluations, but

its dissemination plane is connected to another machinesitinalates the control plane of the network.

We evaluate Tesseract’s scalability on a set of Rocketfymlbgies of varying sizes. For each topology,
we independently fail each link in the graph and measureithe for the DE to compute new forwarding

state and the size of the state updates.

DE Computation Time: Every time a failure occurs in the network, the decision @etmeeds to recom-
pute the forwarding tables for the switches based on the tet@ of the network. Figure 3.6 shows the
results of DE path computation time. As shown in the figurepew the largest network of 1347 nodes and
6244 edges, the worst-case recomputation time is 151 msar@Pth percentile is 40 ms.

Bandwidth Overhead of Control Packets: Each time the DE computes new forwarding state for a switch,
it needs to push out the new state to the switch. Figure 318 he number of control bytes that the DE
pushes out for independent link failures with differentdimgies. As shown in the figure, the worst-case
bandwidth overhead is 4.4MB in the largest network of 134desand 6244 edges. This is a scenario where

90% of the switches must be updated with new state.

Notice that the bandwidth overhead reported here incluadg iatra-domain routes. Even when a
Tesseract network carries external BGP routes, the amduntwarding state expected to change in re-

sponse to an internal link failure will be roughly the samevit8hes use two-level routing tables, so even
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Figure 3.6: CPU time for computing incremental shorteshgdbr various Rocketfuel topologies in loga-
rithmic scale. The box shows the lower quartile, upper dgeatand median. The whiskers show the min
and max data values, out to 1.5 times the interquartile reanygoutliers are plotted as ‘+'s.

if default-free BGP routing tables are in use, the BGP rootdg change when the egress point for traffic
changes — not when internal links fail. As has been pointedbgumnany [47, 10], Internet routing sta-
bility would improve if networks did not change egress pgisblely because the local cost changed, and

Tesseract’s framework for direct control makes it easiemgglement this logic.

3.3.4 Response to DE Failure and Partition

This section evaluates decision plane resiliency by méagthie DE failover time defined as the time from
when the master DE is partitioned to when a standby DE takesand becomes the new master DE. We
use the backbone network topology and perform 10 expersrieiwhich the master and stand-by DEs are

50 ms apart.

DE failure: Failure of any DE but the master DE is harmless, since in Tassthe other DEs are hot stand-
bys. To evaluate the effect of the failure of the master DEatiptly shut down the master DE. Table 3.1
shows the time required for a new DE to take control of the ndtvafter the master DE fails. As expected,
the average failover time is approximately 140 ms, which lbarerived from a simple equation that de-
scribes the expected failover timeD £ DeadT'ime + PropagationDelay — HeartbeatInterval /2 =
100ms + 50ms — 10ms).
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Figure 3.7: Switch configuration traffic sent out on a singik failure for various Rocketfuel topologies in
logarithmic scale.

Min Mean Max SD
Backup DE takesover 130ms 142ms 155ms 6jms

Table 3.1: Minimum, mean, and maximum times, and standaveéhilen for DE failover in DE failure
experiments on the backbone network.

Network partition: We inject a large number of link failures into the backbonaology to create scenar-
ios with multiple network partitions. In the partition withe original master DE, Tesseract responds in
essentially the same manner as in the regional-failuressimeEnexamined in Section 3.3.2, since the original
master DE sees the patrtition as a large number of link falute the partitions that do not contain the

original master, the convergence time is the same as whendbkter DE fails.

Just as network designers can choose to build a topologyh#sathe right level of resistance against
network partition (e.g., a ring versus a complete grapl®,disigners can intelligently select locations for

placing redundant DEs to defend against network partition.

3.4 Tesseract Applications

In this section, we demonstrate two applications that takeistage of Tesseract’s direct control paradigm.
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3.4.1 Joint Control of Routing and Filtering

Today, many enterprise networks configure packet filtersotdtrol which hosts and services can reach
each other [2]. Unfortunately, errors in creating netwodnfgyurations are rampant. The majority of
disruptions in network services can be traced to mis-cordigans [48, 49]. The situation with packet filters
is especially painful, as routes are automatically updatedouting protocols to accommodate topology

changes, while there is no mechanism to automatically gukeqiet filter configurations.

The Tesseract approach makes joint routing and filtering. ed$ie decision logic takes as input a
specification of the desired security policy, which lists gairs of source and destination subnets that should
or should not be allowed to exchange packets. Then, in addit computing routes, for each source-
destination subnet pair that is prohibited from commuimcgtthe DE initially places a packet filter to
drop that traffic on the interface closest to the destinatibime decision logic then further optimizes filter
placement by pulling the filters toward the source of forkiddraffic and combining them until further

pulling would require duplicating the filters.

As a concrete example, revisit the example network in Figute This company’s network is spread
across two locations, A and B. Each location has a numbeloat fsffice computers used by sales agents
(AF1-2 and BF1-2) and a data center where servers are kepgt-&hd BD1-2). Initially, the two locations
are connected by a link between the front office routers, RRRdh, over which inter-office communica-
tions flow. The routing metric for each link is shown in italicLater, a dedicated link between the data
centers (shown as a dashed line between R1 and R3) is addeal $loet data centers can use each other as
remote backup locations. The security policy is that froffice computers can communicate with the other
location’s front office computers and with the local datateggs servers, but not the data center of the other
location. Such policies are common in industries such agamse, where the sales agents of each location

are effectively competing against each other.

We experimentally compared the Tesseract-based soluifithraveonventional solution that uses OSPF
and manually placed packet filters. During the experimergsgenerate data traffic from AF1 to BF1
(which should be permitted) and from AF1 to BD1 (which sholddforbidden) at 240 packets per second
and monitor for any leaked or lost packets. In the OSPF nétwibe filter is manually placed on interface
i3.1 to prevent A's front office traffic from reaching BD. Aftallowing the routing to stabilize, we add a
new link between the data centers (dotted line in Figure 1ri)he OSPF network, OSPF responds to the

additional link by recomputing routes and redirects trdffian AF to BD over the new link, bypassing the
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Figure 3.8: Full-mesh Ethernet topology.

packet filter on interface i3.1 and creating a security hioé will have to be patched by a human operator.
In contrast, Tesseract computes both new roates new packet filter placements appropriate for those
routesand loads into the routers simultaneously, so no forbiddsfid is leaked. Most important, once the

security policy is specified, it is automatically enforcethasmo human involvement required.

3.4.2 Link Cost Driven Ethernet Switching

Ethernet is a compelling layer-2 technology; large switcg¢hernets are often used in enterprise, data
center, and access networks. Its key features are: (1) dyidplemented frame format; (2) support for
broadcasting frames, which makes writing LAN services akRP and DHCP significantly easier; and
(3) its transparent address learning model, which mearis lvas simply plug-and-play. Unfortunately,
today’'s Ethernet control plane is primitive [50, 51, 52].sBd on routing frames along a spanning tree of
the switches, it makes very inefficient use of the availaisllesl Convergence time in response to failures
can be long, as the IEEE 802.1D Rapid Spanning Tree Prot&®&®TP) is known to count to infinity in

common topologies.

We have implemented a Tesseract control plane for Ethdraepteserves all three beneficial properties,
avoids the pitfalls of a distributed spanning tree protpeold improves performance. The DE first creates
a spanning tree from the discovered network topology ancrgées default forwarding entries for the
switches that follow the tree — this enables traditionadtbased broadcast. Additionally, when an end host
sends its first frame to its first-hop switch, the switch nesifihe DE of the newly discovered end host via
the dissemination service. The DE then computes appreppiths from all switches to that end host and
adds the generated forwarding entries to the switches. Eremon, all frames destined to the end host can

be forwarded using the specific paths (e.g., shortest piastead of the spanning tree.
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Figure 3.9: Aggregate network throughput, RSTP versusefass S1 fails at 60 second.

To experimentally illustrate the benefits of the Tesserppt@ach, we use the topology shown in Fig-
ure 3.8 on Emulab. The four switches are connected by 100 MAtipsrnet links, and each end host is
connected to one switch via a 1 Gbps Ethernet link. Wei noiar f [53] TCP servers on the four end hosts
and simultaneously start six TCP flows. They are H1 to H2, Hii3pH1 to H4, H2 to H3, H2 to H4, and
H3 to H4. In the first experiment, the network is controlledTi®sseract using shortest path as the routing
policy. In the second experiment, the network is controbign implementation of IEEE 802.1D RSTP on
Click.

Figure 3.9 shows the aggregated throughput of the netwarkdth experiments. With the Tesser-
act control plane, all six TCP flows are routed along the gisbrpaths, and the aggregate throughput is
570 Mbps. At time 60 s, switch S1 fails and H1 is cut off. Theskract system reacts quickly and the
aggregate throughput of the remaining 3 TCP flows stabili#ez80 Mbps. In contrast, in a conventional
RSTP Ethernet control plane, forwarding is performed ovgpanning tree with S1 as the root. This means
the capacities of the S2-S3, S2-S4, and S3-5S4 links ardytatalised. As a result, the aggregate throughput
of the RSTP controlled network is only 280 Mbps, a factor a tass than Tesseract. When switch S1 fails
at time 60 s, RSTP tries to reconfigure the spanning tree t&2ses the root and begins a count-to-infinity.
The combination of frame loss when ports oscillate betweewdrding/blocking state and TCP conges-
tion control back-off means the throughput does not recémemany seconds. When RSTP has finally

reconverged, the aggregate throughput is again subsdhamdiss than the Tesseract network.
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As a second example of the value of being able to change thsiaetogic and the ease with which

Tesseract makes this possible, consider Figure 3.10. dhddgy gadget is a typical building block found

in Ethernet campus networks [54] that provides protectigairest any single link failure. Basic Ethernet

cannot take advantage of the capacities of the redundds simce RSTP forms a spanning tree with S1

as the root, and the S2-S6, S3-S6, and S4-S6 links only mdsédkup paths and are not used for data

forwarding. As a result, traffic flows from H2, H3, and H4 to R shehare the capacity of link S1-S5. In

contrast, when there exist two or more equal-cost paths &repurce to a destination, the Tesseract decision

logic breaks the tie by randomly picking a path. By centiafizhe route computations and using even such

simple load-balancing heuristics, Tesseract is able te talvantage of the multiple paths and achieve a

substantial increase in performance. In our example, thadites of both link S1-S5 and S1-S6 are fully

utilized for a factor-of-two improvement in aggregate thgbput over RSTP.

The examples in this section illustrate the benefit of thedalicontrol paradigm, where the only dis-

tributed functions to be implemented by network switchesthose that discover the neighborhood status

at each switch and those that enable the control commumisabetween the DE and the switches. As a

result, it becomes easy to design and change the decisims ligit control the network. There is no need

to design distributed protocols that attempt to achievedtgéred control policies.
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3.5 Summary

This chapter presents the design and implementation oéfiassthe initial 4D prototype that enables direct
control. In designing Tesseract, we paid particular atbanio the robustness of the decision plane and the
dissemination plane. The security of Tesseract is enhamgdide mechanisms built into the dissemination
service. The system is designed to be easily reusable, amtmvenstrated how Tesseract can be used to
control both Ethernet and IP services. Finally, good pemntice is achieved by adopting efficient algorithms

such as incremental shortest path and delta encoding aftsadinfiguration updates.

We find that Tesseract is sufficiently scalable to contrabittomain routing in networks of more than
1000 switches, and its reconvergence time after a failudetiscted is on the order of one round-trip propa-

gation delay across the network.

The most important benefit of Tesseract is that it enablescdirontrol. Direct control means that
sophisticated control policies can be implemented in arabmed fashion, which can be much easier to
understand and deploy than a distributed protocol. Direatrol also means that the software running on
each switch is simplified, with potential benefits for operatand vendors. We strongly believe that the
direct control paradigm is the right approach in the long, ras there is a clear trend toward ever more

sophisticated network control policies.

Further developments in the philosophy of direct contralehamerged since the Tesseract work. The
OpenFlow Switching Consortium [32] was created in 2008 tppsut an open standard that allows re-
searchers to control how an Ethernet switch forwards packata standardized interface. An OpenFlow
switch is directly controlled by a remote control processoltthe consortium calls the Controller. The
Controller is similar to the Tesseract decision elementtitiskes network decisions and sends instructions
to network elements through a robust and secure dissemineiannel. Compared with Tesseract, Open-
Flow takes the further step of making a network a programengldtform on which researchers can run
experiments. While we try to use Tesseract to demonstratettie direct control concept is practical on
both backbone and enterprise networks, OpenFlow focusesitating real products for Ethernet switches;
recently the OpenFlow consortium announced 48-port gigabitches that support the open standard for
direct network control. We hope that OpenFlow can be inéngisadopted by enterprise networks, and that
it will eventually be interconnected by OpenFlow backboeénorks. If Tesseract turns the direct control
paradigm from vision to reality, we hope that the wide depieyt of OpenFlow will make direct control

the de facto standard for running tomorrow’s networks.
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2009 also saw startups such as Nicira [33] that developwedt software to decouple network control
from the underlying physical hardware. Nicira’s goal is take data center networks more flexible and
economical. In this chapter, we show through a case studyddwoupling network control from the data

plane will allow Nicira to achieve sophisticated networlatg(e.g., security) with relatively simple software.



Chapter 4

Making 4D Dissemination More Robust

Chapter 3 describes the 4D Tesseract system and answergetteoq of how to make 4D a flexible system

that greatly simplifies network control. In Tesseract, aiglen element in a single location computes
network state (e.g., routing tables) and remotely configgeographically distributed network elements.
Fundamental to this is the ability of the decision elementdmmunicate securely and robustly with the
network elements being managed. This chapter focuses onagowonstruct such a secure and robust
communication channel to power Tesseract and other ceelahetwork control systems.

In practice, creating the dissemination channels and miaing them in the face of operational realities
is a significant problem. Many network elements are in undid locations, thus a loss of management
connectivity means that a technician will have to traveltie hetwork element before there can be any
possibility of accessing the console to collect data ormégare the element. The resulting service outages
are measured in hours — we report on several of these in oarstadies. Denial of Service attacks and
flash-crowds are well-known to cause management commigoreatd fail at exactly the moment they are
most needed to recover control over the network [55]. Thegueacy with which networks grow or evolve,
coupled with the fact that today’s management communicatimnnels are as subject to outages caused by
misconfiguration as the rest of the network, means that m&snare in continual peril of losing the ability
to remotely reconfigure network elements.

The contributions of this chapter include defining the @rades that face management communication
channels, and presenting a system design that solves thekenges. We also demonstrate how our sys-
tem solves several common problems that arise while regnatahaging networks, and we evaluate the

performance of the system to show that it is suitable for wsa & large, fast networks.

51
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4.1 Case for a Robust Meta-Management System

In 4D, the decision element must reach and configure a netelerkent before the network element is
configured with routing state. At the same time, the netwdgknent must communicate with the decision
element before it is configured by the decision element. iittiali 4D prototype uses source routing to break
the circular dependency. In this chapter, we develop thecsgouting idea into a complete network solution
called the Meta-Management System (MMS) [56] in order to ovdy address the circular dependency
problems, but also to leverage all available network cotivigcin order to achieve maximum robustness,

while simultaneously protecting management traffic frogutar data traffic. Management applications can
access the MMS service via familiar socket APIs and trariggotocols. Thus, both new 4D decision logic

and existing IT management systems can run directly on theSMM

To support remote management and configuration, we desggMMS to satisfy four key system re-
quirements: (1) Automation: the MMS uses new protocols titddbplug-and-play” management chan-
nels — using no configuration beyond device identificatiopsk€2) Liveness assurance: the MMS both
maintains management communication channels in the pres#railures, and provides APIs by which re-
sources on network elements can be remotely managed teeghsuiveness of critical management tools;
(3) Security assurance: The MMS automatically autherggcaetwork elements, applying onion-encrypted
source routing [57] in new ways that prevent memory exhanstittacks and enable decision elements to
detect and evict network elements that DoS-attack manageooenmunications; (4) Evolvability: The
MMS allows multiple MMS versions to work concurrently, etiag the MMS to safely manage itself and

to evolve seamlessly.

4.2 Requirements for a Management Communication Service

The two approaches used today for establishing managemmmgnications do a very poor job of handling
these practical issues. The first common approadahlimnd management of network elements, where the
same IP stack and routing tables used to forward data thribxegietwork are also used to carry management
traffic to network elements. This approach has two problefist, a remote management process cannot
reach and configure a network element before the networkeglecan forward IP packets. Atthe same time,
the network element cannot forward IP packets before it idigored by the remote management process.

This circular dependency results in fragility. Second, lthaservice in a network is frequently reconfigured
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to satisfy customers’ changing needs. If a service changsesaa failure in the IP service, management

communications will also fail as there is fate-sharing hesgw data and management communications.

It might seem that building a physically separate networkalwy management communications (often
referred to aut-of-bandmanagement) solves the management communications prohlafortunately,
building and maintaining a physically separate networkéonote management all the way to devices at the
edge of a large network is costly or is simply impossible. @&y cost, a more fundamental problem is that
the separate management network must still be configuredhandged, and all existing software stacks to

do this suffer from the problems of in-band management.

We believe the argument between in-band and out-of-managieis misplaced. Remote management
communications should be carried lmgically out-of-bandmanagement links, where these links are con-
structed from both regular data traffic links as well as wetseparate dedicated management links exist.
A logically out-of-band link is simply a logical partitionnfth performance guarantees) of an underlying
physical link. We emphasize that realizing logically ottband links isnot the primary challenge facing
management communication. Circuit technologies such d8ESUSDH have long had the capability to
create logically out-of-band links. Packet technologigshsas MPLS [58], Frame Relay [59], and weighted

fair queuing can also establish logically out-of-band $ink

The primary challenge is to design a logically out-of-bandnagement channel that is not circularly
dependent on the data plane. In addition, the design mustthavollowing features critical for management

communications:

Automation: The system should require little or no configuration andtereamote management commu-
nication channels automatically in a plug-and-play fashid system that requires complex manual setup
only makes network management more difficult and error-@rdodifying off-the-shelf protocol software
on routers to support automation is not trivial. Protocaolshsas OSPF [60] require pre-configuration before
they can discover neighbors and build routes. OSPF provieighbor discovery between two preconfigured
and adjacent interfaces, but physical device discoveryagsdciations between entities require configura-
tion commands and external inventory databases. The MM@a@, on the other hand, expects no state
other than a security certificate to be preconfigured in otddyootstrap a management communication

channel to all network elements.

Liveness assuranceThe system should ensure the liveness of the communicatiannels as well as the

liveness of critical higher layer management softwarestodlhe latter is somewhat subtle. It is important
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for a system not only to ensure that messages can succegssiodis a network, but also to ensure that
those messages can reach important software (e.g., theessdwll daemorsshd) running on a remote

device. No existing protocols help ensure the livenessit€ar higher layer management software tools.
An operator may indeed be able to “ping” a router through tlenagement channel provided by an off-
the-shelf routing protocol, but he might not be able to logpithe router if the command line interpreter or
secure shell daemon is unresponsive. Further, convehfoo@cols might not be feasible to run on large
networks with old or under-resourced network elementspacale to large numbers of very inexpensive
devices. Off-the-shelf routing protocols typically reguan amount of memory that scales with the network
size. The MMS requires only a small constant amount of meraomouters that can be allocated statically,
enabling it to maintain liveness to all routers in the netwdrhe MMS also provides ways for operators to

recover from many of the common scenarios that cause ne®enkents to become unresponsive.

Security assurance: The system should be resistant to DoS attacks, automatigathenticate network
devices, and be able to detect and evict a compromised déitice behaving maliciously. Current routing
protocols such as OSPF and IS-IS use a single shared segretr keessage authentication. If any router
is compromised, the compromised router could fake messemesarbitrary routers — announcing bogus
connectivity to arbitrary routers to attract and intercepffic. The MMS software is resilient to such at-
tacks from single/multiple compromised switches. Morepgeen subtle collusions between compromised

switches do not affect the delivery of management traffic.

Evolvability: The system should be evolvable, and it should enable itsélétmanaged remotely. That is,

using the communication capability provided by the systiseifi it should be possible to update the system
remotely without the risk of crippling the system, even & thpdates turn out to have bugs that require them
to be rolled back. Updating the current off-the-shelf peolasoftware on routers remotely has inherent risk.
If the new version is erroneous or misconfigured, the rem@ragement communication channels can be

lost. The MMS software can be seamlessly upgraded, and itezawver from erroneous updates.

4.3 Meta-Management System (MMS) Design and Implementatio

In this section, we present the design and implementatiamupfemote management solution, the Meta-
Management System (MMS). The MMS software runs on netwoeknehts (NE), by which we mean

routers, switches, firewalls, and other middleboxes. TheSviso runs on decision elements (DEs), the
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network-connected servers used to manage and configuretiverk. The design of the MMS leverages
a key observation: most management traffic flows between d somaber of DEs and the NEs. Once
the management system provides robust and configurageneimmmunication channels between DEs and
NEs, remote management is enabled. Any NE-to-NE commuaicétat may be needed can be provided

through forwarding via an overlay constructed on the DEs.

4.3.1 Key Features of the MMS

Automatic creation of management channels

When a DE with a valid security certificate is attached to avodt, the MMS automatically establishes
management channels between the DE and the NEs in the netwkekise, when an NE with a valid secu-
rity certificate is attached to a network, the MMS automdlifaastablishes management channels between it
and the DEs. The MMS logically separates management conmation channels from data communication
channels so that they no longer share the same fate. Theoenimnual configuration beyond exchanging
security certificates at device installation tim@he MMS integrates, and thereby enforces, best practices
— once the MMS solution is installed, the rest is automatice MMS exposes a datagram service to ap-
plications, so existing management applications can adbesMMS management channels via a standard

socket API.

Integrated security assuranceThe MMS assumes a hostile environment in which malicious lergts
attached to the network may launch a DoS attack at the MM§ ¢o tompromise NEs. The MMS is robust
to such attacks and NE compromise. First, regular end hasesrio way to address DEs in the network, thus
launching a DoS attack at the DEs is not possible. The Idgicait-of-band MMS management channels
have priority over data traffic, and thus DoS attacks aghlstin the data plane cannot disrupt management
traffic. If an NE is compromised, it can drop MMS traffic or geste spurious messages in a DoS attack.
However, due to the MMS'’s use of onion-encrypted sourceimgusuch NEs can easily be detected and
then quarantined by the MMS issuing new source routes thzddsythe quarantined NE. Finally, the MMS
provides a mechanism to revoke a DE certificate and repladgéhita new one, which is useful, for example,

when a DE laptop computer storing the certificate is lost.

Integrated liveness assuranc®MS maintains the liveness of the management channels intagrated

fashion. It can dynamically re-route when a loss of netwarknectivity occurs. It is designed to protect

IMajor vendors today already install security certificatetodheir network elements before shipping them to custemer
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itself against CPU resource starvation. Moreover, due éoude of source routing, MMS has very little
runtime state, and all the memory it needs can be statickdigaded at boot time, thereby defending against
memory starvation. Furthermore, the MMS provides remobegss management and packet filtering APIs

to ensure the liveness of critical higher-layer managersefttvare tools.

Evolvable The MMS can be used to manage and evolve the MMS itself with dewn time. The design
of MMS enables multiple parallel instances of the MMS to @penver the same network at the same time.
This allows a new MMS instance to be brought up in order to mgarar replace the old instance. For
example, a new version of the MMS can be installed and broughhrough the management channels
provided by the old working version. The new version can lséete thoroughly before the old version is

removed.

Handles large networksThe protocols used in the MMS were specifically designed ab ttie amount

of memory and CPU computation required of network elemenisdependent of the size of the network.
This means that the network can grow without forcing the aggrof all NEs. Instead, the computation and
memory requirements are placed on the decision elementsDHs can target their resources at reaching
the specific NEs they wish to configure, and since DEs are pgshests and comparatively few in number,
they are easy to upgrade. Management stations can be cedrecthe network at any port, so service
technicians in the field and operators in the network opamatenter can all access network elements using
the MMS — there is no need to travel to special “network maneg@ ports” to connect. After a DE is
plugged into a network, in about 30 seconds it can establistSMecure channels to 1000 core devices (the

size of many large enterprises and ISPs [2]).

4.3.2 Isolation of MMS Frames

Because the MMS leverages the same physical links useddafaredata packet transmissions, the link-
layer must logically partition the link so that the MMS moduwn one network element can send MMS
frames to the MMS module on a neighboring network elements Phrtitioning should be done so that
the logical link used by the MMS has a guaranteed minimumuiiinput — this prevents regular data
traffic from interfering with the delivery or processing of\i& frames. This abstraction can be realized in
a number of ways, and the exact solution may be slightly iffefor different link layers. For example,

SONET links might use the supervisory channel to carry MMBes, since that channel has been built into
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SONET framing and has protected bandwidth. In a datagramonket weighted fair queueing or priority

gueueing might be used to create the required logical joartit

In our implementation, the network consists of point-téap&thernet links, and MMS frames are sent to
a reserved multicast address and tagged with a specifiocqoldype. When the MMS module is activated, it
configures the OS to hand it any MMS-tagged frames going sonthilticast address. To prevent user traffic
(e.g., DoS attacks) from interfering with management comigation, we use the simple priority queueing
system provided by the interface driver. MMS frames are ipigt the highest priority queue and thus served

first by the scheduler.

4.3.3 Automatic Construction of Secure Channels

One of the most important and basic features of the MMS is timstcuction of a set of secure channels
for management information to flow between a DE connectedaméetwork and the NEs that make up the
network. These channels must be authenticated, must euda$ attacks and local link or NE failures,

and must be able to recover from an NE compromise. This seekiplains our design for establishing and

maintaining these management channels.

4.3.3.1 Threat Model

The MMS is designed to withstand the following threats:
Operator error: Mistakes made while altering the configuration of netwodoetnts.

Attack from an end-host: Hosts connected to the network may attempt to DoS or injést feEommands

into the management channel.

Compromise of a Network Element: Attackers may compromise any network element in the sydeam
its secrets, sniff frames traversing it, and use it as agiatffor launching DoS attacks against the DEs, the
MMS, or the data plane.

4.3.3.2 Minimizing State Held by Network Elements

The first step in constructing a secure channel is definingaatitenticating the endpoints of the channel.
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Estimates show that configuration errors are responsilsl€ddo 70 percent of network outages to-
day [61]. Since the MMS must provide an always-available agament channel, configuration errors that
prevent communication between the DE and the NEs are iatdker We argue that the best approach to

eliminate configuration errors is to reduce the configurasitate to the bare minimum needed.

In our design, each NE is configured with the following catipieces of information prior to deploy-
ment. The first is aetwork certificatehat identifies the public key with ultimate authority oviee inetwork.
NEs will accept commands only from DEs that hav@Ecertificatesigned by the network certificate’s pri-
vate key. The second is a private/public key pair that urijgigentifies the NE. The NE’s public key must
be made available to the DEs before the DEs can communicttehei NE. The network certificate and the

private/public key pair should be preserved in non-vatagiiorage on the NE.

This basic configuration provides the toehold from whichEfewill be able to authenticate and com-
municate securely with each NE. In addition to the basic gondtion, each NE stores the following dynam-
ically generated soft-state for each DE with which it cominates: (a) a secret key shared only between
the NE and the DE, (b) an onion-encrypted source route byhwiie NE can communicate with the DE,
(c) the version number of the DE's certificate, and (d) thestahwhich this per-DE state was last used. The

exact definition of these fields and the means by which thegraaged will be explained next.

4.3.3.3 Secure Routing

The MMS is completely decoupled from the regular IP data@lservices and therefore has its own rout-
ing subsystem. The forwarding of messages across the MM8nisolled by onion-encrypted source
routes[62]. These are strict source routes placed in the headeitseoMMS frames that list the series
of NEs through which the frames must pass. A source routeilslii@ an onion, with the list of hops
remaining in the route encrypted in the secret key of the NEimgathe next forwarding operation. An NE
without a valid onion-encrypted source route can only mah$/1MS frames to its immediate neighbors.
Since the DE knows the secret keys of all NEs, it can consamnainion-encrypted source route between
any two NEs. As the frame is forwarded across the MMS, eachrév@mcrypts the portion of the route over

which the frame has already traveled.

We use onion-routing for two main reasons. First, it createsach MMS frame a secure log of the
frame’s path that the DE can read — as described in Sectiof.8,3his property will be used to detect

and evict misbehaving NEs. Second, source routing ensbiaésite MMS on each NE does not need to
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Step 1: DE discovers directly
connected nodes, issues
authentication challenge

Step 2: First-hop nodes
authenticate to DE; secure
MMS zone established

Step 3: Secure source routes to DE

Step 4: Secure| installed

MMS zone \\
discovers new
neighbors

Step 5: New neighbors authenticate to DE
via secure zone

Step 6: Secure source-routes setup between
new neighbors and DE

Step 7: Subsequent nodes discovered and
authenticated recursively

-

Figure 4.1: Recursive MMS Authentication.

maintain a dynamic routing table that grows with the netwaide. Thus, the MMS on an NE only needs a
small static amount of memory and will not run into memoryaedition failures.

To establish the MMS onion-encrypted source routes, a D& éicsirsively authenticates and establishes
secret keys with the NEs in the network. During this proct#ss DE computes an onion-encrypted source
route for each NE to communicate with the DE, and the DE ilsstais route on the NE. Subsequently, the
DE learns changes in the topology of the network by collecéincrypted link state advertisements (LSAS)
from NEs. The DE reacts to topology changes by recomputidgoashing out new onion-encrypted source
routes as needed. There can be multiple DEs in the netwdrkgaoh DE performs these tasks independently.
The details of the authentication process are explainetl nex
Recursive Authentication

The DE is responsible for authenticating the NEs and sentfiagn an encrypted source route they
can use to communicate with the DE. The NEs prove their itfetdithe DE using a challenge-response
protocol, and the DE proves itself to the NE by sending it afiadle signed source route.

Figure 4.1 gives an overview of the process by which a DE éskss communication to and through

the NEs in the network. The DE initiates and drives this psscenabling it to limit the set of NEs it contacts
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to the ones of interest. This will be important in very larggworks with many edge NEs. The DE begins

by initiating the authentication process with the direcibynnected NEs (e.g4).

The DE authenticates an NE by sending it a challenge via amesmcrypted source route. For an NE
directly connected to the DE, this source route is triviahisTchallenge contains several things. The first
is a 128-bit session key that serves as a shared secret betin=®E and that NE. The shared secret is
encrypted by the NE’s public key and signed by the privatefkey the DE certificate. The second is the
public key from the DE certificate signed by the private keyrirthe network certificate. This signed public
key is preconfigured on a DE by the administrator. It is im@otto note that a DE does not know the private
key of the network certificate. Thus, even if a DE is compr@&ujshe network certificate is still safe. The
third component is an onion-encrypted source route from\tiBgo the DE signed by the private key from

the DE certificate.

By verifying the certificates and decrypting the session, kieg NE proves its identity, verifies it is
communicating with a valid DE, and obtains an onion-en@gipsource route it can use to communicate
with the DE (since it can decrypt the first layer of the routmgshe session key). The NE then encrypts its
current LSA by the session key, and sends it to the DE usingttien-encrypted source route. If the LSA
informs the DE of new NEs it should communicate with, the D&ursively authenticates those NEs (e.q.,

B) by sending them challenges via onion-encrypted sourdesaver authenticated NEs.

A DE certificate contains a version number, and NEs will ordgept a DE certificate with the highest
version number they have seen. This means if a DE certifisatempromised, it can be cheaply “revoked”

by creating a new DE certificate with a higher version numinerasing it to authenticate all the NEs.
Authentication in Large Networks

Since the DE drives the recursive authentication processni easily target the authentication toward
the NEs it wants to control. This is important in large netkgyreven those with millions of edge NEs. As
a simple example, the DE can authenticate with all the core (dE identified by an inventory database),
obtaining LSAs that list the edge NEs and their attachmeimtpoEven the largest networks have no more
than a few thousand core NEs, which the MMS can easily hasdle $ection 4.5). Subsequently, the DE

can initiate authentication with only the desired edge NEs.
LSA Creation

The MMS implements a simple HELLO protocol by which an NE digrs the identities of its neigh-
bors. As part of this HELLO protocol, neighbors exchanges g the DEs with which they were previously
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authenticated. This information need not be verified by aniNEadvisory only. From this information, an
NE creates an encrypted LSA to send to each DE it has authtadigvith. In each LSA, for each neighbor
there is a bit that indicates whether that neighbor clainsetauthenticated to that DE.

When the link state changes, the NE that detects the changs aenew LSA to each DE for which it
knows an onion-encrypted source route. Each NE limits tteeabwhich it sends LSAs, so that a compro-
mised NE attempting to DoS the MMS by flooding LSAs can onlydldts immediate neighbors (which is

unavoidable), but not the rest of the NEs.

New LSAs are retransmitted periodically until acknowledld®y the DE (the implementation uses a
period of 500 ms). If a new LSA is generated, it replaces tre@nrently being sent. To make the system
as simple as possible, an LSA is acknowledged by the DE byirsgrdhash of the LSA back to the NE.
There is no need to use sequence numbers, as there can ba@ewlytstanding LSA at a time, and the hash

provides protection against bit-corruption in the LSA.

4.3.3.4 Response to Failures

If the connectivity between NEs changes, new LSAs are setiteded®E, and the DE re-calculates onion-
encrypted source routes for affected NEs and sends the néesrto the NEs. Should an NE reboot or
otherwise lose soft-state for a DE, LSAs sent by this NE'ghledrs will show that this NE is unauthenti-
cated to the DE, and the DE can re-authenticate the NE if meeét®uld a DE fail, all NEs will eventually

purge their soft-state for it.

The MMS is designed to survive even simultaneous failuresufiple links. In addition to the experi-

mental results presented in Section 4.5, we are able to pings/é&rmally.

Convergence Propertylf each NE knows the shortest path to a DE, and the DE has tti@l inétwork
topology, the above LSA propagation scheme ensures thdEheill eventually re-discover the shortest
paths to all NEs in its network partition after any periodioklfailure events followed by a period without

failures.

Proof. Let Gpg be the network topology, including the DE itself, perceicthe DE,G,..; be the topol-
ogy after the link failure event(sh(x) be the shortest path i pr from any NEz to the DE,S be the set
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of NEs that have different link state pr andG,..,;. We define a path(z) as aworking pathif it is a

path in bothG,...; andGpg.

After the failure event(s), at least one NESrhas aworking pathto the DE. This follows since there is
always at least one NE € S such thatp(a) is the shortest. Since no other NEShis between: and the
DE, there is no failed link along(a). It follows that the LSA from at least one NE i can reach the DE,
and that NE will continue to send that LSA until it is acknodded. After the DE receives and processes
the LSA,Gpg andp are updated and is removed fromS. The DE repeats the above procedure usitié
empty. WhenS' is empty,Gpg is identical toG,.,;. Thus, it takes at most| steps to make empty, at

which point the network has converged. O

Therefore, as long as the DE assigns each NE the shortest-en@ypted source route, the network is
guaranteed to converge even when multiple failures ocouulsaneously. In addition to the shortest route,
the DE can optionally give an NE@eferredroute which is not necessarily the shortest. An NE can use the
preferred route to send management traffic to the DE, andus@g the shortest route to send LSAs. The
flexibility of assigning preferred routes allows more adweth features to be implemented on the DE. One

such example is described next.

4.3.3.5 Resilience to Attacks

Under this security framework, only authenticated NEs camrounicate with DEs via the MMS. When
used with traffic isolation techniques (see Section 4.8&g plane DoS attacks cannot disrupt management
communication. Even if an NE is compromised, the attackenctmodify the MMS frames in transit
because they are all encrypted with the secret key of anbifEefhe compromised NE also cannot announce
bogus connectivity to non-compromised NEs in order to etttiaffic to it because the DE can detect the

inconsistency in the LSASs.

A compromised NE can, however, launch a DoS attack on the MiM&rtpping frames in transit or
by sending useless frames to the DE. A simple attacker tinaisseaffic using its own source route would

be trivially caught, since the source route identifies thedee A sophisticated attacker could attempt to
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hide its identity by reusing a source route extracted fronamé it has forwarded, thereby making its attack

traffic appear to come from the origin of the source réute.

The use of onion-encrypted source routes, however, offetts & mechanism to identify the origin of
the DoS and a mechanism to isolate the offender once idehtifBmion-encrypted routes give us strong
assurance that any malicious packet received by the DE raustlieen sent by an NE listed in the packet’s
source route. The techniques of Zhang et al. [63] can thesédxkto identify the malicious NE. Summarizing
that work, we assume that a DE can determine it is receivirlgioas packets if they are sent at a rate above
some detection threshold. Over time, the DE orders NEs togeh#he source routes they use. This allows
identification of the attacker by forcing it to move its madigs traffic among different source routes, and the
attacking node will eventually be the only node in common agnihe source routes along which malicious
traffic arrived. The attacker’s only strategy is to limit thember of malicious packets it sends to stay below
the detection threshold, but this bounds the impact of itS Bttack. If an attacker is identified, the DE can

issue new onion routes that avoid it.

4.3.4 Assuring Liveness

To achieve liveness, beyond the ability to react to link orfidifires as explained in Section 4.3.3.4, there

are three additional challenges.
Protecting Against CPU Starvation

A common issue on NEs is CPU starvation caused by a runawaessmr a data-plane DoS attack.
However, the MMS must maintain management communicati@moéls during these events so that an

operator can remotely diagnose the problem.

The MMS relies on the NE’s kernel scheduler to remain sufiittyelive so that the MMS can send and
receive frame$.The MMS can use any mechanism the kernel provides to promdffiaient share of CPU
cycles. To minimize the share of CPU cycles needed to run thksin NEs, the MMS has a centralized

design in which the most compute-intensive work, i.e.,eadmputation, is carried out on the DE.

However, even when the core kernel services of an NE remagnitiis possible for a process running

on the NE (e.g., the OSPF or the BGP process) to consume so@Rgycles that critical processes (e.g.,

2Including nonce or timestamps in the source route couldgriethis replay attack, but would require that NEs share /s

all downstream NEs, rather than just the DE. We rejectedabptoach for scalability reasons.
3The problem of surviving arbitrary failures of the NE’s ketor operating system is intractable.
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the command shell) become unresponsive. For instance;ahid happen when a misconfiguration causes
hundreds of thousands of inter-domain routes to be mishakgected into an intra-domain routing process.

If the command shell remains unresponsive, operators haweay to remotely resolve the problem.

To enable recovery from this type of situation, the MMS pdaa a process management AP| and a
packet filtering API. Using these APIs, a DE can command theM®return a list of the processes running
on an NE, kill a particular process, change a process priantall an IP data plane packet filter, or reboot
the NE. We elaborate on the features of these APIs in Sect®6.4. Together, these mechanisms allow an
operator to remotely restore liveness to an NE’s commanlii waghe MMS, investigate the cause of the
problem, and reconfigure the NE as needed to prevent a racercé the problem. In the extreme case, an

operator can remotely reboot an NE via the MMS.
Protecting Against Memory Outages

The MMS is designed to avoid “out of memory” errors by usingtistrather than dynamic memory
allocation. In this way, as long as the MMS is successfulydid at system startup time, it is unlikely to be
impaired by memory allocation problems caused by misbelgapiocesses. This design requires the MMS
to limit runtime state. In particular, this led to our use ofisce routing in the MMS, ensuring that only DEs
need to build the complete network topology, which requimesnory proportional to the network size. The
state stored by each NE scales only with the number of porte@NE, which is known at boot time, and
with the number of simultaneously active DEs communicatifity the NE. In our implementation the soft
state maintained by an NE for each DE takes up approxima@yBsof memory. A static array of 500 KB

can, for example, support 1,000 simultaneously active DEs.

4.3.5 Evolving the MMS

Networks are constantly evolving in ways difficult to anpiaie. No matter how well the MMS has been
designed and engineered, one cannot rule out the need fatingpdhe MMS running in the field. Thus, the

MMS must provide a robust means by which the MMS itself candmeately managed and evolved.

Our approach to robustly evolving the MMS is to allow mukiplersions of the system to operate over
the same network at the same time. This allows the new vetsitwe brought up and thoroughly tested
before the old version is removed. Each version of the MMSatps independently and in parallel. Copies
of all MMS frames are delivered to each version. An MMS fraroatains a version number in the header,

and an MMS version skips over frames marked for other vession
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In our design, management applications can specify throighuse of a socket option which version
of the MMS should carry its traffic. Packets sent by applaraithat do not specify an MMS version are
handed to every version of the MMS running on that DE or that Bi&ch copy is independently routed by

its respective version of the MMS to the destination.

Management applications built on top of TCP will not see taéd packets, as they will be discarded
by TCP. For non-TCP applications, we leave it up to the appba itself to ensure that these duplicated
packets do not cause a problem. Robust UDP- and ICMP-bagdidagjons already cope with duplicated
packets, and in our experiments we did not find duplicatet#tgiado be a problem. We choose this design
so that management applications will work unmodified ovetMS without additional configuration, and

we accept the performance cost of handling duplicated pselsea reasonable trade-off.

4.3.6 MMS APIs

The MMS provides two key APIs: one for remote recovery to addiiveness issues, and another to support

existing network management applications that use TCRA®gols for transport.

4.3.6.1 MMS API for Remote Recovery

After reviewing common attacks, configuration mistakes] aranagement failure scenarios, we designed
the APIs described in Section 4.3.4 to balance simplicitgtirzgg the wide range of possible capabilities.
These two APIs should enable recovery in many situationsreaviemote NEs are overloaded and unre-
sponsive. Via the process management API, a DE can commandMs to return a list of the processes
running on an NE, kill a particular process, change a propessity, start a process, or reboot the NE.
When the process management API is invoked on a DE for an Npe@as MMS frame that carries the
parameterized process management command is sent to thadNiBtarpreted by the MMS running on
that NE. For example, when the destination NE receives a&itimand with a process id parameter, the

MMS kernel module running on the destination NE iteratesubh the kernel process table and sends a kill

40ur MMS prototype provides two additional APIs: (a) domaame resolution and dynamic registration; and (b) a proxy
service that enables management applications on NEs to ooioate with each other and external networks. Implemgritiis
functionality requires no changes to the network elemenésely code on the decision elements where it can be easifietb or

upgraded. We have found that these APlIs increase the wtflitye MMS in practice.
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signal to the intended process. While extremely simpleratiice these capabilities are the primitives that

operators and IT staff commonly use to mitigate problemsrastbre service.

The MMS IP data plane packet filtering API allows packet fitary be installed directly via the MMS,
without first obtaining a shell to run a user space applicafio contrast to iptables [64] invocation, for
example). Similar to the process management API, when tblkepéiltering API is remotely invoked, a
packet filter rule is sent from a DE to an NE. The MMS on the taNjé directly communicates the rule
to the packet filtering kernel module, for example netfil®4]] without competing with any user space
applications for resources. Together with the process ganant API, the packet filtering API can be used

to isolate a misbehaving NE and download a new patch or image.

The security provisions of the MMS ensure that these APIsotdyibe invoked by a valid DE, and the

DE software itself can validate that the DE operators hageitihts to perform the tasks.

In our case studies in Section 4.4, we demonstrate the usess APIs to restore liveness under resource

exhaustion conditions.

4.3.6.2 MMS API to Applications

A large number of existing network management tools userttegriet Protocol for transport, for example,
SNMP pollers (e.g., MRTG, Cricket), remote scripting to(@sg., rancid, expect), and PlanetLab admin-
istration tools. To maximize backward compatibility witkiging management tools, the MMS creates a

virtual “management LAN” on top.

Inside the kernel, the MMS intercepts any packets sent tentanagement LAN, encapsulates these

packets into MMS frames, and transports the packets via Mdi&s.

4.3.7 MMS Implementation

Our MMS implementation is a Linux loadable kernel moduld te@antroduced into the kernel network stack
of the DEs and NEs as shown in Figure 4.2. The MMS traffic iswagk by a trap in the network stack and
bypasses layer 3 IP processing completely. On the DE, tsfit by a management application is injected
into the MMS, and the traffic is forwarded by the MMS on intetiate NEs and delivered via the MMS
to the application running on the receiver NE. Other impletagon variants of the MMS are possible; our

Linux implementation serves as a proof of concept.
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Figure 4.2: High-level overview of the MMS implementation.

The system consists of 21K lines of C code. Almost 17K linesoofe are from the GNU MultiPrecision
(GMP) library used to support cryptographic mechanismgh\atiditional engineering work, we could strip

out the many unneeded functions from the library and redueedde size.

4.4 Case Studies

To demonstrate the effectiveness of the MMS mechanismsjweesgamples of how the MMS solves con-
crete problems that arise in network management. We implethese scenarios on Emulab [6] to illustrate
these examples. In the first example, we show how the MMS esaigerators to quickly respond to and
recover from critical conditions where network devicesdme unresponsive due to a flood of malicious
traffic or misbehaving management applications. Next, vesvdiow the MMS enables the remote manage-
ment and configuration of a virtualizable network infrastane. Finally, we demonstrate the suitability of

the MMS for managing a wireless mesh network.
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Figure 4.3: Topology of the experiments in case studpackersends UDP packets wdctim; DE tries to
establish arssh session withvictim over MMS.

4.4.1 Relieve Control and Management Plane Stress

A router’s control and management planes run a variety ofiegijons: routing daemons, traffic monitors,
intrusion detection/prevention systems, and SNMP agedtdtware bugs, network operation errors, and
network attacks (e.g., DoS, worms) can cause applicatmsriisume excessive computing resources and
can even render a router unreachable or unable to respoathtig management commands. For example,
during the breakout of the Slammer worm [65], many routes amitches became unresponsive. This was
because the Slammer worm generated an enormous amounketgpadth class D IP multicast addresses,
and many routers and switches processed such multicasttpacing their control plane CPUs [55]. As
a result, routers’ CPUs and memories were overwhelmedinfpaperators to physically visit the affected
devices to install packet filters to block the worm traffic.iSTdramatically increased the time required to

get the network back under control.

In situations where the control and management planes gatémed by resource starvation, the MMS

mitigates the threat through isacket filteri ngandprocess nmanagenent APIs.
Using packet filtering API

Typically, an operator installs packet filters by changiagter configuration files or issuing shell com-
mands such as iptables [64]. Ironically, under situatiohemthe control/management planes are overloaded
due to abnormal traffic and the deployment of packet filteradst desperately needed, it can be difficult
to secure enough computing resources to change and conengibtifiguration or to launch the shell com-

mands. The MMS APIs, however, provide a solution.

We demonstrate the benefits of the MMS using a real-world el@tased orsnort. Snort is an

open-source network intrusion detection/preventionesysividely used in enterprise networks. When run
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Figure 4.4:ssh login time versus UDP packet rate in tBaor t experiment. Each login is attempted 100
times and the first quartile, median, and third quartile efldgin times are plotted. The Without MMS plot
ends at 350 packets per second, because beyond that ratehalaitempted logins fail. The With MMS
plot represents the sum of the time for invoking the packetriilg APl and completing the ssh login.

in the inline mode, it holds packets in a user space queuerspedts them to make accept/drop decisions
based on a set of rules. Unfortunately, whamor t (run in the inline debug mode) encounters bursty
UDP packets, it can consume excessive resources and staareapplicationd. We conduct an Emulab
experiment to measure the impact of such starvation. Weeceeaetwork of star topology as shown in
Figure 4.3, where we ruinor t version 2.4.3 on th¥ictimnode with a 600 MHz CPU and the Linux 2.6.12
kernel and we send UDP packets from thigackernode to thevictim node at increasing rate. Figure 4.4
shows the time it takes t®sh log in to theVictim from the DE. We can see that without the MMSs h,
login becomes impossible when the UDP packet rate is mebelyea350 pps becausssh is starved and
times out. In contrast, with the MMSnor t barely impactssh login. This is because the MMS provides
a live communication channel through which the MMS packégriihg API can be remotely invoked to
block UDP packets, and then amsh login via the MMS channel can be successfully completed.ubihs
critical situations, the MMS can mean the difference betwmaintaining remote manageability or losing it

completely.

The problem exists on Linux kernels older than version 2.6.1
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Using process management AP

Even when there is no malicious traffic, application sofenaugs can cause resource exhaustion. Anec-
dotally, it is known that certain bugs in the SNMP agents migron a tier-one provider's Alcatel 1630
switches caused severe CPU overload on the switches wheretteived bursty SNMP queries. The prob-
lem persisted for minutes and the switches eventually stmrnd The consequence was that thousands of
customers lost their local telephone services for half aur,rend the provider had to report the incident to

the Federal Communications Commission.

We conduct an experiment to emulate the scenario in the aéxample. We use the same network
topology as in the previous experiment (Figure 4.3). Wecingebug into an SNMP agerginpd) so that
it enters an infinite loop when it receives a certain SNMP guéfe run this buggy SNMP agent with a high
priority on theVictim node. When the SNMP bug is triggered, we find thah login to the PC from the

DE becomes impossible because it times out.

The MMS process management API solves this problem. Thrthaglive MMS communication chan-
nel, the MMS process management API can be remotely invakéaimer the priority of the misbehaving
snnpd process, and ssh login can then be completed normally within one second. Agaithis situation

the MMS can mean the difference between maintaining rematgageability or losing it completely.

4.4.2 Management and Configuration of Virtual Networks

Network virtualization [66] is being pursued by many groufpsm operators to device vendors, as a way to
make more flexible and efficient use of network resources fynsating a physical network into multiple
logical ones. For example, a single physical router canesasvmultiple virtual routers by hosting virtual
machine monitors [67]. Each virtual router operates inddpatly of the others, and can route packets using

routing protocols of its own choice.

However, one still needs a way to remotely manage the creat&etion, configuration, and peering of
virtual routers. There is again a circular dependency: hawtbe virtual routers be remotely configured
before the virtual network is functioning? The MMS solvess throblem through its ability to bootstrap
itself and automatically establish secure management aomnwation channels between a DE and the NEs.
Through the secure channels, the DE can remotely instalithealization software on NEs and issue

commands to set up and configure virtual routers.
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o“"""MMS.
VINI Central

Figure 4.5: VINI virtualization system with the MMS. The gblines indicate data links between VINI
nodes within the network, and the dotted lines show the MM&okls between the VINI Central server
and the VINI nodes.

To demonstrate the feasibility of our solution, we have expented with a virtualizable network infras-
tructure on Emulab using VINI [68] as the virtualization sedre. Figure 4.5 shows the Emulab network
with 4 physical nodes connected with 100Mbps links. VINI @tes by creating a virtualice on some or
all of the VINI nodes, and by provisioning UDP tunnels betwe#tual slices to form a virtual network
on which experimental protocols can be run and tested. TN €kntral server is designed to ussh
to remotely create and destroy virtual slices on the phisicdes. The MMS provides a standard socket

interface, so the VINI Central server management code ruth®ut modification.

At deployment time, the MMS software is installed on all thiNY/nodes and the VINI Central server
(which also serves as the DE). The MMS automatically esthei management channels between the VINI
Central server and each VINI node (shown as dotted linesearfigure). Subsequently, from the VINI
Central server, we are able to upload the VINI software im@agthe nodes and remotely bring up and
configure the VINI software via the MMS. We find that it takes WiINI Central server 200 milliseconds to
discover and authenticate the four VINI nodes, and anottsscdnds to upload the 16 MB VINI software
image to the VINI nodes via the MMS. The MMS provides the neéed@nagement communication service

in an integrated, secure, and automatic way.

4.4.3 Manage Wireless Mesh Networks

The MMS is well suited for managing wireless mesh networksdés in a wireless mesh network often do
not have any wired network connectivity, and the only wayetmotely manage them is via the wireless mesh

itself. The MMS provides precisely this capability. Howeweireless mesh networks also pose interesting
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Figure 4.6: MMS management of an emulated wireless meshonetwhe experiment shows MMS oper-
ating over lossy and asymmetric links that are common inlessemesh networks.

challenges for the MMS due to the nature of the wireless nmediVireless links can be asymmetric, and
links can have unpredictable packet loss rates. To show & Bleffectiveness in managing wireless mesh

networks, we conduct an emulated wireless mesh networkiexget.

Figure 4.6 shows an emulation of a wireless mesh networlgusmulab. The DE and the NEs run on
PCs with a 3GHz CPU, running the Linux 2.6.12 kernel. Theyrigtdy connected to each other to emulate
a mesh topology. The Emulab traffic-shaping nodes are emgltyinduce 40 percent packet loss between

NE-1—NE-4, and an asymmetric simplex-link is set up betweerNE-3.

When the DE and the NEs are first brought up, the DE detectmitsediate neighbor NE-3 and tries
to authenticate it using the asymmetric link, but fails. Mwhile, the surrounding nodes of NE-3 are
authenticated to the DE and provide alternate paths thaDEiean use to reach and authenticate NE-3.
Once all the NEs are authenticated, the DE has the full tgyotif the network and computes a source-

route for NE-3 that avoids the asymmetric link. It takes 38Gminstall a route on NE-3 that avoids the

asymmetric link.



4.5. PERFORMANCE EVALUATION 73

MMS handles lossy links in a similar way. It uses link qualégtimates to detect links with high
packet loss. In our experiment, the link between NE-1 anddN&induced with a 40-percent packet loss.
When the DE and the NEs are brought up, the DE may authentiiai¢ via the lossy link or through its
other neighbors. Meanwhile, the NEs use periodic HELLO mgss to track the packet loss between their
neighbors by measuring the time gap between individual HElnhessages. Once all the NEs have been
authenticated to the DE, the NEs start reporting the paoksstéstimates to the DE via the LSAs. The DE
uses these estimates as link weights in its network topoldglyen the DE receives the LSAs from NE-1
and NE-4, it detects the poor quality of the NE-NE-4 link and re-computes source routes for NE-4 to

avoid using the lossy link. In the experiment, it takes 50@odetect the lossy link and route around it.

4.5 Performance Evaluation

In this section, we evaluate the delay and throughput oeerivgroduced by the secure forwarding mecha-
nisms in MMS, the convergence speed of MMS routing in respom&ilures, and the speed of the recursive
authentication mechanism used to authenticate NEs duritigl inetwork bootstrap. The results show that

the MMS has excellent performance, and it is practical tdajethe system.

Low forwarding overhead - This experiment measures the end-to-end delay and thpotigiverhead

introduced by the MMS.

To measure the delay overhead, we connect nodes with 1 Ghpsngt links to form a linear chain
topology. The sender and receiver exchange ICMP packetsiavyehe hop count between the sender and
receiver and compare round-trip delays for ICMP packetdezhby the MMS and by the regular IP data
channel. Figure 4.7 shows that the round-trip delays iserdiaearly with hop count, and the latency added

by the MMS is less than 0.1 milliseconds per hop.

We measure the throughput overhead of MMS using a three-obdi® topology, with a DE as the
sender, one NE as the forwarder, and a second NE as the mredélgause iperf [53] to measure the TCP
throughput between the DE and the receiver. Using Emulairifiguration ability, we vary the bandwidth
of the links connecting the three nodes. Figure 4.8 showghleahroughput difference between the MMS
and the regular IP data channel becomes noticeable onhliakdandwidth increases to 400 Mbps, and the

best TCP throughput the MMS achieves is 800 Mbps. Invegtigdtirther, the performance degradation is
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Figure 4.7: Comparison of round-trip delay of ICMP packet; g MMS channel versus using regular IP
data channel.

due to the encryption and decryption operations involvedsing onion-encrypted source rottetf cryp-
tography is disabled, the MMS’s TCP throughput is the santb@asegular IP data channel. Nevertheless,
the overhead imposed by the encryption is not large, and Vievbesecurity assurances made possible by

onion-encrypted source routes outweigh the overhead.

Resilient routing - During network failures, NEs send LSAs to DEs, and DEs nmeqoate and push out

updated onion-encrypted source routes to NEs. When nailigilures occur simultaneously, some LSAs
may fail to reach the DE. To address this issue, the MMS regquiEs to keep sending LSAs until an
acknowledgement from the DE is received or the DE’s sotesttimed out. To evaluate the ability of the
MMS to maintain working communications in the presence afvoek failures, we construct the scenario
as shown in Figure 4.9(a). In this scenario, two links faithet same time, and the failure of link R1-R3
cannot be immediately propagated to the DE since neithepgtitk failed link has a working route to the

DE. Table 4.1 shows a timeline of the steps taken during neergence. The DE first detects the failure of
link R1-DE and commands R1 to re-route using R2. When R1's k&khes the DE and notifies it of the

failure of link R1-R3, the DE obtains an accurate view of teéwork and repairs R3’s route.

50ur implementation uses the “twofish” cipher with 128-biy&e



4.5. PERFORMANCE EVALUATION 75

1000 T T T T T T T T T T
Data RXRRKKA ;
| 0 |
900 FMMS — g
X
3 B
800 |- 7o
o o :‘:
o . ::: :
= 700 N K K —
= Ko KR K
600 - g Kl KR KR A
= o W s
3 ~-= SR KN ER B
B KR KB KR K
s 00 - & 1 Bl B K3 i
5 ° ae GR BB KR KR K
=4 Hm KB KB <8 KB K
3 of Bl B I
o 400 . R R R R
K K 5 < % (] 1]
" B 5 % 4 KIN KIS % i
300 -a N G0 CR R R R
R W% R 1] 1] )
O 200 | A0 ER Gl R ER CRCR Bl
5 % 4 ) ] K
K K S R % (] % ]
5 4 % 4] (] % ] % &
K9 K S X S % 1 14 )
B ) % ] 4] X % ] % & 1
100 (<] (<] ] < ’.‘ K K K %
K < ] %4 ] e 5 o K &
K K R % R 4] ] © 5
0 K KA 5% K X e K K K 1

100 200 300 400 500 600 700 800 9001000
Link Bandwidth (in Mbps)

Figure 4.8: Comparison of TCP throughput using MMS chaneedws using regular IP data channel.

In this case, one LSA retransmission is needed to update Eheifh the accurate view of the network.
Since the LSA retransmission timeout is 500 ms, it takes @600 ms for the MMS routes to re-converge.
We can recursively construct scenarios where more LSAnsinégssions are needed. For example, two
rounds of retransmissions are needed for the scenario imd=gg9(b) to re-converge. In Section 4.3.3.4, we

proved that the MMS does eventually re-converge even aftdiipte failures.

Fast secure-channel setup When a new DE is brought up, it first authenticates its diregghbors and
then recursively authenticates the network as describ8eadtion 4.3.3.3. To estimate how long this process

will take in networks of different sizes, we first develop mple model of the authentication process and

[ Time line [ Event \

0 ms| R1 detects link failure & sends LSA to DE via route R1-DE, but
LSA s lost

2 ms | DE detects the failure of link R1-DE, re-computes paths, iang
structs R1 to use route R1-R2-DE

500 ms| R1resends its LSA using the new route R1-R2-DE

505 ms| DE ACKs R1'’s LSA, re-computes paths, and instructs R3 to|use
route R3-R4-R2-DE

Table 4.1: Timeline of events triggered by concurrent lialkures in Figure 4.9(a).
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Figure 4.9: Topology of the resiliency experiment. In (a], $fmultaneously loses two links, and its initial
LSAs to the DE are lost; DE detects failure of the link to R1 @afdrms R1 to re-route through R2; LSA
from R1 gets through, allowing DE to re-compute and push anoexne to R3. In (b), three links fail at the
same time. The DE restores R1's route, receives LSA from &lores R3's route, receives LSA from R3,
and finally restores R5’s route.

validate the model using experimental data. We then use odehto predict the time required to establish
secure channels in large networks.

Consider Figure 4.10. Given a network @fnodes, we divide the nodes into groups based on their
hop-count distance to the DE. We define the nodes in grbtgpbe the noded hops away from the DE
and the number of nodes in this group todi€). We defineD as the maximuma; H as the hop latency;
Chrode as the time for a node to answer a challenge from the DE&ngd is the time for the DE to verify
an answer. In our model, nodes in gratipre challenged after all nodes in gradip- 1 have been verified,
and the time cost for authenticating nodes in grdupcludes the DE sending challenges to the nodes, the
nodes answering the challenges, and the DE verifying theenss Let the time when the DE is brought up

be time 0 and(d) be the time when nodes in grodhave been verified, we have

t(d) =t(d—1)+d x H+ Cpoge +d x H+ s(d) x Cpg

Solving fort(D)
t(D)=D x (D+1)x H+ D X Cpoge + 1 X Cpg

The importance of this equation is that it highlights thatle® with the same hop-count distance to the

DE can compute in parallel, resulting in the tefinx C,,,4. and implying that the time to authenticate will
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Figure 4.10: Model for computing secure channels setup. thies are grouped by their hop-count distances
from the DE.d stands for the hop-count distance of a grotpis hop latencys(d) is the number of NEs in
the groupd hops away from the DE.

not be significantly affected even if network elements hdower CPUs than the DE ard,,,q. >> Cpg.

As shown in the equatiort{D), the time the DE finishes authenticating and establishiegreechannels
to all nodes, is dominated by the tenmx Cpgr which grows linearly with the number of network nodes
owing to the fact that the single DE has to verify answers fedimodes. And (D) is subjected to an offset

bounded by the network diameter and average round-trigy.dela

We conduct experiments to measure MMS channel setup timg tisiee different types of topologies.
The first is the Abilene backbone topology [69]; the secorahi$SP backbone topology (AS 3967) derived
from Rocketfuel [45] data; the third is a set of productioneeprise network topologies used in [2]. Our
measurements show that on the 3 GHz PC acting as th&€Bk,is 27 milliseconds, and on the 800 MHz
PCs serving as NES/,, 4. is 45 milliseconds. Figure 4.11 plots the predicted and oregischannel setup

time for each topology. As shown, the measured times fit oalyéinal result.

According to the equation which we deduced and experimigntalidated, a new DE plugged into a

network with 1000 NEs will take only about 30 seconds to be#dure channels to all NEs.
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Figure 4.11: Predicted secure channel setup times (platedrcles), and measured setup times for real
topologies (plotted as crosses).

4.6 Summary

Providing robust remote connectivity to geographicallgtilbuted devices is a practical problem that begs
for an economical and highly reliable solution. In-bandusiohs, while economical, are fraught with cir-
cular dependencies. Dealing with these dependenciesresqrarefully constructed operation procedures,
where any small glitch or misconfiguration breaks the sofuti Out-of-band solutions are also in wide
use today. For example, IP network operators often dial ar tve telephone network to terminal servers
connected to routers for remote configuration. Similargnfe relay switches, on losing frame relay con-
nectivity, can “dial around the cloud,” placing an ISDN ctdl a pre-configured number to replace lost
connectivity. In essence, the out-of-band solutions fadlkon older technologies, which are assumed never
to fail. Therefore, these solutions bring several chabsngost; the assumption that the telephone network
is separate from the data network; and the fragility of depemnon pre-configured information such as

phone numbers.

In this chapter, we introduce the Meta Management System $MMhe MMS takes the best from

the two existing approaches today — leveraging whatevemedtvity is available, in-band or out-of-band,
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and unifying it into management communication channelk gfitong reliability, performance, and security
assurances. At its heart, the MMS relies on source routilogr¢® routing provides scalability — the state
required on each network element scales independentlyeo$ite of the network. Source routing also
provides flexibility — management traffic can be directedwvoic existing problems when the network is
overloaded or degraded. However, source routing intraglgeeurity vulnerabilities. The MMS overcomes
these by using onion routing to detect and evict bad actorsorOrouting introduces potential overhead
from cryptographic operations, but the MMS uses standarchar@sms to control these overheads. The

performance evaluation of the MMS implementation reveasé overheads are insignificant.

Finally, the MMS includes APIs that allow the network operabr automated operations systems to
recover devices and/or the network as a whole when in dsstregarticular, through lightweight, general
mechanisms for remote configuration and management ofigputihe MMS implementation demonstrates
the power and robustness of the solution. We argue that th&sMhbuld be deployed ubiquitously — on

every network element.
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Chapter 5

Making 4D Dissemination More Scalable

Chapter 4 describes the management communication systenviS: Mlithough MMS solves the robustness
problem of 4D dissemination, a big challenge remains: howactde dissemination to up to thousands of
routers and switches without slowing it down. This chaptesalibes éSimCasttechnique that we have
developed to address this challenge. WBimCastthe dissemination time cost barely increases when the

number of target routers and switches grows from hundreti®igsands.

5.1 Dissemination Bottleneck

Since the birth of the 4D architecture, there has been angimgeirend to move decision logic from network
elements to a central server in order to make networks morageable. Among the proposed implemen-
tations are Tesseract [9], RCP [11], Ethane [70], CONMan, [@dd Maestro [71]. Despite their diversity
in application domains and ways of computing network stegajrally controlled networks share the need
for a dissemination service to distribute computed dataplstate (e.g., routing tables) from a logically

centralized server to a large number of network nodes.

Existing centrally controlled networks employ differeneamanisms to disseminate data-plane state.
For example, in MMS a DE floods “path explorers” to explorehgabetween the DE and all the routers
in a 4D control domain and uses source routing to reach thtensouRoute Control Platform (RCP) relies
on intra-domain routing protocols (e.g., OSPF) to set upe®between any two nodes within a network,

and a Route Control Server (RCS) maintains an iBGP sessibrewery single router and uses the sessions

81
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for dissemination. Ethane creates a spanning tree rootetieo®omain Controller (DC), and the DC
uses the tree paths to push flow tables to switches. CONMarffisisntly flexible to accommodate any
dissemination service with an open API. Although existilgsemination systems differ in mechanisms to
establish dissemination routes, once the routes are et#ie server uses reliable unicast to push network
state to every node. This unicast-based approach doesaietvgell with respect to network size because
the dissemination cost in terms of both total traffic and gnaission time increases in proportion to the
number of network nodes. Previous work on centrally cotgdohetworks has not addressed this issue of

dissemination scaling.

In this chapter, we present a solution to the problem of digsation scalability and efficiency. We
leverage the key insight that data pushed to nodes acrosesetiverk shares similarity when the data is

network state. Three contributions are made around thewoily points.

First, we conduct a similarity analysis of routing tablesvdbaded from routers in a tier-1 ISP back-
bone network. Our analysis shows that there is significavdserouter similarity, and the similarity can be
exploited to reduce dissemination traffic volume. An inséirey outcome of the analysis is that the similar-
ity pattern discovered from our dataset is different fromsth identified in multimedia files with changed
header bytes [38], or documents/software across multgisions [39]. This leads to the second contribu-
tion of this chapter: a method of leveraging the unique sirityl pattern to “compress” data. The basic delta
encoding method is explored and then extended with a vaoetyustering algorithms. New methods of

exploiting similarity are applied to our dataset, and sabisal benefit is observed.

Third, a system calle@imCasthat incorporates our new similarity exploitation techrég is designed
and implemented. When applied to a large backbone netw@idgy, the SimCast system achieves a

two-orders-of-magnitude improvement in scalability afftcency over existing unicast-based solutions.

5.2 Related Work and Case for a Better Dissemination Service

Consider a hypothetical ISP backbone network with 1000erstwhere each router has 300K routing
table entries. Assume further that each routing table entry translatesdpproximately 40 bytes of data

transferred over the wire. With unicast, the server mustl g&ach router its routing table. Thus the total

1The number of routers is based on the Rocketfuel ISP topesagjudy [45].
>The number of routing table entries is based on the CIDR BGEng table report.
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Figure 5.1: Growth of BGP routing table size. Data sourc®RCReport [72].

amount of data to disseminate wouldds® K x 1000 x 40 = 12000 million bytes. Assuming that we reserve
200 Mbps bandwidth for routing table dissemination, trarafig this data would take 8 minutes. Another
routing table distribution scenario is described in the R&hnical report [73], where the estimated time
to transfer the complete route updates is about 3 minutes.pidblem becomes more acute as the routing
table size continues to increase, as shown in Figure 5.1taddéed by Bu et al. [74]. In order to achieve

sub-second network convergence, we must dramaticallyheuirne for distributing the network state.

A similar dissemination problem was observed in networkraien and brought up at a NANOG (North
American Network Operators’ Group) presentation [75].Urég5.2 shows the example used in the NANOG
presentation to illustrate the problem. The example dessra typical PoP (Point of Presence) with core
routers forming a full iIBGP mesh and acting as route reflector the PoP’s access routers. Suppose one
access router loses a peering connection with UUnet (4 tietwork) and sends withdraws to its local core
routers. Since other UUnet peerings are in different Pdiscore routers relay the withdraws to all the

other core routers. As iBGP uses unicast, the number of vétiel that need to be pushed out is multiplied
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50K Withdraws

UUnet

Figure 5.2: When one of the access routers loses a peerihdMibet, that router sends withdraws for 50K
prefixes to its local core routers (2 million bytes of dataé)eTore routers must send those withdraws to all
the other core routers (100-200 of them). Unicast inflatesIlom bytes into 400 million bytes. Source:
NANOG Presentation [75].

by 200. According to the presentation, propagation of théndvaws takes at least 1 minute in practice.
Using route reflectors can reduce this effect, but the raefteator still needs to unicast multiple copies of
the withdraws to its clients and/or peers.

Dissemination of either routing tables in centrally coléw networks, or route updates in traditional
networks, can be very slow as it scales linearly with the nemrdd routers. In this chapter, we propose
a technique that exploits the characteristics of disseimihdata to significantly improve scalability and

efficiency. We focus on addressing the dissemination siti&fgtroblem for centrally controlled networks.

5.2.1 Off-the-shelf Solutions

Previous approaches for delivering content from one or fewee(s) to a large number of recipients include:
Reliable unicast: The source establishes a reliable connection (e.g., TGR)each individual recipient
and sends data over the connection. The reliable connemdiobe set up on any routing infrastructure. For
example, Tesseract uses source routing, and iBGP relie&Brid set up intra-routing tables on routers.
This approach suffers the inflation problem discussed above
Reliable multicast: Multicast was invented to send a group of recipients the sdat@, so it is not

directly applicable to our problem where different reciggemight need different data.
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P2P: P2P protocols such as BitTorrent are used to distributes lflgs to downloaders who desire the
same content. In our case, data for recipients is not idantl8ET (Similarity Enhanced Transfer) [38] is
a variation of BitTorrent that allows similar objects to bilized to speed up transfer. Unfortunately, as
shown in Section 5.3 the similarity pattern of routing tathéga is different from that measured in SET, and

thus a new solution is needed to achieve the desired efteess.

BST: Poduri et al. propose replacing TCP unicast with a new BG#iprart called BST (BGP Scalable
Transport) [75]. They chose to use application-level cgtion and flooding for multipoint transport. Their
goal was to deliver one copy of the same BGP messages toatk#ted routers, whereas ours is to deliver

similar routing tables.

Having demonstrated the critical role of a disseminatidrastructure, and the limitations of existing
solutions, we believe it is both an intellectual and a pcatttontribution to conceive a technique to provide

scalable and efficient data dissemination for centrallytrodied networks.

5.3 Analyzing Similarity

We analyze and leverage similarity across BGP routing saiole@xplore the potential for reducing dissem-
ination load. The reason for focusing on BGP routing taldawat they dominate the data-plane state on a

router in terms of data size, and their sizes keep growing.

5.3.1 Dataset

Our dataset is a collection of BGP routing table snapshgituoed from 71 routers in a tier-1 backbone
network. The network contains more than 800 routers andgesosultiple continents. The 71 routers from
which we collect data are distributed in different regiohghe network, and most are route reflectors. Thus

they adequately represent the diversity of the BGP tablexsacthe whole network.

For each prefix in the BGP routing table, we only retrieve tbst boute selected by the router. The reason
being that when a server in a centrally controlled networkhgsg out routing tables, it only disseminates the

best route for each router. We end up collecting about 27@&fpnext-hop pairs from each sampled router.

We use 8 snapshots of the routing table state in our studyh &sapshot is obtained by simultaneously

downloading the BGP tables from the 71 routers at midnightherfirst day of every month from January
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to August. We primarily show the result of our similarity &ss on the latest (August) snapshot, but a

comparison study is also conducted on all the 8 snapsholtst Isow the result changes over time.

At the same time that we collected the BGP tables, we alsodasiapshot of the physical topology of
the network. The use of the topology is described later ini@e&.4 and Section 5.5.

5.3.2 Metrics

The basic question we want to answer is to what degree théasiyiexploitation can reduce the data a
server has to push out to the network. To that end, we defecmrgression rationetric to quantify the

benefit of exploiting similarity.

Let:
S = The size of a routing table entry
C = The number of routing tables
N; = The number of entries in routing table
U = The number of unique routing table entries

The compression ratigs then the ratio of the sum of all routing table sizes overdize of the unique

routing table entries:

Ziclei x S _ Zlclez
UxS U

Compression Ratio =

The compression ratio quantifies server dissemination feddction due to similarity exploitation. For
unicast, the ratio is always 1. If the data sent to every vecevere identical, the ratio would be the number

of the receivers. The higher the ratio, the more benefit anityl provides.

Although we use the compression ratio as the major metriciranalysis, we also apply another metric
to our dataset callegarallelism gain Parallelism gainis proposed in SET [38] to quantify the number of

different sources from which a receiver can download a @agr object. The metric is defined as:
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(5.2) Parallelism = CC T
i=175;
where:
C = The number of chunks in a file
S; = The number of sources for chumnk

The more similar the objects are, the higher the parallefigin can be. High parallelism gain implies
that a receiver can potentially download data from manyEsuand is thus more likely to saturate the
download bandwidth. We are less concerned about paralledain than compression ratio because the
former does not directly tell how much server bandwidth we save by exploiting the similarity. The
purpose of computing the parallelism gain on our datased tnpare the result with that presented in
the SET chapter to see whether our dataset has unique diynpatterns and whether existing similarity

exploitation methodologies are effective on our dataset.

5.3.3 Similarity Patterns

Data similarity exhibits different patterns. For exampigeo revisions of a document or two releases of a
software program can be very similar if not many modificaditmthe original copy are made, in which case
the new copy can be obtained by applying the change logs wdene. Two different MP3 music files can

share a large fraction of common data if they have the samedsoontent but different meta information

such as album and title. By replacing the header bytes tisatithe the meta information, we can transform
one MP3 file into the other. Now consider two files containingaly the same set of data records in
different orders. If we sort the records and reorganize é&einto two parts — a list of sorted records and

its original ordering of the records — the difference betvte two files only exists in the second part.

Similarity exploitation techniques that ignore the caumsed characteristics of the resemblance have the
advantage of being universally applicable. On the othed hamderstanding from where the similarity arises
and what the similarity patterns are can help us much moeet@fély exploit the similarity under certain
circumstance. An analogy to this is audio/video compressignich is widely used and actively researched

despite the existence of many mature general-purpose essipn algorithms.

In the rest of this section, we analyze the similarity pattef routing tables. We apply two similarity

exploitation techniques to our dataset: one is the genérailcbased method, and the other incorporates
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the knowledge about the structure of the data. We computmétecs described in Section 5.3.2 and show

the gain obtained from knowing the similarity pattern.

5.3.3.1 Chunk-based Similarity

Existing systems that exploit data similarity to speed uta deansfer employ a chunking strategy. Such
systems are exemplified by SET [38], CDF [76], and Shark [THey split files into chunks, and if files
share identical chunks, downloaders can draw chunks froftipleusources simultaneously to increase
parallelism and thus speed up data transfer. There are twe wfachunking a file: fixed block size or
variable block size. The latter is almost always preferrechlnise it allows similarities between mis-aligned
objects to be detected. A common technique for discoveriogktboundaries is Rabin fingerprinting [78]
which is used in systems such as LBFS [39] and SET [38]. Rdt®ar using a static block size, Rabin
fingerprinting walks through a file byte-by-byte and comptutee hash of the file data covered by a sliding
window with a fixed size. After the walky hash codes are generated for a file of Sizéytes. Then, for

a given expected block size, s#} log B bits of each hash are compared to a pre-selected value, and th

place in the file where a match is found becomes a block boyndar

2.6 ‘ ‘ ‘ ‘ ‘
Rabin fingerprinting ——
24 Fixed block size -->¢- |

2.2

2
1.8
1.6

Compression Ratio

14

1.2

1 I I I I I I I I I
1 2 4 8 16 32 64 128 256

Block size (in KB)

Figure 5.3: Ratio of the total number of blocks to the numidanraque blocks after removing duplicates.
Two chunking methods with varied chunk sizes are comparadirRingerprinting and chunking with fixed
block size.
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With fixed-size chunking, adding one byte to the first blockadiile can cause the new file to have
blocks completely different from the original ones. Rabingérprinting solves this problem by dynamically

adjusting boundaries and preventing changes from proipggabm one block to the others.

We first examine how effectively chunking routing tables gaoduce identical blocks. Two existing

chunking strategies are compared: chunk with fixed sizechndk with Rabin fingerprinting.

We first preprocess the dataset. We save routing tables ayliles, each corresponding to a router’s
BGP table with about 276K active BGP route entries. The sizsaoh file is about 3 megabytes, and we
have 71 in total. We chunk the files into blocks and then wtigstilocks into a hash set so that duplicate
blocks are removed. Trempression rationetric is thus calculated as the total number of blocks (iticig

duplicates) divided by the size of the hash set that contdiriee unique blocks.

Figure 5.3 shows the measured compression ratio as the dmkncreases from 1 kilobyte to 256
kilobytes. As expected, smaller chunk sizes yield bettenpression ratios. The chunk size used in SET
implementation is 64 kilobytes, which corresponds to a drgression ratio. Rabin fingerprinting produces

a compression ratio 30% to 50% higher than fixed-size chgnkin

100
80 (i |
8 %04 1KB —— |
hal 4 D KB oo
° : A KB -
X 40 8 KB .
16 KB
32 KB
B4 KB ~wre |
20 128 KB === :
256 KB oo
0 ‘ ‘ SET dataset (64 KB) = »-

10 20 30 40 50 60 70 80
Parallelism gain

Figure 5.4: Parallelism gain of chunking with Rabin fing@rpng as the expected block size is varied. The
gains over our routing table dataset are compared with timeayar the SET dataset which contains 6208

audio and video files downloaded from P2P networks.

To compare the benefit of data chunking over our dataset &ed datasets, we also compute faeal-

lelism gainmetric specified in the SET chapter. We chunk the same 71 fiiledlocks and write the blocks
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into a hash table to count how many times a unique block appealifferent files. The occurrence count
for chunki in a file is denoted a$;, and then we use Equation 5.1 to calculateghgallelism gainmetric.
Figure 5.4 shows the parallelism gain on our dataset withrRgerprinting under various block sizés
The parallelism gain reported in SET over their multimedasadet is also incorporated into Figure 5.4 for
comparison. As shown, Rabin fingerprinting works about d@# better on the multimedia dataset than on

our routing table dataset.

5.3.3.2 Structure-aware Similarity

18
Fixed block (block size = 16KB) 7z
16  Rabin fingerprinting (block size = 16KB) i
Fixed block (block size = 1KB)
14 + Rabin fingerprinting (block size = 1KB) @i |
o Data modeled as hash table
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Figure 5.5: Ratio of the total number of pieces to the numliemigue pieces after removing duplicates.
Two block-based chunking methods (Rabin fingerprinting@ndhking with fixed block size) are compared
with a structure-based approach where data is modeled ahadide of prefix next hop pairs. When routing
tables are modeled as hash tables, the compression rafiglis 1

The low compression ratio and parallelism gain from Rabigdmprinting on our dataset are not un-
expected, if we consider the dataset collected in the SEjegroWhen two MP3 files are similar, their
differences concentrate on a small portion of the files (&@. header bytes). So when using Rabin finger-
printing to chunk the files, many large (multi-kilobytesntimuous common blocks can be found. However,
when the differences between two files are spread acrosddabeRiabin fingerprinting becomes much less
effective. Consider the following experiment. Write 300K addresses (in text format, e.g., 10.3.2.1) into

a file, then randomly shuffle the IP addresses and write th&raisecond file. We know that if we do not

3Those are actually expected block sizes as Rabin fingeimigenerates blocks with variable sizes.
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care about ordering, the two files carry the same informatrt if we chunk both files with Rabin finger-
printing, we cannot find any identical blocks shared by the fikes and we thus consider them two distinct
copies of data. This experiment shows that not knowing thetstre of the data can limit the effectiveness
of block-based chunking techniques.

We thus seek a new chunking technique that can take the datause as a hint and produce a better
compression ratio than the de facto block-based techniqt@ssider again the 300K IP address experiment
described above. The new chunking algorithm takes as inpubmly the data file but also a function
that splits the records (in this case the IP addresses). Nst@dd of treating the data as a block of bytes
and trying to identify the shared chunks, the algorithm #sfracts records from the data and then runs
a setdifference function to find the difference between the rdcsgts the two copies of data represent.
Because the new chunking method leverages the structumenafion to exploit the data similarity, we call
the new method “structure-aware” chunking.

We apply “structure-aware” chunking to routing table coegsion. We give the chunking algorithm the
hint that the bytes representing a routing table can be iddized into a key-value map where the key is the
IP address prefix and the value is the next hop for that prefiih ¥e hint, the chunking algorithm can
compare two serialized routing tables as two maps insteadmbyte streams. As a result, the difference
between the routing tables becomes map entries with the keyneut different values or entries that exist
in one map but not the other, and the compression ratio is moplg the sum of the map sizes divided by
the size of the union of the maps. Figure 5.3 shows the corsipresatio obtained by applying the new
chunking method. Comparing with the block-based methdus;structure-aware” approach enjoys a five-
to six-fold improvement in compression ratio.

The similarity analysis in this section implies the potahtienefit of leveraging “structure-aware” simi-
larity across routing tables to lower server dissemindtia. We conclude that “structure-aware” similarity
exploitation brings out the best possible server load reéaluave can achieve, and the result over the 71-
router dataset provides a valuable guideline for evalgatmlutions we will arrive at in Section 5.4 to cut

dissemination load.

5.4 Leveraging Similarity

In this section, we present algorithms that leverage siityiléo reduce the dissemination stress upon the

server. We use the analysis result from Section 5.3 to hedwpalsate how closely our solutions approximate
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the optimum.
Number of Average Original ~ Size of Average Size New
Routing Tables Table Size Server Load the core of adelta SeevLoad

71 276K 20M 276K 100K 7.3M

Table 5.1: The effect of reorganizing routing tables int@ee and a set ofleltas. The table size and server
load are both in the number table entries. Server load iscegtiirom 20M to 7.3M prefix next-hop pairs

after the reorganization.

5.4.1 Basic Delta Encoding

The first solution we arrive at is to use delta encoding. Itksas follows: find in all the routing tables the
one, denoted as there, that most resembles the others; for each routing tablatéentries to find those
that differ from thecore and mark those entries dsita; as thecore is shared by all routers, the server only
needs to send out one copy of thee.* Assumingdelta is smaller than the original table, the server has
less to send. An optimization to further shrink #€tas is to use majority voting to find there: for each

prefix, find the most popular next-hop, and put it in tee.

Table 5.1 shows the result of reorganizing routing tablés &rore and a set ofleltas. We notice that
the achieved compression rati%%( = 2.7) is far below the optimal rati®2.4 shown in Figure 5.3. Thus we

continue to seek more sophisticated algorithms to attghdricompression ratio.

5.4.2 Delta Encoding with Clustering

We define thesimilarity between two routing tables as the percentage of prefix maxfphairs they have in
common, and we define tremilarity distanceas1.0 — similarity. We make the observation that if we
model routing tables as vertices of a graph and connect thénedges okimilarity distancethose vertices
tend to form clusters. This is unsurprising because rolbeegted in the same area or configured with the
same routing policies tend to select the same egress poirgs/en prefixes, causing thsémilarity distance

between their routing tables to be very short.

“This can be powered by existing one-to-many distributichielogies such as multicast and BitTorrent [37].
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Cluster A
Without clustering:
Routing Table A1|Routing Table A2 ¥ |delta] = 0.5+0.5 = 1.0
server _load = 2.0

similarity distance = 0.5 | With clustering:
Y. |group_delta] =0
Routing Table B1|Routing Table B2 > |root_delta] = 0.5

Routing Table B3 server_foad = 1.5

Cluster B

Figure 5.6: Example illustrating the benefit of clusterifigpe similarity distances between routing table A1
and A2 are negligible, and the same for B1, B2, and B3. Theuists between A and B routing tables,
however, are as large as 0.5. With basic delta encoding etiversgenerates th&re to contain entries in
B routing table entries, and thus the sizelefta (denoted in the figure gdeltd) for every A router is 0.5,
so the total server load is 2.0. With clustering, the seregregates tw@roup cores, one for each cluster;
as no routing table in each cluster differs fromgteup core, the size ofyroup delta is zero, and thus the

total server load amounts to the sizerobt core plus the size ofoot delta which is no larger than 1.5.

The observation intrigues us to extend the basic delta émgedth a singlecore to a more complicated
scheme with multipleores. The extended delta encoding has three stages. Firshgdalbles are clustered
into non-overlapping groups using clustering algorithmshsas K-Means [79]. Second, within each group
agroup core is generated using majority voting and themraup delta is computed from th@roup core
for each group member. Finally,r@ot core is produced by majority voting on all the-oup cores, and
then aroot delta is deduced from theoot core andgroup core for each group.

The intuition behind the above algorithm is illustrated bgufe 5.6. Suppose we have 5 routing tables
perfectly clustered into two groups as shown in Figure 5i& dlustering mechanism saves the server from
sending two identicadleltas to routers in Cluster A and thus reduces the server load &6nto 1.5. The

savings can be more remarkable when the cluster size ig.large

5.4.2.1 Clustering Algorithms

Two clustering algorithms are implemented to classify irmutables into non-overlapping groups.

K-Means K-Means [79] is one of the most widely used non-overlappilugtering algorithms. The input

of K-Means includes: a set of points, a distance functiohd¢banputes the distance between any two points
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new server load

Ratio of original server load to
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Figure 5.7: Compression ratio versus the number of clustédrs figure shows the load reduction benefit of
applying the K-Means algorithm.

in the set, and an integét that specifies how many groups the points are to be classifted The output

of K-Means is the group membership of every point.

When running K-Means over our dataset, each routing tabteeed as a point, and the distance
between them is simply th&@milarity distancewe defined earlier. Given &, K-Means initially randomly
picks K routing tables as group centers. The algorithm then waliaitih every routing table and assigns
it to the group to whose center it has the shorsastilarity distance After all routing tables have been
assigned to groups, the group centers are re-computed loyitpajoting of all group members. Then the
algorithm iterates all the routing tables again to re-assayting tables according to their distances to the

new centers. The procedure repeats over and over until timgdable switches groups.

We run K-Means with differenfs values and record the compression ratio (the ratio of thgirai
server load to the server load after delta encoding). As shinwigure 5.7, the compression ratio reaches a
local maximum wherk increases to 8, and it performs the best when the routinggade classified into

12 groups. The highest achieved ratio is 8.8.

Randomized Greedy Heuristics We also use a randomized greedy algorithm to cluster rod#ibbes.
The idea is simple. We first generate a randomly ordered flidteorouters. In order of its position in the

list, a router creates a group and elects itself as the greag hinless the router has been selected into a



5.4. LEVERAGING SIMILARITY 95

group by a preceding router. The new group head then usesrchguristics to drag qualified routers into
its group. After every router has either become a group hebhdojoined a group, we compute the resulting
compression ratio. This completes one iteration. We themeigee another random ordering and repeat
the above procedure. We keep track of the best compresgioraral its corresponding group assignment.
The algorithm terminates and returns the best clusterindiso when the compression ratio has reached a

satisfactory value or when an iteration limit has been redch
The following two greedy heuristics have been experimented

Nearest first: Intuitively, we want routers geographically close to eateoto be in the same group. The
nearest first heuristic works as follows: given a distancestold D, when a router is randomly picked to
form a group, it drags routers withi® hops away into its group. An experiment is conducted to tast t
heuristic. We varyD from 1 to 7. The program performs 100 iterations and repbesbest compression
ratio. The resulting compression ratio is shown in Figu& S.he heuristic produces a fairly good result
only when it selects direct neighbors and neighbors 2 hos/.awigure 5.9 shows the number of groups
generated by given distance thresholds, and it gives sameablout what happens when a particular thresh-
old parameter is used. For example, wherns 1, too many groups are created, causing the compression
rate to drop sharply. Whep is larger than 2, it appears that routing tables clustergdtber are not really
similar. In summary, as shown in Figure 5.8 the best achieeedpression ratio by the greedy algorithm
with the nearest first heuristic is 6.8 when up to secondetegeighbors are selected; while K-Means, as

shown in Figure 5.7, achieves 8.8 compression ratio whdagsifies routing tables into 12 groups.
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Algorithm 1: The most similar first with distance constraingdgorithm for clustering routers (and

thus their routing tables).

Input: set of routers and their routing tables, similarity thiddhs, distance threshold

Output: list of groupsG

1 bis the currently best compression ratio;
2 b=0;
3 R is the set of routers not belonging to any groups;

4 while b not good enough and still have iteration quata

5 G is grouping solution in this iteration;
6 Gi = 0;

7 R = all routers;

8 L =list of randomly ordered routers;

9 foreachrouterr € L do

10 if » € R then

11 remover from R;

12 t = the routing table of;

13 groupg = {r};

14 foreachrouterr2 € R do

15 t2 = the routing table of-2;

16 if similarity(¢, t2) > s and distancef, r2) < d then
17 append-2 to g;

18 end

19 end
20 addg to Gi;
21 end
22 end
23 updateb;
24 updateG;

25 end
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Most similar first with hop constraints: The second heuristic is more complicated. Two thresholdrmpar
eters are given: one is hop distanPeand the other is routing table similarity meti$c When a randomly
picked router is not yet in any group, it walks through rositithin distanceD and for each calculates the
similarity metric. If the calculated similarity metric isn&ller thanS, it pulls the router into its own group.

The complete algorithm is shown in Algorithm 1.

As above, 100 iterations are performed for different sintifdhresholds combined with hop constraints.
Figure 5.10 shows the compression ratio this heuristiadgiehder different parameters. Again Figure 5.11
shows the corresponding number of groups. We find that thedgralgorithm has excellent performance
when the “most similar first” heuristic is applied. It achésvthe compression ratio of 10.4 when the sim-
ilarity threshold ranges from 60% to 80%. The number of €rtsg groups corresponding to the best

compression ratio is always 8.

Although the hop distance constraints, when set to be langer 2, do not affect the compression ratio,

it bounds the hop distance between the group head, and weldede benefit of this in Section 5.5.4.

As the “most similar first” algorithm gives the best compresgerformance, we conduct two additional
experiments to try to understand it better. We examine tsigilolition of the results over a larger number of

iterations. We also run the algorithm on a dataset acrosshmdm find out how results vary over time.

Ratio of original server load to
new server load
N

1 I I I I I I I
1 2 3 4 5 6 7

Maximum pairwise distance within a group (in hops)

Figure 5.8: Compression ratio versus the clustering tlolesithe maximal allowed distance). It shows the
load reduction benefit of applying the randomized greedgritlym with nearest-first heuristic.
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Figure 5.9: Number of groups generated by the nearest-kystidom as the clustering threshold (the max-
imal allowed distance) is varied.

In the first experiment, we select 3 similarity thresholdd am the algorithm over 10,000 randomly
ordered router lists. Figure 5.12 shows the cumulativeidigion of compression ratio for the selected 3
thresholds. The threshold 70% is the apparent winner. Batwempression ratio 8 and 10 the distribution
is approximately uniform. Also ratio 9 corresponds to 50%isTimplies that after 100 iterations have been
performed, the chance that we have not seen a compressimhigiter than 9 ig2)'%° which is extremely

small.

In the second experiment, we run the randomized greedyigidgowith most-similar-first heuristic over
the routing table data collected over 8 months. Again 3 sirityl thresholds are compared. For each routing
table snapshot captured in a given month, 100 iterationgar®rmed, and the best result is shown in

Figure 5.13. The 70% similarity threshold consistentlyldéehe best results, and they are above 10.

5.4.2.2 Random Sampling

Running clustering algorithms is time-consuming, esplycighen the distance computation involves high
dimensional vectors. Although Figure 5.13 shows that theteling result is stable over time, and thus the
clustering algorithm can run offline, a speed-up of cluagernight be desirable and can be easily achieved.
The solution we adopt is random sampling. Rather than rgntfie clustering algorithms over the full

routing tables, we first randomly sample a certain percentéi¢he route entries and use them for clustering.
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Figure 5.10: Compression ratio versus the clustering timlds(the minimal allowed similarity) under dif-
ferent hop distance constraints. It shows the load redudienefit of applying the randomized greedy
algorithm with most-similar-first heuristic.

Figure 5.14 shows the sampling error which represents ffereice between the true similarity distance
and the similarity distances computed using a randomly teimportion of the routing tables. We find
through experiments that at 10% random sampling rate, @ltitrstering algorithms discussed above output

the same results as using the full routing tables.

Summarizing, we start with basic delta encoding and theanekit with various clustering algorithms.
Experiments show that delta encoding with clustering afibpms the basic delta encoding. Among the
clustering algorithms we have experimented, the randahgzeedy algorithm with the “maost similar first”
heuristic produces the best compression ratio over ouseéatd he running times of the above clustering
algorithms are all within the range from 5 to 10 minutes dejp@m on the sampling rate and number of
iterations. Since we run the clustering algorithms offlimel @he running times of the three clustering
algorithms in comparison are in the same scale, we use tleigped compression ratio as the major winning
criterion and pick the randomized greedy algorithm with ‘t@st similar first” heuristic to implement in

the system that we are to discuss in the next section.
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Figure 5.11: Number of groups generated by the most-sifiiktralgorithm as the clustering threshold (the
minimal allowed similarity) is varied.

5.5 SimCast System

Since our similarity exploitation deviates from existinguok-based ones, we are unable to directly use
those off-the-shelf swarming protocols as transport. W tfesigrSimCast a new dissemination system
that builds on top of the similarity exploitation technigdescribed in Section 5.4 to provide a scalable and

efficient dissemination service for centrally controllestworks.

5.5.1 System Overview

The SimCast system is composed of a Client and a Server.eFigb illustrates the software organization

of the SimCast system.

The Server has an offline Clustering Engine which from timgnte runs the “most similar first” clus-
tering algorithm described in Section 5.4. The Server auisr with the network decision server, such as 4D
Decision Element or RCP Route Control Server, through adigsation API. When the APl is invoked to
send data out, the Server encodes the data and distribwiasaitmix of flooding and gossiping protocols.

The next three sections describe those protocols.
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Figure 5.12: Cumulative distribution of compression ratit0,000 iterations of the randomized greedy
algorithm with most-similar-first heuristic are performealder three different clustering thresholds.

5.5.2 Flooding

As described in Section 5.4, after “delta encoding with teltieg”, a server has four types of data to dis-
tribute: root core, root delta, group core, andgroup delta. The server first uses a variation of reliable
flooding to spread theoot core together with meta information regarding each router'sigrmembership.

In addition to the normal flooding procedure, when a packébded across the network, it keeps track of
the number of routers it traverses, and when the packet @sable receiver it reports the hop count to the

receiver. We explain why this is useful in the next section.

5.5.3 Distance Guided Gossiping

After a group head, saly, receives the floodetbot core, it sends a request to all its neighbors for more data.
The requests carry the information of the hop distance bEtwend the server. When that request reaches
a neighbor, the neighbor checks if itself is closer to theesethanh, and if so it forwards the requests to its
neighbors excluding. When the request reaches the server, the server makesato@dhswer the request,
and the offer is propagated back all the way:td=inally, i accepts the offer, and the server sends data to

along the path that the offer and acceptance have traversed.
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Figure 5.13: Comparison of compression ratios over 8 monil® iterations of the randomized greedy
algorithm with most-similar-first heuristic are performealder three different clustering thresholds.

5.5.4 Bounded Flooding

Via gossiping, the group head gets the following data from dkrver: root delta, group core, and
group deltas of all members in its group. The group head flogadsup core within its group. The
distance between the group head and the group members iddzbduoe to the “most similar first with hop
constraints” algorithm, so the flooding stops whenever hiegcthe distance constraint, hence “bounded
flooding”. Finally, a group member geisoup core and uses the same distance guided gossiping protocol

to get itsgroup delta from the group head.

5.6 Evaluation

In this section, we experimentally evaluate the scalgtditd efficiency properties of SimCast.

5.6.1 Methodology

We conduct experiments on our SimCast system designed gridnmanted for real deployment. We use
Emulab [6] as the testbed. Due to resource constraints, eveather able to reserve enough PCs or create

an Emulab topology to match the physical topology of the lidackbone network in our dataset. Instead,
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Figure 5.14: Sampling error is the difference between tedimilarity distance and the similarity distances
computed using a sampling of the routing tables.

we set up experiments on Emulab with the number of Linux P@ging from 30 to 100, and we create
virtual interfaces on those PCs and run multiple instanéeXiraCast clients on each node. We use a mix
of LANs and point-to-point links to connect the Emulab notie®nsure our implementation works with
both types of links. Application layer throttling is useddpproximate communications between SimCast

instances located on the same PC.

Since we need more routing table data to evaluate scajabilé synthesize routing tables based on
our existing dataset. As our evaluation results are mostegt by the similarity characteristics of routing

tables, we try to ensure that the synthesized data reseitiidesal data in that perspective. For that, we

Flooding — Flooding T Flooding
Gossiping 1 Gossiping — Gossiping
Encoding Decoding Decoding
Offline . .
Network Datg Clustering Engine Client Client
Network | Dissemination
Decision Server API
Server

Figure 5.15: High-level overview of the SimCast system.
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first discover the distribution

5.6.2 Scalability

One important goal of SimCast is to improve scalability: $iwe of router data-plane state a server has to

push out should increase much slower than linearly with tiralver of routers in the network.

We take the existing 800-router topology and trim nodes hait tncident edges to generate 17 smaller
networks, with the number of routers ranging from 271 to 808 run experiments on the 18 network

topologies (including the original one).
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Figure 5.16: Distribution of group sizes. The routers austared into 22 groups. The number of routers
within each group ranges from 1 to 116.

For each network topology, we first feed the routing tabledatmix of synthetic and real data) and
network topology to the SimCast Clustering Engine to compbe clustering scheme. Figure 5.16 and
Figure 5.17 show the characteristics of the clusteringreehe2 groups in total are generated. The number
of routers within each group ranges from 1 to 116. Within egrcup, the distance between routers and the

group head is bound by 3. The cross-group distances roughiyfa normal distribution with a mean of 5.

We then measure the traffic volume coming out of the SimCaseseand compare it with unicast.
As shown in Figure 5.18, unicast traffic volume increasesdity with the size of the network, while the

increase rate for SimCast is much lower. To be more acculaeslope of the former versus the latter is 6.8
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Figure 5.17: Distribution of router-to-router distanceithim and across clustered groups. For “across
groups” the distance is the hop count between group headswithin groups” the distance is the hop
count between a router and its group head.
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Figure 5.18: Comparison of server traffic load with SimCast anicast as the network size increases.

versus 0.06 (megabytes/router). For the network with 881ers, SimCast reduces server traffic load from

2.8 gigabytes to 69 megabytes.
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5.6.3 Efficiency

For centrally controlled systems such as Tesseract and feCfe sake of resiliency it is crucial for the

server to swiftly disseminate network state.
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Figure 5.19: Comparison of dissemination speed of SimQaktiaicast as the network size increases.

As above, we use networks with 18 different sizes to test ibsedchination speed of SimCast. We run
hundreds of SimCast instances on tens of Emulab nodes. Aesegver pushes theres anddeltas to
all SimCast instances, and we measure the time from the patk sntil all SimCast instances receive the
data. Figure 5.19 compares the speed of SimCast with thel gfaemicast in which a server simpgcp

the routing table files to all receivers. As expected, SinhGaperforms unicast significantly.

As mentioned in Section 5.6.1, due to resource constraiatare/ unable to reproduce the real network
topology on Emulab. To compensate, we run a simulation dridpslogy to estimate the node traffic load
during dissemination. Fatfore distribution, we use the flooding model; fdelta gossip, we assume the
traffic traverses the shortest path from the source to thindéien. The simulation is also done for unicast
with a simple server-to-router shortest-path model. FdguP0 shows the node traffic load for unicast is
much more unevenly distributed, and a small number of nodes &ky-high load, while the node load for

SimCast is on average much lower and none of the nodes unttaffio volume higher than 70 megabytes.

Experiments throughout this section demonstrate that 8sh@reatly improves dissemination scalabil-

ity and efficiency in centrally controlled networks.
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Figure 5.20: Comparison of router traffic load with SimCasl anicast as the network size increases.

5.7 Summary

Dissemination scalability and efficiency are among the mhajodles to the deployment of emerging cen-
trally controlled networks such as RCP and Tesseract. Tapter addresses the dissemination scalability
and efficiency issues by thorough analysis and effectivéo@ggion of similarity across the dominant-sized
data-plane state component — BGP tables. We argue for @rplaitructure-based similarity, and we de-
velop an effective delta encoding and data clustering sefterfieverage routing table similarity and achieve
deep reduction of server load. We design protocols and auplebtotype called SimCast to turn our findings
and algorithms into a real dissemination system. Evaloalmows that SimCast enjoys remarkable scala-
bility and efficiency improvements over existing solutioria a tier-1 backbone topology with more than
800 routers, and in the case where routing tables need todieg@uo all routers, SimCast reduces server
traffic load from 2.8 gigabytes to 69 megabytes and disseimiméme from 274 seconds to 8 seconds. As
the number of routers in the network increases, SimCastedthe server load increase rate from 6.8 to

0.06 megabytes per router.
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Chapter 6

Conclusion

In this chapter, we conclude the dissertation by (1) sunmimayiour contributions, (2) exposing limitations

of current solutions, and (3) proposing directions for fatwork.

6.1 Contributions

Today’s Internet must support objectives and capabiliaesnore sophisticated than best-effort packet de-
livery. Retro-fitting these network objectives on todaytrol-plane architecture has led to bewildering
complexity, with diverse states and logic distributed asroumerous network elements and management
systems. The resulting complexity is responsible for tlvegasing fragility of IP networks and the tremen-

dous difficulties that confront people who are tasked wittlaratanding and managing their networks.

The research community is attempting to address fundatrgurtations central to improving IP control
and management: How to transition from networks that blesxisibn logic with specific protocols and
mechanisms, to an architecture that abstracts and isdheefecision logic and admits a range of efficient
implementations. How to bridge from networks consistingheferous uncoordinated, error-prone mech-
anisms, to networks where the low-level mechanisms arewrin a consistent manner by network-level
objectives. How to advance from networks where people seinpaters (twist knobs), hoping to coax the
system to reach a desired state, to networks where desiggredirectly express controls that automatically
steer the system toward the desired state. How to evolve fietmorks where human administrators lever-
age network-wide views and box-level capabilities at sliomescales in decision-support systems, to where

the network itself leverages this information in real time.

109
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In the field of data networking at this point, our communitys fea strong understanding of what is
broken and how to create incremental solutions that onljigligraddress the problems, at the expense of
adding more complexity to an already unwieldy system. Therdmution of this thesis work is texplore
breakthroughs in removing many of these problems altogd&th@roviding a flexible, robust, and scalable

platform that optimizes network-wide objectives in a mgstematic way

This dissertation describes the basic centralized networkrol framework and presents solutions to

the following design challenges that are central to achigptliexibility, robustness, and scalability:

Practical protocol decomposition(Chapter 3) A major drawback of today’s architecture is thats
complicated decision logic distributed horizontally eagdhe network elements and vertically across many
layers. Our platform must achieve the same functionalitioday’s systems, while having the flexibility to
introduce new capabilities through centralized decisiomputation. Using Tesseract, we have shown that
it is practical and scalable to decompose a monolithic ntyaootocol into decision logic and dissemina-
tion/discovery primitives. And we have also demonstrateat the decomposition makes network control

more flexible.

Reachability paradox (Chapter 4) How can we provide reliable connectivity to réghomanage dis-
tributed network elements without relying on the commutiicaservices that are being managed? We have

designed a robudfleta-Management Systdmbreak this circular dependency.

Dissemination scalability (Chapter 5) The largest networks today have thousands térsiswitches
and tens of thousands of devices, and the default-free Zaoday’'s Internet handles routes with hundreds
of thousands of destination prefixes. Will the amount of nganaent information being moved by the dis-
semination plane overwhelm the network’s ability to camya® We have presented@alable dissemination

technique that addresses this challenge.

Our centralized network control solution has already madiengact in the research and industrial com-
munities. Since we published the first papers [8, 9], seveal and interesting similar systems have been
built. They include extensions to the decision server &chire [27, 71] and centralized network control
solutions on specific networks such as enterprise netwai®p [In addition, there have been industrial

efforts to build routers controlled by centralized deaisjanes.
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6.2 Limitations and Future Work

While in this dissertation we have shown that the centrdlizetwork control platform is sufficiently flexible

to implement different types of network functionality, aisdeasonably robust and scalable, one important
question remains: What are the limitations of our solutitm®e next sections, we informally answer this
guestion with regard to flexibility, robustness, and efficie We also identify several research directions

for future work.

6.2.1 Programmable Decision Plane

A flexible decision plane is highly desirable in a heterogersenetwork environment with a variety of
requirements for security and quality of service policd%& have designed Tesseract so that different algo-
rithms can run over an abstract logical network view comgagenodes and links; however, the algorithms
are still tightly coupled with the Tesseract system. Addinghanging these algorithms requires non-trivial

knowledge of the system itself.

We have begun to explore a programming interface for thesgetplane [80]. Rather than embedding
the control algorithms in the Tesseract system, we make plegiins that are interpreted by Tesseract. As
network control applications are treated as plug-ins mgmin the decision platform, we need a language
to define how the components are connected via their data@rtbtinterfaces, and how their network
control state outputs should be composed. The compostditgubage needs to be flexible enough to allow
reasonably sophisticated network control compositioite [Anguage should be capable of specifying com-
position ordering, prioritization of actions, and confliesolution rules. For better performance, we might

need to pre-compile the plug-ins into machine code rathaar thterpreting them at runtime.

Different plug-ins might have very different time compligxand thus might require different scales of
running times. For example, finding the shortest paths imaaor& with hundreds of routers takes less than
one second, while optimizing paths to balance load can takesh Plug-ins might also differ in priorities:
when a link falls, it is critical to change routes to bypassftiled link; but when traffic pattern changes, itis
not as urgent to update routes, as long as the traffic pattemmge does not cause network congestion. The
decision platform that composes these plug-ins needs tadarinterfaces for them to express their desired

runtime support and schedule the executions accordingly.
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6.2.2 Dissemination Error Handling

In MMS, if packets carrying management information throulgé dissemination plane get lost, they are
retransmitted. However, retransmission of lost packetg mod be the best policy. Instead, it may be better
to notify the decision elements which packets were lost, lsack them compute additional state updates,
obviating the need for the information in the lost packetsaddition to the existing MMS system we will

evaluate this possible alternative.

Most state change ordered by decision elements involveatimgdstate on multiple routers. We cur-
rently use weak session layer semantics where each rodependently applies an update as soon as it is
received. To handle the error condition where not all rauteceive the update, we will design and evaluate
stronger semantics such as network-wide commit sematitsapply all received updates at a particular
time, and full ACID distributed-commit semantics. We wilsa explore means of grouping related state
updates into a single session “transaction” and methodallfmwing multiple decision elements to send up-
dates to overlapping sets of routers. We will evaluate tmefis of good time synchronization (e.g., through
NTP or a GPS receiver at each router or PoP) to instruct thenoto change from one configuration to

another at a specific time, resulting in infinitesimal cogegice delay.

6.2.3 Redundancy Elimination in Dissemination

The SimCast algorithm scales dissemination by clustelimges state updates into groups to reduce traffic
concentration around the decision servers. Recently,ss dapacket-level redundancy elimination tech-
nigues has been proposed to remove redundant packets &ffimftow [81]. The basic idea of packet-level

redundancy elimination is to make the upstream router cpabkets over a period of time so that when it
receives a similar packet it can send a delta to its dowmstmeaiter to decode the new packet using the

delta and its local cache.

The advantage of the packet-level redundancy eliminatberse over SimCast is that it is agnostic to
semantics of any specific applications and can be built asrgemetwork services. Although we believe that
the knowledge of the application semantic helps us to furth@uce the overlapping dissemination content
and optimize the dissemination routes, we will quantigyivcompare SimCast with the generic packet-level

redundancy elimination techniques.
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6.3 Final Remarks

In this dissertation, we have presented a flexible, robugtsaalable solution that simplifies the control of
networks and makes this important infrastructure more nidggigle. While it is difficult to predict the future
course of research in this area, we believe that our pioneds mas created a new landscape of opportunities
for networking researchers to deploy their ideas on realordds. Previously closed and proprietary control
plane protocols will be replaced by software running on eotional servers. New algorithms and logic for

network control can be developed and deployed.
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