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Abstract
Computer systems increasingly involve the interaction of multiple self-interested

agents. The designers of these systems have objectives theywish to optimize, but
by allowing selfish agents to interact in the system, they lose the ability to directly
control behavior. What is lost by this lack of centralized control? What are the likely
outcomes of selfish behavior?

In this work, we consider learning dynamics as a tool for better classifying and
understanding outcomes of selfish behavior in games. In particular, when such learn-
ing algorithms exist and are efficient, we propose “regret-minimization” as a crite-
rion for self-interested behavior and study the system-wide effects in broad classes
of games when players achieve this criterion. In addition, we present a general trans-
formation from offline approximation algorithms for linearoptimization problems to
online algorithms that achieve low regret.
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Chapter 1

Introduction

Computer systems increasingly involve the interaction of multiple self-interested agents. The
designers of these systems have objectives they wish to optimize, but by allowing selfish agents
to interact in the system, they lose the ability to directly control behavior. What is lost by this
lack of centralized control? What are the likely outcomes of selfish behavior?

Economists have long studied games with self-interested players, and game theoretic equi-
librium concepts have recently received attention from computer scientists for their potential to
model the complex systems that arise in our modern computingenvironment. ANash equilib-
rium in such a game is a profile of strategies for each player such that, given the strategies of the
other players, no player prefers to deviate from her strategy in the profile. In much of the work
in algorithmic game theory, Nash equilibrium strategies have been used as a tool for studying
selfish behavior; for example, theprice of anarchy[87] of a game is defined to be the ratio of the
value of the social welfare in the worst Nash equilibrium to the social optimum value.

It may not be realistic, however, to assume that all agents ina system will necessarily play
strategies that form a Nash equilibrium. Even with centralized control, Nash equilibria can
be computationally difficult (PPAD-hard) to find [23]. Moreover, even when Nash equilibria
are easy to find computationally, it seems unreasonably optimistic to assume that distributed
self-interested agents, often with limited information about the overall state of the system, will
necessarily converge to Nash. One would therefore like a different, natural, computationally
meaningful model of agent behavior that allows better understanding of overall system behavior.

In this dissertation, I propose that in games where adaptivelearning algorithms give good
guarantees on individual performance, such guarantees canbe seen as a minimal criterion for
selfish behavior. I support this claim by presenting novel work on adaptive learning algorithms,
and by analyzing the global consequences in broad classes ofgames when selfish agents use such
algorithms.
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1.1 Overview of the thesis

1.1.1 Approximate Online Linear Optimization

In the 1950’s, Hannan gave an algorithm for playing repeatedtwo-player games against an arbi-
trary opponent [69]. His was one of the earliest algorithms with theno-regretproperty: against
any opponent, his algorithm achieved expected performanceasymptotically near that of the best
single action, where the best is chosen with the benefit of hindsight. Put another way, after suffi-
ciently many rounds, someone using his algorithm would not benefit (significantly) by being able
to change his actions to any single action, even if this action could be chosen after observing the
opponent’s play. An algorithm is called regret-minimizing, or no-regret, if the expected regret it
incurs goes to zero as a function of time. There is a rich literature from machine learning and
game theory on adaptiveno-regret algorithms[4, 35, 59, 69, 80, 81, 85, 91, 92, 122].

Kalai and Vempala showed that Hannan’s approach can be used to efficientlysolve online
linear optimization problems as well [81]. Hannan’s algorithm relied on the ability to find best
responses to an opponent’s play history. Informally speaking, Kalai and Vempala [81] replaced
this best-reply computation with an efficient black-box optimization algorithm. However, the
above approach breaks down when one can only approximately solve the offline optimization
problem efficiently or one can only compute approximate bestresponses.

In an online linear optimization problem, on each periodt, an online algorithm choosesst ∈
S from a fixed (possibly infinite) setS of feasible decisions. Nature (who may be adversarial)
chooses a weight vectorwt ∈ R

n, and the algorithm incurs costc(st, wt), wherec is a fixed
cost function that is linear in the weight vector. In thefull-informationsetting, the vectorwt is
then revealed to the algorithm, and in thebandit setting, only the cost experienced,c(st, wt),
is revealed. The goal of the online algorithm is to perform nearly as well as the best fixed
s ∈ S in hindsight. Many repeated decision-making problems withweights fit naturally into this
framework, such as online shortest-path, online TSP, online clustering, and online weighted set
cover.

Previously, it was shown how to convert any efficientexactoffline optimization algorithm
for such a problem into an efficient online algorithm in both the full-information and the bandit
settings, with average cost nearly as good as that of the bestfixeds ∈ S in hindsight. However, in
the case where the offline algorithm is an approximation algorithm with ratioα > 1, the previous
approach only worked for special types of approximation algorithms.

In Chapter 3, based on joint work with Sham Kakade and Adam Kalai that appeared in STOC
2007 [80], I show how to convertanyoffline approximation algorithm for a linear optimization
problem into a corresponding online approximation algorithm, with a polynomial blowup in
runtime. If the offline algorithm has anα-approximation guarantee, then the expected cost of the
online algorithm on any sequence is not much larger thanα times that of the bests ∈ S, where
the best is chosen with the benefit of hindsight. Our new approach is inspired by Zinkevich’s
algorithm for the problem of minimizing convex functions over a convex feasible setS ⊆ R

n

[122]. However, the application is not direct and requires ageometric transformation that can be
applied to any approximation algorithm.

The algorithm can also be viewed as a method for playing largerepeated games, where one
can only computeapproximatebest-responses, rather than best-responses.
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1.1.2 Regret-Minimization as a Definition of Selfish Behavior in Games

In this thesis, we propose regret-minimization as a minimalcriterion for selfish behavior and
study the consequences of individual regret-minimizing guarantees for the system as a whole.
No-regret algorithms are very compelling from the point of view of individuals: if a person uses
a no-regret algorithm in choosing which route to take to workeach day, she will get a good
guarantee on her commute time no matter what is causing congestion (other drivers, road con-
struction, or unpredictable events). We consider repeatedplay of the game and allow agents to
play any sequence of actions with only the assumption that this action sequence has low regret
with respect to the best fixed action in hindsight. Regret minimization is a realistic assumption
because there exist a number of efficient algorithms for playing a wide variety of games that
guarantee regret that tends to zero, because it requires only localized information, and because
in a game with many players in which the actions of any single player do not greatly affect the
decisions of other players (as is often studied in the network setting), players can only improve
their situation by switching from a strategy with high regret to a strategy with low regret. Re-
gret minimization can be done via simple, efficient algorithms even in many settings where the
number of action choices for each player is exponential in the natural parameters of the problem.

In Chapter 4, based on joint work with Avrim Blum and Eyal Even-Dar that appeared at
PODC 2006 [15], we apply regret-minimizing algorithms to the well-studied Wardrop setting for
multicommodity flow and infinitesimal agents, which models traffic on a network where the cost
of an edge is a function of the amount of traffic using that edge[30, 33, 47, 87, 108]. We show
that flows comprised of regret-minimizing players will approach Nash equilibria in the sense
that, over time, a1− ǫ fraction of the daily flows will have the property that at mostanǫ fraction
of the agents in them have more than anǫ incentive to deviate from their chosen path, where
ǫ approaches 0 at a rate that depends polynomially on (1) the size of the graph, (2) the regret-
bounds of the algorithms, and (3) the maximum slope of any latency function. Our results imply
that in the Wardrop routing model, so long as edge latencies have bounded slope, we can view
Nash equilibria as not just a stable steady-state or the result of adaptive procedures specifically
designed to find them, but in fact as the inevitable result of individual selfishly adaptive behavior
by agents that do not necessarily know (or care) what policies other agents are using.

Even in games where regret-minimizing players may not approach a Nash equilibrium, it
may be possible to analyze the the social cost of regret minimization (as opposed to centralized
control) directly. In Chapter 5, based on joint work with Avrim Blum, Mohammad Taghi Haji-
aghayi, and Aaron Roth that appeared at STOC 2008 [16], we propose weakening the assumption
made when studying the price of anarchy: Rather than assume that self-interested players will
play according to a Nash equilibrium (which may even be computationally hard to find), we as-
sume only that selfish players play so as to minimize their ownregret. We prove that despite our
weakened assumptions, in several broad classes of games, this “price of total anarchy” matches
the Nash price of anarchy, even though play may never converge to Nash equilibrium.

Thisprice of total anarchyis strictly a generalization of price of anarchy, since in a Nash equi-
librium, all players have zero regret. In this chapter, we consider generalized Hotelling games
[75], in which players compete with each other for market share; valid games [118] (a broad
class of games that includes among others facility location, market sharing [65], traffic routing,
and multiple-item auctions); linear congestion games withatomic players and unsplittable flow
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[6, 25]; and parallel link congestion games [87]. We prove that in the first three cases, the price
of total anarchy matches the price of anarchy exactly even ifthe play itself is not approaching
equilibrium; for parallel link congestion and makespan social cost, we get an exact match for
n = 2 links but an exponentially greater price for generaln, highlighting a natural setting where
these concepts differ.

In contrast to the price of anarchy and the recently introduced price of sinking [63], which
require all players to behave in a prescribed manner, we showthat the price of total anarchy is in
many cases resilient to the presence of Byzantine players, about whom we make no assumptions.
Finally, because the price of total anarchy is an upper boundon the price of anarchy even in
mixed strategies, for some games our results yield as corollaries previously unknown bounds on
the price of anarchy in mixed strategies.
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Chapter 2

Background, Definitions, and Related
Work

Traditional approaches to system design assume a single, centralized administrator who assumes
perfect compliance with her proposed protocols. Modern, networked systems, however, bring
all of these assumptions into question: Large-scale, distributed systems and protocols run by
autonomous agents raise issues of selfish incentives and private information. Automation makes
it easy for agents to adapt their actions in response to the system or to actions of others, but any
individual agent may have a very limited understanding of the game she is playing. The huge
amounts of money at stake bring economic incentives to the fore. Issues of errors, collusion, and
malicious activity all threaten to undermine the quality and stability of outcomes.

Learning protocols and game theory are thus natural tools for the analysis of large-scale
networked systems. In this chapter, we introduce the relevant terms, tools, and related work from
game theory and learning theory that underlie this thesis.

2.1 Background: Game theory

In this thesis, we consider strategic games in which all players in a game act simultaneously
and without knowledge of other players’ actions. Economists have long studied games with
self-interested players. ANash equilibriumin such a game is a profile of strategies for each
player such that, given the strategies of the other players,no player prefers to deviate from her
strategy in the profile. A Nash equilibrium can bepure or mixed, depending on whether the
players all play pure, deterministic strategies, or they randomize over pure strategies to give a
mixed strategy. While not every game has a pure Nash equilibrium, every game has at least
one mixed Nash equilibrium. There are a wide variety of proofs of this; many, including the
original proof by Nash [101] are applications of fixed point theorems. A closely related concept,
acorrelated equilibriumis a probability distribution over players’ joint actions that is enforceable
by an external signal: if players were assigned to actions and knew their assignments came from
this joint distribution, based on their resulting expectedvalue, they would have no incentive to
deviate and play a different action.

In Chapter 4, we consider games with a particular measure of infinitesimal players, each with
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one ofk player types; in Chapter 5, we considerk-player games. For each player (or player
type) i, we denote byPi the set of pure strategies available to that player. A mixed strategy is a
probability distribution over actions inPi; we denote bySi the set of mixed strategies available
to a player (of type)i. Every game has an associated social utility functionγ that takes a set
containing a pure action for each player to some real value. Each player (type)i has an individual
utility function αi : P → R.

We often want to talk about the social or individual utility of a strategy profile that assigns
each player a mixed action. To this end, we denote byγ̄ the expected social utility over the
randomness of the players (this is equivalent toγ in the case of infinitesimal players) and byᾱ
the expected value of the utility of a strategy profile to player i. We denote the social value of the
socially optimum strategy profile byOPT.

One can define a class of games by restricting the generality of the social utility functions
or the individual utility functions, or both. Two general classes of games, potential games and
congestion games, appear frequently in the literature; we introduce them here.

Potential games (definition from Monderer and Shapley [99]) A function Φ : S → R is
called an ordinal potential function for the gameG if for all i and alls−i ∈ S−i,

αi(x, s−i) − αi(z, s−i) > 0 iff Φ(x, s−i) − Φ(z, s−i) > 0, for all x, z ∈ Si.

A functionΦ : S → R is called a potential function for the gameG if for all i and alls−i ∈ S−i,

αi(x, s−i) − αi(z, s−i) = Φ(x, s−i) − Φ(z, s−i), for all x, z ∈ Si.

G is called an ordinal (exact) potential game if it admits an ordinal (exact) potential. In an
ordinal potential game, a global maximum of the potential function is a pure Nash equilibrium
(there may be other pure Nash equilibria, which are local maxima).

Potential functions, when they exist, give us a path from anygame state to an equilibrium
state, but the length of the path can be exponential, and eachstep of the path involves a change
in only one player’s actions. Thus, potential functions do not immediately imply efficient, dis-
tributed algorithms for equilibrium computation.

Congestion games A congestion game is a game withk players andm resources, where the
strategies available to each player are subsets of the resources. For any player using a resourcej,
the cost of that resource depends only on the total number of players who are using that resource
(not on their identities); a player’s total cost is the totalcost of the resources she selects.

Every congestion game has an exact potential function, and Rosenthal [107] shows that ev-
ery congestion game has a pure Nash equilibrium, using a potential function argument; thus,
any sequence of better response moves in a congestion game eventually reaches a pure Nash
equilibrium, but this sequence can be exponentially long.

Congestion games are sometimes referred to as “atomic congestion games”, and the simi-
lar class of games involving a continuum of infinitesimal players are referred to as “nonatomic
congestion games.” One may also consider a weighted variantof congestion games, where each
player has a weight, and the cost of a resource is a monotone function of the total weight of
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players selecting that resource. Milchtaich [95] considers a subclass of weighted congestion
games similar to the weighted load balancing games we treat in Chapter 5, and shows that while
the games in this class are not potential games, they still possess pure Nash equilibria. A se-
quence of potential function improvements converges in polynomial time to a pure equilibrium
in symmetric network congestion games.

2.1.1 Algorithmic Game Theory

The field of Algorithmic Game Theory seeks to apply algorithmic and computational tools and
perspectives to game theoretic problems. Productive linesof work in this area include studying

• the social quality of outcomes under selfish behavior in games,

• the centralized computability of equilibria, and

• implications of computational restrictions on the agents and other entities involved in a
game (for example, on the buyers or on the auctioneer in an auction setting; this can some-
times be seen as a question of efficient distributed computation).

The work in this thesis touches on all three of these issues. Inspired in part by negative results
on equilibrium computation, we propose a shift away from static equilibria as a definition of
selfishness. We instead study the social consequences when we make relatively weak assump-
tions about the player actions; these assumptions on the players are computationally achievable
in broad classes of games, even some games with an exponential number of pure strategies for
each player. In this section, we briefly survey the relevant results in the algorithmic game theory
literature.

Outcomes of selfish behavior

In 1999, Koutsoupias and Papadimitriou [87] introduced thenotion of theprice of anarchyas a
measure of the effects of selfish behavior: they studied the ratio between the social welfare of the
optimum solution and that of the worst Nash equilibrium. Many subsequent results have studied
the price of anarchy in a wide range of computational problems from job scheduling to facility
location to network creation games, and especially to problems of routing in the Wardrop model,
where the cost of an edge is a function of the amount of traffic using that edge [29, 32, 47, 87,
108]. Such work implicitly assumes that selfish individual behavior results in Nash equilibria.

We consider both maximization and minimization games in this thesis. Inmaximization
games the goal is tomaximizethe social utility function and the players wish tomaximizetheir
individual utility functions; inminimizationgames, both quantities minimized. We define the
price of anarchy so that its value is always greater than or equal to one, regardless of whether we
are discussing a maximization or a minimization game:
Definition 2.1.1. The price of anarchy for an instance of a maximization game isdefined to be
OPT

γ̄(S)
, whereS is the worst Nash equilibrium for the game (the equilibrium that maximizes the

price of anarchy). The price of anarchy for an instance of a minimization game is defined to be
γ̄(S)
OPT

, whereS is the worst Nash equilibrium for the game (the equilibrium that maximizes the
price of anarchy).
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In this thesis, we propose an alternative tool for understanding the consequences of selfish
behavior in games that avoids some of the computational difficulties associated with studying
Nash equilibria.

Computational issues

Computational issues call into question the suitability of Nash equilibria as a definition of selfish
behavior: it seems unreasonable to expect that selfish, independent agents will be able to compute
equilibria in a distributed fashion if they cannot even be computed centrally. And, in fact, this is
the case: In2-player,n-action games, Nash equilibria are PPAD-hard to compute [23].

Goldberg and Papadimitriou [67] first reduced the problem offinding a Nash equilibrium in
k-player games to the4-player case; Daskalakis, Goldberg, and Papadimitriou [38] then showed
that the4-player case is PPAD-complete. Independently, manuscripts by Chen and Deng [21] and
Daskalakis and Papadimitriou [36] then demonstrated PPAD-hardness for three players, followed
by the Chen-Deng hardness result [23] for two players. Chen, Deng, and Teng [22] rule out the
possibility of a FPTAS for finding even an approximate Nash equilibrium. In addition, Hart and
Mansour [71] present a communication complexity result that amounts to showing hardness of
the distributed computation of Nash equilibria.

Finding pure equilibria in congestion games is PLS-complete [48], even with linear latency
functions [2]. Further, Skopalik and Vocking [114] show that finding even anǫ-approximate
equilibrium is PLS-complete, and reaching approximate equilibrium by ǫ-improving steps from
a given initial state is PSPACE-complete.

Positive results for Nash equilibrium computation are scarce. Equilibria in zero-sum games
(where the sum of the players’ utilities is always zero) can be computed efficiently by linear pro-
gramming. Anonymous games, where only the counts (but not the identities) of players playing
each strategy affect each agent’s utility, have a PTAS, due to Daskalakis and Papadimitriou [37].
Of the classes of games discussed in this thesis, anonymous games encompass the class of con-
gestion games, but not the classes of generalized Hotellinggames nor the class of valid games.
By contrast, correlated equilibria can be computed efficiently in a wide variety of succinctly
representable games [103].

2.2 Background: Learning in games

The field of game theory has been developed primarily for the study of small-scale, sophisticated
interactions with large amounts of information available.Typical assumptions include common
knowledge and common priors. Thus, the traditional approach is to study Nash equilibria, under
the assumption that sophisticated players with full information about the game calculate a Nash
equilibrium and play it, assuming their opponents will act similarly. However, these assumptions
are not always a good fit for dynamic, distributed interactions involving partial information.
In addition, this approach fails to address issues of computational complexity and of selection
among equilibria. Instead of studying static notions of equilibria, one can use learning dynamics
as a tool for understanding complex, distributed games withselfish players.
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There are three main lines of research involving learning dynamics and games. Research
on evolutionary dynamicsstudies the fitness of strategies or outcomes against opponents and in
the face of random mutations. InBayesian learning, each agent maintains a set of beliefs about
the state of the game or about her opponents, and updates and plays optimally according to this
information at every time step. In addition, there are a variety of adaptive learningtechniques
that do not model the opponent directly; these include regret testing and regret minimization
policies.

Much of the previous work on learning dynamics in games seeksto show convergence-type
results to static notions of equilibria. As such, this work can be seen as an attempt to justify the
study of Nash equilibria under less controlled conditions.Although we do present convergence
results in this thesis (in Chapter 4), one of our contributions is in proposing that a certain class
of individual welfare guarantees (obtainable by adaptive learning algorithms) is in itself a good
definition of selfish behavior; we study the social costs of such behavioreven when the behavior
does not converge to equilibrium.

As the main focus of this thesis is on a particular class of adaptive learning algorithms, we
briefly present the work on games from Bayesian and evolutionary game theoretic perspectives,
and then present the adaptive learning literature in more depth.

2.2.1 Evolutionary dynamics

Biological evolution is one obvious model of selfish individual adaption in a complex environ-
ment. Evolutionary and evolution-inspired approaches have found their way into the game theory
literature in the study of

• agents who “evolve” their strategies over time using updates inspired in some way by
evolution,

• strategies that are “stable” under an evolution-based notion of stability, and

• game states that are “stable” under a stability notion derived from evolutionary techniques.
For a survey of algorithmic results that have employed or studied other evolutionary game theory
techniques and concepts, see Suri [116]; we summarize a few of the results here.

In the first category, Fischer and Vöcking [50] show that under replicator dynamics in the
routing game studied by Roughgarden and Tardos [108], players converge to Nash equilibria.
Fisher et al. [52] went on to show that using a simultaneous adaptive sampling method, play
converges quickly to a Nash equilibrium. Sandholm [111] considers convergence in potential
games (which include routing games), and shows that a very broad class of evolutionary dy-
namics is guaranteed to converge to Nash equilibrium. Note that such dynamics do not include
general no-regret dynamics.

An evolutionarily stable strategy (ESS)is a strategy that, if adopted by a population of play-
ers, cannot be invaded by any alternative strategy that doesnot initially have significant represen-
tation in the population. ESS are a refinement of Nash equilibria, and so do not always exist, and
are not necessarily associated with a natural play dynamic.In addition, ESS are resilient only to
single shocks, whereas stochastically stable states are resilient to persistent noise.

The evolutionary game theory literature onstochastic stabilitystudies repeated games where
on each round, each player observes her action and its outcome, and then uses simple rules to
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select her action for the next round based only on her size-restricted memory of the past rounds.
In any round, players have a small probability of deviating from their prescribed decision rules.
The state of the game is the contents of the memories of all theplayers. Thestochastically stable
statesin such a game are the states with non-zero probability in thelimit of this random process,
as the probability of error approaches zero. Stochastic stability and its adaptive learning model
were first defined by Foster and Young [54]. Stochastic stability and has been widely studied in
the economics literature (see, for example, [17, 43, 79, 83,90, 106, 119]). In contrast with the
standard game theory solution concept of evolutionarily stable strategies (ESS), a game always
has stochastically stable states that result (by construction) from natural dynamics. In joint work
not presented in this thesis but discussed briefly in Section2.4, we initiate the study of the social
utility of stochastically stable states.

2.2.2 Bayesian learning

In a Bayesian (or, as characterized by Young [121],model-based) learning framework, each
player is assumed to have subjective beliefs about her opponents’ strategies, and then uses these
beliefs to compute her optimal strategy. After each time step in a repeated game, players receive
information about their payoffs and potentially also aboutthe actions taken by their opponents,
and use this information to update their beliefs in a Bayesianfashion [70, 89]. Each player is
assumed to have and be aware of her own discount factor on future earnings, and each player’s
objective is to maximize her long-term expected discountedpayoff, relative to her beliefs.

In this setting, when agents have perfect monitoring (everyplayer is informed of the entire
history of play of all of his opponents), Kalai and Lehrer [82] show that there exist update pro-
cedures that converge in finite time to arbitrarily good approximations to a Nash equilibrium
of the repeated game, provided that players’ strategies areoptimal given their beliefs and that
their beliefs put nonzero probability mass on every event that has positive probability under their
strategies.

Fictitious play [18] is another well-studied example of a model-based learning setting. In
fictitious play, each player observes the empirical frequency distribution over opponent play and
chooses her action at each timestep to maximize her expectedpayoff under that distribution. The
choice is myopic, in that each player seeks to maximize payoff for the next day only, without
concern for future payoffs. One advantage of this approach is that each player does not need
to know her opponents’ utility functions. However, playingin this manner when opponents are
behaving arbitrarily doesn’t provide any guarantees to theindividual. Also, the model assumes
perfect monitoring. Fictitious play converges to Nash equilibrium in zero-sum two-person games
[105], in potential games [100] and in two-person two-strategy games [98], but not in two-person
three-strategy games [113].

Foster and Young [56] show that there exist no general, model-based procedures that always
converge to Nash equilibria of the repeated game when the players are perfectly rational (they
play perfectly optimally given their beliefs) and the unknown opponent payoffs are distributed
over some continuous space. If the rationality assumption is relaxed, though, Foster and Young
[57] give a simple procedure based on hypothesis testing that results in convergence of the period-
by-period play to the set of Nash equilibria of the stage game. But, Foster and Young [57] present
a class of uncoupled learning procedures that converge in probability to the set of Nash equilibria
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in any finite game. The basic idea is to track the empirical distribution on opponent actions in
recent history and periodically update so that you are always playing as if against a hypothetical
frequency distribution that is consistent with the empirical one.

2.2.3 Further results on adaptive learning

As we have seen above, Bayesian update procedures cannot havegood convergence properties
in general settings with continuous payoff functions; thishas led researchers to explore more
general learning dynamics. In this section, we discuss adaptive learning dynamics that do not
explicitly model opponent behavior; Young [121] terms thismodel-free learning. Although the
literature on learning dynamics is too vast to cover every variation and result in detail, we survey
the results here. We emphasize that most of the positive results on learning dynamics conver-
gence presented both in the previous section and in this one do not provideefficientconvergence.
In addition, many require strict adherence of all players toa very specific protocol, and do not
give any performance guarantees to the individual agents unless all agents comply with the pro-
tocol.

Possibility and impossibility for inefficient dynamics

A learning rule is called uncoupled if the player using it does not condition her strategy on the
payoffs of her opponents. A radically uncoupled learning rule is one that does not condition on
opponents’ past actions or payoffs.

Hart MasColell [73] show that in general, uncoupled dynamicsdo not lead to period-by-
period convergence to an approximate Nash equilibrium of the stage game if the player states are
histories of bounded length, even for two-person games. In their work on regret testing, however,
Foster and Young and Germano and Lugosi [58, 62] demonstratea family of radically uncoupled
learning rules whose period-by-period behavior comes arbitrarily close to Nash equilibrium,
for any finite, two-person game. Regret testing depends only on the players own history of
realized payoffs (radically uncoupled). In this model, in every time step, each player has some
fixed probability of making a “mistake” (one can think of thisas playing uniformly at random).
These results circumvent the Hart-MasColell impossibilityresult by not restricting themselves
to bounded length histories.

2.2.4 Regret

The regret of a sequence of actions in a repeated game is defined with respect to a particular
class of transformationsΨ over the agent’s action set; it is defined as the difference between the
average cost incurred and the average cost the best transformation would have incurred, where
the best is chosen with the benefit of hindsight.
Definition 2.2.1. The regret of playeri in a maximization game given action setsP 1, P 2, . . . , P T

is

max
{p1

i
,p2

i
,...,pt

i
}∈Ψ(Pi)

1

T

T
∑

t=1

αi(P
t ⊕ pt

i) −
1

T

T
∑

t=1

αi(P
t).
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The regret of playeri in a minimization game given action setsP 1, P 2, . . . , P T is

1

T

T
∑

t=1

αi(P
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{p1
i
,p2

i
,...,pt

i
}∈Ψ(Pi)

1

T

T
∑

t=1

αi(P
t ⊕ pt

i).

An algorithm is called regret-minimizing, or no-regret, ifthe expected regret it incurs goes to
zero as a function of time. A regret-minimizing algorithm isone with low expected regret.
Definition 2.2.2. When a playeri uses a regret-minimizing algorithm or achieves low regret,for
any sequenceP 1, . . . , P T , she achieves the property

max
{p1
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∑
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T
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for minimization games, where expectation is over the internal randomness of the algorithm,
and whereR(T ) → 0 asT → ∞. The functionR(T ) may depend on the size of the game or a
compact representation thereof. We then defineTǫ to be the number of time steps required to get
R(T ) = ǫ.

Note that this implies that, for any sequenceS1, . . . , ST , a player with the regret-minimizing
property achieves

max
{p1
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for minimizationgames. See Greenwald, Li, and Marks [68] for examples of generalizedregret
matchingregret minimization algorithms.

Internal regret minimization

A variety of adaptive learning algorithms, including the algorithms that are the focus of this
thesis, are based on or achieve notions of low regret. One class of action transformations focuses
on the question, “on all occasions when you selected a particular action, how good a response was
it to the actual actions of the other players?” This class consists of all transformations of action
histories that transform all instances of a particular actionp into some other actionp′. Algorithms
that achieve low regret with respect to this set of transformations are said to minimizeinternal
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regret, or to beuniversally calibrated. A weaker criterion is that algorithms may achieve low
internal regret when played against themselves, rather than against an arbitrary adversary; such
algorithms are said to becalibrated, but not universally so.

It is known that certain regret-matching algorithms such asthat of Hart and Mas-Colell
[72, 74], as well as any algorithms satisfying the stronger property of no internal regret [55],
have the property that the empirical distribution of play approaches acorrelatedequilibrium.
The algorithms of Hart and MasColell are polynomial time for settings in which action choices
are explicitly given. In addition, although Neyman [102] does show that the only correlated equi-
librium in atomic congestion games is the unique Nash equilibrium, there is no known efficient
implementation for internal regret minimization for routing problems.

External regret minimization

The focus in this thesis is onexternal regretminimization algorithms, where the setΨ consists
of each of the feasible fixed actions. Here the regret is with respect to the best single action over
the entire play history.
Definition 2.2.3. The external regret of playeri in a maximization game given action sets
P 1, P 2, . . . , P T is

max
pi∈Pi

1

T

T
∑

t=1

R(T ) = αi(P
t ⊕ pi) −

1

T

T
∑

t=1

αi(P
t).

The external regret of playeri in a minimization game given action setsP 1, P 2, . . . , P T is

R(T ) =
1

T

T
∑

t=1

αi(P
t) − min

pi∈Pi

1

T

T
∑

t=1

αi(P
t ⊕ pi).

One way to assess the quality of a regret-minimizing algorithm is by the number of time steps
Tǫ it requires before its expected regret is at mostǫ.

We henceforth use the term “regret” generically to refer to external regret. Algorithms that
achieve low regret in hindsight are referred to asuniversally consistentor Hannan consistent.

Internal regret minimization is more difficult to achieve than external regret minimization,
and as such, there are fewer efficient algorithms and they impose more restrictive assumptions
on the players. External regret-minimizing algorithms have been known since the 1950’s, when
Hannan [69] and Blackwell [14] developed such algorithms forrepeated two-player games. In
cases where each player has only a polynomial number of strategies, Littlestone and Warmuth’s
weighted majority algorithm [91] can be used to efficiently minimize regret. Recent work on
regret minimization has focused on algorithmic efficiency and convergence rates as a function
of the number of actions available, and has broadened the setof situations in which no-regret
algorithms are known. For example, Kalai and Vempala [81] show that Hannan’s algorithm
can be used to solve online linear optimization problems with regret approaching0 at a rate
O(1/

√
T ), given access to an exact best-response oracle.

Hannan’s algorithm and variants of it are known as “follow the (perturbed) leader”-style
algorithms, because the approach they take is to always choose the action that has performed
the best in hindsight (the “leader”), where the measurements of which action is best have been
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slightly perturbed. This approach requires that there be anefficient way for the algorithm to
constantly track the average performance of all past actions. Another type of regret minimization
algorithms pick their action at time stept based only on the action and cost vector of the previous
step. For example, Zinkevich [122] develops a regret-minimizing algorithm for onlineconvex
optimization problems that uses a gradient descent style approach. The algorithm we present in
Chapter 3 takes a similar approach.

So-calledbandit algorithms have also been developed [4, 35, 85, 92], which achieve low
regret even in the situation where the algorithm receives very limited information after each round
of play. Specifically, those results provide efficient algorithms for many situations in which the
number of strategies for each player is exponential in the size of the natural representation of the
game.

The convergence rates achieved by modern regret minimizingalgorithms are quite good: in
Hannan’s original algorithm [69], the number of time steps needed to achieve a gap ofǫ with
respect to the best fixed strategy in hindsight—the “per timestep regret”—is linear in the size of
the gameN . This was reduced toO(log N) in more recent exponential-weighting algorithms for
this problem [19, 59, 91] (also called the problem of “combining expert advice”). Most recently,
a number of algorithms have been developed for achieving such guaranteesefficientlyin many
settings where the number of choicesN is exponential in the natural description-length of the
problem [81, 117, 122]. For example, for the case of a routinggame consisting of only two nodes
andm parallel edges, exponential-weighting algorithms [19, 59, 91] giveTǫ = O( 1

ǫ2
log m). For

general graphs, results of Kalai and Vempala yieldTǫ = O(mn log n
ǫ2

) [81]. For general graphs
where an agent can observe only its path cost, results of Awerbuch and Kleinberg yieldTǫ =
Õ(n7m

ǫ3
) [4].

In Chapter 3, we show how to use anα-approximate best-response oracle to achieve on-
line performance in linear optimization problems that is close toα times that of the best static
solution.

Freund and Schapire [60] show that in a zero-sum game, if all agents use a no external regret
minimizing algorithm, the empirical distribution of play converges to the set of minimax equilib-
ria. The set of outcomes to which the empirical distributionof regret minimizing play converges
is known as the coarse correlated equilibria of the game [120]. However, there are examples
[122] of even quite simple games where regret-minimizing algorithms exhibit cycling behavior
and incur costs arbitrarily worse than the cost of the worst Nash equilibrium. Researchers in
the AI community have also been interested in the outcomes ofregret minimization and have
empirically shown that play sometimes converges to Nash equilibrium, and sometimes not [78].

Rather than require that dynamics converge to Nash equilibrium in all games, we can choose
to focus on broad classes of games that capture natural models of collaboration and competition,
and try to understand their consequences in these games. In this thesis, we propose regret min-
imization as a reasonable definition of self-interested behavior and study the outcome of such
behavior in a variety of classes of repeated games.

Specific approaches to adaptive learning in the computer science literature

Mirrokni and Vetta [97] and Goemans et al. [63] introduce thenotion of sink equilibria, which
generalize Nash equilibria in a different way than we do in this thesis. In doing so, they abandon
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simultaneous play, and instead consider sequential myopicbest response plays. They analyze
sink equilibria in the class of valid games and show that valid games have a price of sinking of
betweenn andn + 1. In contrast, we prove that valid games have a price of total anarchy of
2, matching the (Nash) price of anarchy. One reason for this gap is that myopic best responses
provide no guarantee about the payoff of any individual player. Indeed, the example in [63] of a
valid game with price of sinkingn demonstrates that myopic best response is not always rational:
In their example, myopic best response players each expect average payoff tending to zero as the
number of players increases, whereas they could each easilyguarantee themselves payoffs of one
on every turn (and would do so if they minimized regret). Additionally, because sink equilibria
rely on play entering and never leaving sinks of a best response graph, the price of sinking is
brittle to Byzantineplayers who may not be playing best responses. In contrast, in Chapter 5 of
this thesis, we show that valid games have a price of total anarchy of 2 even in the presence of
arbitrarily many Byzantine players, about whom we make no assumptions.

Fischer and V̈ocking [50] consider a specific adaptive dynamics (a particular functional form
in which flow might naturally change over time) in the contextof selfish routing and prove
results about convergence of this dynamics to an approximately stable configuration. In more
recent work, they study the convergence of a class of routingpolicies under a specific model
of stale information [51]. Most recently, Fischer, Raecke, and Vöcking [52] give a distributed
procedure with especially good convergence properties. The key difference between that work
and ours is that those results consider specific adaptive strategies designed to quickly approach
equilibrium. In contrast, we are interested in showing convergence foranyalgorithms satisfying
the no-regret property. That is, even if the players are using many different strategies, without
necessarily knowing or caring about what strategies othersare using, then so long as all are
no-regret, we show they achieve convergence. In addition, because efficient no-regret algorithms
exist even in the bandit setting where each agent gets feedback only about its own actions [4, 92],
our results can apply to scenarios in which agents adapt their behavior based on only very limited
information and there is no communication at all between different agents.

Convergence time to Nash equilibrium in load balancing has also been studied. Earlier work
studied convergence time using potential functions, with the limitation that only one player is
allowed to move in each time step; the convergence times derived depended on the appropriate
potential functions of the exact model [45, 94]. The work of Goldberg [66] studied a randomized
model in which each user can select a random delay over continuous time. This implies that
only one user tries to reroute at each specific time; therefore the setting was similar to that
mentioned above. Even-Dar and Mansour [44] considered a model where many users are allowed
to move concurrently, and derived a logarithmic convergence rate for users following a centrally-
moderated greedy algorithm. Most recently, Berenbrink et al. [13] showed weaker convergence
results for a specific distributed protocol. To summarize, previous work studied the convergence
time to pure Nash equilibria in situations with a centralized mechanism or specific protocol. In
contrast, in this thesis we present fast convergence results for approximate Nash equilibria in a
non-centralized setting, and our only assumption about theplayer strategies is that they are all
no-regret.

Chien and Sinclair [24] study convergence of decentralized dynamics to approximate equilib-
ria in atomic congestion games. They show that a dynamics wherein players take turns making
improving deviations of at leastǫ improvement converges efficiently to anǫ-approximate equi-

15



librium, assuming that the game is symmetric and that the latency functions satisfy a bounded
jump condition.1 Skopalik and Vocking [114] show that this result does not extend to asym-
metric congestion games. Despite this, Awerbuch et al. [5] show polynomial time convergence
of ǫ-improvement dynamics in asymmetric games with the boundedjump condition to approx-
imately optimal solutions, where the approximation factor achieved is the price of anarchy of
the game. A number of other positive results exist for these dynamics, for much more specific
classes of games.

2.3 Subsequent work on regret minimization in games

Since the initial publication of the results in this thesis,a number of publications have built on
our work. Roughgarden [110] explores the outcomes of regret-minimizing behavior in a variety
of classes of games; they are able to show Price of Anarchy style bounds on the social cost,
but do not prove convergence results. Kleinberg et al. [86] study agents in atomic congestion
games employing aparticular class of regret-minimization algorithms and show that in many
cases, the additional assumptions on the player algorithmsallow convergence topureNash equi-
libria. Even-Dar et al. [46] demonstrate convergence of general regret-minimizing algorithms
to Nash equilibria in a general class of games they call “socially-concave” games. Awerbuch
et al. [5] show that a certain type of best response dynamics converges quickly to approximate
Nash equilibria in congestion games. General no regret dynamics are much more complex than
the dynamics they study, and perhaps better motivated from an individual’s perspective in realis-
tic settings where it is not clear that your opponents will cooperate by also playing best response.

2.4 Work not in this thesis

In some classes of games (such as the well-studied load balancing game [3, 7, 49]), the worst
Nash equilibria can result in arbitrarily bad social welfare. However, in some of these games,
the bad equilibria are unnatural or artificial, and when modeled realistically, agents might never
find or settle at such equilibria. In these cases, one would like tools to understand the stability of
equilibria and to better characterize the likely outcomes of selfish behavior.

In joint work with Christine Chung, Kirk Pruhs, and Aaron Roth [27], we employ the stochas-
tic stability framework from evolutionary game theory to study simple dynamics of computation-
ally efficient, imperfect agents. This approach allows us todefine a natural dynamic, and from
it derive the stable states. We define theprice of stochastic anarchyto be the ratio of the worst
stochastically stable solution to the optimal solution. Ingames for which the stochastically stable
states are a subset of the Nash equilibria, studying the ratio of the worst stochastically stable state
to the optimal state can be viewed as a smoothed analysis of the price of anarchy, distinguishing
Nash equilibria that are brittle to small perturbations in perfect play from those that are resilient
to noise.

1Note that the definition of approximate equilibrium that they consider is slightly different from the (more stan-
dard) one we use in this thesis; for them, anǫ-approximate Nash equilibrium is a state from which no player has a
deviation withǫ multiplicativeimprovement.
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The evolutionary game theory literature onstochastic stabilitystudiesn-player games that are
played repeatedly. In each round, each player observes her action and its outcome, and then uses
simple rules to select her action for the next round based only on her size-restricted memory of
the past rounds. In any round, players have a small probability of deviating from their prescribed
decision rules. The state of the game is the contents of the memories of all the players. The
stochastically stable statesin such a game are the states with non-zero probability in thelimit of
this random process, as the probability of deviating approaches zero.

To illustrate the utility of stochastic stability, we studythe price of stochastic anarchy of the
classic “unrelated load balancing” game [3, 7, 49] under theimitation dynamics of Josephson and
Matros [79]. In the load balancing game on unrelated machines, even with only two players and
two machines, there are Nash equilibria with arbitrarily high cost, and so the price of anarchy is
unbounded. We show that these equilibria are inherently brittle, and that for two players and two
machines, the price of stochastic anarchy is 2. This result matches the strong price of anarchy [3]
without requiring coordination (at strong Nash equilibria, players have the ability to coordinate
by forming coalitions). We further show that in the generaln-player,m-machine game, the price
of stochastic anarchy, unlike the traditional price of anarchy, is bounded.

The approach in this work is similar to that of the work presented in this thesis: we consider
learning algorithms in games not from aprescriptiveperspective, but instead with the hope that
their outcomes are usefuldescriptivetools for understanding the outcomes of repeated game
play. One advantage of the work presented in this thesis is that we make extraordinarily minimal
assumptions on the learning algorithms (simply that they have no regret in hindsight). Our work
on the price of stochastic anarchy, by contrast, is based on particular learning dynamics; it would
be interesting to extend this work on understanding the relative stability of outcomes in games
by making less restrictive assumptions.
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Chapter 3

Approximate Online Linear Optimization

3.1 Introduction

In an offline optimization problem, one must select a single (randomized) decisions from a
known set of decisionsS, in order to minimize a known cost function. In an offlinelinear op-
timization problem, a weight vectorw ∈ R

n is given as input, and the cost functionc(s, w) is
assumed to be linear inw. Many combinatorial optimization problems fit into this framework,
including traveling salesman problems (whereS consists of tours in a graph andw is the as-
signment of weights to the edges), weighted set cover (S is the set of covers andw the costs of
the sets), and knapsack (S is the set of feasible sets of items and weightsw correspond to item
valuations).

Each of these problems has anonlinesequential version, in which on every period the player
must select her decision without knowing that period’s costfunction. That is, there is an unknown
sequence of weight vectorsw1, w2, . . . ∈ R

n and for eacht = 1, 2, . . ., the player must select
st ∈ S beforewt is revealed, and payc(st, wt). In the full-information version, the player is
then informed ofwt, while in thebanditversion she is only informed of the valuec(st, wt). (The
namebandit refers to the similarity to the classic multi-armed bandit problem [104]).

The player’s goal is to achieve low average cost. In particular, we compare her cost with that
of the best fixed decision: she would like her average cost to approach that of the best single point
in S, where the best is chosen with the benefit of hindsight. This difference, 1

T

∑T
t=1 c(st, wt) −

mins∈S
1
T

∑T
t=1 c(s, wt), is termedregret.

For example, in the Online TSP problem, every day, a deliverycompany serves the same
n customers. The company must schedule its daily route without foreknowledge of the traffic
on each street. The time on any street may vary unpredictablyfrom day to day due to traffic,
construction, accidents, or even competing delivery companies. Inonline TSP, we are given a
undirected graphG, and on every periodt, we must output a tour that starts at a specified vertex,
visits all the vertices at least once, then returns to the initial vertex. After we announce our tour,
the traffic patterns are revealed (in the full-information setting, the costs on all the edges; in the
bandit setting, just the cost of the tour) and we pay the cost of the tour.

As another example, in the Online Weighted Set Cover problem,every financial quarter, our
company hires vendors from a fixed pool of subcontractors to cover a fixed set of tasks. Each
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subcontractor can handle a known, fixed subset of the tasks, but their price is only announced
at the end of the quarter and varies from quarter to quarter. In online weighted set cover, the
vendors are fixed setsV1, . . . , Vn ⊆ [m]. Each period, we choose a legal coverst ⊆ [n]; that is,
⋃

i∈st
Pi = [m]. There is an unknown sequence of cost vectorsw1, w2, . . . ∈ [0, 1]n, indicating

the quarterly vendor costs. Each quarter, our total costc(st, wt) is the sum of the costs of the
vendors we chose for that quarter. In the full-information setting, at the end of the quarter we find
out the price charged by each of the subcontractors; in the bandit setting, we receive a combined
bill showing only our total cost.

Prior work showed how to convert anexactalgorithm for the offline problem into an online
algorithm with low regret, both in the full-information setting and in the bandit setting. In par-
ticular, Kalai and Vempala showed [81] that using Hannan’s approach [69], one can guarantee
O(T−1/2) regret for any linear optimization problem, in the full-information version, as the num-
ber of periodsT increases. It was later shown [4, 35, 92] how to convert exactalgorithms to
achieveO(T−1/3) regret in the more difficult bandit setting.

This prior work was actually a reduction showing that one cansolve the online problem
nearly as efficientlyas one can solve the offline problem. (They used the offline optimizer as a
black box.) However, in many cases of interest, such as the TSP or online combinatorial auction
problems [10], even the offline problem is NP-hard. Hannan’s“follow-the-perturbed-leader”
approach can also be applied to some special types of approximation algorithms, but fails to
work directly in general. Finding a reduction that maintains good asymptotic performance using
generalapproximation algorithms was posed as an open problem [81];we resolve this problem.

In this chapter, we show how to convertanyapproximation algorithm for a linear optimiza-
tion problem into an algorithm for the online sequential version of the problem, both in the
full-information setting and in the bandit setting. Our reduction maintains the asymptotic ap-
proximation guarantee of the original algorithm, relativeto the average performance of the best
static decision in hindsight. Our new approach is inspired by Zinkevich’s algorithm for the
problem of minimizing convex functions over a convex feasible setS ⊆ R

n [122]. However,
the application is not direct and requires a geometric transformation that can be applied to any
approximation algorithm.

3.1.1 Hannan’s approach

In this section, we briefly describe the previous approach [81] for the case of exact optimiza-
tion algorithms based on Hannan’s idea of adding perturbations. We begin with the obvious
“follow-the-leader” algorithm which, each period, picks the decision that is best against the to-
tal (equivalently, average) of the previous weight vectors. This means, on periodt, choosing
st = A

(
∑t−1

τ=1 wτ

)

, whereA is an algorithm that, given a cost vectorw, produces the best
s ∈ S.1 Hannan’s perturbation idea, in our context, suggests usingst = A

(

pt +
∑t−1

τ=1 wτ

)

for
uniformly random perturbationpt ∈ [0,

√
t]n. One can bound the expected regret of following-

the-perturbed-leader to beO(T−1/2), disregarding other parameters of the problem.
Kalai and Vempala [81] note that Hannan’s approach maintains an asymptoticα-approximation

1This approach fails even on a two-decision problem, where the costs of the two decisions are (0.5,0) during the
first period and then alternate(1, 0), (0, 1), (1, 0), . . . , thereafter.
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guarantee when used withα-approximation algorithms with a special property they call α-point-
wise approximation, meaning that on any input, the solution they find differs from the optimal
solution by a factor of at mostα in every coordinate. They observe that a number of algorithms,
such as the Goemans-Williamson max-cut algorithm [64], have this property. Balcan and Blum
[10] observe that the previous approach applies to another type of approximation algorithm: one
that uses an optimal decision for another linear optimization problem, for example, using MST
for metric TSP. It is also not difficult to see that a FPTAS can be used to get a(1+ ǫ)-competitive
online algorithm. We further note that the Hannan-Kalai-Vempala approach extends to approx-
imation algorithms that perform a simple type of randomizedrounding where the randomness
does not depend on the input.

In the next section, we use an explicit example based on the greedy set-cover approximation
algorithm to illustrate how Hannan’s approach fails on moregeneral approximation algorithms.

3.1.2 Example where “follow-the-perturbed-leader” fails

First consider the setS = {1, 2, . . . , n} and the cost sequence(1, 1, . . . , 1) (repeatedT/(n + 1)
times),(1, 0, . . . , 0) (repeatedT/(n + 1) times),(0, 1, 0, . . . , 0) (repeatedT/(n + 1) times),. . . ,
(0, . . . , 0, 1) (repeatedT/(n + 1) times). Notice that selecting a decision with cost 1 is always
a valid (α = 2)-approximation to the leader on the previous examples. Moreover, its cost isT
while the cost of the best (in factevery) s ∈ S is 2T/(n+1), hence giving largeα-regret. Unfor-
tunately, adding perturbations ofO(

√
T ) as in follow-the-perturbed-leader will not significantly

improve matters: whenT/(n + 1) ≫
√

T , choosing a decision that costs 1 each period is still an
α-approximation for, say,α = 3.

Of course, one may be suspicious that no common approximation algorithms would have
such peculiar behavior. We now give a similar example based on the standard greedy set cover
approximation algorithm (α = log m) applied to the online set cover problem described earlier.
The example hasn/2 covers of size 2:Si = S \ Sn+1−i, for i = 1, 2, . . . , n. Furthermore,
suppose the sets are of increasing size|Si| =

(

0.4 + 0.2 i−1
n−1

)

m and |Si ∪ Sj| ≤ 0.9m for all
1 ≤ i, j ≤ n wherei 6= n + 1 − j.2 The sequence of costs (weight) vectors is divided inton/2
phasesj = 0, 1, . . . , n/2 − 1, each consisting of2T/n identical cost vectors. In phasej = 0, all
sets have cost 1. For phasej = 1, . . . , n/2 − 1: the cost of thej setsS1, . . . , Sj and thej − 1
setsSn−j+2, . . . , Sn are all 1, while the costs of the remaining sets are all 0.

In this example, following the leader with greedy set cover will have an average per-period
cost of at least0.1. In particular, during the first 10% of any phasej ≥ 1, either greedy’s first
choice will beSn−j+1, in which case its second choice will beSj (because any other set covers at
most 90% of the remaining items, andSj ’s cost so far is at most 10% more than that of any other
set), or greedy’s first choice will be one ofSn−j, . . . , Sn. In either case it pays at least 1 during
that period. Hence, following the leader pays at least0.1 + 19

5
n in expectation on average, while

the coverSn/2 ∪ Sn/2+1 has an average cost of only4/n, which is far from matching greedy’s
α = log m approximation ratio (forn = Θ(m)).

2To design such a collection of sets (for evenn andm = 5(n − 1)), takeSi to be a uniformly random set of
the desired sizem for i = 1, . . . , n/2, andSn+1−i to be its complement. It is not hard to argue that, with high
probability, the randomized construction obeys the statedproperties.
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Also note that perturbations on the order ofO(
√

T ) will not solve this problem. It would be
very interesting to adapt Hannan’s approach to work for approximation algorithms, especially
because it is more efficient than our approach. However, we have not found a solution that works
across problems.

3.1.3 Informal statement of results

The main result of this chapter is a general conversion from any approximate linear optimization
algorithm to an approximate online version in the full-information setting (§3.3). The extension
to the bandit setting (§3.4) uses well-understood techniques, modulo one new issuethat arises in
the case of approximation algorithms. We summarize the problem, our approach, and our results
here.

We assume there is a known compact convex setW ⊆ R
n of legal weight vectors (in many

casesW = [0, 1]n), and a cost functionc : S ×W → [0, 1] that islinear in its second argument,
that is,c(s, av + bw) = ac(s, v) + bc(s, v) for all s ∈ S, a, b ∈ R, andv, w, av + bw ∈ W. The
generalization to[0,M ]-bounded cost functions forM > 0 is straightforward.3 We assume that
we have a black-boxα-approximation algorithm, which we abstract as an oracleA such that, for
all w ∈ W, c(A(w), w) ≤ α mins∈S c(s, w). That is, we do not assume that our approximation
oracle can optimize in every direction, but only that it can be called on weights inW. For
example, approximation algorithms for graph problems can often only handle inputs with non-
negative edge weights. In the full-information setting, weassume our only access toS is via
the approximation algorithm; in the bandit setting, we needan additional assumption, which we
describe below.

In this chapter, we focus on thenon-adaptive setting, in which the adversary’s choices ofwt

can be arbitrary but must be chosen in advance. In theadaptive setting, on periodt, the adversary
may choosewt based ons1, w1, . . . , st−1, wt−1. In the bandit case, extension of these results to
the adaptive setting and the conversion from results in expectation to high probability results
remain open questions.

For α-approximation algorithms, it is natural to consider the following notion of α-regret,
in both the full-information and the bandit-settings. It isthe difference between the algorithm’s
average cost andα times the cost of the bests ∈ S, that is,

1

T

T
∑

t=1

c(st, wt) − α min
s∈S

1

T

T
∑

t=1

c(s, wt).

Note that if there is a hardness of approximation result withratio α for the offline version of a
problem, one cannot expect to obtain better thanα-regret efficiently in the online setting.

Full-information results

Our approach to the full-information problem is inspired byZinkevich’s algorithm (for a some-
what different problem) [122], which uses an exact projection oracle to create an online al-
gorithm with low regret. An exact projection oracleΠJ is an algorithm which can produce

3In [81], the setW = {w ∈ R
n | |w|1 ≤ 1} was assumed.
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argminx∈J ||x − y|| for all y ∈ R
n, whereJ is the “feasible region” (in Zinkevich’s setting, a

compact convex subset ofR
n). The main algorithm presented in Zinkevich’s paper, GREEDY

PROJECTION, determines its decisionxt at timet asxt = ΠJ(xt−1 − ηwt−1), whereη is a pa-
rameter called the learning rate andwt−1 is the cost vector at time(t − 1). One can view the
approach presented here as providing a method to simulate a type of “approximate” projection
oracle using an approximation algorithm. In§3.3 we show the following:
Result 3.1.1.Given anyα-approximation oracle to an offline linear-optimization problem and
any T, T0 ≥ 1, w1, w2, . . . ∈ W, our (full-information) algorithm (Algorithm 3.3.1) outputs
s1, s2, . . . ∈ S achieving

E

[

1

T

T0+T
∑

t=T0+1

c(st, wt)

]

− α min
s∈S

1

T

T0+T
∑

t=T0+1

c(s, wt) =
O(αn)√

T
.

The algorithm makes poly(n, T ) calls to the approximation oracle.
Note that the above bound on expectedα-regret holds simultaneously for every window ofT

consecutive periods (T must be known by the algorithm). We easily inherit this useful adaptation
property of Zinkevich’s algorithm. It is not clear to us whether one could elegantly achieve this
property using the previous approach.

Bandit results

Previous work in the bandit setting constructs an “exploration basis” to allow the algorithm to
discover better decisions [4, 35, 92]. In particular, Awerbuch and Kleinberg [4] introduce a so-
called Barycentric Spanner (BS) as their exploration basis and show how to construct one from an
optimization oracleA : R

n → S. However, in the case where the oracle (exact or approximate)
only accepts inputs in, say, the positive orthant, it may be impossible to extract an exploration
basis. Hence, we assume that we are given aβ-BS (β ≥ 1 is an approximation factor for the
BS) for the problem at hand as part of the input. We define and discuss these concepts further
in Section 3.4. Note that theβ-BS only needs to be computed once for a particular problem and
then can be reused for all future instances of that problem. Given aβ-BS, the standard reduction
from the bandit setting to the full-information setting gives:
Result 3.1.2.For any β-BS and anyα-approximation oracle to an offline linear-optimization
problem and anyT, T0 ≥ 1, w1, w2, . . . ∈ W, the (bandit) algorithm in Figure 3.4 outputs
s1, s2, . . . ∈ S achieving

E

[

1

T

T0+T
∑

t=T0+1

c(st, wt)

]

− α min
s∈S

1

T

T0+T
∑

t=T0+1

c(s, wt) =
O(n(αβ)2/3)

3
√

T
.

The algorithm makes poly(n, T ) calls to the approximation oracle.
We also show, in§3.4.1, that the assumption of a BS is necessary.

Result 3.1.3. There is no polynomial-time black-box reduction from an
α-approximation algorithm for a general linear optimization problem (without additional input)
to a bandit algorithm guaranteeing lowα-regret.
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We note that the above regret is sub-optimal in terms of theT dependence. Furthermore, re-
cent work [1, 11, 34] presents algorithms for online linear optimization that achieve the optimal√

T regret even in the bandit setting (these results either do not explicitly consider the computa-
tional issues or assume access to an exact optimization oracle). Achieving improved regret for
bandit algorithms using approximation oracles remains an open problem.

3.2 Formal definitions

We formalize the natural notion of ann-dimensional linear optimization problem.
Definition 3.2.1. An n-dimensional linear optimization problem consists of a convex compact
set of feasible weight vectorsW ⊂ R

n, a set of feasible decisionsS, and a cost functionc :
S ×W → [0, 1] that is linear in its second argument.

Due to the linearity ofc, there must exist a mappingΦ : S → R
n such thatc(s, w) = Φ(s) ·w

for all s ∈ S, w ∈ W. In the case where the standard basis is contained inW, we have

Φ(s) =
(

c(s, (1, 0, . . . , 0)), . . . , c(s, (0, . . . , 0, 1))
)

.

More generally, the mappingΦ can be computed directly fromc by evaluatingc at any set of
vectors whose span includesW. We will assume that we have access toΦ andc interchangeably.
Note that previous work represented the problem directly asa geometric problem inRn, but in
our case we hope that making the mappingΦ explicit clarifies the algorithm.

An α-approximation algorithmA (α ≥ 1) for such a problem takes as input any vector
w ∈ W and outputsA(w) ∈ S such thatc(A(w), w) ≤ α mins∈S c(s, w). To ensure that themin
is well-defined, we also assumeΦ(S) = {Φ(s) | s ∈ S} is compact.

The performance of an online algorithm is measured by comparing its cost on a sequence of
weight vectors with the (approximate) cost of the best static decision for that sequence.
Definition 3.2.2. Theα-regret of an algorithm that selects decisionsa1, . . . aT ∈ A is defined to
be

α-regret(a1, w1 . . . , aT , wT ) =
1

T

T
∑

t=1

c(at, wt) − α min
a∈A

1

T

T
∑

t=1

c(a, wt).

The term regret by itself refers to1-regret. Theα-regret of a randomized algorithm is defined
analogously in terms of the expected costs of its actions.

Define aprojection oracleΠJ : R
n → J , whereΠJ(x) = argminz∈J ‖x − z‖ is the unique

projection ofx to the closest pointz in the convex setJ .
DefineW+ = {aw|a ≥ 0, w ∈ W} ⊆ R

n. Note thatW+ is convex, which follows from
the convexity ofW. We assume that we have an exact projection oracleΠW+ . This is generally
straightforward to compute. In many cases,W = [0, 1]n, in which caseW+ is the positive
orthant andΠW+(w)[i] is simplymax(w[i], 0), wherew[i] denotes theith component of vector
w. More generally, given a membership oracle toW+ (or to aW with a smoothness guarantee),
a pointw0 ∈ W, and appropriate bounds on the radii of contained and containing balls, one can
approximate the projection to within any desired accuracyǫ > 0 in time poly(n, log(1/ǫ)). Note
that we will later be dealing with the difficulty of projecting essentially ontoS, which is a more
difficult problem because our only access to it is via an approximation oracle.
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We also assume, for convenience, thatA : W+ → S because we know thatA(w) can be
chosen to be equal toA(aw) for anya > 0, and findinga such thataw ∈ W is a one-dimensional
problem. (Again, given a membership oracle toW one can findv ∈ W which is withinǫ of being
a scaled version ofw using time poly(n, 1/ǫ)). However, the restriction on the approximation
algorithm’s domain is important because many natural approximation algorithms only apply to
restricted domains such as non-negative weight vectors.

In a nonadaptiveonline linear optimizationproblem, there is a sequencew1, w2, . . . ,∈ W of
weight vectors. Due to the linearity of the problem, anoffline optimumcan be computed using

an exact optimizer, that is,mins∈S
1
T

∑T
t=1 Φ(s) · wt = mins∈S Φ(s) ·

(

1
T

∑T
t=1 wt

)

gives the

average cost of the best single decision if one had to use a single decision during all time periods
t = 1, 2, . . . , T . Similarly, anα-approximation algorithm, when applied to1

T

∑T
t=1 wt, gives a

decision whose average cost is not more than a factorα larger than that of the offline optimum.
Definition 3.2.3. In a full-information online linear optimization problem,there is an unknown
sequence of weight vectorsw1, w2, . . . ∈ W (possibly chosen by an adversary). On each period,
the decision-maker chooses a decisionst ∈ S based ons1, w1, s2, w2, . . . , st−1, wt−1. Thenwt is
revealed and the decision-maker incurs costc(st, wt).

Finally, we define the bandit version of the problem, in whichthe algorithm finds out only
the cost of its decision,c(st, wt), butnot wt itself.
Definition 3.2.4. In a bandit online linear optimization problem, there is an unknown sequence
of weight vectorsw1, w2, . . . ∈ W (possibly chosen by an adversary). On each period, the
decision-maker chooses a decisionst ∈ S based only upons1, c(w1, s1), . . . , st−1, c(wt−1, st−1).
Then only the costc(st, wt) is revealed.

Forx, y ∈ R
n andW ⊆ R

n, we sayx dominatesy if x·w ≤ y·w for all w ∈ W (equivalently,
for all w ∈ W+).4

DefineK ⊆ R
n to be the convex hull ofΦ(S),

K =
{

∑n+1

i=1
λiΦ(si)

∣

∣

∣
si ∈ S, λi ≥ 0,

∑

i
λi = 1

}

.

Note thatminx∈K x · w = mins∈S c(s, w) for all w ∈ W. The cost of any point inK can be
achieved by choosing a randomized combination of decisionss ∈ S. However, we must find
such a combination of decisions and compute projections in our setting, where our only access
to S is via an approximation oracle.

3.3 Full-information algorithm

We now present our algorithm for the full-information setting. Definezt = xt − ηwt. Intuitively,
one might like to playzt on periodt+1 becausezt has less cost thanxt againstwt. Unfortunately,
zt may not be feasible. In the GREEDY PROJECTIONalgorithm of Zinkevich, the decision played
on periodt + 1 is the projection ofzt into the feasible set. Our basic approach is to implement
an approximate projection algorithm and play the approximate projection ofzt on stept + 1.

4Note that this definition differs from the standard definition in R
n wherex dominatesy if x[i] ≥ y[i] for all i

but resembles the game-theoretic notion of dominant strategies.
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Input: x, z ∈ R
n, s ∈ S, and anα-approximation algorithmA (and parametersδ > 0, λ ∈ [0, 1]).

Output:(x′, s′) ∈ Πδ
αK × S

DefineB to be the extended approximation oracle obtained fromA using Lemma 3.3.5.

APPROX-PROJ(z, s, x)

1 Let (t, y) := B(x − z)
2 if x · (x − z) ≤ δ + y · (x − z)
3 then return(x, s)

4 else q =

{

s with probability1 − λ

t with probabilityλ

5 return APPROX-PROJ(z, q, λy + (1 − λ)x)

Figure 3.1: A recursive algorithm for computing approximate projections.

There are a number of technical challenges to this approach.First, we only have access to an
α-approximation oracle with which to implement this. Due to the multiplicative nature of this
approximation, we proceed by attempting to project into thesetαK, whereαK = {αx|x ∈ K}.
Second, even if we could do this perfectly (which is not possible), this would still not result in a
feasible decision. We then must find a way to play a feasible decision.

We can intuitively view our algorithm as follows. The algorithm keeps track of a parameter
xt, which we can think of as the attempt to projectzt−1 into αK (though this is not done exactly,
asxt is not even inαK). We show that if the algorithm actually were allowed to playxt then it
would have lowα-regret. Our algorithm uses thisxt to find a randomized feasible decisionst.
We show that the expected cost of this random feasible decision st is no larger than that of the
(potentially) infeasiblext.

Our algorithm for the full-information setting is based on the approximate projection routine
defined in Figure 3.1.
Algorithm 3.3.1. The algorithm is given a learning parameterη. On period 1, we choose an
arbitrary s1 (which could be selected by running the approximation oracleon any input) and let
x1 = Φ(s1). On periodt, we playst and let

(xt+1, st+1) = APPROX-PROJ(xt − ηwt, st, xt).

It may be helpful to the reader to note that the sequencext is deterministically determined (if
the approximation oracle is deterministic) by the sequenceof weightsw1, . . . , wt−1, while st is
necessarily randomized.

In §3.3.1, we show that if we had a particular kind of approximateprojection algorithm, then
thext values produced by that algorithm would have (hypothetical) low α-regret. In§3.3.2, we
show how to extend the domain of any approximation algorithm, which allows us to construct
such an approximate projection algorithm: the APPROX-PROJalgorithm used in Algorithm 3.3.1.
We also show that the cost of the (infeasible) decisionxt+1 it produces can only be larger than
the expected cost incurred by the feasible decisionst+1 it also generates. This will allow us to
prove our main theorem in the full-information setting:
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Theorem 3.3.2.Consider ann-dimensional online linear optimization problem with feasible set
S and mappingΦ : S → R

n. LetA be anα-approximation algorithm and takeR,W > 0 such
that‖Φ(A(w))‖ ≤ R and‖w‖ ≤ W for all w ∈ W.

For any fixedw1, w2, . . . wT ∈ W and anyT ≥ 1, with learning parameterη = (α+1)R

W
√

T
,

approximate projection tolerance parameterδ = (α+1)R2

T
, and learning rate parameterλ =

(α+1)
4(α+2)2T

, Algorithm 3.3.1 achieves expectedα-regret at most

E

[

1

T

T
∑

t=1

c(st, wt)

]

− α min
s∈S

1

T

T
∑

t=1

c(s, wt) ≤
(α + 2)RW√

T
.

Each period, the algorithm makes at most4(α + 2)2T calls toA andΦ.
We present the proof of Theorem 3.3.2 in§3.3.4. To get Result 3.1.1 in the introduction,

we note that it is possible to get a priori bounds onW and R by a simple change of basis
so thatRW = O(n). It is possible to do this from the setW alone. In particular, one can
compute a2-barycentric spanner (BS)e1, . . . , en for W [4] and perform a change of basis so that
Φ(e1), . . . , Φ(en) is the standard basis (as we describe in greater detail in§3.4). By the definition
of a 2-BS, this implies thatW ⊆ [−2, 2]n and henceW = 2

√
n is a satisfactory upper bound.

Since we have assumed that all costs are in[0, 1] and the standard basis is inW, this implies that
Φ(S) ⊆ [0, 1]n and henceR =

√
n is also a valid upper bound. The guarantees with respect to

every window ofT consecutive periods hold because our algorithm’s guarantees hold starting at
arbitrary(st, xt) such thatE[Φ(st)] dominatesxt (recall,st is necessarily randomized).

3.3.1 Approximate Projection

We first define the notion of approximate projection. Because we only have access to anα-
approximate oracle, givenz ∈ R

n, we cannot find the closest point toz in K or even inαK =
{αx|x ∈ K}.

Note that for a closed convex setJ ⊆ R
n, if ΠJ(z) = x, then

(x − z) · x ≤ min
y∈J

(x − z) · y.

This is essentially the separating hyperplane theorem (where x − z is the normal vector to the
separating hyperplane). Also note thatΠJ(x) = x if x ∈ J .

Our approximate projection property, illustrated in Figure 3.2, relaxes the above condition.
Due to the computational issues associated with optimizingoverK even with access to anexact
optimization oracle (α = 1), 5 our projections will be parametrized by an additionalδ. Define
the set ofδ-approximate projections to be, forδ ≥ 0 and anyz ∈ R

n,

Πδ
J(z) = {x ∈ R

n | (x − z) · x ≤ min
y∈J

(x − z) · y + δ}.

It is important to note that we have not required an approximate projection to be inJ However,
note that in the case where the projection is inJ , andδ = 0, it is exactly the projection, that is,

5 We are not assuming thatK is defined by a polynomial number of hyperplanes—it can be quite round.
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Figure 3.2: An approximate projection oracle, for convex set J ⊆ R
n andδ = 0, returns a point

Π0
J(z) ∈ R

n that is closer to any pointy ∈ J thanz is, that is,∀y ∈ J ‖Π0
J(z) − y‖ ≤ ‖z − y‖.

Πδ
J(z) ∩ J = {Π0

J(z)}. For δ = 0, the approximate projection is a pointΠ0
J(z) ∈ R

n that is
closer to any pointy ∈ J thanz is, that is,∀y ∈ J ‖Π0

J(z) − y‖ ≤ ‖z − y‖. While we refer to it
as an approximate projection, it is also clearly related to aseparation oracle. From a hyperplane
separatingz from J , one can take the closest point on that hyperplane toz as an approximate
projection, or in factz ∈ Πδ

J(z). The difficulty we will face is in finding afeasiblesuch point.
We now bound theα-regret of the hypothetical algorithm which projects withΠδ

αK . The
proof is essentially a straightforward extension of Zinkevich’s proof [122]. This lemma shows
that indeed this hypothetical algorithm has a graceful degradation in quality.
Lemma 3.3.3.LetK ⊆ R

n be a convex set such that∀x ∈ K, ‖x‖ ≤ R. Letw1, . . . , wT ∈ R
n

be an arbitrary sequence. Then, for any initial pointx1 ∈ K, anyα > 1, and any sequence
x1, x2, . . . , xT such thatxt+1 ∈ Πδ

αK(xt − ηwt),

1

T

T
∑

t=1

xt · wt − α min
x∈K

1

T

T
∑

t=1

x · wt ≤
(α + 1)2R2

2ηT
+

η

2T

T
∑

t=1

w2
t +

δ

η
.

Proof. Let x∗ = α argminx∈K

∑T
t=1 x · wt, sox∗ ∈ αK. We will bound our performance with

respect tox∗. Define the sequencex′
t by x′

1 = x1 andx′
t+1 = xt − ηwt, so thatxt ∈ Πδ

αK(x′
t).

We first claim that‖xt − x∗‖2 ≤ ‖x′
t − x∗‖2 + 2δ, that is, our attempt at settingxt to be an

approximate projection ofxt ontoαK does not increase the distance tox∗ significantly:

(x′
t − x∗)2 =

(

(x′
t − xt) + (xt − x∗)

)2

= (x′
t − xt)

2 + (xt − x∗)2 + 2(x′
t − xt) · (xt − x∗)

≥ 0 + (xt − x∗)2 − 2δ.

The last line follows from the definition of approximate projection and the fact thatx∗ ∈ αK.
Hence, for anyt ≥ 1, becausex′

t+1 = xt − ηwt we have

(xt+1 − x∗)2 ≤ (xt − ηwt − x∗)2 + 2δ

= (xt − x∗)2 + η2w2
t − 2ηwt · (xt − x∗) + 2δ
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and thus

wt · (xt − x∗) ≤ (xt − x∗)2 − (xt+1 − x∗)2 + η2w2
t + 2δ

2η
.

Using a telescoping sum of the above, we get

T
∑

t=1

wt · (xt − x∗) ≤ (x1 − x∗)2 − (xT+1 − x∗)2 +
∑T

t=1 η2w2
t + 2δT

2η
.

Now using the fact that

(x1 − x∗)2 ≤ (‖x1‖ + ‖x∗‖)2 ≤ (α + 1)2R2,

we get
T
∑

t=1

xt · wt − α min
x∈K

T
∑

t=1

x · wt ≤
(α + 1)2R2

2η
+

η

2

T
∑

t=1

w2
t + T

δ

η

as desired.

Note that if we setη = 1/
√

T , the sum of the first two terms of this bound would be
O(1/

√
T ). However, the last term,δ

η
, would beO(δ

√
T ). Hence, we need to achieve an ap-

proximation quality ofδ = O(1/T ) in order for theα-regret of our (infeasible)xt values to be
O(1/

√
T ).

3.3.2 Constructing the Algorithm

One simple method to (approximately) find the projection ofz into a convex setJ , given an exact
optimization oracle forJ , is as follows. Start with a point inx ∈ J . Then choose the search
directionv = x − z, and find a minimal pointx′ ∈ J in the direction ofv—that is,x′ ∈ J such
thatx′ · v ≤ miny∈J y · v (or, equivalently, such that(x′ − z) · v ≤ miny∈J(y − z) · v). It can
be seen that ifx is not minimal in the direction ofv, then there must be a point on the segment
joining x′ andz that is closer toz thanx was. Then repeat this procedure starting atx′. In the
case wherez ∈ J , this will be still be useful in representingz nearly as a combination of points
output by the minimization algorithm.6

Note that in our case ifv ∈ W+, then our approximation oracle is able to find a feasible
s ∈ S such that

Φ(s) · v ≤ α min
s′∈S

Φ(s′) · v = min
x∈αK

x · v.

Loosely speaking, our oracle is able to perform minimization with respect to the setJ = αK
(or better). This is essentially how our algorithm will use the approximation oracle. However, as
mentioned before, many approximation algorithms can only handle non-negative weight vectors
or weight vectors from some other limited domain. Hence, we must extend the domain of the
oracle whenv /∈ W+.

6Note that representing a given feasible point as a convex combination of feasible points is similar torandomized
metarounding[29]. It would be interesting to extend the approach in [29],based on the ellipsoid algorithm, to our
problem and potentially achieve a more efficient algorithm.Related but simpler issues arise in [20].
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Figure 3.3: An approximation algorithm run on vectorw ∈ W always returns a points ∈ S such
that the setαK is contained in the halfspace tangent toΦ(s) whose normal direction isw. An
extended approximation algorithm, as illustrated here, takes anyw ∈ R

n as input and returns a
point x ∈ R

n such thatαK is contained in the halfspace tangent tox with normal vectorw. In
addition, it returns ans ∈ S such thatΦ(s) dominatesx.

Extending the domain We would like to find a feasibles ∈ S that satisfies the search condition
Φ(s) · v ≤ α mins′∈S Φ(s′) · v for a generalv ∈ R

n, but this is not possible given only anα-
approximation oracle that runs on only a subset ofR

n. Instead, we attempt to find a (potentially
infeasible)x ∈ R

n which does satisfy this search condition, and ans ∈ S which dominates
x, meaning that for allw ∈ W, c(s, w) ≤ x · w. More precisely, given any approximation
algorithm, we will use it construct the following type of oracle, which we will then use as a tool
in our projection algorithm:
Definition 3.3.4. An extended approximation oracleB : R

n → S × R
n is a function such that,

for all v ∈ R
n, if B(v) = (s, x), thenx · v ≤ α mins′∈S Φ(s′) · v andΦ(s) dominatesx.

Figure 3.3 depicts an extended approximation oracle. The following lemma
demonstrates that one can construct an extended approximation oracle from an approximation
oracle.
Lemma 3.3.5. Let A : W+ → S be anα-approximation oracle and suppose‖Φ(s′)‖ ≤ R
for all s′ ∈ S. Then the following is an extended approximation oracle: Ifv ∈ W+, then
B(v) = (A(v), Φ(A(v))), elseB(v) is

(

A(ΠW+(v)), Φ(A(ΠW+(v))) + R(α + 1)
ΠW+(v) − v

||ΠW+(v) − v||

)

.

Proof. For the case wherev ∈ W+, by definition,B(v) = (A(v), Φ(A(v))) suffices. Hence,
assumev /∈ W+. Let w = ΠW+(v), s = A(w), andx = Φ(s) + (α + 1)R w−v

||w−v|| . Then we must
show (a)x · v ≤ α mins′∈S Φ(s′) · v and (b)Φ(s) dominatesx.

We have assumed thatA is anα-approximation oracle with domainW+, and therefore it can
accept inputw. By the definition ofα-approximation, we havew · Φ(s) ≤ αw · Φ(s′) for all
s′ ∈ S. By the boundR, we also have that−α‖v − w‖R ≤ α(v − w) · Φ(s′) for all s′ ∈ S.
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Adding these two gives, for alls′ ∈ S,

αv · Φ(s′) ≥ w · Φ(s) − α‖v − w‖R

= v · x + (w − v) · Φ(s) − (α + 1)R
(w − v)

‖w − v‖ · v − α‖v − w‖R

≥ v · x − ‖w − v‖R − (α + 1)R
(w − v)

‖w − v‖ · (v − w) − α‖v − w‖R

= v · x.

This is what we need for part (a) of the lemma. The second-to-last line follows from the fact
that (v − w) · w = 0. To see this, note that sincew is the projection ofv ontoW+, we have
(v − w) · (w′ − w) ≤ 0 for anyw′ ∈ W+. Since0 ∈ W+, this implies that(v − w) · (−w) ≤ 0.
Since2w ∈ W+, this implies that(v − w) · w ≤ 0, and hence(v − w) · w = 0.

This also means that(v − w) · (w′ − w) = (v − w) · w′ ≤ 0 for all w′ ∈ W+, which directly
implies (b), that is,(x − Φ(s)) · w′ ≥ 0 for all w′ ∈ W.

Note that the magnitude of the outputx is at most‖Φ(s)‖+(α+1)R ≤ (α+2)R; this bound
will be useful for bounding the runtime of our algorithm.

3.3.3 The approximate projection algorithm

Using this extended approximation oracle, we can define our APPROX-PROJ algorithm, which
we present in Figure 3.1. The following lemma shows that the algorithm returns both a valid ap-
proximate projection (which could be infeasible) and a random feasible decision that dominates
the approximate projection (assuming thatΦ of the algorithm’s inputs dominated the algorithm’s
inputx).
Lemma 3.3.6. SupposeAPPROX-PROJ(z, s, x) returns (x′, s′). Thenx′ ∈ Πδ

αK(z). If s is a
random variable such thatE[Φ(s)] dominatesx, thenE[Φ(s′)] will dominatex′.

It is straightforward to see that thex returned by APPROX-PROJ satisfies the approximate
projection condition. The subtlety is in obtaining a feasible solution with the desired properties.
It turns out thatt returned byB in line 1 does not suffice, as thist only dominatesy, but not
necessarilyx. However, our randomized scheme does suffice.

of Lemma 3.3.6.The return condition of APPROX-PROJstates thatx′ · (x′−z) ≤ δ+y · (x′−z).
Using the definition of an extended approximation oracle, wethen get

x′ · (x′ − z) ≤ δ + α min
s′∈S

Φ(s′) · (x′ − z)

≤ δ + min
y′∈αK

y′ · (x′ − z)

as desired.
The proof of the second property proceeds by induction on thenumber of recursive calls

made by APPROX-PROJ. The base case holds trivially. Now suppose the inductive hypothesis
holds (E[Φ(s)] dominatesx). We will show that if(t, y) = B(x − z), the resultingE[λΦ(t) +
(1 − λ)Φ(s)] dominatesλy + (1 − λ)x.
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We observe:

x′ · w = (λy + (1 − λ)x) · w
= λy · w + (1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)E[Φ(s)] · w
= E[λΦ(t) + (1 − λ)Φ(s)] · w
= E[Φ(s′)] · w.

Thus, if APPROX-PROJ terminates, the desired conditions will hold.

3.3.4 Analysis

Our next lemma allows us to bound the number of calls Algorithm 3.3.1 makes toA andΦ on
each period.
Lemma 3.3.7. Suppose thatλ, δ > 0, the magnitudes of all vectors output by the extended

approximation oracle are≤ 1
2

√

δ
λ
, and‖x‖ ≤ 1

2

√

δ
λ
. ThenAPPROX-PROJ(z, s, x) terminates

after at most‖x−z‖2

λδ
iterations.

Proof. The analysis is reminiscent of that of the perceptron algorithm (see, e.g., Dunagan and

Vempala [42]). LetH = 1
2

√

δ
λ
. To bound the number of recursive calls to APPROX-PROJ, it

suffices to show that the non-negative quantity‖x − z‖2 decreases by at least an additiveλδ on
each call and that‖x‖ remains belowH on successive calls. The latter condition holds because
‖x‖, ‖y‖ ≤ H so‖λy + (1 − λ)x‖ ≤ λH + (1 − λ)H = H.

Notice that if the procedure does not terminate on a particular call, then

(x − y) · (x − z) > δ.

This means that the decrease in(x − z)2 in a single recursive call is

(x − z)2 − (λy + (1 − λ)x − z)2 = (x − z)2 − (λ(y − x) + (x − z))2

= 2λ(x − y) · (x − z) − λ2(y − x)2

> 2λδ − λ2(y − x)2.

Also, ‖y − x‖ ≤ 2H. Combining this with the previous observation gives

(x − z)2 − (λy + (1 − λ) x − z)2 > 2λδ − 4λ2H2 = λδ.

Hence the total number of iterations of APPROX-PROJ on each period is at most‖x −
z‖2/(λδ).

This lemma gives us a means of choosingλ. We are now ready to prove our main theorem
about full-information online optimization.
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of Theorem 3.3.2.Takeη = (α+1)R

W
√

T
, δ = (α+1)R2

T
, andλ = (α+1)

4(α+2)2T
. Sincex1 = Φ(s1), by

induction and Lemma 3.3.6, we have thatE[Φ(st)] dominatesxt for all t. Hence, it suffices to
upper-bound

∑T
t=1 xt ·wt. By Lemma 3.3.6, we have thatxt ∈ Πδ

αK(zt−1) on each period, so by
Lemma 3.3.3 we get

E[α-regret] ≤ 1

T

(

(α + 1)2R2

2η
+ T

δ

η
+

η

2
TW 2

)

.

Applying our chosen values ofη andδ, this gives anα-regret bound of1
T
((α + 1)RW

√
T +

RW
√

T ) = (α+2)RW√
T

as desired.
Now, as mentioned, the extended approximation oracle from Lemma 3.3.5 has the property

that it returns vectors of magnitude at mostH = 1
2

√

δ
λ

= (α + 2)R. Furthermore, it is easy to

see that all vectorsxt have‖xt‖ ≤ H, by induction ont. Then by Lemma 3.3.7, the total number
of iterations of APPROX-PROJ periodt is at most(2H‖x − z‖/δ)2 ≤ (2(α + 2)RηW/δ)2 =
4(α + 2)2T .

3.4 Bandit algorithm

We now describe how to extend Algorithm 3.3.1 to the partial-information model, where the only
feedback we receive is the cost we incur at each period. Flaxman et al. [53] also use a gradi-
ent descent style algorithm for online optimization in the bandit setting, but the details of their
approach differ significantly from ours. The algorithm we describe here requires access to an
exploration basise1, . . . , en ∈ S, which is simply a set ofn decisions such thatΦ(e1), . . . , Φ(en)
spanR

n. (If no such decisions exist, one can reduce the problem to a lower-dimensional prob-
lem.) Following previous approaches, we will (probabilistically) try each of these decisions from
time to time. As in the work of Dani and Hayes [35], we will assume thatΦ(ei) is the standard
ith basis vector, that is,ei[i] = 1 andei[j] = 0 for j 6= i. This assumption makes the algorithm
cleaner to present, and is without loss of generality because we can always useΦ(ei) as our basis
for representingRn.
Definition 3.4.1. A set{x1, x2, . . . xm} ⊆ S is a β-barycentric spanner (BS) forS ⊂ R

n if, for
everyx ∈ S, x can be written asx = β1x1 + . . . + βmxm for someβ1, . . . , βm ∈ [−β, β].

Note that we only need to construct a BS once for any problem, and then can re-use it for all
future instances of the problem.

Awerbuch and Kleinberg [4] prove that every compactS has a 1-BS of sizen, and, moreover,
give an algorithm for finding a size-n (1 + ǫ)-BS using poly(n, log(1/ǫ)) calls to an exact mini-
mization oracleM : R

n → S, whereM(v) ∈ argmins∈S Φ(s) · v. Unfortunately, as we show in
§3.4.1, one cannot find such a BS using a minimizer (exact or approximate) whose domain is not
all of R

n. Moreover, we show that one cannot guarantee low regret for the bandit problem using
just a black-box optimization algorithmA : W+ → S.

Hence, we assume that we are given aβ-BS for the problem at hand as part of the input. We
feel that this is a reasonable assumption. For example, notethat it is easy to find such a basis for
TSP and set cover withβ =poly(n): In the case of set cover, one can take then covers consisting
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Givenδ, η, γ > 0 and an initial point̂s1 as input, set̂x1 = Φ(ŝ1). Perform a change of basis so
thatΦ(e1), . . . , Φ(en) is the standard basis.

for t = 1, 2, . . .:

With probabilityγ, � exploration step
Choosei ∈ {1, . . . , n} uniformly at random.
st := ei; xt := Φ(ei).
Play(st).
Observeℓt = c(st, wt).
ŵt := (nℓt/γ)Φ(ei).
(x̂t+1, ŝt+1) := APPROX-PROJ(x̂t − ηŵt, ŝt, x̂t).

else, with probability1 − γ, � exploitation step
st := ŝt; xt := x̂t.
Play(st).
Observeℓt = c(st, wt).
ŵt := 0.
(x̂t+1, ŝt+1) := (x̂t, ŝt).

Figure 3.4: Algorithm for the bandit setting.

of all sets but one.7 In the case of TSP, we can start with any tourσ that visits all the edges at
least once and considerσe for each edgee which is the same asσ but traversese an additional
two times.

We present the algorithm for the bandit setting in Figure 3.4. We remark that our approach is
essentially the same as previous approaches and can be used as a generic conversion from a black-
box full-information online algorithm to a bandit algorithm. Previous approaches also worked
in this manner, but the analysis depended on the specific bounds of the black-box algorithm in a
way that, unfortunately, we cannot simply reference.
Theorem 3.4.2.For α, β ≥ 1, integerT ≥ 0 and anyw1, . . . , wT , given anα-approximation
oracle and aβ-BS, the algorithm in Figure 3.4 withη = (α+1)R

D
√

T
, δ = ηnT−1/3, and γ =

(4αβ)2/3nT−1/3 achieves an expectedα-regret bound in the bandit setting of

E[α-regret] ≤ 7n(αβ)2/3T−1/3.

The conversion from full-information to bandit is similar to other conversions [4, 35, 92].
Note that in the description of the algorithm,st is what is played at stept. Also note that̂xt+1

may be viewed as an approximate projection ofx̂t when it is generated in exploitation steps as
well as in exploration steps, sincêxt ∈ Πδ

αJ(x̂t − ηŵt) for ŵt = 0. We first prove a lemma:
Lemma 3.4.3. Let J ⊆ R

n be a convex set such that∀x̂ ∈ J, ‖x̂‖ ≤ R. Let w1, . . . , wT ∈
R

n be an arbitrary sequence and̂w1, . . . , ŵT be a sequence of random variables such that

7If any of these is not a cover, that set must be mandatory in anycover and we can simplify the problem. If this
set of covers is not linearly independent, then we can reducethe dimensionality of the problem and use the fact that
if T is a (possibly linearly dependent)β-BS forS andR is aγ-BS forT thenR is a(γβ|T |)-BS forS.

34



E[ŵt|x̂1, ŵ1, . . . , x̂t−1, ŵt−1, x̂t] = wt and E[ŵ2
t ] ≤ D2. Then, for any initial point̂x1 ∈ J

and any sequencêx1, x̂2, . . . such that̂xt+1 ∈ Πδ
αJ(x̂t − ηŵt),

E

[

T
∑

t=1

x̂t · wt

]

− α min
x∈J

T
∑

t=1

x · wt ≤
(α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

Proof. By Lemma 3.3.3, we have that

T
∑

t=1

x̂t · ŵt − α min
x∈J

T
∑

t=1

x · ŵt ≤
(α + 1)2R2

2η
+ T

δ

η
+

η

2

T
∑

t=1

ŵ2
t .

Taking expectations of both sides gives

T
∑

t=1

x̂t · wt − αE

[

min
x∈J

T
∑

t=1

x · ŵt

]

≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T.

It thus suffices to show that

E

[

min
x∈J

T
∑

t=1

x · ŵt

]

≥ min
x∈J

T
∑

t=1

x · wt − 2RD
√

T . (3.1)

Now, for anyx ∈ J ,
∣

∣

∣

∣

∣

T
∑

t=1

x · (ŵt − wt)

∣

∣

∣

∣

∣

≤ |x|
∣

∣

∣

∣

∣

T
∑

t=1

ŵt − wt

∣

∣

∣

∣

∣

≤ R

∣

∣

∣

∣

∣

T
∑

t=1

ŵt − wt

∣

∣

∣

∣

∣

. (3.2)

This gives us a means of upper-bounding the difference between the minima. Namely,

E

[ ∣

∣

∣

∣

∣

T
∑

t=1

ŵt − wt

∣

∣

∣

∣

∣

]2

≤ E





(

T
∑

t=1

ŵt − wt

)2




=
T
∑

t=1

E
[

(ŵt − wt)
2
]

. (3.3)

The last equality follows from the fact that

E[(ŵt1 − wt1)(ŵt2 − wt2)] = 0

for t1 < t2, which follows from the martingale-like assumption thatE[ŵt2 − wt2|ŵt1 , wt1 ] = 0.
Finally,

E[(ŵt − wt)
2] ≤ E[ŵ2

t + 2‖ŵt‖‖wt‖ + w2
t ]

≤ D2 + 2D2 + D2

= 4D2.
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In the above we have used the facts thatE[|ŵt|]2 ≤ E[ŵ2
t ] ≤ D2 and‖wt‖2 = E[ŵt]

2 ≤ E[ŵ2
t ] ≤

D2. Hence, we have that the quantity in (3.3) is upper bounded by4TD2, which, together with
(3.2), establishes (3.1).

of Theorem 3.4.2.We remark that the parameterγ in the statement of the theorem may be larger
than 1, but in this case the regret bound is greater than 1 and hence holds for any algorithm.

Note that in the conversion algorithm the expected value ofŵt is wt, and this is true condi-
tioned on all previous information as well asx̂t. Since Lemma 3.3.6 implieŝxt+1 ∈ Πδ

αJ(x̂t −
ηŵt), we can apply Lemma 3.4.3 to the sequencex̂t. This gives

T
∑

t=1

E[x̂t · wt] − α min
x∈J

T
∑

t=1

x · wt ≤
(α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

To apply the lemma, we use the boundD = nγ−1/2. This holds becauseℓt ∈ [0, 1], soE[ŵ2
t ] ≤

γ(nℓt/γ)2 + (1 − γ)0 ≤ n2/γ. Also, we use the bound ofR = β
√

n. Hence we choose
η = (α+1)R

D
√

T
andδ = ηnT−1/3, which simplifies the above equation to

T
∑

t=1

E[x̂t · wt] − α min
x∈J

T
∑

t=1

x · wt ≤ (α + 1)RD
√

T + nT 2/3 + 2αRD
√

T

≤ 4αRD
√

T + nT 2/3.

Substituting the values ofD andR gives an upper bound of4αβn3/2γ−1/2
√

T + T δ
η
.

Next, as in the analysis of the full-information algorithm,E[Φ(ŝt)] dominatesE[x̂t] by Lemma
3.3.6. Thus,

T
∑

t=1

E[c(ŝt, ·wt)] − α min
x∈J

T
∑

t=1

x · wt ≤ 4αβn3/2γ−1/2
√

T + nT 2/3.

Finally, we have thatE[c(st, wt)] ≤ E[c(ŝt, wt)] + γ because with probability1 − γ, ŝt = st and
in the remaining case the cost is in[0, 1]. Putting these together implies

T
∑

t=1

E[c(st, ·wt)] − α min
x∈J

T
∑

t=1

x · wt ≤ 4αβn3/2γ−1/2
√

T + nT 2/3 + γT.

Choosingγ = (4αβ)2/3nT−1/3 (note that if this quantity is larger than 1, then the regret bound in
the theorem is trivial) gives a bound of2n(4αβT )2/3 + nT 2/3 ≤ 7n(αβT )2/3 as in the theorem.

3.4.1 Difficulty of the black-box reduction

We now point out that it is impossible to solve the bandit problem with general algorithms (ap-
proximation or exact) without an exploration basis (that is, if our only access toS is through
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a black-box optimization oracle). The counterexample is randomized. Denote byw[1] the first
coordinate of a vectorw. We will take

W = {w ∈ R
n | w[1] ∈ [0, 1] and‖w‖2 ≤ 2(w[1])2}.

The setS will consist of two points: s = (1/2, 0, . . . , 0) as well as a second points′ =
(1, 0, . . . , 0) − u where‖u‖ = 1 andu[1] = 0. The mappingΦ is the identity mapping. The
cost sequence will be constantwt = (1, 0, . . . , 0) + u. Hencec(s, wt) = 1/2 while c(s′, wt) = 0.
Now, suppose we as algorithm designers know that this is the setup butu is chosen uniformly at
random from the set of unit vectors withu[1] = 0.
Observation 3.4.4.For any bandit algorithm that makesk calls to black-box optimization oracle
A, anyα ≥ 0, with probability1− ke−0.1n overu, the algorithm hasα-regret1/2 on a sequence
of arbitrary length.

Proof. No information is conveyed by the costs returned in the bandit setup of our example—
they are always 1/2 ifs′ has not been discovered, while the minimal cost is 0. Thus thealgorithm
must find somew ∈ W such thatc(s, w) > c(s′, w) (whence an exact optimization algorithm
must returns′), but is restricted to queryingw ∈ W. Without loss of generality, we can scalew
so thatw[1] = 1 and‖w‖ ≤ 2. Hence, we can writew = (1, 0, 0 . . . , 0) + v wherev[1] = 0 and
‖v‖ ≤ 1. In this case,w · s = 1/2, while w · s′ = 1 − u · v. Foru a random unit vector and any
fixed ‖v‖ ≤ 1, it is known thatPr[u · v ≥ 1/2] is exponentially small inn. A very loose bound
can be seen directly, since for a ball of dimensionn, this probability is

∫ 1

1/2
(
√

1 − x2)n−2dx
∫ 1

−1
(
√

1 − x2)n−2dx
≤

∫ 1

1/2
(3/4)

n−2
2 dx

∫ 1/
√

n

−1/
√

n
(1 − n−1)

n−2
2 dx

≤
√

ne

2

(

3

4

)
n

2
−1

,

which isO(e−0.1n).

3.5 Conclusions

In this chapter, we present a reduction converting approximate offline linear optimization prob-
lems into approximate online sequential linear optimization problems that holds foranyapprox-
imation algorithm, in both in the full-information settingand the bandit setting.

Our algorithm can be viewed as an analog to Hannan’s algorithm for playing repeated games
against an unknown opponent. In our case, however, we cannotcompute best responses but only
approximately best responses.

The problem of obtaining similar results for interesting classes of non-linear optimization
problems remains open.
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Chapter 4

Convergence to Nash Equilibria in Routing
Games

4.1 Introduction

One specific setting where efficient regret minimization algorithms exist is online routing. Given
a graphG = (V,E) and two distinguished nodesvstart andvend, the game for an individual
player is defined as follows. At each time stept, the player’s algorithm chooses a pathPt from
vstart to vend, and simultaneously an adversary (or nature) chooses a set of edge costs{ct

e}e∈E.
The edge costs are then revealed and the player pays the cost of its path. Even though the number
of possible paths can be exponential in the size of the graph,because this can be cast as a linear
optimization problem whose offline version can be solved exactly in polynomial time (the player
selects an indicator vector showing which graph edges are included in her path, and the weight
vector that shows up indicates the cost of each edge), prior work can be used to minimize regret
in this setting. For example, the algorithms of Kalai and Vempala [81] and Zinkevich [122]
achieve running time and convergence rates (to the cost of the best fixed path in hindsight) which
are polynomial in the size of the graph and the maximum edge cost. Moreover, a number of
extensions [4, 92] have shown how these algorithms can be applied even to the “bandit” setting
where only the cost of edges actually traversed (or even justthe total cost ofPt) is revealed to
the algorithm at the end of each time stept.

In this chapter we consider the question: if all players in a routing game use no-regret algo-
rithms to choose their paths each day, what can we say about the overall behavior of the system?
In particular, the no-regret property (also called Hannan Consistency) can be viewed as a natural
definitionof well-reasoned self-interested behavior over time. Thus, if all players are adapting
their behavior in such a way, can we say that the system as a whole will approach Nash equilib-
rium? Our main result is that in the Wardrop setting of multicommodity flow and infinitesimal
agents, the flows will approach equilibrium in the sense thata1−ǫ fraction of the daily flows will
have the property that at most anǫ fraction of the agents in them have more than anǫ incentive
to deviate from their chosen path, whereǫ approaches 0 at a rate that depends polynomially on
the size of the graph, the regret-bounds of the algorithms, and the maximum slope of any latency
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function.1

Moreover, we show that the one new parameter—the dependenceon slope—is necessary.
In addition, we give stronger results for special cases suchas the case ofn parallel links and
also consider the finite-size (non-infinitesimal) load-balancing model of Azar [8]. Our results for
nonatomic players also hold for a more general class of gamescalled congestion games, although
efficient regret-minimizing algorithms need not exist for the most general of these games.

One way our result can be viewed is as follows. No-regret algorithms are very compelling
from the point of view of individuals: if you use a no-regret algorithm to drive to work each
day, you will get a good guarantee on your performance no matter what is causing congestion
(other drivers, road construction, or unpredictable events). But it would be a shame if, were
everyone to use such an algorithm, this produced globally unstable behavior. Our results imply
that in the Wardrop routing model, so long as edge latencies have bounded slope, we can view
Nash equilibria as not just a stable steady-state or the result of adaptive procedures specifically
designed to find them, but in fact as the inevitable result of individual selfishly adaptive behavior
by agents that do not necessarily know (or care) what policies other agents are using. Moreover,
our results do not in fact require that users follow strategies that are no-regret in the worst-case,
as long as their behavior satisfies the no-regret property over the sequence of flows actually
observed.

4.1.1 Regret and Nash equilibria

At first glance, a result of this form seems that it should be obvious given that a Nash equilibrium
is precisely a set of strategies (pure or mixed) that are all no-regret with respect to each other.
Thus if the learning algorithms settle at all, they will haveto settle at a Nash equilibrium. In
fact, for zero-sumgames, no-regret algorithms when played against each otherwill approach
a minimax optimal solution [60]. However, it is known that even in small 2-playergeneral-
sumgames, no-regret algorithms need not approach a Nash equilibrium and can instead cycle,
achieving performance substantially worse than any Nash equilibrium for all players. Indeed
simple examples are known where standard algorithms will have this property with arbitrarily
high probability [123].

4.2 Preliminaries

4.2.1 Nonatomic congestion games

Let E be a finite ground set of elements (we refer to them asedges). There arek player types
1, 2, . . . , k, and each player typei has an associated set of feasible pathsPi, wherePi is a set

1A more traditional notion of approximate Nash equilibrium requires thatnoplayer will have more thanǫ incen-
tive to deviate from her strategy. However, one cannot hope to achieve such a guarantee using arbitrary no-regret
algorithms, since such algorithms allow players to occasionally try bad paths, and in fact such experimentation is
even necessary in bandit settings. For the same reason, one cannot hope thatall days will be approximate-Nash.
Finally, our guarantee may make one worry that some users could always do badly, falling in theǫ minority on every
day, but as we discuss in§4.5, the no-regret property can be used to further show that no player experiences many
days in which her expected cost is much worse than the best path available on that day.
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of subsets ofE. Elements ofPi are calledpathsor strategies. For example, player typei might
correspond to players who want to travel from nodeui to nodevi in some underlying graphG,
andPi might be the set of allui-vi paths. The continuumAi of agents of typei is represented
by the interval[0, ai], endowed with Lebesgue measure. We restrict

∑k
i=1 ai = 1, so there is a

total of one unit of flow. Each edgee ∈ E has an associated traffic-dependent, non-negative,
continuous, non-decreasinglatency function ℓe. A nonatomic congestion gameis defined by
(E, ℓ,P , A).

A flow determines a path for each player:fi : Ai → Qi whereQi is the set of0/1 vectors
in Pi with exactly one1. We writef = (

∫

A1
f1, . . . ,

∫

Ak

fk), where
∫

Ai

fi reflects the amount of
flow of typei on each path inPi. A flow thus induces a distribution over paths, which we write
for a pathP in Pi asfP = (fi)

P for P of type i. Thus,
∑

P∈Pi
fP = ai for all i, andfP is the

measure of the set of players selecting pathP . Each flow induces a unique flow on edges such
that the flowfe on an edgee has the propertyfe =

∑

P :e∈P fP . The latency of a pathP given a
flow f is ℓP (f) =

∑

e∈P ℓe(fe), i.e., the sum of the latencies of the edges in the path, giventhat
flow. The costαi incurred by a player of typei is simply the latency of the path she plays.

The social utility function we consider is the total cost incurred by a flow:γ(f) =
∑

e∈E ℓe(fe).
We define|E| = m and writen for the number of edges in the largest path inP. We will

assume all edge latency functions have range[0, 1], so the latency of a path is always between 0
andn. Let f 1, f 2, . . . , fT denote a series of flows from time 1 up to timeT . We usef̂ to denote
the time-average flow, i.e.,̂fe = 1

T

∑T
t=1 f t

e.
A flow f is atNash equilibriumif no user would prefer to reroute her traffic, given the existing

flow.
Remark 4.2.1. Network games are a special case of nonatomic congestion games, where there
is an underlying graphG and players of typei have a start nodeui and a destination nodevi,
andPi is the set of allui-vi paths.

It is useful to note that in this domain, the flows at equilibrium are those for which all flow-
carrying paths for a particular player type have the same latency, and this latency is minimal
among all paths for players of that type. In addition, given our assumption that all latency
functions are continuous and non-decreasing, one can provethe existence of Nash equilibria:
Proposition 4.2.2. (Schmeidler [112], generalization of Beckman et al. [12]) Every nonatomic
congestion game admits a flow at equilibrium.

In addition, for any nonatomic congestion game, there is a unique equilibrium cost:
Proposition 4.2.3. (Milchtaich [96], generalization of Beckman et al. [12]) Distinct equilibria
for a nonatomic congestion game have equal social cost.

In this chapter, excluding§4.7, we consider infinitesimal users using a finite number of dif-
ferent algorithms; in this setting, we can get rid of the expectation in the formulation of our
low-regret assumption. In particular, if each user is running a no-regret algorithm, then the aver-
age regret over users also approaches 0. Thus, since all players have bounded per-timestep cost,
applying the strong law of large numbers, we can make the following assumption:
Assumption 4.2.4.The series of flowsf 1, f 2, . . . satisfies

1

T

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e ≤ R(T ) +

1

T

k
∑

i=1

ai min
P∈Pi

T
∑

t=1

∑

e∈P

ℓe(f
t
e)

41



whereR(T ) → 0 asT → ∞. The functionR(T ) may depend on the size of the network and
its maximum possible latency. We then defineTǫ as the number of time steps required to get
R(T ) ≤ ǫ.

4.2.2 Approaching Nash Equilibria

We now need to specify in what sense flow will be approaching a Nash equilibrium. The first
notion one might consider is theL1 distance from some true Nash flow. However, if some edges
have nearly-flat latency functions, it is possible for a flow to have regret near 0 and yet still be far
in L1 distance from a true Nash flow. A second natural notion would be to say that the flowf has
the property that no user has cost much more than the cheapestpath givenf . However, notice
that the no-regret property allows users to occasionally take long paths, so long as they perform
well on average (and in fact algorithms for the bandit problem will have exploration steps that
do just that [4, 92]). So, one cannot expect that on any time stepall users are taking cheap paths.

Instead, we require thatmostusers be taking a nearly-cheapest path givenf . Specifically,

Definition 4.2.5. A flowf is at ǫ-Nash equilibrium if the average cost under this flow is withinǫ
of the minimum cost paths under this flow, i.e.C(f) −∑k

i=1 ai minP∈Pi

∑

e∈P ℓe(fe) ≤ ǫ.

Note that Definition 4.2.5 implies that at most a
√

ǫ fraction of traffic can have more than a√
ǫ incentive to deviate from their path, and as a result is very similar to the definition of(ǫ, δ)-

Nash equilibria in [52]. We also are able to show that one can apply price-of-anarchy results to
ǫ-Nash flows; we discuss this in§4.6.

We will begin by focusing on thetime-averageflow f̂ , showing that for no-regret algorithms,
this flow is approaching equilibrium. That is, for a givenTǫ we will give bounds on the number
of time steps beforêf is ǫ-Nash. After analyzinĝf , we then extend our analysis to show that in
fact for mosttime stepst, the flowf t itself is ǫ-Nash. To achieve bounds of this form, which we
show in§ 4.5, we will however need to lose an additional factor polynomial in the size of the
graph. Again, we cannot hope to say thatf t is ǫ-Nash forall (sufficiently large) time-stepst,
because no-regret algorithms may occasionally take long paths, and an “adversarial” set of such
algorithms may occasionally all take long paths at the same time.

4.2.3 Dependence on slope

Our convergence rates will depend on the maximum slopes allowed for any latency function.
To see why this is necessary, consider the case of a routing game with two parallel links, where
one edge has latency 0 up to a load of1/3 and then rises immediately to 1, and the other edge
has latency 0 up to a load of2/3 and then rises directly to 1. In this case the Nash cost is 0,
and moreover forany flow f ′ we haveminP∈P

∑

e∈P ℓe(f
′
e) = 0. Thus, the only wayf ′ can

be ǫ-Nash is for it to actually have low cost, which means the algorithm must precisely be at a
1/3-2/3 split. If players use no-regret algorithms, traffic will instead oscillate, each edge having
cost 1 on about half the days and each player incurring cost 1 on not much more than half the
days (and thus not having much regret). However, none of the daily flows will be better than
1
3
-Nash, because on each day, the cost of the flowf is at least 1/3.
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4.3 Infinitesimal Users: Linear Latency Functions

We begin as a warm-up with the easiest case, infinitesimal users and linear latency functions,
which simplifies many of the arguments. In particular, for linear latency functions, the latency of
any edge under the time-average floŵf is guaranteed to be equal to the average latency of that
edge over time, i.e.ℓe(f̂e) = 1

T

∑T
t=1 ℓe(f

t
e) for all e.

Theorem 4.3.1.Suppose the latency functions are linear. Then forT ≥ Tǫ, the average floŵf
is ǫ-Nash, i.e.

C(f̂) ≤ ǫ +
∑

i

ai min
P∈Pi

∑

e∈P

ℓe(f̂e).

Proof. From the linearity of the latency functions, we have for alle, ℓe(f̂e) = 1
T

∑T
t=1 ℓe(f

t
e).

Sinceℓe(f
t
e)f

t
e is a convex function of the flow, this implies

ℓe(f̂e)f̂e ≤
1

T

T
∑

t=1

ℓe(f
t
e)f

t
e.

Summing over alle, we have

C(f̂) ≤ 1
T

∑T
t=1 C(f t)

≤ ǫ +
∑

i ai minP∈Pi

1
T

∑T
t=1

∑

e∈P ℓe(f
t
e) (by Assumption 4.2.4)

= ǫ +
∑

i ai minP∈Pi

∑

e∈P ℓe(f̂e). (by linearity)

Corollary 4.3.2. Assume that all latency functions are linear. In general routing games, if all
agents use the Kalai-Vempala algorithm [81], the average flowconverges to anǫ-Nash equi-
librium at Tǫ = O(mn log n

ǫ2
). On networks consisting of two nodes andm parallel links, if all

agents use optimized “combining expert advice”-style algorithms (with each edge an expert),
the average flow converges to anǫ-Nash equilibrium atTǫ = O( log m

ǫ2
).

Note that we not only proved that the average flow approaches an ǫ-Nash equilibrium, but as
an intermediate step in our proof we showed thatactualaverage cost incurred by a user of typei
is at mostǫ worse than the best path inPi in the average flow.

4.4 Infinitesimal Users: General Latency Functions

The case of general latency functions is more complicated because the first and third transitions
in the proof above do not apply. Here, the additive term depends on the maximum slope of any
latency function.
Theorem 4.4.1.Let ǫ′ = ǫ + 2

√
sǫn. Then for general functions with maximum slopes, for

T ≥ Tǫ, the time-average flow isǫ′-Nash, that is,

∑

e∈E

ℓe(f̂e)f̂e ≤ ǫ + 2
√

sǫn +
∑

i

ai min
P∈Pi

∑

e∈P

ℓe(f̂e).
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Before giving the proof, we list several quantities we will need to relate:
∑

e∈E

ℓe(f̂e)f̂e (cost off̂ ) (4.1)

1

T

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f̂e (“cost of f̂ in hindsight”) (4.2)

1

T

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e (avg cost of flows up to timeT ) (4.3)

∑

i

ai min
P∈Pi

∑

e∈P

1

T

T
∑

t=1

ℓe(f
t
e) (cost of best path in hindsight) (4.4)

∑

i

ai min
P∈Pi

∑

e∈P

ℓe(f̂e) (cost of best path given̂f ) (4.5)

Our goal in proving Theorem 4.4.1 is to show that(4.1) is not too much greater than(4.5).
We will prove this as follows. We know that(4.3) ≤ ǫ + (4.4) by the no-regret property and that
(4.2) ≤ (4.3) by the fact thatℓ is non-decreasing. So, what remains to show is that(4.4) is not
much greater than(4.5) and that(4.1) is not much greater than(4.2). We prove these in Lemmas
4.4.2 and 4.4.3 below.
Lemma 4.4.2.For general latency functions with maximum slopes, (4.4) ≤ √

sǫn + (4.5).

Proof. First, observe that, because our latency functions are non-decreasing, the average latency
of an edge must be less than or equal to the latency of that edgeas seen by a random user on a
random day. That is, for alle,

1

T
f̂e

T
∑

t=1

ℓe(f
t
e) ≤

1

T

T
∑

t=1

ℓe(f
t
e)f

t
e.

This can be shown by induction, using the fact thatfa
e ℓe(f

b
e ) + f b

eℓe(f
a
e ) ≤ fa

e ℓe(f
a
e ) + f b

eℓe(f
b
e )

for any flowsfa
e , f b

e . Defineǫe = 1
T

∑T
t=1 ℓe(f

t
e)f

t
e − 1

T
f̂e

∑T
t=1 ℓe(f

t
e) to be the gap between

the above two terms. Now, notice that the right-hand side of the above inequality, summed over
all edges, is precisely quantity (4.3). By the no-regret property, this is at mostǫ larger than the
time-average cost of the best paths in hindsight, which in turn is clearly at most the time-average
cost off̂ . Therefore, we have:

1

T
f̂e

T
∑

t=1

∑

e∈E

ℓe(f
t
e) ≤ 1

T

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e

≤ ǫ +
1

T
f̂e

T
∑

t=1

∑

e∈E

ℓe(f
t
e).

That is, we have “sandwiched” the flow-average latency between the time-average latency and
the time-average latency plusǫ. This implies that for every edgee, its time-average cost must be
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close to its flow-average cost, namely,

∑

e∈E

ǫe ≤ ǫ.

We now use this fact, together with the assumption of boundedslope, to show that edge latencies
cannot be varying wildly over time. Specifically, we can rewrite the definition ofǫe as:

ǫe =
1

T

T
∑

t=1

(ℓe(f
t
e) − ℓe(f̂e))(f

t
e − f̂e) ≥ 0, (4.6)

where we are using the fact thatf̂e = 1
T

∑T
t=1 f t

e and so1
T

∑T
t=1 ℓe(f̂e)(f

t
e − f̂e) = 0.

From the bound on the maximum slope of any latency function, we know that|f t
e − f̂e| ≥

|ℓe(f
t
e) − ℓe(f̂e)|/s and thus

|ℓe(f
t
e) − ℓe(f̂e)| ≤

√

s
(

ℓe(f t
e) − ℓe(f̂e)

)(

f t
e − f̂e

)

for all e.
We then get

1

T

T
∑

t=1

∣

∣

∣
ℓe(f

t
e) − ℓe(f̂e)

∣

∣

∣
≤

√
s

T

T
∑

t=1

√

(ℓe(f t
e) − ℓe(f̂e))(f t

e − f̂e).

Using equation (4.6) above and the fact the square root is concave function, an application of the
Cauchy-Schwartz inequality yields

1

T

T
∑

t=1

∣

∣

∣
ℓe(f

t
e) − ℓe(f̂e)

∣

∣

∣
≤ √

sǫe. (4.7)

Finally, letP ∗
i be the best path of typei given f̂ . Summing equation (4.7) over the edges in

P ∗
i , and using the fact that

∑

i ai

∑

e∈P ∗
i

√
sǫe ≤

√
sǫn, we have

(4.5) +
√

sǫn ≥
∑

e∈P ∗

1

T

T
∑

t=1

ℓe(f
t
e) ≥ (4.4),

as desired.

Lemma 4.4.3.For general latency functions with maximum slopes, (4.1) ≤ √
sǫn + (4.2).

Proof. Equation (4.7) above directly gives us

(4.1) ≤
∑

e∈E

√
sǫef̂e + (4.2).
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An application of the Cauchy-Schwartz inequality then givesus

(

∑

e∈E

√
sǫef̂e

)2

≤
(

∑

e∈E

sǫe

)(

∑

e∈E

f̂ 2
e

)

.

Sincef̂e ≤ 1 for all e, this is at most
(
∑

e∈E sǫe

)

(

∑

e∈E f̂e

)

. Since
∑

e∈E f̂e ≤ n, this is at

mostsǫn, and thus
∑

e∈E

√
sǫef̂e ≤

√
sǫn,

which gives the desired result.

Given the above lemmas we now present the proof of Theorem 4.4.1.

of Theorem 4.4.1.Since(4.3) ≤ ǫ + (4.4) by Assumption 4.2.4, and(4.2) ≤ (4.3) by the fact
that the latency functions are non-decreasing, we get

(4.1) ≤ √
sǫn + (4.2)

≤ √
sǫn + (4.3)

≤ ǫ +
√

sǫn + (4.4)

≤ ǫ + 2
√

sǫn + (4.5)

as desired.

Corollary 4.4.4. Let ǫ′ = ǫ + 2
√

sǫn. Assume that all latency functions are positive, non-
decreasing, and continuous, with maximum slopes. In general routing games, if all agents
use the Kalai-Vempala algorithm [81], the average flow converges to anǫ′-Nash equilibrium at
Tǫ = O(mn log n

ǫ2
) = O(mn3s2 log n

ǫ′4 ). On networks consisting of two nodes andm parallel links, if
all agents use optimized “combining expert advice”-style algorithms, the average flow converges
to anǫ′-Nash equilibrium atTǫ = O( log m

ǫ2
) = O(n2s2 log m

ǫ′4 ).
Once again we remark that not only have we proved that the average flow approachesǫ′-Nash

equilibrium, but as an intermediate step in our proof we showed thatactualaverage cost obtained
by the users is at mostǫ′ worse than the best path in the average flow.

4.5 Infinitesimal Users: Bounds on Most Timesteps

Here we present results applicable to general graphs and general functions showing that onmost
time stepst, the flowf t will be at ǫ-Nash equilibrium.
Theorem 4.5.1.In general routing games with general latency functions with maximum slopes,
for all but a(ms1/4ǫ1/4) fraction of time steps up to timeTǫ, f t is a(ǫ+2

√
sǫn+2m3/4s1/4ǫ1/4)-

Nash flow. We can rewrite this as: for all but anǫ′ fraction of time steps up toTǫ, f t is anǫ′-Nash

flow for ǫ = Ω
(

ǫ′4

sm4+s2n2

)

.
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Proof. Based on equation (4.6),

√
sǫe ≥

1

T

T
∑

t=1

|ℓe(f
t
e) − ℓe(f̂e)|

for all edges. Thus, for all edges, for all buts1/4ǫ
1/4
e of the time steps,

s1/4ǫ1/4
e ≥ |ℓe(f

t
e) − ℓe(f̂e)|.

Using a union bound over edges, this implies that on all but ams1/4ǫ1/4 fraction of the time
steps,all edges have

s1/4ǫ1/4
e ≥ |ℓe(f

t
e) − ℓe(f̂e)|.

From this, it follows directly that on most time steps, the cost of the best path givenf t differs
from the cost of the best path given̂f by at mostn3/4s1/4ǫ1/4. Also on most time steps, the cost
incurred by flowf t differs from the cost incurred by floŵf by at mostm3/4s1/4ǫ1/4. Thus since
f̂ is an (ǫ + 2

√
sǫn)-Nash equilibrium,f t is an (ǫ + 2

√
sǫn + 2m3/4s1/4ǫ1/4)-Nash equilibrium

on all but ams1/4ǫ1/4 fraction of time steps.

Corollary 4.5.2. In general routing games with general latency functions with maximum slope
s, for all but a (ms1/4ǫ1/4) fraction of time steps up to timeT = Tǫ, the expected average cost
1
T

∑T
t=1 ct incurred by any user is at most(ǫ + 2

√
sǫn + m3/4s1/4ǫ1/4) worse than the cost of the

best path on that time step.

Proof. From the proof of Theorem 4.5.1 we see that on most days, the cost of the best path
given the flow for that day is withinm3/4s1/4ǫ1/4 of the cost of the best path given̂f , which is at
most2

√
sǫn worse than the cost of the best path in hindsight. Combining this with the no-regret

property achieved by each user gives the desired result.

This demonstrates that no-regret algorithms are a reasonable, stable response in a network
setting: if a player knows that all other players are using no-regret algorithms, there is no strategy
that will significantly improve her expected cost on more than a small fraction of days. By using
a no-regret algorithm, she gets the guarantee that on most time steps her expected cost is within
some epsilon of the cost of the best path given the flow for thatday.

4.6 Regret Minimization and the Price of Anarchy

In this section, we relate the costs incurred by regret-minimizing players in a single-commodity
congestion game to the cost of the social optimum. We approach this problem in two ways:
First, we show that anyǫ-Nash equilibrium in a single-commodity congestion game isclosely
related to a true Nash equilibrium in a related congestion game. This is an interesting property of
approximate equilibria, and further allows us to apply Price of Anarchy results for the congestion
game to the regret-minimizing players in the original game.In our second result in this section,
we give an argument paralleling that of Roughgarden and Tardos [109] that directly relates the
costs of multi-commodity regret-minimizing users to the cost of the social optimum.
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Theorem 4.6.1.If f is anǫ-Nash equilibrium flow for a single-commodity nonatomic congestion
gameΓ, then

C(f) ≤ ρ

1 −√
ǫ

(

C(OPT ) + s
√

ǫn +
√

ǫ + ǫ
)

,

whereOPT is the minimum cost flow andρ is the price of anarchy in a related congestion game
Γ′ with the same class of latency functions asΓ but with additive offsets.

For example, Theorem 4.6.1 implies that for linear latency functions of slope less than or
equal to one, anǫ-Nash flowf will have cost at most4/3

1−√
ǫ
(C(OPT ) +

√
ǫ(n + 1) + ǫ). Note

that for regret minimizing players, Theorem 4.6.3 below improves this to4
3
C(OPT ) + ǫ.

The proof idea for this theorem is as follows: For every nonatomic congestion gameΓ and
flow f at ǫ-Nash equilibrium onΓ, there exists a nonatomic congestion gameΓ′ that approxi-
matesΓ and a flowf ′ that approximatesf such that: (a)f ′ is a Nash flow onΓ′, (b) the cost of
f ′ on Γ′ is close to the cost off on Γ, and (c) the cost of the optimal flow onΓ′ is close to the
cost of the optimal flow onΓ. These approximations allow one to apply price-of-anarchyresults
from f ′ andΓ′ to f andΓ.

Proof. Note that sincef is a single-commodity flow atǫ-Nash equilibrium onΓ, then at most
a
√

ǫ fraction of users are experiencing costs more than
√

ǫ worse than the cost of the best path
givenf ; denote bymin the cost of this shortest path givenf . We can modifyΓ toΓ2 to embed the
costs associated with these “meandering” users such that the costs experienced by the remaining
users do not change. Call the non-meandering usersf2.

Note thatC(f onΓ) − min ≤ ǫ, sincef is at anǫ-Nash equilibrium. Also, the total costs
experienced by the meandering users are at mostC(f onΓ) − (1 −√

ǫ)min; that is, every non-
meandering user experiences cost at leastmin, since there is no cheaper path available. This is
in turn at mostǫ +

√
ǫmin ≤ ǫ +

√
ǫC(f onΓ).

We now construct an alternate congestion gameΓ3 (not necessarily a routing game, even if
the original game was a routing game) such thatf2 interpreted onΓ3 is a Nash equilibrium. To
do this, we create a new edge and include that edge in every allowable path . We can now assign
cost to this new “entry edge” to cause the minimum cost of any available path to be equal to the
cost of the worst flow-carrying path inf2 on Γ2. The maximum cost we need to assign in order
to achieve this is

√
ǫ, since we already removed all users paying more than

√
ǫ plus the cost of

the best path available to them. ThusC(f2 onΓ2) ≤ C(f2 interpreted onΓ3), so we have

C(f onΓ) ≤ 1

1 −√
ǫ

(C(f2 interpreted onΓ3) + ǫ) .

Defineρ to be the price of anarchy of the new congestion gameΓ3 when played with up to
one unit of flow. Thus, definingOPTα(H) to be the min-cost flow of sizeα in gameH, we have

C(f onΓ) ≤ ρ

1 −√
ǫ

(

C(OPT1−√
ǫ(Γ3)) + ǫ

)

.

Since we added at most
√

ǫ to the cost of any solution in going fromΓ2 to Γ3, this gives

C(f onΓ) ≤ ρ

1 −√
ǫ

(

C(OPT1−√
ǫ(Γ3) interpreted onΓ2) +

√
ǫ + ǫ

)

,
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and sinceOPT1−√
ǫ(Γ2) is the min-cost flow of size(1 −√

ǫ) onΓ2,

C(f onΓ) ≤ ρ

1 −√
ǫ

(

C(OPT1−√
ǫ(Γ2)) +

√
ǫ + ǫ

)

,

We now must quantify the amount by which the cost ofOPT1−√
ǫ on Γ2 could exceed the

cost ofOPT1 on Γ. Since the cost of any edge inΓ2 is at mosts
√

ǫ more than the cost of that
edge inΓ, this gives

C(f onΓ) ≤ ρ

1 −√
ǫ

(

C(OPT ) + s
√

ǫn +
√

ǫ + ǫ
)

.

In particular, when all latency functions are linear, we canapply results of Roughgarden and
Tardos bounding the price of anarchy in a congestion game with linear latency functions by4/3
[109].

We can also directly characterize the costs incurred by regret-minimizing players without go-
ing through the intermediate step of analyzingǫ-Nash flows by arguing from scratch paralleling
the Price of Anarchy proofs of Roughgarden and Tardos [109].
Definition 4.6.2. LetL be the set of cost functions used by a nonatomic congestion game, with
all ℓ(ξ)ξ convex on[0,∞). For a nonzero cost functionℓ ∈ L, we defineα(ℓ) by

α(ℓ) = sup
n>0:ℓ(n)>0

[λµ + (1 − λ)]−1

where the marginal social costℓ∗e(ξ) = ℓe(ξ) + ξ · ℓ′e(ξ), λ ∈ [0, 1] satisfiesℓ∗(λn) = ℓ(n), and
µ = ℓ(λn)/ℓ(n) ∈ [0, 1]. We defineα(L) by

α(L) = sup
06=ℓ∈L

α(ℓ).

Theorem 4.6.3.If Γ is a nonatomic congestion game with cost functionsL with all ℓ(ξ)ξ convex
on [0,∞), then the ratio of the costs incurred by regret-minimizing players to the cost of the
global optimum flow is asymptotically at mostα(L) (which is the Price of Anarchy bound given
by Roughgarden and Tardos [109]).

Proof. Let f ∗ be an optimal action distribution andf1, . . . , fT be a sequence of action distri-
butions obtained by regret-minimizing players. We can lower bound the optimum social cost
using a linear approximation of the functionℓe(ξ)ξ at the pointλt

ef
t
e, whereλt

e ∈ [0, 1] solves
ℓ∗e(λ

t
ef

t
e) = ℓe(f

t
e):

ℓe(f
∗
e )f ∗

e = ℓe(λ
t
ef

t
e)λ

t
ef

t
e +

∫ f∗
e

λt
ef t

e

ℓ∗e(f) dx

≥ ℓe(λ
t
ef

t
e)λ

t
ef

t
e + (f ∗

e − λt
ef

t
e)ℓ

∗
e(λ

t
ef

t
e)

= ℓe(λ
t
ef

t
e)λ

t
ef

t
e + (f ∗

e − λt
ef

t
e)ℓe(f

t
e)
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for all edges and time steps, and thus

C(f ∗) ≥ 1

T

T
∑

t=1

∑

e∈E

[ℓe(λ
t
ef

t
e)λ

t
ef

t
e + (f ∗

e − λt
ef

t
e)ℓe(f

t
e)].

We can rewrite this as

C(f ∗) ≥ 1

T

T
∑

t=1

∑

e∈E

[µt
eλ

t
ef

t
e + (1 − λt

e)f
t
e]ℓe(f

t
e) +

∑

e∈E

[f ∗
e − f t

e]ℓe(f
t
e),

whereµt
e = ℓe(λ

t
ef

t
e)/ℓe(f

t
e). By the regret minimizing property,

1

T

T
∑

t=1

∑

e∈E

f t
eℓe(f

t
e) ≤ ǫ +

∑

i

ai min
P∈Pi

1

T

T
∑

t=1

∑

e∈E

ℓe(f
t
e)

and thus
1

T

T
∑

t=1

∑

e∈E

f t
eℓe(f

t
e) ≤ ǫ +

1

T

T
∑

t=1

∑

e∈E

f ∗
e ℓe(f

t
e),

which gives us

C(f ∗) + ǫ ≥ 1

T

T
∑

t=1

∑

e∈E

[µt
eλ

t
ef

t
e + (1 − λt

e)f
t
e]ℓe(f

t
e).

By definition,µt
eλ

t
e + (1−λt

e) ≥ 1/α(L) for eache andt, soµt
eλ

t
ef

t
e + (1−λt

e)f
t
e]ℓe(f

t
e) and

ℓe(f
t
e)f

t
e differ by at most a multiplicativeα(L) factor for everye andt. This gives us

C(x∗) + ǫ ≥ 1

α(L)

1

T

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e =

C(x)

α(L)
,

as desired.

4.7 Discrete Users: Parallel Paths

In contrast with the previous sections, we now consider discrete users, where we denote theith
user weight aswi. Without loss of generality, we assume that the weights are normalized such
that

∑n
i=1 wi = 1. We limit ourselves in this section to the single-commodityversion of the

parallel paths routing game model and to functions with latency equal to the load, that is, for a
pathe we haveℓe = fe. For each useri, we let the latency excluding her own pathe at timet be
ℓe(f

t
e \ i) and her average latency on pathe beℓe(f̂e \ i) = 1

T

∑T
t=1 ℓe(f

t
e \ i), wheref t

e \ i = f t
e if

useri is not routing on pathe andf t
e \ i = f t

e − wi otherwise. We always exclude theith player
from the latency function, since theith player always pays for its weight.

Next we observe that at timet, there always exists a path with load at most the average load.
Observation 4.7.1.At any time stept, for every useri, there exists a pathe such thatℓe(f̂e \ i) ≤
1−wi

m
.
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The following theorem differs from other theorems in this chapter in the sense that it is an
expectation result and holds for every user.
Theorem 4.7.2.Consider the parallel paths model, with latency functions such that the latency
equals the load. Assume that each discrete useri uses an optimized best expert algorithm. Then
for all users, for allT ≥ O( log m

ǫ2
),

1

T

T
∑

t=1

Ee∼qt
[ℓe(f

t
e \ i)] ≤ 1 − wi

m
+ ǫ,

whereqt is the distribution over them paths output by the best expert algorithm at timet.

Proof. By Observation 4.7.1 we have that there exists a path with average cost at most1−wi

m
.

Since useri is using an optimized best expert algorithm and the maximal latency is1, we have
that

1

T

T
∑

t=1

Ee∼qt
[ℓe(f

t
e \ i)] ≤ min

e∈E
ℓe(f̂e \ i) +

√

log m

T

≤ 1 − wi

m
+

√

log m

T

≤ 1 − wi

m
+ ǫ

where the last inequality holds forT ≥ O( log m
ǫ2

).

Consider an instance of this model where every user plays uniformly at random. The resulting
flow is clearly a Nash equilibrium, and the expected latency for theith player is1−wi

m
excluding

its own weight. We thus have shown that the expected latency experienced by each useri is at
mostǫ worse than this Nash latency.

4.8 Conclusions

In this chapter, we consider the question: if each player in arouting game (or more general con-
gestion game) uses a no-regret strategy, will behavior converge to a Nash equilibrium, and under
what conditions and in what sense? Our main result is that in the setting of multicommodity flow
and infinitesimal agents, a1 − ǫ fraction of the daily flows are atǫ-Nash equilibrium forǫ ap-
proaching 0 at a rate that depends polynomially on the players’ regret bounds and the maximum
slope of any latency function. Moreover, we show the dependence on slope is necessary.

Even for the case of reasonable (bounded) slopes, however, our bounds for general nonlinear
latencies are substantially worse than our bounds for the linear case. For instance if agents are
running the Kalai-Vempala algorithm [81], we get a bound ofO(mn log n

ǫ2
) on the number of time

steps needed for the time-average flow to reach anǫ-Nash equilibrium in the linear case, but
O(mn3 log n

ǫ4
) for general latencies. We do not know if these bounds in the general case can be

improved. In addition, our bounds on the daily flows lose additional polynomial factors which
we suspect are not tight.
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We also show that Price of Anarchy results can be applied to regret-minimizing players in
routing games, that is, that existing results analyzing thequality of Nash equilibria can also be
applied to the results of regret-minimizing behavior. Recent work [16] shows that in fact Price of
Anarchy results can be extended to cover regret-minimizingbehavior in a wide variety of games,
including many for which this behavior may not approach equilibria and where Nash equilibria
may be hard to find.
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Chapter 5

The Price of Total Anarchy

5.1 Introduction

As mentioned in the introduction, one of the main thrusts of research in algorithmic game theory
has been the study of the ratio between the cost of the worst Nash equilibrium and that of the
social optimum (the “Price of Anarchy” [87]), as a tool for understanding the outcomes of selfish
behavior. In this chapter, we study the value obtained in games with selfish agents when we
make a much weaker and more realistic assumption about theirbehavior. We consider repeated
play of the game and allow agents to play any sequence of actions with only the assumption that
this action sequence has low regret with respect to the best fixed action in hindsight. This “price
of total anarchy” is strictly a generalization of price of anarchy, since in a Nash equilibrium,
all players have zero regret. Regret minimization is a realistic assumption because there exist a
number of efficient algorithms for playing games that guarantee regret that tends to zero, because
it requires only localized information, and because in a game with many players in which the
actions of any single player do not greatly affect the decisions of other players (as is often studied
in the network setting), players can only improve their situation by switching from a strategy with
high regret to a strategy with low regret.

We consider four classes of games: Hotelling games, in whichplayers compete with each
other for market share, valid games [118] (a broad class of games that includes among others
facility location, market sharing [65], traffic routing, and multiple-item auctions), linear conges-
tion games with atomic players and unsplittable flow [6] [25], and parallel link congestion games
[87]. We prove that in the first three cases, the price of totalanarchy matches the price of an-
archy exactly even if the play itself is not approaching equilibrium; for parallel link congestion
we get an exact match forn = 2 links but an exponentially greater price for generaln when the
social cost function is the makespan. When we consider average load instead, we prove that if
the machine speeds are relatively bounded, that the price oftotal anarchy is1 + o(1), matching
the price of anarchy. For linear congestion games and average cost load balancing, the price of
anarchy bounds were previously only known for pure strategyNash equilibria, and as a corollary
of our price of total anarchy bounds, we prove the corresponding price of anarchy bound for
mixed Nash equilibria as well.

Most of our results further extend to the case in which only some of the agents are acting
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to minimize regret and others are acting in an arbitrary (possibly adversarial) manner. When
studyinganarchy, it is vital to consider players who behave unpredictably, and yet this has been
largely ignored up until now. Since Nash equilibria are stable only if all players are participating,
and sink equilibria [63] are defined over state graphs that assume that all players play rationally,
such guarantees are not possible under the standard price ofanarchy model or the price of sinking
model [63].1

5.1.1 Our results

In this chapter, we study the price of total anarchy in four classes of games. We emphasize that
our analysis does not presume that players play according toany particular class of algorithms;
our results hold whenever players happen to experience low regret, which is a strictly weaker
assumption than that players play according to a Nash equilibrium. In Section 5.3 we examine a
class of generalized Hotelling games, where sellers selectlocations on a graph and achieve rev-
enues that depend on their own locations as well as the locations chosen by the other sellers. We
prove that for such games (and an even broader class, see Section 5.3.3), any regret minimizing
player gets at least half of her fair share of the sales, regardless of how the other (Byzantine)
players behave.2 This result exactly matches the price of anarchy in these games. Hotelling
games and their generalizations model not only situations involving staking out market share in
physical space, but also to the game politicians play in choosing how to position themselves on
the political landscape.

Valid games, introduced by Vetta [118], model games where the social utility is submodular,
the private utility of each player is at least her Vickrey utility (the amount her presence contributes
to the overall welfare), and where the sum of the players’ private utilities is at most the total social
utility. In Section 5.4 we prove that the price of total anarchy in valid games with nondecreasing
social utility functions exactly matches the (Nash) price of anarchy, even if Byzantine players
are added to the system.

Finally, in Section 5.5, we analyze atomic congestion gameswith two types of social welfare
functions. First, we consider unweighted atomic congestion games with player-summed social
welfare functions, and in both the linear cost and the polynomial cost case, we show price of
total anarchy results that match the price of anarchy [6, 25]. Next, we consider a parallel link
congestion game with social welfare equal to makespan, the game that initiated the study of the
price of anarchy [87], and show that the price of total anarchy of the parallel link congestion
game with two links is3/2, exactly matching the price of anarchy. We also show that theprice
of total anarchy in the parallel link game withn links isΩ(

√
n), which is strictly worse than the

price of anarchy. Finally, we show a price of total anarchy matching the known price of anarchy
in the load balancing game with the sum social utility function. In the case of load balancing
with sum social utility, our price of total anarchy results also yield previously unknown price of
anarchy results for mixed strategies.

1Babaioff et al. [9] propose a model of network congestion with “malicious” players. Their model defines
malicious behavior as optimizing a specific function, however, and is not equivalent to arbitrary play.

2We note that robustness to Byzantine players is not inherentin our model. Indeed, there exist games for which
the addition of Byzantine players can make the social welfare, as well as the utilities of individual regret-minimizing
players, arbitrarily bad.
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In Section 5.6, we discuss techniques for minimizing regretin each of these settings.

5.2 Preliminaries

In this chapter, we considerk-player games. For each playeri, we denote byAi the set of pure
strategies available to that player. A mixed strategy is a probability distribution over actions in
Ai; we denote bySi the set of mixed strategies available to playeri. LetA = A1×A2× . . .×Ak

andS = S1 × S2 × . . . × Sk. Every game has an associated social utility functionγ : A → R

that takes a set containing an action for each player to some real value. Each playeri has an
individual utility functionαi : A → R.

We often want to talk about the social or individual utility of a strategy profileS = {s1, . . . , sk} ∈
S. To this end, we denote bȳγ : S → R the expected social utility over randomness of the
players and bȳαi : S → R the expected value of the utility of a strategy profile to player i.
We denote the social value of the socially optimum strategy profile byOPT = maxS∈S γ̄(S) in
maximization problems. Correspondingly,OPT = minS∈S γ̄(S) in minimization problems.

We also sometimes wish to talk about a modification of a particular strategy profile; letS⊕s′i
be the strategy set obtained if playeri changes her strategy fromsi tos′i. Let∅i be the null strategy
for playeri (playeri takes no action). We use superscripts to denote time, soSt is the strategy
profile at timet; st

i is playeri’s strategy at timet.

Definition 5.2.1. The price of total anarchy for an instance of a maximization game is defined
to bemax OPT

1
T

P

T

t=1 γ̄(St)
, where the max is taken over allT andS1, S2, . . . , ST , whereS1, . . . , ST

are play profiles of players with the regret-minimizing property. The price of total anarchy for an

instance of a minimization game is defined to bemax
1
T

P

T

t=1 γ̄(St)

OPT
, where the max is taken over all

T andS1, S2, . . . , ST , whereS1, . . . , ST are play profiles of players with the regret-minimizing
property.

Because all players have zero regret when playing a Nash equilibrium, the price of total
anarchy of a game is never less than its price of anarchy. In this chapter we study the price of
anarchy and the price of total anarchy for general classes ofgames. The price of (total) anarchy
for a class of games is defined to be the maximum price of (total) anarchy over any instance
in that class. Bounds on the price of (total) anarchy for a class of games may not be tight for
particular instances in that class.

5.3 Hotelling games

Hotelling games [75] are well studied in the economics literature; see, for example, [61] and [84]
for surveys. Hotelling games are traditionally location games played on a line, but we generalize
them to an arbitrary graph and a broad class of behaviors on the part of the customers. We prove
our result first for a specific Hotelling game, and then observe that our proof still holds in a much
more general setting.
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5.3.1 Definition and price of anarchy

Imagine a set of souvenir stand owners in Paris who must decide where to set up their souvenir
stands each day. Every day,n tourists buy a souvenir from whichever stand they find first. Each
stand operator wishes to maximize her own sales. Every day there aren sales, and we wish
to maximize fairness: The social welfare function is the minimum sales of any souvenir stand.
Formally, this maximization game is defined by ann vertex graphG = (V,E) and a numberk of
players, called sellers. Every selleri among thek sellers has strategy setAi = V , that is, every
day she sets up her stand on some vertex of the graph. Each day,every tourist chooses a path
from some private distribution over orderings of the nodes of the graph, and buys from the seller
he encounters first (for instance, as a special case, we couldhave one tourist at each vertex of
the graph who purchases from the nearest souvenir stand). Iftwo sellers are reached at the same
time, we assume the tourist splits his contribution among them equally. At any timet the social
welfare isγ̄(St) = mini ᾱi(S

t). The social optimum is obtained by splitting all vertices equally
among allk players (this can be achieved if all players play on the same vertex). Therefore
OPT = n/k. This tension between the objective of a franchiser to locate outlets in such a way
that each individual franchisee has sufficient demand and the desires of the individual franchisees
to maximize profits, has been studied in the business and operations research literature [28].

In general, Hotelling-style games need not have pure equilibria: consider a continuous ver-
sion of the game, where sellers can select any location on[0, 1] and receive revenue equal to the
total region to which they are closest. Again, if multiple sellers choose the same location, they
evenly split the corresponding revenue. Now, no matter how we fix the locations of three players,
at least one of them will wish to move, to undercut the others.Despite this, we can study the
quality of the mixed Nash equilibria of the game.
Theorem 5.3.1.The price of anarchy of the Hotelling game is(2k − 2)/k.

Proof. Given a strategy setS, consider the alternate set(S ⊕ ∅i). There arek − 1 active players
in this alternate set and the total payoff is stilln, so there must be some playerh who achieves
expected payoff̄αh(S ⊕ ∅i) ≥ n/(k − 1). If player i played the same strategy as playerh, she
would achieve expected payoff̄αi(S ⊕ sh) ≥ n

(2k−2)
. Thus, any strategy achieving expected

payoff less than n
(2k−2)

is not an equilibrium strategy, since in a Nash equilibrium,no player
wishes to change her strategy.

This bound is tight: Consider a game on a graph withk− 1 identical stars, where we identify
tourists with vertices of the graph and each patronizes the nearest souvenir stand. In this exam-
ple, k − 1 of the players play deterministically at the center of theirown star; playerk plays
uniformly at random over allk − 1 star centers. This strategy setS is a Nash equilibrium, and
the randomizing player earns̄αk(S) = n/(2k − 2) (the other players do better), so the social
welfareγ(S) = n/(2k − 2). SinceOPT = n/k, this demonstrates that the price of anarchy is
OPT

γ̄(S)
= (2k−2)

k
.

5.3.2 Price of total anarchy

Since at a Nash equilibrium, no player has regret, the price of total anarchy for the Hotelling
game is at least(2k − 2)/k. In this section, we show that this value is tight; that is:
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Theorem 5.3.2.The price of total anarchy in the Hotelling game is(2k − 2)/k, matching the
price of anarchy.

The proof of this theorem relies on the symmetry of the game; this property was similarly
useful to Chien and Sinclair [24] in the context of studying convergence to Nash equilibria in
symmetric congestion games.

Let Ot
i be the set of plays at timet by all playersother than playeri. Let Oi =

∑T
t=1 Ot

i , the
union with multiplicity of all plays of players other thani over all time periods.
Definition 5.3.3. Let ∆t→u

i be the quantity such that if playeri plays an action uniformly at
random fromOt

i at time stepu, she achieves expected payoffn/(2k−2)+∆t→u
i . Note that∆t→t

i

is always non-negative because thek − 1 other players have average payoff exactlyn/(k − 1)
when playeri is removed.
Lemma 5.3.4.For all i, for all 1 ≤ t, u ≤ T : ∆u→t

i + ∆t→u
i ≥ 0.

Proof. If t = u, the claim follows easily, as noted in the definition. Otherwise, imagine a
(2k − 2)-player game in which there is a time-t player and a time-u player for each original
player other thani. The time-t version of a playerj plays strategyst

j; the timeu version plays
su

j . Since the sum of all players’ payoffs isn, if player i picks a random strategy from among
those already being played and plays it in this imaginary game replacingthe player she copies,
i expects to have payoffn/(2k − 2). Half of the time, playeri will select a time-t strategy and
replace that time-t player. It can only improvei’s payoff in this case to remove all of the other
time-t players and only play against time-u players. This leavesi playing a strategy uniformly
selected fromOt

i at timeu. A parallel argument holds the other half of the time, when playeri
selects a time-u strategy, and thus

n

(2k − 2)
≤ 1

2

(

n

(2k − 2)
+ ∆t→u

i

)

+
1

2

(

n

(2k − 2)
+ ∆u→t

i

)

=
n

(2k − 2)
+

1

2
(∆t→u

i + ∆u→t
i )

as desired.

Proof of Theorem 5.3.2.Fix a sequence of playsS1, . . . , ST . Recall thatOi = O1
i + . . . + OT

i .
Defineot

i to be the uniform distribution overOt
i. Picking an actiona uniformly at random from

Oi is equivalent to picking a random time stepu and then picking a strategya ∈ Ou
i uniformly at

random. Playeri’s expected payoff had she randomly selectedou
i and played it over allT rounds

is

1

T

T
∑

u=1

T
∑

t=1

ᾱi(S
t ⊕ ou

i ) =
1

T

T
∑

u=1

T
∑

t=1

(

n

(2k − 2)
+ ∆u→t

i

)

=
Tn

(2k − 2)
+

1

T

T
∑

u=1

T
∑

t=1

∆u→t
i

≥ Tn

(2k − 2)
,
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where the last inequality holds because of Lemma 5.3.4. Therefore, there must be some single
fixed actiona∗ ∈ S that achieves at leastTn

(2k−2)
when played overT rounds of the above game.

Any regret minimizing player achieves expected total payoff at least this much (minusǫ), and so
has expected payoff at leastn/((2k − 2)) − ǫ, proving the theorem.

5.3.3 The price of total anarchy in generalized Hotelling games

We note that the proof of Theorem 5.3.2 made no use of the specifics of the Hotelling game
described above. In particular, the same proof shows that any regret minimizing player achieves
expected payoff approachingn/(2k − 2) regardlessof how other players behave, and so we are
able to guarantee good payoff among regret-minimizing players players even in the presence of
Byzantine players making arbitrary (or adversarial) decisions.
Theorem 5.3.5.Any player who minimizes regret in the Hotelling game achieves payoff ap-
proachingn/(2k − 2), regardless of how the other players play.

The same proof also holds when the buyers use much more general rules for choosing which
stand to patronize.3 Neither do we use the fact that players’ utilities are linear. In fact, our proof
only makes use of three properties of the Hotelling game:

1. Constant Sum: The individual utilities of the players in the game always sum to the same
value, regardless of play.

2. Symmetric: All players have the same action set, and the payoff vector is a function of the
action vector that is invariant to a permutation of the namesof the players.

3. Monotone: The game is defined for any number of players, and removing players from the
game (while keeping the strategies of the remaining playersfixed) does not decrease the
payoff for any remaining player. If multiple players employthe same pure strategy, their
total utility is at least the utility that would be achieved by a single player among them
employing that strategy while the others among them play theempty strategy.

We call such games with the “fairness” social utility function γ̄(S) = mini αi(S) generalized
Hotelling gamesand get the following theorem:
Theorem 5.3.6.In anyk-player, generalized Hotelling game, the price of total anarchy among
regret minimizing players is(2k − 2)/k even in the presence of arbitrarily many Byzantine play-
ers.

One slight generalization of the Hotelling game that fits this model is as follows: buyers each
have different distributions over permutations on the nodes in the graph; every day they sample
from that distribution and visit the nodes in the given order, buying from the first seller they
encounter. Note that in this setting, if the number of buyersis super-constant, and we only have
oracle access to the buyers, it is not clear how to solve for a Nash equilibrium in polynomial
time, but sellers may efficiently run regret minimizing algorithms.

Models for understanding how customers select among sellers are are understandably a hot
topic in operations research. One of the primary approacheswas introduced by Huff [76, 77],

3One caveat is that customers may not in general base their selection rules on the actions of the players—for
instance by patronizing thesecondclosest souvenir stand. If we were to allow rules such as this, removing players
from the game could decrease the payoff of some of the remaining players, and we rely on this not being the case.
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and proposes that customers will buy from a particular seller with a probability that depends
inversely on the distance to it, and also on some measure of the seller “attractiveness.” Such a
gravity basedmodel of buyer choices also fits into the generalized Hotelling framework. While
one line of the subsequent work in this area has been on techniques for evaluating attractiveness,
a second line of work focuses on mathematical programming techniques for selecting facility
locations to maximize market share in this model (see, for example, [39, 41]).

Another generalization of the Hotelling game for which these theorems hold is thec-franchise
game, wherein each seller must choose locations on the graph forc businesses. Megiddo et
al. [93] give anO(cn2) algorithm for the offline version of this problem, themaximum coverage
location problem (when customers simply patronize the nearest store), when the game graphs are
restricted to trees; they also observe that the general problem is closely related to the NP-hard
problem of minimum dominating set. Thec-franchise model, in combination with the gravity
model, has also received attention in the operations research literature, with Drezner et al. [40]
proposing a complex multi-step heuristic procedure for solving even the offline problem, when
the locations of the other player’s franchises are known ahead of time.

Building on the idea of the gravity-based model, we can further generalize the class of
Hotelling games to remove the constant sum assumption; the resulting class ofgeneralized lo-
cation gamesencompasses Hotelling games, but also similar games where the buyers have a
maximum distance they are willing to travel, other models ofbuyer behavior, and Hotelling
games on disconnected graphs. We can build on our results forgeneralized Hotelling games to
bound the price of anarchy and price of total anarchy for these games as well:
Theorem 5.3.7.The price of anarchy for generalized location games is at most 2.

Proof. Let v be the social welfare of an optimal solution (that is, the number of customers served
by the worst seller). Consider a Nash equilibrium strategy set S. If there exists a playerj with
payoff ᾱj(S) ≥ v, any other player inS would prefer to defect to actionSj and get payoff at
leastv/2, were she not already achieving at least this utility.

Otherwise, no such playerj exists. In this case, a playeri considering defecting fromS could
consider each of thek−1 strategies taken by other players inS, plus thek actions taken by players
in OPT. The union of these2k − 1 strategies (note that there may be duplicates) covers at least
n′ customers in expectation, and so the expected value achieved by the best strategy among them
(were all2k − 1 strategies played simultaneously) is at leastn′

2k−1
≥ vk

2k−1
≥ v/2. Among these

2k − 1 actions the one that achieves the best performance when played against thek − 1 actions
in (S ⊕ ∅i) then achieves expected value more thanv/2, and so this best strategy is one of the
actions inOPT. If there exists a playeri in S with payoff ᾱi(S) ≤ v/2, she would improve her
expected payoff by defecting to this action inOPT.

The proof of the price of total anarchy for generalized Hotelling games is based on the idea
of copying an action of a random opponent at a random timestepin history, and showing that
the expected regret of this fixed action is low,even when not making any assumptions about the
guarantees achieved by your opponents. Unfortunately, this is not true for generalized location
games, since arbitrary opponents could choose actions so that the total number of customers they
serve is much less than the optimal solution serves. Instead, we can make an argument similar to
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that above for the price of anarchy for generalized locationgames, thateithercopying a random
action in historyor playing an action from an optimal strategy profile will have low regret.
Theorem 5.3.8.The price of total anarchy in generalized location games is at most3.

Proof. Again, letv be the social welfare of an optimal solution. Our analysis considers two cases
with respect to a regret-minimizing playeri.

In the first case, suppose that the historyS1, S2, . . . , ST is such that the average number of
customers serviced on each timestep byS1 ⊕ ∅i, . . . , S

T ⊕ ∅i is at least2kv/3. In this case, we
can use an analysis similar to that in the proof of Theorem 5.3.2 to show that a randomly-selected
opponent action from a random time step has expected averagepayoff at leastv/3 in hindsight.

Otherwise, consider the expected payoff in hindsight of thegroup of actions that make up
an optimal solution; since these actions by themselves cover at leastkv customers, even in com-
petition with the action history, they cover at leastkv/3 on average. Then at least one of thek
actions inOPT achieves average payoff at leastv/3 when played againstS1 ⊕ ∅i, . . . , S

T ⊕ ∅i.
Since there always exists a fixed action with average payoff at leastv/3, regret-minimizing

algorithms converge to achieve at least this payoff, as well.

Note that the above proof did not use the assumption that the opponents are regret-minimizing
(or any other assumption about their actions), and so this result holds even against Byzantine
opponents.

5.3.4 Regret minimization need not converge

Since players may efficiently minimize regret in Hotelling games, but may not necessarily be
able to compute Nash equilibria, it is notable that we are able to match standard price-of-anarchy
guarantees. In fact, it is possible that regret-minimizingplayers in Hotelling games never con-
verge to a Nash equilibrium:
Theorem 5.3.9.Even if all players in the Hotelling game are regret minimizing, stage game play
need not converge to Nash equilibrium.

Proof. Considerk players{0, . . . , k− 1} on a graph withk− 1 identical(n− 1)/(k− 1)-vertex
stars with centersv0, . . . , vk−2 and an isolated vertexvk−1. At time periodt, playeri plays on
vertexvt+i mod k. Each player has expected payoff

(

k−1
k

) (

n−1
k−1

)

+
(

1
k

)

= n/k, but no fixed vertex

has expected payoff more than
(

k−2
k

)

(

n−1
2(k−1)

)

+
(

1
k

) (

n−1
k−1

)

+ 1
k
, so no player has positive regret.

However, at each time period, the player at the isolated vertex vk−1 has incentive to deviate, so
this is not a Nash equilibrium.

In addition, we observe that the uncoupled empirical distribution of play does not constitute
a mixed Nash equilibrium, nor does thejoint empirical distribution of play constitute a mixed
Nash. This highlights the fact that a sequence of play can be low regret in hindsight, but still
place nonzero probability on a strictly dominated action.

A similar example shows that even if all players minimize internal regret (so that play is
guaranteed to converge to the set of correlated equilibria), play can cycle forever and so need not
converge to Nash equilibrium.4

4k players play on a set ofk/2 + 1 vertices. Players are divided into two equal sized groups,L andR. Every
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5.4 Valid games

5.4.1 Definitions and price of anarchy

Valid games, introduced by Vetta [118], are a broad class of games that includes the market
sharing game studied by Goemans et al. [65], the facility location problem, a version of the
traffic routing problem of Roughgarden and Tardos [108], and multiple-item auctions [118].
When describing valid games, we slightly adapt the notation of [118]. Consider ak-player
maximization game, where each playeri has a groundset of actionsVi from which she can play
some subset. Not every subset of actions is necessarily allowed. LetV = V1 × . . . × Vk, and
let Ai = {ai ⊆ Vi : ai is a feasible action}. Let the game have some social utility function
γ : 2V → R, and let each player have a private utility functionαi : 2V → R. The discrete
derivative off atX ⊆ V in the directionD ⊆ V − X is f ′

D(X) = f(X ∪ D) − f(X).
Definition 5.4.1. A set functionf : 2V → R is submodular if forA ⊆ B, f ′

i(A) ≥ f ′
i(B)

∀i ∈ V − B.
Note that submodular utility functions represent the economic concept of decreasing marginal

utility, reflecting economies of scale.
Definition 5.4.2. A game with private utility functionsαi : 2V → R and social utility function
γ : 2V → R is valid if γ is submodular and

ᾱi(S) ≥ γ̄′
si
(S ⊕ ∅i) (5.1)

k
∑

i=1

ᾱi(S) ≤ γ̄(S) (5.2)

Condition 5.1 states that each agent’s payoff is at least herVickrey utility—the change in
social utility that would occur if agenti did not participate in the game. Condition 5.2 states that
the social utility of the game is at least the sum of the agents’ private utilities.

For example, consider the market sharing game studied by Goemans et al. [65]. The game is
played on a bipartite graphG = ((V, U), E). Each vertex inV is a player, and each vertex inU
is a market. Each market has a value and a cost to service it, and each player has a budget. A
player may enter a set of markets to which she has edges, if thesum of their costs is at most her
budget. For each market that a player enters, she receives payoff equal to the value of that market
divided by the number of players that chose to enter it. The social utility function is the sum
of the individual player utilities, or equivalently, the sum of the values of the markets that have
been entered by any player. This valid game models a situation in which cable internet providers
enter different cities with values proportional to their populations and share the market equally
with other local providers; the social utility is the numberof people with access to high speed
internet.

Vetta [118] analyzes the price of anarchy of valid games and shows that ifS is a Nash equi-
librium strategy andΩ = {σ1, . . . , σk} is a strategy profile optimizing the social utility function

turn, there is exactly one player onk/2 vertices, andk/2 players on the remaining vertex. Players inL andR get
their own vertices on alternate turns, and the crowded vertex rotates, so that each player is equally often on every
vertex, and on any particular vertex she is equally often alone and crowded. Therefore no player has any incentive
to swap any vertex with any other.
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so that̄γ(Ω) = OPT, then

OPT ≤ 2γ̄(S) −
∑

i:σi=si

γ̄′
si
(S ⊕ ∅i)

−
∑

i:σi 6=si

γ̄′
si
(Ω ∪ (S ⊕ ∅i ⊕ . . . ⊕ ∅k)).

Thus, ifγ is nondecreasing, then for any Nash equilibrium strategyS, γ(S) ≥ OPT/2, giving
a price of anarchy of 2. In contrast, Goemans et al. [63] show that the price of sinking for valid
games is larger thann.

5.4.2 Price of total anarchy

In this section, we show that the price of total anarchy for valid games matches the price of
anarchy exactly:
Theorem 5.4.3.If all players play regret-minimizing strategies forT rounds, with strategy profile
Si at timei, then

OPT ≤ 1

T

T
∑

i=1

(

2γ̄(St) −
∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i)

−
∑

i:σi 6=st

i

γ̄′
st

i

(Ω ∪ (St ⊕ ∅i ⊕ . . . ⊕ ∅k))

)

+ ǫk.

Proof. Suppose all players use low regret strategies, so that for any playeri,

Tǫ +
T
∑

t=1

ᾱi(S
t) ≥

T
∑

t=1

ᾱi(S
t ⊕ σi).

Expanding terms, we can rewrite this as

Tǫ +
∑

t:st

i
=σi

ᾱi(S
t) +

∑

t:st

i
6=σi

ᾱi(S
t)

≥
∑

t:st

i
=σi

ᾱi(S
t ⊕ σi) +

∑

t:st

i
6=σi

ᾱi(S
t ⊕ σi).

We note that whenst
i = σi, ᾱi(S

t) = ᾱi(S
t ⊕ σi), so this yields

ǫT +
∑

t:st

i
6=σi

ᾱi(S
t) ≥

∑

t:st

i
6=σi

ᾱi(S
t ⊕ σi).

Summing over all players, we get

kǫT +
k
∑

i=1

∑

t:st

i
6=σi

ᾱi(S
t) ≥

k
∑

i=1

∑

t:st

i
6=σi

ᾱi(S
t ⊕ σi)

≥
k
∑

i=1

∑

t:st

i
6=σi

γ̄′
σi

(St ⊕ ∅i),
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where the second equation holds by assumption 5.1. Now note that
T
∑

t=1

γ̄(St) ≥
T
∑

t=1

k
∑

i=1

ᾱi(S
t)

=
T
∑

t=1

∑

i:σi=st

i

ᾱi(S
t) +

T
∑

t=1

∑

i:σi 6=st

i

ᾱi(S
t)

≥
T
∑

t=1

∑

i:σi 6=st

i

ᾱi(S
t) +

T
∑

t=1

∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i)

=
k
∑

i=1

∑

t:σi 6=st

i

ᾱi(S
t) +

T
∑

t=1

∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i),

where the third line holds by assumption 5.2 and the fourth line is a reordering of the summations.
This gives us

k
∑

i=1

∑

t:σi 6=st

i

γ̄′
σt

i

(St ⊕ ∅i) ≤ Tǫk +
k
∑

i=1

∑

t:σi 6=st

i

ᾱi(S
t)

≤ Tǫk +
T
∑

t=1

γ̄(St) −
T
∑

t=1

∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i).

We use the following lemma proved by Vetta [118]:

Lemma 5.4.4. If Ω = {σ1, . . . , σk} is a strategy profile optimizing the social utility functionγ,
then for any strategy profileS

γ̄(Ω) ≤ γ̄(S) +
∑

i:σi 6=si

γ̄′
σi

(S ⊕ ∅i) −
∑

i:σi 6=si

γ̄′
si
(Ω ∪ (S ⊕ ∅i ⊕ . . . ⊕ ∅k)).

From Lemma 5.4.4, for any sequence of playsS1, . . . , S
t,

T γ̄(Ω) ≤
T
∑

t=1

(

γ̄(St) +
∑

i:σi 6=st

i

γ̄′
σi

(St ⊕ ∅i)

−
∑

i:σi 6=st

i

γ̄′
st

i

(Ω ∪ (St ⊕ ∅i ⊕ . . . ⊕ ∅k))

)

.

Substituting, we get

T · OPT ≤
T
∑

i=1

(

2γ̄(St) + ǫk −
∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i)

−
∑

i:σi 6=st

i

γ̄′
st

i

(Ω ∪ (St ⊕ ∅i ⊕ . . . ⊕ ∅k))

)

,

which completes the proof.
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For nondecreasingγ, we get the following corollary:
Corollary 5.4.5. If γ is nondecreasing, the price of total anarchy for valid gamesis asymptoti-
cally 2.

The price of anarchy and the price of sinking are both brittleto the addition of Byzantine
players. In contrast, for nondecreasing social welfare functionsγ, our price of total anarchy
result holds even in the presence of arbitrarily many Byzantine players. In any valid game,
suppose players1, . . . , k are regret minimizing. LetOPT = γ(Ω) be the optimal value for these
players playing alone. Suppose there is some additional setof Byzantine playersB that behave
arbitrarily.
Theorem 5.4.6.Consider a valid game with nondecreasing social welfare functionγ, where the
k regret minimizing players playS1, . . . , ST overT time steps while the Byzantine players play
B1, . . . , BT . Then the average social welfare1/T

∑T
t=1 γ(St ∪ Bt) ≥ OPT/2.

Proof. We observe that

γ(Ω∪Bt)

≤ γ(Ω ∪ St ∪ Bt)

= γ(St ∪ Bt) +
∑

i:σi 6=st

i

γ′
σi

(St ∪ Bt ∪ (Ω ⊕ ∅i ⊕ . . . ⊕ ∅k))

≤ γ(St ∪ Bt) +
∑

i:σi 6=st

i

γ′
σi

(St ⊕ ∅i ∪ Bt),

where the first inequality follows becauseγ is nondecreasing, and the third follows from sub-
modularity. We then have

OPT ≤ γ(Ω ∪ Bt)

≤ γ(St ∪ Bt) +
∑

i:si 6=σi

γ′
σi

(St ⊕ ∅i ∪ Bt)

≤ γ(St ∪ Bt) +
∑

i:si 6=σi

αi(S
t ⊕ σi ∪ Bt)

with the first line following becauseγ is nondecreasing, and the second from the Vickrey condi-
tion. Summing overT , this yields

T · OPT ≤
T
∑

t=1

γ(St ∪ Bt) +
T
∑

t=1

∑

i:si 6=σi

αi(S
t ⊕ σi ∪ Bt).

Suppose
∑T

t=1 γ(St ∪ Bt) < T · OPT/2. Since

T
∑

t=1

k
∑

i=1

αi(S
t ∪ Bt) ≤

T
∑

t=1

k+|B|
∑

i=1

αi(S
t ∪ Bt) ≤

T
∑

t=1

γ(St ∪ Bt),

it must be that
k
∑

i=1

T
∑

t=1

αi(S
t ⊕ σi ∪ Bt) >

k
∑

i=1

T
∑

t=1

αi(S
t ∪ Bt),
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and so there is some regret minimizing playeri for whom
∑T

t=1 αi(S
t⊕σi∪Bt) >

∑T
t=1 αi(S

t∪
Bt), violating the condition that he is regret minimizing.

Note that here we have shown that in a valid game with a nondecreasing social utility func-
tion, if k players minimize regret and an arbitrary number of Byzantineplayers areaddedto the
system, the resulting social welfare is no worse than half the optimal social welfare fork players.
This is a slightly different result than we showed for Hotelling games, where we were able to
guarantee that each regret-minimizing player obtains at least half of her fair share of the entire
game, regardless of what the otherk − 1 players do. On the other hand, for valid games one
clearly cannot obtain half of the optimum social welfare fork + |B| players since the Byzantine
players need not be acting in even their own interest.

Valid games and Hotelling games can both be used to model competition in markets; the
main difference between them is the social utility function, with Hotelling games considering
“fairness”, or minimum player utility, and with valid gamesexplicitly constrained to have social
utility at least the sum of the player utilities (and so unable to depend solely on the utility of
the worst-off player). Another difference is the inherent symmetry of Hotelling games. One
can, however, construct a Hotelling game quite similar to the market sharing game described
at the beginning of this section: represent each market as a star graph. The size of the star
corresponds to the the value of the market. Any player can play at the center of any star, and we
can model budgets by allowing playeri to play at the centers ofci stars. With the fairness social
utility function, this is a minor modification of ac-Hotelling game (one can also connect the
stars but stipulate that the buyers will only travel at most distance one, to get a slightly modified
generalized location game). Using, for example, a sum social utility function, this is a valid utility
game. Because the player utility functions are the same in each, the techniques and outcomes of
regret minimization are the same; only the analysis ofquality of the outcomes differs.

5.5 Atomic Congestion Games

In this section, we show price of total anarchy results matching existing price of anarchy re-
sults for atomic, unweighted congestion games with social utility equal to the sum of the player
utilities [6, 25]. We also consider the atomic congestion game of weighted load balancing with
social utility equal to the makespan [29, 87, 88], and show matching results for two links, but
demonstrate that forn links, the price of total anarchy is exponentially worse than the price of
anarchy. Finally, we consider weighted load balancing withsocial utility equal to the sum of the
player utilities [115], and show that fork >> n, the price of total anarchy is1+o(1). In the case
of load balancing with sum social utility, our price of totalanarchy results also imply previously
unknown price of anarchy results for mixed strategies.

A congestion game is a minimization game consisting of a set of k players and, for each
playeri, a setVi of facilities. Playeri plays subsets of facilities from some feasible setAi =
{ai ⊆ Vi : ai is a feasible action}. In weightedgames, each playeri has an associated weightwi;
in unweightedgames, each player weight is1. Each facilitye has an associated latency function
ℓe. A playeri playingai experiences costαi =

∑

e∈ai
ℓe(fe) wherefe is the load on facilitye:

fe =
∑

j:e∈ai
wj.
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5.5.1 Atomic congestion games with sum social utility

In this section, we consider unsplittable atomic selfish routing with unweighted players. The
social utility function we consider in this section is the sum of the player costs, orγ(A) =
∑

i αi(A). We writeΩ = {σ1, . . . , σk} for a strategy profile optimizing the social utility function
γ. We writef t

e for the load on edgee at timet, andf ∗
e for the load on edgee in Ω.

We first consider linear edge costs of the formℓe(fe) = cefe + be for edgee. In this setting,
Christodoulou and Koutsoupias [25] and Awerbuch et al. [6] independently showed that the price
of anarchy for pure strategies is 2.5. We show a matching bound for the price of total anarchy,
which also implies the matching bound shown by Christodoulouand Koutsoupias [26] for the
price of anarchy for mixed strategies and for correlated equilibria.
Theorem 5.5.1.The price of total anarchy of atomic congestion games with unweighted players,
sum social utility function, and linear cost functions is 2.5.

Proof of Theorem 5.5.1.Let Ω = {σ1, . . . , σk} be a strategy profile optimizing the social utility
function so that̄γ(Ω) = OPT By the assumption of regret minimization, each player’s time
average cost is no more than the cost of her best fixed action inhindsight. In particular, it is no
more than if she had played her part in the optimal strategy onevery timestep: For alli,

T
∑

t=1

ᾱi(S
t) =

T
∑

t=1

∑

e∈st

i

cef
t
e + be

≤
T
∑

t=1

ᾱi(S
t ⊕ σi)

≤
T
∑

t=1

∑

e∈σi

ce(f
t
e + 1) + be.

Summing over each player and rearranging the sum:

T
∑

t=1

∑

e∈E

∑

i s.t.e∈st

i

cef
t
e + be ≤

T
∑

t=1

∑

e∈E

∑

i s.t.e∈σi

ce(f
t
e + 1) + be

=
T
∑

t=1

∑

e∈E

cef
t
ef

∗
e + cef

∗
e + bef

∗
e .

We now use a lemma also used by Awerbuch et al. [6]:

Lemma 5.5.2.For i, j > 0 integers:

1. ij = 1
3
j2 + 3

4
i2 − 1

3
(j − 3

2
i)2

2. 9
8
i2 + 3

2
i − 1

2
(j − 3

2
i)2 ≤ 5

2
i2

66



We can apply part 1 of the lemma to get

T
∑

t=1

∑

e∈E

(cef
t
e + be)f

t
e

≤
T
∑

t=1

∑

e∈E

ce

(

1

3
(f t

e)
2 +

3

4
(f ∗

e )2 − 1

3
(f t

e −
3

2
f ∗

e )2 + f ∗
e

)

+ bef
∗
e .

This is equivalent to

T
∑

t=1

∑

e∈E

(cef
t
e +

3

2
be)f

t
e

≤
T
∑

t=1

∑

e∈E

ce

(

9

8
(f ∗

e )2 +
3

2
f ∗

e − 1

2
(f t

e −
3

2
f ∗

e )2

)

+
3

2
bef

∗
e .

This allows us to apply property 2 of the lemma to obtain

T
∑

t=1

∑

e∈E

(cef
t
e + be)f

t
e ≤

T
∑

t=1

∑

e∈E

5

2
ce(f

∗
e )2 +

3

2
bef

∗
e

≤ 5

2

T
∑

t=1

∑

e∈E

(cef
∗
e + be)f

∗
e ,

which proves the claim.

Corollary 5.5.3 (Christodoulou and Koutsoupias [26]). The price of anarchy of atomic conges-
tion games with unweighted players, sum social utility function, and linear cost functions is 2.5,
even for mixed strategies. The same bound also holds for correlated equilibria in this setting.

We next consider polynomial latency functions and show a bound matching the price of anar-
chy shown by Christodoulou and Koutsoupias [25] and Awerbuchet al. [6] for mixed strategies.
Theorem 5.5.4.The price of total anarchy of atomic congestion games with unweighted players,
sum social utility function, and polynomial latency functions of degreed is at mostdd1−o(1)

.

Proof. By the no-regret property we have for each playeri:

T
∑

t=1

∑

e∈at

i

ℓe(f
t
e) ≤

T
∑

t=1

∑

e∈σi

ℓe(f
t
e + 1).

We may sum over each player:

T
∑

t=1

∑

e∈E

∑

i s.t.e∈at

i

ℓe(f
t
e) ≤

T
∑

t=1

∑

e∈E

∑

i s.t.e∈σi

ℓe(f
t
e + 1)
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and rearrange the sums:

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e ≤

T
∑

t=1

∑

e∈E

ℓe(f
t
e + 1)f ∗

e .

We now apply a lemma used by Christodoulou and Koutsoupias [25]:

Lemma 5.5.5.For f(x) a polynomial with non-negative coefficients of degreed, and for every
x, y ≥ 0:

y · f(x + 1) ≤ x · f(x)

2
+

C0(d) · y · f(y)

2
,

whereC0(d) = pp1−o(1)
.

Applying the lemma, we get

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e ≤

T
∑

t=1

∑

e∈E

ℓe(f
t
e + 1)f ∗

e

≤
T
∑

t=1

(
∑

e∈E

f t
ef(f t

e)

2
+
∑

e∈E

C0(d)f ∗
e f(f ∗

e )

2
).

Rearranging, we then get

T
∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e ≤ C0(d)

T
∑

t=1

∑

e∈E

f(f ∗
e )f ∗

e ,

which completes the proof.

5.5.2 Parallel link congestion game with makespan social utility

The parallel link congestion game modelsn identical links andk weighted players (jobs) who
must choose which link to use. Each player pays the sum of the weights of the jobs on the link
she chose. The social cost for this game is defined as the totalweight on the worst-loaded link.
This game was the main focus of the Koutsoupias and Papadimitriou paper that introduced the
concept of the price of anarchy [87].

More formally, this is a minimization game where for each player i, the feasible actions are
Ai = {1, . . . n}. The social utility function isγ(A) = maxj∈{1,...n}

∑

i:ai=j wi.
Koutsoupias and Papadimitriou [87] proved that the price ofanarchy of the parallel link

congestion game with two links is3/2. Two groups of researchers [31, 88] later proved that the
price of anarchy when there aren links isΘ(log n/ log log n).

In this section, we show a matching bound on the price of totalanarchy for 2 links. We also
show that forn links, the price of total anarchydoes notmatch the price of anarchy.
Theorem 5.5.6.The price of total anarchy of the parallel link congestion game with makespan
social utility and two links is3/2, exactly matching the price of anarchy.
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The proof parallels that in the original Koutsoupias and Papadimitriou paper [87]. It is subtler
because regret-minimizing algorithms only give a guarantee in expectation, on average, and make
no guarantees about the performance on any given day.

Proof of Theorem 5.5.6.Denote byqi the expected probability that playeri is on the maximally
loaded machine (breaking ties between equally loaded machines at random). Note that the ex-
pected social cost is then̄γ(S) =

∑k
i=1 qiwi. By the regret-minimizing property, for all players,

1
T

∑T
t=1 ᾱi(S

t) ≤ wi + ǫ + 1
T

∑T
t=1

P

h : h6=i
wh

2
.

Definepij to be the expected probability that playeri selects machinej; cih is the expected
probability that playersi andh select the same machine. Then for any fixedi,

∑

h:h 6=i

(qi + qh)wh ≤
∑

h:h 6=i

(1 + cih)wh

≤
∑

h:h 6=i

wh +
∑

h:h 6=i

cihwh

=
∑

h:h 6=i

wh +
∑

h:h 6=i

(pi1ph1wh + pi2ph2wh).

Note that for any playeri, regardless of her strategy, her cost is

ᾱi(S) = wi + pi1

∑

h:h 6=i

ph1wh + pi2

∑

h:h 6=i

ph2wh

by definition. This relationship is essentially Lemma 1 of [87]; however they only note that it
holds for Nash equilibrium strategies. This gives us

∑

h:h 6=i(qi+qh)wh ≤∑h:h 6=i wh+ᾱi(S)−wi.
Averaging over time, this is

1

T

T
∑

t=1

∑

h:h 6=i

(qt
i + qt

h)wh ≤ 1

T

T
∑

t=1

∑

h:h 6=i

wh +
1

T

T
∑

t=1

ᾱi(S
t) − wi.

Using the fact that playeri obtains low regret, we then have

1

T

T
∑

t=1

∑

h:h 6=i

(qt
i + qt

h)wh ≤ 1

T

T
∑

i=1

∑

h:h 6=i

wh + ǫ +
1

T

T
∑

t=1

∑

h : h 6=i wh

2
.
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Rearranging, this yields for any fixedi

1

T

T
∑

t=1

γ̄(St)

=
1

T

T
∑

t=1

k
∑

h=1

qt
hwh

≤ 1

T

T
∑

t=1

(

3

2

∑

h:h 6=i

wh + qt
iwi −

∑

h 6=i

qt
iwh

)

+ ǫ

=
1

T

T
∑

t=1

(

3

2

k
∑

h=1

wh −
3wi

2
+ qt

iwi − qt
i

k
∑

h=1

wh + qt
iwi

)

+ ǫ

=
1

T

T
∑

t=1

(

(

3

2
− qt

i

) k
∑

h=1

wh +

(

2qt
i −

3

2

)

wi

)

+ ǫ.

Note thatOPT ≥ max{1
2

∑k
h=1 wh, wi} for anyi. If for all agentsi, 1

T

∑T
t=1 qt

i ≤ 3
4
, then

1

T

T
∑

t=1

γ̄(St) =
1

T

T
∑

t=1

k
∑

h=1

qt
hwh

=
∑

h

(

wh
1

T

∑

t

qt
h

)

≤ 3

4

∑

h

wh

≤ 3

2
OPT.

Otherwise, there exists some agenti such that1
T

∑T
t=1 qt

i > 3
4

and thus

1

T

T
∑

t=1

γ̄(St)

≤ 2OPT
1

T

∑

t

(
3

2
− qt

i) + OPT
1

T

∑

t

(2qt
i −

3

2
) + ǫ

=
3

2
OPT + ǫ,

as desired.

For the parallel link congestion game withn links, the price of total anarchy diverges from
the price of anarchy. This divergence stems from the fact that in the parallel links game, the
social cost functionγ is defined in terms of expected maximumlink latency, whereas individual
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utility is a function of averagejob latency.5 In the single stage Nash equilibrium analyzed for
price of anarchy results, the two values are related: expected job latency for playeri is equal to
the average link latency of every link in the support ofi’s mixed strategy. In a Nash equilibrium,
therefore, maximum expected link latency must be low, and with tail bounds, it is straightfor-
ward to argue that the expected maximum link latency cannot be too high [31]. Over an arbitrary
sequence of regret-minimizing plays, however, average joblatency no longer necessarily corre-
sponds to the average latency of any link. This is demonstrated by a cycling example we use in
the proof of the following theorem:
Theorem 5.5.7.The price of total anarchy in the parallel link game with makespan social utility
andn links isΩ(

√
n).

Proof of Theorem 5.5.7.Considern parallel links1, . . . , n, andn players all with unit weights
wi = 1. Clearly, OPT = 1. Define a sequence of playsA1, . . . , AT as follows: Divide
the players into2

√
n groupsG0, . . . , G2

√
n−1, each of size

√
n/2. At time t, all players in

G(t mod 2
√

n) play on link1, and all other players play over links2 + (t mod n − 1), 2 + (t + 1
mod n− 1), . . . , 2 + (t + n−√

n/2− 1 mod n− 1) so that there is exactly one player on each
link (ordering may be arbitrary). Then each player experiences average latency1

T

∑T
t=1 αi(A

t) =
1

2
√

n
·
√

n
2

+ 2
√

n−1
2
√

n
· 1 = 5

4
− 1

2
√

n
. Consider the latency experienced by playeri if she were to play

at any fixed node. Given the sequence of plays described above, every nodev ≥ 2 is occupied by
some playerh 6= i on an(n −√

n/2 − 1)/(n − 1) fraction of time steps. Since playeri always

pays for her own weight, she expects to experience latency2 · n−
√

n

2
−1

n−1
+ 1 ·

√
n

2(n−1)
= 2−

√
n

2(n−1)
.

Therefore, for sufficiently largen, all players experience negative regret. Nevertheless, atevery
time step, the maximum latency isΩ(

√
n).

5.5.3 Parallel links congestion game with sum social utility

We have just shown that the price of total anarchy does not match theO(log n/ log log n) price
of anarchy for the load balancing game with the makespan social utility function. The results in
Section 5.5.1, however, imply a price of total anarchy≤ 2.5 for the load balancing game with
thesumsocial utility function (since load balancing is a special case of routing), even for mixed
strategies and different server speeds. In fact, we can showmore: in this section, we show that so
long ask >> n and the server speeds are relatively bounded, the price of total anarchy is1+o(1).
This matches a price of anarchy result shown by Suri et al. [115] for pure strategy equilibria. Our
theorem below implies an equivalent price of anarchy resulteven for mixed strategy equilibria.
Theorem 5.5.8.In the load balancing game with sum social cost and linear latency functions,
the price of total anarchy is1 + o(1) provided thatk >> n and server speeds are relatively
bounded.

5Note that if we were to redefine the social cost functionγ for the parallel links game to be the maximum
expectedjob latency, it is simple to verify that the resulting price of total anarchy is 2: Rescale the weights so that
OPT = 1. Total weight is≤ n, andwi ≤ 1 for all players. Over any sequence of plays, there must be some link
with average latencyl ≤ 1. Therefore, every playeri is guaranteed to experience average latency in expectationat
mostl + wi + ǫ ≤ 2 + ǫ.
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Proof of Theorem 5.5.8.By the no regret property, for each playeri,
T
∑

t=1

ᾱi(A
t) =

T
∑

t=1

lat

i

πat

i

≤
T
∑

t=1

ᾱi(A
t ⊕ σi) ≤

T
∑

t=1

ltσi
+ 1

πσi

.

Summing over all players and reordering the sum, we get
T
∑

t=1

∑

e∈E

(f t
e)

2

πe

≤
T
∑

t=1

∑

e∈E

(f t
e + 1) · f ∗

e

πe

≤
T
∑

t=1

∑

e∈E

1

πe

(

(f t
e)

2 + (f ∗
e )2

2
+ f ∗

e

)

,

where the second inequality follows from the fact thata · b ≤ a2+b2

2
. Subtracting, we get

1

2

T
∑

t=1

∑

e∈E

(f t
e)

2

πe

≤
T
∑

t=1

∑

e∈E

1

πe

(

(f ∗
e )2

2
+ f ∗

e

)

T
∑

t=1

∑

e∈E

(f t
e)

2

πe

≤
T
∑

t=1

∑

e∈E

(f ∗
e )2 + 2f ∗

e

πe

.

Combining these inequalities, we can bound the price of totalanarchy:
∑T

t=1

∑

e∈E
(f t

e)2

πe

∑T
t=1

∑

e∈E
(f∗

e )2

πe

≤
∑T

t=1

∑

e∈E
(f∗

e )2+2f∗
e

πe

∑T
t=1

∑

e∈E
(f∗

e )2

πe

= 1 + 2

∑T
t=1

∑

e∈E
f∗

e

πe

∑T
t=1

∑

e∈E
(f∗

e )2

πe

≤ 1 + 2
T
∑

t=1

∑

e∈E
f∗

e

πe

∑

e∈E
(f∗

e )2

πe

.

We then use the following technical lemma of Suri et al. [115]

Lemma 5.5.9.Letn, k be positive integers andfe ≥ 0, πe > 0 be reals such that
∑

e∈E fe = k.
Then

∑

e∈E fe/πe
∑

e∈E f 2
e /πe

≤ (1 +

√

max
1≤i,j≤n

πi

πj

)
n

2k
.

This gives us

1

2

T
∑

t=1

∑

e∈E

(f t
e)

2

πe

≤ 1 + 2

(

1 +

√

max
1≤i,j≤n

πi

σj

)

n

2k
.

This is1 + o(1) in k whenk >> n, which completes the proof.

Corollary 5.5.10. In the load balancing game with sum social cost and linear latency functions,
the price of anarchy is1 + o(1) provided thatk >> n and server speeds are relatively bounded,
even for mixed strategies.
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5.6 Algorithmic efficiency

In the Hotelling games we analyzed in Section 5.3, each player has onlyn strategies—then nodes
in the graph. In such settings, the weighted majority algorithm [91] runs in polynomial time and
minimizes regret. Similarly, in the parallel links congestion game, there aren strategies—then
links—and thus minimizing regret is relatively straightforward.

In valid games, if the set of actions available to a player is polynomial in |Vi|, the action
groundset, then once again, weighted majority can be used tominimize regret. However, in
arbitrary valid games, the action space for playeri could be as large as2|Vi|. In such situations,
if the player’s private utility is a linear function of the elements of the groundset she obtains and
she can compute exact best responses in polynomial time (such as in the market sharing game
of Goemans et al. [65]), then she can use results of Kalai and Vempala [81] to minimize regret
in polynomial time. If her utility function is linear, but she can only compute approximate best
responses, results of Kakade et al. [80] allow her toapproximatelyminimize regret; that is, she
obtains expected average cost close toβ times the cost of the best fixed solution in hindsight,
whereβ is the approximation ratio of her optimizer. We can modify our proof of the price of
total anarchy to carry thisβ through and show:
Theorem 5.6.1.The price ofβ-minimizing regret in valid games is1 + β.

If the player’s utility function is convex and well-defined over the convex hull of her pure
strategies and she furthermore has the ability to project points in space onto that convex hull,
then she can use an algorithm developed by Zinkevich [122] tominimize her regret. In situations
where no existing techniques are a perfect fit, more specialized regret-minimizing algorithms for
specific games may also be developed.

5.7 Conclusions

In this chapter, we propose regret minimization as a definition of selfish behavior in repeated
games. We consider four general classes of games—generalized Hotelling games, valid games,
and atomic congestion games with two different social utility functions—and show that the price
of total anarchy exactly matches the price of anarchy in mostcases, but there is a gap ofΩ(

√
n)

versusO( log n
log log n

) in the case ofn parallel links. Our results hold even in games where regret-
minimizing algorithms can cycle and fail to converge to an equilibrium. We also prove results
in Byzantine settings when only some of the players achieve regret minimization and the other
players are allowed to act in an arbitrary fashion. In addition, our results for weighted load
balancing with player-summed social utility functions imply new price of anarchy results for
mixed strategies.
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Chapter 6

Conclusions and Directions for Future
Work

The goal of the work presented in this thesis is to advance ourunderstanding of the outcomes of
selfish behavior in games. In support of that aim, we propose regret minimization as a descriptive
criterion for selfishness (as opposed to prescriptive characterizations such as the direct study of
static notions of equilibrium), and present new regret minimizing algorithms.

The Price of Anarchy has been proposed as a tool for understanding selfish behavior. How-
ever, in2-player,n-action games, Nash equilibria are PPAD-hard to compute [23]. In anygame
with a polynomial number of actions, though, one can run regret-minimizing algorithms. (One
can also do so efficiently in many settings with even an exponential number of actions.) Many
games only admit mixed Nash equilibria, and there is no immediate incentive for players to play
their given mixed strategy as opposed to any one of the pure strategies in the support of the mixed
strategy. In addition, there is no reason to assume in general games that agents demonstrating
selfish behavior shouldconvergeto a Nash equilibrium.

Another line of work seeks to develop algorithms that, when played against each other, ap-
proach equilibria. Many such results require a centralizedauthority, and nearly all of them
require that all (or nearly all) of the players play particular algorithms that prescribe particular
choices at every step in time. In this thesis we sidestep the issue of equilibria and instead ana-
lyze the performance of strategies that may or may not reach equilibrium and are able to show
results even in situations where such strategies may cycle.In addition, the results we present
hold whenever players choose strategies that in hindsight achieve low regret. We do not require
that players all use the same algorithm, or that they employ particular algorithms to achieve this
guarantee. In fact, our results hold even in situations where players do not use regret-minimizing
algorithms, but where the strategies they employ happen to have yielded low regret in hindsight
for the particular sequence of events they experienced.

Because we place a weaker assumption on the agents’ algorithms, there are more algorithms,
simpler algorithms, and more efficient algorithms for regret minimization than for more de-
manding guarantees such as internal regret minimization. In particular, efficient internal regret
minimizing procedures are not known for many of the game settings we consider, such as rout-
ing. Further, we are able to prove guarantees even in Byzantine settings, where not all players
behave rationally; such settings need not correspond to correlated equilibria.
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In addition to the open problems mentioned in each chapter ofthe thesis, we sketch some
additional directions for future work here.

One direction for future work is the analysis of the outcomesof regret-minimizing play in
additional classes of games. For example, auction settingsare a natural application for this
approach, and the results of such inquiry could have consequences for the design of bidding
strategies and of auction mechanisms.

As we show in this thesis, in some natural classes of games, regret minimization is such
a minimal assumption that it cannot prevent agents from colluding to do poorly, causing social
costs much worse than those of the worst Nash equilibrium. How can we categorize and study the
classes of games in which this occurs? Are there additional simple assumptions one can make on
the agent algorithms or on the underlying game that prevent this sort of collusion? One approach
to this set of questions is the exploration of various modelsof noise and perturbation in games.
Noisy models may be useful for smoothing out pathological game outcomes to yield simple
models of behavior with even better social utility guarantees. Such an approach is motivated by
the view that noise is not only a useful theoretical tool, buta necessary component of any realistic
model of large, real-world games.

Finally, this work motivates further study of the interactions between adversarial and selfish
agents and resulting impacts on social welfare. When studying distributed systems of heteroge-
neous agents, it is vital to consider players who behave unpredictably, and yet previous models
of selfishness are often quite brittle to such behavior.
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