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Abstract

We introduce an algorithm for learning sparse, time-varying undirected probabilistic graphical
models of Molecular Dynamics (MD) data. Our method computes a maximum a posteriori
(MAP) estimate of the topology and parameters of the model (i.e., structure learning) using L1-
regularization of the negative log-likelihood (aka ‘Graphical Lasso’) to ensure sparsity, and a kernel
to ensure smoothly varying topology and parameters over time. The learning problem is posed as
a convex optimization problem and then solved optimally using block coordinate descent. The
resulting model encodes the time-varying joint distribution over all the dihedral angles in the pro-
tein. We apply our method to three separate MD simulations of the enzyme Cyclophilin A, a
peptidylprolyl isomerase. Each simulation models the isomerization of a different substrate. We
compare and contrast the graphical models constructed from each data set, providing insights into
the differences in the dynamics experienced by the enzyme for the different substrate.






1 INTRODUCTION

This paper introduces a novel method for analyzing and modeling Molecular Dynamics (MD) data.
Molecular Dynamics simulations are an important tool for investigating the energy landscape that
governs a system’s behavior. Conceptually, an energy landscape is a complicated surface in a
high-dimensional space (one dimension for each conformational degree of freedom in the protein).
The surface may contain many local minima (called sub-states) separated by energy barriers. Our
method builds a time-varying, undirected probabilistic graphical model of the system’s internal
degrees of freedom including the statistical couplings between them. The resulting model auto-
matically reveals the conformational sub-states visited by the simulation, as well as the transition
between them.

A system’s ability to visit different sub-states is closely linked to important phenomena, in-
cluding enzyme catalysis [7] and energy transduction [11]. For example, the primary sub-states
associated with an enzyme might correspond to the unbound form, the enzyme-substrate complex,
and the enzyme-product complex. The enzyme moves between these sub-states through transition
states, which lie along the path(s) of least resistance over the energy barriers. Molecular Dynamics
provide critical insights into these transitions.

Our method is motivated by recent advances in Molecular Dynamics simulation technologies.
Until recently, MD simulations were limited to timescales on the order of several tens of nanosec-
onds. Today, however, the field is in the midst of a revolution, due to a number of technological
advances in software (e.g., NAMD [17] and Desmond [9]), distributed computing (e.g., Fold-
ing@Home [16]), and specialized hardware (e.g., the use of GPUs [19] and Anton [18]). Col-
lectively, these advances are enabling MD simulations into the millisecond range. This is signifi-
cant because many biological phenomena, like protein folding and catalysis, occur on s to msec
timescales.

At the same time, long timescale simulations create significant computational challenges in
terms of data storage, transmission, and analysis. Long-timescale simulations can easily exceed
a terabyte in size. Our method builds a compact, generative model of the data, resulting in sub-
stantial space savings. More importantly, our method makes it easier to understand the data by
revealing dynamic correlations that are relevant to biological function. Algorithmically, our ap-
proach employs L1-regularization to ensure sparsity, and a kernel to ensure that the parameters
change smoothly over time. Sparse models often have better generalization capabilities, while
smoothly varying parameters increase the interpretability of the model.

The contributions of this paper are as follows:

e The first application of structure learning (i.e., learning both the topology and parameters of
the graphical model) to Molecular Dynamics data.

e An algorithm for learning globally optimal time-varying models in a regularized fashion.

e An analysis of the dynamics of the peptidylprolyl isomerase Cyclophilin A, including a
comparative study of the enzyme bound to three different substrates.



2 BACKGROUND

Molecular Dynamics simulations involve integrating Newton’s laws of motion for a set of atoms.
Briefly, given a set of n atomic coordinates X = {)Z' Ly ooy X,: X e R3} and their corresponding
velocity vectors V = {‘71, e V,: V. e R3}, MD updates the positions and velocities of each atom
according to an energy potential. The updates are performed via numerical integration, resulting in
a conformational trajectory. When simulating reaction pathways, as is the case in our experiments,
it is customary to analyze the trajectory along the reaction coordinate which simply describes the
progress of the simulation through the pathway.

The size of the time step for the numerical integration is normally on the order of a femtosecond
(10715 sec), meaning that a 1 microsecond (1075 sec) simulation requires one billion integration
steps. In most circumstances, every 100th to 1000th conformation is written to disc as an ordered
series of frames. Various techniques for analyzing MD data are then applied to these frames.

Traditional methods for analyzing MD data involve monitoring changes in global statistics
(e.g., the radius of gyration, root-mean squared difference from the initial conformation, total
energy, etc), and identifying sub-states using techniques such as quasi-harmonic analysis [10, 12],
and other Principal Components Analysis (PCA) based techniques [6]. Quasi-harmonic analysis,
like all PCA-based methods, implicitly assumes that the frames are drawn from a multivariate
Gaussian distribution. Our method makes the same assumption but differs from quasi-harmonic
analysis in three important ways. First, PCA usually averages over time by computing a single
covariance matrix over the data. Our method, in contrast, performs a time-varying analysis, giving
insights into how the dynamics of the protein change in different sub-states and the transition states
between them. Second, PCA projects the data onto an orthogonal basis. Our method involves no
change of basis, making the resulting model easier to interpret. Third, we employ regularization
when learning the parameters of our model. Regularization is a common strategy for reducing
the tendency to over-fit data by, informally, penalizing overly complicated models. In this sense,
regularization achieves some of the same benefits as PCA-based dimensionality reductions, which
is also used to produce low-complexity models.

The use of regularization is common in Statistics and in Machine Learning, but it has only re-
cently been applied to Molecular Dynamics data [13, 14]. Previous applications focus on the prob-
lem of learning the parameters of force-fields for coarse-grained models, and rely on a Bayesian
prior, in the form of inverse-Wishart distribution [13], or a Gaussian distribution [14] for regu-
larization. Our method solves a completely different problem (modeling angular deviations of the
all-atom model) and uses a different regularization scheme. In particular, we use L1 regularization,
which is equivalent to using a Laplace prior. The use of L1 regularization is particularly appealing
due to its theoretical properties of consistency — given enough data, the learning procedure learns
the true model, and high statistical efficiency — the number of samples needed to achieve this
guarantee is small.



3 ALGORITHM

Our goal is to build a time-varying statistical model of the dihedral angles in the protein. The
dihedral angles for a given frame are easy to calculate, given the atomic coordinates. Each residue
a protein has three backbone dihedral angles ¢, 1), and w' (Fig. 1). Each residue also has between
zero and four side-chain dihedral angles (depending on amino acid type), labeled as x1, ..., X4.

Figure 1: Backbone and side-chain dihedral angles. The dipeptide Lys-Ala is shown. The back-
bone angles ¢, 1, and w are shown. The x side-chain angles of Lys are also shown.

The w angle (which spans the peptide bond) is normally fixed and thus often ignored. However,
the three MD simulations we consider in this paper are of a peptidylprolyl isomerase — that is,
an enzyme that transforms the w angle of its substrate from either cis to trans, or trans to cis
configuration (Fig. 2). The reaction coordinate for these simulations is the progress of the reaction
from the trans to cis configuration (Fig. 3).

Let © be the set of dihedral angles in the protein and its substrate. Let ¢ € [0,1,...,7] be
an index along the reaction coordinate. Each position along the reaction coordinate corresponds
to a subset of the frames in the trajectory. The probability distribution over © can therefore be
modeled as a function of ¢. Our goal is to learn the distribution f;—o_ 7(O(¢)), from the data. This
distribution is encoded in the form of an undirected, time-varying probabilistic graphical model
(PGM).

A stationary undirected PGM, also known as a Markov Random Field, is a tuple M = (V, E, §).
Here V is a set of nodes corresponding to a collection of random variables (in our case, one for
each dihedral angle in the protein and its substrate), E is a set of undirected edges encoding the
conditional independencies between random variables, and § is a set of functions, also known as
factors, on the nodes and edges. A Markov Random Field factors the joint distribution as the prod-
ucts of the factors. As previously mentioned, our method assumes that each random variable is
distributed according a Gaussian distribution, giving rise to a so-called Gaussian Graphical Model
(GGM).

We can extend the stationary model to the time varying case by making the set of edges
and the parameters of the functions a function of ¢. That is, our model has the form: M(t) =

!The N and C termini of the protein only have two and one backbone dihedrals, respectively.
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w=180°

Figure 2: Top: trans configuration of Gly-Pro di-peptide. Bottom: cis configuration of the same
di-peptide.

(V,E(t),§(t)). We learn the set of edges and the parameters of the functions in a regularized fash-
ion. We also ensure that the edges and parameters evolve smoothly by integrating a kernel into the
learning procedure. That kernel uses weighted combinations of the data from sequential positions
along the reaction coordinate (i.e., t == 7 : 7 > 0) when estimating the parameters for position ¢.

The details of the model and the learning algorithm are presented in the following sections. We
will start by the parameter estimation of a regularized Gaussian Graphical Model, and then give
the extended algorithm to learn the time varying GGM.

3.1 Structure Learning for Multivariate Gaussian Graphical Models

Gaussian Graphical Models are multivariate probability distributions encoding a network of de-
pendencies among variables. Let © = [0;,0,,..,6,] be a set of n variables, such as n dihedral
angles, and let f(© = D) be the value of the probability density function at a particular value D.
A multivariate GGM factors this as:

1 1 _
[(©=D) = Zexp{—5(D = p)'=(D - )} (1)
Where Z = W is the normalization coefficient. The parameters of this distribution are

i and X. p is the vector of mean values of each variable, and ¥ 7!, the inverse of the covariance
matrix, contains the pairwise dependencies between the variables. A zero value in X~! means that
conditioned on the values of the other variables, the two corresponding variable are independent
of each other.

Many algorithms have been proposed for learning the network and parameters of these models.
Perhaps the most straight-forward approach simply maximizes the likelihood of the training data.
This method simply estimates the ;1 and > by computing the average of each variable and the



Plot of reaction coordinate though MD run
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Figure 3: Reaction coordinate for our MD simulations. X-axis is the simulation frame number. The
Y-axis is the w angle of the Gly-Pro substrate. The simulation begins with the substrate in the trans
configuration of the w angle and ends in the cis configuration. The transition state, corresponding
to the top of the energy barrier separating the two configurations is also labeled.

covariance between all pairs of variables. This method, while effective for small variable sets, is
not applicable to the protein structure data for two reasons. First, proteins have, on average, about
5 dihedral angles per residue. Thus, even for a small 100-residue protein, n ~ 500, requiring
n means and n? covariance estimates to be calculated. This is important because the number of
training samples required in order to achieve a given confidence level in the parameter estimates
increases polynomially in n. Second, a maximum-likelihood estimate of the parameters will lead
to a very dense set of dependencies (i.e., > has few zero entries), making it difficult to interpret the
resulting model. In contrast, we will use regularization to learn a sparse GGM, thereby addressing
both issues, as discussed below.

3.2 Regularized Gaussian Graphical Models

There are two main approaches for learning sparse GGMs. The first approach uses a greedy ap-
proach to find the zero elements of the X! through neighborhood selection for each node [4, 15].
Such methods do not scale to large variable sets. The second approach uses a global regularization
penalty, and then solves the resulting optimization problem by invoking algorithms for global op-
timization. Our method uses the L1-regularization penalty, which is currently the most common
penalty function.

When estimating the parameters of a stationary GGM, the problem is formulated as follows:
Given a set of training data D = Dy, ..., D(,,), where D; is an X 1 vector, the sample covariance

matrix is defined as: .
== (D — 1) (Dgy — )" @
k=1
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where p is an X 1 vector encoding the sample mean. The L, regularized log-likelihood of X the
estimate of ¥~ is then:

U(X|D) = Zlogf@ D) = AlIX T

Here, || X ||; is the L1-regularization penalty, which is defined as the sum of the absolute values of
the elements of X and ) is the scalar coefficient that controls the size of regularization penalty, and
is usually estimated through cross validation.

Using the functional form of f according to equation 1, this can be rewritten as:

= —log(|X1|) Z Dy — ) X (Dy — i) — A X]1
k=1

using | X! = |X‘ and trace(ABC') = trace(CAB),
= log(|X|) — trace(D — p) X (D — p) — A[| X[}
Plugging in the definition of S according to equation 2, we then get the MAP estimate of X7
N =arg max log | X| — trace(SX) — M| X1 3)
—

In the next section we extend this formulation to the regularized time varying GGM and provide
the optimization algorithm that solves both the stationary and the time varying GGM parameter
estimation problems.

3.3 Regularized Time Varying Gaussian Graphical Models

Having defined the problem of stationary GGM parameter estimation, we now discuss the time
varying case. We will follow the formulation of Zhou [22] for this problem.

Problem Formulation

Let D(1) (m) be the set of training data, where each Dfi) is a sample represented by n variables.
For instance, in our modeling of MD data, each D'(fl.) is a protein conformation. The time varying
GGM parameter estimation algorithm extends the stationary GGM parameter learning as follows:

YH(t) = arg r)r(la%dog | X| — trace(S(t)X) — A|| X1
—
Here, S(t) is the weighted covariance matriz, and is calculated as follows:

S(t) = Yo X wa(DY = (D — )"
2’521 Wst

The weights w,; are defined by a symmetric nonnegative kernel function.
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Choice of the Kernel Function

The choice of the kernel function will let the model select for its specificity. A kernel with a larger
span will cause the time varying model to be less sensitive to abrupt changes in the network and
capture the slower and more robust behaviors. On the other hand, as the kernel function span
decreases, the time varying will be able to capture more short term patterns of interaction.

In our experiments we used a kernel from a triangular family which spans over 5 simulations
before and after the experiment (Fig. 4). Experimenting with other Kernel families, and different
kernel spans in an important part of our future work, which we will mention in the final section of
this paper.

Figure 4: The Kernel functions of triangular family used in our experiment. X =1 — ‘%l * 1{|z)<5)

Convex Optimization for Parameter Estimation of Regularized Time Varying GGM

We use Block Coordinate Descent Algorithm to solve the stationary and time varying problems.
This method has been proposed by Banerjee et. al. [5], and proceeds by forming the dual for the
optimization case, and applying block coordinate descent to the dual form.

Recall that the primal form of both the stationary and time varying case is as follows:

= argr)r(la%dog | X| — trace(SX) — M| X1
-

To take the dual, we first rewrite the L1-norm as:

| Xy = max trace(XU)
[Ulloo<1

where ||U||~ denotes the maximum absolute value element of the matrix U. Given this change of
formulation, we can rewrite the primal form of the problem as:

Y'=max min log|X|— trace(X,S +U)
Xm0 [[Uflcc<A

Thus, the optimal >~ ! is the one that maximizes the worst case log likelihood, over all additive
perturbations of the covariance matrix, S. Next, to obtain the dual form, we exchange the min and
max, and the inner max objective function can now be solved analytically taking the gradient and
setting it to zero. This results in the new form of the objective function:

U= min —log|S+U|—n
[Ulloo<A



where n is the number of features in each sample. Once we solve this problem, the optimal X!
can be computed as X1 = (S + U*)~L.

Performing one last change of variables W = S + U, and forming the dual of the problem will
bring us to the final form of our objective:

¥ = max{log [W|: |[W — 5|« < A}

This problem is smooth and convex, and for small values of n it can be solved by standard
optimization techniques like interior point method. For larger values of n the interior point method
becomes too inefficient, and another method, called Block Coordinate Descent can be used instead

[5].

Block Coordinate Descent

The Block Coordinate Descent algorithm works as follows. For any matrix A, let A\, ; denote the
matrix produced by removing column & and row j of the matrix. Let A; also denote the column
j, with diagonal element A;; removed. The Block Coordinate Descent algorithm proceeds by
optimizing one row and one column of the variable matrix W at a time. The algorithm iteratively
optimizes all columns until a convergence criteria is met. The algorithm is as follows:

Initialize W := S + A1

Repeat until convergence

1.Forj=1,...n .

1(a) y* = arg miny{yTW\(j\_jl)y Ny = Sillee < A}
Where WU~ denotes the current iterate.

1(b) Update W) as WU~Y with column/row W; replaced by y*.

2. Let WO = W

3. Test for convergence when the W () satisfies:
trace((W©)=1S) —n + \|(WO)7L|; <e.

The W)s produced in each step are strictly positive definite. This property is important be-
cause the dual problem estimates the covariance matrix Y, rather than the inverse covariance ma-
trix. The network conditional dependencies which we are interested in are encoded in the inverse
covariance matrix, ¥, so the strictly positivity of W) will guarantee that the optimum ¥ will be
reversible, and that we can compute the final answer ¥~ from the W),

The time complexity of this algorithm has also been estimated to be O(n*?/¢) [5], when con-
verging to e suboptimal solution. This complexity is better than O(n°/log(+)), which would have
been achieved using the interior point method on the dual form [20].

We used this algorithm in our experiments to estimate a L1 Regularized Time Varying Gaussian
Graphical Model on the MD simulation data. The experimental conditions, model selection and
the result of the experiments will be presented in the next section.



4 RESULTS

We applied our method to three simulations of the human form of the enzyme cyclophilin A (CypA).
CypA isomerizes the w bond of its substrate and it is an important receptor for several immuno-
suppresive drugs and HIV infection. Our three simulations correspond to three different substrates:
(1) The hexa-peptide His-Ala-Gly-Pro-Ile-Ala from the HIV-1 capsid protein (PDB ID: 1AWQ);
(i) the dipeptide Ala-Pro (PDB ID: 2CYH); and (iii) the tetra-peptide Ala-Ala-Pro-Phe (PDB ID:
IRMH).

Previous studies have identified a set of 25 highly conserved residues in the cyclophilin family
[3]. In particular, residues P30, T32, N35, F36, Y48, F53, H54, R55, 157, F60, M61, Q63, G65,
F83, E86, L98, M100, T107, Q111, F112, F113, 1114, L122, H126, F129 are all highly conserved.
Experimental work [8] and MD simulations [1, 3] have also implicated these residues as forming
a network that influences the substrate isomerization process. Significantly, this network extends
from the flexible surface regions of the protein to the active site residues of the enzyme (residues
R55, F60, M61, N102, A103, F113, L122, and H126). The previous studies identified this network
by examining atomic positional fluctuations and the correlations between them. In contrast, our
study focuses on the angular correlations, as revealed by our algorithm. Positional fluctuations are
ultimately caused by the angular fluctuations, so our study is complementary to the previous work.

4.1 Simulations

The details of the three MD data sets have been reported previously [3]. Briefly, each data set con-
sists is generated by performing 39 independent simulations in explicit solvent along the reaction
coordinate. The first simulation starts with the substrate’s w angle at 180° (i.e., trans) from which
400 frames are extracted, corresponding to 400 ps of simulated time. The second simulation starts
with the substrate’s w angle at 175°, from which another 400 frames are obtained. Subsequent
simulations increment the w by 5° until the 0° (i.e., cis) configuration is reached. Each frame cor-
responds to one protein conformation, and is represented as a vector of dihedral angles — one for
each variable. For each residue there is a variable for each of ¢, v, w, and the side chain angles
X (between 0 and 4 variables, depending on residue type). The time-varying graphical models are
learned from the resulting 15,600 frames.

4.2 Model Selection

Our algorithm has one parameter, A, which penalizes the number of edges in the learnt model. We
first sought to identify a A value for which the set of learned edges can be deemed significant. To
do this, we performed a permutation study. The input to our algorithm is a N x M matrix, where
N is the number of frames used to learn the model, and M is the number of dihedral angles in the
system. The contents of each column was randomly permuted in order to decouple the angles. The
algorithm was then run for different values of A in order to find a value where the learned model
had zero edges, under the assumption that the randomly permuted columns contained no significant
couplings. The value A = 1, 000 was found to be the smallest value consistently giving zero edges
across all three data sets. In our experiments we used a more stringent value (A = 5, 000) in order



to ensure that our edges don’t reflect spurious correlations. This conservative choice reflects the
importance of not including any spurious correlations in our final results.

4.3 Edge Density Along Reaction Coordinate

As previously mentioned, each data sets comprises 39 individual simulations. The learning algo-
rithm identifies a set of edges in each simulation, employing a kernel to ensure smoothly varying
sets of edges. Figure 5 plots the number of edges for data set along the reaction coordinate. Quali-
tatively, the number of edges decreases until the transition state, and then rises for each substrate.
The three substrates, however, also show significant differences in the number of local minima, the
location and width of the minima, and the minimum number of edges.

2000
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Figure 5: Edge Density Along Reaction Coordinate. The number of edges learned from the three
MD simulations of CypA in complex with three substrates (AWQ, CYH, and RMH) are plotted as
a function of the w angle. AWQ is the largest substrate, CYH is the smallest substrate.

Differences in the number and width of minima might be suggestive of differences in the ki-
netics of the reactions, although we have not been able to identify any published data on the iso-
merization rates for these specific substrates. We note, however, that the magnitude of the minima
is correlated with the size of the substrate. In particular, the minimum value of the curve labeled
AWQ (the largest substrate) is larger than the minimum value of the curve labeled RMH (the sec-
ond largest substrate) which, in turn, is larger than the minimum value of the curve labeled CYH
(the smallest substrate). Edge density corresponds to the total amount of coupling in the system.
Thus, these results suggest that when approaching the transition state the angles tend to decouple.
At the same time, the dependency on size suggest that larger substrates may require more coupling
than smaller ones in order to pass through the transition state of the reaction coordinate.
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Figure 6: Top 10 Persistent Edges. For simplicity, only the top 10 couplings are shown.

4.4 Persistent, Conserved Couplings

We next examined the set of edges to identify the persistent couplings. That is, edges that are
observed across the entire reaction coordinate and in all three simulations. We computed P}, the
probability that edge (i, j) exists in substrate a. Then, we computed the product P ; = P x
Piljj * Py, as a measure of persistence. We then identified the edges where P; ; > 0.5, yielding a
total of 73 edges (out of (135) = 13,530 possible edges). The top 10 of these edges are shown in
Figure 6. Notice that the edges span large distances. Each of the top 10 edges relates how distal
control could occur within CypA; these edges typically connect one network region with the other.
For example, region 13-15 is connected to 146-152 which connect to farther off regions including

68-76 and 78-86.

Couplings to the Active Site and Substrate

According to our analysis of the dihedral angular fluctuations, the set of residues most strongly
coupled to the substrate are residues 1, 13, 14, 125, 147, and 157. None of these residues is in
the active site (residues 55, 60, 61, 102, 103, 113, 122, 126), although residue 125 is sequentially
adjacent to an active site residue. The set of resides most strongly coupled to the active site include
residues 1, 9, 13, 14, 81, 86, 91, 120, 125, 142, 151, 154, and 165. Of these, only residue 86 is
among the previously cited list of highly conserved residues. Thus, the conservation of angular
deviations observed across substrates is distinct from the residue conservation within the family.
We can conclude that the conservation of angular deviation is an inherent feature of the structure
of the protein, as opposed to its sequence.

4.5 Transient, Conserved Couplings

Next, we identified the edges that are found across all three substrates, but are only found in one
segment of the reaction coordinate. To do this we first partitioned the reaction coordinate into three

11



parts: (i) w € [180,120); (ii) w € [120,60); and (iii) w € [60, 0], which we will refer to as the
trans, transition, and cis states, respectively. We then identified the edges that occur exclusively in
the trans state, those occurring exclusively in the transition state, and those occurring exclusively
in the cis state. Four such edges were found for the trans state: (49,81), (1,143), (143, 144), and (1
154); five edges were found for the transition state: (9,157),(82,140), (9,157), (91, 157), and (144,
157); and sixty one edges were found for the cis state. A subset of these edges are shown in Figure
7. The coupling of the edges reveal clues about how couplings between network regions varies
with the reaction coordinate. In the trans state one can see couplings between network regions
142-156 and 78-86, while in the cis state there are couplings between network regions 13-15 and
89-93.

4.6 Substrate-Specific Couplings

Finally, we identified couplings that are specific to each substrate. As in the previous section,
we partitioned the reaction coordinate into the trans, transition, and cis states. We then identified
the edges that occur exclusively in the AWQ substrate, those occurring exclusively in the CYH
substrate, and those occurring exclusively in the RMH substrate.

We found 62, 8, and 24 such edges, respectively. A subset of those edges are shown in Figure
8. Looking at the couplings one can notice that the edges lie on the network regions (13-15, 68-
74, 78-86 and 146-152). However, the coupled residues change from substrate to substrate which
implies a certain specificity in the dynamics.

5 DISCUSSION AND CONCLUSION

Molecular Dynamics simulations provide important insights into the role that conformational fluc-
tuations play in biological function. Unfortunately, the resulting data sets are both massive and
complex. Previous methods for analyzing these data are primarily based on dimensionality re-
duction techniques, like Principal Components Analysis, which involves averaging over the entire
data set and projects the data into a new basis. Our method, in contrast, builds a time-varying
graphical model of the data, thus preserving the temporal nature of the data, and presenting data in
its original space. Moreover, our methods uses L1 regularization when learning leading to easily
interpretable models. The use of L1 regularization also confers desirable theoretical properties in
terms of consistency and statistical efficiency. In particular, given enough data, our method will
learn the ‘true’ model, and the number of samples needed to achieve this guarantee is small.

We demonstrated our method on three simulations of Cyclophilin A, revealing both similarities
and differences across the substrates. Coupling tends to first decrease and then increase along the
reaction coordinate. As observed from Fig. 5, the variation in simulations with longer peptides
(IAWQ and 1RMH) show similar behavior in and around the transition state, while 1CYH, with
the dipeptide shows an increase in the number of edges. This difference is perhaps a result of the

12



Figure 7: Transient Edges. The set of edges seen exclusively in the trans (top), transition (middle),
and cis (bottom) states, respectively. For simplicity, only the top 10 couplings are shown.
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Figure 8: Substrate-specific Edges. The set of edges seen exclusively in the AWQ (top) CHY
(middle), and RMH (bottom) substrates. For simplicity, only the top 10 couplings are shown.
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fact that dipeptides such as Ala-Pro can potentially act as inhibitors for CypA [21]. Although,
the significance of these differences cannot be discussed in the light of mechanistic behavior in
CypA, the ability of our method to detect subtle, yet important changes during the course of such
simulations is in itself a valuable tool for biologists.

There is also evidence that there are both state-specific and substrate-specific couplings, all of
which are automatically discovered by the method. We have discovered that over the course of the
reaction, the network regions as identified by previous work [2] couple directly to the active site
residues (see Fig. 7). The method is also able to pick out subtle changes in the dynamics as seen
by the edges that appear in substrate-specific couplings (see Fig. 8). These differences are present
exactly on the network regions, implying that the alteration in the dynamics of these regions may
be responsible for catalysis with respect to specific substrates. An interesting direction of further
research is to study how presence of CypA inhibitors such as cyclosporin can alter the dynamics
in these network regions to understand the mechanistic underpinnings of CypA function.

There are a number of interesting directions for future work. First, while our method was used
to learn graphical models over dihedral angle fluctuations, there is no reason why it can’t also be
used to learn models over positional fluctuations, or mixtures of angular and positional fluctuations.
Indeed, the ability to combine different kinds of features into a single probabilistic framework is
one of the key advantages of graphical models. For example, one might envision examining how
angular fluctuations affect positional fluctuations, the presence of hydrogen bonds, etc. Second, our
model assumes that the underlying distribution is multivariate Gaussian. One can imagine using
different assumptions about the parametric form of the variables (e.g., multinomial, von Mises,
etc). We are presently exploring such alternatives. Finally, our experiments were limited in that
they only examined a triangular kernel. An obvious direction for future work is to examine the use
of alternative kernels, including asymmetric varieties.
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