
Reusing migration to simply and efficiently implement

multi-server operations in transparently scalable

storage systems

Shafeeq Sinnamohideen

May 2010

CMU-CS-10-141

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Gregory R. Ganger, chair

Garth Gibson

Priya Narasimhan

Jiri Schindler, NetApp

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

c© 2010 Shafeeq Sinnamohideen

This material is based on research sponsored in part by the National Science Foundation, via grant #CNS-0326453, by the

Air Force Research Laboratory, under agreement number F49620–01–1–0433, and by CyLab at Carnegie Mellon University under

grant DAAD19–02–1–0389 from the Army Research Office. Support was also provided by the companies of the PDL Consortium

(including APC, EMC, Facebook, Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, NEC, NetApp, Oracle, Seagate, Symantec,

VMware, and Yahoo!)

Keywords: Object-based storage, object ID assignment algorithms, namespace flattening, OSD, meta-

data scalability, multi-server operations, cross-server operations, cross-directory operations, transparent

scalabilily

Abstract

Distributed file systems that scale by partitioning files and directories among a collection of servers in-

evitably encounter multi-server operations. A common example is a RENAME that moves a file from a

directory managed by one server to a directory managed by another. Transparently scalable systems (those

that provide the same semantics for multi-server operations as they do for single-server operations) tradi-

tionally implement dedicated protocols for these rare operations. This thesis explores an alternate approach,

with simplicity as a goal, that exploits the existence of migration functionality normally used for load bal-

ancing. When a client request would involve files on multiple servers, the system can migrate responsibility

for those files onto one server and have it service the request. Although migration may be more expensive

than a dedicated cross-server protocol, trace analysis of deployed file systems indicates that such opera-

tions are extremely rare in file system workloads. A prototype system that uses this approach to supporting

multi-server operations scales linearly and performs well even when multi-server operations are 100X more

common than the worst-case trace. Thus, when migration functionality exists in the system, multi-server

operations can be efficiently handled with very little additional implementation complexity.

For my parents.

Acknowledgments

I would like to thank the members and alumni of the PDL and other residents of D-level and CIC for

their friendship and collaboration, including Michael Abd-El-Malek, Rajesh Balan, Chris Colohan, Jason

Flinn, Charlie Garrod, James Hendricks, Benoit Hudson, Andy Klosterman, Michael Mesnier, Dushyanth

Naryanan, Brandon Salmon, Raja Sambasivan, Matthew Wachs, and Theodore Wong. Also Chuck Cranor,

Bill Courtwright, Michael Stroucken, and Charlene Zang, and other members of the Self-∗ project. I’d like

to thank Greg for his support and advice, Satya for encouraging me to begin this path, and Garth, Jiri, and

Priya for their feedback, insight and support.

I also thank the members and companies of the PDL Consortium (including APC, EMC, Facebook,

Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, NEC, NetApp, Oracle, Seagate, Symantec, VMware,

and Yahoo!) for their interest, insights, feedback, and support. I also thank Intel, IBM, NetApp, Seagate

and Sun for hardware donations that enabled this work. This material is based on research sponsored in

part by the National Science Foundation, via grant #CNS-0326453, by the Air Force Research Laboratory,

under agreement number F49620–01–1–0433, and by CyLab at Carnegie Mellon University under grant

DAAD19–02–1–0389 from the Army Research Office.

vii

viii

Contents

1 Introduction 1

1.1 Thesis statement . 2

1.2 Argument . 3

1.2.1 On the performance penalty . 4

1.2.2 On the implementation effort . 5

1.3 Outline . 6

2 Background 7

2.1 Multi-item operations . 7

2.2 Transparent scalability . 9

2.3 Multi-server operations . 10

2.4 Distributed transactions . 11

2.5 Migration . 12

3 Trace analysis 15

3.1 NFS traces . 16

3.1.1 Operations . 17

3.1.2 Reconstruction . 18

3.1.3 Results . 19

3.2 CIFS traces . 21

3.2.1 Reconstruction . 21

3.2.2 Results . 22

ix

x CONTENTS

3.3 Conclusion . 24

4 Object-ID assignment 25

4.1 Overview . 25

4.2 Child-closest policy . 27

4.3 Cousin-closest . 29

4.4 Optimizations . 30

4.5 Evaluation . 33

4.5.1 Methodology . 34

4.5.2 Variable-length OIDs . 37

4.5.3 Fixed-length OIDs, variable-size slots . 37

4.5.4 Fixed-length OIDs, fixed-size slots . 38

4.5.5 Farsite results . 41

4.6 Conclusion . 41

5 Prototype 43

5.1 Ursa Minor . 43

5.2 Metadata Service (MDS) . 44

5.3 Namespace Service (NSS) . 46

5.4 SOID assignment . 47

5.5 Metadata migration . 48

5.6 Multi object operations . 49

5.7 Root metadata server . 50

5.8 Transactions . 51

5.8.1 Recovery . 52

5.8.2 Recursive transactions . 53

5.9 Caching . 53

5.9.1 Delegation Cache . 53

5.9.2 Client metadata cache . 55

5.9.3 Client directory cache . 55

CONTENTS xi

5.9.4 Server B-tree page cache . 56

5.9.5 Server directory cache . 56

5.9.6 Server metadata cache . 57

5.10 Handling failures . 57

5.10.1 Failure of a metadata server . 58

5.10.2 Failure of the delegation coordinator . 58

5.10.3 Network partitions . 59

5.10.4 Failure of a storage node . 60

5.11 NFS head-end . 60

6 Evaluation 63

6.1 Benchmark . 63

6.1.1 Modifications to SPECsfs97 . 64

6.1.2 Inducing multi-server operations . 66

6.2 Experimental setup . 66

6.2.1 Hardware configuration . 66

6.2.2 Software configuration . 68

6.3 Scalability . 69

6.3.1 Without multi-server operations . 69

6.3.2 With multi-server operations . 69

6.3.3 Root metadata server . 71

6.4 Sensitivity to workload . 71

6.4.1 Percentage of multi-server operations . 71

6.4.2 Workload size . 74

6.4.3 Operation mix . 76

6.4.4 Operation Rate . 77

6.5 Sensitivity to system parameters . 79

6.5.1 Migration granularity . 79

6.5.2 Server-local state . 83

xii CONTENTS

6.5.3 Server cache size . 84

6.6 Implementation difficulty . 87

6.7 Additional observations . 87

6.8 Discussion . 88

6.8.1 Optimizations . 88

6.8.2 Adverse workloads . 91

6.8.3 Applicability to other systems . 92

6.9 Summary . 93

7 Conclusion 95

A Appendix A 97

A.1 MDS operation list . 97

A.2 NSS operation list . 98

A.3 NFS induced Ursa Minor operations . 99

A.4 Power consumption . 100

List of Figures

4.1 File and directory slots. 28

4.2 Child-closest OID assignment policy. 29

4.3 Cousin-closest OID assignment policy. 31

4.4 Overflow into parent rather than overflow region. 32

4.5 Overflow into volume-local overflow region. 33

4.6 File and directory depths and sizes. 35

4.7 Number of variable-length OID bits necessary. 38

5.1 Borrowing a table. 50

5.2 Caches in the Ursa Minor metadata path. 54

6.1 Network configuration. 68

6.2 Throughput vs. number of metadata servers for workloads with no multi-server operations. . 70

6.3 Throughput vs. number of metadata servers for workloads with multi-server operations. . . . 72

6.4 Root metadata server load. 73

6.5 Throughput vs. percentage of multi-server operations. 74

6.6 Effect on latency. 75

6.7 Influence of workload size. 76

6.8 MDS under partial load. 78

6.9 Influence of migration granularity. 80

6.10 Components of multi-server operation latency. 81

6.11 Page-ins per MDS operation vs. percentage of multi-server operations. 83

xiii

xiv LIST OF FIGURES

6.12 Influence of server-local state. 85

6.13 Influence of server cache sizes. 86

6.14 Multi-server operations implemented using migration. 89

6.15 Multi-server operations implemented using two-phase commit. 90

List of Tables

3.1 NFS operation breakdowns for the Harvard traces. 20

3.2 CIFS operation breakdowns for the NetApp traces. 23

4.1 Trace properties. 36

4.2 Overflow in OID length. 38

4.3 Overflow in depth. 39

4.4 Overflow in width. 40

6.1 Hardware and software configuration used for all experiments. 67

A.1 List of MDS operations. 97

A.2 List of NSS operations. 98

A.3 List of NFS operations. 99

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Transparent scalability is a desired feature for many distributed systems. This means that it should be

possible to increase both capacity and performance by adding servers and spreading data and work among

them. It also means that client applications and users are presented a consistent set of semantics, regardless

of which servers are hosting which data.

In the case of file systems, many designs scale by partitioning the set of files across the set of servers.

Each file is managed by a particular server, and accesses to files managed by different servers are completely

independent. The vast majority of operations affect only a single file, so this approach works well in the

common case. A few operations, such as a cross-directory rename or a snapshot, affect more than one file or

directory and so may involve files managed by two distinct servers. A transparently scalable system would

provide the same semantics in this case as in the case where all files are on the same server. Providing strong

semantics on a single server is relatively easily done using techniques like local locking and write-ahead

logging, but doing so is more difficult when multiple servers are involved.

Many existing systems do not provide identical semantics in this case. Applications, on the other hand,

frequently rely on specific consistency semantics (e.g., atomicity of rename) and have no convenient way of

knowing which semantics (same-server or multi-server) any given operation will get. Additionally, systems

that aim to scalably support legacy protocols, such as NFSv3 [9] or CIFS [35], must maintain the semantics

defined by the protocol, regardless of whether any given application relies on them.

Systems that do provide transparent scalability use some sort of distributed protocol to handle operations

1

2 CHAPTER 1. INTRODUCTION

that involve multiple servers. In the case where all objects are accessible from any server, this is often done

by having one server acquire locks on all objects involved, update the objects and any logs as necessary,

and then release the locks. The underlying distributed lock manager will trigger the appropriate cache

invalidations to maintain consistency between servers. GPFS uses such an approach [47]. An alternative,

frequently used when servers do not share a common storage pool, is to have each server execute only the

portion of the operation that pertains to it. All objects are then updated to their final state using a multi-phase

commit protocol to ensure atomicity.

These solutions, while effective, are also complex to implement, debug, and verify, particularly for the

cases involving failures. Furthermore, in many workloads, multi-server operations occur very rarely. For

example, in Farsite’s experimental workload of 2.1 million operations, only 8 involved multiple servers [13].

Thus, the programmer effort traditionally involved in supporting transparent multi-server operations is out

of proportion with its utilization in most workloads.

1.1 Thesis statement

This dissertation develops an alternate approach to handling multi-server operations. Specifically:

Reusing migration to convert multi-server operations into single-server operations is a simple and

efficient method of enabling transparent scalability.

Most scalable systems have mechanisms to migrate objects from one server to another. This capability is

used to ensure that server resources are utilized efficiently. For example, when a server is overloaded, some

of the objects it’s responsible for should be moved to other servers, moving the load associated with them.

Similarly, when a server’s disks are nearly full, some of its objects should be moved to other servers with

more free space. There has been much work on load balancing policies, and the underlying mechanisms

used for transferring objects are fairly straightforward.

This same migration mechanism can be used to support multi-server operations, instead of a dedicated

multi-server operation protocol. If servers can only process requests for objects they are responsible for, all

the objects involved must be the responsibility of the same server. If this precondition is not satisfied, the

system will migrate the required objects until it is satisfied, and only then execute the operation. Objects that

were moved may be returned to their original servers immediately, or they can be left until load-balancing

1.2. ARGUMENT 3

policy dictates that they be moved again. All of the inter-server communication is encapsulated in the

migration mechanism, which already exists, saving implementation and debugging effort.

To support the thesis statement, this dissertation takes the following steps. First, it characterizes several

existing distributed file system workloads, showing that the expected frequency of multi-server operations is

low. Second, it introduces a technique for assigning files to servers in a way that reduces the occurrence of

multi-server operations. Third, it describes a transparently scalable prototype storage system that uses mi-

gration to support multi-server operations, demonstrating the feasibility of the approach. Fourth, it evaluates

the prototype to show that performance is reasonable (i.e, the approach is efficient) for a range of workloads

and system parameters and that the implementation is relatively simple.

This thesis depends on the following primary assumptions:

• A migration mechanism already exists in the system.

• Implementing a migration-only mechanism is simpler than general-purpose distributed transactions.

• Multi-server operations are rare.

The next section briefly explains why each of these assumptions are valid for scalable distributed file

systems, and identifes further sections where they are discussed in more detail. If this approach is applied

to a system that does not meet these assumptions, then it will either not be the simplest solution or its

performance will be worse than the alternative approaches. However, the resulting system will still operate

correctly.

1.2 Argument

The efficacy of using migration to implement cross-server operations depends on two factors :

• There is little performance cost from using migration instead of a dedicated protocol.

• Supporting multi-server operations using migration requires less implementation effort than a dedi-

cated protocol for the same purpose.

4 CHAPTER 1. INTRODUCTION

Some performance penalty is to be expected, but, in many cases, we expect this penalty will be small

enough to be outweighed by the savings in implementation cost. System architects make many such trade-

offs in the course of designing a system. If the architect’s goal is the best possible performance at any cost,

then any performance penalty is unacceptable. Frequently, however, the goal is to maximize “performance

for a fixed cost” (e.g., a deadline) or “performance per unit of effort”. System builders often have a list of po-

tential performance enhancements that they have not yet had time to pursue. The performance penalty will

be acceptable as long as it is inconsequential, or if the effort saved in supporting multi-server operations can

then be used to optimize other aspects of the system to gain more performance than was lost. Amdahl’s law

suggests that this will be likely — the vast majority of operations are single-server, so a small improvement

on each can overcome a large slowdown on the rare multi-server operation.

1.2.1 On the performance penalty

The performance penalty is expected to be small in most environments. The size of the penalty is governed

by how frequent cross-server operations are and how much more expensive each one is compared to the

alternate approach. In most file system scenarios, the frequency of cross-server operations is very low.

Thus, even though each cross-server operation may be more expensive, because the latency of migration

will be added directly to the latency of the multi-server operation, the effect on overall throughput will be

negligible.

On the frequency of multi-file and multi-server operations

The frequency of multi-file operations is a property of a given workload. These operations exhibit the

well-known properties of spatial and temporal locality, just as single-file operations do. Thus, traditional

techniques to improve overall performance, such as grouping files by directory, subtree, or access pattern

and placing an entire group on the same server, result in most multi-file operations affecting multiple files

on the same server. The only times an actual multi-server operation would occur in practice are in the rare

case of a multi-file operation that affects files far enough apart in the directory tree to be on separate servers.

Chapter 3 describes the potential multi-file operations and their frequency in traces of deployed large-scale

storage systems. Chapter 4 describes techniques for assigning files to servers in a manner that increases

the likelihood that all files in a multi-file operation will already reside on a single server, thus reducing the

1.2. ARGUMENT 5

frequency of multi-server operations.

On the cost of multi-server operations

The cost of a multi-server operation depends on the cost of performing a migration, which in turn depends

on how much data needs to be moved and the mechanisms for moving it.

For the purposes of supporting multi-server operations, usually only a single item needs to be migrated.

Many systems, however, cannot migrate at the granularity of a single item. Single item migration requires

that the mechanism used to map items to servers must handle the case where every item is potentially on a

different server, and the servers must store items such that individual ones can be transferred separately. Ad-

ditionally, because each server could be responsible for a sparse set of items, the simple task of determining

what the “next” item is is complicated by the fact the next item could always be on another server. All of

these add to the basic complexity of the system by requiring more complex data structures and increasing

overheads even when no migrations are in progress.

Depending on the system architecture, migrating files either involves copying them over the network

from one server to another or relies on storing all files in a common storage pool, in which case migration

merely involves a logical hand-off of responsibility. If shared storage is used, the latency for the logical

hand-off can be expected to be on the order of that for a distributed transaction (since the hand-off is a

simple distributed transaction itself) and, thus, to have negligible effect on throughput. If shared storage is

not available, then the latency will be heavily dependent on the size of the unit of migration. If only metadata

needs to be transferred, and the unit is reasonably sized (a directory or a small number of directories), the

transfer latency can also be small enough. Fortunately, it seems likely that one or both of these conditions

will be true in most future storage systems.

Chapter 5 describes the prototype system, relying on shared storage, that we built, and Chapter 6 evalu-

ates the performance of the system both when using shared storage, and when emulating the migration cost

of a system with private storage.

1.2.2 On the implementation effort

Both migration and a dedicated multi-server operation mechanism require distributed protocols. Migration,

however, is simpler to implement than generalized distributed transactions, particularly if the system was

6 CHAPTER 1. INTRODUCTION

not designed from the ground up to support either. Furthermore, most scalable systems naturally include

redistribution as a part of their basic functionality. Section 2.4 discusses the complexity of correctly im-

plementing a distributed transaction protocol, and Section 2.5 describes migration protocols. Section 6.6

contrasts the implementation complexity of supporting multi-server operations by reusing migration and by

a dedicated protocol.

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 discusses background and related work.

Chapter 3 presents an analysis of workloads to determine the occurrence of multi-file operations. Chapter 4

describes our approach to assigning files to servers. Chapter 5 describes a prototype storage and its support

for transparent multi-server operations. Chapter 6 evaluates the efficacy of this approach.

Chapter 2

Background

Among others, challenges in scaling the number of servers in a system include handling the infrequent

operations that involve multiple servers and managing the distribution of files across servers. This chapter

discusses the types of operations that could involve multiple servers, how close existing systems come to

being transparently scalable, how systems that handle multi-server operations transparently do so, and the

importance of migration in a multi-server file system

2.1 Multi-item operations

There are a variety of file system operations that manipulate multiple files, creating a consistency challenge

when the files are not all on the same server. Naturally, every CREATE and DELETE involves two files: the

parent directory and the file being created or deleted. Most systems, however, assign a file to the server

that owns its parent directory. At some points in the namespace, of course, a directory must be assigned

somewhere other than the home of its parent; or else all metadata will be managed by a single metadata

server. Therefore, the CREATE and DELETE of that directory will involve more than one server, but none of

the other operations on it will do so. This section describes other significant sources of multi-item operations.

The most commonly noted multi-item operation is RENAME, which changes the name of a file. The

new name can be in a different directory, which would make the RENAME operation involve both the source

and destination parent directories. Also, a RENAME operation can involve additional files if the destination

name exists (and thus should be deleted) or if the file being renamed is a directory (in which case, the ‘..’

7

8 CHAPTER 2. BACKGROUND

entry must be modified and the path between source and destination traversed to ensure a directory will not

become a child of itself). Application programming is simplest when the RENAME operation is atomic, and

both the POSIX and the NFSv3 specifications call for atomicity. 1

Many applications rely on the specified atomicity of RENAME as a building-block to provide application-

level guarantees. For example, many document editing programs implement atomic updates by writing the

new document version into a temporary file and then using RENAME to move it to the user-assigned name.

Similarly, many email systems write incoming messages to files in temporary directory and then RENAME

them into a user’s mailbox directory. Without atomicity, applications and users can see strange intermediate

states, such as two identical files (one with each name) existing or one file with both names as hard links.

Creation and deletion of hard links (LINK and UNLINK) are also multi-item operations in the same way

that CREATE is. However, the directory the link is to be created in may not be the parent of the the file being

linked to, making it more likely that the two are on different servers than for a CREATE and UNLINK.

The previous examples assume that each directory is indivisible and could only be assigned to one server

at a time. But a single heavily used directory might have more traffic than a single server can support. Some

systems resolve this issue by splitting directories and assigning each part of the directory to a different

server [43, 52]. In that case, simply listing the entire directory requires an operation on every server across

which it is split, and renaming a file within a directory might require two servers if the source name is in

one part of the directory and the destination is in a different part.

Transactions are a very useful building block. Some modern file systems, such as NTFS [41] and

Reiser4 [45], are adding support for multi-request transactions. For example, an application could update a

set of files atomically, rather than one at a time, and thereby preclude others seeing intermediate forms of the

set. This is particularly useful for program installation and upgrade. The files involved in such a transaction

could very easily be spread across servers.

Point-in-time snapshots [10, 29, 39, 44] have become a mandatory feature of most storage systems,

as a tool for consistent backups. Snapshots also offer a building block for on-line integrity checking [39]

and remote mirroring of data [44]. Snapshot is usually supported only for entire file system volumes, but

1Each specification indicates one or more corner cases where atomicity is not necessarily required. For example, POSIX requires

that, if the destination currently exists, the destination name must continue to exist and point to either the old file or the new file

throughout the operation.

2.2. TRANSPARENT SCALABILITY 9

some systems allow snapshots of particular subtrees of the directory hierarchy. In any case, it is clearly a

substantial multi-item operation, with the expectation that the snapshot captures all covered files at a single

point in time.

2.2 Transparent scalability

We categorize existing systems into three groups based on how fully they provide transparent scalability as

the number of servers increases. Transparent scaling implies scaling without client applications having to

be aware of how data is spread across servers; a distributed file system is not transparently scalable if client

applications must be aware of capacity exhaustion of a single server or different semantics depending upon

which servers hold accessed files.

No transparent scalability: Many distributed file systems, including those most widely deployed, do

not scale transparently. NFS, CIFS, and AFS all have the property that file servers can be added, but each

serves independent file systems (called volumes, in the case of AFS). A client can mount file systems from

multiple file servers, but must cope with each server’s limited capacity and the fact that multi-file operations

(e.g., RENAME) are not atomic across servers.

We focus in this paper on distributed file systems that provide fairly strong consistency semantics. But,

file systems that provide weaker consistency, such as eventual consistency with post-hoc conflict detection

and application or user-assisted resolution (e.g., Bayou [50], Pangaea [46], and Ivy [40]), could also fit into

this “no transparent scalability” category.

Transparent data scalability: An increasingly popular design principle is to separate metadata man-

agement (e.g., directories, quotas, data locations) from data storage [7, 23, 24, 51, 53]. The latter can

be transparently scaled relatively easily, assuming all multi-object operations are handled by the metadata

servers, since each data access is independent of the others. Clients interact with the metadata server for

metadata activity and to discover the locations of data. They then access data directly at the appropriate

data servers. Metadata semantics and policy management stay with the metadata server, permitting simple,

centralized solutions. The metadata server can limit throughput, of course, but off-loading data accesses

pushes the overall system’s limit much higher [25]. To go beyond this point, the metadata service must also

be scalable.

10 CHAPTER 2. BACKGROUND

Most modern storage systems designed to be scalable fall into this category. Most are implemented

initially with a single metadata server, for simplicity. Examples include Google FS [23], NASD [24],

Panasas [53], Lustre [38], the original version of Ursa Minor [2], and most SAN file systems. These sys-

tems are frequently extended to support multiple metadata servers, each exporting a distinct portion of the

namespace, and the ability to dynamically migrate files from one metadata server to another. Such a solu-

tion, however, is not transparently scalable because clients see different semantics for operations that cross

metadata server boundaries.

Full transparent scalability: A few distributed file systems offer full transparent scalability, including

Farsite [3], GPFS [47], Frangipani [51], and recent versions of Ursa Minor [48] . Most use the data scal-

ing architecture above, separating data storage from metadata management. Then, they add protocols for

handling metadata operations that span metadata servers. Section 2.3 discusses these further.

Another way to achieve transparent scalability is to use a virtualization appliance with a collection of

independent NFS or CIFS file servers. Examples of such “file switches” include Anypoint [54], Mirage [8],

Cuckoo [33], and Katsurashima et al.’s “NAS switch” [31]. The file switch aggregates an ensemble of file

servers into a single virtual server by interposing on and redirecting client requests appropriately. In the case

of multi-server operations, the file switch serves as a central point for serialized processing and consistency

maintenance, much as a disk array controller does for a collection of disks. Thus, the virtual server remains

a centralized, but much more capable, file system.

2.3 Multi-server operations

Existing systems that support multi-item operations that span server boundaries use one of two approaches:

• One server acquires a lock on all items and executes the entire operation.

• Execute a portion of the operation on each server, using a distributed transaction protocol.

GPFS [47] and Frangipani [51] are examples of a systems that uses the first approach. All of the servers

in a cluster are attached to all the underlying storage through a common SAN. When an operation executing

on a particular server requires multiple objects (or parts of an object), it acquires a lock on all of those

objects through a core distributed lock management service. Once the necessary locks have been acquired,

2.4. DISTRIBUTED TRANSACTIONS 11

the operation can proceed, knowing that that no other server will try to modify the locked state.

The action of acquiring a lock may require the current lock-holder to perform certain activities before

relinquishing the lock. For example, servers are allowed to buffer updates in their in-memory caches and

private transaction logs. Because the next lock-holder expects the state of an object on the underlying storage

to be consistent, the server relinquishing the lock will have to first flush any relevant dirty state to the shared

disk.

Farsite [13] and Slice [6], on the other hand, use a distributed transaction protocol. Each of the servers

holding items affected by a transaction performs the portion of the transaction that pertains to the items it

is responsible for. One of these servers functions as a leader and determines whether the transaction should

commit on all servers or must be rolled back on all servers, as described in section 2.4. The inter-server

coordination required for a RENAME operation in Farsite requires on average 12 server-server messages in

the worst case.

2.4 Distributed transactions

Traditionally, cross-server operations are implemented using a distributed transaction protocol, such as a

two-phase commit [26]. Since each server already must implement atomic single-server operations, usually

by using write-ahead logging and rollback, the distributed transaction system can be built on top of the local

transaction system. A transaction affecting two servers would first add a “prepare” entry to both of the logs,

covering the update of the respective data items. If both servers successfully “prepared”, the transaction is

finalized with a “commit” entry to both logs. If the “prepare” did not succeed on all servers, each server

must examine its log and roll back its state to that of the beginning of the transaction. Crash recovery,

however, is now much more complicated: with single-server transactions, it is sufficient to examine the log

and undo any incomplete transactions. With more than one server, it is possible for some servers to crash

and others survive. If one crashed while “preparing”, all servers must rollback that transaction, as mentioned

before. If one crashed between the “prepare” and the “commit”, the recovering server does not know if the

“prepare” succeeded on all other servers. By examining the logs of the other servers, the recovering server

can determine if the ”commit” appears in any log, in which case it should be added to the recovering log,

or if it did not commit and should be undone locally. Any step involving communication with other servers

12 CHAPTER 2. BACKGROUND

may fail, and if other servers have crashed, it may not be possible to proceed until they are online as well.

Distributed transactions may complicate other aspects of the system as well. Consider a simple operation

that reads and updates two items, each on different servers. In order to prevent a single-server operation on

either server from modifying one of the items between the read and write phase of the cross-server operation,

the server executing the transaction must lock both items for the duration of the transaction. This must also

be done for a single-server transaction, but all potential contention is local to a single server. A lock held by

a different server introduces the potential for the lock holder to crash independently of the server managing

the lock. While there are many existing techniques, such as leases, to handle this situation, a lock recovery

scheme is simply not needed when locks can only be local to a server. Handling non-crash faults, such as

intermittent networks or Byzantine servers, adds far more complexity to any distributed protocol [13].

As can be seen, most of the additional complexity is in the recovery paths. Not only must the recovery

path handle recovery from a wide variety errors or crashes, it must also handle errors during recovery. This

leads to a large number of cases that must be detected and handled correctly. Since errors in general are rare,

any particular error is even rarer, which means bugs in the fault-handling path may be triggered rarely and

be even harder to reproduce. This places more reliance on test harnesses, which must be crafted to exercise

each of the many error conditions and combinations thereof.

2.5 Migration

In any system with many servers, the question arises as to which files should be assigned to which servers.

Some systems, such as AFS, NFS, Panasas, and Lustre, split the file system namespace into several volumes

and assign each metadata server one or more volumes whose boundaries cannot be changed after creation.

Others, such as xFS, Ceph, and OntapGX, are able to assign individual files to distinct servers. In general,

supporting finer granularities requires more complexity in the mechanism that maps files to metadata servers.

Managing large-scale storage systems would be very difficult without migration — at the very least,

hardware replacement and growth must be accounted for. Additionally, migration is a useful tool for ad-

dressing load or capacity imbalances. Almost every storage system has some way of performing migration,

in the worst case by backing up data on the original server, deleting it, and restoring on the destination

server.

2.5. MIGRATION 13

Such offline migration, however, is obtrusive to clients, which will notice periods of data unavailability.

If the need for migration is rare, it can be scheduled to happen during announced maintenance periods.

As a system gets larger, the need for migration increases, while the tolerance for outages decreases. To

address this issue, many modern systems [14, 30, 52, 53] can perform migration dynamically, while serving

client requests, leaving clients unaffected except for very brief periods of unavailability. Dynamic migration

involves 3 main steps :

• The source server must stop serving the items to be moved

• The responsibility for the items must be moved to the destination

• The destination server must start serving the items

The complete migration process must be atomic—in the face of any crash failure, either the source or

destination must be responsible for and able to serve the items in question, and, at all times, all relevant

parties agree on which server is responsible for which item. A non-atomic migration raises the possibility of

items disappearing forever or different versions of the same item being available to clients. As this is clearly

undesirable, most systems implement migration using a simplified form of distributed transaction [13, 52,

30]. The presence of a authoritative mechanism to maps items to servers simplifies the task because it

provides a central point of coordination, instead of having to rely on distributed logs.

The middle step, that of transferring responsibilty for the items from source to destination servers, can

take different amounts of time depending on what state must be moved between servers. In the simplest

case, where all hard state resides on shared storage, no state needs to be transferred between servers other

than a token indicating responsibility. Ursa Minor [48] and Slice [6] are examples of such systems. In

other systems that use shared storage, such as GPFS [47], Frangipani [51], and Ceph [52], servers may still

maintain some local state, such as locks, local transaction logs, and client callbacks and capabilities. In

GPFS and Frangipani, local logs are truncated, ensuring the state in shared storage is up-to-date. Ceph,

on the other hand, tranfers the source server’s logs and client capabilities directly to the destination server.

GPFS uses both techniques, shipping small items of state directly to the destination and sending large state

transfers through the underlying shared storage.

In systems that utilize private storage, the transfer of responsibility must also transfer the actual state

being migrated. The common approach, taken by AFS [30] and OntapGX [14], is to take a snapshot of the

14 CHAPTER 2. BACKGROUND

state being migrated and transfer the snapshot to the destination. As an optimization, the source server is

permitted to continue servicing operations—when the initial snapshot has been transferred, a new snapshot,

encompassing changes since the initial snapshot, is taken and transferred to the destination. This cycle

repeats until the Nth snapshot is small enough to be transferred while the source server is not serving client

requests. At this point, the destination is completely up-to-date and can begin serving clients.

Any system that provides dynamic migration would be able to utilize migration to provide transparent

scalability. The latency of migration would, however, be directly added to the latency of every multi-

server operation that required a migration. Thus, the faster a system can perform migration, the better

its performance will be when using migration to support multi-server operations. Since the major factor

influencing the latency of migration is the amount of state to be migrated, systems with small amounts of

local state are most amenable to using migration for transparent scalability.

The process of assigning files to servers can be thought of as analogous to lock managment. A server

assigned responsibility for a file (or collection of files) has effectively been granted an exclusive lock on that

file and migration changes the ownership of that lock. Given the relative rarity and granularity of migration,

the centralized migration managers used in AFS [30] and OntapGX [14] need not be as efficient or complex

as the distributed lock managers used for fine-grained locking in GPFS [47], Slice [5], and Frangipani [51].

Chapter 3

Trace analysis

To understand how often multi-file operations occur in practice, two sets of well-studied distributed file

system traces were examined. These traces are those of three NFS file servers at Harvard collected by Ellard

et al. [15] and discussed in Section 3.1, and two CIFS filers at NetApp collected by Leung et al. [37] and

discussed in Section 3.2. For comparison, the NFS workload generated by an industry-standard benchmark

for evaluating the performance of NFS file servers, SPECsfs97, is also discussed in Section 3.1.

Because of the different network protocols, each set included slightly different information. For the pur-

poses of determining how common multi-server operations were, two properties of each trace are relevant:

the percentage of multi-file operations in the trace and the “distance” between the files affected by each

multi-file operation. Only multi-file operations can potentially involve multiple servers—single-file opera-

tions will always involve only one server. The most common scheme for partitioning files across servers is

to assign one or more subtrees of the file system namespace to each server. If the files affected by a multi-file

operation both lie close to each other in the namespace, they are likely to fall within the same subtree and,

thus, both be assigned to the same server. Files further apart in the namespace are correspondingly more

likely to be in subtrees served by different servers.

A metric that captures distance in namespace is the number of links in the directory tree that must be

traversed on the shortest path between the two files of interest. For example, /a/b and /a/c would be have

a distance of two. The distance between /a/b and /c/d would be four, because of the two hops from /a/b

to the root and two hops from the root to /c/d. Multi-file operations with small distances are likely to be

15

16 CHAPTER 3. TRACE ANALYSIS

single-server, whereas operations with large distances are more likely to be multi-server.

3.1 NFS traces

The NFS traces examined are of three departmental NFS servers at Harvard University. The workloads of

these servers varied significantly and are described below. Also considered is the workload generated by the

SPECsfs97 benchmark, which is the industry standard for measuring the performance of NFS file servers.

EECS03: The EECS03 trace captures NFS traffic observed at a Network Appliance filer between Febru-

ary 2nd–28th, 2003. This filer served home directories for the Electrical Engineering and Computer

Science Department. It served an engineering workload of research, software development, course

work, and WWW traffic. Detailed characterization of the EECS03 trace can be found in [18].

DEAS03: The DEAS03 trace captures NFS traffic observed at another Network Appliance filer between

February 1st–28th, 2003. This filer served the home directories of the Department of Engineering

and Applied Sciences. It served a heterogenous workload of research and development combined

with e-mail and a small amount of WWW traffic. The workload seen in the DEAS03 trace can

be best described as a combination of that seen in the EECS03 trace and e-mail traffic. Detailed

characterization of the DEAS03 trace can be found in [17] and [18].

Campus: The Campus trace captures a subset of the NFS traffic observed by the Campus storage system

between October 1st–31st , 2001. The Campus storage system provided storage for the e-mail, web,

and computing activities of 10,000 students, staff, and faculty via fourteen 53 GB storage disk arrays.

The subset of activity captured in the Campus trace includes only the traffic between one of the disk

arrays (home02) and the general e-mail and login servers. NFS traffic generated by serving web

pages or by students working on CS assignments is not included. Despite the these exclusions, the

Campus trace contains more operations per day (on average) than either the EECS03 or DEAS03

trace. Detailed characterization of the Campus trace can be found in [16] and [17].

SPECsfs: The SPECsfs97 benchmark is based on a survey of workloads seen by the “typical” NFS

server [49]. It consists of a number of client threads, each of which emits NFS requests for file

3.1. NFS TRACES 17

and directory operations according to an internal operation probability model. The benchmark pro-

grammatically generates an initial filesystem state during its setup phase. This initial namespace is

both simple and uniform, with only 3 levels of directories, each identical.

3.1.1 Operations

In the NFS protocol, the potentially multi-file operations are:

• CREATE: creates a new file, affecting the new file and its parent directory.

• LINK: links an existing file to a new name, affecting the existing file and its new (additional) parent

directory.

• MKDIR: creates a new directory, affecting the new directory and its parent directory.

• SYMLINK: creates a new symlink, affecting the new link and its parent directory.

• READDIRPLUS: reads the attributes for all files in a directory, requiring both the directory and all its

children.

• REMOVE: deletes an existing file and its entry in its parent directory.

• RENAME: moves an existing file or directory to a new name, possibly in a different directory. It affects

both source and destination directories, any file that may already exist with the destination name and

must be deleted, and, if a directory is being renamed, the renamed directory itself.

• RMDIR: deletes an existing directory and its entry in its parent directory.

For all of these operations, except RENAME and LINK, the file(s) and directory involved are in a parent-

child relationship and are thus almost always going to be on the same server in the same way that single-file

operations are. In a RENAME, the destination directory can be anywhere in the namespace. The RENAME

RPC includes enough information to determine whether it involves more than one directory, and cross-

directory RENAMEs are counted separately from RENAMEs of a file to a different name in the same directory.

Although the RENAME RPC does not contain enough information by itself to determine how far apart the

18 CHAPTER 3. TRACE ANALYSIS

source and destination directories are, this information can often be recovered by the method described in

Section 3.1.2.

Similarly, for a LINK operation, the directory the new name is being inserted in can be any directory,

not just the one the file was originally created in. Assuming that the file was assigned, when created, to

the same server as its original parent, the destination directory may not be assigned to the same server. The

contents of a LINK RPC often include enough information to infer whether the file was originally created in

a different directory, but it is not always possible to determine the distance between the new name and the

original name.

3.1.2 Reconstruction

Simply counting the number of single-file operations in a NFS trace is straightforward. Determining whether

a RENAME is single-directory or cross-directory is similarly straightforward. Determining the distance be-

tween the source and destination directories of a RENAME or LINK, and if a LINK is cross-directory, are

much more difficult.

The reason for this difficulty is that most NFS operations address a file (or directory) by its filehandle

and not by its pathname. A filehandle uniquely and persistently identifies a file in the exported file system. A

RENAME operation, for instance, will include the source and destination filehandles, which can be compared

to determine if they are the same or not. But, these filehandles provide no information about where in the

directory tree the source and destination directories lie.

The NFS protocol assumes that the NFS client will perform all pathname traversals. Thus the NFS

requests, as in the RENAME example, only need to include the filehandle of the last element in the path.

The LOOKUP operation is used to translate a parent filehandle and a child name into the child’s filehandle.

Every time a client attempts to access a path that it has not seen before, it will issue a sequence of LOOKUPs

beginning from the root and progressing all the way down the path. The client may cache the results of

LOOKUPs, and the trace may not not include every packet, so the chain of LOOKUPs seen in the trace may

not be complete. Other operations, such as MKDIR and CREATE return the filehandle of the newly created

object. Still other operations, such as READDIR, return a list of names that exist, but do not specify their

corresponding filehandles. Although the simple listing of names would be useful, the trace does not include

the responses to READDIRs.

3.1. NFS TRACES 19

Nevertheless, by observing the known name, filehandles, and parent-child relationships during the

course of the trace, it is possible to reconstruct most of the elements of the directory tree that must have

existed in order for the trace to be valid. At any point in the trace, this reconstructed file system will include

all the files referenced (but not deleted) in the trace up to that point. Any files that existed in the original

file system, but have not yet been referenced or listed, will remain unseen. Because of this, it is quite likely

that some (busy) subtree could be completely known, but that subtree’s connection to the root cannot be

determined yet. As subsequent operations reveal more information, it may become possible to connect it

to its proper place in the namespace. Additionally, if a directory is referenced in the trace, but none of its

children were accessed, none of the children will be visible. Because the READDIR responses do not pro-

vide any information on the number of entries in a directory, the number of unreferenced children cannot be

determined. Similarly, because the responses to FSSTAT are not included in the trace, the total size of the

original filesystem (and, thus, the number of unreferenced files) cannot be determined.

Given the reconstructed namespace hierarchy, the method used for determining the distance between the

two files in a multi-file operation (the source and destination directories of a RENAME or the original and new

directories of a LINK) works as follows: When a multi-file operation is encountered, the path is recursively

followed upwards from each of the files in question. When the paths intersect a common ancestor, the

sum of the numbers of links followed is counted as the distance between the files. If one traversal ends in

an ancestor that has not yet been seen, then the distance is unknown. If subsequent operations reveal the

common ancestor, previously unknown distances are not reevaluated, but future operations involving the

newly discovered ancestor will have known distances.

3.1.3 Results

Figure 3.1 shows the distribution of NFS operations for each of the workloads. Single-object operations

accounted for at least 98% of every workload. Of the remaining (multi-object) operations, the vast majority

(e.g. CREATE) involved a parent directory and one of its children and are, thus, likely to involve the same

server. Only a small fraction (between 0.004% and 0.010%) of NFS operations involved a RENAME between

two directories or a LINK of a file to a new directory, and, for all of these, one of the two directories was

the parent, child, or sibling of the other. Siblings (e.g. mv /a/foo /b/foo) were more common than the

other two cases (mv /a/foo /a/b/foo or mv /a/b/foo /a/foo). These cases are also likely to involve

20 CHAPTER 3. TRACE ANALYSIS

EECS DEAS Campus SpecSFS

Total operations 163,755,512 100.0% 789,104,790 100.0% 585,730,355 100.0% 100.0%

Single file or dir 160,811,696 98.2% 782,347,892 99.1% 579,906,161 99.0% 98.0%

GETATTR 16,836,393 10.3% 197,103,711 25.0% 13,475,241 2.30% 11.0%

SETATTR 5,385,233 3.29% 4,429,365 0.561% 7,649,003 1.31% 1.0%

ACCESS 36,554,813 22.3% 12,050,877 1.53% 16,517,405 2.28% 7.0%

READ 31,580,501 19.3% 409,879,410 51.9% 383,368,210 65.5% 18.0%

WRITE 18,497,209 11.3% 124,319,586 15.8% 123,753,745 21.1% 9.0%

READDIR 1,529,783 0.934% 2,641,479 0.335% 2,257,374 0.385% 18.0%

LOOKUP 50,407,746 30.7% 31,838,772 4.04% 34,876,085 5.95% 27.0%

Other 18,822 0.011% 84,692 0.011% 266,472 0.045% 7.0%

Parent & child 2,930,861 1.79% 7,543,510 0.956% 5,779,208 0.986% 2.0%

CREATE 1,359,889 0.830% 1,931,159 0.245% 1,496,054 0.255% 1.0%

REMOVE 1,092,608 0.667% 3,280,382 0.416% 2,897,888 0.495% 1.0%

MKDIR 38,835 0.024% 15,408 0.002% 616 < 0.001% 0.0%

RMDIR 39,197 0.024% 112,824 0.014% 716 < 0.001% 0.0%

LINK 309,589 0.189% 965,300 0.122% 1,422,781 0.243% 0.0%

RENAME 90,743 0.055% 174,406 0.022% 6,132 < 0.001% 0.0%

File & 2 nearby dirs 7,110 0.004% 75,122 0.010% 44,946 0.008% 0.0%

LINK 5,547 0.003% 39,235 0.005% ⋆ 44,684 0.008% 0.0%

RENAME 2,176 0.001% 35,887 0.005% 262 < 0.001% 0.0%

File & 2 distant dirs 619 < 0.001% 616 < 0.001% 33 < 0.001% 0.0%

LINK 6 < 0.001% 63 < 0.001% 0 0.000% 0.0%

RENAME 613 < 0.001% 553 < 0.001% 33 < 0.001% 0.0%

Table 3.1: NFS operation breakdowns for the Harvard traces. The number and percentage of each type of op-

eration in each NFS trace are shown, along with the percentage of such operations in the SpecSFS97 benchmark.

Operations are divided into four categories: those that affect only a single file or directory, those that affect a parent

directory and one of its children, those that affect a file and two nearby directories, and those that affect a file and two

distant directories. Two directories are considered to be ”nearby” if one is a parent, child, or sibling of the other. Ad-

ditionally, LINKS for which the original directory of file being LINKed is unknown are classified as involving a nearby

directory—this the source of all nearby LINKS in the Campus trace. Two directories are considered to be distant if they

are not adjacent or if the distance between them cannot be determined. Related NFS operations are grouped together

under one label: “READDIR” also includes READDIRPLUS and READLINK, and “GETATTR” also includes FSSTAT.

“Other” includes MKNOD, NULL, PATHCONF, ROOT, STATFS, and WRITECACHE.

3.2. CIFS TRACES 21

the same server. Multi-object operations involving directories further apart in the namespace accounted for

just 4 out of every 1,000,000 operations in the EECS trace and less than 1 in 1,000,000 operations in every

other trace.

It follows that a transparently scalable storage system faced with any of these NFS workloads would

experience at most a 0.010% rate of multi-server operations (if every multi-object RENAME or LINK was

multi-server), and more likely an order of magnitude or two lower. The relative infrequency of these opera-

tions suggests that a system would only suffer a small performance penalty from a high overhead approach

to handling multi-server operations.

3.2 CIFS traces

The second set of traces are of CIFS traffic to two enterprise-class filers in NetApp’s corporate data cen-

ter [37]. One was used by their engineering department and the other by the their marketing, sales, and

finance departments.

The operations in the CIFS protocol are similar in relevant aspects to those in the NFS protocol, except

that there is no LINK operation. Fortunately, the equivalent of the RENAME RPC includes the path of the

source and destination directories, so it is always possible to determine not only that the the directories are

different, but also how far apart the source and destination directories are in the directory tree. Additionally,

the traces include part of the server’s response to READDIR requests. This information means that the

number of children (at the point in time the READDIR RPC was executed) will always be known accurately,

and that the names of some of the never-referenced children will also be known.

3.2.1 Reconstruction

Reconstructing the possible file system state at the end of a CIFS trace is much easier than for NFS. All

relevant CIFS operations include the full path of the file or directory being operated on. Thus, reconstruction

is actually unnecessary for purpose of counting operations, although it will be necessary for the analysis in

Section 4.5.

We built a reconstruction tool that takes a CIFS trace and produces a directory tree, on a local file system,

that includes the files and directories known to exist in the trace. When a file or directory is created or deleted

22 CHAPTER 3. TRACE ANALYSIS

in the trace, it is created or deleted in the local file system. If a file is opened, read, or written in the trace, it

is assumed to exist and is created at that point. When a READDIR returns (part of) the contents of a directory,

those files are also assumed to exist and is created. For names only seen in a directory listing, it is unknown

whether they are files or directories; for names learned from other RPCs, it can be inferred from the RPC

whether the object in question is a file or a directory. Although READDIR provides the child count of a

directory, because subsequent CREATE and DELETE operation may add or remove files from the directory,

the child may not be accurate in the future. Rather than trying to account for each operation’s effect on

the child count, the child count returned by READDIR is ignored, which makes the CIFS reconstruction

consistent with NFS reconstruction.

3.2.2 Results

Figure 3.2 shows the operation distribution provided by Leung et al. [37] for the Engineering and Corporate

traces. Additionally, we were able to obtain a segment of the Corporate trace; its distribution is also shown

and differs somewhat from that of the overall Corporate trace. In particular, it has a higher percentage of

READs and WRITEs than either complete trace and has more CLOSEes than OPENS. Some of this discrepancy

may be due to differences in how CREATEs and OPENs are accounted for. CREATEs in CIFS may happen

explicitly, as a result of a CREATE RPC, or implicitly, as a result of a OPEN of a non-existent file. Conversely,

files can be OPENed explicitly by RPC and implicitly as a result of a CREATE. Our results for the CIFS traces

consider all OPENs to be CREATES, which is a worst-case assumption.

Like the NFS traces, the vast majority of operations are single-object. Except for CREATEs, which may

really be OPENs, the percentages of potentially cross-directory RENAMEs (0.04%-0.08%) are similar to those

of the NFS traces.

We were able to calculate RENAME distances for operations within the short segment of the Corporate

trace. Of the 193 cross-directory RENAMEs we found out of the 12.5 million CIFS operations in the segment,

84% had a destination directory that was either the immediate parent, child, or sibling of the source directory.

The remaining 31 “distant” RENAMES correspond to a multi-server operation rate of 2 per 1,000,000, which

is within the range of those observed in the NFS traces and the CIFS workload used to evaluate Farsite [12].

The anonymization scheme used for these traces intentionally preserved filename extensions; examining a

sample of cross-directory RENAMEs suggests many of them are caused by programs that create a file in a

3.2. CIFS TRACES 23

Engineering Corporate

Total operations 120,077,019 100.0% 144,751,276 100.0%

Single file or dir 103,226,846 86.0% 137,456,558 87.0%

GETATTR 49,882,755 41.5% 43,551,680 38.7%

SETATTR 919,664 0.77% 2,910,332 2.1%

READ 20,523,242 17.1% 28,482,816 19.7%

WRITE 8,912,434 7.4% 8,656,251 6.0%

READDIR 11,584,693 9.6% 16,022,330 11.1%

OPEN∗ 0 0.0% 0 0.0%

CLOSE 8,422,985 7.0% 6,777,623 4.7%

Other 2,981,073 2.5% 7,177,940 5.0%

Parent & child 16,850,173 14.0% 18,770,453 13.0%

CREATE∗ 16,806,651 14.0% 18,653,751 12.9%

DELETE 11,483 0.021% 54,161 0.037%

RENAME 31,601 0.027% 87,269 0.043%

File & 2 nearby dirs 667 <0.001% 3,562 0.001%

RENAME 667 < 0.001% 3,562 0.001%

File & 2 distant dirs 177 <0.001% 1,956 <0.001%

RENAME 177 <0.001% 1,956 <0.001%

Table 3.2: CIFS operation breakdowns for the NetApp traces. The number and percentage of each type of opera-

tion in each trace are shown. Operations are divided into four categories: those that affect only a singly file or directory,

those that affect a parent directory and one of its children, those that affect a file and two nearby directories, and those

that affect a file and two distant directories. Two directories are considered to be nearby if one is a parent, child,

or sibling of the other. Otherwise they are considered to be distant. CREATE and OPEN operations cannot easily be

distinguished from each other, therefore they are counted as CREATES. Related CIFS operations are grouped together

under one label: “READDIR” consists of FINDFIRST2 and FINDNEXT2, “GETATTR” consists of QUERYFILEINFO and

QUERYPATHINFO, and “Other” consists of FLUSH, LOCK and all session and pipe management operations.

24 CHAPTER 3. TRACE ANALYSIS

temporary directory and move it to the final location.

3.3 Conclusion

Examining traces of real-world workloads reveals that the worst-case occurrence of potentially multi-server

operations is low (2%). If files are assigned to servers in a manner that keeps subtrees together, the worst-

case is far lower (0.01%) and the expected case is one in a million. As long as subtrees can be preserved

most of the time, a system that uses migration to implement multi-server operations would only incur the

penalty of migration extremely rarely. Thus, even a substantial migration penalty would only result in a

small overall slowdown.

Chapter 4

Object-ID assignment

In many distributed file systems [5, 9, 13, 14, 30, 47], including the prototype described in Chapter 5, every

object in the system is assigned a unique identifier and an object’s identifier has a role in determining which

server hosts that object. If files that were likely to be involved in multi-object operations together tended to

be hosted by the same server, then the number of multi-server operations would be much smaller than the

number of multi-object operations. This chapter discusses methods for assigning object identifiers so that

files likely to be involved in multi-object operations usually are hosted by the same server.

4.1 Overview

In any system with multiple servers, the question arises as to which files should be assigned to which servers.

If every file was independent and had an identical workload, the dominant concern would be to ensure every

server ended up with an equal number of files—with a uniform workload, the load and capacity utilization

of each server would be the same. Most deployed systems, however, must handle workloads that do not

exhibit these ideal properties.

First, actual file system workloads exhibit both spatial and temporal locality. Accesses to files in one

directory are frequently correlated with accesses to other files in that same directory, and a recently accessed

file is likely to be accessed again in the near future. Second, the initial access to a file requires an access to

its parent directory; an access to a directory makes an access of its children more likely. Furthermore, many

directory operations (CREATE, LINK) operate on both a parent directory and a child file’s inode at the same

25

26 CHAPTER 4. OBJECT-ID ASSIGNMENT

time. If the parent and child are assigned to different servers, the operation would involve both servers.

Since multi-server operations are more difficult than single-server ones, it would be advantageous to

minimize the number of multi-server operations by ensuring that a file was always assigned to the same

server as its parent. Of course, such a scheme would result in every file residing on just one server. To

avoid this, systems such as Farsite [13], Ontap GX [14] and Ceph [52] will partition the directory tree into

multiple subtrees and assign each server one or more subtrees. All operations within a contiguous subtree

will be local to one server, but operations that cross the boundary between subtrees will involve multiple

servers.

A danger with a subtree partitioning scheme is that determining which server is responsible for a file

requires knowing that file’s place in the directory hierarchy, which may require traversing the directory path

between the root and the file in question. Yet, file systems generally have a unique identifier for each file

(called a FileID, filehandle, inode number, or Object-ID depending on the system; OID will be used here),

and once the file name has been resolved to an OID, subsequent accesses use only the OID instead of the full

pathname. But, the OID by itself does not convey any information about which server is responsible for it;

only the initial path traversal does. If the operation includes the OID but not the full path name, as most NFS

operations do, the client must cache the OID-to-name and name-to-server mappings revealed by the original

lookup in order to know which server to issue the request to. If responsibility for a subtree is migrated to

a different server, the clients must repeat the (expensive) path traversal to determine the new correct server.

Some systems speed this process up by using an additional pathname-to-server mapping service [52].

Other systems, such as AFS [30], use the most significant bits of their OID to signify which volume a

file is in. Entire volumes are assigned to servers as a unit. Given just the OID, a client can determine which

volume that file resides in, check whether it already knows which server is responsible for that volume, and

if not, fetch that information from a volume location service. The volume location service is a relatively

simple key-value store, where they key is the fixed-size volume ID. and the value is the identity of the

server responsible for that volume. Directory operations within a volume will all be single-server, but those

crossing a volume boundary may by multi-server (and, in AFS, not performed atomically). Once a file has

been created in a volume, it cannot be migrated to a different volume, and a volume cannot generally be

split into smaller sub-volumes, which limits the flexibility the system has for performing load-balancing.

It would be desirable to combine the locality and variable sizes supported by subtree partitioning schemes

4.2. CHILD-CLOSEST POLICY 27

with the simplicity and one-step OID-to-server translation of volume-based schemes. Our approach to ac-

complishing this is with a namespace flattening policy that encodes the hierarchy of the file system names-

pace into the value of the OID. Like a volume-based scheme, the responsible server can be identified by

examining a prefix of the OID, though the length of the prefix can now be variable instead of fixed. Varying

the length of the prefix (and thus how many bits remain to identify a file under that prefix) allows for dif-

ferently sized subtrees. If the OID is generated appropriately, once an OID has been assigned, changing the

length of the prefix will result in splitting one “volume” into two smaller units, each with locality within it.

Many namespace flattening algorithms are possible; this chapter presents two such algorithms, child-

closest and cousin-closest, discusses some difficulties a namespace flattening algorithm may encounter and

their solutions, and evaluates the effectiveness of namespace flattening at representing the traced workloads

described in Chapter 3.

4.2 Child-closest policy

The child-closest policy, as the name suggests, aims to assign OIDs to the children of a directory that are

similar to the parent directory’s OID. The children will also have OIDs that are similar to each other. This

policy functions as follows:

First, the OID is divided bitwise into a directory segment and a file segment. The directory segment

is further subdivided into a number of directory slots. Each slot corresponds to a level in the directory

hierarchy, and the value in a slot identifies that directory within its parent. The root directory uses the most

significant slot, each of its children the next most significant, and so on. When creating a new directory, the

child’s directory segment is copied from its parent, with a new value chosen for the most significant empty

directory slot. Figure 4.1 shows the correspondence between elements of example hierarchy and slots within

an OID.

The file segment is a simple sequential counter for files created in that directory. A directory itself has a

file segment of all 0s. The first child file of that directory has the same directory segment, but file segment of

1. The second has file segment of 2 and so on. Figure 4.2 shows an example directory tree and the OID that

the child-closest policy assigns to each file or directory in the tree, using a dot notation (akin to that used for

IP addresses) to represent the directory and file slots.

28 CHAPTER 4. OBJECT-ID ASSIGNMENT/ d i r 1/ d i r 1 / d i r 2 R e g i o n/ d i r 1 / d i r 2 / d i r 3/ d i r 1 / d i r 2 / d i r 3 / fi l e 1 D i rS l o t 1 D i rS l o t 2 D i rS l o t 3 F i l eS l o tO I D
Figure 4.1: File and directory slots. An example file system path and OID are shown. The OID is segmented into a

number of directory slots and a file slot. The least significant bits of the OID are to the right and the most significant

are to the left. The correspondence between elements in the path and slots in the OID are shown by dotted lines for

the child-closest policy.

The child-closest policy has the convenient property that the most significant bits of the OID identify

a directory and the subtree below it. In the example in Figure 4.2, an OID mask of 1.2.x.x would specify

the subtree beginning with /dir1/dir2. Additionally, /dir1/dir2/file1 and /dir1/dir2/file2 and

so on will have consecutive OIDs, making it likely that their entries will be close to each other in whatever

OID index structures the system uses.

This policy is very similar to that used in Farsite, except that the Farsite FileID is variable-length and

grows with with directory depth [13]. Supporting variable-length object identifiers significantly complicates

the the protocols and system components that must handle OIDs, making a fixed-sized OID preferable. But,

with a fixed-size OID, the namespace may have both more levels than there are directory slots and more

files in a directory than can be represented in the file segment bits. This condition is termed overflow.

To accommodate overflow, 2 prefix bits are used to further split the OID into 4 regions. The first,

primary, region uses the assignment policy above. If the hierarchy grows too deep, the too-deep child

directory is assigned a new top-level directory slot with a different prefix (the too-deep region). Its children

grow downwards from there, as before.

If there are too many files in a directory, and the next directory slot value is unused, the large directory

takes over the OIDs reserved for its nonexistent sibling; the new file is assigned an OID that would be

used by its nonexistent cousin. If cousins already exist, the new file is assigned an OID from the too-wide

region. Within this region, fewer bits are allocated to the directory segment, and more to the file segment, so

4.3. COUSIN-CLOSEST 29/ d i r 1(1 . 0 . 0 . 0)/ d i r 1 / d i r 1(1 . 1 . 0 . 0) / d i r 1 / d i r 2(1 . 2 . 0 . 0) / d i r 1 / fi l e 1(1 . 0 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1(1 . 2 . 1 . 0) / d i r 1 / d i r 2 / fi l e 1(1 . 2 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1 / d i r 1(8 . 0 . 0 . 0) fi l e N(A . 0 . 0 1)fi l e 1(1 . 2 . 1 . 1)
Figure 4.2: Child-closest OID assignment policy. The OID chosen for each element of this simple directory tree is

shown. For clarity the example uses a 16 bit OID and a “.” is used to separate the value of each directory slot and file

segment. The straight dashed lines show a too-deep directory overflowing to a new “root” and a file in a large directory

overflowing to the too-wide region. The curved dashed lines point to the logical “parent” that the overflowed objects

are assigned OIDs under.

more files per directory can be handled. Finally, if either of these additional regions overflow, the catch-all

prefix is used, and OIDs are assigned sequentially from this region. No namespace flattening is done in the

catch-all region—it is a fall-back only.

In the case of any overflow, the additional children are effectively created under new “roots” and thus

have very different OIDs from their parents. However, those children will still have locality with their

own children (the parent’s grandchildren). Thus, one large subtree will be split into two widely separated

subtrees, each with locality within itself. If the two subtrees are both large enough, the loss of locality at the

boundary between subtrees should not have a significant effect, because most operations will be local to one

subtree or the other.

4.3 Cousin-closest

The child-closest policy suffers from the problem that, while child file OIDs are numerically consecutive

with their parent directory’s OID, the OIDs of child directories are not consecutive with the parent directory

or other child files. Instead, they fall within an N-bit bitmask of the parent directory, where N is the number

of bits in a directory slot. In the example in Figure 4.2, directories 1.1.0.0 and 1.2.0.0 differ only in 1.x.0.0

but are not consecutive—the 1.1.x.x OIDs lie between them.

These intervening OIDs may either be unused, in the case of empty directories, or be occupied by

30 CHAPTER 4. OBJECT-ID ASSIGNMENT

1.1.0.0’s descendents. If the system maintained indices sorted by OID, these descendents would occupy

the intervening entries in the index. Since common operations, such as an NFS3READDIRPLUS involve

accessing every child, both file and directory, it would be convenient if all the children of a directory were

numbered closer together. Additionally, eliminating sparseness in the OID space is useful for features such

as bulk capabilities and metadata prefetching [27].

The cousin-closest policy aims to address these issues. It uses the same file and directory slot partitioning

as the child-closest policy, but it constructs the directory slot values in a different manner. The root directory

uses the least significant directory slot. A child directory’s OID is constructed by shifting its parent’s OID

one slot to the left and inserting a new value into the least significant directory slot. File numbers are

assigned within a directory the same as with the child-closest policy and overflow is handled the same as

well.

The application of this policy to the same simple subtree example is shown in Figure 4.3. The net effect

is that directories at the same level of the hierarchy (cousins) will be numerically close to each other—the

only intervening OIDs will be those of their child files. Child directories will not be close to their parent

directory’s OID either numerically or in bitmask. Thus, while a prefix of the OID still identifies a directory,

it does not capture that directory’s children. For this reason, if the cousin-closest policy were used in a

system that partitions responsibility between servers based on OID, the number of multi-server operations

would be much higher than with the child-closest policy. Therefore, the rest of this chapter focuses on the

child-closest policy.

4.4 Optimizations

The previous examples assumed that the bit-widths of the directory and file slots were constant within each

region, but this is only a simplification. By analogy to IP subnetting, the the too-wide, normal, and too-

deep regions correspond to Class A, B and C networks. Similarly to how CIDR allows variable-size IP

subnetworks [20], the namespace flattening polices could use variable-size directory and file slots.

The bit-widths of the directory slot in one OID need not be the same as those in another OID, nor do the

widths need to be the same even within a single OID. If a directory is expected to have more subdirectories

than average, it could use a wider directory slot for its children. If it is expected to have fewer than average,

it could use fewer bits. Such a scheme would require the flattening policy to decide, when the parent

4.4. OPTIMIZATIONS 31/ d i r 1(0 . 0 . 1 . 0)/ d i r 1 / d i r 1(0 . 1 . 1 . 0) / d i r 1 / d i r 2(0 . 1 . 2 . 0) / d i r 1 / fi l e 1(0 . 0 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1(1 . 2 . 1 . 0) / d i r 1 / d i r 2 / fi l e 1(0 . 1 . 2 . 1)/ d i r 1 / d i r 2 / d i r 1 / d i r 1(8 . 0 . 0 . 0) fi l e N(A . 0 . 0 1)fi l e 1(1 . 2 . 1 . 1)
Figure 4.3: Cousin-closest OID assignment policy. The OID chosen for each element of this simple directory tree

is shown. For clarity the example uses a 16 bit OID and a “.” is used to separate the value of each directory slot and

file segment. The straight dashed lines show a too-deep directory overflowing to a new “root” and a file in a large

directory overflowing to the too-wide region. The curved dashed lines point to the logical “parent” that the overflowed

objects are assigned OIDs under.

directory is created, the number of bits to allocate for its child directories. For every subsequent creation of

a child directory, the flattening policy would then have to know how many bits it was allowed to use. Thus,

the number of bits allocated to the children must be recorded in the parent’s metadata along with the total

number of children (which must be recorded anyway). Storing and retrieving this extra information does

not add much overhead, because the other fields in the parent directory’s metadata must be read or modified

when creating a new child.

The handling of overflow, as described previously, results in the overflowed children receiving OIDs with

different most significant bits from those of their parents, which makes it likely that overflowed children will

be served by a different server than their parents. Obviously, minimizing the occurrence of overflow will

reduce the number of affected OIDs. But, when overflow does occur, it is possible to assign OIDs to the

overflowed children that are closer to those of their parents, making it more likely both will be served by the

same server. In addition to using the two global overflow regions, a number of local overflow regions could

also be used. The overflow region “closest” to the original OID would be used first, and the more distant

ones used only if the more suitable ones were full. One approach would be for a child that encounters

overflow to try to allocate a new OID from its grandparent’s OID space. Farsite uses such a policy when

restricted to using fixed-size FileIDs. If overflow is rare, and only by a few children per directory, the

overflowed children will have OIDs similar to their grandparent, which is still close to the OID of their

32 CHAPTER 4. OBJECT-ID ASSIGNMENT/ d i r 1(1 . 0 . 0 . 0)/ d i r 1 / d i r 1(1 . 1 . 0 . 0) / d i r 1 / d i r 2(1 . 2 . 0 . 0) / d i r 1 / fi l e 1(1 . 0 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1(1 . 2 . 1 . 0) / d i r 1 / d i r 2 / fi l e 1(1 . 2 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1 / d i r 1(1 . 2 . 2 . 0) fi l e N(1 . 2 . 0 . 1)fi l e 1(1 . 2 . 1 . 1)
Figure 4.4: Overflow into parent rather than overflow region. This example shows the same tree from Figure 4.2,

but with the too-deep subtree is overflowing into its parent directory’s OID space. The curved dashed lines point to

the logical “parent” that the overflowed objects are assigned OIDs under.

parent. If overflow is common, or one directory overflows by a large amount, the overflows will cascade

back up the directory tree, resulting in the contents of many directories being jumbled up into the same OID

space. This is particularly aggravated for very deep subtrees, which will be “squashed” into the OID space

normally used by a single directory. Depending on how much of a subtree is assigned to each server, this

may not affect the number of multi-server operations, but may affect the efficiency of each server. Figure 4.4

shows an example of this strategy.

It is also the case that not all levels of the directory hierarchy have the same meaning. Looking at

AFS and NFS installations at CMU, the top few levels, by convention, identify which administrative unit

and volume a particular file belongs to and may have far more entries than the average directory. For

example, /afs/ece/user/shafeeq corresponds to a volume assigned to a single user or purpose, and

/afs/ece/user has one entry for each of the thousands of users. AFS imposes the requirement that a

volume fits entirely on one server and most volumes are small enough that a transparently scalable system

would also assign all the files in a volume to the same server. Logically, multi-object operations within that

volume are far more likely than ones involving a directory in that volume and a directory in some other

volume. Therefore, as long as an overflow for a file within that volume would remain within that volume’s

OID space, it would not involve a multi-server operation.

One way to accomplish this, without the weaknesses of the Farsite policy, is to consider the volume-

identifying portion of the namespace separately from the namespace within each volume. Some number

4.5. EVALUATION 33/ d i r 1(1 . 0 . 0 . 0)/ d i r 1 / d i r 1(1 . 1 . 0 . 0) / d i r 1 / d i r 2(1 . 2 . 0 . 0) / d i r 1 / fi l e 1(1 . 0 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1(1 . 2 . 1 . 0) / d i r 1 / d i r 2 / fi l e 1(1 . 2 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1 / d i r 1(1 . 8 . 0 . 0) fi l e N(1 . A . 0 1)fi l e 1(1 . 2 . 1 . 1)
Figure 4.5: Overflow into volume-local overflow region. This example shows the same tree from Figure 4.2 but

with a too-deep directory overflowing into the volume-local overflow OID space for /dir1. The curved dashed lines

point to the logical “parent” that the overflowed objects are assigned OIDs under.

of the most significant bits of the OID can be reserved for a “volume identifier” and the remaining bits

allocated according to the child-closest or cousin-closest policies. Each volume’s OID space would have its

own overflow region for handling any overflowed children; only when a volume’s local overflow region was

full would the global overflow region be used. Figure 4.5 shows an example of this optimization in action.

As previously mentioned, the number of bits allocated for the “volume identifier” need not remain constant.

4.5 Evaluation

The goal of namespace flattening is to select OIDs that have locality corresponding to the directory hierarchy,

thereby enabling the effective use of a simple OID-to-server mapping service. If the child-closest OID

assignment policy successfully preserves the directory structure, then assigning a range of OIDs to each

server will be equivalent to assigning a subtree to each server. If multi-object operations are concentrated

within a subtree, as Section 3.1.3 shows, multi-server operations that cross subtrees, and thus servers, should

be rare.

In evaluating how well namespace flattening captures a directory hierarchy, the metrics of interest are:

• How many OID bits are required to represent the entire namespace without overflow?

• With a fixed number of OID bits, how often does overflow occur?

34 CHAPTER 4. OBJECT-ID ASSIGNMENT

The first metric corresponds to the maximum length of a Farsite-style variable-length OID, while the

second metric corresponds that best that a system with fixed-length OIDs could do. With fixed-length OIDs,

the exact choice of directory slot and file slot widths influences how often overflow occurs. The NFS and

CIFS traces described in Chapter 3 were analyzed to determine the OID lengths required and overflow rates

for the child-closest policy. Additionally, Douceur et al. performed a similar analysis on Windows local-disk

file-systems [13]; it is summarized in Section 4.5.5.

4.5.1 Methodology

For each of the NFS and CIFS traces, the file-system namespace was reconstructed from the trace as de-

scribed in Sections 3.1.2 and 3.2.1. Once the original namespace was reconstructed, it was then analyzed to

determine the following properties, which are plotted in Figure 4.6 and summarized in Table 4.1:

• The number of files in each directory.

• The number of directories in each directory.

• The depth of each file and directory.

These analyses are affected by the limitations of trace reconstruction. Only files and directories refer-

enced in the trace are known, and, for directories that are seen, not all of the directory’s children may be

seen. Additionally, in NFS traces, it is possible for disconnected subtrees to exist if their parent was never

referenced in the trace. These disconnected subtrees are treated as children of the root directory. The Cam-

pus trace, in particular, is distorted because almost half the directories in the trace have parents that are never

seen.

These issues will result in a reconstructed file system that is smaller than that of the original trace. Any

subtree seen in the reconstructed file system will also exist in the original file system (though it may be

misplaced in the case of NFS traces), but subtrees not referenced in the trace will simply be omitted. The

effect of these omissions that the file and directory counts shown in this chapter represent a lower bound for

the original file system. Since these parameters influence the number of bits required and the incidence of

overflow, those values are also lower bounds.

4.5. EVALUATION 35

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Directory depth

F
ra

c
ti
o
n
 o

f
d
ir
e
c
to

ri
e
s

Campus

DEAS

EECS

Engineering

Corporate

(a) Depth of directories.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

File depth

F
ra

c
ti
o
n
 o

f
fi
le

s

Campus

DEAS

EECS

Engineering

Corporate

(b) Depth of files.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Number of child directories

F
ra

c
ti
o
n
 o

f
d
ir
e
c
to

ri
e
s

Campus

DEAS

EECS

Engineering

Corporate

(c) Number of directory children.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Number of child files

F
ra

c
ti
o
n
 o

f
d
ir
e
c
to

ri
e
s

Campus

DEAS

EECS

Engineering

Corporate

(d) Number of file children.

Figure 4.6: File and directory depths and sizes. CDFs are shown for the number of files or directories found at each

level of the directory hierarchy reconstructed from each trace. For directory objects, the number of children of that

directory are counted, and CDFs shown separatly for the number of child directories and child files.

Because the traces provide no information the size of the original file system, it is not possible to de-

termine what fraction of the original file system is reconstructed. For this CIFS traces, comparing the total

36 CHAPTER 4. OBJECT-ID ASSIGNMENT

OID slot EECS DEAS Campus Engineering Corporate

Total objects 9558617 2871810 720265 2471650 2098232

Files 8856685 2490899 389633 1550067 1507386

Directories 700659 380911 330632 226438 253960

Roots 67215 204093 326504 1 1

Max depth 29 25 12 33 46

Max files in dir 36730 142513 11283 1162 4682

Max dirs in dir 822 3401 215 4501 2163

Max OID bits 109 91 56 153 113

Table 4.1: Trace properties. Properties of the directory hierarchy reconstructed from each trace are shown. The

number of total objects is the number of directory entries known to exist in the trace. The number of directories is the

number of objects known to be directories, and the number of files is the number of objects seen in the trace that are

known to be files. These may sum to less than the total number of objects because of directory entries that are known

to exist (from the size of the directory) but never seen in the trace (becuse of truncated or dropped packets). Almost

al of these “missing” objects are children of directories whose childen are never accessed. The number of “roots”

represents the number of directories that had a parent that was not seen in the trace. Thus, those directories cannot be

connected to their proper place in the hierarchy and are instead considered to be isolated subtrees. Each of the roots

is placed under a special top-level directory, but this top-level directory is not included in the totals. The “Max OID

bits” represents the number of OID bits required to represent the hierarchy with ideally sized and numbered slots and

no overflow.

number of directory entries in Figure 4.1 to the number of known files and directories shows that the re-

constructed file system includes at least 72% to 84% of the directory entries that are returned during the

trace. Since the distribution of file and directories among the “missing” entries is not known, they cannot be

included in the analysis without assuming a distribution for them. Even if an appropriate distribution could

be determined, the children of any of these missing, but assumed to exist, directories will also be unseen.

Thus, including these directories in the analyses would artificially increase the number of empty directories.

To avoid introducing these artificial distortions, the “missing” entries are not included in the analysis.

Analyzing the original file system, rather than a reconstructed one, would avoid these problems, but

the original tree is not available for any of the traced systems or other similarly-sized systems. Statistical

summaries, such as those produced by the fsstats tool [11] contain almost all the information necessary

to evaluate namespace flattening, but unfortunately do not separate counts of files and directories — which

is crucial. Simply modifying fsstats to separate these categories would allow for the correct calculation

of the worst-case maximum number of directory slots and OID bits required. Calculating the number of

overflows would require knowing the number of entries in every directory along every path, and not just

the maximum number of entries. A tool that collected this data would allow for the reconstruction the

original file system, but without the original file names. While many sites have been convinced to release

4.5. EVALUATION 37

statistics [11], enough data to reconstruct the entire file system, even with anonymized names, may be

considered too sensitive by some sites. The repository of fsstats statistics includes sites with up to 20 M

file and 1.3 M directories in their original file systems, which is about double the 9.6 M files and 0.7 M

directories of the largest reconstructed file system, so the size of the hierarchies considered in the following

analyses are within the range of sizes seen in surveys of complete file systems.

Knowing that the reconstructed file system has fewer objects than the original file system, analyses

based on reconstructed file systems can be expected to differ from the original in the following ways. First,

since the children of never-read directories are omitted from the reconstruction, the reconstructed filesystem

may be shallower than the original, and thus require fewer directory slots, and have fewer depth overflows.

Second, some files in each directory may be omitted, requiring fewer file bits and causing fewer width over-

flows. Third, some subdirectories in each directory may be omitted, requiring fewer bits in each directory

slot and thus reducing the number of width overflows, and reducing the depth of the reconstructed file sys-

tem, reducing the number of depth overflows. All of these effects reduce the number of OID bits required,

thus all the analyses of reconstructed filesystems are lower bounds for similar analyses of the original file

system.

4.5.2 Variable-length OIDs

Each of the reconstructed namespaces was traversed, and an OID was assigned for each file and directory

using the variable-length Farsite format. Each directory uses the minimum file and directory slot widths

needed to represent its children. Thus, each OID uses the minimum number of bits to represent the directory

structure without overflow. The distribution of OID lengths is plotted in Figure 4.7. Collisions between

OIDs that have different slot widths, but map to the same binary representation, are not accounted for in this

analysis—for example, OIDs 0x10.0x1 and 0x1.0x10 would have the minimum representation of 0x101.

If such a collision occurs, it can be resolved by either choosing the next available OID, or adding an extra

bit to distinguish the colliding OIDs.

4.5.3 Fixed-length OIDs, variable-size slots

The same reconstruction was performed for OIDs limited to a fixed size. Each directory still chose its

optimum file and directory slot widths. This represents the best use of OID bits, given that the OID allocator

38 CHAPTER 4. OBJECT-ID ASSIGNMENT

 0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

OID length

C
D

F
 o

f
fi
le

s

Campus

DEAS

EECS

Engineering

Corporate

Figure 4.7: Number of variable-length OID bits necessary. For each trace, CDF of OID lengths required to uniquely

represent each object are shown. Each file or directory slot was the minimum size necessary to represent that directory.

Collisions between OIDs with the same binary representation are not accounted for—these values represent a lower

bound on the OID size necessary to represent the hierarchy seen in the trace.

OID size EECS DEAS Campus Engineering Corporate

96 bits 3 0 0 0 0

64 bits 2 0 0 2 0

32 bits 7 3 1 8 1

Table 4.2: Overflow in OID length. For each trace, the number of objects that could not be assigned an OID under

their parent are shown. Each directory and file slot was the minumum width required to represent that directory.

Objects for which this required more bits than available are considered to have experienced overflow and are assigned

an OID from a single overflow region. Collisions between OIDs are not accounted for—doing so will increase the

number of bits required. Therefore, these values represent a lower bound.

knows what the final directory structure will be. Table 4.2 shows the number of directories and files that

cannot be assigned their desired OID because the fixed OID length is not large enough to represent the

desired OID. The children of overflowed parents are not counted as overflowed, because they have the same

locality with their parent that they would have had without overflow. Because of this, overflows are rarer

than the distribution of OID lengths in Figure 4.7 suggests—many of the long OIDs are from the same

subtree and, thus, experience overflow once for the entire subtree.

4.5.4 Fixed-length OIDs, fixed-size slots

The same reconstruction was performed with fixed-length OIDs in which the directory slot and file slot

widths were fixed across the entire namespace. This corresponds to the behavior of the namespace flattening

4.5. EVALUATION 39

OID slot bits EECS DEAS Campus Engineering Corporate

Tot Dir File

96 5 10 11478 0.12% 778 0.03% 0 0.00% 1061 0.07% 708 0.05%

96 4 11 3491 0.04% 2327 0.09% 0 0.00% 44 <0.01% 115 0.01%

96 3 14 6 < 0.01% 1 0.00% 0 0.00% 12 <0.01% 2 <0.01%

96 10 12 103727 1.09% 22051 0.83% 730 0.18% 51113 3.30% 44344 2.94%

96 10 15 103727 1.09% 22051 0.83% 730 0.18% 51113 3.30% 44344 2.94%

96 7 18 93254 1.01% 8714 0.32% 74 0.02% 20596 1.33% 27998 1.86%

64 5 8 96288 1.01% 6688 0.25% 74 0.02% 20862 1.35% 28339 1.86%

64 4 11 103820 1.09% 3021 0.11% 1 <0.01% 10566 0.68% 0 0.00%

64 3 12 11400 0.12% 779 0.03% 0 0.49% 1064 0.07% 9848 0.65%

64 10 12 209762 2.21% 44297 1.70% 862 0.09% 98238 6.35% 709 0.05%

32 5 6 634588 6.69% 129446 4.85% 5381 1.36% 215852 13.94% 234522 15.57%

32 4 7 631496 6.65% 113127 4.24% 5323 1.35% 190223 12.29% 210816 13.99%

32 3 10 626006 6.59% 86686 3.25% 3770 0.95% 176435 11.40% 185215 12.29%

Table 4.3: Overflow in depth. For each trace, the number of objects that could not be assigned an OID under

their parent, because all directory slots were used, are shown for several choices of OID, directory slot, and file slot

widths. The number of overflows depends mainly on the number of directory slots, since only that many levels of the

directory hierarchy can be represented without overflow. Objects that experienced overflow were assigned an OID in

the overflow region, which used the same slot widths as the main region but with 20 bits reserved for disambiguating

overflowed subtrees. This results in the overflow region having fewer directory slots than the main region. If the object

in question was a directory, its children are not also counted as overflowed because they will be local to their parent.

policies without any of the optimizations in Section 4.4. For simplicity, instead of the three overflow regions

described in Section 4.2, only a single overflow region was used. This overflow region used the same

directory slot widths as the main region, but had four fewer directory slots. The bits that would have been

allocated to the missing directory slots were instead used to distinguish overflows from different parents.

A number of OID lengths and slot widths were tried; the OID lengths reflect those used in existing

systems, and the slot widths were chosen based on the file and directory sizes in Figure 4.6. The number

of “too-deep” and “too-wide” overflows encountered in each case are shown in Table 4.3 and Table 4.4,

respectively.

If 96 bits were available for the OID, as is the case in Ursa Minor, all of the traces can be represented

nearly perfectly in terms of depth by more than one choice of slot widths. Even with fewer bits, the best

choice of slot widths is still nearly perfect, except for the Campus trace. Most of the overflows were from a

small number of relatively deep subtrees—if the number of directory levels representable was greater than

the “knee” in Figure 4.6(b), the exact choice of directory slot widths did not matter significantly.

Overflows in width, however, were much more common even with large OID sizes. The major source

40 CHAPTER 4. OBJECT-ID ASSIGNMENT

OID slot bits EECS DEAS Campus Engineering Corporate

Tot Dir File

96 5 10 1656024 12.11% 1766902 66.13% 30914 7.82% 32191 2.08% 58895 3.91%

96 4 11 1454319 10.63% 1649454 61.74% 15813 4.00% 52013 3.36% 56792 3.77%

96 3 14 522694 3.82% 1208560 45.24% 1888 0.48% 82998 5.36% 69526 4.62%

96 10 12 976613 7.14% 1426045 53.38% 7196 1.82% 545 0.04% 2790 0.19%

96 10 15 99326 0.73% 822294 30.78% 0 0.00% 139 0.01% 2203 0.15%

96 7 18 26551 0.19% 43065 1.61% 198 0.05% 4735 0.31% 11590 0.77%

64 5 8 2817873 20.60% 1978617 74.06% 135531 34.30% 61672 3.34% 108849 7.23%

64 4 11 1454319 10.60% 1649454 61.74% 15813 4.00% 52013 3.36% 56729 3.77%

64 3 12 1225390 8.96% 1512818 56.62% 9084 2.30% 83404 5.39% 70113 4.65%

64 10 12 976613 7.14% 1426045 53.38% 7196 1.82% 545 0.04% 2790 0.19%

32 5 6 4898888 35.82% 2147035 80.36% 272846 69.05% 140854 9.10% 227091 15.07%

32 4 7 3763574 27.52% 2080858 77.88% 209553 53.03% 107932 6.97% 172993 11.48%

32 3 10 1829711 13.39% 1803038 67.49% 31866 8.07% 89429 5.78% 96758 6.42%

Table 4.4: Overflow in width. For each trace, the number of objects that could not be assigned an OID under their

parent are shown. Each parent directory can hold as many files as fit in its file slot bits, and as many child directories

as fit in its directory slot bits; any additional files or directories experience overflow. Objects that experienced overflow

are assigned an OID from the overflow region, which used the same slot widths as the main region but with 20 fewer

bits available for directory slots. The total number of directory slots in the overflow region is correspondingly reduced,

and the bits that would have been used for the missing directory slots were instead used to disambiguate overflowed

subtrees.

of width overflows were small numbers of very large directories, which argues for using wider file and

directory slots in the “too-wide” overflow region. Because overflows for files and directories are summed

together, increasing the number of file slot bits at the expense of directory slot bits my decrease the number

of files that overflow but increase the number of child directories that overflow.

Although locality with the parent is lost with an overflow in width, the children still have some locality

among themselves. When the parent’s file slot fills up, a new file slot is allocated in the overflow region,

and subsequent children are inserted in that slot until the new slot, in turn, fills up and the process repeats.

Thus, while the number of files that overflow in width may be large, they fall into a much smaller number

of distinct groups. While a very large directory may have 10,000 children across 10 overflow slots, and all

10,000 children are counted as overflowed, scanning every file in the directory would only experience 10

switches of OID space. Creating each of those 10,000 files would, however, have a higher likelihood of

incurring a multi-server operation than if there were no overflow.

4.6. CONCLUSION 41

4.5.5 Farsite results

In the course of evaluating the OID assignment scheme used in Farsite, Douceur et al. examined the file-

system of a departmental file server with 2.3 million data files and 168,000 directories [13]. Using variable-

length OIDs, they found that the the mean identifier length was 52 bits, the maximum was 107 bits, and the

99th percentile was 80 bits. When using fixed 107 bits OIDs, 5% of files encountered overflow; with 48 bits

OIDs, 46% encountered overflow. They also observed that OID length grew logarithmically with the size

of the file-system, so much larger file systems would only require slightly longer OIDs. Their results are

consistent with ours.

4.6 Conclusion

The child-closest OID assignment policy can, even with fixed slot widths, assign children OIDs that fall

under their parent’s OID more than 99% of the time, except when faced with very large directories, when it

can assign at most 70% of children OIDS local to their parent. The OID allocation policy does not need to

be perfect—not all overflows will lead to multi-server operations, and any system with multiple servers will

need to cross a server boundary somewhere.

The version of the policy evaluated was relatively simple, and either of two optimizations would reduce

the number of multi-server operations caused by imperfect OID assignments. First, if the overflow regions

used different slot widths, the instances of repeat overflow for large directories would be reduced. Second, if

several local overflow regions were used instead of a single global one, overflow would reduce OID locality,

but would not result in multi-server operations.

42 CHAPTER 4. OBJECT-ID ASSIGNMENT

Chapter 5

Prototype

In order to explore the feasibility of using migration to support multi-server operations, I have implemented

this approach in the metadata path of the Ursa Minor distributed storage system. This chapter describes the

high-level organization of Ursa Minor and its Metadata and Namespace services, and provides more detail

on the internal components that enable its transparent scalability.

5.1 Ursa Minor

Ursa Minor [2] is a scalable storage system that, like other direct-access storage systems [24], is structured

in two primary parts: a data path for handling data access and a metadata path for handling metadata access.

This separation allows each path to be optimized for its purpose. Modern scalable storage systems are

expected to scale to thousands of storage nodes and tens or hundreds of metadata nodes, so each part is a

large distributed system in its own right.

As a whole, an Ursa Minor constellation, consisting of data nodes and metadata nodes, is expected to be

highly available and durable, like other distributed storage systems. Ursa Minor is also intended to be incre-

mentally scalable, allowing nodes to be added to or removed from the system as storage requirements change

or hardware replacement becomes necessary. To provide for this, Ursa Minor must include a mechanism for

migrating data from one data node to another and metadata from one metadata node to another.

The data path of Ursa Minor consists of a number of storage nodes, termed workers, which store byte

streams identified by a unique 128 bit Self-⋆ Object ID (abbreviated as SOID). There are no restrictions on

which objects can reside on which worker, and an object’s data can be replicated or erasure-coded across

43

44 CHAPTER 5. PROTOTYPE

multiple workers, allowing the flexibility to tune an individual object’s level of fault-tolerance and perfor-

mance to its particular needs. Because data operations only affect one a single object at a time, they affect

only a single worker (or group of workers identically) at a time. Thus, data path can scale transparently

simply by adding more storage nodes.

Accessing a particular file’s data requires two steps: first, the file name must be translated to a SOID,

and second, the workers(s) responsible for the file data must be identified so that they can be contacted to

retrieve the data. In Ursa Minor, these functions are performed by the Namespace Service (NSS) and the

Metadata Service (MDS), respectively, which together make up the metadata path.

In Ursa Minor, unlike most contemporary distributed file systems, the responsibility for managing con-

sistency between clients that concurrently operate on the same state is left to the clients themselves. Thus,

the MDS and NSS do not ensure the consistency of client caches, although they do protect the consistency of

internal MDS and NSS structures. Shifting responsibility to the client simplifies the implementation of the

the MDS and the NSS in ways that are highlighted below. As no current Ursa Minor client implements cache

consistency, the semantics provided by Ursa Minor are weaker than those provided by strongly-consistent

file systems. Because of this difference, care was taken to ensure that strong consistency could be retrofitted

into the metadata path at a later date, and the performance analyses in Chapter 6 were structured so that Ursa

Minor did not unduly benefit from its lack of cache consistency.

5.2 Metadata Service (MDS)

The Metadata Service in Ursa Minor maintains information on each object, similar to that maintained by the

inodes of a local-disk file system. For each object, the MDS maintains a record that includes the object’s size,

link count, attributes, permissions, and the list of worker(s) storing its data. Clients communicate with the

MDS via RPCs. Since clients are untrusted, the MDS must verify that each request will result in a valid state

and that the client is permitted to perform that action. Some requests, such as creating or deleting an object,

require the MDS to coordinate with workers. Others, such as updating an attribute or timestamp, reside

wholly within the MDS. The semantics defined for the MDS imply that individual requests are atomic (they

either complete or they don’t), consistent (the metadata transitions from one consistent state to another),

isolated (simultaneous requests are equivalent to some sequential order), and durable (once completed, the

operation’s results will never be rolled back). The transaction mechanism used to ensure this is discussed in

5.2. METADATA SERVICE (MDS) 45

detail in Section 5.8.

The MDS is responsible for all object metadata in Ursa Minor. Individual object metadata records are

stored in metadata tables. Each table includes all records within a defined range of SOIDs. The tables are

internally structured as B-trees indexed by SOID and are stored as individual objects within Ursa Minor.

The ranges can be altered dynamically, with a minimum size of one SOID and a maximum of all possible

SOIDS. Within those limits, the MDS may use any number of tables, and, collectively, the set of tables

contains the metadata for all objects. Storing the tables as objects in Ursa Minor allows the MDS to benefit

from the reliability and flexibility provided by Ursa Minor’s data path, resulting in the metadata path holding

no hard system state.

Because each table is itself an object, adding a new record to table T may increase the size of T’s data,

requiring an update of T’s metadata, which may be in a different table, S. These recursive updates are an

internal source of multi-object operations since both table T and table S are involved — though in most cases

they do not require full atomicity. These recursive transactions are described in more detail in Section 5.8.2.

Each Ursa Minor cluster includes one or more metadata servers. Each metadata server is assigned a

number of metadata tables, and each table is assigned to at most one server at a time. Thus, accessing

the metadata of any particular object will only involve one server at a time. Because the metadata tables

are themselves objects, they can be accessed by any metadata server using Ursa Minor’s normal data I/O

facilities.

The assignment of tables to servers is recorded in a Delegation Map that is persistently maintained by a

Delegation Coordinator. The delegation coordinator is co-located with one metadata server, termed the Root

Metadata Server. The root server is just like any other metadata server, except it happens to host the metadata

for the objects used by the metadata service. Clients request the delegation map when they want to access an

object for which they do not know which metadata server to contact. They cache the delegation map locally

and invalidate their cached copy when following a stale cached delegation map results in contacting the

wrong metadata server. Tables can be reassigned from one server to another dynamically by the delegation

coordinator, and this process is discussed in Section 5.5.

46 CHAPTER 5. PROTOTYPE

5.3 Namespace Service (NSS)

The Namespace Service manages directory contents. Directories are optional in Ursa Minor — applica-

tions satisfied with the MDS’s flat SOID namespace (e.g., databases, mail servers, scientific applications)

need not use directories at all. Other applications expect a traditional hierarchical directory tree, which the

Namespace Service provides.

Similarly to a local-disk file system, a directory entry is a record that maps a filename to a SOID.

Directories are B-tree structured, indexed by name, and stored as ordinary objects, with their own SOIDs.

At present, each directory object contains all of the directory entries for that directory, though there is no

obstacle to splitting a directory across multiple objects.

One design alternative, used by Ceph [52] and C-FFS [22], is to locate the inodes of a directory’s children

in the directory file itself. This would provide the benefits of increased locality (the child’s directory entry

and inode are frequently updated together) and reduced contention for access to the inode tables (each

directory effectively becomes a small table). This approach, however, complicates implementing hard links

and renames, as well as support for applications that do not require directories at all, so we did not choose

it.

Namespace servers are tightly coupled with metadata servers (in our implementation, a single server

process exports both RPC interfaces). Each namespace server is responsible for directories whose SOIDs

are within the range exported by its coupled metadata server. This ensures that a directory’s “inode” (the

attributes stored by the MDS) and its contents will always be served by the same process. When a metadata

table is reassigned to another server, the responsibility for those directories goes with it. For the rest of this

paper, we do not distinguish between the MDS and the NSS, and use the term “metadata server” to refer to

the combined server.

The NSS aims to support directory semantics sufficient to implement an overlying file system with

POSIX, NFS, CIFS, or AFS semantics. As such, it provides the POSIX notions of hard links, including

decoupling of unlink and deletion, and the ability to select how already-existing names are handled. Typical

operations include creating a file with a given name, linking an existing object under a new name, unlinking

an file, looking up the SOID corresponding to a file name, and enumerating the contents of directories.

5.4. SOID ASSIGNMENT 47

5.4 SOID assignment

In Ursa Minor, the SOID of an object determines which table, and thus which metadata server, that object is

assigned to. It follows that there may be advantages in choosing to use particular SOIDs for particular files.

For instance, the ls -al command will result in a series of requests, in sequential order, for the attributes of

every file in a given directory. If those files all had numerically similar SOIDs, their metadata would reside

in the same (or nearby) B-tree pages, making efficient use of the server’s page cache. Similarly, most file

systems exhibit spatial locality, so an access to a file in one directory means an access to another file in

that same directory is likely. Secondly, many directory operations (CREATE, LINK) operate on both a parent

directory and a child inode at the same time. If the parent and child had nearby SOID numbers, they would

likely reside in the same table, simplifying the transaction as discussed in Section 5.6.

For these reasons, it would be useful to assign SOIDs such that children of a directory receive SOIDs

similar to those of the directory itself. Fortunately, the child-closest policy described in 4.2 does just this.

The net effect of combining a child-closest SOID assignment policy with SOID-range tables is that each

table usually ends up containing a subtree. This is somewhat analogous to the volume abstraction offered

by systems like AFS, but without the predefined, rigid mapping of subtree to volume. Unlike these systems,

a too-large or too-deep subtree will overflow into another table, quite possibly not one served by the same

server. One can think of these overflowed subtrees as being split off into separate sub-volumes, as is done in

Ontap GX [14] and Ceph [52]. The “local-overflow” optimization described in Section 4.4, if implemented,

would assist in keeping the overflow within a single table.

Of the 128 bits in the SOID, 96 bits are available for use by the SOID assignment policy. By tuning

the bit widths of the directory segment, file segment, and directory slots to match the system’s workload,

instances of overflow can be made extremely rare [27]. Namespace manipulations, such as linking or renam-

ing files across directories, however, will result in the renamed file having a SOID that is not similar to the

SOID of its new parent or siblings. An analogous situation happens in local disk files systems: a renamed

file’s inode still resides in its original cylinder group after a rename. The MDS includes an operation to

atomically change an object’s SOID which could be used to renumber a renamed file into the SOID range

of its new parent. We do not, however, implement this yet.

The SOID of a deleted file is available for re-use as soon as the file’s storage has been reclaimed from

48 CHAPTER 5. PROTOTYPE

the relevant workers (this step is performed lazily in most cases). Thus, as long as a directory’s size does

not change over time, changing it’s contents does not affect the chance of overflow. In fact, reusing a SOID

as soon as possible should provide for a slight efficiency gain, by keeping the metadata B-tree compact.

In all of these cases, outside of the SOID selection policy, MDS treats the SOID as an opaque integer

and will operate correctly regardless of how much or little locality the SOIDs preserve. Performance will

be better with higher locality, however. The segment sizes do not need to remain constant over the life of a

constellation, or even across the SOID namespace, so there is the potential to adaptively tune them based on

the observed workloads. We have not yet implemented this functionality.

5.5 Metadata migration

Ursa Minor includes the ability to dynamically migrate objects from one metadata server to another. It

does so by reassigning responsibility for a metadata table from one server to another. Because the metadata

table (and associated directories) are Ursa Minor data objects accessible to all metadata servers, the contents

of the metadata table never need to be copied. The responsibility for serving it is simply transferred to a

different server. This section describes the process for doing so in more detail.

Each metadata server exposes an RPC interface via which the delegation coordinator can instruct it to

ADD or DROP a table. In order to migrate table T from server A to server B, the coordinator first instructs

server A to DROP responsibility for the table. When that is complete, the coordinator updates the delegation

map to state that B is responsible and instructs server B to ADD T. At all times, at most one server is

responsible.

When server A is instructed to DROP T, it may be in the process of executing operations that use T.

Those operations will be allowed to complete. Operations waiting for T will be aborted with an error code

of “wrong server”, as will any new requests that arrive. Clients that receive such a response will contact

the coordinator for a new delegation map. Once the table is idle, server A sets a bit in the table header to

indicate that the table was cleanly shut down, flushes the table from its in-memory cache, and responds to

the coordinator that the table has been dropped.

Adding a table to server B is also simple. When instructed to ADD responsibility, server B first reads the

header page of table T. Since T’s header page indicates it was shut down cleanly, no recovery or consistency

check procedure is necessary, so server B simply adds an entry for T to its in-memory mapping of SOID to

5.6. MULTI OBJECT OPERATIONS 49

table. Any subsequent client requests for SOIDs within T will fault in the appropriate pages of T. Before

its first write to T, server B will clear the “clean” bit in the header, so any subsequent crash will cause the

recovery procedure to run.

5.6 Multi object operations

For a server, performing a transaction on a single object is simple: acquire a local lock on the SOID in

question and on the SOID’s table, perform the operation, and then release all locks.

Performing a transaction with multiple objects or tables within a single server is similar, but complicated

by the need to avoid deadlocks between operations that try to acquire the same locks in opposite orders. Each

server’s local lock manager avoids deadlock by tracking all locks that are desired or in use. When all locks

required for an operation are available, the lock manager acquires all of them simultaneously and allows the

operation to proceed.

In the more complicated case (shown in Figure 5.1) of a multi-object and multi-server operation, the

server’s local lock manager will discover that all the required resources are not local to the server. The lock

manager blocks the operation and sets out to acquire responsibility for the required additional tables. To do

so, it sends a BORROW request to the Delegation Coordinator. The BORROW request includes the complete

list of tables required by the operation; the coordinator’s lock manager will serialize conflicting BORROWs.

When none of the tables required by a BORROW request are in conflict, the coordinator issues a series of

ADD and DROP requests to move all the required tables to the requesting server and returns control to it.

Those tables will not be moved again while the transaction is executing.

When the transaction completes, the requesting server sends a RETURN message to the coordinator,

indicating that it no longer requires exclusive access to that combination of tables. The coordinator deter-

mines whether it can now satisfy any other pending BORROW requests. If so, the coordinator will migrate

a RETURNed table directly to the next server that needs it, otherwise that table will be migrated back to its

original server. Note that, while waiting for a BORROW, a server can continue executing other operations on

any tables it already has; only the operation that required the BORROW is delayed.

50 CHAPTER 5. PROTOTYPE

M e t a d a t aS e r v e r B
1 . B o r r o w (S , T) C o o r d i n a t o r

M e t a d a t aS e r v e r A S t o r a g eN o d e5 . A d d (S) 2 . D r o p (S)4 . D r o pC o m p l e t e3 . W r i t e (S)6 . R e a d (S) ST
Figure 5.1: Borrowing a table. The sequence of operations required for Server A to handle an operation requiring

tables S and T, when table T is initially assigned to server A and table S to server B. Returning to the original state is

similar.

5.7 Root metadata server

Relying on a single root metadata server simplifies coordination, but has implications for the scalability of

the metadata service as a whole. Fortunately, the functions of the root metadata server can be distributed

across a cluster of servers. The root metadata server’s first function is to serve metadata on the objects used

by the metadata service. In an extremely large constellation, these internal objects may be numerous and

busy enough to exceed the capacity of a single root metadata server. The solution is simply to distribute

internal metadata across a tier of “internal” metadata servers instead of a single one. The client-facing

metadata servers will only ever need to issue single-object operations to the internal metadata servers, and

thus the internal tier should parallelize well.

The second function of the root metadata server is to serve the delegation map. While this is a simple

operation, every client will request a new copy of the delegation map when that client discovers that its

cached copy is stale. This load could be mitigated by allowing clients to fetch the delegation map from

any metadata server. The root, however, has the only completely authoritative copy; the copy at any other

metadata server S is authoritative for the objects assigned to S but may be stale for objects delegated to other

metadata servers. Therefore, a client that updated its delegation map from that of a non-root server may find

that the updated copy is inaccurate and need to retry to obtain a fresher delegation map. The same situation

can occur even if clients contact the root directly — the root may migrate a table immediately after the client

updated, so clients are already prepared to retry repeatedly.

5.8. TRANSACTIONS 51

The root metadata server’s third function is to serve as a coordinator for multi-server operations. This

task could instead be delegated to the internal tier of metadata servers. Each internal server would be

assigned a range of SOIDs, and that internal server would be responsible for coordinating all multi-server

operations that fall entirely into that range of SOIDs. Since each internal server is responsible for disjoint

ranges of objects, each can proceed independently of the others. Only in the case where a multi-server

operation involves tables coordinated by two different coordinators would the root server need to be invoked

to coordinate the operation.

While each of these techniques is relatively straightforward, we have not yet implemented them in Ursa

Minor because the root metadata server was only a bottleneck in a single experiment. However, we expect

it may be an issue in the future.

5.8 Transactions

Underlying the Metadata and Namespace Services is a transactional layer that manages updates to the B-

tree structures used for storing inodes and directories. The B-tree implementation is based on Berkeley DB

1.8.5 [42] that we have modified such that it uses Ursa Minor objects, instead of files, for storing B-tree

contents. This version of Berkeley DB includes no transaction support at all. However, the Ursa Minor

storage nodes and their access protocols guarantee that individual B-tree pages are written atomically to the

storage nodes and that data accepted by the storage nodes will be stored durably. Ursa Minor’s transaction

system extends these guarantees to transactions involving multiple B-tree pages spread across multiple B-

trees.

Atomicity is provided using a simple shadow-paging scheme. All updates to the B-tree data object are

deferred until commit time. The data object includes two storage locations for each page, and the location

written alternates on each write of that page. Thus, one location will contain the most recent version of

that page, and the other location will contain the next most recent version. Each page includes a header

that links it to all the other pages written in the same transaction, which will be used by the recovery

mechanism to determine whether the transaction committed or needs to be rolled back. Reading a page

requires reading both locations and examining both headers to identify the latest version. The server may

cache this information, so subsequent re-reads only need the location with the latest page contents.

Isolation is guaranteed by allowing only a single transaction to execute and commit on each B-tree at a

52 CHAPTER 5. PROTOTYPE

time. Every transaction must specify, when it begins, the set of B-trees it will operate on. It acquires locks

for all of those B-trees from the local lock manager, and holds them until it either commits or aborts. If,

during execution, the transaction discovers it needs to operate on a B-tree it does not hold a lock for, it aborts

and restarts with the new B-tree added to the set. This strategy is similar to that used by Sinfonia [4] mini-

transactions, which share the limitation of specifying their read and write sets up front. Most transactions

require only a single execution. The main sources of repeated executions are operations that traverse a

file system path: at each step, the SOID of the next directory to read is determined by reading the current

directory.

Consistency is only enforced for the key field of the B-tree records; maintaining the consistency of the

data fields is the responsibility of the higher level code that modifies them.

Durability is provided by synchronously writing all modified pages to the storage nodes at commit time.

The storage nodes may either have battery-backed RAM or themselves synchronously write to their internal

disks.

5.8.1 Recovery

If the metadata server crashes while committing a transaction, it is possible for the B-tree to be in an incon-

sistent state: for example, only 2 of the 3 pages in the last transaction may have been written to the storage

nodes before the crash. To resolve this condition, the metadata server performs a recovery process when it

restarts after an unclean shutdown. First, it queries each storage node to determine the location of the last

write to the B-tree object (the storage node must maintain this information as part of the PASIS protocol [1]).

The location of the last write corresponds to the last page written. Reading that page’s header will reveal the

identity of all other pages that were part of the same transaction.

If all the other pages have transaction numbers that match that of the last written page, then we know

that the transaction completed successfully. If any of them has an earlier transaction number, we know that

not all page writes were completed, and a rollback phase is performed: any page with the latest transaction

number is marked invalid, and its alternate location is marked as the valid one. At the end of rollback, the

latest valid version of every page is the same as it was before the start of the rolled-back transaction. The

recovery process can proceed in parallel for B-trees with independent updates, whereas two B-trees involved

in the same transaction must be recovered together. Because there is at most one transaction committing at

5.9. CACHING 53

a time on a given B-tree, at most one rollback on a given B-tree will be necessary.

5.8.2 Recursive transactions

As described in 5.2, a transaction that expands a metadata table T will need to update the metadata table’s

metadata, stored in table S. For example, a CREATE of a new object (with SOID 64.01) will add a metadata

record to the relevant metadata table (with SOID 4.10). The length of the table may change as a result,

requiring an update to the record for SOID 4.10 (which is stored in table 4.1). In most cases, it is sufficient

if the update to S happens before the update to T. Ursa Minor accomplishes this by ensuring that no server

is responsible for the metadata of any table it is exporting. Thus, S and T will be served by different servers,

and, in the event of a crash, T’s length may have increased without any new data having been written to T,

which is a condition the recovery process can handle.

The potential for recursion ends at the bootstrap table, which contains, only one metadata record. Thus

the bootstrap table’s metadata is static and recorded in the constellation configuration (similarly to the su-

perblock of a filesystem). The only object in the bootstrap table is the internal table, which contains the

metadata for the other metadata tables. Both the bootstrap and internal tables are served by the root meta-

data server, in violation of the previous rule. The root metadata server always assumes that any transaction

it performs will involve both tables, avoiding the need to support nested transactions.

5.9 Caching

All of the components in the Ursa Minor metadata path include some form of caching, as shown in Fig-

ure 5.2. This section describes the behavior of each level of cache and the interactions between them.

5.9.1 Delegation Cache

The delegation map, described in Section 5.5, is required in order for a client to decide which server is

responsible for operations on a particular SOID. The delegation map requires approximately 100 bytes per

table (10 kB to 76 kB for the experiments in Chapter 6), and clients fetch it in its entirety from the root

metadata server on startup. When the delegation map changes, as a result of a migration, the client will

continue to use its stale copy of the delegation map until the stale map causes it to send a request to a server

that is no longer responsible for an object that the client thinks it is. The server will respond with a “wrong

54 CHAPTER 5. PROTOTYPE

N F SS e r v e r
M D S

N S S B e r k e l e y D BP a g e C a c h e sC l i e n tL i b r a r y
T a b l e 1T a b l e 2M e t a d a t aC a c h e

O p e nD i rC a c h eD i rC a c h eM e t a �d a t aC a c h e D i r 3D i r 2D i r 1I n c o m i n gN F SR e q u e s t
S t o r a g eN o d e
S t o r a g eN o d e

D a t aC a c h e S t o r a g eN o d e
Figure 5.2: Caches along the Ursa Minor metadata path. An example client (a NFS head-end server) is shown on

the left, and an Ursa Minor metadata server is shown on the right. Traffic using the metadata protocols is shown with

dark arrows, while traffic using the data protocol is shown with white arrows.

server” error code, causing the client to realize that it’s cached copy is stale. The client will then attempt to

fetch a new copy of the delegation map from the root metadata server before retrying the operation.

Since it is likely that a number of operations will simultaneously notice a stale delegation map, the

following steps are taken to reduce the number of spurious retries and delegation update requests: First, the

client will only request one new copy of the map at a time — further operations that receive a “wrong server”

response will be blocked until the new map is received, and only then retried. Second, the server increments

a version number on each update to the delegation map. When a client requests an updated map, it includes

its cached version number. If the server’s version number is greater than the clients, it will immediately

respond with the new map. If the server’s version is the same as the client’s, then the client already has the

latest version and the server will wait to respond until the server’s version of the map changes. This avoids

a burst of failure, update, and retry cycles when a migration is in progress and the new server is not yet

ready to serve requests on the table in question. To avoid encountering RPC timeouts or blocking a client

indefinitely, the server will also respond before the RPC timeout expires even if it thinks the client already

has the latest version.

5.9. CACHING 55

5.9.2 Client metadata cache

In addition to the delegation map, clients can cache “inode” contents (object attributes and layout informa-

tion) returned by metadata servers. This cache is write-through — metadata modifying operations update

the cache after the operation succeeds at the server. The total size of the cache is fixed, and entries are

replaced in LRU order.

Clients that share objects must manage cache consistency among themselves; the MDS does not provide

a mechanism for maintaining strong metadata cache consistency. It does, however, provide two methods

of detecting consistency hazards. Stale layout information and capabilities will be detected when the client

contacts the wrong storage nodes or the correct storage nodes with the wrong capabilities. Generally, clients

first read the metadata for an object before modifying it. The server includes a version number in every

metadata response. When issuing a metadata modifying request, the client includes the cached version

number for that object. If the server has a version number higher than the client’s cached version, then

the server knows that the client has missed an update, and will reject the request, in a form of optimistic

concurrency control.

Stronger cache consistency, using mechanisms such as callbacks, would be straightforward to add to the

MDS client and server. But since no current application requires strong consistency, this feature was left

until it is required.

5.9.3 Client directory cache

Clients also cache the directory contents returned by RPCs such as READDIR, which returns the entire

contents of the directory, and LOOKUP which provides information about a single directory entry. Entries

from both sources are cacheable—if an entry is in the cache, then it definitely exists. If an entry is not in

the cache, the server must be contacted to determine if it exists but is not cached or does not exist at all.

Negative-entry caching would alleviate this problem, but it has not yet been implemented. The total size

of the directory cache is fixed, but the number of directories in it will vary depending on the size of the

cached directories. Like the client metadata cache, clients that concurrently modify the same directories

must manage the consistency of their directory caches on their own.

This cache is also write through — operations like CREATE and UNLINK modify cached directories

to match effect at the server. For the sake of simplicity, although the NSS protocol and server support

56 CHAPTER 5. PROTOTYPE

partial directory reads, this capability is not used and directories are fetched and cached in their entirety.

This greatly simplifies the implementation of the head-ends’s NFS3READDIR, which must support partial

reads. As with client metadata cache, the MDS does not ensure the consistency of the client directory cache,

although it could if required.

5.9.4 Server B-tree page cache

The metadata service uses the Berkeley DB B-tree package to access all persistent metadata tables and

directory contents. Berkeley DB includes a buffer pool that caches B-tree pages. Each open table and

directory is an individual B-tree object and has its own individual, fixed size, buffer pool. Each buffer pool

maintains its own LRU order. Because the buffer pool management is a part of the Berkeley DB code base,

using a more efficient unified buffer pool would be difficult. For every page in Berkeley DB’s cache, the

Ursa Minor transaction layer must maintain a shadow copy and an additional working copy, tripling the

memory required to represent a page. Ideally, only pages that were modified in a transaction would need

to have additional copies, but because of layering, the transaction layer does not know which pages will be

modified until after the modification occurs. Therefore, it must pessimistically assume that any page will

be modified. Because Berkeley DB is not threadsafe, accesses to a B-tree object must take place within a

transaction, which ensures only a single thread accesses a given B-tree object at a time.

Each metadata table ADDed to a server is opened in Berkeley DB as part of the ADD operation, creating

that table’s buffer pool. Memory for the buffer pool is allocated on demand; since each table’s pool is

relatively small (1 MB by default), however, it quickly reaches its full size. Directory B-trees, on the other

hand, are cached in their entirety. Since directories are usually only a few pages in size and READDIRs will

read the entire directory, caching the full directory is not a large increase in memory usage. When a table is

DROPped, it, and any open directories whose SOIDS lie in that table, are closed and the memory allocated

to their buffer pools reclaimed.

5.9.5 Server directory cache

Since each open directory is cached in its entirety by the B-tree layer, the size of the directory cache is

controlled by regulating the number of open directories. A directory must be open in order for an operation

to read or modify its contents. After the operation that opened it, a directory is kept open and used for other

5.10. HANDLING FAILURES 57

operations until it must be closed and evicted to make room for a different directory to be opened. The

default size is 1,000 directories per metadata server — managing the cache based on the amount of memory

used, as done for the client cache, would be preferable, but doing so is difficult because the actual amount

of memory used for each directory is not exposed at the layer that makes eviction decisions.

5.9.6 Server metadata cache

In addition to the per-table B-tree page caches, the MDS also maintains a unified cache of object meta-

data records. In contrast to the page caches, which contain pages with entries in the marshalled on-disk

record format, each entry in the in-memory metadata cache is a complex linked structure. Again, due to

layering, determining the exact size of each entry is difficult, so this cache is also managed by entry count

(10,000 objects by default).

Also unlike the B-tree page cache, entries in this cache can be locked individually and accessed outside

of a transaction. Thus, the common case of a LOOKUP that hits in this cache only has to contend with

another operation on the same object. A miss, on the other hand, must begin a transaction and unmarshall

the appropriate record from the B-tree (which may be in the page cache), which will contend with all other

transactions using the same table.

Since servicing a cache miss may be relatively slow, placeholder entries are used for objects that are

in the process of being created or read from a lower layer. Negative cache entries, for SOIDs known not

to exist in the B-tree, are supported, but are not enabled by default1. When a table is DROPped, any cache

entries for SOIDs in that table are removed.

5.10 Handling failures

Any of the components of the metadata path can fail at any time, but all failures should be handled quickly

and without data loss. In general, our design philosophy considers servers trustworthy; we are primar-

ily concerned with crashes or permanent failure and not with arbitrarily faulty computations or malicious

servers.

1Many of the misses in the metadata cache are due to operations that test whether an object does exist, and then create it, so the

the miss has the effect of causing the B-tree layer to page in (if necessary) the same page that would be needed during the create.

Thus, these mandatory misses usually don’t change the total work the B-tree layer must perform.

58 CHAPTER 5. PROTOTYPE

5.10.1 Failure of a metadata server

The most obvious components to consider for failure are the metadata server software and the hardware that

it runs on. A constellation monitoring component polls all metadata servers (as well as other components)

periodically. If the server does not respond within a time-out interval, that metadata server instance is

considered failed. The monitoring component will then attempt to start a replacement metadata server

instance, either on the same hardware or on a different node. The new instance queries the delegation

coordinator to determine the tables for which it is responsible and runs the recovery process. After recovery

completes, the new instance is in exactly the same state as the previous instance. While the new instance is

starting and recovering, client requests sent to the old instance will time-out and be retried.

Not only does a failed metadata server affect clients, but it may also affect another server if it failed

in the middle of a migration. The delegation coordinator will see its ADD or DROP request time out and

propagate this error to any operation that depended on the migration. The metadata being migrated will be

unavailable until the metadata server restarts, just like any other metadata served by the failed server. It is

reasonable for a multi-server operation to fail because one of the servers it needs is unavailable.

When the failed metadata server restarts, the delegation map it receives from the coordinator will be

unchanged from when the server began its last ADD or DROP: a failed ADD will be completed at this time,

and a failed DROP effectively never happened. Instead of waiting for a server to restart, the tables assigned

to the failed server could simply be reassigned to other working servers. Doing so, however, complicates the

process of recovering a table that was involved in a multi-table (but same server) transaction: As described

in Section 5.8.1, both tables must be recovered together, which poses a problem if the two tables have been

reassigned to different servers for recovery. Although it is possible to detect and handle this case, in the

interest of simplicity, we avoid it by always trying to recover all the tables assigned to a failed server as

one unit. A system that used per-server transaction logs that covered multiple tables would face a similar

problem—it would be much simpler to replay the entire log rather than partition it and replay it in pieces.

5.10.2 Failure of the delegation coordinator

A failed delegation coordinator will prevent the system from performing any more delegation changes,

although all metadata servers and clients will continue to operate. As the delegation map is stored in an

object and synchronously updated by the coordinator, the coordinator is stateless and can simply be restarted.

5.10. HANDLING FAILURES 59

If the failure happened during a migration, the metadata table(s) being migrated will be in one of two

states: the delegation map says server A is responsible for table T but server A does not think it is, or the

delegation map says no server is responsible for T. The delegation map is always updated in an order such

that a server will never be responsible for a metadata table that is not recorded in the delegation map. To

handle the first case, a newly started coordinator will contact all metadata servers to determine which tables

they are serving and issue the appropriate ADD requests to make the server state match the delegation map.

In the second case, an appropriate server is chosen for tables that have no assigned server, and an ADD

request is issued.

Additionally, since the delegation coordinator is usually also the root metadata server responsible for the

metadata objects, failure of this machine means that the other metadata servers will not be able to perform

any operations that cause metadata tables to expand. The criticality of the root metadata server makes it a

good candidate for replication, perhaps using a replicated state machine protocol such as Zzyzx [28].

5.10.3 Network partitions

A data-center scale distributed system, while being physically in one room, is interconnected by a complex

network that may include several layers of switches and links. A failure of one link or switch may leave

functioning subsets of Ursa Minor nodes and clients on both sides of the failed component.

Correct operation of the constellation requires that there be at most one instance of each Ursa Minor

component at a time. If the constellation monitor is on the one side of a network partition, it may incorrectly

declare a properly operating metadata server on the other side of the partition to have failed.

Restarting a new instance would result in two servers trying to serve the same objects, violating the

consistency assumptions. To avoid this, the delegation coordinator revokes the capabilities used by the old

instance to access its storage nodes before granting capabilities to the new instance to do the same. Once

capabilities have been successfully revoked on a quorum of storage nodes, not enough storage nodes remain

that might still honor that capability. Thus, while the old instance may still be running, it will not be able

to access its backing store, preserving consistency. Also clients will not be able to use capabilities granted

by the old instance to access client data. If the revocation attempt fails to reach a quorum of storage nodes,

perhaps because they are also on the other side of the network partition, the coordinator will not reassign

the partitioned server’s tables until the partition heals. The old instance, which can still contact the storage

60 CHAPTER 5. PROTOTYPE

nodes and clients on its side of the partition, continues uninterrupted until then.

Similarly, there must only be one delegation coordinator across the now partitioned system. One method

to ensure this, which we have not yet implemented, is to use a quorum protocol amongst metadata servers

to elect a new coordinator [34].

5.10.4 Failure of a storage node

For storage node failures, we rely on the Ursa Minor data storage protocol to provide fault tolerance by

replicating or erasure-coding object data across multiple storage nodes. Since the contents of the metadata

tables cannot be reconstructed from any other source, they must be configured with appropriately high fault

tolerance.

5.11 NFS head-end

While the server-side of the metadata path has been described in detail, Ursa Minor also provides client

libraries that implement the client side of the MDS and NSS RPC protocols. Applications may be linked

against these libraries and access Ursa Minor directly or linked against a POSIX shim library that imple-

ments POSIX file system calls on top of Ursa Minor. Both of these approaches involve modifying user appli-

cations. The alternative, of implementing an installable filesystem through the VFS layer [32] or FUSE [21]

would be preferable, but require interacting with the client’s OS kernel, which is more difficult to implement

than a purely user-level solution.

The solution employed in Ursa Minor is to use a translating head-end to translate client NFSv3 requests

into the corresponding Ursa Minor data and metadata requests. The head-end is an Ursa Minor client

application that implements the server side of the NFSv3 protocol. Exporting NFSv3 allows for running

standard NFS benchmarks, such as SPECsfs97, against Ursa Minor without involving the host OS’s NFS

implementation. The same approach of using a translating layer between a standard filesystem protocol and

a special internal protocol has been used in many systems, such as OntapGX [14] and Slice [5].

The NFS head-end is responsible for issuing NFS filehandles and maintaining the mapping between

a filehandle and the SOID of the file to which it corresponds. It does so by including the SOID is the

filehandle.

The NFS head-end serves data-only NFS requests, such as NFS3READ, by reading the file data from the

5.11. NFS HEAD-END 61

storage nodes and returning it to the client. Once read from the storage nodes, file data is cached by the

head-end for future use.

Reading a file’s data from the storage nodes requires metadata (the storage node list) for that file. Simi-

larly, returning any file attributes, such as length or mode, requires retrieving those attributes from the MDS.

The NFS head-end accesses metadata through the Ursa Minor client library interface. Since the attribute

read and the data read may occur at different points in the NFS head-end code-path, a single NFS request

may cause multiple metadata calls to the Ursa Minor client library. The client library implements a metadata

cache, described in Section 5.9 to speed up such repeated requests.

Data modifying operations, such as NFS3WRITE, update the data cache and are propagated to the storage

nodes lazily in accordance with NFS semantics. Any metadata updates required to perform the data write

(such as updating the “number of blocks used” attribute) are performed when the data is flushed to the

storage node.

Metadata modifying operations, such as NFS3SETATTR or NFS3CREATE, cause an immediate corre-

sponding Ursa Minor operation. Directory operations, such as NFS3CREATE, may cause the NFS head-end

to first perform an Ursa Minor LOOKUP in order to verify that the new file’s name doesn’t already exist

before performing a CREATE to create the file. The CREATE will perform the same existence check again

at the metadata server before actually creating the object. This partially duplicated work is an artifact of

how the head-end was developed; the head-end predates the NSS and therefore had to implement directories

itself. Given the requirement to maintain both modes of operation, restructuring the head-end’s code paths

to avoid duplicating work when using the NSS would be difficult.

A list of NFS operations and the corresponding MDS and NSS operations they induce is given in Ap-

pendix A.

A constellation may include any number of NFS head-ends. Each NFS head-end exports a separate NFS

filesystem, using distinct ranges of SOIDs. Of the 128 bit SOID, 32 bits are reserved to identify the head-

end, and the remaining 96 bits are available to be used by the SOID assignment policy. This is done to avoid

requiring the coordination between NFS head-ends that would be necessary to maintain cache consistency

if more than one NFS head-end was exporting the same NFS filesystem. As far as the metadata servers are

concerned, the workload they receive from the NFS head-ends is similar to what they would receive if the

head-end’s NFS clients used Ursa Minor directly instead of NFS.

62 CHAPTER 5. PROTOTYPE

Chapter 6

Evaluation

To demonstrate and enable evaluation, we constructed a transparently scalable Metadata Service for Ursa

Minor that uses migration to support multi-server operations. We evaluate the performance of Ursa Mi-

nor with a standard benchmark (SpecSFS97) and a range of modified workloads to reveal the sensitivity

our implementation to characteristics of the workload and explore the influence of system configuration

options likely to be encountered in systems like Ursa Minor. Section 6.1 describes the benchmarks we

used. Section 6.2 describes the hardware and software configurations. Section 6.3 discusses Ursa Minor’s

performance in scalability benchmarks. Section 6.4 discusses the influence of workload properties, Sec-

tion 6.5 discusses the influence of system parameters, Section 6.6 discusses the difficulty of implementing

multi-server operations, and Section 6.7 discusses additional observations.

6.1 Benchmark

The SPECsfs97 [49] benchmark is widely used for comparing the performance of NFS servers. It is based

on a survey of workloads seen by the typical NFS server and consists of a number of client threads, each

of which emits NFS requests for file and directory operations according to an internal access probability

model. Each thread creates its own subdirectory and operates entirely within it. Since each thread accesses

a set of files independent from all other threads, and each thread only has a single outstanding operation,

this workload is highly parallelizable and contention-free.

In fact, using the namespace flattening policy described in Section 5.4, Ursa Minor is trivially able

to assign each thread’s files to a distinct SOID range. Thus, each metadata table consists of all the files

63

64 CHAPTER 6. EVALUATION

belonging to a number of client threads, and all multi-object operations will only involve objects in the

same table. While this is very good for capturing spatial locality, it means that multi-table and multi-

server operations will never occur for the default SPECsfs97 workload. To force multi-table operations, we

adjusted the namespace flattening policy to perform more poorly and intermix each client thread’s directories

with those of other threads using the same NFS mountpoint.

Because the SPECsfs97 benchmark directly emits NFS requests, these requests must be translated into

the Ursa Minor protocol by an NFS head-end as described in Section 5.11. Each head-end is an NFS server

and an Ursa Minor client, and it issues a sequence of Ursa Minor metadata and/or data requests in order to

satisfy each NFS request it receives. In the default SPECsfs97 workload, 73% of NFS requests will result in

one or more Ursa Minor metadata operations, and the remaining 27% are NFS data requests that may also

require an Ursa Minor metadata operation. Like any Ursa Minor client, the head-end can cache metadata, so

some metadata operations can be served from head-end’s client cache, resulting in a lower rate of outgoing

Ursa Minor metadata requests than incoming NFS requests. Each head-end is allocated a distinct range of

SOIDs for its use, and it exports a single NFS file-system. Thus, different head-ends will never contend for

the same objects, but the client threads connected to a head-end may access distinct objects that happen to

be in the same metadata table.

Each run of SPECsfs97 produces a latency measurement at several target throughput levels. As specified

by SPEC, the single throughput metric we report from a run is the highest throughput achieved in that run

with an average latency of less than 40 ms. All graphs in this section show the throughput metric from at

least 3 runs averaged together. Except as noted below, we comply with the SPECsfs97 run reporting rules

in all regards, including uniform access.

6.1.1 Modifications to SPECsfs97

In order to use SPECsfs97 to benchmark Ursa Minor, we found it necessary to make a number of practical

modifications to the benchmark parameters and methodology specified by SPEC. First, we modified the

configuration file format to allow specifying operation percentages in floating point to better match the

percentages revealed by trace analysis. Second, we doubled the warmup time for each run to 10 minutes to

ensure the measured portion of the run did not benefit from startup effects. Neither of these changes should

affect the workload presented during the timed portion of the run.

6.1. BENCHMARK 65

The potentially multi-object NFS operations are CREATE, which always involves a parent and child,

and LINK, RENAME, and DELETE. The default SpecSFS97 workload contains no LINKs or RENAMEs. The

SPECsfs97 load generator can be configured to generate those operations, but the source and destination

directory will always be the same in both cases. Similarly, all generated DELETEs only involve files still

in their original parent directory. To induce cross-directory operations, we modified the load generator

to randomly select the target directory of a LINK. Doing the same for RENAME was not feasible given

the implementation of the load generator. This modification should have no effect on the experiments in

Section 6.3 using the SPECsfs97 operation mix, but will affect those using other operation mixes.

While SPECsfs97 is intended to stress all components of a storage system, we are most interested in iso-

lating the performance of the metadata service—for our purposes, the NFS head-ends can thus be considered

part of the load-generating system and not part of the system under test. In order to stress MDS performance,

we must provision the Ursa Minor constellation so that the MDS is always the bottleneck. Doing so requires

enough storage nodes to collectively hold the metadata objects in their caches—otherwise, the storage nodes

become the bottleneck. The number of files used by SPECsfs97 is a function of the target throughput and, at

high load levels, would require more storage nodes than we have available. Thus we reduce the number of

files by half, correspondingly reducing the total size of metadata by half. To avoid confusion, we refer to this

benchmark as SFS-half. With the reduction, SFS-half uses up to 14 million files and directories, requiring

44 GB of metadata storage. Finally, we configure the head-end NFS servers to discard any file data written

to them and to substitute zeroes for any file data reads. The Ursa Minor metadata operations associated with

file reads and writes are still performed, but the Ursa Minor data operations are not, so we can omit storage

nodes for holding file data.

Although SFS-half has fewer files than SPECsfs97, the number of files is still a function of target load. If

the head-end cache sizes are held constant, runs of SFS-half with different target load levels will experience

different hit rates in the head-end cache. Because misses in the head-end cache must be served by the MDS,

changing the head-end hit rate changes the operation mix seen by the MDS. To eliminate this confounding

effect, we configure SPEC-half to use a constant number of files (8 million, requiring 26 GB of metadata or

4 million, requiring 13 GB) regardless of target load and refer to this benchmark as SFS-fixed.

66 CHAPTER 6. EVALUATION

6.1.2 Inducing multi-server operations

Since multi-server operations do cause additional overhead, it is important to consider the effect they have

on overall performance. To examine this, so we modified the SFS-fixed workload so that LINK operations

would always involve a directory other than the original parent. The default SPECsfs97 workload contains

no LINKs; if X% of LINK operations are added, the resulting workload is referred to as SFS-Xpct.

To keep the total number of operations constant, we reduce the number of CREATE operations by one for

every LINK operation we add. Thus, the sum of LINK and CREATE is a constant 1% of the NFS workload.

The resulting MDS workload contains a higher fraction of both, because the head-end cache absorbs many

of the LOOKUP requests. Both LINK and CREATE modify one directory and one inode, so any performance

difference between the two can be attributed to the overhead of performing a multi-server operation instead

of a single-table, and thus single-server, one. A RENAME, however, modifies two directories and their

inodes and is slower than a CREATE even on a single server, which is why we use LINK as the source of

cross-directory operations in this experiment.

Since each SPECsfs thread’s directories are distributed across all the H tables used by that thread’s

head-end, and tables are distributed uniformly across servers, (H −1)/H of LINKs will be multi-table. All

of those will be multi-server as long as H <= S, where S is the number of metadata servers. When H > S,

up to (H −S)/H multi-table operations may hit a different table on the same server. Additionally, files that

require a multi-server LINK will cause any READDIRPLUS requests on their new parent directory to also

involve both servers.

6.2 Experimental setup

Table 6.1(a) lists the hardware used for all experiments, and Table 6.1(b) lists the assignment of Ursa Minor

components to physical machines. This particular assignment was chosen to ensure as uniform hardware

and access paths as possible for each instance of a component, given the constraints of available hardware

and network configuration described in Section 6.2.1.

6.2.1 Hardware configuration

Given the physical location of the machines used for these experiments, ensuring adequate network band-

width required careful attention to the network topology and node assignment. After several iterations, we

6.2. EXPERIMENTAL SETUP 67

Type Type A Type B

Count 38 75

RAM 2 GB 1 GB

CPU 3.0 Ghz Xeon 2.8 Ghz Pentium 4

Disk 4× ST3250823AS 1× WD800J

NIC Intel Pro/1000 MT Intel Pro/1000 XT

OS Linux 2.6.26

Switch 3× HP ProCurve 2848

(a) Hardware configuration.

Component HW type Quantity

Storage nodes A 24

Metadata servers B 32

NFS head-ends A & B 48

Load generators A 5

Root metadata server

A 1Root storage node

Constellation manager

(b) Ursa Minor configuration.

Table 6.1: Hardware and software configuration used for all experiments.The number of metadata servers used

varied; all other components remained constant. The root metadata server and its storage node only stored metadata

for objects used by the metadata service. Metadata accessible by clients was spread across the remaining storage nodes

and metadata servers.

arrived at the setup shown in Figure 6.1. All storage nodes, due to their physical location were attached to

Switch 1. All metadata servers and most of the NFS head-ends were equally distributed over the remaining

two switches. The root MDS and the remaining NFS head-ends were also attached to Switch 1. The inter-

switch network consisted of 8 trunked 1 Gbps links between Switch 1 and each of the other two switches.

All of the traffic between the metadata servers and the storage nodes, as well as half of traffic between

head-ends and metadata servers, flowed over these links.

Of the theoretical 8 Gbps trunk capacity, we observed actual throughput of 5 Gbps in each direction.

Due to limitations in the the link-aggregation policy used by the switches, traffic is not perfectly balanced

across all links, and the degree of imbalance varied with the number of metadata servers used. The highest

observed throughput on a single link was 900 Mbps, suggesting that the busiest link is limiting the total

bandwidth across the trunk. Thus, the network may be a bottleneck for configurations with 32 or more

metadata servers. To reduce bandwidth contention, the SFS load generators were attached to Switch 2 and

Switch 3 and loaded only the NFS head-ends on the same switch. The NFS head-ends, however, accessed

metadata servers on both switches equally.

To improve utilization for small experiments, the cluster could be split in two independent halves, one

using half of Switch 1 and all of Switch 2, the other using the other half of Switch 1 and all of Switch 3.

In this configuration, the inter-switch links carried all of the traffic between metadata servers and storage

nodes, plus at most 10% of the head-end traffic.

68 CHAPTER 6. EVALUATIONS w i t c h 1
S w i t c h 2 S w i t c h 3S t o r a g e N o d e s (2 4) R o o t M D S (1)S F S C l i e n t (1)U p l i n k (8) U p l i n k (8)N F S (4)

M D S (1 6) S F S C l i e n t s (2)N F S (2 2) M D S (1 6)S F S C l i e n t s (2) N F S (2 2)
Figure 6.1: Network configuration. The network topology of the cluster used for experiments. The large constella-

tion used all machines, and the two small constellations used all the machines on either Switch 2 or Switch 3 and half

of those on Switch 1, with separate root metadata servers for each constellation.

6.2.2 Software configuration

We configured the test constellations with the goal of ensuring that the MDS was always the bottleneck.

The root metadata server was only responsible for objects internal to the MDS (i.e., the metadata for the

metadata table objects themselves) and the delegation map. Depending on the experiment, we used either

a large constellation, with 48 NFS head-ends, or a small constellation, with 24 NFS head-ends. Two small

constellations could operate simultaneously without interference. In either case, each head-end served 20

SFS client threads (960 or 480 in total), and the SOID range assigned to each head-end was split across 8

or 16 tables. The resulting 384 tables were assigned in round-robin fashion across metadata servers, so that

every head-end used some object on each metadata server. Similarly, tables were stored on storage nodes

(24 in the large constellation and 12 in the small) such that each metadata server used every storage node.

These choices increase the likelihood of multi-table operations and contention, and they are intended to be

pessimistic. The SOID assignment policy was configured to support a maximum of 4095 files per directory

and 1023 subdirectories per directory, which was sufficient to avoid overflow in all cases. Each storage node

used 1.6 GB of battery-backed memory as cache. In addition, each metadata server used 1 MB per table for

its B-tree page cache and used as much memory as necessary to cache the metadata of 10,000 files and the

contents of 1,000 directories. The head-ends had 256 MB each for their client-side metadata caches.

6.3. SCALABILITY 69

6.3 Scalability

This section evaluates how well Ursa Minor scales, in number of metadata servers, for various benchmark

workloads, with and without multi-server operations.

6.3.1 Without multi-server operations

Figure 6.2 shows that the Ursa Minor MDS is transparently scalable for the SFS-fixed workload. Specif-

ically, Figure 6.2(a) shows that the throughput of the MDS increases linearly as the number of metadata

servers increases. The NFS throughput of the head-ends also increases linearly, as shown in Figure 6.2(b).

This is as expected, because the basic SPECsfs97 and SFS-fixed workloads cause no multi-server opera-

tions. Thus, adding additional servers evenly divides the total load across servers. Because the head-ends

include caches and because the SFS operation rate includes NFS data requests, the number of requests that

reach the metadata servers is lower than that seen by the head-ends. However, the workload presented to

the MDS is much more write-heavy—26% of requests received by the MDS modify metadata, compared to

7% of NFS requests that definitely will modify metadata and 9% that possibly will. 63% of MDS requests

involve multiple objects, but those objects are always in a parent-child relationship and assigned to the same

table by the namespace flattening policy.

For the SFS-half workload, however, the MDS throughput shown in Figure 6.2(a) increases linearly,

while the NFS throughput shown in Figure 6.2(b) increases sub-linearly. The reason for this is that the

SFS working set size increases with throughput, whereas the head-end cache size remains constant. Thus,

as the number of metadata servers increases, the miss rate of the head-end caches also increases, which

both decreases NFS throughput and causes the operation mix seen by the MDS to contain an increasing

proportion of reads.

6.3.2 With multi-server operations

The SFS operation mix is not representative of all workloads—the trace analyses in Chapter 3 reveals some

traces to have very different operation mixes. To see how well Ursa Minor performs for such workloads, we

configured SFS-fixed to use the operation mix from the DEAS [16] trace since it had a more read-dominated

workload in contrast to SFS. The known cross-directory RENAMEs (0.005%) and potentially cross-directory

LINKs (0.12%) are sources of potentially multi-server operations in this workload. As a result, 0.92%-1.02%

70 CHAPTER 6. EVALUATION

 0 4 8 12 16 20 24 28 32
 0

 5

10

15

20

25

30

35

SFS−half

SFS−fixed

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) MDS throughput

 0 4 8 12 16 20 24 28 32
 0

 20

 40

 60

 80

100

120

140

SFS−half

SFS−fixed

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)
(b) NFS throughput

Figure 6.2: Throughput vs. number of metadata servers for workloads with no multi-server operations. The

number of MDS operations and NFS operations completed per second are shown separately for the SFS-fixed and

SFS-half workloads. Note the difference in scales between MDS and NFS operations, which is due to caching at the

NFS head-ends. Each data point is the throughput reported by a single benchmark run and the averages of at least 3

runs with the same number servers are shown in solid lines. If a linear fit with correlation coefficient of > 0.995 was

possible, it is shown in dashed lines. All runs used the large constellation with 8 million files across 48 head-ends with

8 tables per head-end (384 tables).

of the MDS operations caused by the DEAS workload (using the pathologically bad OID assignment from

Section 6.1.2) would involve multiple servers. Figure 6.3 shows that Ursa Minor still scales linearly up to

24 metadata servers for such a DEAS-like workload. NFS performance for this DEAS-like workload is

increased in comparison the the SFS-fixed workload, and is due to the difference in operation mixes, but

MDS performance remains the same.

The benchmark chooses a random target directory for LINKS, with no regard to locality. Table 3.1

shows that LINKS that actually involve more than one directory in the DEAS trace are only 0.005% of the

workload, and of those, the vast majority involve a nearby target directory. Thus, this benchmark represents

a worst-case for a DEAS-like workload.

To separate the influence of the multi-server MDS operation rate from that of the rest of the work-

load, Figure 6.3 also shows performance for SFS-fixed modified as described in Section 6.1.2 to cause an

MDS multi-server operation rate of approximately 1% while preserving the SFS read:write ratio. This is

also linear, though lower in throughput than the unmodified SFS-fixed by 15%-25%. This is logical, since

6.4. SENSITIVITY TO WORKLOAD 71

multi-server operations incur the additional overhead of migration. The magnitude of this penalty is heav-

ily dependent on the Ursa Minor configuration—the same experiment scaled down and run on the small

constellation had a slowdown of 0%-10%—and this dependency is discussed further in Section 6.5. Note

that these slowdowns are relative to a workload with no multi-server operations; a system that exhibits 0%

slowdown can execute multi-server operations as fast as single-server ones and is therefore optimal.

6.3.3 Root metadata server

Both of the workloads with multi-server operations exhibit sub-linear throughput at 32 metadata servers.

The reason is that the single root metadata server is saturated. In the absence of multi-server operations, the

only requests that the root metadata server sees are UPDATE requests from other metadata servers whenever

the size of a metadata table grows, which amounts to nearly zero load. Whenever there is a multi-server

operation, in addition to the BORROW and RETURN, the root metadata server sees LOOKUP requests from

the destination server as it tries to access a newly migrated table. Additionally, any NFS head-ends that

request metadata in the migrated table will contact the original server, discover that their cached delegation

map is stale, and request an updated table from the root metadata server. This imposes a significant workload

on the root metadata server, as shown in Figure 6.4. Section 5.7 discusses ways to reduce the load on the

root metadata server.

6.4 Sensitivity to workload

As seen in Section 6.3.2, the overheads incurred by multi-server operations depend on the workload. Specif-

ically, they are expected to depend on the frequency of multi-server operations in the workload, on the num-

ber of files the workload involves, and on the mix and number of operations in the workload. This sections

examines the influence of each of these properties.

6.4.1 Percentage of multi-server operations

Figure 6.5 shows the MDS throughput for SFS-fixed as a function of the percentage of MDS operations

that involve multiple servers. NFS cross-directory operation percentages of 0.05% to 1.00% resulted in

MDS multi-server operation percentages of 0.07% to 4.75%. Because of the indirect control of the multi-

server operation rate, repeated runs at the same cross-directory operation rate varied in the rate of multi-

72 CHAPTER 6. EVALUATION

 0 4 8 12 16 20 24 28 32
 0

 5

10

15

20

25

30

35 SFS−fixed

DEAS−like

SFS−1pct

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) Large constellation MDS throughput

 0 4 8 12 16 20 24 28 32
 0

 20

 40

 60

 80

100

120

140

SFS−fixed

DEAS−like

SFS−1pct

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)
(b) Large constellation NFS throughput

 0 4 8 12 16 20 24 28 32
 0

 5

10

15

20

25

30

35

SFS−fixed

SFS−1pct

DEAS−like

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(c) Small constellation MDS throughput

 0 4 8 12 16 20 24 28 32
 0

 20

 40

 60

 80

100

120

140

SFS−fixed

DEAS−like

SFS−1pct

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(d) Small constellation NFS throughput

Figure 6.3: Throughput vs. number of metadata servers for workloads with multi-server operations. The

number of NFS operations and MDS operations completed per second are shown separately for SFS-fixed using both

the default SFS and DEAS operation mixes. The SFS-fixed workload causes no multi-server operations, whereas the

DEAS-like workload causes approximately 1% of MDS operations to actually involve multiple metadata servers (21%

involve multiple objects). NFS throughput is higher for DEAS because many of its requests are for file data, which

can be served from the head-end cache. MDS throughput for both workloads is similar except at 32 servers, when

the DEAS-like workload is bottle-necked by the root metadata server. For comparison, the SFS-1pct line shows the

SFS-fixed workload (63% multi-object) modified to cause the same 1% multi-server operation rate as the DEAS-like

workload. Thus the difference between SFS-fixed and SFS-1pct illustrates the overhead of multi-server operations.

The top row shows runs using the large constellation with 8 million files across 48 head-ends with 8 tables per-head

end (384 tables). The bottom row shows runs usisg the small constellation with 4 million files across 24 head-ends

with 16 tables per-head end (384 tables).

6.4. SENSITIVITY TO WORKLOAD 73

 0 4 8 12 16 20 24 28 32
0

1

2

3

4

SFS−fixed

DEAS−like

SFS−1pct

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) Root throughput vs. number of servers

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
0

1

2

3

4

5

6

384 tables

192 tables

 96 tables

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)
(b) Root throughput vs. percentage of multi-server ops

Figure 6.4: Root metadata server load. The number of MDS operations per second handled by the root metadata

server for the DEAS operation mix is shown on the left. On the right is the root throughput required as the percentage of

multi-server ops varies. In addition to those required to coordinate multi-server ops, these requests are either metadata

servers requesting metadata for the metadata table objects or clients trying to update their delegation map. Note that,

while the root throughput increases with the multi-server operation percentage, the overall throughput of the system,

as shown in Figure 6.9(a), decreases.

server operations they caused. Because of this, we could not reliably obtain multi-server operation rates of

less than 0.05%. Although 1.00% may seem like a small fraction of the total operations in the workload,

for comparison, the common data WRITE operation makes up only 9% of the SpecSFS97 NFS workload.

Indeed, these multi-server operation percentages far exceed those found in the trace analyses of Chapter 3,

but are analyzed for completeness.

As expected, throughput decreases as the percentage of multi-server operations increases, since each

multi-server op requires a table migration. Accordingly, the latency of LINKs are up to 4 × that of CREATEs,

as shown in Figure 6.6(a). The influence of this on overall latency is shown in Figure 6.6(b): the migrations

necessary for multi-server LINKs and READDIRs account for most of the increase in latency, while the

remainder can be be attributed to increased I/O between the MDS and storage nodes and to increased time

spent waiting to acquire locks inside the MDS.

74 CHAPTER 6. EVALUATION

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

SFS−fixed

SFS−Xpct

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) MDS throughput.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

SFS−Xpct

Multi−server MDS op percentage

S
lo

w
d
o
w

n

(b) MDS slowdown.

Figure 6.5: Throughput vs. percentage of multi-server operations. The numbers of MDS operations completed per

second are shown in Figure 6.5(a) for the SFS-Xpct workload where the percentage of multi-server LINK operations

(X) varies on the X-axis. The slowdown (relative to the case when no multi-server ops are present) is shown in Fig-

ure 6.5(b). The actual multi-server operation percentage achieved in a given run varies from the target percentage; the

actual percentage is plotted for each run, and the lines connect the average of all runs with the same target percentage.

All runs used the small constellation with 4 million files, 384 tables, and 12 metadata servers.

6.4.2 Workload size

The total number of files in the workload and the distribution into directories can affect performance it at

least two ways. First, the number of files per directory and the depth of that directory in the hierarchy

influence how often the SOID assignment policy encounters overflow. The effect of increasing overflow is

to increase the rate of multi-server operations. Thus, for two workloads that differed only in the number of

files, the workload with the larger number of files should have a larger fraction of its multi-object operations

involve multiple servers, shifting its performance to the right along the curves in Figure 6.5. Since the

directory hierarchy created by SpecSFS97 is simple, overflow never occurs, and this effect is not seen.

The second effect of varying the number of files in the workload will be to change the hit-rates of all of

the metadata caches in the system; a smaller workload should see higher hit rates and thus perform better.

Figure 6.7 shows the experiment from Section 6.4.1, but with additional SFS-fixed configurations using

2 million and 1 million files. When there are no multi-server operations, workloads with fewer files clearly

perform better. When there are multi-server ops, with 2 million files, the slowdown is the same as with

6.4. SENSITIVITY TO WORKLOAD 75

0.0% 0.1% 0.2% 0.3% 0.5% 0.9% 1.2% 3.2% 4.9%
0

20

40

60

80

100

120

140

160

180

Multi−server MDS op percentage

L
a
te

n
c
y
 (

m
s
)

CREATE

LINK

Weighted CREATE+LINK

(a) CREATE and LINK alone

0.0% 0.1% 0.2% 0.3% 0.5% 0.9% 1.2% 3.2% 4.9%
0

5

10

15

20

25

Multi−server MDS op percentage

L
a
te

n
c
y
 (

m
s
)

All Execution

All Lock

All I/O

Borrow for LINK

Borrow for READDIRPLUS

(b) Average over all ops

Figure 6.6: Effect on latency. The graph on the top shows latency of CREATE and LINK operations individually,

as well as the weighted average of those two operations (CREATE and LINK represent a constant 1% of the NFS

workload). On the bottom is the average latency over all operations, broken down into its major components. LINK

operations require a borrow when the target file of the link is assigned to a different server than the new parent

directory; a subsequent READDIRPLUS of the new parent directory will trigger a BORROW to read target file’s inode.

This experiment used the small constellation with 12 metadata servers and 384 tables.

76 CHAPTER 6. EVALUATION

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

17.5

4 million

2 million

1 million

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) MDS throughput.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

4 million

2 million

1 million

Multi−server MDS op percentage

S
lo

w
d
o
w

n

(b) MDS slowdown.

Figure 6.7: Influence of workload size. The numbers of MDS operations completed per second are shown in

Figure 6.7(a) for SFS-fixed workloads with varying percentages of multi-server LINK operations. The slowdown

(relative to the case when no multi-server ops are present) is shown in Figure 6.7(b). Separate curves are shown

for workloads with 1 million, 2 million, 4 million and 8 million files. The actual multi-server operation percentage

achieved in a given run varies from the target percentage; the actual percentage is plotted for each run, and the

lines connect the average of all runs with the same target percentage. The runs with 8 million files used the large

constellation with 384 tables and 12 metadata servers, while all others used the small constellation with 384 tables,

and 12 metadata servers.

4 million files—although with fewer total files, fewer files are affected by each migration, the fraction of

files affected by migration remains the same. With 1 million files, the slowdown is initially the same as

for the larger workloads, but throughput actually increases when the percentage of multi-server operations

is high. The reason is that with 1 million files and high LINK rates, the NFS head-end experiences more

metadata client cache misses when performing NFS data operations than it does at low LINK rates. While

the underlying reason for this behavior has not been determined, the extra metadata misses can easily be

served from the metadata server’s metadata cache and, thus, the MDS throughput increases because of the

“easier” workload.

6.4.3 Operation mix

The exact distribution of operations and operation types in the workload will affect how much work a server

must perform in order to service them. For instance, a workload that features mostly metadata modifying

6.4. SENSITIVITY TO WORKLOAD 77

operations will require the server to perform a write for each one of them, while a workload that mostly

reads from a small set of objects should be able to benefit from the server’s cache and require little work to

satisfy. These workloads will clearly perform differently even before multi-server operations are involved.

Figure 6.3, however, shows that the MDS performs similarly for both the DEAS-like and SFS-1pct

workloads, despite the two workloads having very different operation mixes. While they cause similar

rates of multi-server operations, SFS-1pct contains > 10× the number of metadata modifying operations as

DEAS-like yet it sees only 17% lower throughput. Even though the head-end’s client cache absorbs some

metadata reads, as shown by the difference in NFS performance, the MDS sees 73% metadata reads for

SFS-1pct compared to 31% for the DEAS-like workload. Examining the interaction between the metadata

server and the storage nodes reveals that the latency seen by the metadata server when reading a B-tree page

from the storage node is nearly the same as that for writing a page. Thus, a metadata modifying operation

should have the same latency as metadata read that misses in the server’s cache—only metadata reads that

hit in the server cache will be faster. This behavior is common to both single-server and multi-server MDS

operations.

6.4.4 Operation Rate

The previous experiments considered Ursa Minor’s performance at maximum load. Most deployed systems,

however, operate at less than peak load most of the time [16, 37]. To explore the overhead of multi-server

operations under such partial-load conditions, we configured the load generators to generate a constant 20 k

NFS operations per second (approximately 55% of maximum load), while varying the multi-server operation

rate.

Figure 6.8(a) shows the average latency for all MDS operations required to service that workload. Com-

pared to the maximum-load case shown in Figure 6.6(b), overall latencies, and particularly I/O latency, are

lower due to the reduced contention. In both cases, the overall latency is almost doubled at high rates of

multi-server operations but the increase is more rapid at partial load. Similarly, latencies for single-server

CREATEs and multi-server LINKs in Figure 6.8(b) are both lower than in the full-load case in Figure 6.6(a)

although the difference between LINK and CREATE latency is smaller at partial load. I/O latency increases

with increasing percentages of multi-server operations because more B-tree page reads are required, as

shown in Figure 6.8(c) and discussed further in Section 6.5.1. The end result is that, while both single-

78 CHAPTER 6. EVALUATION

0.0% 0.4% 2.5% 3.8% 4.8%
0

5

10

15

Multi−server MDS op percentage

L
a
te

n
c
y
 (

m
s
)

All Execution

All Lock

All I/O

Borrow for LINK

Borrow for READDIRPLUS

(a) Latency of all operations.

0.0% 0.4% 2.5% 3.8% 4.8%
0

10

20

30

40

50

60

70

80

Multi−server MDS op percentage

L
a
te

n
c
y
 (

m
s
)

CREATE

LINK

Weighted CREATE+LINK

(b) Latency of CREATE and LINK.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
0.00

0.25

0.50

0.75

1.00

1.25

1.50

20k SFS ops/s

Multi−server MDS op percentage

P
a
g
e
−

in
s
 p

e
r

M
D

S
 o

p

(c) B-tree page-ins per MDS op.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

20k SFS ops/s

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(d) MDS throughput.

Figure 6.8: MDS under partial load. The performance of the MDS is shown for SFS-Xpct workloads that present a

constant 20,000 ops/sec workload to the NFS head-ends. The resulting MDS throughput is shown in Figure 6.8(d) and

increases slightly with the rate of multi-server operations, due to the behavior of the head-end. Figure 6.8(a) shows the

average latency for all MDS operations and Figure 6.8(b) shows the latency of CREATE, LINK and the average latency

just those two operations. Figure 6.8(c) shows the average number of B-tree pages read during each MDS operation,

and the increased reads correspond to the increased I/O latency in Figure 6.8(a).

6.5. SENSITIVITY TO SYSTEM PARAMETERS 79

server and multi-server operations are faster at partial load, the relative penalty of a multi-server operation

is greater than it is at full-load.

Curiously, while the NFS load presented to the NFS head-ends remains constant, the number of MDS

operations issued by the head-ends increases slightly as the percentage of multi-server operations increases.

The increase primarily consists of extra single-object metadata reading operations.

6.5 Sensitivity to system parameters

The overhead of migration, and thus the overhead of performing multi-server operations, is affected by

the various parameters and features the system was designed and configured with. This section explores

the parameters that directly affect migration overhead, the origins of those overheads, and the influence of

common system tuning parameters.

6.5.1 Migration granularity

One of the main factors that affects migration overhead is the granularity at which migration is performed.

Since Ursa Minor can only migrate entire tables as a single unit, each table can only be involved in one

multi-server operation at a time. Furthermore, a table is unavailable for serving any operations while the

migration is in progress. Thus the higher the number of tables in the system, the lower the overhead of

multi-server operations should be.

Figure 6.9(a) shows the MDS throughput for SFS-fixed as a function of the percentage of MDS opera-

tions that involve multiple servers, as in Section 6.4.1. Separate curves are shown for Ursa Minor configu-

rations with 12 metadata servers, 24 head-ends, and each head-end’s metadata split across 16, 8, or 4 tables

for a total of 384, 192, or 96 tables in the system. As expected, configurations with coarser granularity suffer

a greater slowdown for the same workload, when multi-server operations are present. Some of the decrease

in throughput can be attributed to the decrease in total B-tree cache size (a constant 1 MB per table), but the

slowdown for each configuration is computed against that configuration’s throughput with no multi-server

operations and, thus, should account for the degradation due to cache size. The remainder of the degrada-

tion is due to both the increased number of multi-server operations, which are themselves slower, and to

side-effects of migration that slow down other single-server operations.

80 CHAPTER 6. EVALUATION

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

384 tables

192 tables

 96 tables

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) MDS throughput.

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

384 tables

192 tables
 96 tables

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(b) MDS throughput magnified.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

384 tables

192 tables

 96 tables

Multi−server MDS op percentage

S
lo

w
d
o
w

n

(c) MDS slowdown.

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
 0.0%

 2.0%

 4.0%

 6.0%

 8.0%

10.0%

384 tables

192 tables 96 tables

Multi−server MDS op percentage

S
lo

w
d
o
w

n

(d) MDS slowdown magnified.

Figure 6.9: Influence of migration granularity. The numbers of MDS operations completed per second are shown

in Figure 6.9(a) for SFS-fixed workloads with varying percentages of multi-server LINK operations. The slowdown

(relative to the case when no multi-server ops are present) is shown in Figure 6.9(c). For clarity, the right column

contains magnified plots corresponding to the dotted regions with low percentages of multi-server ops. The actual

multi-server operation percentage achieved in a given run varies from the target percentage; the actual percentage is

plotted for each run, and the lines connect the average of all runs with the same target percentage. All runs used the

small constellation with 4 million files and 12 metadata servers. Separate curves are shown for configurations that

used 384, 192, and 96 metadata tables.

6.5. SENSITIVITY TO SYSTEM PARAMETERS 81

0.1% 0.3% 0.9% 3.2% 0.1% 0.4% 3.4% 0.1% 0.4% 2.9%
0

50

100

150

200

Multi−server MDS op percentage

L
a
te

n
c
y
 (

m
s
)

Drop Add Root Borrow Return

384 tables 192 tables 96 tables

Figure 6.10: Components of multi-server operation latency. These graphs show the contribution each step of a

multi-server operation makes to the latency of that operation. Each multi-server operation makes a complete cycle of

BORROWing and RETURNing a table. Each BORROW and RETURN involves one server ADDing and the other DROPing

the table, and the “Add” and “Drop” bars show the total time spent in the two ADDs and two DROPs in each cycle. The

“Root” bar shows the time taken by the delegation coordinator’s lock manager to lock both the tables in preparation

for migration. The remainder of the time spent waiting for the BORROW and RETURN RPCs (not accounted for by

the “Add”, “Drop” or “Root” states) are shown separately. Figure 6.5.1 shows the latencies for three Ursa Minor

configurations with 384, 192, and 96 tables, corresponding to the throughputs in Figure 6.9(a). Within each group,

separate bars show workloads with varying percentages of multi-server operations.

Effect on multi-server operations

The latency of performing a multi-server operation, shown in Figure 6.5.1 is largely unaffected by migration

granularity. This is logical, because the actions performed during a migration do not change with the size

of the individual table being migrated. The only component that does change in latency of the ADDing a

table. Each ADD requires reading a number of B-tree pages from the table’s storage node. The latency for

reading an individual page is 5.6 ms for 384 tables, 4.5 ms for 192 tables, and 3.2 ms for 96 tables, and

the ADD latency decreases in similar proportion. The reason read latency is lower is that, regardless of the

number of metadata server, the transaction layer described in Section 5.8 is limited to a single concurrent I/O

operation per table. Thus, with fewer tables, the storage nodes see fewer concurrent requests, and are able

to service them faster. The effect of table granularity on read latency would still exist even if all operations

were single-server.

On the other hand, it is counter-intuitive that while latency decreases, throughput (shown previously

in Figure 6.9(a)) also decreases. This is an artifact of how the SPECsfs97 benchmark functions; it tries

progressively higher throughput targets until either the throughput achieved stops increasing or average

82 CHAPTER 6. EVALUATION

latency exceeds a preset 40 ms threshold. Thus, a run that achieves a lower throughput will generally have

fewer requests submitted than one which achieves a higher throughput. If requests were submitted at equal

rates, the slower system would show higher latency, most likely exceeding the 40 ms threshold and cause

the benchmark to terminate.

Effects on other operations

Each time a table is borrowed, the original server must flush that table from its cache, the destination server

will have to fault in any pages it needs to service the cross-server LINK, and, once the table is returned, the

original server will have to fault in any pages needed for subsequent requests. The pages would likely have

been in the original server’s cache if the cache were not flushed. Figure 6.11(a) shows that the total number

of page reads does increase with the rate of multi-server operations. Some of these page reads are those

mandatory misses required to service the LINK and accounted for in the latency of LINK. Excluding these

reads yields the flush-induced increase in cache misses, shown in Figure 6.11(b), which mirrors the shape

of the overall slowdown curve in Figure 6.9(c).

When metadata is partitioned into fewer tables, the number of non-LINK operations contending for

the same table increases. Since each of these operations may need to read B-tree pages, the penalty for

flushing a table from the cache increases as the number of tables decreases. Additionally, migrating a table

makes it unavailable for serving other operations while the migration is in progress—when a single table

represents a large fraction of the total metadata in the system, making one table unavailable has a large

impact on overall performance. This is exacerbated in Ursa Minor, because threads within the metadata

server contend for table-level locks. As a result, if a server has too few available tables, lock contention will

limit performance even if there is spare CPU or I/O capacity. Given that small tables permit finer-grained

load balancing, a reasonable Ursa Minor configuration might place 1%-10% of a server’s capacity in a single

table as suggested for other systems [7].

Increasing the number of tables increases the overhead of identifying which table any particular SOID

resides in. Once the correct table has been identified, however, finding that SOID’s record will be faster

because the table contains fewer records, resulting in a shallower B-tree. A major penalty of having too

many tables is that the delegation table will be large, possibly requiring a more efficient means of storing

and distributing it. Additionally, the more tables the SOID-space is partitioned into, the more likely it is

6.5. SENSITIVITY TO SYSTEM PARAMETERS 83

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
0.00

0.25

0.50

0.75

1.00

1.25

1.50

384 tables

192 tables

 96 tables

Multi−server MDS op percentage

P
a
g
e
−

in
s
 p

e
r

M
D

S
 o

p

(a) B-tree page-ins per MDS op.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

10%

20%

30%

40%

50%

60%

70%

80%

384 tables

192 tables

 96 tables

Multi−server MDS op percentage

In
c
re

a
s
e
 i
n
 p

a
g
e
−

in
s
 p

e
r

M
D

S
 o

p
(b) Increase in page-ins.

Figure 6.11: Page-ins per MDS operation vs. percentage of multi-server operations. The average number of MDS

B-tree pages read during each MDS operation is shown on the left for SFS-fixed workloads with varying percentages

of multi-server LINK operations. The increase in page-ins (relative to the case with no-multi server operations) for the

experiments in Figure 6.9 is shown on the right.

that a multi-object operation will be multi-table. But, if the assignment of tables to servers also accounts for

locality, the probability of a multi-server operation might not change.

6.5.2 Server-local state

A second factor that directly affects migration overhead is the amount of state that must be migrated from

the source server to the destination server. In the current implementation of Ursa Minor, the servers maintain

no local state that cannot be recovered from the metadata tables stored on the storage nodes. If Ursa Minor

were to be extended in the future to support client cache consistency, each server would need to maintain a

few bytes of local state per open file, per client. This may add up to tens or hundreds of kilobytes per table.

If the metadata servers maintained a write-back cache, rather than write-through, the dirty data in the cache

would need to be flushed either to the storage nodes or transferred directly to the new server (as is done in

Ceph [52]). This may involve a few megabytes being transferred between servers. In a system designed

without a back-end storage pool shared between servers, the entirety of the metadata table would need to be

copied from one server to another.

84 CHAPTER 6. EVALUATION

To explore this issue, we modified Ursa Minor to copy a specified amount of dummy data from the

source server to the destination server during each migration. Figure 6.12 shows the effect on throughput

of copying 100 kB, 1 MB, and 10 MB of local state during migration. While 100 kB of local state makes

little difference in overall throughput, 1 MB causes a significant slowdown. With 10 MB, the degradation

is severe enough that SPECsfs97 cannot complete a valid run when more than 0.5% of operations require

migration. For comparison, for the 384 table configuration used, a single table is approximately 32 MB in

size.

It is worth noting that the Ursa Minor RPC system is not specialized for bulk data transfers. On the

hardware we used, the RPC system can utilize at most 450 Mbps of each server’s network link. With no

migrations, each server’s baseline traffic is about 350 Mbps, leaving only 100 Mbps of additional capacity

for state transfers. If migration requires more bandwidth, it will come at the expense of the foreground

workload. The latency of state transfers, shown in Figure 6.12(c) suggest that it only achieves 15 Mbps to

66 Mbps.

6.5.3 Server cache size

In previous experiments, we observed performance effects that could be, at least partially, attributed to

changes in cache sizes or behavior. For example, changing the number of servers also changes the aggregate

sizes of the server metadata and directory caches (which are a fixed size per server), and changing the

number of tables changes the aggregate size of the B-tree page cache (which is a fixed size per table).

To separate the effect of cache size from the effect of the other variables, we performed a series of

experiments that varied only in cache size. Figure 6.13(a) shows the throughput when the workload and

Ursa Minor configuration are constant, but the size of the server’s metadata cache varies. When the workload

contains no multi-server operations, increasing cache size increases throughput, as should be expected. As

the percentage of multi-server operations increases, the mandatory flushes triggered by migration mean that

even a small cache does not have enough time to refill before the next migration forces it to be flushed again.

Thus the throughputs converge the the same curve when more than 1% of the workload is multi-server. The

corresponding slowdown plot in Figure 6.13(b) shows a persistent difference, but this is only because the

baseline each curve is normalized against (its throughput with no multi-server operations), varies.

6.5. SENSITIVITY TO SYSTEM PARAMETERS 85

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

none

1MB

10MB

100KB

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) MDS throughput.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

none

1MB

10MB

100KB

Multi−server MDS op percentage

S
lo

w
d
o
w

n

(b) MDS slowdown.

0.1% 0.3% 0.9% 3.2% 0.2% 0.5% 3.4% 0.1% 0.3% 1.5% 4.2%
0

100

200

300

400

500

Multi−server MDS op percentage

L
a
te

n
c
y
 (

m
s
)

Drop Add Root Transfer Borrow Return

0kB 100kB 1MB

(c) Multi-server operation latency.

Figure 6.12: Influence of server-local state. The numbers of MDS operations completed per second are shown in

Figure 6.12(a) for SFS-fixed workloads with varying percentages of multi-server LINK operations. The slowdown

(relative to the case when no multi-server ops are present) is shown in Figure 6.12(b). Separate curves are shown

for configurations in which 0 kB, 100 kB, 1 MB, and 10 MB of state must be transferred between servers on every

migration. Figure 6.12(c) shows the latency overhead of multi-server operations for each configuration, broken into

the same categories used for Figure 6.5.1, with the addition of a “Transfer” category for the time taken to migrate any

server-local state. All runs used the small constellation with 4 million files, 384 tables, and 12 metadata servers. The

0 kB configuration corresponds to the 384 table configuration in Figure 6.9.

86 CHAPTER 6. EVALUATION

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
 0.0

 2.5

 5.0

 7.5

10.0

12.5

15.0

10K files

20K files
50K files

5K files

Multi−server MDS op percentage

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

(a) MDS throughput.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

none

20K files

50K files

5K files

Multi−server MDS op percentage

S
lo

w
d
o
w

n

(b) MDS slowdown.

Figure 6.13: Influence of server cache sizes. The numbers of MDS operations completed per second are shown

in Figure 6.13(a) for SFS-fixed workloads with varying percentages of multi-server LINK operations. The slowdown

(relative to the case when no multi-server ops are present) is shown in Figure 6.13(b). Separate curves are shown for

configurations in which the metadata server could cache metadata for 5000, 10000, 20000, and 50000 files. All runs

used the small constellation with 4 million files, 384 tables, and 12 metadata servers. The 10000 file line corresponds

to the 384 table line in Figure 6.9. For clarity, the region plotted corresponds the magnified region in Figure 6.9; the

curves are indistinguishable at higher multi-server operation rates.

Changing the size of the B-tree page cache, from 1 MB per table to 2 MB or 0.5 MB, does not, however,

have any significant effect on throughput. Even at the largest size, the B-tree page cache can hold only 11%

of the total B-tree pages, so it is likely is caching mostly the frequently-used internal nodes of the B-tree, but

not many of the leaves, so most requests still incur a miss for the leaf nodes—the average operation reads

least 0.7 pages, as shown by Figure 6.11(a). Much larger cache sizes might allow caching enough leaf nodes

to see a difference, but would exceed the memory available on the metadata server nodes. These results

suggest that the experiments that varied the number of servers or number of tables were not affected by their

side-effect of varying aggregate cache sizes.

6.6. IMPLEMENTATION DIFFICULTY 87

6.6 Implementation difficulty

Our motivation for using migration to handle multi-server operations was that it was the simple solution for

the problem at hand. From the starting point of a metadata service that supported migration and single-server

operations (over 47000 lines of C code), it only required 820 additional lines of code to support multi-server

operations. Of these 820 lines, the global lock manager (necessary for avoiding deadlock) accounted for 530

lines, while the remainder were additional RPC handlers and modifications to the local transaction layer to

trigger a BORROW when necessary. In contrast, implementing migration correctly represented 9000 lines of

the original metadata server and several months of work.

To provide a basis for comparison, we created a version of Ursa Minor that implements multi-server

operations using the traditional two-phase commit protocol. This version is not nearly as robust as the main

version, particularly with regard to failure conditions, so the 2587 lines required to implement it can be

considered to be a lower bound. The global lock manager is included in the total because it is still necessary,

but the code to implement an undo/redo log is not.

Since lines of code do not always equate to the complexity of a system, another metric to consider is

the number of states a system can be in and the decision points that transition between them. Figure 6.14

shows a flowchart of the execution of a multi-server operation using migration. The regions highlighted in

gray represent components that are assumed to already exist and used in unmodified form. For comparison,

Figure 6.15 shows the execution of a multi-server operation using two-phase commit. In order to reduce the

size of the diagram, some states, such as “Abort” and “Begin”, represent subprocesses that may themselves

involve two or more steps. Even with this simplifacation, two-phase commit requires over 33 states, whereas

reusing migration requires only 17, of which 8 already exist. Reusing migration clearly involves fewer states

and transitions, because much of the complex failure recovery cases that two-phase commit must handle are

encapsulated within the migration system.

6.7 Additional observations

Many of the choices we made in designing the MDS were guided by the properties of the rest of Ursa Minor.

Since the Ursa Minor storage nodes include NVRAM, logging, and shared access, the MDS relies on these

features rather than implementing its own write-ahead log or using locally-attached storage. Other systems

88 CHAPTER 6. EVALUATION

with different underlying storage or failure models might choose to store metadata on the local disks or

NVRAM of each metadata server. Migration in such a system would be more expensive, because it would

require copying metadata from server to server.

One surprising observation in our experiments was that the network traffic between storage nodes and

metadata servers was an order of magnitude greater than that between the metadata servers and their clients.

While each object requires approximately 1 kB of metadata, the B-tree implementation we use does not pack

pages tightly. Furthermore, every modification to a page requires that the entire 32 kB page be written to the

storage node. The page size was chosen to match the storage node’s most efficient block size, but if network

bandwidth is a limiting resource, the bandwidth savings of using a smaller block size may outweigh the

disadvantage of more overhead at the storage nodes. Likewise, the effects of page size on read bandwidth

also call for further examination.

6.8 Discussion

6.8.1 Optimizations

The concept of migrating tables rather than performing a multi-server operation, can be thought of as using

coarse-grained exclusive locking to control access to shared tables. Some multi-object operations, such as

READDIRPLUS do not modify any state, and could benefit from read-only locking. Allowing tables to be

shared for read but be exclusive for write, as is done in other systems [30, 47], would benefit both overall

scalability and avoid the need to flush caches during a migration. It would, however, introduce the need for

a potentially complex cache consistency protocol amongst metadata servers. When using migration to avoid

multi-server operations, borrowed tables are generally returned to the original server with only a few mod-

ified pages. If the original server knew which pages those were, it would only need to flush those modified

pages from its cache instead of flushing all pages. Including a list of modified pages in the migration proto-

col should a relatively simple enhancement. Previous experiments on a partial implementation of the MDS

suggest that such an optimization would reduce slowdown by an order of magnitude. The improvement

would come at the cost of the extra implementation complexity of the cache invalidation protocol.

In general, determining an appropriate tradeoff of costs and benefits is the responsibility of the system

designer. Taken to an extreme, additional performance improvements (e.g., modifying the migration mech-

anism to migrate single objects) may end up being more complex than implementing a general distributed

6.8. DISCUSSION 89

L o c a l?
L o c kO b j e c t s

U n l o c kO b j e c t s
E r r o r ?

D o n e

Y
Y

I s s u eB o r r o w
E r r o r ?Y

N

C l e a n u pB o r r o w

L o c kO b j e c t sE r r o r ? Y
U n l o c kO b j e c t sI s s u eR e t u r n

S t a r t

E r r o r ?

W a i t f o rR e p l y

W a i t f o rR e p l y

I d e n t i f yT a b l e sL o c kT a b l e sC h a n æg e d ?M i g r a t eE x e cO pE x e cO p
NN

N
U n l o c kT a b l e sE r r o r ?

M i g r a t eU n l o c kT a b l e sN

N

C o o r d i n a t o r m u s t u n l o c k t a b l e sb o r r o w e d b y u n r e s p o n s i v e s e r v e r

M e t a d a t a S e r v e r C o o r d i n a t o r

Figure 6.14: Multi-server operations implemented using migration. The significant states and decison points

involved in executing an operation are shown. The gray regions represent processes that already exist for handling

single-server execution and migration.

transaction protocol in the first place. Using a dedicated protocol for multi-server operations is a single point

in the cost vs. benefit space. Reusing the existing migration system is another single point. Extensions to the

migration mechanism (e.g. cache consistency, faster state transfer, or fine-grained migration) add additional

points in the tradeoff space for the designer to consider.

90 CHAPTER 6. EVALUATIONS t a r tL o c a l?B e g i nT r a n s

E n dT r a n s

F i n dO t h e r S r vF o u nd ?E x e cO pL o gC o m m i t

S u c �c e s s

B e g i nT r a n s B e g i nT r a n s

E r r ?

A b o r tW a i t f o rR e m o t eE r r ? A b o r tW a i t f o rR e m o t eE x e cO p E x e cO pW a i t f o rR e m o t e
L o g P r e �c o m m i t L o g P r e �c o m m i t

E r r ? L o gU n d oL o gU n d o
W a i t f o rR e m o t eA b o r t A b o r t

L o gC o m m i t L o gC o m m i tW a i t f o rR e m o t eE r r ? E n dT r a n s

F a i l u r e
W a i t f o rR e m o t e

E r r ?

S e r v e r 1 S e r v e r 2N
N N

N
N

N Y

Y
Y Y

Y
YN

Figure 6.15: Multi-server operations implemented using two-phase commit. The significant states and decison

points involved in executing an operation are shown. Common sub-operations, such as “Begin”, which must acquire

locks and perform deadlock avoidance, and “Abort”, which must roll back logs, are encapsulated in a single state

consisting of several sub-states and transitions.

6.8. DISCUSSION 91

6.8.2 Adverse workloads

The experiments in this chapter consider only the average, steady-state behavior of Ursa Minor. Other work-

loads may be non-uniform or bursty, which are difficult to emulate with the benchmark and experimental

infrastructure used here. Also, while our approach to multi-server operations is intended for workloads

where multi-server operations are rare, the possibility exists that a system may be presented with an ad-

verse workload where multi-server operations are common, or that a workload with a low average rate of

multi-server operations may contain bursts with higher rates.

While the experiments performed do not include those cases, the behavior under those conditions can be

extrapolated from existing experiments and knowledge of the system. The worst possible workload is one

that consists of only multi-server operations involving the same object. Because that object’s table will be

involved in every operation, and there can only be on active transaction on a table at a time, every operation

in progress across the system will be serialized on that single table. Thus, the throughput of the entire MDS

will be limited to that of a single table and further limited by the overhead of migrating that table between

servers for every operation.

A workload consisting of only multi-server operations but without contention for the same table would

perform somewhat better. In this case, every operation will involve a table migration that has to be coor-

dinated by the root metadata server. Because the operations do not conflict with each other, all metadata

servers could execute operations in parallel. The overall throughput of the system would be limited by the

throughput of the root metadata server, and scaling the number of metadata servers would not increase the

overall MDS throughput once the root metadata server is saturated.

In general, any system that relies on parallelism in order to scale will be be penalized by a workload that

requires serialization. In a workload with a mix of single-server and contending multi-server operations, the

single-server operations will be largely unaffected by the degree of contention, but each contending multi-

server operation will have to wait to be serialized. This results in an increasing difference in latency between

the two classes of operations, which may be a concern for latency-sensitive applications.

In the SFS-based experiments, contention for the same table was rare, except at high multi-server oper-

ations rates, simply because multi-server operations themselves were rare. Additionally, the benchmark was

structured such that any particular table would only be involved with multi-table operations with a preset

group of other tables — those used by the same NFS head-end. Thus, the number of operations that could

92 CHAPTER 6. EVALUATION

potentially contend for the same table was limited to 16 in most experiments. During the untimed setup

phase of the benchmark, some tables did experience the maximum degree of contention (because that table

contained a top-level directory that was analogous to a “directory of mountpoints”), but during the timed

execution phase, multi-server operations on a given table were spaced far apart enough in time that one

would complete before the next one began.

Contention for the same objects will result in the same table migrating continuously between servers.

One way to improve performance under contention is to detect when a table, T, is being continuously mi-

grated and determine the set of other tables that are involved in multi-table operations with table T. If the

entire set were to be served by one server, then all the multi-table operations will be single-server, avoiding

the overhead of coordination and migration. It would, however, require more intelligence on the part of the

delegation coordinator to detect this condition and optimize for it.

6.8.3 Applicability to other systems

The experiments in Section 6.4.1 characterize performance as as a function of the fraction of the workload

that involves multiple servers. While the general reduction in throughput with increasing multi-server oper-

ation percentage should generalize to other systems that implement multi-server operations using migration,

the shape of the curve is specific to this implementation of Ursa Minor. As shown in Section 6.5.1, two

factors that affect the degree of slowdown are:

• The latency of migration.

• The penalty that migration imposes on single-server operations.

The range of migration latencies studied in Section 6.5.2 are intended to reflect those that could be

expected from other systems that use shared storage, as is the case in many OSD or SAN-based systems.

Ursa Minor’s migration mechanism was not particularly optimized, and it is possible migration may be

faster in other systems. In particular, migration in Ursa Minor has the same priority for access to the CPU,

disk, and locks as any other operation. Giving migration a higher priority would reduce the queueing time

of a migration request and substantially speed up migration. While such an optimization would assist multi-

server operations, it would also assist load-balancing by speeding up the migration of objects away from an

overloaded server, and thus be a reasonable optimization for other systems to use.

6.9. SUMMARY 93

The high penalty of migration on single-server operations seen in Section 6.5.1 reflects Ursa Minor’s

naive approach to maintaining metadata server cache consistency. Such a simple approach is appropriate if

migrations are extremely rare, however, systems such as AFS and OntapGX that expect migration to be even

less frequent still take measures to mitigate migration’s effect on other concurrent operations [14, 30]. Thus,

other systems can be expected to have the same or lesser penalties than seen in the Ursa Minor experiments.

As discussed in Section 6.8.1, it is possible to reduce the penalty in Ursa Minor at the cost of additional

complexity.

Additionally, in a system that maintained client callback state, as Ursa Minor does not, migration would

have to either break callbacks or transfer the callback state to the next server. The first approach would both

affect clients, which would have to reacquire callbacks, and the next server, which would have to process a

flood of callback reacquisition requests from active clients. The latter approach adds to the state that must

be transferred during migration, potentially increasing the migration latency and requiring extra code to

perform the transfer. Simply breaking callbacks would be the simplest approach, because the callback break

and reacquire code paths are already used in normal operation and would be reasonable for a system that

expected migration to be used for load-balancing alone and could tolerate brief periods of client slowdown

during migration. If migration were used more frequently, the client-visible slowdown may become unac-

ceptable. Existing systems use both approaches, but the use of migration to support multi-server operations

may influence the choice of which approach a future system should use.

6.9 Summary

These results show that the Ursa Minor metadata service is transparently scalable for both standard work-

loads and for workloads far more severe than experienced by large deployed file-systems as represented by

the traces analyzed in Chapter 3. In addition to scaling linearly, Ursa Minor’s throughput when executing

multi-server operations is only slightly less than optimal, as long as the amount of server-local state that

needs to be migrated is under 100 kB. When the amount server-local state is large, the overhead of migra-

tion is impractically large, except at very low multi-server operation rates, such as those observed in the

traces.

The key architectural limitation to scalability is the single, centralized, root metadata server, which can

be addressed using techniques described in Section 5.7. The load seen by the root metadata server depends

94 CHAPTER 6. EVALUATION

on the aggregate number of multi-server operations across the entire constellation, and not directly on the

number of metadata servers—at the rates seen in the traces, the root would be able to handle far more servers.

Chapter 7

Conclusion

This dissertation that shows that reusing migration to implement multi-server operations is a simple and

efficient method of providing consistent semantics in a transparently scalable distributed storage system. It

presents the following three conclusions:

Multi-server operations are very rare in file system workloads. Analyzing traces of deployed large-

scale file systems reveals that potentially multi-server operations make up less than 0.01% of the operations

in each trace. If each server stores a contiguous subtree of the file system, operations that would involve

multiple servers occur less than 4 times in every million operations.

Object-IDs can be assigned in a manner that ensures that subtrees receive numerically similar

Object-IDs. Using an namespace flattening policy that encodes the namespace into the Object-ID preserves

the benefit of keeping subtrees together in a contiguous range of Object-IDs. Assigning ranges of Object-IDs

to each server allows the use of a simple mechanism for identifying which server hosts a particular object,

while reducing the liklihood of multi-server operations. This provides the benefit of subtree-based division

without the extra complexity required to identify which server to contact in such a scheme.

The overhead of using migration to implement multi-server operations is small for practical work-

loads. A prototype transparently scalable system can execute multi-server operation, at the rates seen in

traces, with negiligible overhead. Even when multi-server operations make up 0.1% of the workload, 10×

more frequent than the most pessimistic expectation from the trace analyses, the prototype system is within

1.5% of the optimal throughput as long as server-local state is small. This approach is suitable for building

other transparently scalable file systems and also for adding transparent scalability to existing scalable, but

not transparently scalable, systems.

95

96 CHAPTER 7. CONCLUSION

Appendix A

Appendix A

A.1 MDS operation list

Name Objects Tables Description

MDSCreateObject 1 1 Creates a new object.

MDSReleaseObject 1 1 Deletes an object.

MDSEnumerateObjects 0 1 Lists a range of objects.

MDSCreateStream 1 1 Creates a new stream in an object.

MDSReleaseStream 1 1 Deletes a stream from an object.

MDSReleaseData 1 1 Delete’s a stream’s data, but retains attributes.

MDSEnumerateStreams 1 1 Lists the streams in an object.

MDSLookup 1 1 Returns metadata for an object or stream.

MDSLookupExtra 1-N 1 Same as lookup, but may prefetch nearby objects.

MDSApproveWrite 1 1 Acquires a write capability.

MDSFinishWrite 1 1 Uses write capability to extend a stream.

MDSSetAttr 1 1 Sets an existing object’s attributes.

MDSGetAttr 1 1 Gets an existing object’s attributes.

Table A.1: List of MDS operations used by the NFS head-end.

97

98 APPENDIX A. APPENDIX A

A.2 NSS operation list

Name Objects Tables Description

NSSCreate 2 2-4 Creates a new file or dir and inserts in its parent.

NSSLink 2 1 Links an existing file into an existing directory.

NSSUnlinkByName 2 2-4 Unlinks a file or directory and deletes it if empty.

NSSLookupByName 2 2-3 Returns metadata for the object with given name.

NSSReaddirBySoid 1 2 Returns the names and SOIDs for all children.

NSSReaddirBySoid+ 1-N 2-N Same as above, but includes children’s metadata.

NSSSetAttrBySoid 1 1 Sets a file’s attributes.

NSSGetAttrBySoid 1 1 Gets a file’s attributes.

NSSRename 2-4 2-6 Renames a file to a different name.

Table A.2: List of NSS operations used by the NFS head-end.

A.3. NFS INDUCED URSA MINOR OPERATIONS 99

A.3 NFS induced Ursa Minor operations

NFS operation Resulting Ursa Minor operations

NFS3GetRoot NSSGetAttrBySoid

NFS3GetAttr NSSGetAttrBySoid

NFS3GetAttr NSSSetAttrBySoid

NFS3Lookup NSSLookupByName

NFS3Access NSSGetAttrBySoid

NFS3Readlink MDSLookup

NFS3Read MDSLookup

NFS3Write MDSLookup, MDSApproveWrite, MDSFinishWrite

NFS3Create NSSLookupByName, NSSCreate

NFS3Mkdir NSSLookupByName, NSSCreate

NFS3Symlink NSSLookupByName, NSSCreate, MDSLookup, MDSApproveWrite,

MDSFinishWrite

NFS3Mknod NSSLookupByName, NSSCreate

NFS3Unlink NSSLookupByName, NSSUnlinkByName

NFS3Rmdir NSSLookupByName, NSSUnlinkByName

NFS3Rename 2xNSSLookupByName, NSSRename

NFS3Link 2xNSSLookupByName, NSSLink

NFS3Readdir NSSReaddirBySoid

NFS3ReaddirPlus NSSReaddirBySoid+

NFS3FSInfo NSSGetAttrBySoid

NFS3Commit NSSSetAttrBySoid, NSSFinishWrite

Table A.3: Ursa Minor operations generated by the NFS head-end when servicing NFS operations.

100 APPENDIX A. APPENDIX A

A.4 Power consumption

All the equipment used to evaluate Ursa Minor was located in the Data Center Observatory, which has

detailed power monitoring support. The most common experiment configuration was the small constellation

using 12 metadata servers. A single run, determining one data point, of this configuration increased the total

DCO current draw by 21 Amps for approximately 1.5 hours. Note that the baseline idle current draw is not

included. Assuming a power factor of 1.0:

21 A×208 V ×1.5 H = 6.6 kWH per small run.

Runs on the large constellation used twice the hardware of and thus should double the small constella-

tion, and the complete set of experiments consisted of 1899 runs, 1416 on the small constellation and 483

on the large. Thus:

1416 runs×6.6 kWH/run+483 runs×13.2 kWH/run = 15.7 MWH

To put that in perspective, the calorific content of coal is 12000 BTU/lb-15000 BTU/lb, and that of ordi-

nary office paper is 6234 BTU/lb [19]. Thus, the same amount of energy could be produced by combusting

3456 lb-4464 lb of coal or 8593 lb of paper with perfect efficiency. As this does not account for generation

and transmission inefficiencies, far more fuel may be required in practice.

15.7 MWH/(6234 BTU/lb×0.29307 WH/BTU ×10−6 MWH/WH) = 8593 lb

For comparison, this dissertation, when printed on 20 lb paper, weighs:

122 pages× (20 lb/ream/2000 pages/ream) = 1.22 lb

Bibliography

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-Scalable Byzan-

tine Fault Tolerant Services. ACM Symposium on Operating System Principles (Brighton, United

Kingdom, 23–26 October 2005), pages 59–74. ACM, 2005.

[2] M. Abd-El-Malek, G. R. Goodson, G. R. Ganger, M. K. Reiter, and J. J. Wylie. Lazy verification in

fault-tolerant distributed storage systems. Symposium on Reliable Distributed Systems (Orlando, FL,

26–28 October 2005). IEEE, 2005.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,

M. Theimer, and R. P. Wattenhofer. FARSITE: federated, available, and reliable storage for an incom-

pletely trusted environment. Symposium on Operating Systems Design and Implementation (Boston,

MA, 09–11 December 2002), pages 1–15. USENIX Association, 2002.

[4] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: a new paradigm for

building scalable distributed systems. ACM Symposium on Operating System Principles (Stevenson,

WA, 14–17 October 2007), pages 159–174. ACM, 2007.

[5] D. C. Anderson, J. S. Chase, and A. M. Vahdat. Interposed request routing for scalable network storage.

Symposium on Operating Systems Design and Implementation (San Diego, CA, 22–25 October 2000),

2000.

[6] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. R. Karlin, J. Saia, R. Swaminathan, and J. Wilkes. An

experimental study of data migration algorithms. International Workshop on Algorithm Engineering

(Arhus, Denmark, 28–31 August 2001). Published as Lecture Notes in Computer Science, 2141:145–

158. Springer-Verlag, 2001.

101

102 BIBLIOGRAPHY

[7] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang. Serverless

network file systems. ACM Symposium on Operating System Principles (Copper Mountain Resort,

CO, 3–6 December 1995). Published as Operating Systems Review, 29(5):109–126, 1995.

[8] S. Baker and J. H. Hartman. The Mirage NFS router. Technical Report TR02–04. Department of

Computer Science, The University of Arizona, November 2002.

[9] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813 - NFS version 3 protocol specification.

RFC–1813. Network Working Group, June 1995.

[10] A. L. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file systems: a survey of backup techniques.

Joint NASA and IEEE Mass Storage Conference (March 1998), 1998.

[11] S. Dayal. Characterizing HEC Storage Systems at Rest. TR CMU-PDL-08-109. July 2008.

[12] J. R. Douceur and J. Howell. Byzantine fault isolation in the farsite distributed file system. USENIX

Annual Technical Conference (Santa Barbara, CA, 27–28 February 2006), 2006.

[13] J. R. Douceur and J. Howell. Distributed directory service in the Farsite file system. Symposium on

Operating Systems Design and Implementation (November). USENIX Association, 2006.

[14] M. Eisler, P. Corbett, M. Kazar, D. S. Nydick, and J. C. Wagner. Data ONTAP GX: a scalable storage

cluster. Conference on File and Storage Technologies (San Jose, CA, 13–16 February 2007), pages

139–152, 2007.

[15] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing of email and research workloads.

Conference on File and Storage Technologies (San Francisco, CA, 31 March–2 April 2003), pages

203–217. USENIX Association, 2003.

[16] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing of email and research workloads.

Conference on File and Storage Technologies (San Francisco, CA, 31 March–2 April 2003), pages

203–216. USENIX Association, 2003.

[17] D. Ellard, J. Ledlie, and M. Seltzer. The utility of file names. Technical report TR-05-03. Harvard

University, March 2003.

BIBLIOGRAPHY 103

[18] D. Ellard and M. Seltzer. New NFS tracing tools and techniques for system analysis. Systems Admin-

istration Conference (San Diego, CA), pages 73–85. Usenix Association, 26–31 October 2003.

[19] A. U. Erdincler and P. A. Vesilind. Energy Recovery From Mixed Waste Paper. Waste Management &

Research, 11(6):507 - 513.

[20] V. Fuller, T. Li, J. J. Yun)Yu, and K. Varadhan. Classless Inter-Domain Routing (CIDR): an address

assignment and aggregation strategy, RFC–1519. IETF, September 1993.

[21] FUSE: File System in Userspace, Apr 2010. http://fuse.sourceforge.net/.

[22] G. R. Ganger and M. F. Kaashoek. Embedded inodes and explicit grouping: exploiting disk bandwidth

for small files. USENIX Annual Technical Conference (Anaheim, CA), pages 1–17, January 1997.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. ACM Symposium on Operating

System Principles (Lake George, NY, 10–22 October 2003), pages 29–43. ACM, 2003.

[24] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin, E. Riedel,

D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage architecture. Architectural

Support for Programming Languages and Operating Systems (San Jose, CA, 3–7 October 1998). Pub-

lished as SIGPLAN Notices, 33(11):92–103, November 1998.

[25] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri,

E. Riedel, D. Rochberg, and J. Zelenka. File server scaling with network-attached secure disks. ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems (Seattle, WA, 15–18

June 1997). Published as Performance Evaluation Review, 25(1):272–284. ACM, June 1997.

[26] J. N. Gray. Notes on data base operating systems. In , volume 60, pages 393–481. Springer-Verlag,

Berlin, 1978.

[27] J. Hendricks, R. R. Sambasivan, and S. Sinnamohideen. Improving small file performance in object-

based storage. Technical report CMU-PDL-06-104. Parallel Data Laboratory, Carnegie Mellon Uni-

versity, Pittsburgh, PA, May 2006.

104 BIBLIOGRAPHY

[28] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter. Zzyzx: Scalable Fault Tolerance

through Byzantine Locking. International Conference on Dependable Systems and Networks (Chicago,

IL, 29–31 June 2010). IEEE, 2010.

[29] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file server appliance. Winter USENIX

Technical Conference (San Francisco, CA, 17–21 January 1994), pages 235–246. USENIX Associa-

tion, 1994.

[30] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham,

and M. J. West. Scale and performance in a distributed file system. ACM Transactions on Computer

Systems (TOCS), 6(1):51–81. ACM, February 1988.

[31] W. Katsurashima, S. Yamakawa, T. Torii, J. Ishikawa, Y. Kikuchi, K. Yamaguti, K. Fujii, and

T. Nakashima. NAS switch: a novel CIFS server virtualization. IEEE Symposium on Mass Storage

Systems (San Diego, CA), pages 82–86. IEEE, 7–10 April 2003.

[32] S. R. Kleiman. Vnodes: an architecture for multiple file system types in Sun Unix. Summer USENIX

Technical Conference (Atlanta, GA), pages 238–247. USENIX, 1986.

[33] A. J. Klosterman and G. R. Ganger. Cuckoo: layered clustering for NFS. Technical Report CMU–

CS–02–183. Carnegie Mellon University, October 2002.

[34] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169. ACM

Press, May 1998.

[35] P. J. Leach. A Common Internet File System (CIFS/1.0) Protocol (Working Draft). Technical report.

Internet Engineering Task Force, December 1997.

[36] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. Architectural Support for Programming

Languages and Operating Systems (Cambridge, MA, 1–5 October 1996). Published as SIGPLAN

Notices, 31(9):84–92, 1996.

[37] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Measurement and analysis of large-scale

network file system workloads. USENIX Annual Technical Conference (San Diego, CA, 14–19 June

2008). USENIX Association, 2008.

BIBLIOGRAPHY 105

[38] Lustre, Apr 2006. http://www.lustre.org/.

[39] M. K. McKusick. Running ’fsck’ in the background. BSDCon Conference (San Francisco, CA, 11–14

February 2002), 2002.

[40] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a read/write peer-to-peer file system.

Symposium on Operating Systems Design and Implementation (Boston, MA, 09–11 December 2002).

USENIX Association, 2002.

[41] When to Use Transactional NTFS, Apr 2006. http://msdn.microsoft.com/library/en−us/fileio/

fs/when to use transactional ntfs.asp.

[42] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. Summer USENIX Technical Conference (Mon-

terey, CA, 06–11 June 1999). USENIX Association, 1999.

[43] S. V. Patil, G. A. Gibson, S. Lang, and M. Polte. GIGA+: Scalable Directories for Shared File Systems.

ACM Symposium on Principles of Distributed Computing (Reno, NV, 11–11 November 2007), pages

26–29. ACM, 2007.

[44] H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara. SnapMirror: file system

based asynchronous mirroring for disaster recovery. Conference on File and Storage Technologies

(Monterey, CA, 28–30 January 2002), pages 117–129. USENIX Association, 2002.

[45] Reiser4 Transaction Design Document, Apr 2006. http://www.namesys.com/txn-doc.html/.

[46] Y. Saito and C. Karamanolis. Name space consistency in the Pangaea wide-area file system. HP

Laboratories SSP Technical Report HPL–SSP–2002–12. HP Labs, December 2002.

[47] F. Schmuck and R. Haskin. GPFS: a shared-disk file system for large computing clusters. Conference

on File and Storage Technologies (Monterey, CA, 28–30 January 2002), pages 231–244. USENIX

Association, 2002.

[48] S. Sinnamohideen, R. R. Sambasivan, J. Hendricks, L. Liu, and G. R. Ganger. A Transparently-

Scalable Metadata Service for the Ursa Minor Storage System. Technical report CMU-PDL-10-102.

Parallel Data Laboratory, Carnegie Mellon University, March 2010.

106 BIBLIOGRAPHY

[49] SPEC SFS97 R1 V3.0 Documentation, Jan 2010. http://www.spec.org/sfs97r1/.

[50] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing

update conflicts in Bayou, a weakly connected replicated storage system. ACM Symposium on Oper-

ating System Principles (Copper Mountain Resort, CO, 3–6 December 1995). Published as Operating

Systems Review, 29(5), 1995.

[51] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scalable distributed file system. ACM Sympo-

sium on Operating System Principles (Saint-Malo, France, 5–8 October 1997). Published as Operating

Systems Review, 31(5):224–237. ACM, 1997.

[52] S. A. Weil, S. A. Brandt, E. L. Miller, and D. D. Long. Ceph: A scalable, high-performance distributed

file system. Symposium on Operating Systems Design and Implementation (December). USENIX

Association, 2006.

[53] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scalable

performance of the Panasas file system. Conference on File and Storage Technologies (San Jose, CA,

26–29 February 2008), pages 17–34. USENIX Association, 2008.

[54] K. G. Yocum, D. C. Anderson, J. S. Chase, and A. M. Vahdat. Anypoint: extensible transport switching

on the edge. USENIX Symposium on Internet Technologies and Systems (Seattle, WA, 26–28 March

2003). USENIX Association, 2003.

	Introduction
	Thesis statement
	Argument
	On the performance penalty
	On the implementation effort

	Outline

	Background
	Multi-item operations
	Transparent scalability
	Multi-server operations
	Distributed transactions
	Migration

	Trace analysis
	NFS traces
	Operations
	Reconstruction
	Results

	CIFS traces
	Reconstruction
	Results

	Conclusion

	Object-ID assignment
	Overview
	Child-closest policy
	Cousin-closest
	Optimizations
	Evaluation
	Methodology
	Variable-length OIDs
	Fixed-length OIDs, variable-size slots
	Fixed-length OIDs, fixed-size slots
	Farsite results

	Conclusion

	Prototype
	Ursa Minor
	Metadata Service (MDS)
	Namespace Service (NSS)
	SOID assignment
	Metadata migration
	Multi object operations
	Root metadata server
	Transactions
	Recovery
	Recursive transactions

	Caching
	Delegation Cache
	Client metadata cache
	Client directory cache
	Server B-tree page cache
	Server directory cache
	Server metadata cache

	Handling failures
	Failure of a metadata server
	Failure of the delegation coordinator
	Network partitions
	Failure of a storage node

	NFS head-end

	Evaluation
	Benchmark
	Modifications to SPECsfs97
	Inducing multi-server operations

	Experimental setup
	Hardware configuration
	Software configuration

	Scalability
	Without multi-server operations
	With multi-server operations
	Root metadata server

	Sensitivity to workload
	Percentage of multi-server operations
	Workload size
	Operation mix
	Operation Rate

	Sensitivity to system parameters
	Migration granularity
	Server-local state
	Server cache size

	Implementation difficulty
	Additional observations
	Discussion
	Optimizations
	Adverse workloads
	Applicability to other systems

	Summary

	Conclusion
	Appendix A
	MDS operation list
	NSS operation list
	NFS induced Ursa Minor operations
	Power consumption

