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Abstract

Computer systems increasingly involve the interaction dtiple self-interested
agents. The designers of these systems have objectivesvibleyo optimize, but
by allowing selfish agents to interact in the system, theg tbe ability to directly
control behavior. What is lost by this lack of centralizedtrol? What are the likely
outcomes of selfish behavior?

In this work, we consider learning dynamics as a tool fordyettassifying and
understanding outcomes of selfish behavior in games. licpkat, when such learn-
ing algorithms exist and are efficient, we propose “regregtimization” as a crite-
rion for self-interested behavior and study the systemevefiiects in broad classes
of games when players achieve this criterion. In additiompwesent a general trans-
formation from offline approximation algorithms for linegwtimization problems to
online algorithms that achieve low regret.
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Chapter 1

Introduction

Computer systems increasingly involve the interaction oftiple self-interested agents. The
designers of these systems have objectives they wish tmizgti but by allowing selfish agents
to interact in the system, they lose the ability to directyrol behavior. What is lost by this
lack of centralized control? What are the likely outcomesatiigh behavior?

Economists have long studied games with self-interestageps, and game theoretic equi-
librium concepts have recently received attention from poter scientists for their potential to
model the complex systems that arise in our modern competiwgonment. ANash equilib-
rium in such a game is a profile of strategies for each player suathdtven the strategies of the
other players, no player prefers to deviate from her styaiteghe profile. In much of the work
in algorithmic game theory, Nash equilibrium strategiegehlbbeen used as a tool for studying
selfish behavior; for example, tipeice of anarch@] of a game is defined to be the ratio of the
value of the social welfare in the worst Nash equilibriumie social optimum value.

It may not be realistic, however, to assume that all agenésspstem will necessarily play
strategies that form a Nash equilibrium. Even with cergeli control, Nash equilibria can
be computationally difficult (PPAD-hard) to finﬂZS]. Monezr, even when Nash equilibria
are easy to find computationally, it seems unreasonablynigiic to assume that distributed
self-interested agents, often with limited informatioroabthe overall state of the system, will
necessarily converge to Nash. One would therefore like fardifit, natural, computationally
meaningful model of agent behavior that allows better ustdeding of overall system behavior.

In this dissertation, | propose that in games where adapgamning algorithms give good
guarantees on individual performance, such guaranteebeaeen as a minimal criterion for
selfish behavior. | support this claim by presenting novelknan adaptive learning algorithms,
and by analyzing the global consequences in broad clasgasads when selfish agents use such
algorithms.



1.1 Overview of the thesis

1.1.1 Approximate Online Linear Optimization

In the 1950’s, Hannan gave an algorithm for playing repettedplayer games against an arbi-
trary opponenmg]. His was one of the earliest algorithnith #he no-regretproperty: against
any opponent, his algorithm achieved expected performasygeptotically near that of the best
single action, where the best is chosen with the benefit afdgit. Put another way, after suffi-
ciently many rounds, someone using his algorithm would eo#ffit (significantly) by being able
to change his actions to any single action, even if this actmuld be chosen after observing the
opponent’s play. An algorithm is called regret-minimizirog no-regret, if the expected regret it
incurs goes to zero as a function of time. There is a richditee from machine learning and
game theory on adaptiveo-regret algorithm, @3,@@&@@@522].

Kalai and Vempala showed that Hannan’s approach can be astidientlysolve online
linear optimization problems as Wem81]. Hannan’s altjun relied on the ability to find best
responses to an opponent’s play history. Informally spegkKalai and Vempala [81] replaced
this best-reply computation with an efficient black-boxioyptation algorithm. However, the
above approach breaks down when one can only approximaikly the offline optimization
problem efficiently or one can only compute approximate bespponses.

In an online linear optimization problem, on each petipdn online algorithm chooses
S from a fixed (possibly infinite) sef of feasible decisions. Nature (who may be adversarial)
chooses a weight vectar, € R", and the algorithm incurs costs;, w;), wherec is a fixed
cost function that is linear in the weight vector. In tiudi-information setting, the vectow; is
then revealed to the algorithm, and in thandit setting, only the cost experienceds;, w;),
is revealed. The goal of the online algorithm is to performarheas well as the best fixed
s € §in hindsight. Many repeated decision-making problems wigights fit naturally into this
framework, such as online shortest-path, online TSP, erdinstering, and online weighted set
cover.

Previously, it was shown how to convert any efficiemictoffline optimization algorithm
for such a problem into an efficient online algorithm in bdik full-information and the bandit
settings, with average cost nearly as good as that of thdikedt € S in hindsight. However, in
the case where the offline algorithm is an approximationrélyo with ratioar > 1, the previous
approach only worked for special types of approximatiomatgms.

In Chapter 3, based on joint work with Sham Kakade and Adamikt@aappeared in STOC
2007 EO], | show how to convegny offline approximation algorithm for a linear optimization
problem into a corresponding online approximation aldponit with a polynomial blowup in
runtime. If the offline algorithm has amapproximation guarantee, then the expected cost of the
online algorithm on any sequence is not much larger théimes that of the best € S, where
the best is chosen with the benefit of hindsight. Our new aaras inspired by Zinkevich'’s
algorithm for the problem of minimizing convex functionses\a convex feasible s&t C R”
]. However, the application is not direct and requirggametric transformation that can be
applied to any approximation algorithm.

The algorithm can also be viewed as a method for playing leegeated games, where one
can only comput@pproximatebest-responses, rather than best-responses.
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1.1.2 Regret-Minimization as a Definition of Selfish Behavior in Games

In this thesis, we propose regret-minimization as a miniongérion for selfish behavior and
study the consequences of individual regret-minimizingrgatees for the system as a whole.
No-regret algorithms are very compelling from the point @w of individuals: if a person uses
a no-regret algorithm in choosing which route to take to weakh day, she will get a good
guarantee on her commute time no matter what is causing sbogédother drivers, road con-
struction, or unpredictable events). We consider repealadof the game and allow agents to
play any sequence of actions with only the assumption thataittion sequence has low regret
with respect to the best fixed action in hindsight. Regret mipation is a realistic assumption
because there exist a number of efficient algorithms foriptap wide variety of games that
guarantee regret that tends to zero, because it requirgdamallized information, and because
in a game with many players in which the actions of any sin¢gdger do not greatly affect the
decisions of other players (as is often studied in the nét\wetting), players can only improve
their situation by switching from a strategy with high regi@ a strategy with low regret. Re-
gret minimization can be done via simple, efficient algantheven in many settings where the
number of action choices for each player is exponentialemitural parameters of the problem.

In Chapter 4, based on joint work with Avrim Blum and Eyal EvearDhat appeared at
PODC 2006@5], we apply regret-minimizing algorithms te thell-studied Wardrop setting for
multicommodity flow and infinitesimal agents, which modeésfic on a network where the cost
of an edge is a function of the amount of traffic using that M,H?@?],Td&. We show
that flows comprised of regret-minimizing players will apach Nash equilibria in the sense
that, over time, & — ¢ fraction of the daily flows will have the property that at mast fraction
of the agents in them have more thaneaimcentive to deviate from their chosen path, where
e approaches 0 at a rate that depends polynomially on (1) #eea$ithe graph, (2) the regret-
bounds of the algorithms, and (3) the maximum slope of amntat function. Our results imply
that in the Wardrop routing model, so long as edge laten@ge bounded slope, we can view
Nash equilibria as not just a stable steady-state or thdt r@fsadaptive procedures specifically
designed to find them, but in fact as the inevitable resulbdifidual selfishly adaptive behavior
by agents that do not necessarily know (or care) what psligiBer agents are using.

Even in games where regret-minimizing players may not agagra Nash equilibrium, it
may be possible to analyze the the social cost of regret naaimon (as opposed to centralized
control) directly. In Chapter 5, based on joint work with AwrBlum, Mohammad Taghi Haji-
aghayi, and Aaron Roth that appeared at STOC 2008 [16], wepeopeakening the assumption
made when studying the price of anarchy: Rather than assuahedH-interested players will
play according to a Nash equilibrium (which may even be camtpnally hard to find), we as-
sume only that selfish players play so as to minimize their mgnet. We prove that despite our
weakened assumptions, in several broad classes of ganse'pribe of total anarchy” matches
the Nash price of anarchy, even though play may never coeverlyash equilibrium.

Thisprice of total anarchys strictly a generalization of price of anarchy, since inesNequi-
librium, all players have zero regret. In this chapter, wasider generalized Hotelling games
[@], in which players compete with each other for marketrehaalid games8] (a broad
class of games that includes among others facility locatuarket sharindE5], traffic routing,
and multiple-item auctions); linear congestion games waithmic players and unsplittable flow
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[@,]; and parallel link congestion gam[87]. We prowa th the first three cases, the price
of total anarchy matches the price of anarchy exactly evémeifplay itself is not approaching
equilibrium; for parallel link congestion and makespaniabcost, we get an exact match for
n = 2 links but an exponentially greater price for generahighlighting a natural setting where
these concepts differ.

In contrast to the price of anarchy and the recently intredygarice of sinkingES], which
require all players to behave in a prescribed manner, we #hatthe price of total anarchy is in
many cases resilient to the presence of Byzantine playersf alhom we make no assumptions.
Finally, because the price of total anarchy is an upper bamthe price of anarchy even in
mixed strategies, for some games our results yield as eoiesl previously unknown bounds on
the price of anarchy in mixed strategies.



Chapter 2

Background, Definitions, and Related
Work

Traditional approaches to system design assume a singkealized administrator who assumes
perfect compliance with her proposed protocols. Modertwokked systems, however, bring
all of these assumptions into question: Large-scale,ibiged systems and protocols run by
autonomous agents raise issues of selfish incentives aradgomformation. Automation makes
it easy for agents to adapt their actions in response to ttersyor to actions of others, but any
individual agent may have a very limited understanding efgame she is playing. The huge
amounts of money at stake bring economic incentives to tfee fesues of errors, collusion, and
malicious activity all threaten to undermine the qualityg atability of outcomes.

Learning protocols and game theory are thus natural toolshi® analysis of large-scale
networked systems. In this chapter, we introduce the reteeams, tools, and related work from
game theory and learning theory that underlie this thesis.

2.1 Background: Game theory

In this thesis, we consider strategic games in which all grleyn a game act simultaneously
and without knowledge of other players’ actions. Econosnigve long studied games with
self-interested players. Mash equilibriumin such a game is a profile of strategies for each
player such that, given the strategies of the other playerglayer prefers to deviate from her
strategy in the profile. A Nash equilibrium can pare or mixed depending on whether the
players all play pure, deterministic strategies, or theydoamize over pure strategies to give a
mixed strategy. While not every game has a pure Nash equitifyrevery game has at least
one mixed Nash equilibrium. There are a wide variety of psaaff this; many, including the
original proof by Nash@)l] are applications of fixed poimtorems. A closely related concept,
acorrelated equilibriums a probability distribution over players’ joint actiorst is enforceable
by an external signal: if players were assigned to actiodkaew their assignments came from
this joint distribution, based on their resulting expectatiie, they would have no incentive to
deviate and play a different action.

In Chapter 4, we consider games with a particular measurdinitasimal players, each with
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one ofk player types; in Chapter 5, we consideplayer games. For each player (or player
type)i, we denote byP; the set of pure strategies available to that player. A mixedtegy is a
probability distribution over actions iR;; we denote bysS; the set of mixed strategies available
to a player (of type). Every game has an associated social utility functjaimat takes a set
containing a pure action for each player to some real valaehplayer (type) has an individual
utility functiona; : P — R.

We often want to talk about the social or individual utilitfy a strategy profile that assigns
each player a mixed action. To this end, we denoteylilie expected social utility over the
randomness of the players (this is equivalent io the case of infinitesimal players) and ay
the expected value of the utility of a strategy profile to play We denote the social value of the
socially optimum strategy profile bBQPT.

One can define a class of games by restricting the generdlityecsocial utility functions
or the individual utility functions, or both. Two generabskes of games, potential games and
congestion games, appear frequently in the literaturentveduce them here.

Potential games (definition from Monderer and Shapley@Q]) A function® : S — R is
called an ordinal potential function for the gai@ef for all i and alls_; € S_;,

a;(z,s_;) — ai(z,5-;) > 0iff &(z,s5-;) — DP(z,5-;) >0, forall z,z € 5.
Afunction® : S — R is called a potential function for the gaméif for all i and alls_; € S,
ai(x,s_;) —ai(z,5-;) = D(x,s;) — P(z,5_4), forall z, z € S;.

G is called an ordinal (exact) potential game if it admits adirmal (exact) potential. In an
ordinal potential game, a global maximum of the potentialiction is a pure Nash equilibrium
(there may be other pure Nash equilibria, which are localimax

Potential functions, when they exist, give us a path from gaye state to an equilibrium
state, but the length of the path can be exponential, andstaplof the path involves a change
in only one player’s actions. Thus, potential functions @b immediately imply efficient, dis-
tributed algorithms for equilibrium computation.

Congestion games A congestion game is a game withplayers andn resources, where the
strategies available to each player are subsets of thercesodror any player using a resouyce
the cost of that resource depends only on the total numbdapérs who are using that resource
(not on their identities); a player’s total cost is the ta@ast of the resources she selects.

Every congestion game has an exact potential function, aseériRloal ] shows that ev-
ery congestion game has a pure Nash equilibrium, using aaitéunction argument; thus,
any sequence of better response moves in a congestion gameialy reaches a pure Nash
equilibrium, but this sequence can be exponentially long.

Congestion games are sometimes referred to as “atomic domggsmes”, and the simi-
lar class of games involving a continuum of infinitesimalygles are referred to as “nonatomic
congestion games.” One may also consider a weighted variaaingestion games, where each
player has a weight, and the cost of a resource is a monotareéida of the total weight of
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players selecting that resource. Milchtai@[%] congdersubclass of weighted congestion
games similar to the weighted load balancing games we tezlhapter 5, and shows that while
the games in this class are not potential games, they stbgss pure Nash equilibria. A se-
quence of potential function improvements converges igrpmhial time to a pure equilibrium
in symmetric network congestion games.

2.1.1 Algorithmic Game Theory

The field of Algorithmic Game Theory seeks to apply algorithiend computational tools and
perspectives to game theoretic problems. Productive 6hesrk in this area include studying

e the social quality of outcomes under selfish behavior in game
e the centralized computability of equilibria, and

e implications of computational restrictions on the agemtd ather entities involved in a
game (for example, on the buyers or on the auctioneer in damawgetting; this can some-
times be seen as a question of efficient distributed compujat

The work in this thesis touches on all three of these issuespired in part by negative results
on equilibrium computation, we propose a shift away fromistaquilibria as a definition of
selfishness. We instead study the social consequences wherake relatively weak assump-
tions about the player actions; these assumptions on tgerglare computationally achievable
in broad classes of games, even some games with an expdmemtiber of pure strategies for
each player. In this section, we briefly survey the relevastilts in the algorithmic game theory
literature.

Outcomes of selfish behavior

In 1999, Koutsoupias and Papadimitri@ [87] introducedrtbion of theprice of anarchyas a
measure of the effects of selfish behavior: they studiedadtie between the social welfare of the
optimum solution and that of the worst Nash equilibrium. Maobsequent results have studied
the price of anarchy in a wide range of computational prokl&mm job scheduling to facility
location to network creation games, and especially to problof routing in the Wardrop model,
where the cost of an edge is a function of the amount of trafficgithat edgmﬁ , 47,87,
’1708]. Such work implicitly assumes that selfish individuahbvior results in Nash equilibria.

We consider both maximization and minimization games is thesis. Inmaximization
games the goal is tmaximizethe social utility function and the players wishnaximizetheir
individual utility functions; inminimizationgames, both quantities minimized. We define the
price of anarchy so that its value is always greater than oaldq one, regardless of whether we
are discussing a maximization or a minimization game:

Definition 2.1.1. The price of anarchy for an instance of a maximization ganuefged to be

O—P’“;, whereS$' is the worst Nash equilibrium for the game (the equilibriumt timaximizes the

pfrice of anarchy). The price of anarchy for an instance of aimization game is defined to be
%, whereS is the worst Nash equilibrium for the game (the equilibriumt timaximizes the
price of anarchy).



In this thesis, we propose an alternative tool for undetstenthe consequences of selfish
behavior in games that avoids some of the computationatdifies associated with studying
Nash equilibria.

Computational issues

Computational issues call into question the suitability asN equilibria as a definition of selfish
behavior: it seems unreasonable to expect that selfisipemiient agents will be able to compute
equilibria in a distributed fashion if they cannot even benpated centrally. And, in fact, this is
the case: Ir2-player,n-action games, Nash equilibria are PPAD-hard to comﬂJTJt]e [23

Goldberg and PapadimitrioﬁG?] first reduced the problerfinefing a Nash equilibrium in
k-player games to thé-player case; Daskalakis, Goldberg, and Papadimitmpt[&& showed
that the4-player case is PPAD-complete. Independently, manusdrypChen and Denaﬁl] and
Daskalakis and Papadimitri36 then demonstrated PRAIDess for three players, followed
by the Chen-Deng hardness result [23] for two players. ChengPand Teng [22] rule out the
possibility of a FPTAS for finding even an approximate Nashilggrium. In addition, Hart and
Mansour [Wh] present a communication complexity result &mounts to showing hardness of
the distributed computation of Nash equilibria.

Finding pure equilibria in congestion games is PLS-conep@B], even with linear latency
functions ﬁi]. Further, Skopalik and Vockinb_L114] show tthiading even ane-approximate
equilibrium is PLS-complete, and reaching approximatealdggwm by e-improving steps from
a given initial state is PSPACE-complete.

Positive results for Nash equilibrium computation are sgaEquilibria in zero-sum games
(where the sum of the players’ utilities is always zero) carcdmputed efficiently by linear pro-
gramming. Anonymous games, where only the counts (but eat#ntities) of players playing
each strategy affect each agent’s utility, have a PTAS, didaskalakis and Papadimitri ou | 37].
Of the classes of games discussed in this thesis, anonynaoussgencompass the class of con-
gestion games, but not the classes of generalized Hotglanges nor the class of valid games.
By contrast, correlated equilibria can be computed effityeint a wide variety of succinctly
representable gamé?ﬂO:%].

2.2 Background: Learning in games

The field of game theory has been developed primarily for tineysof small-scale, sophisticated
interactions with large amounts of information availablgpical assumptions include common
knowledge and common priors. Thus, the traditional apgraato study Nash equilibria, under
the assumption that sophisticated players with full infation about the game calculate a Nash
equilibrium and play it, assuming their opponents will astikarly. However, these assumptions
are not always a good fit for dynamic, distributed interawtionvolving partial information.
In addition, this approach fails to address issues of coatjmunal complexity and of selection
among equilibria. Instead of studying static notions ofilgia, one can use learning dynamics
as a tool for understanding complex, distributed games sdtfish players.
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There are three main lines of research involving learningadyics and games. Research
on evolutionary dynamicstudies the fitness of strategies or outcomes against opfsaed in
the face of random mutations. Bayesian learningeach agent maintains a set of beliefs about
the state of the game or about her opponents, and updatesagsptimally according to this
information at every time step. In addition, there are aetgrof adaptive learningechniques
that do not model the opponent directly; these include tegsting and regret minimization
policies.

Much of the previous work on learning dynamics in games seeklow convergence-type
results to static notions of equilibria. As such, this wodkhde seen as an attempt to justify the
study of Nash equilibria under less controlled conditioAkhough we do present convergence
results in this thesis (in Chapter 4), one of our contribwgienin proposing that a certain class
of individual welfare guarantees (obtainable by adaptzening algorithms) is in itself a good
definition of selfish behavior; we study the social costs ahdpehavioreven when the behavior
does not converge to equilibrium

As the main focus of this thesis is on a particular class optaida learning algorithms, we
briefly present the work on games from Bayesian and evolutyog@me theoretic perspectives,
and then present the adaptive learning literature in mopéhde

2.2.1 Evolutionary dynamics

Biological evolution is one obvious model of selfish indivadl@daption in a complex environ-
ment. Evolutionary and evolution-inspired approachegliaund their way into the game theory
literature in the study of
e agents who “evolve” their strategies over time using upslatepired in some way by
evolution,

e strategies that are “stable” under an evolution-base@nat stability, and

e game states that are “stable” under a stability notion édrfvtom evolutionary techniques.
For a survey of algorithmic results that have employed atistliother evolutionary game theory
techniques and concepts, see ﬂ[llG]; we summarize afféwe oesults here.

In the first category, Fischer andogking @] show that under replicator dynamics in the
routing game studied by Roughgarden and Tardos [108], @ay@mnverge to Nash equilibria.
Fisher et al. EZ] went on to show that using a simultaneoapie sampling method, play
converges quickly to a Nash equilibrium. Sandhdmlll]stders convergence in potential
games (which include routing games), and shows that a vegdoclass of evolutionary dy-
namics is guaranteed to converge to Nash equilibrium. N@educh dynamics do not include
general no-regret dynamics.

An evolutionarily stable strategy (ESE)a strategy that, if adopted by a population of play-
ers, cannot be invaded by any alternative strategy thatroesitially have significant represen-
tation in the population. ESS are a refinement of Nash eaalibnd so do not always exist, and
are not necessarily associated with a natural play dyndmaddition, ESS are resilient only to
single shocks, whereas stochastically stable states silieméto persistent noise.

The evolutionary game theory literature stochastic stabilitystudies repeated games where
on each round, each player observes her action and its oatcamd then uses simple rules to
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select her action for the next round based only on her sgeicted memory of the past rounds.
In any round, players have a small probability of deviatirant their prescribed decision rules.
The state of the game is the contents of the memories of ghll#tyers. Thestochastically stable
statesn such a game are the states with non-zero probability itiieof this random process,
as the probability of error approaches zero. Stochastiligyaand its adaptive learning model
were first defined by Foster and Your@[54 . Stochastic stalaihd has been widely studied in
the economics literature (see, for exam @,@@6]). In contrast with the
standard game theory solution concept of evolutionaraéplst strategies (ESS), a game always
has stochastically stable states that result (by congtrydrom natural dynamics. In joint work
not presented in this thesis but discussed briefly in Se@tidrwe initiate the study of the social
utility of stochastically stable states.

2.2.2 Bayesian learning

In a Bayesian (or, as characterized by You@[lZﬁtbdel-base)jIearning framework, each
player is assumed to have subjective beliefs about her @ppsrstrategies, and then uses these
beliefs to compute her optimal strategy. After each timp 8tea repeated game, players receive
information about their payoffs and potentially also abttwt actions taken by their opponents,
and use this information to update their beliefs in a Bayefaahion @]. Each player is
assumed to have and be aware of her own discount factor orefe&unings, and each player’s
objective is to maximize her long-term expected discoupiff, relative to her beliefs.

In this setting, when agents have perfect monitoring (epéayer is informed of the entire
history of play of all of his opponents), Kalai and Leh [8E|ow that there exist update pro-
cedures that converge in finite time to arbitrarily good agpnations to a Nash equilibrium
of the repeated game, provided that players’ strategiesgrmal given their beliefs and that
their beliefs put nonzero probability mass on every evestthias positive probability under their
strategies.

Fictitious play ES] is another well-studied example of adabbased learning setting. In
fictitious play, each player observes the empirical fregyetistribution over opponent play and
chooses her action at each timestep to maximize her expeayed under that distribution. The
choice is myopic, in that each player seeks to maximize pdgothe next day only, without
concern for future payoffs. One advantage of this approacdhdt each player does not need
to know her opponents’ utility functions. However, playimgthis manner when opponents are
behaving arbitrarily doesn’t provide any guarantees tardevzidual. Also, the model assumes
perfect monitoring. Fictitious play converges to Nash Bguum in zero-sum two-person games
ﬂﬁ], in potential gamembO] and in two-person two-stgatgameé[@S], but not in two-person
three-strategy gaméﬂl?;].

Foster and Young [56] show that there exist no general, mioastd procedures that always
converge to Nash equilibria of the repeated game when thyerdare perfectly rational (they
play perfectly optimally given their beliefs) and the unimoopponent payoffs are distributed
over some continuous space. If the rationality assumpsioelaxed, though, Foster and Young
] give a simple procedure based on hypothesis testingebalts in convergence of the period-
by-period play to the set of Nash equilibria of the stage gaBu, Foster and Youn&S?] present
a class of uncoupled learning procedures that convergebapility to the set of Nash equilibria
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in any finite game. The basic idea is to track the empiricatibistion on opponent actions in
recent history and periodically update so that you are advpdgying as if against a hypothetical
frequency distribution that is consistent with the emgairicne.

2.2.3 Further results on adaptive learning

As we have seen above, Bayesian update procedures cannajd@/eonvergence properties
in general settings with continuous payoff functions; thés led researchers to explore more
general learning dynamics. In this section, we discussta@alearning dynamics that do not
explicitly model opponent behavior; YouH?ﬂZl] terms thiedel-free learning Although the
literature on learning dynamics is too vast to cover evenatian and result in detail, we survey
the results here. We emphasize that most of the positivétsesu learning dynamics conver-
gence presented both in the previous section and in this@netgprovideefficientconvergence.

In addition, many require strict adherence of all playera iery specific protocol, and do not
give any performance guarantees to the individual agenéssiall agents comply with the pro-
tocol.

Possibility and impossibility for inefficient dynamics

A learning rule is called uncoupled if the player using it slo®t condition her strategy on the
payoffs of her opponents. A radically uncoupled learnirig isi one that does not condition on
opponents’ past actions or payoffs.

Hart MasColell [Wé] show that in general, uncoupled dynandgosnot lead to period-by-
period convergence to an approximate Nash equilibriumastage game if the player states are
histories of bounded length, even for two-person gamesdm work on regret testing, however,
Foster and Young and Germano and Lugosi [58, 62] demonstfateily of radically uncoupled
learning rules whose period-by-period behavior comestrarily close to Nash equilibrium,
for any finite, two-person game. Regret testing depends omlthe players own history of
realized payoffs (radically uncoupled). In this model, ey time step, each player has some
fixed probability of making a “mistake” (one can think of tlas playing uniformly at random).
These results circumvent the Hart-MasColell impossibil@gult by not restricting themselves
to bounded length histories.

2.2.4 Regret

The regret of a sequence of actions in a repeated game is defined witkategpa particular
class of transformation® over the agent’s action set; it is defined as the differentwden the
average cost incurred and the average cost the best traragfon would have incurred, where
the best is chosen with the benefit of hindsight.

Definition 2.2.1. The regret of playei in a maximization game given action séts P2, ... PT

IS

1 1
T 7 Pt t I i Pt .
{p%p?rr-?z%}}{etlf(ﬂ) T Z (P& p) T Z oi(P")

t=1 t=1
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The regret of playef in a minimization game given action sét, P2, ..., PTis

1« 1 o
Zal , min — Zai(Pt ® pl).
t:1 Py T t=1

LPiYEY

An algorithm is called regret-minimizing, or no-regretthe expected regret it incurs goes to
zero as a function of time. A regret-minimizing algorithnoise with low expected regret.
Definition 2.2.2. When a playef uses a regret-minimizing algorithm or achieves low rediat,

any sequenc®!, ..., P”, she achieves the property
1 T ) T
{p1p2m;?}}{€\11( T;alp op) < R+ E Tz
for maximization games and
1 = t d t
T ; o (P")| < R(T) + - m;}ﬁeqf(P) T Zl (P @ pj)

for minimization games, where expectation is over the irlerandomness of the algorithm,
and whereR(T') — 0 asT — oo. The function?(7') may depend on the size of the game or a
compact representation thereof. We then defin® be the number of time steps required to get
R(T) =e.

Note that this implies that, for any sequerfte. .., S, a player with the regret-minimizing
property achieves

{pl.p?,...p v (P)

T T
1
max =Y a(S"op) <R(T)+ =) al(sh
TS 900 < RO 7 3

for maximizatiorgames and

T
1

=~ t : =~ t t

E a;(S") < R(T) + min _TE a;(S" e p;)

{p}.p?,...p YW (P;)

for minimizationgames. See Greenwald, Li, and Marks [68] for examples ofrgdimedregret
matchingregret minimization algorithms.

Internal regret minimization

A variety of adaptive learning algorithms, including th@aiithms that are the focus of this
thesis, are based on or achieve notions of low regret. Oss ofeaction transformations focuses
on the question, “on all occasions when you selected a p&atiaction, how good a response was
it to the actual actions of the other players?” This classisie of all transformations of action
histories that transform all instances of a particularamtiinto some other actiopl. Algorithms
that achieve low regret with respect to this set of trans&droms are said to minimizeternal
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regret or to beuniversally calibrated A weaker criterion is that algorithms may achieve low
internal regret when played against themselves, ratherdgainst an arbitrary adversary; such
algorithms are said to balibrated but not universally so.

It is known that certain regret-matching algorithms suchthest of Hart and Mas-Colell
[@, ], as well as any algorithms satisfying the strongepprty of no internal regreﬂﬁS],
have the property that the empirical distribution of playm@@aches aorrelatedequilibrium.
The algorithms of Hart and MasColell are polynomial time fettisgs in which action choices
are explicitly given. In addition, although Neyman [102dashow that the only correlated equi-
librium in atomic congestion games is the unique Nash dauilm, there is no known efficient
implementation for internal regret minimization for rawdiproblems.

External regret minimization

The focus in this thesis is oexternal regretminimization algorithms, where the sétconsists
of each of the feasible fixed actions. Here the regret is veésipect to the best single action over
the entire play history.
Definition 2.2.3. The external regret of playei in a maximization game given action sets
Pt P2 ... PTlis

1

T
1
max t; R(T) = o;(P" @ p;) ;:1 a;(P*).

The external regret of playerin a minimization game given action sét$, P2, ..., Pl is

T T
1 1
R(T) = T E a;(P") — min T E o (P' & p;).
t=1 t=1

Pi€P;

One way to assess the quality of a regret-minimizing algorits by the number of time steps
T, it requires before its expected regret is at most

We henceforth use the term “regret” generically to referxtemal regret. Algorithms that
achieve low regret in hindsight are referred tauas/ersally consisterdr Hannan consistent

Internal regret minimization is more difficult to achieveathexternal regret minimization,
and as such, there are fewer efficient algorithms and thepsmpore restrictive assumptions
on the players. External regret-minimizing algorithmsédnbeen known since the 1950’s, when
Hannan [69] and Blackwell [14] developed such algorithmsrémreated two-player games. In
cases where each player has only a polynomial number oégtest Littlestone and Warmuth’s
weighted majority algorithrﬂﬂl] can be used to efficientlinimize regret. Recent work on
regret minimization has focused on algorithmic efficienog @onvergence rates as a function
of the number of actions available, and has broadened thef s@tiations in which no-regret
algorithms are known. For example, Kalai and Vempm [8Dwsithat Hannan’s algorithm
can be used to solve online linear optimization problems wégret approaching at a rate
O(1/V/T), given access to an exact best-response oracle.

Hannan’s algorithm and variants of it are known as “follove ffperturbed) leader’-style
algorithms, because the approach they take is to alwayssehthe action that has performed
the best in hindsight (the “leader”), where the measuremehtvhich action is best have been
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slightly perturbed. This approach requires that there befacient way for the algorithm to
constantly track the average performance of all past axtidnother type of regret minimization
algorithms pick their action at time stefpased only on the action and cost vector of the previous
step. For example, ZinkevicWZZ] develops a regret-mimimg algorithm for onlineconvex
optimization problems that uses a gradient descent styleopaph. The algorithm we present in
Chapter 3 takes a similar approach.

So-calledbandit algorithms have also been developEd@, 35, 85, 92], whitiesae low
regret even in the situation where the algorithm receiveghimaited information after each round
of play. Specifically, those results provide efficient algons for many situations in which the
number of strategies for each player is exponential in the sf the natural representation of the
game.

The convergence rates achieved by modern regret minim&gwithms are quite good: in
Hannan'’s original algorithr’r%g], the number of time stepeded to achieve a gap ewith
respect to the best fixed strategy in hindsight—the “per stee regret’—is linear in the size of
the gameV. This was reduced t0(log V) in more recent exponential-weighting algorithms for
this problem [1&, 5@@,(91] (also called the problem of “conibgnexpert advice”). Most recently,
a number of algorithms have been developed for achieving guaranteesfficientlyin many
settings where the number of choicksis exponential in the natural description-length of the
problem 2]. For example, for the case of a rowgamge consisting of only two nodes
andm parallel edges, exponential-weighting algorithms &9 giveT, = O(El2 logm). For
general graphs, results of Kalai and Vempala yigld= O(%) ﬂﬂ]. For general graphs
where an agent can observe only its path cost, results ofwebrand Kleinberg yield, =
O(m) [4].

In Chapter 3, we show how to use arapproximate best-response oracle to achieve on-
line performance in linear optimization problems that issel toa times that of the best static
solution.

Freund and Schapir&60] show that in a zero-sum game, ifalts use a no external regret
minimizing algorithm, the empirical distribution of plapverges to the set of minimax equilib-
ria. The set of outcomes to which the empirical distributddmegret minimizing play converges
is known as the coarse correlated equilibria of the gé?e‘][lmwever, there are examples
@] of even quite simple games where regret-minimizirgpathms exhibit cycling behavior
and incur costs arbitrarily worse than the cost of the worasiNequilibrium. Researchers in
the Al community have also been interested in the outcomeegret minimization and have
empirically shown that play sometimes converges to Nashikequm, and sometimes ndﬁJV8].

Rather than require that dynamics converge to Nash equitibim all games, we can choose
to focus on broad classes of games that capture natural sxoidabllaboration and competition,
and try to understand their consequences in these gamdss lihésis, we propose regret min-
imization as a reasonable definition of self-interestedabiein and study the outcome of such
behavior in a variety of classes of repeated games.

Specific approaches to adaptive learning in the computer sence literature

Mirrokni and Vetta @7] and Goemans et @[63] introduce tlogion of sink equilibria, which
generalize Nash equilibria in a different way than we do is thesis. In doing so, they abandon
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simultaneous play, and instead consider sequential mymgst response plays. They analyze
sink equilibria in the class of valid games and show thaidvgimes have a price of sinking of
betweenn andn + 1. In contrast, we prove that valid games have a price of totatchy of

2, matching the (Nash) price of anarchy. One reason for #iyisig|that myopic best responses
provide no guarantee about the payoff of any individual ptajndeed, the example im63] of a
valid game with price of sinking demonstrates that myopic best response is not always asition
In their example, myopic best response players each expexage payoff tending to zero as the
number of players increases, whereas they could each gasitgntee themselves payoffs of one
on every turn (and would do so if they minimized regret). Autaially, because sink equilibria
rely on play entering and never leaving sinks of a best respgmnaph, the price of sinking is
brittle to Byzantineplayers who may not be playing best responses. In contra€hapter 5 of
this thesis, we show that valid games have a price of totaichgaf 2 even in the presence of
arbitrarily many Byzantine players, about whom we make naragsgions.

Fischer and dcking @] consider a specific adaptive dynamics (a pderdunctional form
in which flow might naturally change over time) in the contextselfish routing and prove
results about convergence of this dynamics to an approgignatable configuration. In more
recent work, they study the convergence of a class of roygoigies under a specific model
of stale information@l]. Most recently, Fischer, Raecksqd &6cking EZ] give a distributed
procedure with especially good convergence propertieg. KBy difference between that work
and ours is that those results consider specific adaptiategtes designed to quickly approach
equilibrium. In contrast, we are interested in showing @sgence foanyalgorithms satisfying
the no-regret property. That is, even if the players aregusiany different strategies, without
necessarily knowing or caring about what strategies othsrsusing, then so long as all are
no-regret, we show they achieve convergence. In additecaulse efficient no-regret algorithms
exist even in the bandit setting where each agent gets fekdindy about its own action [@2],
our results can apply to scenarios in which agents adaptibkavior based on only very limited
information and there is no communication at all betweefedght agents.

Convergence time to Nash equilibrium in load balancing hss laéen studied. Earlier work
studied convergence time using potential functions, with Itmitation that only one player is
allowed to move in each time step; the convergence timesattdepended on the appropriate
potential functions of the exact mod@ 94]. The work aidberg ] studied a randomized
model in which each user can select a random delay over canstime. This implies that
only one user tries to reroute at each specific time; thezetloe setting was similar to that
mentioned above. Even-Dar and Mansour [44] considered &hadtere many users are allowed
to move concurrently, and derived a logarithmic convergaate for users following a centrally-
moderated greedy algorithm. Most recently, Berenbrink.e[@ﬂ showed weaker convergence
results for a specific distributed protocol. To summarizeyus work studied the convergence
time to pure Nash equilibria in situations with a centradizeechanism or specific protocol. In
contrast, in this thesis we present fast convergence sefsulpproximate Nash equilibria in a
non-centralized setting, and our only assumption aboupliger strategies is that they are all
no-regret.

Chien and Sinclai@4] study convergence of decentralizgchics to approximate equilib-
ria in atomic congestion games. They show that a dynamicsenhplayers take turns making
improving deviations of at leastimprovement converges efficiently to arapproximate equi-
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librium, assuming that the game is symmetric and that tren@t functions satisfy a bounded
jump condition? Skopalik and Vocking4] show that this result does noeegtto asym-
metric congestion games. Despite this, Awerbuch eﬂal.f[ﬁ]/\spolynomial time convergence
of e-improvement dynamics in asymmetric games with the bouai®g condition to approx-
imately optimal solutions, where the approximation factor achieved is thieepof anarchy of
the game. A number of other positive results exist for thegeudhics, for much more specific
classes of games.

2.3 Subsequent work on regret minimization in games

Since the initial publication of the results in this thesisjumber of publications have built on
our work. Roughgarder@lO] explores the outcomes of ragieimizing behavior in a variety
of classes of games; they are able to show Price of Anarchg btyunds on the social cost,
but do not prove convergence results. Kleinberg et al. [8&dysagents in atomic congestion
games employing particular class of regret-minimization algorithms and show that imyna
cases, the additional assumptions on the player algori#tlms convergence tpureNash equi-
libria. Even-Dar et al.L[AG] demonstrate convergence ofegalnregret-minimizing algorithms
to Nash equilibria in a general class of games they call ‘@lysconcave” games. Awerbuch
et al. ES] show that a certain type of best response dynanaiogecges quickly to approximate
Nash equilibria in congestion games. General no regretrdigsaare much more complex than
the dynamics they study, and perhaps better motivated fromdividual’s perspective in realis-
tic settings where it is not clear that your opponents witgerate by also playing best response.

2.4 Work not in this thesis

In some classes of games (such as the well-studied Ioaddhapgameﬁ3ﬂ7m9]), the worst
Nash equilibria can result in arbitrarily bad social weifaHowever, in some of these games,
the bad equilibria are unnatural or artificial, and when nhedeealistically, agents might never
find or settle at such equilibria. In these cases, one wokiddiols to understand the stability of
equilibria and to better characterize the likely outcomfesetfish behavior.

In joint work with Christine Chung, Kirk Pruhs, and Aaron Rotif[2wve employ the stochas-
tic stability framework from evolutionary game theory tady simple dynamics of computation-
ally efficient, imperfect agents. This approach allows uddbne a natural dynamic, and from
it derive the stable states. We define frece of stochastic anarchip be the ratio of the worst
stochastically stable solution to the optimal solutiongéimes for which the stochastically stable
states are a subset of the Nash equilibria, studying theafthe worst stochastically stable state
to the optimal state can be viewed as a smoothed analysis gfitte of anarchy, distinguishing
Nash equilibria that are brittle to small perturbations énfpct play from those that are resilient
to noise.

'Note that the definition of approximate equilibrium thatytleensider is slightly different from the (more stan-
dard) one we use in this thesis; for them,caspproximate Nash equilibrium is a state from which no ptdyees a
deviation withe multiplicativeimprovement.
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The evolutionary game theory literature stochastic stabilitgtudiesq-player games that are
played repeatedly. In each round, each player observesti@n and its outcome, and then uses
simple rules to select her action for the next round baseglamher size-restricted memory of
the past rounds. In any round, players have a small probabifldeviating from their prescribed
decision rules. The state of the game is the contents of theames of all the players. The
stochastically stable stat@és such a game are the states with non-zero probability itinhieof
this random process, as the probability of deviating apgres zero.

To illustrate the utility of stochastic stability, we stuthe price of stochastic anarchy of the
classic “unrelated load balancing” garﬂeﬁﬂ, 49] underrttimtion dynamics of Josephson and
Matros [ﬁé]. In the load balancing game on unrelated mashieen with only two players and
two machines, there are Nash equilibria with arbitrarilghhcost, and so the price of anarchy is
unbounded. We show that these equilibria are inherenttitdgrand that for two players and two
machines, the price of stochastic anarchy is 2. This resafitines the strong price of anarcﬁy [3]
without requiring coordination (at strong Nash equilibggayers have the ability to coordinate
by forming coalitions). We further show that in the generadlayer,m-machine game, the price
of stochastic anarchy, unlike the traditional price of @hgyis bounded.

The approach in this work is similar to that of the work presénn this thesis: we consider
learning algorithms in games not fronpeescriptiveperspective, but instead with the hope that
their outcomes are usefdescriptivetools for understanding the outcomes of repeated game
play. One advantage of the work presented in this thesigtsatb make extraordinarily minimal
assumptions on the learning algorithms (simply that thexem regret in hindsight). Our work
on the price of stochastic anarchy, by contrast, is base@uitplar learning dynamics; it would
be interesting to extend this work on understanding thdivelatability of outcomes in games
by making less restrictive assumptions.
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Chapter 3

Approximate Online Linear Optimization

3.1 Introduction

In an offline optimization problem, one must select a singéa@omized) decision from a
known set of decisions§, in order to minimize a known cost function. In an offlieear op-
timization problem, a weight vectar € R” is given as input, and the cost functiofs, w) is
assumed to be linear ilm. Many combinatorial optimization problems fit into thisdmawork,
including traveling salesman problems (wh&eonsists of tours in a graph andis the as-
signment of weights to the edges), weighted set cavas the set of covers and the costs of
the sets), and knapsacK (s the set of feasible sets of items and weightsorrespond to item
valuations).

Each of these problems has@amline sequential version, in which on every period the player
must select her decision without knowing that period’s éwsttion. That is, there is an unknown
sequence of weight vectors, ws, ... € R™ and for eacht = 1,2, ..., the player must select
s; € S beforew, is revealed, and pay(s;, w;). In thefull-information version, the player is
then informed ofw;, while in thebanditversion she is only informed of the valugs;, w;). (The
namebanditrefers to the similarity to the classic multi-armed banddlpem m]).

The player’s goal is to achieve low average cost. In padicuve compare her cost with that
of the best fixed decision: she would like her average cogipoceach that of the best single point
in S, where the best is chosen with the benefit of hindsight. Tiffierdnce, + ST (s, wi) —
minges & >, (s, wy), is termedregret

For example, in the Online TSP problem, every day, a deligempany serves the same
n customers. The company must schedule its daily route witftwaknowledge of the traffic
on each street. The time on any street may vary unpredicfednty day to day due to traffic,
construction, accidents, or even competing delivery conigsa Inonline TSR we are given a
undirected grapli-, and on every periot] we must output a tour that starts at a specified vertex,
visits all the vertices at least once, then returns to th&lniertex. After we announce our tour,
the traffic patterns are revealed (in the full-informatietting, the costs on all the edges; in the
bandit setting, just the cost of the tour) and we pay the casteotour.

As another example, in the Online Weighted Set Cover probésery financial quarter, our
company hires vendors from a fixed pool of subcontractoroterca fixed set of tasks. Each
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subcontractor can handle a known, fixed subset of the taskshéir price is only announced
at the end of the quarter and varies from quarter to quarteanline weighted set covethe
vendors are fixed sets, ..., V,, C [m]. Each period, we choose a legal coyelC [n]; that is,
U,es, i = [m]. There is an unknown sequence of cost vectarsw,, . .. € [0,1]", indicating
the quarterly vendor costs. Each quarter, our total eostw;) is the sum of the costs of the
vendors we chose for that quarter. In the full-informatiettiag, at the end of the quarter we find
out the price charged by each of the subcontractors; in thdibsetting, we receive a combined
bill showing only our total cost.

Prior work showed how to convert @axactalgorithm for the offline problem into an online
algorithm with low regret, both in the full-information $eig and in the bandit setting. In par-
ticular, Kalai and Vempala showéﬂ81] that using Hannapjgraach [%b], one can guarantee
O(T~'/?) regret for any linear optimization problem, in the full-amMmation version, as the num-
ber of periodsl” increases. It was later shown E @ 92] how to convert ealgdrithms to
achieveO(T~'/3) regret in the more difficult bandit setting.

This prior work was actually a reduction showing that one salve the online problem
nearly as efficienthas one can solve the offline problem. (They used the offlinenaper as a
black box.) However, in many cases of interest, such as teor®nline combinatorial auction
problems [10], even the offline problem is NP-hard. Hanné&fwow-the-perturbed-leader”
approach can also be applied to some special types of appabgn algorithms, but fails to
work directly in general. Finding a reduction that maintagood asymptotic performance using
generalapproximation algorithms was posed as an open prol%m\[\ﬂﬂesolve this problem.

In this chapter, we show how to convarty approximation algorithm for a linear optimiza-
tion problem into an algorithm for the online sequentialsien of the problem, both in the
full-information setting and in the bandit setting. Our wetlon maintains the asymptotic ap-
proximation guarantee of the original algorithm, relativehe average performance of the best
static decision in hindsight. Our new approach is inspirgdZimkevich’s algorithm for the
problem of minimizing convex functions over a convex febsigetS C R” [122]. However,
the application is not direct and requires a geometric foangation that can be applied to any
approximation algorithm.

3.1.1 Hannan’s approach

In this section, we briefly describe the previous appro%]j {8r the case of exact optimiza-
tion algorithms based on Hannan’s idea of adding pertwhati We begin with the obvious
“follow-the-leader” algorithm which, each period, pickeetdecision that is best against the to-
tal (equivalently, average) of the previous weight vectorfis means, on periot] choosing

s = A(XIZ w,), where A is an algorithm that, given a cost vector, produces the best

s € S Hannan’s perturbation idea, in our context, suggests usirg A(pt + Z:l wT) for
uniformly random perturbatiop, € [0, /t]”. One can bound the expected regret of following-
the-perturbed-leader to li&(7~'/?), disregarding other parameters of the problem.

Kalaiand VempaléEl] note that Hannan’s approach maist@mrasymptotia-approximation

1This approach fails even on a two-decision problem, wheetsts of the two decisions are (0.5,0) during the
first period and then alternaté, 0), (0, 1), (1,0), ..., thereafter.
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guarantee when used witikapproximation algorithms with a special property they aapoint-
wise approximationmeaning that on any input, the solution they find differsrirthe optimal
solution by a factor of at most in every coordinate. They observe that a number of algosthm
such as the Goemans-Williamson max-cut algoritm [64]elthis property. Balcan and Blum
@] observe that the previous approach applies to anogperdf approximation algorithm: one
that uses an optimal decision for another linear optimaragroblem, for example, using MST
for metric TSP. Itis also not difficult to see that a FPTAS carubed to get &l + ¢)-competitive
online algorithm. We further note that the Hannan-Kalamyala approach extends to approx-
imation algorithms that perform a simple type of randomireainding where the randomness
does not depend on the input.

In the next section, we use an explicit example based on #edgrset-cover approximation
algorithm to illustrate how Hannan’s approach fails on ngegaeral approximation algorithms.

3.1.2 Example where “follow-the-perturbed-leader” fails

First consider the se& = {1,2,...,n} and the cost sequen¢e 1,...,1) (repeated’/(n + 1)
times),(1,0,...,0) (repeated’/(n + 1) times),(0,1,0,...,0) (repeated’/(n + 1) times),. ..,
(0,...,0,1) (repeated’/(n + 1) times). Notice that selecting a decision with cost 1 is akvay
a valid (« = 2)-approximation to the leader on the previous examples. Ma@ne its cost isl’
while the cost of the best (in faevery s € Sis27/(n+ 1), hence giving large--regret. Unfor-
tunately, adding perturbations 6f(v/T) as in follow-the-perturbed-leader will not significantly
improve matters: whef'/(n + 1) > /T, choosing a decision that costs 1 each period is still an
a-approximation for, sayy = 3.

Of course, one may be suspicious that no common approximatgorithms would have
such peculiar behavior. We now give a similar example baseith® standard greedy set cover
approximation algorithmd = log m) applied to the online set cover problem described earlier.
The example has/2 covers of size 2:5; = S\ S,+1-4, fori = 1,2,...,n. Furthermore,
suppose the sets are of increasing $&#¢ = (0.4 + 0.2:=%)m and|[S; U S;| < 0.9m for all
1<i,j <nwherei#n+1-— j@ The sequence of costs (weight) vectors is divided intd
phaseg =0,1,...,n/2 — 1, each consisting af7’'/n identical cost vectors. In phage= 0, all
sets have cost 1. For phage= 1,...,n/2 — 1: the cost of thej setsS, ..., S; and thej — 1
setsS,,_ja, ..., 5, are all 1, while the costs of the remaining sets are all 0.

In this example, following the leader with greedy set covdl nave an average per-period
cost of at leas0.1. In particular, during the first 10% of any phage> 1, either greedy’s first
choice will beS,,_ 1, in which case its second choice will I5¢ (because any other set covers at
most 90% of the remaining items, afS¢s cost so far is at most 10% more than that of any other
set), or greedy’s first choice will be one 6f_,, ..., S,. In either case it pays at least 1 during
that period. Hence, following the leader pays at |€akt+ 13971 in expectation on average, while
the coverS,,;» U S, 241 has an average cost of onlyn, which is far from matching greedy’s
a = log m approximation ratio (fon = ©(m)).

2To design such a collection of sets (for evemndm = 5(n — 1)), takeS; to be a uniformly random set of
the desired sizen fori = 1,...,n/2, andS, 11—, to be its complement. It is not hard to argue that, with high
probability, the randomized construction obeys the stptegerties.
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Also note that perturbations on the order@fy/7") will not solve this problem. It would be
very interesting to adapt Hannan’'s approach to work for agpration algorithms, especially
because it is more efficient than our approach. However, we hat found a solution that works
across problems.

3.1.3 Informal statement of results

The main result of this chapter is a general conversion fropregproximate linear optimization
algorithm to an approximate online version in the full-infation setting {3.3). The extension
to the bandit settingjB.4) uses well-understood techniques, modulo one new thatiarises in
the case of approximation algorithms. We summarize thel@nolour approach, and our results
here.

We assume there is a known compact conveX8et R” of legal weight vectors (in many
casedV = [0,1]™), and a cost function: S x W — [0, 1] that islinear in its second argument,
that is,c(s, av + bw) = ac(s,v) + be(s,v) forall s € S, a,b € R, andv, w, av + bw € W. The
generalization tg0, M |-bounded cost functions fav/ > 0 is straightforwar&l We assume that
we have a black-box-approximation algorithm, which we abstract as an oracteich that, for
allw e W, ¢(A(w), w) < amings c(s,w). That is, we do not assume that our approximation
oracle can optimize in every direction, but only that it candalled on weights inV. For
example, approximation algorithms for graph problems dénoonly handle inputs with non-
negative edge weights. In the full-information setting, agsume our only access £is via
the approximation algorithm; in the bandit setting, we naeédditional assumption, which we
describe below.

In this chapter, we focus on thn-adaptive settingn which the adversary’s choices of
can be arbitrary but must be chosen in advance. ladaptive settingon periodt, the adversary
may chooseuv; based oy, wy, ..., s;—1,w;_1. In the bandit case, extension of these results to
the adaptive setting and the conversion from results in @gfien to high probability results
remain open questions.

For a-approximation algorithms, it is natural to consider thiéolwing notion of a-regret,
in both the full-information and the bandit-settings. Ithe difference between the algorithm’s
average cost and times the cost of the beste S, that is,

T

1 1

T Z c(sy, wy) — min Z c(s,wy).
t=1

t=1

Note that if there is a hardness of approximation result watio « for the offline version of a
problem, one cannot expect to obtain better thanegret efficiently in the online setting.

Full-information results

Our approach to the full-information problem is inspired4igkevich’s algorithm (for a some-
what different problem)][ﬂZ], which uses an exact prog@ctoracle to create an online al-
gorithm with low regret. An exact projection oraclg; is an algorithm which can produce

3In [81], the setV = {w € R" | |w|; <1} was assumed.
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argmin,; ||z — y|| for all y € R", where.J is the “feasible region” (in Zinkevich’s setting, a
compact convex subset &"). The main algorithm presented in Zinkevich’s papeREEDY
PROJECTION determines its decisian, at timet asz;, = I1;(z,—y — nw;_1), wheren is a pa-
rameter called the learning rate amd ; is the cost vector at tim& — 1). One can view the
approach presented here as providing a method to simulgfeeaot “approximate” projection
oracle using an approximation algorithm. 8.3 we show the following:

Result 3.1.1.Given anya-approximation oracle to an offline linear-optimizationoppfem and
any T, Ty, > 1, wy,we,... € W, our (full-information) algorithm (Algorithm 3.3.1) outps
s1, S2,... € S achieving

| TotT 1 T O(an)
E [? Z C(Stuwt>] o O”SQ?T Z cs,wy) = JT
t=Tp+1 t=To+1

The algorithm makes paly, T') calls to the approximation oracle.

Note that the above bound on expectedegret holds simultaneously for every windowiof
consecutive periodd{must be known by the algorithm). We easily inherit this ukaflaptation
property of Zinkevich’s algorithm. It is not clear to us whet one could elegantly achieve this
property using the previous approach.

Bandit results

Previous work in the bandit setting constructs an “explorabasis” to allow the algorithm to
discover better decisions ﬂﬂﬁ 92]. In particular, Aweatb and KIeinberﬂ4] introduce a so-
called Barycentric Spanner (BS) as their exploration basishow how to construct one from an
optimization oracled : R” — S. However, in the case where the oracle (exact or approx)mate
only accepts inputs in, say, the positive orthant, it mayrbpdssible to extract an exploration
basis. Hence, we assume that we are givehBS (5 > 1 is an approximation factor for the
BS) for the problem at hand as part of the input. We define armligissthese concepts further
in Section 3.4. Note that the-BS only needs to be computed once for a particular problem and
then can be reused for all future instances of that problenerG3-BS, the standard reduction
from the bandit setting to the full-information setting g#z

Result 3.1.2.For any 3-BS and any-approximation oracle to an offline linear-optimization
problem and anyl’, 7, > 1, wy,ws,... € W, the (bandit) algorithm in Figure 3.4 outputs
s1, S2,... € S achieving

To+T To+T
1 1 O(n(ap)?/?
E [T E C(St, wt)] — rsnelél T E C(S, wt) = %
t=TpH+1 t=Tpo+1

The algorithm makes paly, T') calls to the approximation oracle.

We also show, ir§3.4.1, that the assumption of a BS is necessary.
Result 3.1.3. There is no polynomial-time black-box reduction from an
a-approximation algorithm for a general linear optimizatiproblem (without additional input)
to a bandit algorithm guaranteeing lowregret.
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We note that the above regret is sub-optimal in terms of/tlependence. Furthermore, re-
cent work B.Ii14] presents algorithms for online lineptimization that achieve the optimal
VT regret even in the bandit setting (these results either tlexpicitly consider the computa-
tional issues or assume access to an exact optimizatioteprachieving improved regret for
bandit algorithms using approximation oracles remainsgemg@roblem.

3.2 Formal definitions

We formalize the natural notion of andimensional linear optimization problem.
Definition 3.2.1. An n-dimensional linear optimization problem consists of avencompact
set of feasible weight vectoiy C R", a set of feasible decisiors, and a cost functiomn: :
S x W — [0, 1] that is linear in its second argument.

Due to the linearity of, there must exist a mapping: S — R” such that(s, w) = ®(s)-w
forall s € S,w € W. In the case where the standard basis is containgd,iwme have

®(s) = (c(s,(1,0,...,0)),...,¢(s,(0,...,0,1))).

More generally, the mapping can be computed directly fromby evaluating: at any set of
vectors whose span includeg. We will assume that we have acces®tandc interchangeably.
Note that previous work represented the problem directlg ggsometric problem iiR™, but in
our case we hope that making the mappingxplicit clarifies the algorithm.

An «-approximation algorithmA (o > 1) for such a problem takes as input any vector
w € W and outputsi(w) € S such that(A(w), w) < amings ¢(s, w). To ensure that thenin
is well-defined, we also assumésS) = {®(s) | s € S} is compact.

The performance of an online algorithm is measured by comgés cost on a sequence of
weight vectors with the (approximate) cost of the beststddcision for that sequence.
Definition 3.2.2. Thea-regret of an algorithm that selects decisions. .. ar € A is defined to
be

T T

a-regrefay, wy ..., ar,wr) = % ; clag, wy) — O‘fféiﬁl % ; cla,wy).
The term regret by itself refers tbregret. Thea-regret of a randomized algorithm is defined
analogously in terms of the expected costs of its actions.

Define aprojection oraclell; : R* — J, wherell;(z) = argmin,; ||z — z|| is the unique
projection ofz to the closest point in the convex sef.

DefineW, = {awla > 0,w € W} C R™. Note thatW}, is convex, which follows from
the convexity ofi). We assume that we have an exact projection ordgle. This is generally
straightforward to compute. In many case¥, = [0, 1], in which caselV, is the positive
orthant andl,y, (w)[:] is simply max(w[i], 0), wherew[i] denotes theéth component of vector
w. More generally, given a membership oracléta (or to a)V with a smoothness guarantee),
a pointw, € W, and appropriate bounds on the radii of contained and auntaballs, one can
approximate the projection to within any desired accukacy0 in time poly(n, log(1/¢)). Note
that we will later be dealing with the difficulty of projectressentially ont&, which is a more
difficult problem because our only access to it is via an axpration oracle.
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We also assume, for convenience, tlat )V, — S because we know that(w) can be
chosen to be equal td(aw) for anya > 0, and findingz such thatiw € W is a one-dimensional
problem. (Again, given a membership oraclétoone can find € VW which is withine of being
a scaled version of using time polyf, 1/¢)). However, the restriction on the approximation
algorithm’s domain is important because many natural appration algorithms only apply to
restricted domains such as non-negative weight vectors.

In a nonadaptivenline linear optimizatiorproblem, there is a sequeneg, ws, . .., € W of
weight vectors. Due to the linearity of the problem,afline optimunctan be computed using
an exact optimizer, that ispin,es = 3", ®(s) - wy = minges ®(s) - (%>, wt> gives the
average cost of the best single decision if one had to usekesiecision during all time periods
t =1,2,...,T. Similarly, ana-approximation algorithm, when applied %othzl wy, gives a
decision whose average cost is not more than a factarger than that of the offline optimum.
Definition 3.2.3. In a full-information online linear optimization problerthere is an unknown
sequence of weight vectars, w-, . .. € W (possibly chosen by an adversary). On each period,
the decision-maker chooses a decisipie S based ors,, wy, so, wo, ..., Si_1, wi_1. Themu; is
revealed and the decision-maker incurs cgst, w;).

Finally, we define the bandit version of the problem, in whilcd algorithm finds out only
the cost of its decision(s;, w;), butnotw; itself.

Definition 3.2.4. In a bandit online linear optimization problem, there is amknown sequence
of weight vectorsw,, w,,... € W (possibly chosen by an adversary). On each period, the
decision-maker chooses a decisigre S based only upoRy, c(wy, 1), .. ., St—1, c(we_1, St—1).
Then only the cost(s;, w,) is revealed.

Forz,y € R" and)V C R", we sayr dominateg if z-w < y-w for all w € W (equivalently,
forallw e WQE

Define X' C R to be the convex hull ob(S),

K= {3 Nas)

Note thatmin,cx * - w = minges c(s,w) for all w € W. The cost of any point i’ can be
achieved by choosing a randomized combination of decisioasS. However, we must find
such a combination of decisions and compute projectionsiirsetting, where our only access
to S is via an approximation oracle.

SlGS,)\ZZO,ZZAlzl}

3.3 Full-information algorithm

We now present our algorithm for the full-information sedfi Definez, = x; — nwy. Intuitively,

one might like to play; on periodi + 1 because; has less cost tharn againsty;. Unfortunately,

z; may not be feasible. In theREEDY PROJECTIONalgorithm of Zinkevich, the decision played
on periodt + 1 is the projection ot; into the feasible set. Our basic approach is to implement
an approximate projection algorithm and play the approienpaojection ofz; on stept + 1.

“Note that this definition differs from the standard defimitia R” wherexz dominatesy if z[i] > yl[i] for all i
but resembles the game-theoretic notion of dominant giiete
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Input: z, z € R", s € S, and amv-approximation algorithmi (and parameters > 0, A € [0, 1]).
Output: (2/,s") € 12} x S
Define B to be the extended approximation oracle obtained frbosing Lemma 3.3)5.
APPROXPROJ z, s, x)
Let(t,y) := B(x — 2)
ifr-(r—2)<d+y-(z—2)
thenreturn(z, s)
s with probability 1 — A
t  with probability A
return APPROXPROJ z, ¢, Ay + (1 — \)x)

else ¢ =

o1 BN wWN -

Figure 3.1: A recursive algorithm for computing approxieptojections.

There are a number of technical challenges to this apprdacdt, we only have access to an
a-approximation oracle with which to implement this. Due he imultiplicative nature of this
approximation, we proceed by attempting to project intosev X', wherea K = {az |z € K}.
Second, even if we could do this perfectly (which is not pale$j this would still not result in a
feasible decision. We then must find a way to play a feasibdestben.

We can intuitively view our algorithm as follows. The algbrm keeps track of a parameter
x¢, Which we can think of as the attempt to project; into oK (though this is not done exactly,
asx; is not even imK). We show that if the algorithm actually were allowed to playthen it
would have lowa-regret. Our algorithm uses this to find a randomized feasible decisien
We show that the expected cost of this random feasible decisiis no larger than that of the
(potentially) infeasible;.

Our algorithm for the full-information setting is based & tapproximate projection routine
defined in Figure 3/1.

Algorithm 3.3.1. The algorithm is given a learning parametgr On period 1, we choose an
arbitrary s; (which could be selected by running the approximation orad&ny input) and let
x1 = ®(s1). On periodt, we plays; and let

(It-i-lv St-l—l) = APPROX‘PROJ(ZEt — NWy, S¢, l't).

It may be helpful to the reader to note that the sequentedeterministically determined (if
the approximation oracle is deterministic) by the sequafiseeightswy, ..., w;_1, while s; is
necessarily randomized.

In §3.3.1, we show that if we had a particular kind of approxinmtgection algorithm, then
the x; values produced by that algorithm would have (hypothéticaV o-regret. In§3.3.2, we
show how to extend the domain of any approximation algorjtiumich allows us to construct
such an approximate projection algorithm: themRoxProJalgorithm used in Algorithm 3.3/1.
We also show that the cost of the (infeasible) decisipn it produces can only be larger than
the expected cost incurred by the feasible decisjon it also generates. This will allow us to
prove our main theorem in the full-information setting:
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Theorem 3.3.2.Consider am-dimensional online linear optimization problem with fdasiset
S and mappingd : S — R”™. Let A be ana-approximation algorithm and tak&, W > 0 such
that||®(A(w))|| < Rand|w| < W forall w € W.

For any fixedw;, ws, ... wy € W and anyT > 1, with learning parameter, = %‘3,
approximate projection tolerance parametér= %, and learning rate parametek =
%, Algorithm 3.3.1 achieves expectedegret at most

E

T
1 ! (v +2)RW
— — — < -7
;Zl c(sq, wt)] amin t; c(s,wy) < T

Each period, the algorithm makes at maét + 2)*7 calls to A and .

We present the proof of Theorem 3.3.26i8.3.4. To get Result 3.1.1 in the introduction,
we note that it is possible to get a priori bounds Idhand R by a simple change of basis
so thatRW = O(n). It is possible to do this from the s&’ alone. In particular, one can
compute &-barycentric spanner (B38), ..., e, for W M] and perform a change of basis so that
®(ey),...,P(e,) is the standard basis (as we describe in greater de8l4). By the definition
of a 2-BS, this implies thatV C [—2,2]™ and hencéV = 2,/n is a satisfactory upper bound.
Since we have assumed that all costs af@,ih] and the standard basis iski#, this implies that
®(S) C [0,1)" and hencer = /n is also a valid upper bound. The guarantees with respect to
every window ofI" consecutive periods hold because our algorithm’s guagartteld starting at
arbitrary(s;, x;) such thatt[®(s,)] dominatese, (recall, s, is necessarily randomized).

3.3.1 Approximate Projection

We first define the notion of approximate projection. Becauseomly have access to an
approximate oracle, given € R", we cannot find the closest point tdn K or even ina K =
{az|z € K}.

Note that for a closed convex sétC R”, if I1;(z) = «, then

—2) -2 < mi —2) .
(¢~ 2) -z <minz —2) -y
This is essentially the separating hyperplane theoremr@vhe- = is the normal vector to the
separating hyperplane). Also note thbt(z) = x if x € J.

Our approximate projection property, illustrated in Fig®.2, relaxes the above condition.
Due to the computational issues associated with optimiausy K even with access to axact
optimization oracled¢ = 1), our projections will be parametrized by an additiofialDefine
the set ob-approximate projections to be, for> 0 and anyz € R",

1% (2) = {x € R"| (x—z)-xgmi?(x—z)~y+(5}.
ye

It is important to note that we have not required an approternpaojection to be i/ However,
note that in the case where the projection igjrandé = 0, it is exactly the projection, that is,

5 We are not assuming théf is defined by a polynomial number of hyperplanes—it can besqoitind.
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Figure 3.2: An approximate projection oracle, for convexs5€& R" andé = 0, returns a point
I1%(2) € R" that is closer to any point € J thanz is, thatis,Yy € J ||[T15(z) — y|| < ||z — y||.

I1%(z) N J = {I1%(2)}. Foré = 0, the approximate projection is a poifit)(z) € R” that is
closer to any poiny € J thanz is, thatis,vy € J ||I15(z) — y|| < ||z — yl|. While we refer to it
as an approximate projection, it is also clearly related¢earation oracle. From a hyperplane
separating: from J, one can take the closest point on that hyperplaneds an approximate
projection, or in fact € I1%(z). The difficulty we will face is in finding deasiblesuch point.
We now bound thev-regret of the hypothetical algorithm which projects witH,.. The
proof is essentially a straightforward extension of Zinkhis proof @5]. This lemma shows
that indeed this hypothetical algorithm has a graceful aggtion in quality.
Lemma 3.3.3.Let K C R" be a convex set such thét € K, ||z|| < R. Letw,...,wr € R"
be an arbitrary sequence. Then, for any initial point € K, any«a > 1, and any sequence
Ty, T, ..., oy such thatr, ., € 112 (v, — nuwy),

T

T T
1 1 (a+1)2R* n s 0
fztj”t'wt—%%%;f'“’tfzn—T+ﬁ;wt T

Proof. Let 2* = cvargmin, g Zthl x - wy, SOz € aK. We will bound our performance with
respect tor*. Define the sequence by 2} = x; andz},, = 2, — nw,, so thatr, € 112 ;(z}).
We first claim that|x, — «*||* < ||z} — *||* 4+ 26, that is, our attempt at setting to be an
approximate projection af, ontoa K does not increase the distancertcsignificantly:

(2] — ") = (&} — @) + (2 — 2"))"
= (2, —2)? + (2, — 2°) + 2(2) — ) - (2, — %)
>0+ (2 — 2%)* — 20.

The last line follows from the definition of approximate djion and the fact that* € o K.
Hence, for any > 1, because; , = x; — nw, we have

(w41 — %) < (2 — nwy — 2*)* + 20
= (zy — 2°)? + n*w? — 2nw; - (v, — %) + 26
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and thus

i (o — ) < T (e =) P 42

2n
Using a telescoping sum of the above, we get
i v (g — o) < LT = wran =@ + S vt + 0T
p— 2/)7 .
t=1

Now using the fact that

we get
T

T

. +1)2R? )
th-wt—amm x-wtgu—l—Qwa—i—T—
t=1 ek 21 2 t=1 N

as desired. O

Note that if we set) = 1/+/T, the sum of the first two terms of this bound would be
O(1/v/T). However, the last term%, would beO(6v/T). Hence, we need to achieve an ap-
proximation quality ofy = O(1/T) in order for thea-regret of our (infeasible), values to be

O(1/VT).

3.3.2 Constructing the Algorithm

One simple method to (approximately) find the projection wfto a convex sef, given an exact
optimization oracle fot/, is as follows. Start with a point im € J. Then choose the search
directionv = x — z, and find a minimal point’ € J in the direction ofv—that is,»’ € J such
thatz’ - v < min,e; y - v (or, equivalently, such that’ — z) - v < min,c;(y — 2) - v). It can
be seen that it is not minimal in the direction of, then there must be a point on the segment
joining 2’ andz that is closer to: thanx was. Then repeat this procedure starting’atin the
case where € J, this will be still be useful in representingnearly as a combination of points
output by the minimization algorithﬁm

Note that in our case it € WW,, then our approximation oracle is able to find a feasible
s € § such that

O(s)-v <amin®(s') v = min z - v.
s'eS zcak

Loosely speaking, our oracle is able to perform minimizatiath respect to the set = aK
(or better). This is essentially how our algorithm will ube approximation oracle. However, as
mentioned before, many approximation algorithms can oatydte non-negative weight vectors
or weight vectors from some other limited domain. Hence, wstnextend the domain of the
oracle wheny ¢ W, ..

5Note that representing a given feasible point as a convesbwtion of feasible points is similar tandomized
metaroundindg29]. It would be interesting to extend the approacﬁ [22sed on the ellipsoid algorithm, to our
problem and potentially achieve a more efficient algoritfalated but simpler issues arise@[ZO].
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Figure 3.3: An approximation algorithm run on vectok )V always returns a point< S such
that the setv/ is contained in the halfspace tangentltts) whose normal direction is. An
extended approximation algorithm, as illustrated heflegeganyw € R™ as input and returns a
pointz € R™ such thatvK is contained in the halfspace tangent:twith normal vectorw. In
addition, it returns an € S such thatd(s) dominates.

Extending the domain We would like to find a feasible € S that satisfies the search condition
O(s) - v < aminges P(s') - v for a generab € R™, but this is not possible given only an
approximation oracle that runs on only a subseR®f Instead, we attempt to find a (potentially
infeasible)z € R™ which does satisfy this search condition, andsaa S which dominates
x, meaning that for allv € W, ¢(s,w) < z - w. More precisely, given any approximation
algorithm, we will use it construct the following type of ata, which we will then use as a tool
in our projection algorithm:
Definition 3.3.4. An extended approximation oracke: R” — S x R™ is a function such that,
forall v € R™, if B(v) = (s, ), thenz - v < aminges P(s') - v and ®(s) dominatese.

Figure 3.3 depicts an extended approximation oracle. Thafimg lemma
demonstrates that one can construct an extended appraxmuaiicle from an approximation
oracle.
Lemma 3.3.5.Let A : W, — S be ana-approximation oracle and suppo$@(s')|| < R
for all & € S. Then the following is an extended approximation oraclev I€ V., then
B(v) = (A(v), ®(A(v))), elseB(v) is

(A(HW+ (). B(A(Iw, (0))) + R(er+ 1) Hﬁx 8 - ZH)'

Proof. For the case where € W, by definition, B(v) = (A(v), ®(A(v))) suffices. Hence,
assume ¢ W... Letw = Iy, (v), s = A(w), andz = (s) + (o + 1) Ry=ry. Then we must
show (a)r - v < amingcs P(s') - v and (b)®(s) dominatese.

We have assumed thdtis ana-approximation oracle with domair/, , and therefore it can
accept inputo. By the definition ofa-approximation, we have - ®(s) < aw - ®(s') for all
s’ € §. By the boundR, we also have thata|v — w||R < a(v —w) - ®(¢) forall s' € S.
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Adding these two gives, for alf € S,

av-P(s) > w-P(s) —allv—w|R

:U.gz:jt(w—v)~<I>(s)—(owi—l)RﬁZ:Zf| ‘v —allv—w||R
(w —v)

>v-z—|lw—v[|R—(a+1)R

(v—w)—aljv—w||R

lw = ]|

=vV-x.

This is what we need for part (a) of the lemma. The secon@gbline follows from the fact
that (v — w) - w = 0. To see this, note that sineeis the projection ofv onto V., we have
(v—w)- (v —w) <0foranyw € W,. Since0 € W,, this implies tha{v — w) - (—w) < 0.
Since2w € Wy, this implies tha{v — w) - w < 0, and hencév — w) - w = 0.

This also means that — w) - (v’ — w) = (v — w) - w’ < 0 for all w’ € W,, which directly
implies (b), thatis(x — ®(s)) - w' > 0 for all w" € W. O

Note that the magnitude of the outpuis at most|®(s)||+ (a+1)R < (a+2)R; this bound
will be useful for bounding the runtime of our algorithm.

3.3.3 The approximate projection algorithm

Using this extended approximation oracle, we can define ®rROXPROJ algorithm, which
we present in Figure 3.1. The following lemma shows that tgeréghm returns both a valid ap-
proximate projection (which could be infeasible) and a mandeasible decision that dominates
the approximate projection (assuming ttkadf the algorithm’s input dominated the algorithm’s
inputz).

Lemma 3.3.6. SUppOSEAPPROXPROJ 2, s, x) returns (z/,s’). Thena’ € TI° . (2). If sis a
random variable such thdt[®(s)] dominatese, thenE[®(s")] will dominatex’.

It is straightforward to see that thereturned by APROXPRoJ satisfies the approximate
projection condition. The subtlety is in obtaining a fedessibolution with the desired properties.
It turns out thatt returned byB in line 1 does not suffice, as thisonly dominatesy, but not
necessarily:. However, our randomized scheme does suffice.

of Lemma 3.3./6The return condition of RPROXPROJstates that’- (2’ — z) < d+y- (2’ — 2).
Using the definition of an extended approximation oraclettves get

(' —2z2) < 5+amig®(s') (2= 2)
s'e

< 5+ygr€1£(y (2 = 2)
as desired.

The proof of the second property proceeds by induction omtimaber of recursive calls
made by APROXPROJ. The base case holds trivially. Now suppose the inductiyethesis
holds [E[®(s)] dominatesr). We will show that if(¢,y) = B(x — 2), the resultingE[A®(t) +
(1 — X\)®(s)] dominates\y + (1 — \)z.
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We observe:

ow = AW+ (1—=Nz)-w

= /\y-w+(1—)\>$-w
AP(t) w4+ (1 — Nz - w
AD(t) - w+ (1 = NE[®(s)] - w
ENO(t) + (1 — N)P(s)] - w
= E[®(s)] - w.

(AVARVS

+(1—
+(1—

Thus, if APPROXPROJterminates, the desired conditions will hold. O

3.3.4 Analysis

Our next lemma allows us to bound the number of calls Algarith3.1 makes tol and® on
each period.
Lemma 3.3.7. Suppose thak,§ > 0, the magnitudes of all vectors output by the extended

approximation oracle are< %\/g and ||z|| < %\/g ThenAPPROXPROJz, s, ) terminates

—2|2 - .
after at most% Iiterations.

Proof. The analysis is reminiscent of that of the perceptron allgori(see, e.g., Dunagan and
Vempala @2]). Letd = %\/g To bound the number of recursive calls tePROXPROJ it

suffices to show that the non-negative quanfity— z||* decreases by at least an addith\eon
each call and thdtz|| remains below on successive calls. The latter condition holds because
lell, llyll < H 0| Ay + (1 = N < AH + (1 — \H = H.

Notice that if the procedure does not terminate on a pasdtiaall, then

(x—vy) (x—2) >0
This means that the decreasdin— z)? in a single recursive call is

(=2 = (My+(1=-Nz—2)°=(x—2)°"— Ay —=2z)+ (z - 2))*
=2\(z —y) - (z —2) = N*(y — 2)?
> 205 — N (y —2)%

Also, ||y — z|| < 2H. Combining this with the previous observation gives
(z—2)2— A+ (1= A a—2)%>2)6 — 4\ H? = A6,

Hence the total number of iterations ofPAROXPROJ on each period is at mogtr —
z[[2/(A0). O

This lemma gives us a means of choosihgWe are now ready to prove our main theorem
about full-information online optimization.
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(0% « 2 « H
of Theorem 3.3.2Taken = (V;\})TR, § = Lt and )\ = 4(;:21))2T. Sincex; = ®(sy), by
induction and Lemma 3.3.6, we have thd(s,)] dominatesr, for all t. Hence, it suffices to
upper-boun(Ef:1 z; - wy. By Lemma 3.3.6, we have that € 11 ,-(2;_1) on each period, so by

Lemma 3.3.3 we get

1 1)2R? o
E[a-regret < 7 ((OHF# + Tﬁ + gTW2> :

Applying our chosen values of andd, this gives amv-regret bound of; ((« + DRWNT +
RWVT) = % as desired.
Now, as mentioned, the extended approximation oracle fremrha 3.3.5 has the property

that it returns vectors of magnitude at mést= %\/g = (a + 2)R. Furthermore, it is easy to

see that all vectors; have||z;|| < H, by induction ont. Then by Lemma 3.3.7, the total number
of iterations of APPROXPROJperiodt is at most(2H ||z — z||/6)* < (2(a + 2)RnW/§)? =
4(a+2)*T. O

3.4 Bandit algorithm

We now describe how to extend Algorithm 3.3.1 to the paititdrmation model, where the only
feedback we receive is the cost we incur at each period. Faxenal. ] also use a gradi-
ent descent style algorithm for online optimization in ttan@it setting, but the details of their
approach differ significantly from ours. The algorithm wescgbe here requires access to an
exploration basig;, . .., e, € S, which is simply a set of decisions such thak(e,), ..., ®(e,)
spanR”. (If no such decisions exist, one can reduce the problem ¢avartdimensional prob-
lem.) Following previous approaches, we will (probabitiatly) try each of these decisions from
time to time. As in the work of Dani and Hay 35], we will assuthatd(e;) is the standard
ith basis vector, that is;[i] = 1 ande;[j] = 0 for j # i. This assumption makes the algorithm
cleaner to present, and is without loss of generality bexaugscan always usg(e;) as our basis
for representingR”.

Definition 3.4.1. A set{z,xs, ...z, } C S is a-barycentric spanner (BS) fa¢ C R™ if, for
everyr € S, xz can be written ag = f1z1 + ... + B2, fOor somesy, ... 5, € [—05, ).

Note that we only need to construct a BS once for any problechitan can re-use it for all
future instances of the problem.

Awerbuch and Kleinber§[4] prove that every compédtas a 1-BS of size, and, moreover,
give an algorithm for finding a size-(1 + ¢)-BS using polyn, log(1/¢)) calls to an exact mini-
mization oracleV/ : R — S, whereM (v) € argmin, s ®(s) - v. Unfortunately, as we show in
§3.4.1, one cannot find such a BS using a minimizer (exact oloappate) whose domain is not
all of R". Moreover, we show that one cannot guarantee low regreh&bandit problem using
just a black-box optimization algorithzd : W, — S.

Hence, we assume that we are givenBS for the problem at hand as part of the input. We
feel that this is a reasonable assumption. For example tnatd is easy to find such a basis for
TSP and set cover with =poly(n): In the case of set cover, one can takesttemvers consisting

33



Givend,n,~ > 0 and an initial points; as input, sef;; = ®(s;). Perform a change of basis so
that®(eq), ..., ®(e,) is the standard basis.

fort=1,2,...
With probability~, >> exploration step

Choose € {1,...,n} uniformly at random.
s = e xy = P(ey).
Play(s;).
Observel; = c(s¢, wy).
Wy = (nly/7)P(e;).
(41, St41) := APPROXPROJXZ; — niy, S¢, Tt).

else, with probabilityl — ~, > exploitation step
Sy 1= S84 Ty = @y
Play(s;).
Observel; = c(sg, wy).
wy = 0.

(@H, §t+1) = (ft, §t)-

Figure 3.4: Algorithm for the bandit setting.

of all sets but on@. In the case of TSP, we can start with any teuthat visits all the edges at
least once and considet for each edge which is the same as but traverseg an additional
two times.

We present the algorithm for the bandit setting in Figure 8/é remark that our approach is
essentially the same as previous approaches and can besusgdrgeric conversion from a black-
box full-information online algorithm to a bandit algonith Previous approaches also worked
in this manner, but the analysis depended on the specificdsonfithe black-box algorithm in a
way that, unfortunately, we cannot simply reference.

Theorem 3.4.2.For o, 5 > 1, integerT > 0 and anyw;, ..., wr, given ana-approximation
oracle and aj-BS, the algorithm in Figuré 314 with = S5E, 5 — pnT~'/3, andy =

(4a3)?3nT~/3 achieves an expectedregret bound in the bandit setting of
Ela-regret < 7n(aB)?3T1/3.

The conversion from full-information to bandit is similar other conversiong[ﬂm,%].
Note that in the description of the algorithm,is what is played at step Also note thati;
may be viewed as an approximate projectiorzpfvhen it is generated in exploitation steps as
well as in exploration steps, sinée € I1° , (&, — m,) for @, = 0. We first prove a lemma:
Lemma 3.4.3.Let J C R" be a convex set such thet € J, ||z|| < R. Letw,...,wr €
R™ be an arbitrary sequence ands, ..., wr be a sequence of random variables such that

7If any of these is not a cover, that set must be mandatory ircangr and we can simplify the problem. If this

set of covers is not linearly independent, then we can rethecdimensionality of the problem and use the fact that
if T is a (possibly linearly dependent}BS for S andR is ay-BS forT thenR is a(y(|T|)-BS for S.
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By &1, W1, ..., T4_1, W01, 3¢ = w; and E[w?] < D?. Then, for any initial pointz; € J

and any sequenca, i, ... such thati,,; € I1° (&, — miy),

T

T
1)2R? )
E [5 £t~wt] — amin x~wt§M+T—+gD2T+2aRD\/T.
— n

zeJ 2”

Proof. By Lemma 3.3.3, we have that

T

1)2R?
E i’t.wt_amin xwtgu
z€J 2n

6
77

l\Dld

Taking expectations of both sides gives
Zx wy; — ok manx wy | < +1)2R2+TQ+QD2T
e ze] H= 2n n 2 '

It thus suffices to show that

T T
E[min :1:~1Dt] Zmin2x~wt—2RDﬁ.
zeJ p—t

zeJ
t=

Now, for anyz € J,

IN

||

T
Zwt_wt
t=1
T
R by — wy.
t=1

This gives us a means of upper-bounding the difference legtwee minima. Namely,

] < o[e-e)

The last equality follows from the fact that

<

E[@Dh _'U%l)mbh _'u&zﬂ =0

(3.1)

(3.2)

(3.3)

for t; < ty, which follows from the martingale-like assumption thato,, — wy, |y, , wy, ] = 0.

Finally,

E[(dy — wy)?] < E[@] + 2|y | [Jwe ]| + w]]
< D?+4+2D?+ D?
= 4D?.
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In the above we have used the facts tfigti;|]* < E[w?] < D? and||w;||* = Ely)? < E[w?] <
D2. Hence, we have that the quantity in (3.3) is upper boundetl/liy?, which, together with

(3.2), establishes (3.1). -

of Theorem 3.4.2We remark that the parametgin the statement of the theorem may be larger
than 1, but in this case the regret bound is greater than 1emcktolds for any algorithm.

Note that in the conversion algorithm the expected value,as w,, and this is true condi-
tioned on all previous information as well as Since Lemma 3.3.6 implies ,; € 112 ,(; —
niy), we can apply Lemma 3.4.3 to the sequefgceThis gives

T T
1)2R? 4]
ZE[i’t-wt]—amin x-wtgu—i—T——i—ﬂDQT—i—ZaRDﬁ.
zeJ 2n n o 2

t=1 t=1
To apply the lemma, we use the bouRd= n~~'/2. This holds becausg € [0, 1], SOE[w?] <
v(nt;/v)? + (1 — )0 < n?/vy. Also, we use the bound ak = 3,/n. Hence we choose
n= % andé = nnT /3, which simplifies the above equation to

T T

> Eldy - w] — armin > z-w; < (a+ 1)RDVT + nT%? + 2aRDVT
S

t=1 t=1

< 4aRDVT + nT?3.

Substituting the values db and R gives an upper bound dfv5n3/2~y~1/2y/T + T%.
Next, as in the analysis of the full-information algorithim(s,)] dominatesi[z,] by Lemma
3.3.6. Thus,

T T
Z Elc(3, w)] —amin Y @ - w, < 4afn® 2y V23T + nT??.

xzeJ
t=1 t=1

Finally, we have thaE[c(s;, w;)] < E[c(8¢, wi)] 4+ ~ because with probability — v, §; = s; and
in the remaining case the cost is[in 1]. Putting these together implies

T T
Z E[C(St, -wt)] — ami?zx cwy < 4Oéﬁn3/2fy_1/2ﬁ 1 nT2/3 n ’yT.
z€
t=1

t=1

Choosingy = (4a3)?/3nT~'/3 (note that if this quantity is larger than 1, then the regetrigl in

the theorem is trivial) gives a bound fi(4a37)%? + nT??3 < Tn(aBT)?*?* as in the theorem.
[

3.4.1 Difficulty of the black-box reduction

We now point out that it is impossible to solve the bandit peabwith general algorithms (ap-
proximation or exact) without an exploration basis (thatifi®ur only access t& is through
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a black-box optimization oracle). The counterexample iglcemized. Denote by (1] the first
coordinate of a vectan. We will take

W = {w € R" |w[1] € [0, 1] and|jw|* < 2(w[1])?}.

The setS will consist of two points: s = (1/2,0,...,0) as well as a second poirt =
(1,0,...,0) — w where|ju|| = 1 andu[l] = 0. The mappingd is the identity mapping. The
cost sequence will be constant = (1,0, ...,0) +u. Hencec(s, w;) = 1/2 while ¢(s’, w;) = 0.
Now, suppose we as algorithm designers know that this isatugdutu is chosen uniformly at
random from the set of unit vectors witl] = 0.

Observation 3.4.4.For any bandit algorithm that makescalls to black-box optimization oracle
A, anya > 0, with probability1 — ke=%1" overu, the algorithm has-regret1/2 on a sequence
of arbitrary length.

Proof. No information is conveyed by the costs returned in the bdagetup of our example—
they are always 1/2 i¥’ has not been discovered, while the minimal cost is 0. Thualti@ithm
must find somev € W such thate(s, w) > ¢(s’, w) (whence an exact optimization algorithm
must returns’), but is restricted to querying € Y. Without loss of generality, we can scale
so thatw[1] = 1 and||w|| < 2. Hence, we can write» = (1,0,0...,0) + v wherev[1] = 0 and
|lv]] < 1. Inthis casew - s = 1/2, whilew - s = 1 — u - v. Foru a random unit vector and any
fixed ||v|| < 1, itis known thatPr[u - v > 1/2] is exponentially small im. A very loose bound
can be seen directly, since for a ball of dimensigihis probability is

- 1 n—2
fll/Q(\/l — 22)"2dx _ f1/2(3/4) 7 dx
1

JLWT=a?)m=2de = [0 (1—n1) P da

o Ve 3\
- 2 4

which isO(e=%17), O

3.5 Conclusions

In this chapter, we present a reduction converting apprateroffline linear optimization prob-
lems into approximate online sequential linear optim@afproblems that holds fanyapprox-
imation algorithm, in both in the full-information settirsand the bandit setting.

Our algorithm can be viewed as an analog to Hannan’s algoffith playing repeated games
against an unknown opponent. In our case, however, we caongiute best responses but only
approximately best responses.

The problem of obtaining similar results for interestingsdes of non-linear optimization
problems remains open.
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Chapter 4

Convergence to Nash Equilibria in Routing
Games

4.1 Introduction

One specific setting where efficient regret minimizatioroalpms exist is online routing. Given
a graphG = (V, F) and two distinguished nodes,,,; andv.,,, the game for an individual
player is defined as follows. At each time stephe player’s algorithm chooses a pdthfrom
Ustart 10 Veng, @and simultaneously an adversary (or nature) chooses d sdge costyc }.cx.
The edge costs are then revealed and the player pays thd tegtath. Even though the number
of possible paths can be exponential in the size of the gitagdguse this can be cast as a linear
optimization problem whose offline version can be solvea#yan polynomial time (the player
selects an indicator vector showing which graph edges atedad in her path, and the weight
vector that shows up indicates the cost of each edge), podt van be used to minimize regret
in this setting. For example, the algorithms of Kalai and Yaia Bi] and ZinkevichL@ZZ]
achieve running time and convergence rates (to the coseddfdht fixed path in hindsight) which
are polynomial in the size of the graph and the maximum edgé ddoreover, a number of
extensionsﬁ4, 92] have shown how these algorithms can Heedmgyen to the “bandit” setting
where only the cost of edges actually traversed (or everthistotal cost off,) is revealed to
the algorithm at the end of each time step

In this chapter we consider the question: if all players in@ting game use no-regret algo-
rithms to choose their paths each day, what can we say al®avénall behavior of the system?
In particular, the no-regret property (also called Hannansixtency) can be viewed as a natural
definitionof well-reasoned self-interested behavior over time. Thfual players are adapting
their behavior in such a way, can we say that the system as ke wiibapproach Nash equilib-
rium? Our main result is that in the Wardrop setting of meltenodity flow and infinitesimal
agents, the flows will approach equilibrium in the sensedhat e fraction of the daily flows will
have the property that at most afraction of the agents in them have more thar amcentive
to deviate from their chosen path, wherapproaches 0 at a rate that depends polynomially on
the size of the graph, the regret-bounds of the algorithntlze maximum slope of any latency
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function

Moreover, we show that the one new parameter—the dependensmbpe—is necessary.
In addition, we give stronger results for special cases suscthe case of parallel links and
also consider the finite-size (non-infinitesimal) loadam&ing model of Azar [8]. Our results for
nonatomic players also hold for a more general class of gaailesi congestion games, although
efficient regret-minimizing algorithms need not exist foe tmnost general of these games.

One way our result can be viewed is as follows. No-regretrélyos are very compelling
from the point of view of individuals: if you use a no-regrég@ithm to drive to work each
day, you will get a good guarantee on your performance noemeathat is causing congestion
(other drivers, road construction, or unpredictable eslenBut it would be a shame if, were
everyone to use such an algorithm, this produced globakyalohe behavior. Our results imply
that in the Wardrop routing model, so long as edge laten@ge bounded slope, we can view
Nash equilibria as not just a stable steady-state or thdt i@fsadaptive procedures specifically
designed to find them, but in fact as the inevitable resulhdiidual selfishly adaptive behavior
by agents that do not necessarily know (or care) what psligiber agents are using. Moreover,
our results do not in fact require that users follow strasghat are no-regret in the worst-case,
as long as their behavior satisfies the no-regret property the sequence of flows actually
observed.

4.1.1 Regret and Nash equilibria

At first glance, a result of this form seems that it should beals given that a Nash equilibrium
is precisely a set of strategies (pure or mixed) that areaHegret with respect to each other.
Thus if the learning algorithms settle at all, they will haweesettle at a Nash equilibrium. In
fact, for zero-sumgames, no-regret algorithms when played against each wilieapproach
a minimax optimal solutior{%O]. However, it is known thateevin small 2-playegeneral-
sumgames, no-regret algorithms need not approach a Nashl@guiti and can instead cycle,
achieving performance substantially worse than any Nasililegum for all players. Indeed
simple examples are known where standard algorithms wilé hilais property with arbitrarily

high probability [123].

4.2 Preliminaries

4.2.1 Nonatomic congestion games

Let £ be a finite ground set of elements (we refer to theredge$. There arek player types
1,2,...,k, and each player typehas an associated set of feasible pgthswhereP; is a set

LA more traditional notion of approximate Nash equilibriuequires thaho player will have more thaaincen-
tive to deviate from her strategy. However, one cannot homehieve such a guarantee using arbitrary no-regret
algorithms, since such algorithms allow players to ocawaly try bad paths, and in fact such experimentation is
even necessary in bandit settings. For the same reasonaanetcope thaall days will be approximate-Nash.
Finally, our guarantee may make one worry that some usetd atwiays do badly, falling in the minority on every
day, but as we discuss .5, the no-regret property can be used to further show thalayer experiences many
days in which her expected cost is much worse than the bdstapaiiable on that day.
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of subsets ofv. Elements ofP; are calledpathsor strategies For example, player typemight
correspond to players who want to travel from nagéo nodev; in some underlying grap&,
and?P; might be the set of all;-v; paths. The continuum; of agents of typé is represented

by the intervall0, a,], endowed with Lebesgue measure. We resiét, a; = 1, so there is a
total of one unit of flow. Each edge € E has an associated traffic-dependent, non-negative,
continuous, non-decreasirgtencyfunction /.. A nonatomic congestion game defined by

(E,0,P,A).
A flow determines a path for each playgi:: A; — Q; whereQ; is the set of)/1 vectors
in P; with exactly onel. We write [ = (fA1 froeons fAk Ir), WherefAi fi reflects the amount of

flow of type: on each path irP;. A flow thus induces a distribution over paths, which we write
for a pathP in P; as fp = (f;)" for P of typei. Thus,y .., fp = a; for all i, and fp is the
measure of the set of players selecting p@thEach flow induces a unique flow on edges such
that the flowf, on an edge has the property. = ..., fp. The latency of a patl® given a
flow fislp(f) = .cple(fe), i.€., the sum of the latencies of the edges in the path, diven
flow. The costy; incurred by a player of typeis simply the latency of the path she plays.

The social utility function we consider is the total costined by a flow:y(f) = > .5 le(fe)-
We define| E| = m and writen for the number of edges in the largest pathiin We will
assume all edge latency functions have rajigé], so the latency of a path is always between 0
andn. Let f*, f2,... T denote a series of flows from time 1 up to tiffieWe usef to denote

the time-average flow i.ef, = T Zt I

Aflow fis atNash equilibriumf no user would prefer to reroute her traffic, given the ertpt
flow.

Remark 4.2.1. Network games are a special case of nonatomic congestion garheee there
is an underlying graplG and players of type have a start node,; and a destination node;,
andP; is the set of alk;-v; paths.

It is useful to note that in this domain, the flows at equililoni are those for which all flow-
carrying paths for a particular player type have the samentat and this latency is minimal
among all paths for players of that type. In addition, givem assumption that all latency
functions are continuous and non-decreasing, one can fhiewexistence of Nash equilibria:
Proposition 4.2.2. (SchmeidlerWZ], generalization of Beckman et al. [12})elEy nonatomic
congestion game admits a flow at equilibrium.

In addition, for any nonatomic congestion game, there isiquenequilibrium cost:
Proposition 4.2.3. (Milchtaich @], generalization of Beckman et d[[lZ]) 8inct equilibria
for a nonatomic congestion game have equal social cost.

In this chapter, excluding4.7, we consider infinitesimal users using a finite numberifef d
ferent algorithms; in this setting, we can get rid of the extpgon in the formulation of our
low-regret assumption. In particular, if each user is ragra no-regret algorithm, then the aver-
age regret over users also approaches 0. Thus, since arplagve bounded per-timestep cost,
applying the strong law of large numbers, we can make theviatlg assumption:

Assumption 4.2.4.The series of flowg!, f2, ... satisfies

Ly S a < R+ ZazmmZZﬁ ()

t=1 ecF t=1 eeP
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whereR(T) — 0 asT — oo. The functionR(7") may depend on the size of the network and
its maximum possible latency. We then defih@s the number of time steps required to get
R(T) <e.

4.2.2 Approaching Nash Equilibria

We now need to specify in what sense flow will be approachingaghNequilibrium. The first
notion one might consider is thie distance from some true Nash flow. However, if some edges
have nearly-flat latency functions, it is possible for a flashave regret near 0 and yet still be far
in L, distance from a true Nash flow. A second natural notion woaltbtsay that the floy has
the property that no user has cost much more than the chgagtbsgivenf. However, notice
that the no-regret property allows users to occasionallg lang paths, so long as they perform
well on average (and in fact algorithms for the bandit probieill have exploration steps that
do just thatﬁ4, 92]). So, one cannot expect that on any timadt users are taking cheap paths.
Instead, we require thatostusers be taking a nearly-cheapest path gite8pecifically,

Definition 4.2.5. A flow f is ate-Nash equilibrium if the average cost under this flow is within
of the minimum cost paths under this flow, C&.f) — Zle a;minpep, Y cple(fe) < e

Note that Definition 4.2)5 implies that at most & fraction of traffic can have more than a
V€ incentive to deviate from their path, and as a result is venjiar to the definition of(e, §)-
Nash equilibria in@Z]. We also are able to show that one gatygprice-of-anarchy results to
e-Nash flows; we discuss this {i#.6.

We will begin by focusing on theBme-averagdlow f showing that for no-regret algorithms,
this flow is approaching equilibrium. That is, for a givénwe will give bounds on the number
of time steps beforg is e-Nash. After analyzing, we then extend our analysis to show that in
fact for mosttime stepg, the flow f* itself is e-Nash. To achieve bounds of this form, which we
show in§/4.5, we will however need to lose an additional factor potyia in the size of the
graph. Again, we cannot hope to say ttfatis e-Nash forall (sufficiently large) time-stepsg
because no-regret algorithms may occasionally take lotigspand an “adversarial” set of such
algorithms may occasionally all take long paths at the same. t

4.2.3 Dependence on slope

Our convergence rates will depend on the maximum skopowed for any latency function.
To see why this is necessary, consider the case of a routmg gath two parallel links, where
one edge has latency 0 up to a loadig$ and then rises immediately to 1, and the other edge
has latency O up to a load @f/3 and then rises directly to 1. In this case the Nash cost is O,
and moreover foanyflow f’ we haveminpep ) . ple(f.) = 0. Thus, the only wayf’ can

be e-Nash is for it to actually have low cost, which means the allgo must precisely be at a
1/3-2/3 split. If players use no-regret algorithms, traffic will iead oscillate, each edge having
cost 1 on about half the days and each player incurring costriob much more than half the
days (and thus not having much regret). However, none of #ilg lows will be better than
%-Nash, because on each day, the cost of the flasvat least 1/3.
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4.3 Infinitesimal Users: Linear Latency Functions

We begin as a warm-up with the easiest case, infinitesimask ws® linear latency functions,
which simplifies many of the arguments. In particular, faefr latency functions, the latency of
any edge under the time- average fIgSvis guaranteed to be equal to the average latency of that
edge over time, i.el.(f.) = L S0, (.(f7) for all e.
Theorem 4.3.1.Suppose the latency functions are linear. Thenifor T,, the average flovf
is e-Nash, i.e.

) <

€+ Z a; 113%17131 E fe)

Proof. From the linearity of the latency functions, we have forall, (f.) = %Zle Co(f).
Sincel.(f!) f! is a convex function of the flow, this implies

Z (fO) 1.

Summing over alk, we have

C(f) < FXLC0"
< e X aiminpep, 73, > eep le(f) (by Assumption 4.2.4)
= €+ ;a;minpep, Y ple(fe)- (by linearity)

]

Corollary 4.3.2. Assume that all latency functions are linear. In generaltiog games, if all
agents use the Kalai-Vempala algorithm [81], the average ft@nverges to ar-Nash equi-
librium at 7, = O(%). On networks consisting of two nodes andparallel links, if all
agents use optimized “combining expert advice”-style alhons (with each edge an expert),
the average flow converges to aNash equilibrium afl, = O(lo%).

Note that we not only proved that the average flow approaamed\ash equilibrium, but as
an intermediate step in our proof we showed tid@tialaverage cost incurred by a user of type
is at most worse than the best path# in the average flow.

4.4 Infinitesimal Users: General Latency Functions

The case of general latency functions is more complicateduse the first and third transitions
in the proof above do not apply. Here, the additive term ddp@&m the maximum slope of any
latency function.

Theorem 4.4.1.Lete = ¢ + 2y/sen. Then for general functions with maximum slopéeor

T > T, the time-average flow -Nash, that is,

Zé fe fe§5+2\/ﬁ+2alm1n ﬁ(fe)

eckE ecP
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Before giving the proof, we list several quantities we wiledeo relate:

Z Ce(fe) fe (cost of f) (4.1)
eckE
1 T
2D LD (“cost of f in hindsight”) (4.2)
t=1 eck
1 T
T DD IRACANE (avg cost of flows up to tim@’) (4.3)
t=1 eek
1 T
. t . - -
Xi: a; 11%131 ; T ; C(f2) (cost of best path in hindsight) (4.4)
zj: a; gg% eezp Ce( fe) (cost of best path giveli) (4.5)

Our goal in proving Theorem 4.4.1 is to show tljtl) is not too much greater thgd.5).
We will prove this as follows. We know th&4.3) < e + (4.4) by the no-regret property and that
< (4.3) by the fact that is non-decreasing. So, what remains to show is (#al) is not
much greater thad.5) and that(4.1) is not much greater thai.2). We prove these in Lemmas
4.4.2 and 4.4)3 below.

Lemma 4.4.2. For general latency functions with maximum slopé4.4) < /sen + (4.5).

Proof. First, observe that, because our latency functions aredecreasing, the average latency
of an edge must be less than or equal to the latency of thataslgeen by a random user on a
random day. That is, for a,

1, « 1
ffetz;ee(fe) <z ;fe(fe)fe-

This can be shown by induction, using the fact thigh. ( f°) + f20.(f2) < fol(f2) + fol(fP)
for any flows f2, f°. Definee, = £ 3°  C.(fO)ff — Lf. 31 €.(f!) to be the gap between
the above two terms. Now, notice that the right-hand sidéefbove inequality, summed over
all edges, is precisely quantity (4.3). By the no-regret prop this is at most larger than the
time-average cost of the best paths in hindsight, whichrim igiclearly at most the time-average
cost off. Therefore, we have:

S 3D MATAEERES 9 STV

t=1 ecE t=1 ecE

T
e+ f S

t=1 ecF

IN

That is, we have “sandwiched” the flow-average latency betwbe time-average latency and
the time-average latency plasThis implies that for every edgg its time-average cost must be

44



close to its flow-average cost, namely,
Z €. < €.
ecE

We now use this fact, together with the assumption of boustiguk, to show that edge latencies
cannot be varying wildly over time. Specifically, we can riggvthe definition ok, as:

_ ! )= (L) (L~ f) >0, (4.6)

6

Mﬂ

t=1

where we are using the fact that= L "/ | ffand sox > £.(f.)(ff — f.) = 0.

From the bound on the maximum slope of any latency functianknow that| ! — fo >
16.(fY) — £.(f.)|/s and thus

8~ Gl < s (05— 00) (72 1)

for all e.
We then get

L—Z\/ ft —€ fe))(fg_fe)'

Using equation (4.6) above and the fact the square root isssrfunction, an application of the
Cauchy-Schwartz inequality yields

rxho

Finally, let P be the best path of typeegiven f. Summing equation (4.7) over the edges in
Pr, and using the factthat}, a; > . p. \/5€c < v/sen, we have

< Ve (4.7)

@5+ > Y ze () > (44,

eEP*

as desired. O
Lemma 4.4.3.For general latency functions with maximum slopé4.1) < \/sen + (4.2).

Proof. Equation[(4.7) above directly gives us

@D <> Vaef. + @2,

eckE
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An application of the Cauchy-Schwartz inequality then gues

(z \/_f) y (z ) (z f) |

eceE eckF ecl

Sincef. < 1 for all ¢, this is at mos{(3",, se.) (ZeeE fe) SinceY".., fo < n, this is at

mostsen, and thus X
Z Vs€efe < /€N,

eck

which gives the desired result. ]
Given the above lemmas we now present the proof of Theorerh.4.4

of Theorem 4.4.1Since(4.3) < ¢ + by Assumption 4.2.4, an@#.2) < (4.3) by the fact
that the latency functions are non-decreasing, we get

(4.1 Vsen +
Vsen +
€+ sen + (4.4)

€+ 2v/sen +

as desired. ]

VAN VAN VARRVAN

Corollary 4.4.4. Lete = € + 2./sen. Assume that all latency functions are positive, non-
decreasing, and continuous, with maximum slepeln general routing games, if all agents
use the Kalai-Vempala aIgorithrﬂSl], the average flow cogesrto ans’-Nash equilibrium at
T. = O(%) = O(%). On networks consisting of two nodes andarallel links, if
all agents use optimized “combining expert advice”-stylgosithms, the average flow converges
to an¢’-Nash equilibrium afl; = O('%2m) = O(*< Jezm),

Once again we remark that not only have we proved that thegedtow approachesNash
equilibrium, but as an intermediate step in our proof we dtbthhatactualaverage cost obtained
by the users is at mostworse than the best path in the average flow.

4.5 Infinitesimal Users: Bounds on Most Timesteps

Here we present results applicable to general graphs aretajéanctions showing that anost
time stepg, the flow f* will be ate-Nash equilibrium.

Theorem 4.5.1.In general routing games with general latency functions wigkximum slope,

for all but a(ms'/4¢'/*) fraction of time steps up to tini&, f*is a (e +2+/sen +2m?3/4s/1el/4)-

Nash flow. We can rewrite this as: for all but arfraction of time steps up t6,, f! is ane’-Nash

o E/4
ﬂOW forE = Q (m)
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Proof. Based on equation (4.6),

1 — ;
\/s€, > TZ 10e(f) = Le( fe)]
=1

for all edges. Thus, for all edges, for all bdt4e.”

51/462/4 2 |€e<f£) - ge(fe”'

of the time steps,

Using a union bound over edges, this implies that on all buts&*e!/* fraction of the time
stepsall edges have R
51/4654 > we(f;) — Le(fe)l-

From this, it follows directly that on most time steps, thestcof the best path giveli’ differs
from the cost of the best path givérby at most3/4s'/4¢1/4. Also on most time steps, the cost
incurred by flow/? differs from the cost incurred by floy by at mostmn3/4s'/4¢X/4. Thus since
fis an € + 2y/sen)-Nash equilibrium,f* is an € + 2y/sen + 2m3/*s'/4¢1/4)-Nash equilibrium
on all but ams'/*¢'/* fraction of time steps. O

Corollary 4.5.2. In general routing games with general latency functions witlximum slope
s, for all but a (ms'/4¢'/4) fraction of time steps up to timE = 7, the expected average cost
LS~ | ¢tincurred by any user is at mogt + 2+/sen +m?/4s'/4¢/4) worse than the cost of the
best path on that time step.

Proof. From the proof of Theorem 4.5.1 we see that on most days, thieofdhe best path
given the flow for that day is withim3/4s'/4¢1/4 of the cost of the best path givei which is at
most2,/sen worse than the cost of the best path in hindsight. Combiniisgaifth the no-regret
property achieved by each user gives the desired result. m

This demonstrates that no-regret algorithms are a reakgrsthble response in a network
setting: if a player knows that all other players are usingegret algorithms, there is no strategy
that will significantly improve her expected cost on moraitasmall fraction of days. By using
a no-regret algorithm, she gets the guarantee that on muststieps her expected cost is within
some epsilon of the cost of the best path given the flow fordhgt

4.6 Regret Minimization and the Price of Anarchy

In this section, we relate the costs incurred by regretsmizing players in a single-commaodity
congestion game to the cost of the social optimum. We apprtdas problem in two ways:
First, we show that any-Nash equilibrium in a single-commaodity congestion gamelasely
related to a true Nash equilibrium in a related congestionegdl his is an interesting property of
approximate equilibria, and further allows us to apply ot Anarchy results for the congestion
game to the regret-minimizing players in the original gaineour second result in this section,
we give an argument paralleling that of Roughgarden and E&i@] that directly relates the
costs of multi-commodity regret-minimizing users to thetoof the social optimum.
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Theorem 4.6.1.1f f is ane-Nash equilibrium flow for a single-commodity nonatomic cstmpn
gamel’, then

C(f) < : _,0\/2 (C(OPT) + s\/en+ /e +¢),
whereO PT is the minimum cost flow andlis the price of anarchy in a related congestion game
" with the same class of latency functionslasut with additive offsets.
For example, Theorem 4.6.1 implies that for linear latenaycfions of slope less than or
equal to one, am-Nash flow f will have cost at mos{%gﬁ(C(OPT) + v/e(n + 1) + ¢€). Note

that for regret minimizing players, Theorem 4.6.3 below iayes this to§C(OPT) + €.

The proof idea for this theorem is as follows: For every nomat congestion gamg and
flow f ate-Nash equilibrium orl’, there exists a nonatomic congestion gdmehat approxi-
matesl’ and a flowf’ that approximateg such that: (a)’ is a Nash flow or”, (b) the cost of
f"onI” is close to the cost of onI’, and (c) the cost of the optimal flow dri is close to the
cost of the optimal flow o'. These approximations allow one to apply price-of-anarelsylts
from " andI” to f andI.

Proof. Note that sincef is a single-commodity flow at-Nash equilibrium o, then at most

a /e fraction of users are experiencing costs more tharworse than the cost of the best path
given f; denote bymnin the cost of this shortest path givénWe can modifyl" toI'; to embed the
costs associated with these “meandering” users such thabtts experienced by the remaining
users do not change. Call the non-meandering users

Note thatC'(f onI') — min < ¢, sincef is at ane-Nash equilibrium. Also, the total costs
experienced by the meandering users are at @stonT") — (1 — \/e)min; that is, every non-
meandering user experiences cost at least, since there is no cheaper path available. This is
in turn at mostk + y/emin < e+ /eC(f onT).

We now construct an alternate congestion gadiménot necessarily a routing game, even if
the original game was a routing game) such thanterpreted orl’; is a Nash equilibrium. To
do this, we create a new edge and include that edge in everyadile path . We can now assign
cost to this new “entry edge” to cause the minimum cost of asaylable path to be equal to the
cost of the worst flow-carrying path ify onI';. The maximum cost we need to assign in order
to achieve this is/e, since we already removed all users paying more t{faplus the cost of
the best path available to them. Thugf, onTy) < C(f interpreted oi';), so we have

1
1— /e

Definep to be the price of anarchy of the new congestion gamahen played with up to
one unit of flow. Thus, definin@ PT,,(H ) to be the min-cost flow of size in gameH, we have

C(fonl) < (C(fy interpreted of's) + ) .

C(fonl) < - L (C(OPT_ f(Ty)) +¢).

B

Since we added at mogte to the cost of any solution in going froif, to I's, this gives

p

C(fonI') < -

(C(OPT,_ /(T's) interpreted oms) + /e + ¢€)

B
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and since) PT;_ (T;) is the min-cost flow of siz¢l — \/¢) on T,

p

C(fonl) < =

(C(OPTy_fe(T2)) + Ve +¢),

=

We now must quantify the amount by which the costoPT;_ . onI'y could exceed the
cost ofOPT; onT'. Since the cost of any edge ih is at mosts,/e more than the cost of that
edge inl’, this gives

C(fonT) < 1_’) (C(OPT) + sy/en+ e +¢) .

B

]

In particular, when all latency functions are linear, we aaply results of Roughgarden and

nTa%ios bounding the price of anarchy in a congestion gantelingtar latency functions by/3
109].

We can also directly characterize the costs incurred byetegmimizing players without go-
ing through the intermediate step of analyzinjash flows by arguing from scratch paralleling
the Price of Anarchy proofs of Roughgarden and Tardos [109].

Definition 4.6.2. Let £ be the set of cost functions used by a nonatomic congestioe,gaith
all £(£)¢ convex or0, oo). For a nonzero cost functiohe £, we definex(?) by

a(l)= sup [Ap+(1-N)]"

n>0:£(n)>0

where the marginal social cogf(¢) = (.(&) + & - £.(€), A € [0, 1] satisfies*(An) = ¢(n), and
w="L(An)/l(n) € [0,1]. We definex(L) by

a(L) = sup a(/).
0£LeL
Theorem 4.6.3.1f I is a nonatomic congestion game with cost functiGnegith all £(£)¢ convex
on [0, 00), then the ratio of the costs incurred by regret-minimizirgyprs to the cost of the
global optimum flow is asymptotically at mestL) (which is the Price of Anarchy bound given
by Roughgarden and Tardos [109]).

Proof. Let f* be an optimal action distribution and, .. ., fr be a sequence of action distri-
butions obtained by regret-minimizing players. We can loia@und the optimum social cost
using a linear approximation of the functidn¢)¢ at the point\! /!, where)! € [0, 1] solves

Ce(ANefe) = Le(f2):

fe
fro= LU+ / £(f) de

Mt
> LeMfONSe + (f2 = AefOENS)
= LeOefONSe + (S = AefEe([o)
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for all edges and time steps, and thus

) > —ZZ FONSE+ (fr = ALfDC(fD)].

t=1 ecF
We can rewrite this as
1
* > t\t pt t t t _
O(f>_TtZ_;eeZE[ueAefe (1= 2 £6(£) +;f 1

wherep! = (AL f1) /0.(f!). By the regret minimizing property,

—Zth <e+Zalm1n—ZZ€ (fH

t=1 ecFE t=1 ecFE
and thus

T T
SR < et SN R

t=1 ecFE t=1 ecE
which gives us

+e>TZZue + (1= M) S (f2).

By definition, u AL + (1 — \L) > 1/a(L) for eache andt, souf AL ff+ (1 — AY) f14.(f!) and
C.(f1) ft differ by at most a multiplicativer(£) factor for everye andt. This gives us

@)+ ZZ s =S

tleE

as desired. ]

4.7 Discrete Users: Parallel Paths

In contrast with the previous sections, we now considerdtsausers, where we denote tiie
user weight asv;. Without loss of generality, we assume that the weights arealized such
that>""" , w; = 1. We limit ourselves in this section to the single-commodigysion of the
parallel paths routing game model and to functions withneyeequal to the load, that is, for a
pathe we havel, = f.. For each uset, we let the latency excluding her own patht timet be
0.(f£\ i) and her average latency on pathe(.(f. \i) = & S°1_ (.(f2\ i), wheref! \i = f!if
user: is not routing on patlk and f! \ i = f! — w; otherwise. We always exclude tith player
from the latency function, since thith player always pays for its weight.

Next we observe that at timethere always exists a path with load at most the average load
Observation 4.7.1.At any time step, for every uset, there exists a pathsuch thawe(fe \17) <

1—w;
e
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The following theorem differs from other theorems in thigpter in the sense that it is an
expectation result and holds for every user.
Theorem 4.7.2.Consider the parallel paths model, with latency functionshahat the latency
equals the load. Assume that each discrete useses an optimized best expert algorithm. Then
for all users, for allT” > O(*&™),

LS Bl < 5%

t=1

whereg; is the distribution over then paths output by the best expert algorithm at tilme

Proof. By Observation 4.7.1 we have that there exists a path withageecost at mosl‘Twi.
Since uset is using an optimized best expert algorithm and the maxiatahlkcy isl, we have
that

1 T

=Y B [L(f\ )] < minfo(fo\i)+

t=1
1 —w; [logm
<
- m * T

1—wi
+ €

logm
T

<
m

where the last inequality holds faF > O(*%™). O

Consider an instance of this model where every user playsmumly at random. The resulting
flow is clearly a Nash equilibrium, and the expected latenrytiieith player is'=“ excluding
its own weight. We thus have shown that the expected latexpgreenced by each useéis at
moste worse than this Nash latency.

4.8 Conclusions

In this chapter, we consider the question: if each playerrouéing game (or more general con-
gestion game) uses a no-regret strategy, will behaviorergemo a Nash equilibrium, and under
what conditions and in what sense? Our main result is thaeisetting of multicommodity flow
and infinitesimal agents, B— ¢ fraction of the daily flows are a-Nash equilibrium fore ap-
proaching O at a rate that depends polynomially on the payegret bounds and the maximum
slope of any latency function. Moreover, we show the depeoelen slope is necessary.

Even for the case of reasonable (bounded) slopes, howewdspands for general nonlinear
latencies are substantially worse than our bounds for tieaticase. For instance if agents are
running the Kalai-Vempala aIgorithr{rﬁSl], we get a bound)c()%) on the number of time
steps needed for the time-average flow to reacl-Bsh equilibrium in the linear case, but
O(%) for general latencies. We do not know if these bounds in theeige case can be
improved. In addition, our bounds on the daily flows lose tddal polynomial factors which
we suspect are not tight.
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We also show that Price of Anarchy results can be appliedgreteninimizing players in
routing games, that is, that existing results analyzingatinadity of Nash equilibria can also be
applied to the results of regret-minimizing behavior. Reeerk MTES] shows that in fact Price of
Anarchy results can be extended to cover regret-minimiagitavior in a wide variety of games,
including many for which this behavior may not approach Hopi@ and where Nash equilibria
may be hard to find.
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Chapter 5

The Price of Total Anarchy

5.1 Introduction

As mentioned in the introduction, one of the main thrustseestarch in algorithmic game theory
has been the study of the ratio between the cost of the worst Bquilibrium and that of the
social optimum (the “Price of Anarchy{%?]), as a tool forderstanding the outcomes of selfish
behavior. In this chapter, we study the value obtained inagawmith selfish agents when we
make a much weaker and more realistic assumption aboutitéleavior. We consider repeated
play of the game and allow agents to play any sequence oingotvdh only the assumption that
this action sequence has low regret with respect to the bxest &iction in hindsight. This “price
of total anarchy” is strictly a generalization of price ofamohy, since in a Nash equilibrium,
all players have zero regret. Regret minimization is a rea@l&sssumption because there exist a
number of efficient algorithms for playing games that gusgamegret that tends to zero, because
it requires only localized information, and because in a gavith many players in which the
actions of any single player do not greatly affect the deaisiof other players (as is often studied
in the network setting), players can only improve theiraiiton by switching from a strategy with
high regret to a strategy with low regret.

We consider four classes of games: Hotelling games, in wpiiapers compete with each
other for market share, valid am18] (a broad class wiegathat includes among others
facility location, market sharing [65], traffic routing, @multiple-item auctions), linear conges-
tion games with atomic players and unsplittable fl ﬁ [2B]d parallel link congestion games
ﬂﬁ]. We prove that in the first three cases, the price of taterchy matches the price of an-
archy exactly even if the play itself is not approaching &orum; for parallel link congestion
we get an exact match far = 2 links but an exponentially greater price for generavhen the
social cost function is the makespan. When we consider awdoagl instead, we prove that if
the machine speeds are relatively bounded, that the prit®aifanarchy id + o(1), matching
the price of anarchy. For linear congestion games and awerasgf load balancing, the price of
anarchy bounds were previously only known for pure stratég@gh equilibria, and as a corollary
of our price of total anarchy bounds, we prove the corresimongdrice of anarchy bound for
mixed Nash equilibria as well.

Most of our results further extend to the case in which onime®f the agents are acting
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to minimize regret and others are acting in an arbitrary gjiodg adversarial) manner. When
studyinganarchy it is vital to consider players who behave unpredictabhyg get this has been
largely ignored up until now. Since Nash equilibria are Eamly if all players are participating,
and sink equilibriaJﬁB] are defined over state graphs trairase that all players play rationally,
such guarantees are not possible under the standard penarm@hy model or the price of sinking
model @]

5.1.1 Ourresults

In this chapter, we study the price of total anarchy in foaisskes of games. We emphasize that
our analysis does not presume that players play accordiagygarticular class of algorithms;
our results hold whenever players happen to experiencedgvet, which is a strictly weaker
assumption than that players play according to a Nash bquitn. In Section 5.3 we examine a
class of generalized Hotelling games, where sellers skleations on a graph and achieve rev-
enues that depend on their own locations as well as the éosathosen by the other sellers. We
prove that for such games (and an even broader class, seen8&8t3), any regret minimizing
player gets at least half of her fair share of the sales, dégss of how the other (Byzantine)
players behav@. This result exactly matches the price of anarchy in theseeganidotelling
games and their generalizations model not only situatiov@ving staking out market share in
physical space, but also to the game politicians play in simgohow to position themselves on
the political landscape.

Valid games, introduced by Vetﬁi[le], model games whegestial utility is submodular,
the private utility of each player is at least her Vickreyitytithe amount her presence contributes
to the overall welfare), and where the sum of the playersgpe utilities is at most the total social
utility. In Section 5.4 we prove that the price of total arlgrin valid games with nondecreasing
social utility functions exactly matches the (Nash) priéeanarchy, even if Byzantine players
are added to the system.

Finally, in Section 5.5, we analyze atomic congestion gamtstwo types of social welfare
functions. First, we consider unweighted atomic congaesgiames with player-summed social
welfare functions, and in both the linear cost and the patyiab cost case, we show price of
total anarchy results that match the price of anarawﬂb, Riixt, we consider a parallel link
congestion game with social welfare equal to makespan,aheeghat initiated the study of the
price of anarchy@?], and show that the price of total amarchthe parallel link congestion
game with two links is3/2, exactly matching the price of anarchy. We also show thaptiee
of total anarchy in the parallel link game withlinks is 2(y/n), which is strictly worse than the
price of anarchy. Finally, we show a price of total anarchyahig the known price of anarchy
in the load balancing game with the sum social utility fuocti In the case of load balancing
with sum social utility, our price of total anarchy resultsayield previously unknown price of
anarchy results for mixed strategies.

1Babaioff et al. [9] propose a model of network congestiorhwihalicious” players. Their model defines
malicious behavior as optimizing a specific function, hogreand is not equivalent to arbitrary play.

2We note that robustness to Byzantine players is not inhémemir model. Indeed, there exist games for which
the addition of Byzantine players can make the social we|fas well as the utilities of individual regret-minimizing
players, arbitrarily bad.
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In Section 5.6, we discuss techniques for minimizing regretch of these settings.

5.2 Preliminaries

In this chapter, we considérplayer games. For each playiewe denote by4; the set of pure
strategies available to that player. A mixed strategy isabability distribution over actions in
A;; we denote bys; the set of mixed strategies available to playdret A = A; x Ay X ... x A
andS = &) x &, x ... x 8. Every game has an associated social utility function A — R
that takes a set containing an action for each player to seadevalue. Each playerhas an
individual utility functiona; : A — R.

We often want to talk about the social or individual utilitfieostrategy profile&s = {sq,..., sz} €
S. To this end, we denote by : S — R the expected social utility over randomness of the
players and byy; : & — R the expected value of the utility of a strategy profile to play
We denote the social value of the socially optimum strategyile by OPT = maxgcs 7(S) in
maximization problems. CorrespondingPT = minges 7(S5) in minimization problems.

We also sometimes wish to talk about a modification of a palercstrategy profile; les' & s
be the strategy set obtained if playehanges her strategy frasmto s;. Let(); be the null strategy
for playeri (player: takes no action). We use superscripts to denote timé; sothe strategy
profile at timet; st is playeri’s strategy at time.

Definition 5.2.1. The price of total anarchy for an instance of a maximizatiameg is defined

to bemax %, where the max is taken over dlland S*, 52, ..., ST, whereS;, ..., Sr
T £at=1

are play profiles of players with the regret-minimizing prageThe price of total anarchy for an

15T mgt .
instance of a minimization game is defined taibex %, where the max is taken over all
T and St 5%, ..., ST, whereS,, ..., Sy are play profiles of players with the regret-minimizing

property.

Because all players have zero regret when playing a Nashilegquih, the price of total
anarchy of a game is never less than its price of anarchy.igrctiapter we study the price of
anarchy and the price of total anarchy for general classgamks. The price of (total) anarchy
for a class of games is defined to be the maximum price of Jtatzrchy over any instance
in that class. Bounds on the price of (total) anarchy for asctd#&ggames may not be tight for
particular instances in that class.

5.3 Hotelling games

Hotelling gameslﬁS] are well studied in the economicséitere; see, for examplﬂGl] arﬁ[84]
for surveys. Hotelling games are traditionally locatiomge played on a line, but we generalize
them to an arbitrary graph and a broad class of behaviorseopdtt of the customers. We prove
our result first for a specific Hotelling game, and then obsdénat our proof still holds in a much
more general setting.
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5.3.1 Definition and price of anarchy

Imagine a set of souvenir stand owners in Paris who must dediere to set up their souvenir
stands each day. Every daytourists buy a souvenir from whichever stand they find firstche
stand operator wishes to maximize her own sales. Every dae twren sales, and we wish
to maximize fairness: The social welfare function is the imumm sales of any souvenir stand.
Formally, this maximization game is defined byramertex graphG = (V, E') and a numbek of
players, called sellers. Every selleamong thet sellers has strategy sdt = V/, that is, every
day she sets up her stand on some vertex of the graph. Eackwdasy,tourist chooses a path
from some private distribution over orderings of the nodab®e graph, and buys from the seller
he encounters first (for instance, as a special case, we bauklone tourist at each vertex of
the graph who purchases from the nearest souvenir startdjo Hellers are reached at the same
time, we assume the tourist splits his contribution amoegtlequally. At any time the social
welfare isy(S*) = min; @;(S*). The social optimum is obtained by splitting all verticesialty
among allk players (this can be achieved if all players play on the saer®ex). Therefore
OPT = n/k. This tension between the objective of a franchiser to boatlets in such a way
that each individual franchisee has sufficient demand amdékires of the individual franchisees
to maximize profits, has been studied in the business anaiqes research IiteratuHZS].

In general, Hotelling-style games need not have pure dxjiali consider a continuous ver-
sion of the game, where sellers can select any locatidfi,dnand receive revenue equal to the
total region to which they are closest. Again, if multipldleses choose the same location, they
evenly split the corresponding revenue. Now, no matter heviixithe locations of three players,
at least one of them will wish to move, to undercut the oth&sspite this, we can study the
quality of the mixed Nash equilibria of the game.

Theorem 5.3.1.The price of anarchy of the Hotelling game(8: — 2)/k.

Proof. Given a strategy se&t, consider the alternate sgt @ ();). There are: — 1 active players

in this alternate set and the total payoff is stiJlso there must be some playewho achieves
expected payoffy, (S @ 0;) > n/(k — 1). If playeri played the same strategy as plajeshe
would achieve expected payaff (S & s,) > (Qk”—_z) Thus, any strategy achieving expected
payoff less than@k”—_g) IS not an equilibrium strategy, since in a Nash equilibriumo, player
wishes to change her strategy.

This bound is tight: Consider a game on a graph With1 identical stars, where we identify
tourists with vertices of the graph and each patronizes dlaeast souvenir stand. In this exam-
ple, £ — 1 of the players play deterministically at the center of thaim star; playerk plays
uniformly at random over alt — 1 star centers. This strategy seis a Nash equilibrium, and
the randomizing player earng,.(S) = n/(2k — 2) (the other players do better), so the social
welfarev(S) = n/(2k — 2). SinceOPT = n/k, this demonstrates that the price of anarchy is
OPT _ (2k=2) (]

3(S) ko

5.3.2 Price of total anarchy

Since at a Nash equilibrium, no player has regret, the pridetal anarchy for the Hotelling
game is at leagk — 2)/k. In this section, we show that this value is tight; that is:
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Theorem 5.3.2.The price of total anarchy in the Hotelling game(i%: — 2)/k, matching the
price of anarchy.

The proof of this theorem relies on the symmetry of the garmis; groperty was similarly
useful to Chien and Sinclaiﬁ24] in the context of studyingneergence to Nash equilibria in
symmetric congestion games.

Let O! be the set of plays at timeby all playersotherthan player. LetO; = . O, the
union with multiplicity of all plays of players other tharover all time periods.

Definition 5.3.3. Let A!~* be the quantity such that if playérplays an action uniformly at
random fromO! at time step., she achieves expected payoff2k — 2) + Al~". Note thatA!~*
is always non-negative because the- 1 other players have average payoff exacti(k — 1)
when player is removed.

Lemma5.3.4.Forall 4, forall 1 < ¢,u <T: AVt + Al~* > (.

Proof. If ¢t = w, the claim follows easily, as noted in the definition. Othisey imagine a
(2k — 2)-player game in which there is a tinteplayer and a time: player for each original
player other than. The time# version of a playey plays strategy’; the timeu version plays
si. Since the sum of all players’ payoffsis if playeri picks a random strategy from among
those already being played and plays it in this imaginaryeyeeplacingthe player she copies,
i expects to have payoff/(2k — 2). Half of the time, playet will select a timet strategy and
replace that time-player. It can only imprové’s payoff in this case to remove all of the other
time+ players and only play against timeplayers. This leavesplaying a strategy uniformly
selected fromO! at timew. A parallel argument holds the other half of the time, wheaypti
selects a time: strategy, and thus

n 1 n 1 n
<! ) (P g
2h—2) 2((21{—2)*4 )*2((%-2)*“ )

n Lont—u | Au—
= @—gy T &TEAT

as desired. O

Proof of Theorem 5.3 2Fix a sequence of plays!,. .., S7. Recall thatD; = O} + ... + OT.
Defineo! to be the uniform distribution ovep!. Picking an actior: uniformly at random from
O; is equivalent to picking a random time stejand then picking a strategyc O} uniformly at
random. Playei’'s expected payoff had she randomly selecetednd played it over all’ rounds
IS

u=1 t=1 u=1 t=1

1 ¢ u Ly n .
TZZ:@I(S @Oi) = fzz((Qk‘— )+Al )
1 T
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where the last inequality holds because of Lemma 5.3.4. €ftver, there must be some single
fixed actiona* € S that achieves at Ieag% when played ovef’ rounds of the above game.
Any regret minimizing player achieves expected total phgtbleast this much (minug, and so
has expected payoff at least((2k — 2)) — ¢, proving the theorem. O

5.3.3 The price of total anarchy in generalized Hotelling games

We note that the proof of Theorem 5.8.2 made no use of the fggmeof the Hotelling game
described above. In particular, the same proof shows thyatesmet minimizing player achieves
expected payoff approaching (2k — 2) regardlessof how other players behave, and so we are
able to guarantee good payoff among regret-minimizinggasyplayers even in the presence of
Byzantine players making arbitrary (or adversarial) decisi
Theorem 5.3.5. Any player who minimizes regret in the Hotelling game aclagvayoff ap-
proachingn/(2k — 2), regardless of how the other players play.

The same proof also holds when the buyers use much more jaressfor choosing which
stand to patroniﬂ:é.Neither do we use the fact that players’ utilities are lindafact, our proof
only makes use of three properties of the Hotelling game:

1. Constant Sum The individual utilities of the players in the game alwaysnsto the same
value, regardless of play.

2. Symmetric: All players have the same action set, and the payoff vestarfunction of the
action vector that is invariant to a permutation of the naofdke players.

3. Monotone: The game is defined for any number of players, and removinggps from the
game (while keeping the strategies of the remaining plafyeesl) does not decrease the
payoff for any remaining player. If multiple players emplihye same pure strategy, their
total utility is at least the utility that would be achievey & single player among them
employing that strategy while the others among them plagthpty strategy.

We call such games with the “fairness” social utility furety(S) = min; «;(S) generalized

Hotelling gamesand get the following theorem:

Theorem 5.3.6.1n any k-player, generalized Hotelling game, the price of total enfiy among
regret minimizing players i€k — 2) /k even in the presence of arbitrarily many Byzantine play-
ers.

One slight generalization of the Hotelling game that fits thiodel is as follows: buyers each
have different distributions over permutations on the sadehe graph; every day they sample
from that distribution and visit the nodes in the given oydmrying from the first seller they
encounter. Note that in this setting, if the number of buygsiper-constant, and we only have
oracle access to the buyers, it is not clear how to solve foashNequilibrium in polynomial
time, but sellers may efficiently run regret minimizing alfigoms.

Models for understanding how customers select among selterare understandably a hot
topic in operations research. One of the primary approaaiassintroduced by HufﬂI? 7],

30ne caveat is that customers may not in general base thettisel rules on the actions of the players—for

instance by patronizing theecondclosest souvenir stand. If we were to allow rules such as tisoving players
from the game could decrease the payoff of some of the rentaplayers, and we rely on this not being the case.
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and proposes that customers will buy from a particular seliéh a probability that depends
inversely on the distance to it, and also on some measureeddter “attractiveness.” Such a
gravity basednodel of buyer choices also fits into the generalized Hotglframework. While
one line of the subsequent work in this area has been on tpedsfor evaluating attractiveness,
a second line of work focuses on mathematical programmicignigues for selecting facility
locations to maximize market share in this model (see, famgle, 39@1]).

Another generalization of the Hotelling game for which #gat'eorems hold is thefranchise
game wherein each seller must choose locations on the graph lbusinesses. Megiddo et
al. @] give anO(cn?) algorithm for the offline version of this problem, th@ximum coverage
location problem (when customers simply patronize theestatore), when the game graphs are
restricted to trees; they also observe that the generalgois closely related to the NP-hard
problem of minimum dominating set. Thefranchise model, in combination with the gravity
model, has also received attention in the operations relsdigerature, with Drezner et al. [40]
proposing a complex multi-step heuristic procedure foviegl even the offline problem, when
the locations of the other player’s franchises are knowmadloé time.

Building on the idea of the gravity-based model, we can furtheneralize the class of
Hotelling games to remove the constant sum assumptionethdting class ofeneralized lo-
cation gamesncompasses Hotelling games, but also similar games wherbuyers have a
maximum distance they are willing to travel, other modelsoyer behavior, and Hotelling
games on disconnected graphs. We can build on our resul¢ggefaralized Hotelling games to
bound the price of anarchy and price of total anarchy fordalgzsnes as well:

Theorem 5.3.7.The price of anarchy for generalized location games is attrios

Proof. Letv be the social welfare of an optimal solution (that is, the banof customers served
by the worst seller). Consider a Nash equilibrium strate@yssdf there exists a playej with
payoff @;(S) > v, any other player ir5 would prefer to defect to actiof; and get payoff at
leastv/2, were she not already achieving at least this utility.

Otherwise, no such playgrexists. In this case, a playeconsidering defecting frorfi could
consider each of the—1 strategies taken by other playersinplus thek actions taken by players
in OPT. The union of thes@k — 1 strategies (note that there may be duplicates) coverssit lea
n’ customers in expectation, and so the expected value achigvibe best strategy among them
(were all2k — 1 strategies played simultaneously) is at Ieﬁéﬁ > 2;’51 > v/2. Among these
2k — 1 actions the one that achieves the best performance wheadotagainst thé — 1 actions
in (S @ 0;) then achieves expected value more thap, and so this best strategy is one of the
actions inOPT. If there exists a playerin S with payoff a;(S) < v/2, she would improve her
expected payoff by defecting to this action@PT. O

The proof of the price of total anarchy for generalized Hotglgames is based on the idea
of copying an action of a random opponent at a random timestéstory, and showing that
the expected regret of this fixed action is l@wen when not making any assumptions about the
guarantees achieved by your opponents. Unfortunatelyjghot true for generalized location
games, since arbitrary opponents could choose actiongasththtotal number of customers they
serve is much less than the optimal solution serves. Instaadan make an argument similar to
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that above for the price of anarchy for generalized locagiames, thag¢ither copying a random
action in historyor playing an action from an optimal strategy profile will hagevIregret.
Theorem 5.3.8.The price of total anarchy in generalized location gamed imast3.

Proof. Again, letv be the social welfare of an optimal solution. Our analysissagers two cases
with respect to a regret-minimizing player

In the first case, suppose that the histétyS?, ..., ST is such that the average number of
customers serviced on each timestepsbys 0;, ..., ST @ 0; is at leasRkv/3. In this case, we
can use an analysis similar to that in the proof of Theoren2%®Bshow that a randomly-selected
opponent action from a random time step has expected avpeggé at least /3 in hindsight.

Otherwise, consider the expected payoff in hindsight ofgteip of actions that make up
an optimal solution; since these actions by themselvesr@veastcv customers, even in com-
petition with the action history, they cover at least/3 on average. Then at least one of the
actions inOPT achieves average payoff at leagt when played against' ¢ 0;,..., ST @ 0.

Since there always exists a fixed action with average payd#fasty /3, regret-minimizing
algorithms converge to achieve at least this payoff, as. well Il

Note that the above proof did not use the assumption thafiperents are regret-minimizing
(or any other assumption about their actions), and so tilsigltr@olds even against Byzantine
opponents.

5.3.4 Regret minimization need not converge

Since players may efficiently minimize regret in Hotellingnges, but may not necessarily be
able to compute Nash equilibria, it is notable that we are &bmatch standard price-of-anarchy
guarantees. In fact, it is possible that regret-minimizahayers in Hotelling games never con-
verge to a Nash equilibrium:

Theorem 5.3.9.Even if all players in the Hotelling game are regret minimg,i stage game play
need not converge to Nash equilibrium.

Proof. Considerk players{0, ...,k — 1} on a graph withk — 1 identical(n — 1) /(k — 1)-vertex

stars with centers, ..., v;_o and an isolated vertex._;. At time periodt, player: plays on

vertexuvis; mod k- Each player has expected paypftt) (2=1)+ (1) = n/k, but no fixed vertex

has expected payoff more théfi-2) (2&:11)> + (1) (2=}) + 1, so no player has positive regret.
However, at each time period, the player at the isolatedexeft ; has incentive to deviate, so

this is not a Nash equilibrium. O

In addition, we observe that the uncoupled empirical distron of play does not constitute
a mixed Nash equilibrium, nor does tfant empirical distribution of play constitute a mixed
Nash. This highlights the fact that a sequence of play camwerd¢gret in hindsight, but still
place nonzero probability on a strictly dominated action.

A similar example shows that even if all players minimizeemnial regret (so that play is
guaranteed to converge to the set of correlated equiljlpiay can cycle forever and so need not
converge to Nash equilibriu%.

4k players play on a set @f/2 + 1 vertices. Players are divided into two equal sized grodipand R. Every
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5.4 Valid games

5.4.1 Definitions and price of anarchy

Valid games, introduced by Vett@lS , are a broad classanfies that includes the market
sharing game studied by Goemans et al. [65], the facilitation problem, a version of the
traffic routing problem of Roughgarden and TardEhOS], andtipie-item auctionsma.
When describing valid games, we slightly adapt the notatib ]. Consider ak-player
maximization game, where each playdras a groundset of actions from which she can play
some subset. Not every subset of actions is necessarilyedloLety = V; x ... x V;, and
let A; = {a; C V; : q;is afeasible actioh Let the game have some social utility function
v : 2¥ — R, and let each player have a private utility functian: 2 — R. The discrete
derivative of f at X C V' in the directionD CV — X is f,(X) = f(X U D) — f(X).
Definition 5.4.1. A set functionf : 2¥ — R is submodular if forA C B, f/(A) > f/(B)
VieV — B.

Note that submodular utility functions represent the ecois@oncept of decreasing marginal
utility, reflecting economies of scale.
Definition 5.4.2. A game with private utility functions; : 2¥ — R and social utility function
v :2Y — Ris valid if v is submodular and

a(S) > 7., (S0 (5.1)
k
Z@-(& < 3(9) (5.2)

Condition/ 5.1 states that each agent’s payoff is at leasiiarey utility—the change in
social utility that would occur if agentdid not participate in the game. Condition /5.2 states that
the social utility of the game is at least the sum of the ag@nitgate utilities.

For example, consider the market sharing game studied byn@oget al. [65]. The game is
played on a bipartite grapi = ((V,U), E). Each vertex irl/ is a player, and each vertex in
is a market. Each market has a value and a cost to servicedigach player has a budget. A
player may enter a set of markets to which she has edges,stitheof their costs is at most her
budget. For each market that a player enters, she receiyeff pgual to the value of that market
divided by the number of players that chose to enter it. Thoeasaitility function is the sum
of the individual player utilities, or equivalently, therawf the values of the markets that have
been entered by any player. This valid game models a situattihich cable internet providers
enter different cities with values proportional to theipptations and share the market equally
with other local providers; the social utility is the numhladrpeople with access to high speed
internet.

Vetta ] analyzes the price of anarchy of valid games &avs that ifS is a Nash equi-
librium strategy and) = {0y, ..., 0%} is a strategy profile optimizing the social utility function

turn, there is exactly one player @12 vertices, and:/2 players on the remaining vertex. Playerdiand R get
their own vertices on alternate turns, and the crowded xedgtes, so that each player is equally often on every
vertex, and on any particular vertex she is equally oftenaimnd crowded. Therefore no player has any incentive
to swap any vertex with any other.
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so thaty(2) = OPT, then
OPT <27(5) — Y 7. (S&)
- Y FQuESeta.. o).
i:oi;ési
Thus, if is nondecreasing, then for any Nash equilibrium strategy(S) > OPT/2, giving

a price of anarchy of 2. In contrast, Goemans et al. [63] shawthe price of sinking for valid
games is larger tham.

5.4.2 Price of total anarchy

In this section, we show that the price of total anarchy fdidvgames matches the price of
anarchy exactly:

Theorem 5.4.3.If all players play regret-minimizing strategies férrounds, with strategy profile
St at timez, then
T

OPT < %Z(Q’?(St) — Z '_Ygg(st @ 0;)

=1 i:oj=s!

- 7;§(QU(St@®i@...@(2)k))> + ek,
i:aﬁésg

Proof. Suppose all players use low regret strategies, so that joplager:,

T T
t=1 t=1
Expanding terms, we can rewrite this as

Te+ > a(S)+ Y a(sh

tist=0; t:sto;
> > @S ea)+ Y a(S' o).
t:st=0; t:st#oy

We note that wher! = o;, @;(S*) = @;(S* @ o), so this yields
T+ > a(s)> > a(s o).
t:st#o; ti:st#o;
Summing over all players, we get

KeT+>0 3" a(sh) > > a;(S* @ o)

1=1 t:st#0; =1 t:sl#0y

v
|
ﬁ\
©
¥
=
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where the second equation holds by assumption 5.1. Now hate t

Z (S = Z Z a;(S")

t=1 t=1 i=1

T T
I
t=1 i:o=s! t=1 i:o#st
T T
> > ) @S+ > Vo (S @ 0)
t=1 ii0;#s! t=1 i:oj=s!
k
LS Y a3y X a0,
i=1 t:g;5st t=1 j:gy=s!

where the third line holds by assumption/5.2 and the founthik a reordering of the summations.
This gives us

Z > A, (5" @ 0) <Tek:+z > a(sh

=1 f:0;7st 1= 1toz;és

ia -3 > 75t

t=1 j:0;,=

We use the following lemma proved by Vetta l118].

Lemma 5.4.4.1f Q = {0y, ...,04} is a strategy profile optimizing the social utility function
then for any strategy profil®

Y <AS) + Y A (Seb)— > T Qu(Sebhie... ah).
1205 7#S; 1:0; 784

From Lemma 5.4.4, for any sequence of plays. . ., S*
T
i@ <3 (159 + X (800
t=1 i:Uﬁésf

- E : 7;§(QU(St@@i@...EB@k))).
oSt
Substituting, we get

T-0PT <

IIM’%

(27 (S +ek— > Au(S @)

i:oy=s!

- > AuQuSTede.. @wk))),

i:o#st
which completes the proof. Il
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For nondecreasing, we get the following corollary:

Corollary 5.4.5. If ~ is nondecreasing, the price of total anarchy for valid gansessymptoti-
cally 2.

The price of anarchy and the price of sinking are both brttil¢he addition of Byzantine
players. In contrast, for nondecreasing social welfaretions~, our price of total anarchy
result holds even in the presence of arbitrarily many Bymenplayers. In any valid game,
suppose playerk . . ., k are regret minimizing. LeOPT = ~(€2) be the optimal value for these
players playing alone. Suppose there is some additionalf &fzantine player®3 that behave
arbitrarily.

Theorem 5.4.6.Consider a valid game with nondecreasing social welfare foncti where the
k regret minimizing players plag?, ..., ST overT time steps while the Byzantine players play
B',..., BT. Then the average social welfat¢7 >/, (S* U B*) > OPT/2.

Proof. We observe that
Y(QUBY)
<~(QuS'u B
—(S'TUB)+ Y (S'UB' U0 S ... @)
iio#st
YS'UBY+ Y L(S'e0uBY,
izaﬁésf

where the first inequality follows becausds nondecreasing, and the third follows from sub-
modularity. We then have

OPT < ~(QUBY)

Y(S'TUBY 4+ > A(S'® 0 uB)
7;281750'1'

v(S*U BY) + Z a;(S' @ o; U BY)

l‘:Sl‘;ﬁO'i

<
<

IN

with the first line following because is nondecreasing, and the second from the Vickrey condi-
tion. Summing ovef, this yields

T OPT<27 StUBY) +Z > ai(S'@o;UB.
t=1 i:s;7#0;
Suppose ., 7(S*U BY) < T- OPT/2. Since
T k T k+|B T
ai(S'U BY) SZZai(StUBt Z (S'UBY),
t=1 i=1 t=1 i=1 t=1

it must be that

k T k T
Z Oéi(St@O'iUBt) >ZZO&¢(StUBt),
=1 1 =1 t=1

=1 t=
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and so there is some regret minimizing playtar WhomZtT:1 a;(S'®o;UBY) > Zthl a;(StU
B?"), violating the condition that he is regret minimizing. O

Note that here we have shown that in a valid game with a noedsirg social utility func-
tion, if k£ players minimize regret and an arbitrary number of Byzamplagers areaddedto the
system, the resulting social welfare is no worse than halbiitimal social welfare fat players.
This is a slightly different result than we showed for Hatejl games, where we were able to
guarantee that each regret-minimizing player obtainsedt lealf of her fair share of the entire
game, regardless of what the othier 1 players do. On the other hand, for valid games one
clearly cannot obtain half of the optimum social welfare for | 3| players since the Byzantine
players need not be acting in even their own interest.

Valid games and Hotelling games can both be used to model efitiop in markets; the
main difference between them is the social utility functianth Hotelling games considering
“fairness”, or minimum player utility, and with valid gamesplicitly constrained to have social
utility at least the sum of the player utilities (and so ureatd depend solely on the utility of
the worst-off player). Another difference is the inhereptgnetry of Hotelling games. One
can, however, construct a Hotelling game quite similar & ritarket sharing game described
at the beginning of this section: represent each market @aaragsaph. The size of the star
corresponds to the the value of the market. Any player canagiléhe center of any star, and we
can model budgets by allowing playeto play at the centers @f stars. With the fairness social
utility function, this is a minor modification of a-Hotelling game (one can also connect the
stars but stipulate that the buyers will only travel at mastashce one, to get a slightly modified
generalized location game). Using, for example, a sum batgligy function, this is a valid utility
game. Because the player utility functions are the same in, ¢lae techniques and outcomes of
regret minimization are the same; only the analysiguality of the outcomes differs.

5.5 Atomic Congestion Games

In this section, we show price of total anarchy results matglexisting price of anarchy re-
sults for atomic, unweighted congestion games with sociétyvequal to the sum of the player
utilities ﬁa@] We also consider the atomic congestiomgaf weighted load balancing with
social utility equal to the makeSpdn_[iQJ 87, 88], and showchiag results for two links, but
demonstrate that fat links, the price of total anarchy is exponentially worsertliae price of
anarchy. Finally, we consider weighted load balancing wabial utility equal to the sum of the
player utilities [115], and show that fér >> n, the price of total anarchy is+ o(1). In the case
of load balancing with sum social utility, our price of totalarchy results also imply previously
unknown price of anarchy results for mixed strategies.

A congestion game is a minimization game consisting of a &t players and, for each
playeri, a setV; of facilities. Player; plays subsets of facilities from some feasible det=
{a; CV;: a;is afeasible actioh In weightedyames, each playéhas an associated weighy;
in unweightedgames, each player weightlis Each facilitye has an associated latency function
/.. A playeri playinga; experiences cost; = Ze@i l.(f.) wheref. is the load on facilitye:

fe = Zj:eEai w]"
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5.5.1 Atomic congestion games with sum social utility

In this section, we consider unsplittable atomic selfishtinguwith unweighted players. The
social utility function we consider in this section is tharsof the player costs, of(A) =
> ai(A). We writeQ2 = {04, ..., o)} for a strategy profile optimizing the social utility funatio
v. We write f! for the load on edge at timet, andf* for the load on edge in ().

We first consider linear ede costs of the fofftf.) = c.f. + b. for edgee. In this setting,
Christodoulou and Koutsoupias 25] and Awerbuch et al. [@kipendently showed that the price
of anarchy for pure strategies is 2.5. We show a matching déamthe price of total anarchy,
which also implies the matching bound shown by Christodoalod KoutsouplaEG] for the
price of anarchy for mixed strategies and for correlatedliemia.

Theorem 5.5.1.The price of total anarchy of atomic congestion games with ighvwed players,
sum social utility function, and linear cost functions i5.2.

Proof of Theorem 5.5.1Let 2 = {01, ..., 0.} be a strategy profile optimizing the social utility
function so thaty(2) = OPT By the assumption of regret minimization, each player’s time
average cost is no more than the cost of her best fixed actibimdsight. In particular, it is no
more than if she had played her part in the optimal strateggveny timestep: For all,

T T
Z@ (S = ZZcefj—irbe

t=1 eest
T
< Z@i(st@ai)
t;l
DY clfi+)+0b

t=1 e€o;

IN

Summing over each player and rearranging the sum:

SN it < 3NN st +b

t=1 ecFE ;st. 6685 t=1 ecF iS.t.eco;

= Y aff e+ b

t=1 ecFE
We now use a lemma also used by Awerbuch etal. [6]:
Lemma 5.5.2.For i, j > 0 integers:
1. ij =

]
9 3
2. 924 3; 1
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We can apply part 1 of the lemma to get

T
SO (eft +bo)f!

t=1 ecF
a Lo 3o Lo 300 * *
<X (U U - U P L)
t=1 ecFE
This is equivalent to

T

ZZ(Cefg+§be) g

t=1 ecF
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D3 el (U0 8 = gl 307+ g

T
SN e+ bt < ZZ—ce 24 bf

t=1 eckE t=1 ecFE
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which proves the claim. O

Corollary 5.5.3 (Christodoulou and Koutsoupid@tZG])'he price of anarchy of atomic conges-
tion games with unweighted players, sum social utility fungtand linear cost functions is 2.5,
even for mixed strategies. The same bound also holds foeleded equilibria in this setting.

We next consider polynomial latency functions and show andonatching the price of anar-
chy shown by Christodoulou and Koutsoupiis [25] and Awerlmicil. E] for mixed strategies.

Theorem 5.5.4.The price of total anarchy of atomic congestion games with ugivied players,
sum social utility function, and polynomial latency fuocis of degred is at mostd? """

Proof. By the no-regret property we have for each player
Z D L < Z D Le(fl 4+ 1)
t=1 €€(l t=1 e€o;

We may sum over each player:

D IPIILE 3 3P IRELES

t=1 ecF ist.ecal iS.t.e€o;
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and rearrange the sums:

DIPNATAVED D) DAV RS

t=1 eecFE t=1
We now apply a lemma used by Christodoulou and Koutsoupﬁﬁs [25

Lemma 5.5.5. For f(x) a polynomial with non-negative coefficients of degfeand for every

x,y > 0:
y.f(x+1)§x'é(x)_i_co(d)'z?/‘f(y)’

1—o0(1)

whereCy(d) = p»
Applying the lemma, we get

SN wuhr < SNt

t=1 eeFE t=1 ecFE
T
P | Cold) ()
D S

Rearranging, we then get

SOS U< Cod) SN RN

t=1 eckE t=1 ecE

which completes the proof. O

5.5.2 Parallel link congestion game with makespan social utility

The parallel link congestion game modelsdentical links andk weighted players (jobs) who
must choose which link to use. Each player pays the sum of éights of the jobs on the link
she chose. The social cost for this game is defined as theateight on the worst-loaded link.
This game was the main focus of the Koutsoupias and Papaidiingaper that introduced the
concept of the price of anarctﬁ87].

More formally, this is a minimization game where for eachypla, the feasible actions are
A; = {1,...n}. The social utility function isy(A) = max;cq1, n} zmi:j w;.

Koutsoupias and Papadimitriom87] proved that the pricadrchy of the parallel link
congestion game with two links 8/2. Two groups of researcheg[iﬂ 88] later proved that the
price of anarchy when there ardinks is ©(log n/ loglogn).

In this section, we show a matching bound on the price of tmakchy for 2 links. We also
show that fom links, the price of total anarchyoes notmatch the price of anarchy.

Theorem 5.5.6.The price of total anarchy of the parallel link congestiomgawith makespan
social utility and two links i} /2, exactly matching the price of anarchy.
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The proof parallels that in the original Koutsoupias anddeiapitriou pape@?]. Itis subtler
because regret-minimizing algorithms only give a guammt@xpectation, on average, and make
no guarantees about the performance on any given day.

Proof of Theorem 5.5.6Denote byg, the expected probability that playeis on the maximally
loaded machine (breaking ties between equally loaded meslat random). Note that the ex-
pected social cost is ther(.S) = Zle g;w;. By the regret-minimizing property, for all players,
%Zthl a;(S") <wi +e+ % Z;[:I M

Definep;; to be the expected probability that playeselects maching; c;, is the expected
probability that players andh select the same machine. Then for any fixed

Z (¢ + qn)wp, < Z (1 + cin)wp,

h:h#i h:h#i
< Z wp, + Z CinWh
h:hoi hihoti

= Z wp, + Z (P Pr1WR + DizProwy,).
h:hoi h:hi

Note that for any playet, regardless of her strategy, her cost is

a;(S) = w; + pa Z Pr1Wh + Di2 Z PhaWp,
h:h#i h:h#i

by definition. This relationship is essentially Lemma 1ﬁ]ﬁ8however they only note that it
holds for Nash equilibrium strategies. This giveus,, ., (¢i+qn)wn < 3, wa+ai(S) —w;.
Averaging over time, this is

T T T
1
72 2 (i dwn < ZZ F Do a(s) -
t=1 h:h#i t=1 h:h#i t=1
Using the fact that playerobtains low regret, we then have
T
1 > ; Wh
722 @+a wh<—Zth+e+ Z o
t=1 h:h#i i=1 h:h#i
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Rearranging, this yields for any fixed

1 T
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SE DI
h
3
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1 T
TZW(St)
t=1
1 3 1 3
< 20PT— ——q PT— 2t — =
OPT_.» (5 —a)+OPT— > (2qf — ) +¢
:gOPT+e,
as desired. ]

For the parallel link congestion game withlinks, the price of total anarchy diverges from
the price of anarchy. This divergence stems from the fadtiththe parallel links game, the
social cost functiony is defined in terms of expected maximdimk latency, whereas individual
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utility is a function of averaggob Iatencﬁ In the single stage Nash equilibrium analyzed for
price of anarchy results, the two values are related: erggob latency for playert is equal to
the average link latency of every link in the support’efmixed strategy. In a Nash equilibrium,
therefore, maximum expected link latency must be low, ariti véil bounds, it is straightfor-
ward to argue that the expected maximum link latency canetd®d high [Ell]. Over an arbitrary
sequence of regret-minimizing plays, however, averagégumcy no longer necessarily corre-
sponds to the average latency of any link. This is demorestriay a cycling example we use in
the proof of the following theorem:

Theorem 5.5.7.The price of total anarchy in the parallel link game with masas social utility
andn links isQ(y/n).

Proof of Theorem 5.5.7Considern parallel links1, ..., n, andn players all with unit weights
w; = 1. Clearly, OPT = 1. Define a sequence of plays',... AT as follows: Divide
the players int@/n groupsGy, ..., Gy 41, €ach of size,/n/2. At time ¢, all players in
G mod 2,m) Play on link1, and all other players play over linkst (t mod n —1),2 4 (¢ + 1
mod n—1),...,24 (t+n—+/n/2—1 mod n — 1) so that there is exactly one player on each
link (ordering may be arbitrary). Then each player expersraverage Iatenc;‘yzf:1 a;(AY) =

ﬁﬁ - 2*2/7/%1 1= g — ﬁ Consider the latency experienced by playi#ishe were to play
at any fixed node. Given the sequence of plays described aboxgy node) > 2 is occupied by
some playeh # i onan(n — y/n/2 — 1)/(n — 1) fraction of time steps. Since playealways

o
pays for her own weight, she expects to experience Iat%ney% +1- Z(T\/_ﬁl) =2— 2(;/_51)-
Therefore, for sufficiently large, all players experience negative regret. Neverthelessjeat
time step, the maximum latencyS5/n). O

5.5.3 Parallel links congestion game with sum social utility

We have just shown that the price of total anarchy does natmthaeO (log n/ loglogn) price
of anarchy for the load balancing game with the makespamlotiity function. The results in
Section 5.5.1, however, imply a price of total anarchy.5 for the load balancing game with
thesumsocial utility function (since load balancing is a specias$e of routing), even for mixed
strategies and different server speeds. In fact, we can st in this section, we show that so
long ask >> n and the server speeds are relatively bounded, the pricéab&iwarchy id +o(1).
This matches a price of anarchy result shown by Suri éﬁ!ﬁ][ﬁﬂ pure strategy equilibria. Our
theorem below implies an equivalent price of anarchy resedn for mixed strategy equilibria.

Theorem 5.5.8.In the load balancing game with sum social cost and lineardayefunctions,
the price of total anarchy i + o(1) provided thatt >> n and server speeds are relatively
bounded.

SNote that if we were to redefine the social cost functiofor the parallel links game to be the maximum
expectedob latency, it is simple to verify that the resulting price ofabanarchy is 2: Rescale the weights so that
OPT = 1. Total weight is< n, andw; < 1 for all players. Over any sequence of plays, there must be dioia
with average latency < 1. Therefore, every playeris guaranteed to experience average latency in expecttion
mostl + w; + € < 2+ €.
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Proof of Theorem 5.5/8By the no regret property, for each player
T 1y Tt 41

T
Zdi(At)—Z 4 <Za2 AtGBUZ)_Z—U;T
t=1 g

t=1 t=1

Summing over all players and reorderlng the sum, we get

SR oy Uk

t=1 eeF t=1 eck

< 23 (B ),

t=1 eeF

where the second inequality follows from the fact that < “22;*’2 Subtracting, we get

DRI 9 oy (N

t=1 ecF t=1 eeFE
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DD ILCED o) PUARE
t=1 ecFE t=1 ecF

Combining these inequalities, we can bound the price of sotatchy:

S Yeen B T Ceep FEE
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We then use the following technical lemma of Suri et-115]

Lemma 5.5.9.Letn, k be positive integers anfl. > 0, 7. > 0 be reals suchtha} ___, f. = k.

Then Sy
ccE Je/ Te < (1 E ﬁ
Socp f2m = B )2
This gives us
T
1 ( t)2 Uy n
Z Me/ < vy
QZZ T, 1+2 1+\/12,?§naj 2k’
t=1 ecE
Thisis1l + o(1) in kK whenk >> n, which completes the proof. O

Corollary 5.5.10. In the load balancing game with sum social cost and lineamayefunctions,
the price of anarchy ig + o(1) provided that: >> n and server speeds are relatively bounded,
even for mixed strategies.
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5.6 Algorithmic efficiency

In the Hotelling games we analyzed in Section 5.3, each plaa®onlyn strategies—the nodes
in the graph. In such settings, the weighted majority athami ] runs in polynomial time and
minimizes regret. Similarly, in the parallel links congestgame, there are strategies—the,
links—and thus minimizing regret is relatively straightiard.

In valid games, if the set of actions available to a playerdlypomial in |V;|, the action
groundset, then once again, weighted majority can be usedirtonize regret. However, in
arbitrary valid games, the action space for playeould be as large a@":!. In such situations,
if the player’s private utility is a linear function of theezhents of the groundset she obtains and
she can compute exact best responses in polynomial tima ésum the market sharing game
of Goemans et alr[65]), then she can use results of Kalai ambﬂla[@l] to minimize regret
in polynomial time. If her utility function is linear, but shcan only compute approximate best
responses, results of Kakade etal. [80] allow hempgproximatelyminimize regret; that is, she
obtains expected average cost closé tiimes the cost of the best fixed solution in hindsight,
where is the approximation ratio of her optimizer. We can modify pwof of the price of
total anarchy to carry thig through and show:

Theorem 5.6.1.The price of3-minimizing regret in valid games is+ (.

If the player’s utility function is convex and well-defineder the convex hull of her pure
strategies and she furthermore has the ability to projettpan space onto that convex hull,
then she can use an algorithm developed by Zinkevich [12&jimamize her regret. In situations
where no existing techniques are a perfect fit, more speethliegret-minimizing algorithms for
specific games may also be developed.

5.7 Conclusions

In this chapter, we propose regret minimization as a dedimitf selfish behavior in repeated
games. We consider four general classes of games—gewrer&ltelling games, valid games,
and atomic congestion games with two different socialtytilinctions—and show that the price
of total anarchy exactly matches the price of anarchy in roasés, but there is a gap@f,/n)
versusO(log’ign) in the case of: parallel links. Our results hold even in games where regret-
minimizing algorithms can cycle and fail to converge to anikoyium. We also prove results

in Byzantine settings when only some of the players achieyesteninimization and the other
players are allowed to act in an arbitrary fashion. In additiour results for weighted load
balancing with player-summed social utility functions isnmew price of anarchy results for

mixed strategies.
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Chapter 6

Conclusions and Directions for Future
Work

The goal of the work presented in this thesis is to advanceoderstanding of the outcomes of
selfish behavior in games. In support of that aim, we propeget minimization as a descriptive
criterion for selfishness (as opposed to prescriptive cbaraations such as the direct study of
static notions of equilibrium), and present new regret mining algorithms.

The Price of Anarchy has been proposed as a tool for undeistaselfish behavior. How-
ever, in2-player,n-action games, Nash equilibria are PPAD-hard to com;[ut]e [B3anygame
with a polynomial number of actions, though, one can runaegrinimizing algorithms. (One
can also do so efficiently in many settings with even an exptaenumber of actions.) Many
games only admit mixed Nash equilibria, and there is no imatedncentive for players to play
their given mixed strategy as opposed to any one of the prategtes in the support of the mixed
strategy. In addition, there is no reason to assume in geganaes that agents demonstrating
selfish behavior shouldonvergeio a Nash equilibrium.

Another line of work seeks to develop algorithms that, whitygd against each other, ap-
proach equilibria. Many such results require a centralizethority, and nearly all of them
require that all (or nearly all) of the players play partaualgorithms that prescribe particular
choices at every step in time. In this thesis we sidestepsthesiof equilibria and instead ana-
lyze the performance of strategies that may or may not requhilerium and are able to show
results even in situations where such strategies may cyeleddition, the results we present
hold whenever players choose strategies that in hindsahéee low regret. We do not require
that players all use the same algorithm, or that they empdorqular algorithms to achieve this
guarantee. In fact, our results hold even in situations e&/p&yers do not use regret-minimizing
algorithms, but where the strategies they employ happenwe Wielded low regret in hindsight
for the particular sequence of events they experienced.

Because we place a weaker assumption on the agents’ algsritihene are more algorithms,
simpler algorithms, and more efficient algorithms for régrenimization than for more de-
manding guarantees such as internal regret minimizatiompatticular, efficient internal regret
minimizing procedures are not known for many of the gamerggttwe consider, such as rout-
ing. Further, we are able to prove guarantees even in Byzaséttings, where not all players
behave rationally; such settings need not correspond teleted equilibria.
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In addition to the open problems mentioned in each chapténeothesis, we sketch some
additional directions for future work here.

One direction for future work is the analysis of the outcoraésegret-minimizing play in
additional classes of games. For example, auction setangs natural application for this
approach, and the results of such inquiry could have comsems for the design of bidding
strategies and of auction mechanisms.

As we show in this thesis, in some natural classes of gamgegtreninimization is such
a minimal assumption that it cannot prevent agents fronudoig to do poorly, causing social
costs much worse than those of the worst Nash equilibriumv ¢ém we categorize and study the
classes of games in which this occurs? Are there additiamglle assumptions one can make on
the agent algorithms or on the underlying game that prefensort of collusion? One approach
to this set of questions is the exploration of various modélsoise and perturbation in games.
Noisy models may be useful for smoothing out pathologicahgautcomes to yield simple
models of behavior with even better social utility guarasteSuch an approach is motivated by
the view that noise is not only a useful theoretical tool,doecessary component of any realistic
model of large, real-world games.

Finally, this work motivates further study of the interacts between adversarial and selfish
agents and resulting impacts on social welfare. When stgdyistributed systems of heteroge-
neous agents, it is vital to consider players who behaveadgigiably, and yet previous models
of selfishness are often quite brittle to such behavior.
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