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Abstract

Creating coordinated multiagent policies in environmesith uncertainty is a challenging
problem, which can be greatly simplified if the coordinatioeeds are known to be limited to
specific parts of the state-space. In this work, we explore $uech local interactions can simplify
coordination in multiagent systems. We focus on problemshich the interaction between the
agents is sparse, exploiting this property to minimize thepting of the decision processes for
the different agents. We contribute a new decision-theorebdel for multiagent systems, Dec-
SIMDPs, that explicitly distinguishes the situations inigétithe agents in the team must coordinate
from those in which they can act independently. We relatenew model to other existing models
from the literature, such as MMDPs and Dec-MDPs. We thengsep solution method that takes
advantage of the particular structure of Dec-SIMDPs andigdeotheoretical error bounds on the
quality of the obtained solution. Finally, we illustrateetperformance of our method in several
simulated navigation problems.






1 Introduction

Decision-theoretic models such as Dec-MDPs and Dec-POMD@&&de a rich framework to
tackle decentralized decision-making problems. Howexsng these models to create coordinated
multiagent policies in environments with uncertainty ishalienging problem, even more so if the
decision-makers must tackle issues of partial obsertgbifis such, solving Dec-POMDPs is a
NEXP-complete problem and thus computationally too denmaid solve except for the simplest
scenarios.

Recent years have witnessed a profusion of work on Dec-(BPHvelated models that aim at
capturing some of the fundamental features of this classaidlems such as partial observability
without incurring in the associated computational costthia paper, we contribute to this area of
research, and propose a new model for cooperative multigigersion-making in the presence of
partial observability. Our model is motivated by the obaéinn that, in many real-world scenarios,
the tasks of the different agents in a multiagent system aresupled at every decision-step but
only in relatively infrequent situations. We dub such pesbt as havingparse interaction

Multi-robot systems provide our primary motivation and stitute natural examples for the
class of problems considered herein. In multi-robot systeime interaction among the different
robots is naturally limited by each robot’s physical bounel® such as workspace or commu-
nication range, and limited perception capabilities. Efae, when programming a multi-robot
system to perform some task, one natural approach is to\adbdhis task into smaller tasks that
each robot can then execute autonomously or as part of aesrgaediup (see, for example, Fig. 1).

Other examples include problems of sequential resouroeadlbn, in which groups of agents
must interact only to the extent that they need to share samenon resource. In this context,
several methods have been proposed that leverage sparseiitns by decomposing the “global”
problem into several smaller “local” problems that can bleexb more efficiently, and then com-
bining the obtained solutions [23, 28]. Such approachesgkier, are not particularly concerned
with partial observability issues.

Several previous works have exploited simplified modelstd@raction in multiagent settings.
For example, learning tasks involving multiple agents carpértitioned in a state-wise manner,
allowing different agents to independently learn the r@sgl“smaller tasks” [31]. Similarly, a
hierarchical learning algorithm can be used that considelg interaction between the different
agents at a higher control level, while allowing the ageotearn lower level tasks independently
[10]. Other works use coordination graphs to compactlyaspnt dependences between the actions
of different agents, thus capturing the local interactiebw®en them [14, 17]. Local interactions
have also been exploited to minimize communication durwigp execution [25] and in the game-
theoretic literature to attain compact game represemstibxamples include graphical games [15]
and action-graph games [35].

In this paper we consider Dec-MDPs with sparse interactibesceforth Dec-SIMDPs. Dec-
SIMDPs leverage the independence between agents to dedbepdecision process in significant
portions of the joint state-space. On those situations irchvthe agents interact — theteraction
areas — Dec-SIMDPs rely on communication to bring down the corapabal complexity of the
joint decision process. Dec-SIMDPs “balance” the indepeicé assumptions with observability:
in any given state, the agents are either independent orhzae state informatiore(g, by com-
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Figure 1: Example of a simple navigation task. Goals are sthrkith red, dashed lines. While
Robot3 can navigate to its goal, disregarding the remaining rolidsotsl and2 need to coordi-
nate so as not to cross the narrow doorway simultaneouslyetier, this coordination needs only
occur around the doorway.

municating)! A related model has recently been proposed under the déisigraf distributed
POMDPs with coordination locales [32].

The contributions of this paper are two-fold. On one hand vewipe a precise formalization
of the Dec-SIMDP model and discuss in some detail the relatibh well-established decision-
theoretic models such as Dec-MDPs, MMDPs and MDPs. On ther didnd, we contribute two
new algorithms that exhibit significant computational sgg when compared to existing algo-
rithms for Dec-SIMDPs, and illustrate their applicatiorsigveral simple navigation tasks.

2 Decision Theoretic Models for Multiagent Systems

We now review several standard decision theoretic modéelpomting the main differences be-
tween these. We start with single agent models, namely Madkaision problems (MDPs) and
their partially observable counterparts (POMDPSs) beforving to multiagent models such as
multiagent MDPs (MMDPs) and their partially observablem@uparts (Dec-MDPs). The purpose
of this introductory section is to establish the notatioaduthroughout the paper and review some
fundamental concepts and results that will play a fundaedeale in the development to come.

2.1 Markov Decision Processes

A Markov decision problertMDP) describes a sequential decision problem in which glsiagent
must choose the sequence of actions that maximizes somedrbased optimization criterion.
Formally, an MDP is a tuple\l = (X, A, P,r,~), whereX represents the finite state-spagk,
represents the finite action-spa®¥, a,y) represents the transition probability from statéo

1Both independence assumptions and communication carfisarily bring down the computational complexity
in Dec-(PO)MDP related models [3, 12].



statey when actioru is taken and-(z, a) represents the expected reward for taking actionstate
x. The scalan is a discount factor.
A Markov policyis a mappingr : X x A — [0, 1] such that, for alk € X,

Zw(x,a) =1

acA
The purpose of the agent is to determine a potigo as to maximize, for alt € X,

Zw A(t) | X(0) = ]

whereX (¢) denotes the state at timeA(¢) denotes the action taken at that time instant such that
PlA(t) = a| H(t) = h] = P[A(t) = a | X(t) = 2] = 7(z,a),

whereH (t) = {X(0), A(0),..., X (t—1),A(t — 1), X(¢)} is the random variable corresponding
to the history of the process up to timeandh denotes a particular realization &f(¢) such that
X(t) = x. We define th&)-function associated with a policyas

Zw A(t) | X(0) = A(O)za]-
where, againA(t) ~ = for all t > 0.

For any finite MDP, there is at least onptimal policyz* such that
V™ (x) > V™ (x)

for any 7 and everyr € X. The corresponding value function is denotedibyand verifies the
Bellman optimality equation,

V*(z) = max [7“(56, a) +7 ) Plx,a,y)V*(y) (1)

yeX

The associate@-function in turn verifies

Q"(,0) = r(z,0) +7 Y P, 0,y) max Q" (3, w). @

yeX

The optimal policy can be recovered directly froph by settingr*(z, a) > 0only if a € arg max, Q*(z, u).
As such, the solution for any given MDP can be obtained by ading the corresponding optimal
Q-function,Q*.

For future reference, given a functiopslefined ovetY x A, we define théBellman operator
H as

(Hq)(z,a) =r(z,a) +7;P(x,a, y) maxq(y, u). (3)

The function®* in (2) is the fixed-point oH and thus can be computezlg, by iteratively applying
H to some initial estimat&®, a dynamic programming (DP) method knowrvasue iteration
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2.2 Partially Observable Markov Decision Processes

Partially observable MDPslescribe problems essentially similar to MDPs, in which gerd must
choose a sequence of actions to maximize a reward-basedamit However, unlike MDPs, in a
POMDP the agent has only access to the underlying state pftleess X (¢), by means of indirect
observations. Formally, a POMDP is a tupk, A, Z,P, O, r, ), whereX’ is the finite state-space,
A is the finite action-space arfflis the finite observation space. As befd?éz, a, y) represents the
transition probability from state to statey when actioru is taken, and novd(z, a, z) represents
the probability of observation given that the state is and actiom: was takeni.e.,

O(z,a,2) =P[Z(t+1) =z | X(t+1) =z, A(t) = qa].

Finally, 7(x, a) again represents the expected reward for taking aatinstater and~ is a discount
factor.
A non-Markov policy is a mapping : H — [0, 1] such that, for alk € H,

Z mw(h,a) =1,
acA

whereh = {a(0), z(1),a(1),...,a(t — 1), 2(t)} is afinite history i.e,, a finite sequence of action-
observation pairs. As before, the history observed up te tims a random variable, denoted as
H(t), and denote by the set of all possible finite histories for the POMDP. Thepose of the
agent is now to determine a poliayso as to maximize, for all probability vectdss

ZW )IX()Nb],

whereX (0) ~ b denotes the fact that (0) is distributed according tb. Similarly, we define the
@-function associated with a policyas

ZW )|X()~b,A(0):a].

We refer to the probability vectds in the expressions above as tihdial belief stateor just
theinitial belief. It translates the “belief” that the agent has at time 0 regarding its state at that
time. From the initial belief and given the history up to timéd{(¢), we can construct a sequence
{b(t)} of probability vectors recursively as

b, (t + 1) = Bel(b(t), A(t), Z(t + 1))
20> by(t)P(x, A(t),y)0(y, At), Z(t + 1)),

whereBel is the belief update operatds, (¢) denotes the component ob(¢) andn is a normal-
ization factor. We generally refer to the vecloft) as thebelief at time¢. It corresponds to a
distribution over the unknown state at tirheuch that

b, (t) = P[X(t) =2 | H(1)].
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Given the POMDP model paramet&andO, every finite history, € H can be mapped to a belief

b. Moreover, for any given policy, two histories leading te #ame belief will have the same value.
As such, beliefs can be used as compact representationstofiés, and we can define policies in
terms of beliefs instead of histories [29]. In fact, it is pitme to reinterpret a POMDP as an infinite
MDP in which the state-space corresponds to the set of adilpledeliefs. Therefore, for any finite

POMDP, there is at least omptimal policy7* such that

V™ (b) > V7 (b)

for any 7 and every initial belieb. The corresponding value function is denotedibyand also
verifies the Bellman optimality equation,

V*(b) = max b, [r(x, a) + 72 P(x,a,y)0(y,a, z)V*(Bel(b, a, z))] :

xT

wherez, y take values inY, = takes values it andBel(b, a, z) corresponds to the updated belief
after taking actiorn and observing. The associate@-function in turn verifies

Q*(b,a) = be [r(m, a) + vz P(z,a,y)0(y,a, z) Te%i(Q*(Bel(b’ a, z), u)] :

In spite of its representative power, POMDPs have been showa undecidable in the worst
case for infinite horizon settings such as those considesegirh[19]. As such, exact solutions
can be computed only in very specific instances, and mosbapbes in the literature resort to ap-
proximate or heuristic methods. Good surveys on POMDP isolmethods can be found,g, in
[1,9].

We describe an MDP-based heuristic solution that will prof/éater use in the paper. This
method is known a§)\ipp as it makes use of the optim@Hfunction for the underlying MDP as
an estimate for the optim&)-function for the POMDP. Since the optimal solution for thedar-
lying MDP can be computed in a straightforward manner, theshmod is very simple and fast to
implement and attains good performance in many practitzsons [9, 18].

Let M = (X, A, Z,P,0,r,~v) be a POMDP with finite state, action and observation spaces.
Associated with this POMDP there is an underlying MBRP = (X, A,P,7,v). Let Q* be the
optimal Q-function for M. Qupp Uses an estimate for the optim@Hunction for the POMDP
given by

Q(b,a) => b,Q(x,a).

When using)wvipp, the agent acts under the implicit assumption that statertaiaty only affects
the immediate decision,e., after one decision the agent will act on the underlying MDIFs
sometimes leads to poor performance and several works mapeged further improvements on
Qwpp to address this issue [9, 21], but we do not pursue such digcukere.
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2.3 Multiagent MDPs

Multiagent Markov decision process@dMDPs) generalize MDPs to multiagent cooperative sce-
narios. MMDPs describe sequential decision tasks in whicltiple agents must each choose
a sequence of individual actions that jointly maximize saommon reward-based optimization
criterion. Formally, an MMDP is a tuplt = (N, X, (Ay), P,r,~), whereN is the number of
agentsX’ represents the finite state-spage,is the finiteindividual action space of ageat As in
MDPs,P(z, a, y) represents the transition probability from state statey when thejoint action
a = (ay,...,ay) is taken;r(x, a) represents the expected reward receivedlbggents for taking
the joint actiona in statex. In an MMDP all agents receive the same reward, which imphes
MMDPs representully cooperativemultiagent tasks.

As noted above, a joint actionis a tuplea = (ay, . .., ay) and we denote byl = xi_, A, the
set of all possible joint actions — the joint action space.#e 1,..., N, let

A=A X ... X A1 X A1 X ... x Ap.

We write a_,, to denote a general elementdf .,k = 1,..., N and refer to any such action as a
reduced joint actioror simply a reduced action. We write= (a_y, a;) to denote the fact that the
joint actiona is composed by the reduced action, and the individual action,, for agentk.

In this work, we also assume that the state-spoan be factored a¥ = A x X} x ... x Xy.
As such, each elementc X is atupler = (zo,...,zn), Withz, € X,k =0,..., N. For any
xr € X, we refer to the paifz, x) as the local state of agehtand generally denote it ag. Note
that this factorization implies no loss of generality, ag aet can be factorized as indicated above
by considering singleton sefs , ..., X'y.?

An individual Markov policy for agent is a mappingr; : X x A, — [0, 1] such that, for all

T e X,
Z mk(z, ar) = 1.

apEAL

Similarly, ajoint policy is a mappingr : X x A — [0, 1] that we take as the combination &f
individual policies,.e.,

m(x,a) = Hﬂ-k(xaak)a

wherea = (ay,...,ay). As we do with actions, we write_,, to denote aeduced policyand
m = (m_x, ) to denote the fact that the joint poliayis composed by the reduced policy; and
the individual policyr, for agentk.

In an MMDP, the purpose dll agents is to determine a joint poliayso as to maximize, for
allx € &,

Vi(z) =B | Y 'r(X(1), A1) | X(0) =z,

2Not all multiagent problems can effectively leverage thistbrization of the state-space to simplify the decision
process. However, there are problems in which this factidm can significantly simplify the decision process and
bring significant computational savings.



where X () denotes the state at timeand A(¢) denotes the joint action taken at that time instant.
The Q-function associated with a joint polieyis defined froml/™ as its single-agent counterpart.

We conclude by noting that, for the purposes of plannireg, computing the optimal policy,
an MMDP is indistinguishable from an ordinary MDP. It is omliyexecution time¢hat an MMDP
differs from an MDP, since the process of decision makingiscentralized, but distributed. This
poses severe difficulties when we move to partially obséevsdittings.

2.4 Dec-MDPs

Decentralized MDPs (Dec-MDPs) are partially observableegalizations of MMDPs. As in
MMDPs, the agents in a Dec-MDP must each choose a sequenaaivitiual actions that jointly
maximize some common reward-based optimization critetibriike MMDPs, however, the agents
can only access the global state of the process by meansabiolirect observations. Formally, a
Dec-MDP can be represented a tuple

M = (N, (Xk>7 (Ak>7 (Zk>7 P? (Ok>7 r, 7)7

where N is the number of agentst = x2_ X is the joint state-spaced = x1_, A; is the set
of joint actions, eactZ, represents the set of possible local observation for ageRtz, a, y)
represents the transition probabilities from joint stat® joint statey when the joint actioru

is taken, eacl®(z, a, z;,) represents the probability of agelntmaking the local observatiog,
when the joint state is and the last action taken wasandr(x, a) represents the expected reward
received by all agents for taking the joint actioim joint statex. The scalar is a discount factor.
In a Dec-MDP, for every joint observatione Z, there is a state € X’ such that

P[X(t)=x|Z(t) = 2] = 1.

This means that, in a Dec-MDP, the agents hjamet full observability if all agents share their
observations, they can recover the state of the Dec-MDP bigamously.

Throughout this work, we consider only Dec-MDPs witkcal full observability meaning that
each agent can infer from its local observations the coomdipg local state unambiguously. For-
mally this can be translated into the following conditioar &évery local observatior, € Z; there
is a local state;, € X, x X}, such that

Although more general Dec-MDP models are possible, we adiodahis simplified version, as this
is sufficient for our purposes and makes the presentatidnddearer and simpler. We refer to [6]
for a more general formulation.

For future reference, define the set

X=X X ... XXy X Xy X ... X Xy

and denote by:_, a general element ot_. As with actions, we writer = (x_;, z;) to denote
the fact that théith component of takes the value,..
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In this partially observable multiagent setting, an indival non-Markov policy for ageritis a
mappingry : H, — [0, 1] such that, for alk;, € Hy,

Z W(hk,ak) = 1,

ap €A

whereh;, = {a(0), zx(1), ..., ax(t — 1), zx(¢)} is anindividual historyfor agentt, i.e., a sequence
of individual action-observation pairg{,. is the set of all possible finite histories for agérand
we denote by () the random variable that represents the history of agentimet.

Like in POMDPs, in a Dec-MDP each agent has only partial geroe of the global state.
Therefore, from the agent’s perspective, its local stateois-Markovian- the current local state
and action are not sufficient to uniquely determine its negal state. It is also noteworthy that,
in the general multiagent setting, there is no compact sgmtation of histories that plays the
role of beliefs in POMDPs. This implies, in particular, thia¢ passage from MMDP to its partially
observable counterpart is fundamentally different fromgame passage in single-agent scendrios.
However, if communication between the agents is instaiaseree and error-free, then a Dec-
MDP reduces to a MMDP, and partial observability is no lorayeissue.

In a Dec-MDP, the purpose of all agents is to determine a joality = so as to maximize
the total sum of discounted rewards. In order to write thigerms of a function, we consider a
distinguished initial state;® € X, that is assumed common knowledge among all adeiise
purpose of the agents is then to maximize

VT =E. [ Y 'r(X(),A®t) | X(0) = a°

Transition-independent Dec-MDRsnstitute a particular subclass of Dec-MDPs in which, for
all (z,a) € X x A,
P[Xo(t+1) =yo | X(t) =2, A(t) = a] = P [Xo(t +1) = yo | Xo(t) = ] (4a)
PXp(t+1) =uyp | X(t) =2, A(t) = a] =P [Xp(t + 1) = yp | Xp(t) = Ty, Ap(t) = ax] . (4b)

The transition probabilities can thus be factorized as

N

P(z,a,y) = Po(zo, yo) H Pr(Zr ar, yr), (5)
k=1

where

Po(zo,y0) = P [Xo(t +1) = yo | Xo(t) = x0]
Pi(Th, ar, ) = P [ Xp(t + 1) = yi | X(t) = Tp,, A(t) = ar] .

3This fact can also be observed by considering the worst-casgutational complexity of each of the different
models. In finite horizon settings, POMDPs are PSPACE-cetaplersus the P-completeness of fully observable
MDPs [24]. In multiagent settings, however, Dec-MDPs areXREcomplete [6] even in the “benign” 2-agent case,
versus the P-completeness of MMDPs.

4In fact, the Dec-MDP definition should explicitly includegtimitial statex®. However, in order to avoid cluttering
the notation, we omit the explicit reference to this inisédte in the Dec-MDP tuple, with the understanding that one
such state is implicit.




This particular class of Dec-MDPs was introduced in [5] aedks to exploit a particular form of
independence to somehow bring down the computational aityplrequired to solve such models.
In this class of problems, the local state of each agent itotest a sufficient statistic for its history,
and the optimal policy for each agent can thus be computegring of this individual state [12].
This particular class of Dec-MDPs has been shown to be NP&imin finite-horizon settings,
versus the NEXP-completeness of general Dec-MDPs [12].

Similarly, reward independent Dec-MDR®rrespond to a subclass of Dec-MDPs in which, for
all z, a,

r(x,a) = f(ri(zg,ap), k=1,...,N), (6)

i.e., the global reward function can be obtained from local reward functionsk =1,..., N. To
ensure consistency of the decision process, we also rettaire

fr—p(@p, ap), me(Zr, ag)) > fr—p(z—g, a—p), 7e(Tp, ur))

if and only if

’/’k(i’k, ak) Z T‘k(i’k, uk)

One typical example is

N
r(z,a) = Zrk(ik, ar), (7)
k=1
wherex = (zg,...,zx) anda = (aq,...,ay). Interestingly, it was recently shown [2, 3] that

reward independent Dec-MDPs retain NEXP-complete conitglexdowever, when associated
with transition independence, reward independence impiat a Dec-MDP can be decomposed
into N independent MDPs, each of which can be solved separatedycdimmplexity of this class of
problems thus reduces to that of standard MDPs (P-complete)

3 Decentralized Sparse-Interaction MDPs (Dec-SIMDPS)

We now depart from the transition-independent Dec-MDP awduce a new model for multi-
agent decision problems that is, at the same time, more gleswed more specific than transition
independent Dec-MDPs. In the previous section we disculsseddifferent degrees of indepen-
dence between the agents in a Dec-MDP translate in termslotee worst-case complexity. This
discussion is summarized in the diagram in Fig. 2.

The goal of this paper is to exploit sparse interactions antloa different agents in a Dec-MDP.
In particular, we are interested in Dec-MDPs in which thareome level of both transition and
reward dependency, but this dependency is limited to speeijions of the state-space. Therefore,
in the diagram of Fig. 2, our model would correspond to thendgae circle.

5In the diagram we have included a “complexity gap” betweenRhand NP classes. Formally, that such a gap
actually exists must yet be proved. However, for illustriatpurposes, we have included it in the diagram, translating
the common belief that:PNP.
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Figure 2: Currently known complexity results for differenutb-classes of Dec-MDPs (see discus-
sion in the main text). We refer to [2] for formal proofs of miesich results.

We start with a couple of definitions that will be used to refine notions of transition and
reward independence described in Section 2.4. K et {ky,...,k,} be a subset of agents in a
Dec-MDP. We denote by

X =X X Xy, X ... X Ay,

the joint state-space of all agentsin Extending the notation introduced in Section 2, we write
X_k to denote the joint state-space of the ageotsn K. We writex ;- to denote a general element
of X andz_j to denote a general element®f . We writex = (z_g, xx) to distinguish the
components of corresponding to agents Ik and those corresponding to agents nakin

Also we decompose the reward function for a Dec-MDP as

M

N
T’(l‘, a) = Zrk(jkv ak) + ZT{([L’K” aKi)’ (8)

k=1 i=1

where eaclhr; corresponds to an individual component of the reward foncthat depends only
on agent: and there aré/ sets,K;,i = 1,..., M, andM reward components; (the interaction
components), each depending on all the agents;iand only on these.

The decomposition in (8) can be performed at no loss of gétyersince any reward: can
be trivially written in that form by setting/ = 1, r, = 0, K; = {1,..., N}, andr! = r. The
scenarios that we are interested in, however, are thoseighwiie support o | 7/ — the subset
of X x A in which this sum is non-zero — is small when compared Witk A.

Definition 3.1. In a Dec-MDPM = (N, (X), (Ax), (Zk), P, (Ox), r,v), an agentk, is indepen-
dentof agentk; in a statexr € X if the following conditions both hold at state

e The transition probabilities for the individual state ofeg &, at = do not depend on the
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state/action of agert,, i.e.,

P [Xko (8 +1) = yiy | X(8) = 2, At) = ]

_P[Xko(t+1) = Yko ‘ X kl( ) A kl(t> :a—kl]'

e Itis possible to decompose the global reward function a) as in(8) in such a way that no
agent sef; contains bothky, andk;.

When any of the above conditions does not hold, aggens said todependon agentk; in x.
Similarly, agentk, is independent of a set of agems = {ky,...,k,} at statez if the above
conditions hold simultaneously for a@lle K in statex, and dependent otherwise.

Roughly speaking, an agehf depends on another agentin a particular state if either the
reward function or the transition probabilities or both cert be decomposed so as to decouple the
influence of each agent’s individual state and action. Nowwdver that the dependence relation
is not symmetrical: even if aget depends on agemt, the reverse need not hold. In fact, it is
possible that the two agents are reward independent anththatnsition probabilities from state
xy, depend on the individual state/action of agentvithout the reverse holding.

Definition 3.2. In a Dec-MDPM = (N, (X}), (Ax), (Zk), P, (Ok), 7, v) a set of agent interact
at stater € X if the following conditions simultaneously hold

e If ky € K and agent:, depends on agent in statex, thenk; € K.
e If £, € K and there is an agerk, that depends on ageht in statez, thenk, € K.

e There is no strict subsdt’ ¢ K such that the above conditions hold &Y.

If the agents in a sek interact in a stater, then we refer tarx as aninteraction statdor the
agents ink.

The concept of interaction introduced above captures ddegrendence between a set of agents
in a Dec-MDP. Note that, it x is an interaction state for the agentshin this does not mean that
each agent in K depends on all other agents in that staténstead, it means that there is at least
one agent ink that either depends dnor k& depends on it. Note also that the definition above is
transitive in the following sense: if agents andk; interact at some stateand agents; andk,
interact at that same statethen agenté, andk, interact atz.

Definition 3.3 (Interaction Area) Let M = (N, (&%), (Ax), (Zk), P, (Og),r,v) be a generalV-
agent Dec-MDP. We define amteraction areat’’ as follows:

(i) X! c Xk for some set of agenfs;
(i) There is at least one state’ € X! such thatz* is an interaction state for the agents It;
(i) Forany z € X1, ax € A andy ¢ X7,

P(Xk(t+1) =y | Xx(t) =z, Ac(t) = ax] = Po(wo, y0) [ [ Pla, ar, ye);
keK

11



(iv) The set¥! is connected.

An agentk is involved in an interaction at timeif there is one interaction areX ! involving a set
of agentsK such thatt € K and X (t) = z, withz = (zx,2_x) andzy, € X7,

Let us briefly review conditions i through iv. The first condit states that each interaction
area will involve a subsek of the agents in a Dec-MDP. The second condition ensuredrthat
every interaction area there is at least one interactide staolving all agents iff<. This seeks to
minimize the number of agents involved in each interact@ondition iii defines interaction areas
as regions of the state-space “around” an interaction.sfdies is perhaps most easily visualized
in a robot navigation task. Returning to the scenario in Eigone interaction state could be
TV = (ghErrow gharrow) - corresponding to the situation in which both agents 1 anek 2rethe
narrow doorway. In this case, an interaction area shoulddcthe state"%™" and at least those
states inX; x X, immediately adjacent to it. In this navigation example, idey for two agents to
avoid crashing in the narrow doorway, they must coordibafereactually reaching the doorway
and hence the inclusion of neighboring states in the intieraarea associated with this interaction
state. Finally, condition iv merely states that interactimeas are sets of “adjacent” states.

The purpose of defining/identifying the interaction areas iDec-MDP is to single out those
situations in which the actions of one agent depend on otjamnta. An agent that is not involved
in any interaction should be able to choose its individuéibas somewhat independently of the
other agents and thus be unaffected by partial joint staserehbility. In contrast, when in an
interaction area, the agent should use state informatgon the other agents in the interaction area
when choosing its actions. It is important to note that,keninteraction states, interaction areas are
not disjoint: an agent can be simultaneously involved inraeraction at two different interaction
areas.

In this paper we are interested in those problems for whichgants involved in an interaction
in a particular interaction ared! C X attimet have full access to the stag, (). We henceforth
refer to such a Dec-MDP as havingservable interactions concept that we formalize in the next
definition.

Definition 3.4. A Dec-MDP hasbservable interactiorisfor any interaction areat’ involving a
setK of agents it holds that for eadh€ K there is a set of local observatio®® C Z;. such that
for everyr € X1

P[Zi(t) € Z | Xk(t) e X'] =1

and, for every;, € Z! there is a local statex € X! such that

Our focus on Dec-MDPs with observable interactions, altjioapparently restrictive, actually
translates a property often observed in real-world scesawhen involved in an interaction, agents
are often able to observe/communicate information thaglesvant for coordination. In a sense,

8In this context we say that a sbt C X is connectedf, for any pair of states,yy € U, there is a sequence of
actions that, with positive probability, yields a trajest¢z(0), ..., z(T)} such that:(¢) € U,t =0, ..., T, and either
z(0) = z andz(T") = y or vice-versa.
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Robot 1 Robot 2

Switch 1 N Switch 2

Communication
channel

Figure 3: Example of a simple navigation task. The two ropb@nd 2, must simultaneously ac-
tivate the corresponding switch, marked with the same numihé color. In this scenario, coordi-
nation needs only to occur when the robots are in the switith ¢@r the purpose of coordination,
the two switch cells have been equipped with a communicati@mnel that allows the two robots
to coordinate.

interaction areas encapsulate the need for informationrgh&n a general multiagent decision
problem.
Generally, one may interpret interaction areas in one ofwags:

e As arising naturally from the sensory information avaitabd the agents. The example in
Fig. 1 provides an illustration of one such situation: theeiiaction between Robots 1 and 2
occurs only when both robots stand in opposite sides of th@wadoorway. In this situa-
tion, spacial proximity of the agents will typically allowé robots to perceive each other’s
state and/or communicate, allowing the agents to use jtate snformation in the decision
process.

e As arising specifically to address inter-agent dependericethis class of scenarios, com-
munication capabilities are built into the agents spedifid@ allow for explicit handling
of interactions among agents. An example of one such siuadi depicted in Fig. 3: the
interaction between Robots 1 and 2 occurs only at the swiicdtions. In these locations, a
communication channel has been setup that can be used fiovdahiebots to coordinate.

The main distinction between the two situations depictedthe former situation, interaction is
localized in such a way that it allows the agents to mutuadiscpive the state of the other; in the
latter, however, interaction arises from a coupling thaddag of the task definition. As such, full
state observability should be explicitly ensured — in tlasecby the communication channel. In
this paper, we are not concerned with the distinction betvtiee two above situations.

We say that a Dec-MDR1 = (N, (X%), (Ax), (2k), P, (O), 7, ) hassparse interactioni all
agents are independent except in a sebbfnteraction areas{ X{, ..., X7, }, with X/ c X,
for some set of agent&;, and such thatt/| < |Xx,|. We refer to a Dec-MDP with sparse,
observable interactions as a Dec-SIMDP (decentralizetsepateraction MDP). For all agents
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outside interaction areas, the joint transition prob&bgiand reward function for a Dec-SIMDP

can be factorized as in (5) and (7), and it is possible to mibesle agents using “individual MDPs”.

On the other hand, the agents involved in an interaction eanddeled using a “local” MMDP.
This leads to the central definition in this section.

Definition 3.5 (Dec-SIMDP) Let M = (N, (X%), (Ax), (Z2%), P, (Ox),r,v) be a Dec-MDP with
sparse observable interactions, encapsulated in a sét dfiteraction areas{ X}, ..., X{;}, as
described above. We represent suctlementralized sparse-interaction MPPec-SIMDP) as a
tuple

['=({Mp,k=1,..., NL{X M]),i=1,... M}),

where

e EachM, isan MDPM, = (XO X X, A, P, Ths 7) that individually models ageritin the
absence of other agents, wheteis the component of the joint reward function associated
with agentk in the decomposition i7);

e EachM! is an MMDP that captures #ocal interactionbetweenk; agents in the states in
X! andis given byM! = (K;, Xk,, (A), PLrl ~), with X! C X,.

Each MMDP M! describes the interaction between a subsgbf the N agents, and the corre-
sponding state-spack, is a superset of an interaction area as defined above.

A Dec-SIMDP is an alternative way of representing a Dec-MDO#hwbservable interactions.
In the states of each interaction area in a Dec-SIMDP, ang ionthese, the agents involved in
the associated MMDP arable to communicate freelyln these areas the agents can thus use
communication to overcome local state perception and dgoidtly on their action. Outside these
areas, the agents have only a local perception of the stetshenuld, therefore, choose the actions
independently of the other agents. A simple albeit innaeunay of thinking of a a Dec-SIMDP is
as a Dec-MDP in which each agent has access, at each timecstdipstate-information required
to predict its next local state and reward. In the remaindléris section and throughout Section 4,
we assume interaction areas to be known in advareethey are provided as part of the model
specification. For a discussion on how these areas can brenietel, we refer to [22].

It is interesting to explore the relation between the D3P model and the MDP, MMDP,
and Dec-MDP models. First of all, as expected, in the abseheay interaction areas, the Dec-
SIMDP reduces to a set of independent MDPs that can be sobptately. This captures the
situation in which the agents are completely independentth® other hand, given an Dec-SIMDP
[, it possible to construct an associated MMBPwhose optimal policies provide a performance
upper bound on the Dec-SIMDP solution. Our algorithm for {3#&IDPs arises precisely from
the consideration of this associated MMDP and is describepli@ater detail in the following sub-
section.

Finally, as discussed above, the Dec-SIMDP model is esdlgrdi Dec-MDP model with joint
state observability in the interaction areas. In thoseasibans in which all agents interact in all
states, as assumed in the general Dec-MDP model, the wlaitesgiace is an interaction area
and, as such, our assumption of observable interactiodersour model equivalent to an MMDP.
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Nevertheless, the appeal of the Dec-SIMDP model is that rpaastical situations do not fall in
either of the two extreme cases., independent MDPs vs. fully observable MMDP. It is in these
situations that the Dec-SIMDP model may bring an advantage more general but potentially
intractable models.

4 Planning in Dec-SIMDPs

In this section we address the problem of planning in DecIf3P, i.e., estimating the optimal
policy for each agent in a Dec-SIMDP when the model is fullg@fed — this including the in-
teraction areas. We start by introducing a general hecaggproach to the problem of planning in
a Dec-SIMDP that relies on the solution for an associated POM his leads to the two general
algorithms dubbed MPSI and LAPSI. We then introduce the ephofgeneralizedy-vectorsfor
Dec-SIMDPs and describe instances of both MPSI and LAPS$Iu$&ageneralized alpha-vectors.
We discuss some of the appealing features of these methoasllaas some interesting issues
raised by our solution method.

To minimize the disruption of the main text, we collected pineofs of all results in this Section
in Appendix A and provide only brief overviews as needed ffigr presentation.

4.1 Heuristic Planning in Dec-SIMDP

Let us start by considering a Dec-SIMDP in which all excep¢ @h the agents have full state
observability. Let this agent be agenaind let us further suppose that the remaining agents (those
with full state observability) follow some fixed known palicr_,. Agentk can thus be modeled
as a POMDP and the other agents can be collectively regasdpdrtiof the environment. In this
particular situation, any POMDP solution method can be ts@dmpute the policy for aget

Our heuristic departs from this simplified setting and cotaplwa policy for each ageitas
if all other agents indeed had full observability and folEmhsome fixed known policy_,. This
hypothesized policyr_, will allow each agent: to approximately “track” the other agents and
choose its actions accordingly. The closey, is to the actual policy of the other agents, the better
agentk will be able to track them, and the better he will decide.

This idea can be used in general Dec-(PO)MDPs. However,eabytpothesized policy_;,
will seldom correspond to the actual policy followed by thibey agents, it is only natural that this
method will not allow each ageritto properly “track” the other agents and decide accordingly
this leading to poor results in general Dec-(PO)MDPs. Théiqaar structure of Dec-SIMDPs,
however, renders this approach more appealing for two nsasm one hand, outside interaction
areas the policy of ageritideally exhibits minimum dependence on the state/policthefother
agents. As such, poor tracking in these areas has littledhgpethe policy of agent. In interaction
areas, on the other hand, local full observability allowsrdg to perfectly track the other agents
involved in the interaction and choose its actions accgiglin

The two proposed algorithms, dubbed MPSI (Myopic PlannimgSparse Interactions) and
LAPSI (Look-Ahead Planning for Sparse Interactions), shthe underlying idea described above
but arise from considering different hypothetical polgcfer the other agents. In MPSI, agent
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considers each of the other agents as completely selfreghésd oblivious to the interactions.
Agentk thus acts as if each agentj # k, acts according to a policy; — the optimal policy for
the corresponding MDPV; in the Dec-SIMDP. In environments with almost no interagtithe
MPSI heuristic actually provides a good approximation blicy of the other agents outside the
interaction areas.

In contrast, in LAPSI, agent considers that all other agents jointly adopt the optimdicgo
for the underlying MMDP. LAPSI is, in a sense, the counterpart to MPSI, as it providgeaxl
approximation to the policy of the other agents in scenawiosre the interactions are not so sparse.

Using the corresponding hypothesized policies for the reimgagents, MPSI and LAPSI can
now leverage any POMDP solution methods to obtain a policgéeh agent. In the continuation
we introduce the concept gfeneralizedy-vectors that will later be used to construct particular
instances of both MPSI and LAPSI.

4.2 Generalizeda-vectors for Dec-SIMDPs

The two methods proposed in the previous subsection, MRELARSI, are described in terms of
general POMDP solvers and allow efficiently computing anviladial policy for each agent in a
Dec-SIMDP. As seen in the previous section, this arises ftwrobservation that, if all remaining
agents have full-state observability and follow some knoticy 7_,, then agent can be mod-
eled as a POMDP. In this section we follow on this idea and gsepparticular instances of both
MPSI and LAPSI that further exploit the structure of the CRIBMDPs model.

Using the POMDP model obtained by adopting the assumptioneglagent: computes an in-
dividual policyr, that mapdeliefsto actions. However, that ageinhas full local state observabil-
ity, implying thatkth component of the state is always unambiguously deteaniRarthermore,
given our assumption of observable interactions (see Dieind.4), at each time step only those
state-components corresponding to agents not interagithgagentt will be unobservable. How-
ever, by definition, the evolution of these state-compamndoes not depend on the state/action of
agentk and depends only on_,. In the continuation, and to avoid unnecessarily comphggathe
presentation, we focus on a 2-agent scenario, remarking@Vewhat the development presented
extends trivially to more than two agents at the cost of maralmersome expressions.

Recovering the POMDP model for agéntwe have from Section 2,

Q*(bv a) - Z b,

r(z,a) + Z P(x,a,y)0(y,a, z) max Q*(Bel(b, a, z), u)] :

Taking into consideration that agehthas full local observability, the belids concerns only the
state component of the other agent. We write this expliaily

Q" (Zy, by, a)

— Z b, _, [r(x, a)+ -y Z P(x,a,y)0(y,a, z) muaXQ*(yk, Bel(b, a, z), u)] )

Z7y

"We recall that a Dec-SIMDP is a particular class of Dec-MDife MMDP associated with the Dec-SIMDP is
thus the MMDP obtained by endowing all agents with full-stabservability at all times.

16



Noting now that the other agent is assumed to follow a fixettpthat depends only on the current
state, we can eliminate the explicit dependence on itsraetial write

Q" (zg,b_j, ar)

=> b, , Tw,k(w,ak)+’YZPn,k(%ak’y)o(y,aaz)H}L%XQ*(%,Be'(b,akaz),uk) -

T_ | 2
where

Lz, ag) Zw kT, ag)r (a_k,ak))

Tr_

P, X x , Ay Y ZW kT, a— k (a—k7ak)vy)'

Now, every time step that agent: is in an interaction area, implying that so is the other agent
it can unambiguously perceive their joint state and hefigg) = X (¢). In all remaining time
stepsZ(t) = X.(t), meaning that the agent observes only its local state. Denby A the set

of all joint states in any interaction aréa., X; = |, X/, we have
Q" (Zk, bk, ar)

= b, e (war) +7 D Pr (@, a5,y y) max Q" (G, Y-k, ur)
Tk yeEX] 9)

+ Z Pr . (x,ak,y )maxQ (Yx, Bel(b, ag, y), ur) | -
yEX]

Let us now focus explicitly on two elements in the above esgpian, namely, the updated belief
Bel(-) and the optimal)-function for the states in the interaction areas. Recallgbneral belief-
update expression from Section 2.2,

Bel, (b, ay, Zi(t + 1)) = 0> bu()P(x, A(t), y)O(y, A(t), Zy(t + 1))

We note that, in the particular setting considered herehéfief concerns only the distribution over
states of the other agent. As suchXif(¢) = ., we have

Bel, , (b, ay, Zu(t + 1)) =0y by, (OPx_, (2, Ax(), y-1)O(y—r, A1), Zi(t + 1)),

Tk
wherex = (x_y, 7 ) and

Pr . (z, 0k, y—) ZW k(2 ack)P_(2_p, (a—p, @), y—g).
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If the agents are not in an interaction area, the transitidtise other agent does not depend on the
actions of agent and hence the above expression simplifies to

Bel,_, (b, ak, Zk(t + 1)) =0 Y ba_ (P, (2,4-1)O(y—k, Ax(1), Zx(t + 1)).

T_k

If Xx(t+1) =y, andy = (y_x, Jx) IS in @n interaction area, then agéntan observe the state
of the other agent and, as such,
Bel, , (b,ax,y) =e,

—k°

For the general situation in whigh¢ A7,

Bel,_, (b, ax, 7ik) =1 Y b, (P, (x, Ax(t), y-i)Lxz (y), (10)

T_f

where, for a general sét C X, [;; is the indicator function fot/ andU*¢ denotes the complement
of Uin X.

Let us now consider the expression 9t (7, b_y, a;) when the agents are in an interaction
area. In this caséy_;, = e,_, for somez_j, and we have

Q*(i‘ku Tk, ak)

= 717&1@(13 ak) + Z P7Lk ('Tv Qg y) quLaX Q*<gk7 Y-k, uk)
yeXT k (11)

+ry E P7T,k<x7ak7y> maXQ*(gka Be|<b7 akagk)uuk)'
Ug
yEXT

Noting the similarity between the right-hand side of (11§ dhe term in square brackets in the
right-hand side of (9), we definegeneralizedy-vectorfor agentk, ay, recursively as follows:

aur(, ax) = 1, (2,0) + 7 Y P, (3, 0, y) max e (y, i) L, ()

Y
(12)
+7 Z P(Zy, ar, i) %%XZ P (@ k, yi) ot (y, up) Lag (y).

Yk Y-k

Theorem 4.1. Given a two-agent Dec-SIMDP, the generalized-vectors associated with agent
k when the other agent follows a fixed known policy, are well-defined, i.e., they always exist
and are unique.

Proof. In order to minimize the disruption of the text, we include tomplete proof of the theo-
rem in Appendix A, of which we present here only a brief sketch
To establish this result, we introduce a dynamic-programgoperatofT’;, such that

o, = Tray

and show this operator to be a contraction in the sup-norre. stétement in the theorem follows
from Banach'’s fixed-point theorem. O
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It is worth noting that the operatdr, introduced in the proof of Theorem 4.1 can actually be
used to iteratively compute the generalizedectors, in a way very similar to the value-iteration
algorithm used to compute the optin@@function for an MDP. And, in fact, the next result estab-
lishes that the generalizedvectors associated with a Dec-SIMDP can be computed eftigie

Theorem 4.2. The generalized-vectors for a 2-agent Dec-SIMDP verifying the conditions of
Theorem 4.1 can be computed in polynomial time.

Proof. The result follows from noting that the generalized/ectors can be computed by solving
an associated MDP. We again refer to Appendix A for a comyedef. O

Actually, an MDP is a particular case of a Dec-SIMDP in whibkre is a single agent. For
this particular Dec-SIMDP, the generalizaévectors indeed correspond to the optirgalzalues.
It then follows from the above result that computing the geleeda-vectors for a Dec-SIMDP is
actually a P-complete problem.

We conclude by noting that all results extend naturally enscios with more than two agents.
For example, the definition in (12) takes the more generahfor

ak(x7 ak) =Tr_ (.T, CLk) + Y Z P7r,k<x07 Ay, yO) H}fixz Pﬂ'fk('r—07 y—O)“k(?Ja uk)

Yo Y-o

where we write a statg € X asy = (yo,y_o). The componentg, correspond to the observable
components of; — those that belong to agents involved in an interaction agéntk, — andy_o
correspond to the remaining components.

4.3 Generalizeda-vectors in LAPSI and MPSI

We now propose using the generalizeeectors and use as estimatésb,ak) for the optimal
@-function for agent,

A

Q(Tr, by, ar) = be,kak(ﬁ,ak)- (13)

We point out that the approximation above shares severalrEsawith theQ\pp algorithm re-
viewed in Section 2.2. In fact, as seen in our previous dsons computing the generalized
a-vectors for a Dec-SIMDP can be done by solving and assatisiieP, for which the above
approximation actually corresponds to Bgpp algorithm.

We now derive error bounds for the approximation in (13) thegtend only on thdispersion
of the maximum values of the generalizeevectors outside the interaction areas. This result can
be extended to general POMDPs, providing error bounds &®tlhyp algorithm that depend only
on the optimal)-function for the underlying MDP.

Given ana-vector a(z, a), let zo denote theobservablecomponents of: — those corre-
sponding to agents interacting withat z,,, — andx_o the remaining components. We define the
dispersiorof a set ofa-vectorsay (z, ax), with x € X anda;, € Ay, as

§), = max H}L%XZak((xo,x_o), uy) — Znﬁx ar((zo,r-0), ug) (14)

o
T_0o T_0o
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The dispersion of a set af-vectors measures how the maximum valuexpftaken over all actions
differs from the corresponding average in the non-obséevabmponents of the state. In other
words, the dispersion quantifies how the lack of knowledgagentk on the state of the other
agents can impact the action choice of agemmt terms of value. This leads to the following result.

Theorem 4.3.Let M = ({M,k = 1,... N}, {(x/,M]),i =1,...,M}) be a Dec-SIMDP
and letr, denote the policy for ageitobtained from the approximatidii3) when the policyr_,,
for the other agents is fixed and known. Then,

2 2
IV =V, < 5 T 5, (15)
v

whereé . represents the dispersion of the alpha-vectors associaiir_ .
Proof. See Appendix A. O

Theorem 4.3 translates well-known bounds for approximaltiipgs to the particular setting
considered herein. Nevertheless, it prompts severalgstieig observations. First of all, as ex-
pected, the bound in (15) is proportional to the total disjper of the generalized-vectors.
As noted before, the dispersion of the generaliaedectors somehow quantifies the fundamen-
tal trade-off being made in the approximation (13): it measinow much state uncertainty outside
the interaction areas can impact the choice of the maximiaation.

Secondly, it is clear that the bound in (15) is zero if one ai things happens, to know

e The whole state-space is an interaction area, X; = X. In this case, we recover the
MMDP version of the problem, as discussed in Section 3.

e There are no interaction states., X; = (). In this case, the definition of the generalized
a-vectors for agent does not depend on the other agents, implyingdhat 0.

Using the generalized-vectors in LAPSI and MPSI is now straightforward. Essdlytidboth
methods use the estimate in (13) to chooose the action fart ageThe difference between the
two methods thus lies on the poliey , hypothesized for the other agents, needed to both track
the beliefb_, and to compute tha-vectors. In MPSIx_,, is taken as the reduced policy obtained
from the individual policieg:;, 7 # k, the optimal policy for the corresponding MDP; in the
Dec-SIMDP. In contrast, in LAPSk_,. is obtained from the optimal policy for the underlying
MMDP by ignoring componert.

For illustration purposes, in the following section we apipbth these methods to several prob-
lems of different dimension, using (13) as our estimate tierROMDP optimal)-function. Our
results indicate that, even using such a sub-optimal POMID/s LAPSI is able to attain a perfor-
mance that is close to optimal in all test scenarios whil@rinog in a computational cost similar
to that of solving the underlying MMDP. MPSI, on the other dawhile computationally more
efficient, seems to lead to agents that are “too cautious” al& compare our algorithms with a
previous algorithm for Dec-SIMDPs introduced in [30] andhbeforth referred as the IDMG algo-
rithm. Our results indicate that LAPSI is able to attain $samperformance to that of IDMG while
providing significant computational savings. We also shioat the IDMG algorithm is, by design,
unable to consider future interactions when planning dettie interaction areas, this potentially
leading to poor performance. This limitation is not presaitAPSI.
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Table 1: Dimension of the different test scenarios.

Environment # States

Map 1 441
Map 2 1,296

Map 3 400
Map 4 65, 536
CIT 4,900
CMU 17,689
ISR 1,849
MIT 2,401
PENTAGON 2,704
SUNY 5,476

4.4 Results

In this section we describe the results obtained from apglipoth MPSI and LAPSI to a range of
problems of different dimensions, and analyze the perfageaf our methods in each of the test
scenarios. To gain a better understanding on the applitgedniid general properties of our methods,
we compared the performance of both MPSI and LAPSI to thahefaptimal fully observable
MMDP policy and that of the IDMG algorithm from [30]. In the NdG algorithm, each ageritin

a Dec-SIMDP({ M,k =1,..., N}, {(X/, M}),i =1,..., M}) follows the optimal individual
policy 7, for the MDP.M,, outside the interaction areas. In the interaction areasadglents engage
in a sequence of local matrix games in which they jointly adbg equilibrium policy.

The different scenarios used to test our algorithm are teghio Fig. 4, and the dimension of
the state-space for the corresponding Dec-MDP is sumntaiie&able 1. The reason for using
navigation scenarios is that the Dec-SIMDP model appeatscpkrly appealing for modeling
multi-robot problems. Furthermore, in this class of profde the results can be easily visualized
and interpreted. In each of the test scenarios, each rokotsat of two/four robots must reach
one specific state. In the smaller environments (Maps 1 gira), the goal state is marked with
a number, corresponding to the number of the robot. The watlsa boxed number correspond
to the initial states for the robots. In the larger environtsgthe goal for each robot is marked
with a cross,x, and the robots each depart from the other robot's goal,sitaten attempt to
increase the possibility of interaction. Each robot has dspiide actions that move the robot in
the corresponding direction with probability8 and fail with probability0.2. The shaded regions
correspond to interaction areas, inside of which the daz&ls correspond to interaction states, in
which the robots get a penalty ef20 if they stand in the same cell simultaneously. Also, in these
interaction states, the rate of action failure is increasdil4.2 Upon reaching the corresponding
goal, each agent receives a rewardrdfand its position is reset to the initial state.

For each of the different scenarios in Fig. 4, we ran the fégmrdghms above and then tested

8Both the penalty and the increased action failure rate irtfgythere is both reward and transition dependence in
the interaction areas.
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Figure 4: Environments used in the experiments.
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Table 2: Total discounted reward for each of the four diffiéralgorithms in each of the test-
scenarios. The results are averaged dveo0 independent Monte-Carlo runs. Bold entries corre-
spond to optimal values (differences are not statisticadipificant). Also, italic entries correspond
to values whose differences are not statistically differen

Environment IDMG MPSI LAPSI  Opt.

Map 1 12.035 11.130 11.992 12.588
Map 2 10.672 10.159 10.94711.069
Map 3 13.722 13.249 13.701 14.380

Map 4 — 15.384 15.564 16.447
CIT 11.1v8 11.105 11.126 11.151
CMU 2839 2.688 2.824 2.906
ISR 14.168 13.937 13.997 14.335
MIT 6.663 6.641 6.648 6.681

PENTAGON 16.031 15.162 15.976 16.312
SUNY 11.161 11.130 11.139 11.110

Table 3: Total number of steps until the two robots reach tiveesponding goals for each of the
four different algorithms in each of the test-scenariose fi@sults are averaged oven00 indepen-
dent Monte-Carlo runs. Bold entries correspond to optinaéles (differences are not statistically
significant). Also, italic entries correspond to values sdifferences are not statistically differ-
ent.

Environment IDMG MPSI LAPSI  Opt.

Map 1 11.021 12.752 11.091 10.090
Map 2 13.368 14.433 12.82812.511
Map 3 8.450 9.282 8.477 T7.477

Map 4 — 6.088 6.071 5.001
CIT 12.422 12552 12.514 12.466
CMU 39.338 49.341 39.444 38.850
ISR 7.993 8.986 8.012 7.504
MIT 22.578 24.507 22.618 22.523

PENTAGON 5.348 19.684 5.416 5.006
SUNY 12.448 12500 12.487 12.539

the computed policy fot, 000 independent trials of 100 steps each, in the smaller enviemts,
and 250 time-steps each, in the larger environments. Tlaerdat results can be found in Tables 2
and 3.

First of all, that the LAPSI algorithm performed very clogethe optimal MMDP policy in
all environments, in spite of the significant difference émnts of state information available to
both methods. Also, in most scenarios, LAPSI and IDMG penteat similarly, both in terms
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Online computational time vs. Dec-SIMDP dimension
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Figure 5: Computation time for the different algorithms daraction of the problem dimension.

of total discounted reward and in terms of time-to-goal. ©hé/ exceptions are Map 2, where
LAPSI outperformed IDMG, and ISR, where IDMG outperformediRSI. Interestingly, however,
the difference in terms of time-to-goal in the ISR enviromtnis not significant. In any case, our
results agree with previous ones that showed that IDMGregthclose-to-optimal performance in
most such scenarios [30].

Another interesting observation is that MPSI typicallyfpemed worse than the other methods.
As pointed out before, since an agent in MPSI considers tier @igents to be selfish and disregard
the consequences of mis-coordinations (each is focusegdonts individual goal), it is expected
that the agent following MPSI is more “cautious” and henadhserved longer time to the goal.

We note in our results that the difference in performanceveen LAPSI/IDMG and the optimal
MMDP policy occurs both in terms of total discounted rewand also in terms ofime-to-goal
And indeed, given the discount facter the latter in part explains the former: if the agents take
longer to reach their goal, the corresponding reward wiliusther discounted. The above results
thus seem to indicate that both our algorithms and the IDM@ri¢hm require more time to reach
the goal configuration than that needed by MMDP solution,taistime must be spent in avoiding
the penalties.

The choice of interaction areas greatly influences thetglafi the algorithms to avoid penal-
ties without incurring in delays in reaching the goal. Thipomenon was also reported in [30]
concerning the IDMG algorithm.

It is also worth noting at this point that, since the IDMG nadirequires the computation of
several equilibria both in the off-line planning phase amthe on-line running phase, the computa-
tional complexity of the IDMG algorithm may quickly becommeopibitive, in scenarios with large
action spaces and/or with many interaction areas. To asdexker this is indeed so, we compared
the computational effort of our methods with that of IDMG tiban terms of the average off-line
computation time and the on-line computation time. Thesalte are summarized in Fig. 5.

Both MPSI and LAPSI are significantly more computation edfitithan the IDMG algorithm
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Goal 2| X : | | (8| Robot 2

Robot 1 Goal 1

Figure 6: Example scenario where avoiding the interactiagy be beneficial.

according to any of the two performance metrics. It is aldergsting to note how the average
computation times evolve with the dimension of the problem.

Finally, the IDMG method is, by construction, unable to ddes future interactions when
planning for the action in a non-interaction area. In thizsgg the IDMG algorithm is “myopic” to
such interactions and only handles these as it reachesandtion area. This can have a negative
impact on the performance of the method, as seen in the foltpfinal example.

Consider the scenario depicted in Fig. 6. Once again, thertwots must reach the marked
states while avoiding simultaneously crossing the narrathways. We model this problem using
a Dec-SIMDP: the two sets of shaded cells represent twaeaictien areas in which the robots only
get a non-zero penalty by standing simultaneously in th&edatate. In this environment, and
ignoring the interaction, Robot 1 can reach its goal by usgitiger of the narrow pathways, since
both trajectories have the same length. However, Robot @ldhuse the upper pathway, since it is
significantly faster than using the lower pathway.

By using the IDMG algorithm, Robot 2 goes for the upper pathwéile Robot 1 chooses
randomly between the two. For concreteness, let's suppgm@geRiobot 1 chooses to go for the
upper pathway. In this case, according to the IDMG algorjthoth robots reach the interaction
area simultaneously and Robot 1 must move out of the way fooR®to go on. This means that,
in total, the two robots take a mean time of 9 steps to reachdheé If, instead, Robot 1 takes the
lower pathway, the two robots will reach their goal state8 steps. Since the IDMG algorithm
chooses between the two randomly — or, at least, has no waiffécedtiate between the two —
the average time to the goal is 8.5 time-steps. Welr@00 independent trials using the IDMG
algorithm in this scenario and, indeed, obtained an aver&gel85 steps to goal, with a standard
deviation of0.5. Clearly, it seems possible to do better in this scenariatply considering that
it may be more convenient to use the lower pathway.

For comparison purposes, we also 1an00 independent trials using the LAPSI algorithm in
this same scenario. Out df000 trials, Robot lalwayspicked the lower pathway. As expected, the
group had an average time-to-goalkaime-steps with a variance 6f Notice that this difference
could be made arbitrarily large by increasing the “narrowrgh@y” to an arbitrary number of states,
thus causing an arbitrarily large delay.
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5 Related Work

In the past decades, a wide range of models have been propo$aunalize decision-making
problems in multiagent systems. These include general lmatdeh as stochastic games [26] as
well as more specific models such as multiagent MDPs [8], (P¢2¥MDPs [6], I-POMDPs [11]
among others. This paper follows on the extensive liteeatrDec-(PO)MDP-related approaches.

The Dec-MDP and Dec-POMDP models were originally proposeBdrnstein et al. [6]. The
paper introduces both models and proceeds by analyzingothewtational complexity of finite-
horizon Dec-MDPs and Dec-POMDPs. The fundamental restittasfinite-horizon Dec-MDPs
areNEXP-complete even for the “benign” 2-agent scenarios. Conifylegsults are even worst in
non-cooperative settings: non-cooperative partiallyeolsble stochastic games are complete for
theNEXPM! class [13].

These disencouraging complexity results have led to afggni amount of research on (i)
approximate methods for Dec-(PO)MDPs that, in a senseg4néfdoptimality for computability;
and (ii) models that, while less general than Dec-POMDRK nsanage to capture fundamental
features of this class of problems such as decentralizeidot@md partial state observability. These
models, in a sense, trade-off representability for complitya

Several of these models assume, to some degree, that thectide between the different
agents can be simplified. For examplériansition-independent Dec-MDH4, 5], the transition
probabilities for each agent depend solely on its own astémd local states (see Section 2.4). This
class of problems can be solved using the Coverage Set thigojs] and has been shown to be
NP-complete, in contrast with theEXP-completeness of general Dec-MDPs.

As seen in Section 3, the Dec-SIMDP model proposed in thigmpaltows the transition prob-
abilities for an agent to depend on the actions of other agarihe interaction areas. In this sense,
it is more general than transition independent Dec-MDPs.th@rmother hand, to deal with these
dependences we assume joint state observability in theas aror, equivalently, free instantaneous
communication. It remains an open question what is the weasé complexity associated with the
Dec-SIMDP model.

Local interactions have also been exploited in other nydtet scenarios. For example, several
works propose the use of hierarchical approaches that éflevagents to learn at different levels
of abstraction [10, 20, 31]. The idea in these approaches sibdivide the overall task in a
hierarchy of subtasks, each restricted to the states amhacgtlevant to that particular subtask.
This task decomposition allows the subtasks to be condustididually, without requiring the
agents to know the state of others or communicate their oate.stGoing up in the hierarchy
thus corresponds to moving from low-level “local” tasks igter-level “global” tasks, in which
coordination is necessary and must be accounted for ethpli¢éiowever, since execution at the
highest level actually corresponds to several low-levektisteps, this means that communication
needs are minimized.

Coordination graph$14] capture local dependences between the different agean MMDP.
Coordination graphs thus allow the over@Hfunction to be decomposed into “local)-functions,
each of which can be optimized individually. Coordinatiaamghs have been used for efficient
planning [14] and learning [16] in large multiagent MDPs.

Both hierarchical approaches and coordination-grapleddapproaches exploit local interac-
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tions between the agents and can thus accommodate somefl@agtial state observablity, even
if not originally designed to. The interactions betweendgents captured by coordination graphs
are closely related to the notion miteractionintroduced in Section 3. Also, as with the interac-
tion areas in the Dec-SIMDP model, both aforementioned wadsume the coordination graph or
subtask hierarchy to be known in advance. A posterior work jidtroduces the concept of “utile
coordination”, proposing a method to actudkarn the coordination graph structure. Unlike the
previous approaches [14, 16], this work does not assuméhdabordination graph is known but,
instead, it is learned from experience. Although using a&mentally different approach, it shares
the same underlying idea as [22]: both methods infer whené ghate information can improve the
performance of the agents.

In the game-theoretic literature, several works have erpldocal dependences between the
players in large games. For exampeaphical game$15] represent:-player matrix games using
a graph where players correspond to nodes in an undirectgxh gnd the payoff for that player
depends only on the actions of its direct neighbors in thplgrd his concept is further exploited
in action-graphgames, that generalize graphical games in several aspkhkiple algorithns
have been proposed to compute Nash equilibria in this cliagaraes, mostly relying on the so-
called “continuation methods” [7]. In these methods a kn@etution for a “simple” game is
gradually perturbed toward the desired game until a solusmbtained. These methods take an
amount of time that is exponential in tiredegreeof the action-graph, and not in timeimber of
nodes- typically considered as the dimension of the game. Thesgfyames with many context-
specific independences yield sparsely connected actephgr leading to exponential savings in
computational time. Posterior works [33, 34] further exftloe structure of action-graph games for
some classes of problems to allow for more efficient comprtatf equilibria. They also provide a
worst-case complexity analysis on the general computafiequilibria in these problems. A good
overview of action-graph games and associated methodsecknubd in [35].

Our Dec-SIMDP model was originally proposed under the degign ofinteraction-driven
Markov gameg30]. This work also introduced the IDMG algorithm mentidn@ Section 4.4,
which differs from IDMG and LAPSI in two fundamental aspec®n one hand, outside the in-
teraction areas each agentises the optimal policy for the corresponding MR, in the Dec-
SIMDP model. This makes the agents unable to act taking ectount the impact that interaction
areas visited in the future can have in the current decisf@n.the other hand, when at interac-
tion areai, each agent combines the optima)-function associated with its individual MDP1,,
with the optimalQ-function associated with the MMDR1!. All agents interacting in that area
share the correspondirig-functions thus obtained and play a matrix game in that statepting
an equilibrium strategy for that game.

Put simply, both the MPSI and LAPSI algorithms compute the#nogl (Q-function for a full
MMDP associated with the original Dec-SIMDP and use theasponding policy in the interaction
areas. Although the dimension of the full MMDP is typicallyial larger than that of the MMDPs
solved by IDMG, the fact that the latter algorithm must comnepseveral Nash equilibria brings
a computational advantage to our method that larger in preblwith many states in interaction
areas. As an example, the environment in Fig. 4a requiresdhgputation of about 90 Nash
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equilibria®

Another closely related model is that of distributed POMD®h coordination locales [32].

In DCPLs, each agent is assumed independent of all othetsagroept on previously specified
coordination localesThis work also proposes the TREMOR algorithm for DCPLs: mas in the
IDMG algorithm, TREMOR models each agenusing a POMDP model that is solved to yield
a policym,, for that agent. Coordination locales are handled by madiifyhe POMDP model for
each agent taking the policies of the other agents into axtcou

Finally, several works have analyzed the worst-case cotitplef known models for decen-
tralized multiagent systems, including transition-inéiegent Dec-MDPs and reward-independent
Dec-MDPs [3, 12]. We summarized several of these resultagnZ Although the worst-case
complexity for the proposed Dec-SIMDP model remains an apesstion, our conjecture is that
may be possible to replicate the reasoning in Section 3 datkrthe worst-case complexity of
Dec-SIMDPs with that of single-agent partially observabledels.

More recently, an information-theoretic measure of irgent influence has been proposed
under the designation afifluence gag2]. The influence gap, in a sense, indicates how much the
actions of one agent determines the actions of the othetsgetihe optimal policy, in an attempt
to quantify the level of dependence between the differeentsy As expected, larger influence
gaps — corresponding to smaller inter-agent influence, iedllp translate into less computational
complexity. This opens an interesting question to be addces future work. While the influence
gap described above is a measuregytafbal inter-agent influence, our interaction areas capture
local interactions between the agents. However, larger or nwmseénberaction areas typically lead
to “harder” problems. It would be interesting to transldtes tintuition in terms of the proposed
influence gap, as it would certainly provide a more direct wbgssessing the general applicability
of the Dec-SIMDP model.

6 Conclusion

Both instances of LAPSI and MPSI used in the experimentallt®sest on having each agent
track the other agents in the environment using a beliefoveitiat is then used to choose the
actions. The difference between the two algorithms liebénassumed policy for the other agents.
MPSI assumes each of the other agents to be completely &okloyliheir “individual goals”, thus
discarding whatever interaction there may be. In the cabesaithese interactions are negative, this
causes the MPSI agents to act more cautiously. In conthast,APSI agent assumes that the other
agents are “team-players”, in that they choose their asfionthe common goal of the group. This
allows the agent to adopt a policy that is closer to the actpiimal fully-observable policy, which
indicates that the LAPSI algorithm successfully leverafegparticular independences between the
different agents to attain efficient and yet near-optimafgyenance. In MPSI and LAPSI, these
“modeling strategies” are used to abstract the decisionga® of each agent into a single-agent

SMore precisely, the IDMG method requires the computatiooraf equilibrium for every state inside or adjacent to
the interaction area and one additional equilibrium atgéate in the interaction area. In the environment of Fig. 4a
this corresponds to havirigx 9 equilibria for the states inside and adjacent to the inteva@rea plus the aditional
3 x 3 equilibria for the states in the interaction area, leading total of90 equilibria.
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decision process — namely, a POMDP. Although we illustrai@dmethods using &\pp-like
approach, the same principle can be used with any other POdoDver.

Also, the ability that both MPSI and LAPSI have to track theestagent allows the planning
process to take into consideration the possibility of fatimteraction. This, as seen in the example
in Fig. 6, is an important property of the method that overesrane important limitation of the
IDMG algorithm.

We further note that the differences between MPSI and LAPS) pnovide additional informa-
tion in defining the interaction areas. While MPSI relies loa dptimal policies for the individual
MDPs in the Dec-SIMDP model, LAPSI relies on the joint polfoy the underlying MMDP. Since
outside interaction areas we expect the actions of therdiffeagents to be approximately inde-
pendent, the interactions areas should be those in whiakstiraated policies using the individual
MDPs and the joint MMDP disagree. This provides one recipelfmosing the interaction states
as those in which individual state-information is not suéiit to determine the best action. In [25]
a similar approach was used to implement decentralizecuér@acof a jointly optimal policy.

Finally, given the similarity between our methods a@pdpp, one would expect our methods to
suffer in states of great uncertainty, much l®gpp does. In these states, action selection may be
“conservative” but sparse interactions will hopefully miize the effects of this situation.

We conclude by noting that it would be interesting to extemel ideas in this paper to more
general models such as Dec-POMDPs, alleviating the regeimeof full local state observability.
In this case, POMDP models could replace the individual MOfelets used in this paper, similarly
to the approach in [32].
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A Proofs

In this appendix we present the proofs of the several themadong the text.

A.1 Proof of Theorem 4.1

We establish this statement by showing that the generatizegictors can be computed using a convergent
dynamic-programming like approach, by iterating over #gurrent expression in (12).

We start by noting that, in Dec-SIMDP verifying the conditioof the theorem, a generalizegvector
oy is actually g X| x |Ag| matrix with componentx, ax) given byay(x, ai). Let us define, for a general
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matrix | X'| x |.Ag| matrix W, the operato';, as follows
(TkW)(l‘, ak) =Tr_y ('1'7 ak’) + Z P7r,k (l’, A, y) II;[LELX W(yv uk’)
yeXT i
+ 7y HE:X Z P7r,k (l’, af, y)W(y> Uk),
y¢EXT
where(T,W)(z, ax) denotes the elemefit, a;) of the matrixT ;W . We now establish the assertion of the
theorem by showind;. to be a contraction in the sup-norm. In fact, we have
ITaTVs = T = max [(TLW) (2, ax) — (TeWa) (. ax)

< ymax E Pr . (z,ar,y) max |Wi(y, ur) — Waly, u)|,
Z,a U
Yy

where the last inequality follows from Jensen'’s inequalltigzis immediately implies that
ITeWy = TyWallo < ymax [Wi(z, a) — Wa(z, ai)|
=7 ||W1 - Wa| -
We have thus shown that;, is a contraction in the sup-norm, which implies that

e It has a unique fixed-point, corresponding to the genemdlizeectors. This establishes the claim of
the theorem.

e |t can be used to compute the generalizedectors in a dynamic-programming-like fashion, using
the update rule

ol (z,a) = (Tl (@, ap),

wherea,(f") denotes theith estimate oty (z, ax ). O

A.2 Proof of Theorem 4.2

To establish the claim of the theorem, we show that the prolofecomputing the generalizedvectors for a
Dec-SIMDP verifying the conditions of the theorem is eqléw (in terms of complexity) to that of solving
an MDP whose dimension depends polynomially on the dimarafithe original Dec-SIMDP. In particular,
we show that computing the generalizeevectors for such Dec-SIMDP is equivalent to computing the
optimal Q-function for an MDP. Since MDPs are known to be P-completq, [this establishes the desired
result.

We start by noting that (12) can be rewritten as

ak’(l'a ak’) = Tﬂfk(x>ak) + Z owk(a%akvy) IHH%X ak(yvuk’)
yEXT

+ v Z Pw,k(w;almy) H}L%anak Z Pw,k(x7ak7z)ak(zauk)
yEXT 2¢ Xy

(16)

where
1

Zyék‘[ Pﬂ,k (.Z', ag, y) .

nxak =
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We now construct an MDRM = (X, A;, P,7), whereX = X U X x Aj,. We define the transition
probabilities for this MDP as

Pr_,. (&, a1, 9) if 2 € X andy € &
1/Nsay if & € X andj = (&, az)
ls(iﬂlk,@) _ ) ey Zygz/\’[ owk(’z’uk?’y)Pﬂ'fk(y?ak)vg) if 3:3 = (2, u) aAndZ; € Xy
Nz, Pr_y (2, Wk, ) /Myay, if 2= (2,u), § = (y, ax),
andy ¢ X1
k0 otherwise.

These probabilities are well-defined since, foe X,
le(iyakag) = Z Pw,k(:i'aakyg)_‘_l/niak
g gEXT

= Z Pﬁfk(:i'valwg) + Z Pﬂfk(il’akvy) =1

geX] yEXT

and, forz = (z, u)

Z'S(iaalmm = Tzuy, Z Pﬂfk(zﬁulmy)( Z Pr . (Y, ax,9) + 1/77yak>
g

y¢XI yeEXT
= Nzuy, Z Pw,k(27uk7y) =L
yEX]
Similarly, we define the reward function for this MDP as
s A) |f T G X
72, ap) = 4 @) o
nzuk Zy¢XI Pw,k(zaulmy)rﬂ,k(yaak) If r = (Z,Uk).

The optimal@-function for this MDP verifies the recursive relation (2)at we repeat here for commodity:
Q*(#,ax) = (&, a) +7 Y P(&, a, §) max Q" (§, up).
™ Uk
geX
Now, forz € X and replacing the definitions é’fandf, we have
Q*(QA% ak) =Tr_y (i'v ak) + Z P7r,k (:i'v af, g) H}LaX Q*(g7 uk)
JEXT i
~

Tliﬁak

+ maXQ*((i,ak),uk).

Uk

Similarly, for z = (z, ux), we have

Q*(&,ax) = Moy, Y Proy (2w, y) ey (k) + Y Py (g, ap, §) max Q7 (3, up)
yEx; JEXy ‘

_|_

max Q" ((y, ax), ux)
Nyay, Uk

= Nzuy, Z Pw,k(zaukay)Q*(yaak)'

y&EXT
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Replacing in the previous expression finally yields

Q" (,08) = 1o (Br08) +7 3 P, (0 ) max Q* (1w
geXT

max Nia, ¥ Pr_, (&, ar, y)Q (Y, ur),

Mooy Uk
Tk y¢XT

+

and this is (16). As such, in computing the optirgafunction for the MDPM, we compute the generalized
a-vectors for the original Dec-SIMDP as

ag(z,ar) = Q" (x,ay).

Since the dimension of the new MDP grows polynomially (limgaactually) with the dimension of the
generalizedy-vectors (and, hence, with the dimension of the corresponBiec-SIMDP), the statement of
the theorem follows. O

A.3 Proof of Theorem 4.3

It is well-known that, for a general MDA = (X, A,P,r,~), if 7isthe greedy policy with respect to a
function @, i.e., if
7i(x) = argmax Q(x,a)
acA
forall x € X, then

[ve-v|_ <2 BRQ) (17)

o~ 1—7

whereBE(Q) is the Bellman error associated with the functign

BE(Q) = sup

z,a

r(z,a) + v Plz,a,y) max Q(y, u) — Q(z,a)|.

Y

In our Dec-SIMDP setting, since we are assuming the poticy to be fixed and known, the decision-
process (from agenit’s perspective) is a standard POMDP. Recalling that a POM&Pbhe recast as an
equivalent belief-MDP, it follows that the relation (17yalholds for POMDPs. Writing down the Bellman
error for a general POMDPX, A, Z, P, O, r,~) thus yields

BE(Q)

= sup
b,a

be [r(m,a) +’yZP(m,a,y)O(y,a, 2) mgx@(b'za,u)] — Q(b, ay,)

x zZ,Y

For simplicity of notation, we consider tligeliman error at(b, a) to be

BE(Q, b, a)

Z b, [r(m, a) + ’yz P(z,a,y)0(y,a, z) max Qb u)] —Q(b,a)|.

32



For the POMDP as perceived by agérih our Dec-SIMDP setting, we have
BE(Q> b7 ak)

T_g [Tﬂ'k(mvak)_F’VZPﬂ'k(mvakyy)o(yv )IﬂaXQ( zay s )] _Q(bvak)

which, replacing the definitions «i?(b, ay) and the generalized-vectors yields, after some shuffling,

E(Q,b, a;)

Z bxo Pﬂ,k(x07akay0)nizx Z bx,oPﬂ,k(x—Oay—O)ak(yauk)

T0,Yo T—-0,Y-0

- Z bxo b:(:,o Pw,k (wOa Qg, yO) H}L?;X Z Pw,k (w—Oy y—O)ak(y7 uk) )

Z,Y0 Yy-o

where we have used the notation introduced in Section 4#inbe
Ar(z_0,y0,ur) = Y Pr_ (2-0,y-0)or(y, ur),
Yy-o

we have

BE(Q, b, a;) < by Az_0,y0,us) — > by Az_o,yo,uz)] .
(@b, ax) < ymax Hggxlz oA@-0,90,uk) = Y _ by max A0, yo, uk)

z_o

In order to bound the right-hand side of the expression ghoeaeed two auxiliary results that we promptly
introduce. These results generalize some of the bound§]rig2he case of functions defined oV and
are of independent interegseér se

LemmaA.l. Let{zy,k =1,..., M} be a set of points ifR"™, for some (finitey, and{ s,k = 1,..., M}
a set of corresponding weights, verifyiig< 8, <1,k =1,...,M and)_, 5, = 1. Letf : R" - R be a
convex function. Then, it holds that

Zﬁkf 1) <Zﬁkxk> < B* [Zf xy) — Mf (Zk:a:k/M>] : (18)

k
where

B = max B

Proof. The proof essentially follows that of Lemma 1 in [27]. Ugtbe such thag* = §;+. EQ. (18) can

be rewritten as
> (B = Bi)f (@) + f (Z 5kxk> > p3*Mf (Z wk/M>
k k

k#k*
or, equivalently,

> 5M5* Mﬁ* (Z&m) > f (ZxﬁM)

e
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Noting that

5—ﬁk 1
Z Mﬁ*_l’

k£k*
we finally get
B — (Z ) B — 1
Z m Brak | > | D * = Brak
hthe Mﬁ ford MB s -
=f (Z u/M) ,
k

where the first inequality follows from Jensen’s inequalithis implies (18). O

Lemma A.1 implies the following corollary.

Corollary A.2. Let{x;,i =1,..., N} be a set of points ifR", for some (finitey, and{p;,i = 1,..., N}

a corresponding sequence of weights verifying p; < 1and)_, p; = 1. LetU denote a closed convex set
that can be represented as the convex hull of a set of pfintsc = 1,..., M} inR™. Letf: U — Rbea
convex function. Then, it holds that

> pif(xi) — f (Zpixi> <> flaw) - Mf (Zak/M> : (19)
i i k k
Proof. We start by noting that eacly can be written as

zi =Y Nikax,
K

with0 < X\, < land) ), \jy =1,i=1,...,n. Then,
> pif(z) - f (ZPz%) => nif (Z )\ikak> —f <Zpiz)\ikak>
<Y flaw) Y pidik— f (Z ak Zpi)\ik> :
K i k 5

Letting B, = > _; piAik, We get

Sose) - (me> <3 ) (Z mk)

Finally, applying Lemma A.1,

Snste)- (zpm) < ) (z 5>
R )
<> fla) —Mf (2}; WM)

k
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and the proof is complete. O

Note the difference between the two bounds: while (18) dép@m the functiory and the set of points
{zk,k=1,..., M}, (19) depends only on the functighand on the sel/.

We now have that, for any givem;, € A, 2*, € X o andy, € Xo, Ap(2” o, y5,uy) lies in the
convex hull of the set of alpha-vectas, (y, v} ) whereyo = yf. Then, from Corollary A.2,

Yo Uk

BE(Q, b, ;) < ymax max Y a((y0.y-0) wx) — Y max an((y0,y-0),ur)|
Yy-o Yy-o

This finally yields

2

V" =Vl < 77 max I%aXZ ax((yo,y-0), uk) — Zlgax ax((Yo,y-0), ur)|
Y Yo k Vo Vo k
and the proof is complete. O
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