A Proof-Carrying File System

Deepak Garg and Frank Pfenning

June 6, 2009
CMU-CS-09-123

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents the design and implementation of PCFS, a file system that uses
formal proofs and capabilities to efficiently enforce access policies expressed in a rich
logic. Salient features include backwards compatibility with existing programs and au-
tomatic enforcement of access rules that depend on both time and system state. We
rigorously prove that enforcement using capabilities is correct, and evaluate the file
system’s performance.

This work was supported partially by the iCAST project sponsored by the National Science Council,
Taiwan, under grant no. NSC97-2745-P-001-001, and partially by the Air Force Research Laboratory
under grant no. FA87500720028.

Keywords: Access control, proof carrying authorization, file system

1 Introduction

There is a significant mismatch in the complexity of file access policies prevalent in
large organizations like intelligence and military establishments, and the sophistication
of mechanisms currently available for their enforcement. Policies often rely on high level
concepts like delegation of rights, time-based expiration of credentials, and attributes of
individuals and files, whereas the only available mechanism for enforcing these policies
in file systems today is access control lists. Translating the intent of complex policy
rules to these low level lists, and keeping the latter up-to-date with respect to changing
credentials requires substantial and continuous manual effort and is a source of many
policy enforcement errors.

These considerations suggest the need for an architecture that represents the high-
level intent of policy rules directly, and automatically enforces access control. Proof-
carrying authorization (PCA) [7-9] is a promising, open-ended architecture for this
purpose; it has previously been applied to web services and distributed access control for
physical devices. In PCA, policy rules are represented as logical formulas at a high level
of abstraction and enforced automatically with proofs. However, during each access to
a resource, a logical proof that establishes relevant access rights for the calling process
must be verified. This is a slow process that takes tens or hundreds of milliseconds,
making the architecture infeasible for a realistic file system.

This paper presents the design and implementation of a file system that adapts
PCA to provide direct and efficient enforcement of complex access policies. Like PCA,
access in the file system depends on proofs, and hence we call it the Proof-Carrying File
System (PCFS). To be precise, however, access requests in PCFS do not actually carry
proofs in them as they do in PCA. Instead, proofs are verified by a trusted program in
advance of access, and exchanged for capabilities that are used to authorize access. By
combining proofs and capabilities in this manner, PCFS retains PCA’s high-level policy
enforcement, without the bottleneck due to verification of proofs at the point of access.

Briefly, PCFS works as follows. The access policy is represented as a set of logical
formulas and distributed to users in the form of digital certificates signed by policy ad-
ministrators. A user constructs formal proofs which show that the policy entails certain
permissions for her. Each proof is checked by a trusted proof verifier which gives the user
a signed capability in return. This capability, called a procap (for proven capability),
can be used repeatedly to get authorized access to the file system. A capability can be
checked in a few microseconds. As a result, file access in PCFS is very efficient. Another
merit of exchanging proofs for capabilities in advance of access is that the implemen-
tation factors into two parts that interact via capabilities only: (a) the front end that
deals with policies, proofs and generation of capabilities, and (b) the backend that uses
capabilities to authorize access and perform I/O. Indeed the PCFS backend is indepen-
dent of the logic used in the front end, and it can be used with any policy infrastructure
that produces compatible capabilities.

Besides the fact that PCFS is the first implementation of a file system that uses
logic for rigorous, automatic, and efficient policy enforcement, we believe that our work
makes three technically challenging contributions. The first contribution is an expressive
logic for writing policies, called BL, which allows a novel combination of user-defined
predicates, predicates that capture the state of the system, and rules and credentials

that are valid only in stipulated intervals of time. The latter two allow representation
of policy rules that depend on file meta data (like extended attributes), as well as rules
that expire automatically.

Second, we develop an end-to-end enforcement mechanism for such rich policies.
This is non-trivial because constraints about time and system state that occur in logical
formulas must also be reflected in proofs, and subsequently in capabilities that are used
for enforcement. For this reason, capabilities used in PCFS are conditional on the time
of access and the prevailing system state. In addition to the implementation, we prove
a theorem which shows that enforcement using capabilities is sound with respect to a
PCA-like enforcement where proofs are checked directly at each access.

Third, as opposed to all existing implementations that use PCA or related mecha-
nisms for enforcement of policies, PCFS is compliant with the POSIX file system call
interface, and is backward compatible with existing programs. This is made possible
due to two design decisions. First, instead of requiring programs to pass capabilities
during file system calls, capabilities are put in an indexed store on disk from where they
are read by the file system interface (hence existing programs don’t have to change).
Second, when a new file is created, the user creating the file automatically gets access
to the file for a fixed period of time. As a result, programs can freely create and use
temporary files, without requiring administrators to create policies to govern them.

The intended deployment for PCFS is in file servers where multiple users log into
the same machine and access shared files, which need to be protected through complex
rules. Another interesting application of the PCFS architecture could be in situations
where the storage is not powerful enough to verify complete proofs, but has enough
computational power to check the much simpler capabilities (e.g., in embedded devices).
We also expect that this combination of logic and capabilities can be used for access
control in other operating system interfaces besides file systems.

Organization. The rest of this paper is organized as follows. In Section 2 we introduce
the architecture of PCFS and its various components. Section 3 covers the logic used
to represent policies, its features and meta-theoretic properties. Section 4 describes the
front end of the file system including our implementation of certificates, automatic proof
search, and proof verification that creates procaps. Section 5 discusses the backend of
the file system that uses procaps to authorize permissions. Section 6 evaluates PCFS in
terms of expressiveness and performance. Section 7 discusses related work, and Section 8
concludes the paper.

2 Overview of PCFS

PCFS is implemented as a local file system for the Linux operating system. It is based
on the Fuse kernel module [2]. Technically, PCFS is a virtual file system since it uses an
underlying file system (ext3 in all experiments reported in this paper) to perform I/0
after relevant access checks are made. PCFS is mounted using the command:

$> sudo pcfs-main /path/to/src /path/to/mountpoint

Here /path/to/src is an existing directory in an ext3 system, and /path/to/mountpoint
is an empty directory. After the execution of this command, any file system call on

S

Proof, certificate
verifier

Proof search

- z

&;;‘j}"\ip

admin says
may (...)

Handler

Administrators

ER @ Data/Error

o

File system call

Proof . Procap

@ﬁ\ Secret key

Legend : L
Policies
;dan;i:”s)ays 4
-

Figure 1: PCFS Workflow

a path like /path/to/mountpoint/foo/bar results in a corresponding operation on
/path/to/src/foo/bar, but is subject to rigorous access checks.

Access checks in PCFS rely on a combination of proof-carrying authorization (PCA)
[7-9] and cryptographic capabilities. PCA provides the backbone for enforcement of the
access policy through formal logic and digital certificates, while capabilities are used
to improve efficiency. We consider this combination a novel contribution of this work,
although capabilities have been used in other settings in the past to offset the cost of
access checks [6, 20, 28, 31, 32]. Capabilities in PCFS are called proven capabilities, or
procaps, since they are obtained by verifying formal logical proofs. A detailed comparison
of PCFS to existing access control systems based on PCA is provided in Section 7.

Figure 1 shows the PCFS workflow. Numbers are used to label steps in order of
occurrence. Steps 1-6 create and store procaps which show that a user is allowed certain
permissions in the file system. These steps are performed in advance of file access, and
happen infrequently (usually when a user accesses a file for the first time). Once procaps
are stored, they can be used repeatedly to perform file operations (steps 7-12). The
solid black vertical line in the diagram separates parts that happen in user space, i.e.,
before and after a file system call (left side of the line) from those that happen during
a file system call (right side of the line).

In the following we describe the steps of Figure 1 in some detail. Briefly, policy
enforcement in PCFS follows the path:

Policy — Proof — Procap — File access

Policy creation (Step 1). We define a policy as a set of rules and facts which deter-
mines access rights. An access right is a triple (k, f,n), which means that user k (Alice,
Bob, etc) has permission 7 (read, write, etc) on file or directory f. We allow different
rules and facts in a policy to be created by different individuals called administrators
(this is necessary to faithfully represent separation of duty in many organizations). We
require that each administrator write her portion of facts and rules as logical formulas
in a text file and digitally sign the file with her private key. This signed file is called a
certificate. In a concrete sense, therefore, a policy is a collection of certificates signed by
different administrators. Abstractly, a policy is a collection of logical formulas that are
contained in the certificates. We often denote this collection of logical formulas with the
symbol I'. Representing a policy as logical formulas as opposed to, say, natural language
has the advantage that its meaning becomes unambiguous through the logic’s inference
rules. Logical representation is also amenable to automatic enforcement. PCFS pro-
vides its own logic, BL, for writing logical formulas. BL is more expressive than prior
logics designed for similar purposes, and its syntax and proof system are described in
Section 3.

PCFS provides a command line tool, pcfs-cert, to help administrators check for-
mulas for adherence to logical syntax, to digitally sign them, and to convert them to
a custom certificate format. (We could have used a standard certificate format like
X.509 [23], but found it easier to create our own format.) Policy rules and facts in
practice generally follow specific templates, and we expect that our command line tool
can be replaced by GUIs. We do not assume a centralized store for certificates. Instead
they are distributed to users to whom they grant permissions. Typically, some certifi-
cates are created once and used for many months or years, whereas others are created
as events happen in the system. As a result of the latter, the policy itself is not static,
but changes over time.

Proof generation (Steps 2—3). Once certificates have been created by adminis-
trators and given to users, the latter use them to show that they are allowed certain
permissions in the file system. The basic tenet of PCFS (adapted from PCA) is that
a user k is allowed permission 1 on resource f at time w, if and only if the user can
provide a formal logical proof M which shows that the policies in effect (I') entail a fixed
formula auth(k, f,n,u), or in formal notation, M :: T - auth(k, f,n,u). The formula
auth(k, f,n,u) is defined in Section 3.

To help users construct the proof M, PCFS provides an automatic theorem prover,
through the command line tool pcfs-search. This tool is based in logic program-
ming [27] (see Section 4 for a brief description of our approach). Figure 1 shows the user
giving the policy (certificates) to the proof search tool in step 2, and the proof search
tool returning a proof in step 3. A typical proof construction in PCFS takes several
hundred milliseconds. A salient point is that the proof search tool is not a trusted
component of PCFS and it is perfectly alright for a user to create her own proof search
tool or even use a heuristic-based method or decision procedure to construct proofs in
specific cases.

Proof verification (Steps 4-5). Once the user has constructed a proof M, this
proof, together with the certificates used to construct it, is given to a proof verifier,

invoked using another command line program pcfs-verify (Step 4 in Figure 1). The
code of the verifier is simpler than that of the prover and it must be trusted. The verifier
checks that the logical structure of the proof M is correct, and that all certificates used
in the proof are genuine, i.e., their digital signatures check correctly. If both these hold,
then the verifier gives back to the user a procap, which is a capability that mentions the
right (k, f,n) that the proof grants (Step 5). The procap also contains some conditions
on which the proof depends and is signed using a shared symmetric key that is known
only to the verifier and the file system interface (see Section 4 for details). A typical
proof verification including creation of a procap takes several tens or a few hundred
milliseconds, depending on the size of the proof.

Procap injection (Step 6). After receiving a procap, the user calls another command
line tool which puts the procap in a central store marked “Procap Store” in Figure 1.
This store is in a designated part of the PCFS file system, and is accessible to both users
as well as the system interface. The system interface looks up this store to find relevant
procaps when file system calls are made. The organization of the store is described in
Section 5.

File system call (Step 7). A call to the PCFS file system is made through the
usual POSIX file system API during the execution of a user program or through a
shell command like 1s, cp, rm, etc. The PCFS backend respects the standard POSIX
interface, so user programs and shell commands don’t need to change to work on it.
However, before a program is started or a shell command is executed, the user must
ensure that procaps granting the executing process all needed permissions have been
created and injected using Steps 2—6. Alternatively, the program may be augmented to
possibly create, and certainly inject, procaps on the fly.

Procap look up and checking (Steps 8-10). When a system call is made on a
PCFS file system, it is redirected by the Linux kernel to a process server which we have
written (Step 8 in Figure 1). Depending on the specific operation requested, this server
looks up one or more procaps in the procap store (Steps 9 and 10). The exact procaps
needed for each operation vary, and are listed in Section 5. If all relevant procaps are
found, they are checked. Checking a typical procap takes only 10-100us (cf. the time
taken to check a proof, which is of the order of tens or hundreds of milliseconds). Details
of procap checking are presented in Section 4.

Error (Steps 11a, 12). If any procap needed for performing the requested file oper-
ation is missing, or fails to check, an error code is returned to the user program.

File operation (Steps 11b, 11c, 12). If all relevant procaps needed to perform the
requested file operation are found, and successfully check, then the underlying ext3 file
system is used to perform the requested file operation (Step 11b). The result of the
operation is returned to the user (Steps 11c and 12).

2.1 Implementation

The PCFS implementation can be roughly divided into two parts: (a) the front end,
which comprises the command line tools for creating certificates, constructing proofs,
checking proofs to create procaps, and injecting procaps into the central store (Steps 1-6
in Figure 1), and (b) the backend which handles the calls from the Fuse kernel module,
looks up procaps in the store, checks them, and then makes calls on the underlying file
system to perform disk operations (Steps 8-11c in Figure 1). The two parts interact
via procaps which carry information from logical proofs into the file system’s interface.
The front end (with the exception of the procap injection tool) is based in logic, and the
technical challenge there has been the development of a well-founded logic (BL) that is
not only expressive, but that can also be efficiently implemented. Our implementation
of the front end tools is written in Standard ML, and comprises nearly 7,000 lines of
code. OpenSSL is used for all cryptographic operations. Because the front end tools
are used less frequently than the backend, their efficiency is also less of a concern. The
backend is the bottleneck for performance and needs to be extremely efficient. It is
implemented in C++ using approximately 10,000 lines of code.

3 BL: The Authorization Logic

PCFS provides a logic for expressing policies, which we call BL, and outline in this
section.’ A detailed description of the logic’s proof system and meta theory is deferred
to Appendix A. BL is an extension of first-order intuitionistic logic with two modalities
that have been studied in prior work [5, 16, 24]: k says s, which means that principal
k states or believes formula s, and s @ [uy, us] which means that s holds from time wu;
to time us. The former is used to distinguish in the logic parts of the policy made by
different individuals whereas the latter is needed to accurately represent time-dependent
rules. The logical interpretation of k says s in BL is different from that in any existing
work. This new interpretation is designed to facilitate fast proof search. In addition to
these modalities, BL supports constraints, which are relations between terms decided
using external decision procedures not formalized in the logic (e.g., the usual order <
on integers). BL also supports predicates that capture the state of the file system.
Formulas in BL are denoted using the letters s and r. The syntax of BL is summarized
below.

Sorts o == principal | time | file | perm | ...

Terms t m= a|v|h(t,... tn)

I-Predicates I (Interpreted Predicates)

U-Predicates P (Uninterpreted Predicates)

I-Atoms i = I(ty, ... tn)

U-Atoms p,q == P(t1,...,ty)

Constraints ¢ n= uy <wug | k= ke| ...

Formulas r,s un= plilc|rAs|rVs|rDs|T|L|Vrios|Izo.s |

k says s | s @Q [uq, us]

'BL stands for “Binder Logic”, as a tribute to the trust management framework Binder [14] from
which the logic draws inspiration.

As in first-order logic, subjects of predicates are called terms. They represent princi-
pals, files, time points, etc. Abstractly, terms can be either ground constants a, bound
variables v, or applications of uninterpreted function symbols h to ground terms. Terms
are classified into sorts o (sometimes called types). We stipulate at least four sorts:
principal, whose elements are denoted by the letter k, time whose elements are denoted
by the letter u, file whose elements are denoted by the letter f, and perm (for permission)
whose elements are denoted by the letter 1. Elements of time are called time points,
and it is assumed that ground time points are integers. In the external syntax of the
logic, we allow clock times written to second level accuracy as yyyy:mm:dd:hh:mm:ss,
but internally they are represented as integers that measure seconds elapsed from a fixed
clock time.

The symbol Y denotes a partial map vi:01,...,v,:0, from term variables to sorts.
The judgment ¥ + ¢ : ¢ means that under the assignment of sorts X, term ¢ is well
formed with sort 0. (We assume that the sorts of all function symbols and constants
are specified separately, but elide the details.)

Predicates in BL are divided into two categories: uninterpreted predicates, denoted
P, which are defined using logical rules, and interpreted predicates, denoted I, which
capture properties of the environment. By environment we mean the state of the file
system, including, but not limited to, meta data contained in files. The environment
is reflected in the logic as a set E of interpreted predicates that hold in it. We write
E =i to mean that in the environment F, the interpreted atomic formula ¢ holds (i.e.,
i € E). In practice, we require a procedure to decide whether each interpreted predicate
I holds for some terms in the prevailing state of the file system or not. We assume that
the state is volatile, i.e., it may change unpredictably. We believe that the inclusion
and enforcement of such interpreted predicates is novel, at least in the context of access
control.

Finally, we assume a syntactic class of constraints, denoted c¢. Like interpreted
predicates, constraints are also relations between terms whose satisfaction is determined
by decision procedures external to the logic. However, unlike interpreted predicates,
constraints are independent of the state of the system. We stipulate at least two types
of constraints: u; < wg capturing the usual total order on time points, and a pre-order
k1 = ko, read principal ki is stronger than principal ko. If k1 > ko, then BL’s inference
rules force (k1 says s) D (k2 says s) for every formula s. We also assume that there is a
strongest principal ¢, i.e., = £ > k for every k. In particular (¢ says s) D (k says s) for
every k and s. For this reason £ is called the “local authority”, a principal whom everyone
believes. (The term local authority is borrowed from the language SecPAL [3, 10].) A set
of constraints is written W. The decision procedure for checking constraints is reflected
in the logic as the judgment ¥ |= ¢, which means that if all constraints in ¥ hold, then
so does c.

3.1 Proof System

Next, we present a proof system for BL in the natural deduction style of Gentzen [19].
Our approach is based on the judgmental method [12, 29], where a syntactic category
of judgments (distinct from formulas) is the subject of proofs and deductions. Using
the judgmental method makes the meta-theory of the logic much easier. Our technical
presentation closely follows prior work by DeYoung et al. done in the context of a

related logic [16]. As in that work, we introduce two judgments: s o [uj,ug] meaning
that formula s is provably true in the interval [uj, ug], and k claims s o [u1, ug] meaning
that principal k states that s holds from u; to us. The symbol o is read “during”. The
judgment s o [ug,us] is internalized in the logic as the formula s @ [u,us], whereas
k claims s o [u1,ug] is internalized as (k says s) @ [uy, ug].

Judgments J u= soug,us] | kclaims s o [uy, ug]
Sort Map Y = vii01...Un0p

Hypothetical Constraints ¥ == ¢1...c,

Abstract Environment E

Views a = k,up, Ue

Hypotheses ' = z1:J1...2: Jp (n>0)
Hypothetical Judgments 0BT S s 0 [ug, usl

Hypothetical judgments (which are established through proofs) have the form 3; ¥; E; T <
s o [ug,ug). ' is the set of assumed judgments (hypotheses or policy), and ¥, ¥, and E
have meanings described earlier. x1,...,x, are distinct names that refer to the assump-
tions in I". A novel feature here is the triple o = k, up, ue on the entailment arrow, which
we call the view of the sequent. The view represents the principal and interval of time
relative to which reasoning is being performed. It affects provability in the following
manner: while reasoning in view k, up, u., an assumption of the form &’ claims s o [u], ub]
entails s o [u},ub] if &' = k, v} < up, and ue < u). This entailment does not hold in
general. Views are explained in greater detail in Appendix A.

A proof is represented compactly as proof term, denoted M. We write
M : S0 ET S 5o [u1,u2] to mean that M is a proof term that represents a
proof of the hypothetical judgment that follows it. For each deduction rule in our proof
system, there is a unique constructor for proof terms. Consequently, an entire proof can
be reconstructed from its proof term and the hypotheses.

Figure 2 shows selected rules of the proof system. The remaining rules are shown in
Appendix A. As usual, we have introduction and elimination rules for each connective
(marked I and E respectively). For a syntactic entity R, R[t/z] denotes the capture
avoiding substitution of term ¢ for variable x in R. The rule (hyp) states that the
assumption s o [u},ub] entails s o [u,ug] if u}f < u; and ug <), i.e., the interval
[u1,ug] is a subset of the interval [uf,u}]. This makes intuitive sense: if a formula
s holds throughout an interval, it must hold on every subinterval as well. The proof
term corresponding to this (trivial) derivation is z, where z is also the name for the
assumption s o [u], ub]. The rule (claims) is similar, except that it allows us to conclude
s o [ug,us] from the assumption k' claims s o [u},u5]. In this case, it must also be
shown, among other things, that &’ is stronger than the principal k in the view (premise
Ek = k).

(saysl) is the only rule which changes the view. The notation I'| in this rule denotes
the subset of I' that contains exactly the claims of principals, i.e., the set {(x : k' claims
s' o [u},ub]) € T'}. The rule means that (k says s) o [uj,us| holds in any view « if
s o [u1,uz] holds in the view k,uq,us using only claims of principals. Assumptions of
the form s o [u], u}] are eliminated from I" in the premise because they may have been
added in the view « (using other rules not shown here), but may not hold in the view
k,ui,uo.

U BT S s 0 [ug, ug)

U Eu) <uy U = ug < uj

zu XU BT, s o [uf,ub] S s o [ug, us)

hyp

a =k, up, ue
U =) <u U = up < uj UiEu <u, U Eu <u) Uk =k

. (63
XU BT, o K claims s o [u),ub] — s 0 [ug,us]

claims

kyu1,uz2
-

M :: %0 E; T
(pf_saysI M) = ¥;0; B;T % (k says s) o [ug, us)

s 0 [ug,us]

saysl

M, =30, E;T 5 51 Dsgo0 [u1, us]
My S0 E T S s 0 fufup] WEw <wup<uf VEuy <uy<u
(pf_impE My My u} ub) = X;0; BT 5 s 0 [uff, ub]

DE

M %0 BT 25 Voio.s o [ug, us] Ykt:o

VE
(pf_forallE M t) :: X;W; B; T %5 s[t/v] o [ug, us)
EkEi _ Ul=c
= interl = consl
(pf_sinjI) :: X; U BT — i o [uq, ug) (pf-cinjI) :: X;¥; E;T — c o [ug, ug)

Figure 2: BL: Natural Deduction (Selected rules)

(DE) is a variant of the common rule of modus ponens. It means that if s; D s9
holds during an interval [uj, us], and s1 holds during a subinterval [uf,u}], then sy must
hold during any interval [uf,u}], which is contained in both. (VE) states that if Vz:o.s
holds during some interval [uj,ug|, then s[t/z] holds during the same interval for any
term ¢.

The rule (interl) is used to establish interpreted predicates. It states that an inter-
preted atomic formula i is provable if E' = i. The rule (consl) is similar but it is used
to establish constraints.

Meta-theory. A meta-theorem is a theorem about the proof system in general. Meta-
theorems not only increase confidence in the foundations of the logic, but also help in
constructing automatic proof search tools. We state below two important meta-theorems
about BL’s proof system: substitution and subsumption. Structural theorems such as
weakening for the hypotheses also hold, but we do not state them explicitly. M[M’/x]
denotes the capture-avoiding substitution of proof term M’ for the name x in the proof
term M.

Theorem 3.1 (Substitution). Suppose the following hold:
1. M =% 0, BT 2% s 0 [ug, usl

2. M XU BT, x50 [ug, ug] = 1o [u), ub)]

Then, (M[M'/z]) =: $;9; B;T %5 r o [u], ub)]
Proof. See Appendix A. O
Theorem 3.2 (Subsumption). Suppose the following hold:
1. M=% 0BT %5 50 [ug,u)
2.V Eu <up and U E upy, < ug
Then, M :: ;0 E;T 5 50 [ty]
Proof. See Appendix A. O

3.2 Connection to Enforcement

Representation of files and principals. The logic BL. does not mandate how files
and users are concretely represented. However, from the perspective of an implemen-
tation, making this choice is important. In PCFS, files and directories are represented
by their full pathnames, relative to the path where PCFS is mounted. Thus, if PCFS
is mounted at /path/to/mountpoint, then the file /foo/bar in any formula refers to
the file /path/to/mountpoint/foo/bar in the file system. Principals are represented
in one of two ways: either as symbolic constants, or by their Linux user ids. The for-
mer representation is used for principals that do not correspond to any real users (e.g.,
organizational roles), while the latter is used for principals that do (e.g., users that run
programs and access files). Permissions are given on a per-file (or per-directory) basis
to real users.

Representation of policy in BL. If an administrator k creates a rule represented
by formula s, and puts it in a certificate that is valid from time uq to time wuo, then this
rule is reflected in BL as the assumption k claims s o [u1,us]. In addition, we require
that each rule be accompanied by a unique name (a string), which is written in the
certificate with the rule. This name is used to refer to the assumption in proofs. The
whole policy has the general form I' = {x; : k; claims s; o [u;, u}] | 1 <4 < n}, where k;’s
are administrators, and z;’s are unique names for the rules of the policy.

What should be proved? We assume the existence of one distinguished administra-
tor, symbolically denoted admin, who has the ultimate authority on access. In order to
get permission 7 on file f at time w, user k must prove that the policy in effect entails
the defined judgment auth(k, f,n,u), where:

auth(k, f,7,u) £ (admin says may(k, f,7)) © [u,u]

may is a fixed uninterpreted predicate taking three arguments, and v is the time of access
([u,u] is a singleton set containing exactly the time point u).

When we start constructing a proof in BL at the top level, the exact view a does
not matter. Further the set ¥ is empty, and 3 is a fixed map provided externally. To
get access it must be shown that: ¥;-; E;T" 5 auth(k, f,n,u), where a is a view made
of fresh constants, I' is the policy, u is the time of access, and E is the environment at
time u.

10

Usually, admin delegates part of its authority to other administrators through rules.
Also, in most policies, admin may have authority over the predicate may but not others.
For this reason, it is advisable to keep admin distinct from ¢, the strongest principal
whom everyone believes on every predicate.

Interpreted Predicates. BL natively supports two interpreted predicates, although
support for other predicates can be added easily. These two predicates are: owner(f, k),
which means that file f has owner k, and has_xattr(f, a,v), which means that file f has
value v for the extended attribute user.#pcfs.a. Extended attributes beginning with
the prefix user.#pcfs. are specially protected by PCFS (a special permission called
“govern” is needed to change them). These attributes can be used to label files in a
secure manner, as we illustrate in the following example. Interpreted predicates are
written in boldface to distinguish them from others.

Example 1. We present a fragment of a case study that uses BL to model policies for
control and dissemination of classified files in the U.S. Consider a hypothetical intelli-
gence agency where each file and each user is assumed to have a classification level, which
is an element of the ordered set confidential < secret < topsecret. The classification level
of a file is assumed to be written in an extended attribute user.#pcfs.level on the
file. We also assume one distinguished administrator (in addition to admin) called hr
who is responsible for deciding attributes of users (e.g., giving them classification levels
and employment certifications).

In order that principal & may read file f, three conditions must be satisfied: (a) k
should be an employee of the intelligence organization (predicate employee(k)), (b) k
should have a classification level above the file (predicate hasLevelForFile(k, f)), and
(c) k should get permission from the owner of the file. Let us assume that this rule came
in effect in 2000, and will remain in effect till 2010. The following rule (created by admin)
captures this intent. For readability, we omit all sort annotations from quantifiers.

admin claims Vk, K/, f.
(((hr says employee(k)) A
(1) hasLevelForFile(k, f) A
owner(f, k') A
(k' says may(k, f,read))) D may(k, f,read))
o [2000, 2010]

The predicate hasLevelForFile(k, f) may further be defined by admin in terms of
classification levels of k and f.

admin claims Vk, f,1,1'.
((has_xattr(f,level,l) A
(2) (hr says levelPrin(k,l)) A
below(l,!’)) D hasLevelForFile(k, f))
o [2000, 2010]

It is instructive to observe the use of the interpreted predicates owner and has xattr
in these rules. The predicate below(l,l’) captures the order | < I’ between classification
levels. We assume that all principals believe this order. Hence it is stated by the
strongest principal /.

11

(3) ¢ claims below(confidential, secret) o [2000, 2010]
(4) ¢ claims below(secret, topsecret) o [2000, 2010]
(5) ¢ claims below(confidential, topsecret) o [2000, 2010]

As an illustration of the use of this policy, let us assume that file /secret.txt is owned
by Alice (user id 1003) and classified at the level secret. Thus the following must hold
in the prevailing file system state E:

(A) E = owner(/secret.txt, uid 1003)
(B) E E has_xattr(/secret.txt, level, secret)

Suppose further that Bob (user id 1500) is an employee cleared at level topsecret from
2007 to 2009, and that Alice wants to let Bob read file /secret.txt from 2008 to 2009.
This information may be captured by the following formulas (signed by the respective
principals).

(6) hr claims employee(uid 1500) o [2007,2009]
(7) hr claims levelPrin(uid 1500, topsecret) o [2007, 2009]

(8) (uid 1003) claims may(uid 1500, secret.txt, read)
o [2008, 2009]

Let T denote the set of policy rules (1)—(8) (with corresponding names p1-p8), and let X
be a map that defines the constants used in the policy. Then using the rules of Figure 2
we can show that there is a proof term M such that M :: ¥; E;I' 5 (admin says
may (uid 1500, /secret.txt, read)) o [2008,2009], if E satisfies the conditions (A) and (B).
From Theorem 3.2 it follows that M :: ¥;-; E;T <% auth(uid 1500, /secret.txt, read,)
whenever u € [2008,2009], and hence Bob should be able to read /secret.txt from 2008
to 2009. This is what we may intuitively expect because the intersection of the validities
of all certificates issued here is exactly [2008,2009].

4 PCFS Front End: Proof Search and Verification

Having discussed the syntax and proof system of BL, we now turn to its implementation
in proof search and proof verification tools. We start by describing the proof search tool
briefly, and then turn to the proof verification tool and the structure of procaps.

4.1 Automatic Proof Search

Even though users are free to construct proofs of access by any means they like, PCFS
provides a command line tool called pcfs-search for performing this task automatically.
As discussed in Section 3, the objective is to prove a judgment of the form ¥;-; E;I"
(admin says may(k, f,n)) o [u,u], where u is the expected time of access, and FE is the
expected environment at time u. Of course, in almost all cases, it is unreasonable to
expect that the time of access can be predicted in advance to the precision of seconds
(which is the precision at which enforcement of time works in PCFS), so instead of

12

an exact time wu, the user provides a range of time [uj,ug] during which she desires
access. Similarly, since the environment F at time v may also be difficult to predict, the
environment at the time of proof construction is used as a proxy. The prover can also
be run in interactive mode, where it asks for user input about the expected environment
if it fails to construct a proof in the prevailing one.

The user must also provide the parameters k, f,77 and the policy I' (in the form of
certificates obtained from administrators). The output of the tool is the proof term
M such that M :: ¥;; E;T % (admin says may(k, f,1)) o [u1,us]. By Theorem 3.2 it
follows that M :: ¥;-; E;T % auth(k, f,n,u) for every u € [uy,us], so this proof term
M can be used for access at any time point in the interval [uj, us].

Proof search in BL is in general an undecidable problem because BL extends first-
order intuitionistic logic, which is itself undecidable. However, as past work on languages
and logics for authorization shows [10, 11, 14, 26, 30], most access policies in practice
fit into a restricted fragment of logic on which logic programming techniques can be
used for proof construction. Although logic programming methods work fast, extending
them from fragments of first-order logic (where they are well understood) to BL’s ad-
ditional constructs — k says s, s @ [ug, us], constraints, and interpreted predicates — is
a challenging task. The @ modality is particularly difficult to handle since it interacts
with all other connectives of BL in non-trivial ways. We omit a description of the proof
search method, but refer the reader to prior work for details [17].

4.2 Proof Verification and Procaps

The proof verifier checks proofs that a user constructs and issues procaps in return.
Since these procaps can be directly used for access, the proof verifier is a trusted piece
of code. Briefly, the proof verifier is invoked with a command line tool pcfs-verify.
It is given as input the policy I' (in the form of signed certificates), the parameters k,
f, m, and a proof term M. The verifier first checks that the policy is correct, i.e., all
its certificates have authentic digital signatures. For this, the verifier must have access
to some public key infrastructure (PKI) that maps public keys to principals that own
them. We use a simple PKI, with a single certifying authority (CA) that certifies all
keys. The public key of the CA is stored in a specially protected file in PCF'S itself (see
Section 5).

Second, the verifier checks the logical structure of the proof term, i.e., it makes
sure that it is the case that M :: ¥;-; E;T % auth(k, f,n,u). Checking a logical proof
is mostly standard; it works on the observation that the proof term (together with
the policy) is enough to reconstruct the structure of the entire proof. Once this step
succeeds, the verifier outputs for the user a signed capability, which contains the tuple
(k, f,m). There are three subtleties here.

1. How does the verifier get access to the secret key needed to sign the procap? (Or,
what prevents users from accessing the key and forging procaps?)

2. What file system state E is the proof checked in? This is relevant because it should
never be the case that a proof successfully checks in some state E but the resulting
procap is used in a state where the proof verification would have failed.

3. How does the procap reflect the time interval over which the proof is valid?

13

To address problem (1), we use a simple method. The secret key is stored in a specially
marked file in the PCFS file system. The file system interface ensures that only a
specific user id (called pcfssystem) has read access to this file. The verification tool
pcfs-verify’s disk file is owned by this user, and executes with a set-uid bit. As a
result, when a user invokes this program, it runs with pcfssystem’s user id, and hence
gets access to this key.

Problem (2) is addressed by never checking interpreted predicates during proof ver-
ification. Instead, when the verifier encounters the proof term pf_sinjI, which cor-
responds to an application of the rule (interl) from Figure 2, the verifier writes the
interpreted predicate ¢ to be checked in the output procap. This predicate must then be
checked by the file system backend when the procap is used. As a result, any interpreted
predicates on which the validity of the proof depends are transferred unchanged to the
procap, and are checked in the state prevalent at the time of access (see Appendix B for
details).

To address problem (3), we use a special symbolic constant ctime, which has sort
time, and is supposed to represent the actual time at which access is requested. The
verifier tries to check that M :: ¥, ctime:time; -; ;' auth(k, f,n, ctime). Observe that
the time of access u is replaced by this symbolic constant. During the verification, many
judgments of the form ¥ = u; < ug are encountered (e.g., in the rules (hyp), (claims),
(DE), and (consl)) where either ¥, uy, or us contains ctime. If this happens, then instead
of verifying the judgment using the external decision procedure, it is written into the
output procap. During file access, the file system backend substitutes the actual time of
access for the constant ctime in the judgment and checks it (see Appendix B for details).

Symbolic constants similar to ctime have been used to represent access policies in
the past [8, 10]. However, in each of these cases, the constant is a part of the logic and
can be used within a policy (similar to our interpreted predicates). In contrast, we use
the constant as an enforcement technique only; time in the logic is represented using
the @ connective.

Procap structure. Insummary, a procap contains four components (1, ¢, C, =), where

¥ = (k, f,n) is a three-tuple that lists the principal, file, and permission that the
procap authorizes.

- iis a list of interpreted predicates on which the verified proof depends (point (2)
above).

- C is a list of judgments ¥ = u; < wgy that contain the constant ctime, and on
which the proof depends (point (3) above). In most cases VU is -.

- Z is a cryptographic signature over the first three components. This guarantees
the procap’s authenticity.

Procap verification. Before admitting a procap, the file system backend must check
not only its signature =, but also the interpreted predicates i (in the state prevalent
at the time of access) and the constraint judgments in the list c (with ctime substi-
tuted by the actual time of access). The following (informally stated) theorem shows
that these checks guarantee that the proof in lieu of which the procap was obtained

14

authorizes the operation at the actual time of access. A precise formalization of the
verification procedure, a formal statement of this theorem, and its proof are presented
in Appendix B.

Theorem 4.1 (Enforcement correctness). Suppose that the verification of a proof term
M which establishes the right 1 = (k, f,n) from policy T results in a procap (¢,i,C,ZE).
Further let E be a file system state, which occurs at some time u, and assume that:

1. Foreachici, El=i
2. For each (U |=u; < uy) € C, U[u/ctime] = cu/ctime]
Then, M :: ¥;; E;T % auth(k, f,7,u).

Example 2. At the end of Example 1, we constructed a proof term M which estab-
lished E;T % (admin says may(uid 1500, /secret.txt, read)) o [2008,2009], where E was
required to satisfy the two conditions (A) and (B). If we give this proof term to our
proof verifier, the resulting procap has the structure (1, ;, c ,Z), where

- 1 = (uid 1500, /secret.txt, read)
- i = owner(/secret.txt, uid 1003), has_xattr(/secret.txt, level, secret)
-C=- = 2008:01:01:00:00:00 < ctime, - = ctime < 2009:12:31:23:59:59

The predicates in list Zimply that the procap is valid only in a state where /secret.txt is
owned by Alice, and it has extended attribute user.#pcfs.level set to secret. These
correspond exactly to conditions (A) and (B) from Example 1, and are necessary for the
proof term M to be valid. The list C means that the time of access ctime must lie in
the interval [2008,2009], which is also what we may expect from the policy rules.

Certificate Revocation. A revocation refers to the withdrawal of a policy rule or fact
after it has been created but before it expires. Revocations are an issue for enforcement
because proofs and procaps depending on a revoked statement may already have been
generated. There are two simple ways to enforce revocations using procaps, both of
which we describe briefly. (The current implementation of PCFS does not implement
revocation, but either of these methods is easy to add.)

- A list of unique ids of certificates on which a proof depends can be included in
the procap generated from it. Before admitting a procap, the file system backend
can compare the list of certificate ids in it to a list of revoked certificates provided
by administrators. If there is an overlap, the procap can be rejected. Although
this method would enforce revocation perfectly, it would also slow down file access
because an additional check must be performed on each procap.

- Alternatively, the list of revoked certificates can be provided to the proof verifier
instead of the file system backend. The verifier can then refuse to accept any proof
that depends on revoked certificates. If the verifier issues a procap, it can be short
lived, i.e., its validity can be restricted to a short duration 7" using a constraint on
ctime. Although the effect of revocation in this method is not immediate (it can
lag by a time T'), the file system backend does not get involved, so its performance
is not affected.

15

5 PCFS Backend

Whereas the front end of PCFS is used to generate procaps from proofs of access, the
backend grants access to files and directories using the procaps to check access rights.
The two ends are linked by procaps only; indeed the backend of the file system is entirely
agnostic to the logic used. If we had a different logic for writing the policy, we could
use the same backend, so long as the logic’s proof verifier generated the same procaps.
Since the backend is called at every single file access, it needs to be extremely efficient.
In this section, we discuss its design and implementation.

Overall architecture. The PCFS backend is implemented as a process server, which
listens to upcalls made by the kernel module Fuse. The latter happens whenever a
process makes a system call to access a file or directory within the mount path of PCFS.
Depending on the operation requested, a specific handling function is invoked. There is
one function for every POSIX file system operation like open, read, write, stat, unlink,
rmdir, mkdir, etc. This handling function looks up and checks procaps corresponding
to permissions needed to perform the operation. If the checks succeed, it invokes an
identical file system call, but on a different mount path, which is actually an ext3 file
system. In order to bypass any access checks during the call to the ext3 file system, the
process server runs with superuser privileges. To prevent users from directly using the
ext3 file system to access data, we give ownership of the root directory on the ext3 file
system to the superuser, and turn off all access on it.?

Organization of the file system. For the purpose of illustration let us assume that
PCFS is mounted at /pcfs, and that it makes calls to the ext3 file system at /src. Then
/pcts mirrors the file system structure rooted at /src, except that all calls within the
former are subject to procap based checks. A special directory /pcfs/#config contains
configuration data for the file system, including procaps and the secret key used to
sign them. This directory is protected by the file system with strict rules that do not
use procaps. We list below some of the important files and directories in this special
directory, as well their contents and protections.

/pcfs/#config/config-file: File containing configuration options, including
the user ids of the principals admin and pcfssystem. (Recall from Section 4 that
pcfssystem is the only user who has access to the secret key needed to sign procaps.)
Anyone can read this file, but only pcfssystem can change this file.

/pcfs/#config/shared-key: Contains the shared key used to sign procaps. Only
pcfssystem may read or write this file.

/pcfs/#config/ca-pubkey.pem: Contains the public key of the certifying author-
ity who signs associations between other public keys and users. Anyone may read
this file, but only pcfssystem may write to it.

2 A more secure method to prevent access via the underlying file system is to keep data encrypted on
it, and to decrypt data in our process server. We have not implemented this design, since our objective
here is to evaluate the performance of access checks.

16

/pcfs/#config/procaps/: This directory contains the procaps. Its organization
is discussed next. pcfssystem has full access to this directory, and other users have
access to specific subdirectories only.

The procap giving the right (k, f,n), subject to access-time conditions as discussed
before, is stored in the file /pcfs/#config/procaps/<k>/<f>.perm.<n>. Here <k> is
the user id of the user k, <f> is the path of the file f (relative to the mount point),
and <7> is a textual representation of the permission. Thus each procap is stored in a
separate file, and further for each right (k, f,n), there can be at most one procap that
authorizes the right. While this may be restrictive, it makes look up extremely easy since
the exact path where a procap is to be found can be determined simply by knowing the
PCFS mount point and the right (k, f,n). To prevent denial of service attacks and to
protect user privacy, the PCFS server ensures that only user k can access (read, write,
or delete) files inside /pcfs/#config/procaps/<k>/.

Since pcfssystem has full access to all files and directories within /pcfs/#config/,
it is a very attractive target for attack. In particular, if an attacker gains control of
this user account, it can change the secret key used to sign and verify procaps, and
then inject fake procaps to access other files. To prevent this, the PCFS process server
denies pcfssystem all rights in other directories within the file system. Thus, to attack
PCEFS through this mechanism, the attacker must break into at least one more account
in addition to pcfssystem.

Procap Cache. Since procaps are stored in files, and one or more of them must
be read for every file system operation, it is helpful to cache commonly used procaps
in memory to improve performance. To this end, PCFS uses a least recently used
(LRU) in-memory cache, whose size can be adjusted at mount time. The cache stores
parsed procaps, whose signatures have already been verified. The only cost involved in
using a cached procap is checking its conditions (lists C and 7 from Section 4). This is
extremely fast and usually takes only 10-100us. As a result, PCFS obtains extremely
high performance when the number of files in use is small. We evaluate the effect of the
cache in Section 6.

Permissions. PCFS uses five distinct permissions on any file or directory: read, write,
execute, identity, and govern. (In contrast, POSIX mandates only the first three permis-
sions.) Permissions read and write are the obvious ones; they are needed to read and to
change the contents of a file/directory respectively. As usual, execute is the permission
to read the meta data of a file or directory. Permission identity is needed to delete a file
or directory, or to rename it. This permission is separated from others because in many
settings, administrators may not want to allow users to delete or rename shared files,
but perform other operations on them (and their parent directories). The govern permis-
sion is needed to change the owner of a file and to change extended attributes starting
with the prefix user.#pcfs. Because of this special protection, these attributes can be
used by administrators to give classification or security labels to files, as in Example 1.
Figure 3 lists the permissions needed to perform some common file system operations.
During a file system call, procaps corresponding to the relevant entry in this table are
looked up and checked. By separating the identity and govern permissions from write, we
allow for the possibility of easily administering both mandatory and discretionary access

17

Operation Permissions needed

stat /foo execute on /foo

open /foo in read mode | read on /foo

open /foo in write mode | write on /foo

create /bar/foo write on /bar

delete /bar/foo identity on /bar/foo

rename /bar to /foo identity on /bar, write on /foo

getxattr on /foo execute on /foo

setxattr on /foo govern on /foo if attribute starts with
user.#pcfs., write otherwise

chown on /foo govern on /foo

Figure 3: Permissions needed to perform some operations

control in PCFS. This is difficult with POSIX permissions, where the owner always has
all permissions on a file.

Default Permissions. When a program first creates a file, it cannot be assumed
that any policy rules apply to it, since that (usually) requires creation of certificates by
administrators. Yet, many programs create temporary files, to which they must have
access in order to complete their tasks. To allow such programs to execute correctly,
when a new file or directory is created, PCFS automatically creates and stores default
procaps that give the creator of the file read, write, execute, and identity permissions for
a fixed period of time (this period can be adjusted at mount time). In addition the user
admin is given execute and govern rights on the new file. After this period elapses, the
default procaps expire and the administrators must create policy rules to control access
to the file.

6 FEvaluation

We evaluate PCFS in two ways. First, we report the results of performance benchmarks
on the backend of the file system. Second, we comment on the expressiveness of the
framework through two case studies.

6.1 Performance of the Backend

Since we are primarily interested in measuring the overhead of access control checks
due to procaps, our baseline for comparing performance is a Fuse-based file system
that does not perform the corresponding checks, but is otherwise running a process
server and using an underlying ext3 file system, just as PCFS does. We call this file
system Fuse/Null. For macrobenchmarks we also compare with an ext3 file system. All
measurements reported here were made on a 2.4GHz Core Duo 2 machine with 3GB
RAM and a 7200RPM 100GB hard disk drive, running the Linux kernel 2.6.24-23.

Read and write throughput. By default, PCFS does not make any access checks
when read or write operations are performed on a previously opened file. Instead access

18

checks are made when the file is opened. As a result its read and write throughput
is very close to that of Fuse/Null. The following table summarizes the read and write
throughputs of PCFS and Fuse/Null based on reading and writing a 1GB file sequentially
using the Bonnie++ test suite [1].

Operation | PCFS (MB/s) | Fuse/Null (MB/s)
Read 538.69 567.47
Write 73.18 76.05

It is possible, through a mount time option, to force PCFS to check procaps that au-
thorize read and write access during read and write operations respectively. As long as
the procaps checked are cached in memory, this does not affect performance at all since
the time taken to check a cached procap is only a few microseconds.

File stats. Besides read and write, two other very common file operations are open
and stat (reading a file’s meta data). In terms of access checks, both are similar, since
usually one procap must be checked in each case.? The table below shows the speed of the
stat operation in PCFS with different hit rates in the procap cache. All measurements
are reported in number of operations per second, as well as time taken per operation.
The title n% indicates a measurement with a cache hit rate of n%. For comparison,
performance of Fuse/Null is also shown. The figures are based on choosing a random
file 20,000 times in a directory containing exactly 20,000 files, and stating it. To get a
hit rate of n%, the cache size is set to n/100 x 20000, and the cache is warmed a priori
with random procaps. It is easy to prove that for an LRU cache this results in a hit
rate of exactly n% when subsequent files (procaps) are also chosen at random.

Cache hit rate — | 0% | 50% | 90% | 95% | 98% | 100% | Fuse/Null
Stats per second | 5774 | 7186 | 8871 | 9851 | 11879 | 23652 36042
Time per stat (us) | 173.2 | 139.2 | 112.7 | 101.5 | 84.2 42.2 27.7

As can be seen from this table, the procap cache is extremely helpful in attaining
efficiency. The difference of the times in the last two columns is an estimate of the time
it takes to check a cached procap (i.e., the time needed to check the conditions in a
procap). In this case, this time is 42.2 — 27.7 = 14.5us. This estimate is rough, and the
actual time varies with the complexity of the conditions in the procap. The procaps used
here are default ones. In other experiments, we have found that this time varies from 10
to 100us. By taking the difference of the times in first and last columns, we obtain an
estimate of the time required to read a procap, check its signature, parse the procap, and
check its conditions. In this experiment, this time is 173.2 — 27.7 = 145.5us. Additional
time may be needed to seek to the procap on disk, which is not counted here. This
suggests that, in general, procap checking is dominated by reading and parsing times.
The signatures we use for procaps are message authentication codes or MACs, which
can be verified in 1 to 2us.

3Two procaps must be checked when a file is opened in read and write modes simultaneously.

19

File creation and deletion. The table below lists the number of create and delete
operations per second that are supported by PCFS and Fuse/Null. These are measured
by creating and deleting 10,000 files in a single directory.

Operation | PCFS (op/s) | Fuse/Null (op/s)
Create 1386 4738
Delete 1989 15429

PCFS is approximately 3.5 times slower than FUSE/Null in creating files. This is
because PCFS also creates six default procaps for every file created. As a result, it
creates seven times as many files in three separate directories. Deletion in PCFS is
nearly 7.7 times slower than that in Fuse/Null. This is because when a file is deleted
in PCFS, one procap must be looked up, parsed, and checked, and all procaps related
to the file must later be deleted. This is done to avoid accumulating useless procaps; it
can be turned off using a mount time option. In this case, each file deletion corresponds
to seven file deletions on the ext3 file system in three different directories. The effect of
the procap cache is negligible during create and delete operations.

In summary, assuming a low rate of cache misses, the performance of PCFS on com-
mon file operations like read, write, stat, and open is comparable to that of Fuse/Null.
On the other hand, less common operations like create and delete are slower because
default procaps must be managed.

Macrobenchmarks. To understand the performance of PCFS in practice, we also ran
two simple macrobenchmarks. The first (called OpenSSL in the table below), untars
the OpenSSL source code, compiles it and deletes it. The other (called Fuse in the table
below), performs similar operations for the source of the fuse kernel module five times in
sequence. As can be seen, the performance penalty for PCFS as compared to Fuse/Null
is approximately 10% for OpenSSL, and 2.5% for Fuse. The difference arises because
the OpenSSL benchmark depends more on file creation and deletion as compared to the
Fuse benchmark.

Benchmark | PCFS (s) | Fuse/Null (s) | Ext3 (s)
OpenSSL 126 114 94
Fuse x 5 79 77 70

6.2 Case Studies

We have also completed two case studies using B, and PCFS. In each case, we expressed
the policy from the case study in BL, and considered whether it could be enforced in
PCFS.

Classified Information. Our first case study formalizes rules for control and dissem-
ination of classified information among intelligence agencies in the U.S. (Examples 1
and 2 are based on this case study.) The enforcement of these rules was also the origi-
nal motivation for building PCFS. We obtained information on these rules from public
government documents, and through an industrial collaborator. This information was
distilled to 35 formulas in BL. The study is interesting because it uses almost all fea-
tures of BL. Extended attributes are used to represent the classification status of files

20

(classified vs unclassified), and their classification level as in Example 1. Attributes of
individuals are specified in certificates issued by administrators, many of which expire at
fixed points of time. For example, some background checks expire every 5 years. These
expirations are represented using the @ connective in BL. Also, one of the rules requires
arithmetic over time — the owner of an unclassified file can access it for 90 days after its
creation. (BL supports linear arithmetic over time, but we have not discussed it in this
paper.)

Some of the proofs needed for access in this study are quite large; they contain as
many as 1100 proof steps, and depend on 70 certificates. It takes nearly 100ms to verify
these proofs. This strongly supports the case for performing proof verification ahead of
access and using capabilities, as PCFS does. If such proof verifications were performed
during file access, the file system interface would be limited to less that 10 operations a
second.

Course administration. In our second case study we formalize the rules for con-
trolling permissions on directories for storing class materials and assignments, based on
current workflows at our university. Although these rules are much simpler than those
in the previous study, we had to add support for a new kind of interpreted predicate:
member(f,d), which means that file f is contained in directory d. This effort gave us
an idea about the difficulty involved in extending PCFS (and BL) with new interpreted
predicates. In all, it took us less than 10 minutes of programming effort to add support
for this new predicate. (All parsers in our implementation already support parsing of
unknown predicates, so we only had to define a procedure for verifying the predicate.)

7 Related Work

A lot of prior work is related to PCFS; here we describe only the most closely related
work.

Relation to PCA. Proof-carrying authorization (PCA), the general architecture on
which PCFS builds, has been implemented in several other systems [8, 9, 25]. However,
PCFS differs from these systems in several ways. The most significant difference is
that in all existing PCA-based systems, the proof that the user constructs is given
directly to the system interface at the time of access. As a result, the proof verifier must
be called every time an access is requested. This design works well only when the time
taken to check certificates and the proof (typically several milliseconds) is not significant
in comparison to the time taken to perform the actual operation. This has been the
case in all implementations of PCA to date. In contrast, a file system access is a fast
operation that takes of the order of a few micro or milli seconds only, and checking
several certificates and a proof at each access results in visible delays for the user. We
actually confirmed this hypothesis through an earlier implementation of PCFS that used
the PCA architecture directly. As a result of this prior experience, in the present design
of PCFS, proofs are verified in advance of performing operations, and capabilities issued
in return are used to authorize access.

Second, the logic used in in PCFS (discussed in Section 3) contains explicit time.
This allows accurate representation of expiration dates of policy rules in logical formulas

21

and also in proofs. In contrast, logics used so far in PCA systems are unaware of time,
and rule expiration is enforced using an extra-logical mechanism. Having time in the
logic also allows more expressive rules, e.g., those that use arithmetic over time.

Third, in all existing implementations using PCA, the user is authenticated to the
system interface using a challenge response protocol with a fresh nonce. This nonce must
be embedded in the proof used to authorize access because the interface does not learn
the identity of the user. This implies that the proof cannot be completed in advance
of the access (although some parts of it that are independent of the nonce can be).
Owing to concerns regarding efficiency, we do not consider this style of authentication
a good design principle for PCA. Instead, we believe that the authentication protocol
used should tell the system interface the identity of the user. In distributed settings a
password or public key can be used for authentication, and in centralized settings like
PCFS the system interface can learn the user id of the calling process through a system
call like getuid(). This form of authentication allows proofs of access to be created
and checked in advance of access, which is central to obtaining efficiency in PCFS.

Other related work. Many prior file systems have used capabilities to authorize
access (e.g., [6, 20, 28, 31, 32]), although the use of proofs to generate capabilities is
novel to our work. Prior work by Chaudhuri considers a formal analysis of correctness
of an implementation of authorization through cryptographic capabilities in the face of
dynamic policies [13]. That paper also considers many strategies for enforcing time-
dependent and state-dependent policies, but the mechanism used to generate policies is
treated abstractly (in contrast, in Theorem 4.1, we prove our enforcement correct with
respect to a concrete logic and proof system).

Many logics and logic-based languages have been proposed in the past for represent-
ing access control policies (e.g., [4, 5, 10, 14, 18, 21, 30]). The k says s modality in BL
is most closely related to a similar modality in Binder [14]. Our treatment of explicit
time draws on work by DeYoung et al. [16]. We believe that the combination of time
and interpreted predicates is novel to BL. The implementation of the proof search tool
for BL builds upon work on uniform proofs for logic programming [27], and draws on
ideas from the language Lolli [22].

8 Conclusion

PCFS combines strong logical foundations for access policies with an efficient enforce-
ment based on proofs and cryptographic capabilities. Owing to a very expressive logic
for policies, and conditions in capabilities, PCFS automatically enforces time-dependent
policy rules, as well as policies that depend on file system state. A significant contribu-
tion of our work is Theorem 4.1 which shows that enforcement of policies using procaps
is sound with respect to enforcement with proofs directly (as in PCA).

A number of interesting avenues remain for future work that we discuss here briefly.
One interesting direction is to apply the PCFS architecture to build a networked file
system, with the proof verifier and storage on separate nodes, and a decentralized store
for procaps. Procaps already support decentralization, since their integrity is protected
by the signature contained in them. Another interesting line of work may be to use
capabilities to implement access control on devices that have little computational power

22

(e.g., embedded devices), and support them with the existing front end from PCFS that
runs on a separate machine. A third subject of interest is to consider more case studies
of policies used in practice to see if they can be expressed and enforced in PCFS.

References

[1]
2]

3]

[4]

Bonnie++. Available from http://www.coker.com.au/bonnie++/.
FUSE: Filesystem in Userspace. Available from http://fuse.sourceforge.net/.

SecPAL research release for .NET, 2007. Online at http://research.microsoft.com/
en-us/projects/secpal/.

Martin Abadi. Access control in a core calculus of dependency. FElectronic Notes in Theoret-
ical Computer Science, 172:5-31, April 2007. Computation, Meaning, and Logic: Articles
dedicated to Gordon Plotkin.

Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for
access control in distributed systems. ACM Transactions on Programming Languages and
Systems, 15(4):706-734, 1993.

Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Erwin Oertli, Dave
Andersen, Mike Burrows, Timothy Mann, and Chandramohan A. Thekkath. Block-level
security for network-attached disks. In Proceedings of the 2nd Conference on File and
Storage Technologies (FAST), pages 159-174, 2003.

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In G. Tsudik,
editor, Proceedings of the 6th ACM Conference on Computer and Communications Security,
pages 52—62, Singapore, November 1999. ACM Press.

Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, November 2003.

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and
Peter Rutenbar. Device-enabled authorization in the Grey system. In Proceedings of the
8th International Conference on Information Security (ISC’05), pages 431-445. Springer
LNCS 3650, September 2005.

Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and semantics of a
decentralized authorization language. In Proceedings of the 20th IEEE Computer Security
Foundations Symposium (CSF-20), pages 3—-15, 2007.

Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management applied to
health records. In Proceedings of 17th IEEE Computer Security Foundations Workshop
(CSEW-17), pages 139-154, 2004.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of
linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University, 2003.

Avik Chaudhuri. On secure distributed implementations of dynamic access control. In Pro-
ceedings of the Joint Workshop on Foundations of Computer Security, Automated Reasoning
for Security Protocol Analysis, and Issues in the Theory of Security (FCS-ARSPA-WITS),
pages 93-107, 2008.

23

http://www.coker.com.au/bonnie++/
http://fuse.sourceforge.net/
http://research.microsoft.com/en-us/projects/secpal/
http://research.microsoft.com/en-us/projects/secpal/

[14]

[15]

[16]

[26]

[27]

28]

John DeTreville. Binder, a logic-based security language. In M. Abadi and S. Bellovin,
editors, Proceedings of the Symposium on Security and Privacy (SE€P’02), pages 105-113,
Berkeley, California, May 2002. IEEE Computer Society Press.

Henry DeYoung. A logic for reasoning about time-dependent access control policies. Tech-
nical Report CMU-CS-08-131, Computer Science Department, Carnegie Mellon University,
December 2008.

Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with explicit
time. In Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF-
21), Pittsburgh, Pennsylvania, June 2008. Extended version available as Technical Report
CMU-CS-07-166.

Deepak Garg. Proof search in an authorization logic. Technical Report CMU-CS-09-121,
Carnegie Mellon University, June 2009.

Deepak Garg and Frank Pfenning. Non-interference in constructive authorization logic. In
J. Guttman, editor, Proceedings of the 19th IEEE Computer Security Foundations Workshop
(CSEFW-19), pages 283-293, Venice, Italy, July 2006.

Gerhard Gentzen. Untersuchungen iiber das logische Schlieflen. Mathematische Zeitschrift,
39:176-210, 405-431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68-131, North-Holland, 1969.

H. Gobioff, G. Gibson, and D. Tygar. Security for network attached storage devices. Tech-
nical Report CMU-CS-97-185, Carnegie Mellon University, 1997.

Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization language.
In Proceedings of the 21st IEEE Symposium on Computer Security Foundations (CSF-21),
pages 149-162, June 2008.

Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear
logic. Information and Computation, 110(2):327-365, 1994.

R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key infrastructure. See
http://www.ietf.org/rfc/rfc2459.txt, 1999.

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentication
in distributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265-310, November 1992.

Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans Kaashoek.
Alpaca: Extensible authorization for distributed services. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07), Alexandria, VA, October
2007.

Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for trust manage-
ment languages. In Proceedings of the 5th International Symposium on Practical Aspects of
Declarative L