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Abstract

The performance of a statistical translation algorithm in the context of multilingual appli-
cations such as cross-lingual information retrieval (CLIR) and machine translation (MT)
depends on the quality, quantity and proper domain matching of the training data. Tradi-
tionally, manual selection and customization of training resources has been the prevailing
approach. In addition to being labor-intensive, this approach does not scale to the large
quantity of heterogeneous resources that have recently become available, such as parallel
text and bilingual thesauri in various domains. More importantly, manual customization
does not offer a solution to efficiently and effectively producing tailored translation models
for a mixture of heterogeneous target documents in various domains, topics, languages and
genres. Translation models trained on a general domain do not work well in technical do-
mains; models trained on written documents are not appropriate for spoken dialogue; models
trained on manual transcripts can be sub-optimal for translating noisy transcripts produced
by a speech recognizer; finally, models trained on a mixture of topics are not optimal for any

of the topic-specific documents.

We seek to address this challenge by automatically adapting translation models (and

implicitly parallel training resources) to specific target domains or sub-domains.

The high-level adaptation process involves automatically weighting and combining mul-
tiple translation resources, according to several criteria, in order to better match a target
corpus or a specific domain sample. The criteria we examine include lexical-level domain
match, translation quality estimates, size, and taxonomy representation. An orthogonal
dimension in the adaptation process is the granularity level at which these criteria are
measured and applied: from the collection level - under the assumption of homogeneous
within-collection data - to the document level. The relative contribution of each criterion
is subsequently determined by a model that can range from uniform weighting to a global

non-linear optimization model trained on application specific evaluation data.

In this thesis, we examine how such adaptation applies to two important multilingual



applications: cross-lingual information retrieval and machine translation. In CLIR, we adapt
translation models for domain-specific query translation; in MT, we adapt translation models
to heterogeneous target corpora and compare them with previously studied target language
model adaptation. We use our adaptation algorithms to enhance state-of-the-art systems,
seeking to improve performance under different testing conditions and to reduce the demand
for large amounts of domain specific parallel data. We also address the challenge of combining
multiple criteria to rank parallel sentence candidates. We investigate Continuous Reactive
Tabu Search (CRTS) [2], a global optimization method, as well as Reactive Affine Shaker
(RASH) [6], an efficient algorithm which continuously adjusts its search area in order to

identify a local minimum.

Our experiments in CLIR and statistical MT indicate that selecting training data based
on the above-mentioned approaches allows a significant reduction in training data while
preserving about 90% of the performance. This result significantly surpasses the random se-
lection approach, and it holds for both CLIR and MT. As expected, the difference increases
as the subdomain becomes more specific. Our optimized criteria weights considerably out-

perform the uniform distribution baseline, as well as lexical similarity adaptation.
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Chapter 1

Introduction

In our increasingly connected world, where information has become a de facto currency,
communication across language barriers is a crucial and frequently encountered challenge.
Facilitating information access on a global scale is one of the goals of modern technology,
ranging from providing the communication medium, to its instant propagation across the
globe and beyond, to transforming the information into a data stream that can be digested by
information consumers - be it persons or computers. This last step often involves translation
from one or multiple languages into a language that the information consumer is familiar
with.

As the amount of data requiring processing and translation has become insurmountable,
human translators are no longer a realistic solution from a cost and speed perspective. This
problem is exacerbated particularly when the data is rooted in a technical domain with
highly specific vocabulary - in which case both bilingual capabilities and domain expertise
are required in a translator.

Multilingual applications and algorithms such as machine translation (MT) and cross-
language information retrieval (CLIR) are part of a suite of automated tools facilitating
cross-language communication. Machine Translation refers to the automated translation of
(usually text) data from one natural language into another. The Cross-Lingual Information
Retrieval (CLIR) problem consists of finding documents in a target language that are relevant
to queries expressed in a (different) source language. The most popular (and, currently, the
most successful) subset of these algorithms rely on (and take advantage of ) massive quantities
of previously translated examples, referred to as parallel corpora.

Parallel corpora are produced at an increasing rate - from commercial web sites to news
sources to bilingual books to European Union or Canadian legislation and parliament pro-

ceedings, sources publish their information in several languages simultaneously. Leveraging



these resources (and their increasing rate of growth) is the advantage of corpus-based meth-
ods in the broader fields of CLIR and MT. However, the growth and scale of these resources,
as well as the question of which resource (or subset thereof) to use for training these al-
gorithm poses its own challenges. In the remainder of this chapter, we will discuss the
importance of these challenges, as well as give a brief overview of the multilingual tasks we

are addressing in this thesis.

1.1 Adapting Training Resources for
Multilingual Applications

The performance of a corpus-based translation algorithm depends on the quality, quantity
and proper domain matching of the training data. Translation models trained on a general
domain would not work well in a technical domain; those trained on written-style documents
would not work well on spoken dialogs; models trained on manual transcripts can be sub-
optimal for translating noisy transcripts produced by a speech recognizer; a single model
trained on the entire mixture of topics would not be optimal for any of the topic-specific
documents.

Until recently, manual selection and customization of cross-lingual training resources
has been the prevailing approach. In addition to being labor-intensive, this approach does
not scale to the widely available heterogeneous resources on the Internet (parallel text and
bilingual thesauri in various domains), and more importantly, does not offer a solution to
automatically producing tailored translation models for a mixture of heterogeneous test
documents differing by domain, topic, language and genre. The amount of electronically
available data is increasing every day; bilingual web pages are harvested as parallel corpora
as the quantity of non-English data on the web increases; online dictionaries of various
qualities and in various domains become available; previously translated documents are
automatically aligned, and time-aligned comparable news are published every day. These
resources are different in size, quality, vocabulary, genre, other domain characteristics, and
purchasing cost. They provide the potential of significantly enhancing the performance of
corpus-based statistical methods for CLIR or MT.

More recently, domain-specific multilingual tasks such as patent cross-language retrieval
[20] and domain-specific machine translation tasks have begun to gain attention in evaluation
forums. The parallel corpus adaptation is, in these cases, largely manual, and restricted to

domain specific data provided. We provide an overview of related research within this area,



and of domain adaptation literature in general in Section 1.2.

In general, manual selection and customization of training resources cannot scale to large
amounts of training corpora, and cannot produce consistently good customized translation
models when the test data vary constantly in domain, topics, and genres. Usually, doc-
uments come from a mixture of heterogeneous resources (newswires, TV broadcasts and
radio programs) and differ by language, genre, topic coverage and signal-noise ratio (manual
transcripts vs. automated transcripts by speech recognition). Statistical translation models
trained on conversational dialogs (e.g., in radio broadcasts) would most likely be sub-optimal
for translating written-style documents (newswire stories), and vice-versa. Similarly, models
trained on clean text (written stories or manual transcripts) are not suitable for automated
transcripts since systematic speech-recognition errors would not be reflected properly.

Once we move away from the news domain and into more technical domains, translation-
specific disambiguation becomes more problematic, in that the most common translation
is no longer the most desirable one. For example, the word agent should have different
translation probabilities when the target corpus consists of newspaper stories (where the
agent is more likely to be a person or entity) vs. medical literature or biological weapon
articles (where the agent is more likely to be chemical or biological ).

We argue that domain-dependent term variations can be captured by successfully match-
ing training resources to target corpora. Our approach is to customize translation models to
a domain, by automatically selecting the resources (dictionaries, parallel corpora) that are
best for training for this particular topic. Such customized translation models have the po-
tential of successfully capturing the specific, specialized vocabularies present in each domain
or sub-domain, in addition to providing a tradeoff curve between parallel corpus quality and
its domain-specific match.

In this thesis, we seek to develop an automated solution for domain adaptation of training
resources. The adaptation process produces a weighted combination of several translation
resources, according to multiple criteria, in order to better match a target corpus or a specific
domain sample. A domain sample is defined as a set of unlabeled data points in the target
domain. In both the cross-lingual information retrieval and the machine translation scenario,
a domain sample is a collection of monolingual sentences that represent the target domain.

In our medical literature dataset, an article titled Remodelage bronchique (airway remod-
eling) was translated as Re-drawing bronchique when an otherwise popular parallel corpus
(Europarl, [36]) was used as the training set, and Bronchial Remodeling when an adapted,

medical domain corpus was used. In this thesis, we will show that the performance penalty



goes well beyond such anecdotal evidence, and we propose a multi-faceted adaptation solu-
tion.

The adaptation criteria we examine include lexical domain match, translation quality
estimate, instance size and taxonomy representation. An orthogonal dimension in the adap-
tation process is the granularity level at which these criteria are measured and applied: from
the collection level (under the assumption of homogeneous within-collection data) to the
document level. The relative contribution of each criterion is subsequently determined by a
model that can range from uniform weighting to global non-linear optimization algorithms
trained on application-specific evaluation data.

We examine how such adaptation applies to two multilingual applications: cross-lingual
information retrieval and machine translation. In CLIR, we adapt translation models for
domain-specific query translation and in MT we adapt translation models to heterogeneous
target corpora in the medical domain, and, where applicable, we also adapt translation
models to a more specific subdomain.

Our goal is to use adaptation algorithms to enhance state-of-the-art systems in these
application areas, seeking to improve performance under different testing conditions and to

significantly reduce the training data necessary to obtain equivalent performance.

1.2 Motivation and Related Work

1.2.1 Corpus-Based Machine Translation and Domain Adaptation

Over the past few decades, corpus-based machine translation has been the preferred paradigm
in machine translation. Its superior performance when compared to earlier, rule- and dictio-
nary based approaches can also be attributed to the (gradual) availability of large quantities
of parallel text. Example-based translation (EBMT) [5] uses the parallel text to identify
previously translated phrases; and it incorporates existing linguistic resources and knowl-
edge [5, 55|, which is especially important in resource-poor languages. Statistical Machine
Translation (SMT) [4, 29] uses a probabilistic approach to find the most likely translation
of a sentence, given the sentence in the original language. Statistical machine translation
as described in [4] has become the foundation for an entire research area, with constantly
improving effectiveness and enhancements such as phrase-based decoding [53] and parsing-
aware approaches [44].

Until recently, research in corpus-based machine translation has focused on general do-

mains, with the corresponding evaluations being mostly news. However, domain-specific



translation is crucial for tasks such as translation of (and cross-lingual retrieval in) instruc-
tion manuals, medical articles or other technical literature. As we have shown in [46], the
performance penalty in these multilingual tasks is staggering unless translation model adap-
tation is employed.

In the past two years, domain adaptation for NLP tasks has become an active research
area [3, 38, 25, 23]. New domain adaptation tasks have surfaced: a shared CoNLL task on
domain adaptation for parsing [24], a statistical M'T workshop evaluation, as well as CLIR
evaluations in NTCIR [19]. As an emerging research area explored after the proposal of
this thesis, “domain adaptation” is now understood as the task of adapting a previously
constructed model to a new domain, using only unlabeled in domain data. Blitzer examines
various aspects of “domain adaptation” as defined above - its application to sentiment clas-
sification [27] and parsing [41], learning bounds [26] and representations [62, 3]. The results
are mixed, ranging from “frustratingly easy” [23] to “frustratingly hard” [41] - mainly due
to the differences in annotation orthogonal to the domain-specific characteristics of the data.
Jiang and Zhai [25] focus on adapting pre-trained classifiers to a new domain using unlabeled
data; Daumé III and Marcu [22] use both labeled and unlabeled data in the target domain
and learn a mixture model to adapt from the source domain. Other NLP tasks where domain
adaptation has been studied include capitalization restoration using an enhanced maximum
entropy approach [9], and word-sense disambiguation [8].

While this active research area is directly relevant to this thesis, in that an existing model
is adapted to a new domain, there are several fundamental differences in both the problem
definition and the proposed approaches. The problem setting in the above work assumes the
presence of identified in-domain data, labeled or unlabeled. The adaptation we perform in
this thesis is at the level of the training data itself, while the model is subsequently re-trained
as opposed to adapted post-training. The fundamental difference here is the assumption we
make that in-domain (or quasi in-domain) training instances are available within the larger
training data, and, although they are not specifically labeled as such, it is possible to identify
these instances as in-domain by automated means. Once identified, the in-domain instances
can be used to re-train the model, while eliminating the noise contributed by i.e. out-of-
domain data with conflicting labels.

Another important difference refers to the multi-faceted characteristics of the training
data that we can leverage. Some facets (or criteria) are specific to multilingual applications
(for example, translation quality estimates - this can be generalized to label quality estimate
in an expanded application space). As far as we know, none of the work referred to above

uses additional criteria when adapting the pre-trained learner, as we do in the work presented



here.

In the specific space of multilingual applications (MT and CLIR), domain-specific corpora
have started to surface in response to a growing need for domain-specific evaluation. For
example, the NTCIR evaluation forum includes a patent-retrieval task, for which a bilingual
patent corpus is provided. Our purpose, however, is to construct a highly adapted, domain-
specific corpus out of existing corpora - parts of which pertain to a given domain.

Within the MT context, initial adaptation efforts focused on adapting the target lan-
guage model (vs. the translation model) to the specific domain [3, 32], building on similar
work for speech recognition [60]. More specifically, in [34], after the translation model has
been trained, a language model is constructed for each of the test sentences by retrieving
documents in the target language using CLIR. A back-off general English model is used to
cover the non-domain specific terminology. The problem we examine in this thesis is the
adaptation of the translation model itself (via training data adaptation), which is orthogonal
and complementary to language model adaptation. In Chapter 5 of [31] Kauchak describes
a method for learning machine translation example usefulness - a purpose similar to ours,
although different in scope. In [31], Kauchak does not target the domain adaptation prob-
lem, but instead it focuses on ranking parallel sentences based on their performance as part
of a training subset. Each example is randomly assigned to a subset, and its contribution
to the subset performance is assumed to be linear. The example/parallel sentence ranking
is derived by averaging the performance (i.e. BLEU scores) of all the subsets an example
appears in. The differences observed are very small when compared to the differences ob-
served when domain match is taken into account (i.e. 0.34 difference in BLEU score on
a 0-100 scale ), but they allow the author to identify features that characterize promising
parallel sentences. This approach is not feasible for a larger dataset to select from, due to
the continuous re-training and testing on random samples necessary in order to estimate the
tion of each example.

In MT, several groups have informally given priority to parallel corpora or sentences that
ensured vocabulary coverage at testing time, to the extent this information was available.
[14] uses a method similar to [46] in order to filter parallel sentences that are closest to
test sentences. This on-line, test-time adaptation technique does improve results if on-line
response time permits its utilization. The above-mentioned MT/CLIR domain adaptation
work only took into account the domain match as indicated by vocabulary and word distri-
bution [14, 46]. However, especially in the case of today’s heterogeneous parallel corpora, it
is especially important to consider issues such as corpus and translation quality, noise, size

distribution, redundancy, genre or other available metadata in additional to lexical similarity.



In this thesis, we explore the impact of these criteria on both online and offline adaptation.
One of the main advantages of domain adaptation is the significant reduction in the amount
of training data necessary. When the adaptation is performed offline, adaptation can be seen
as an active-learning scenario, in that the selected data can be translated at a much smaller
cost that an entire corpus.

In this thesis, we present an adaptation framework that incorporates several adapta-
tion criteria and we show the individual (and combined) criteria effects on MT and CLIR
performance.

In research areas directly related to multilingual applications, domain-specific language
modeling has been used in speech recognition [33], with encouraging results. [32] used CLIR
followed by MT to find domain-specific articles in a resource-rich language, in order to use
them for language modeling in a resource-poor language.

Resource analysis and modeling has been previously studied in the context of federated
search / distributed IR [7]. However, in distributed IR, the “resources” are (usually limited
access) databases to be queried; here, our target collection is available and resources are
defined as any aids in crossing the language barrier, including parallel corpora, dictionaries
or MT systems. An overview of distributed IR can be found in [1] and [7].

1.2.2 Additional Relevant Research in CLIR

In cross-lingual information retrieval (CLIR), benchmark evaluations have shown that the
performance of some systems has reached that of monolingual retrieval, as seen in TREC,
NTCIR and CLEF [30, 11, 17]. The most successful corpus-based approaches combine
the translation of queries and documents, or integrate translation in the retrieval models
[11, 17, 18]. We use a similar approach, described in Chapter 5, which also performed well
in multilingual retrieval evaluation forums [45].

In the past few years, CLIR has evolved from being an active academic research area in
the first half of the decade, into large-scale implementation in industry. Currently, several
online news sources and blogs identify CLIR as “a new Google algorithm” (i.e. in [15]), due
to the launch of CLIR capabilities in Google in the summer of 2007.

Resource combination in CLIR

Previous work in CLIR addressed a problem related to its domain adaptation: choosing
or weighting different translations, when more than one is available. A popular approach

[12] is to concatenate translations obtained from different sources. This does not take into



account the target corpus and its domain, and it does not attempt to disambiguate query
term translations. [13] combines the evidence for alternate translations by modifying a
structured query method to use translation probabilities. This approach does take into
account target corpus characteristics, but it uses already unified translation probabilities
that match the target corpus usage. In this context, favoring a translation that is common
in the target corpus, but improbable given the training corpus, is deemed undesirable. We
argue that technical, domain-specific terms exhibit exactly this behavior when a general-
purpose training corpus is used. Consequently, correctly disambiguating these terms by
choosing the translation that is more common in the target corpus is not undesirable. [10]
addresses the issue by retaining the top two translations that occur most frequently in the
target collection. We accomplish this goal by incorporating domain-specific information into

the translation probability.

Domain Specific Research in CLIR

Domain specific research in CLIR focused on the social sciences, with CLEF tasks using
corpora such as GIRT (German) and RSS (Russian). Challenges for domain-specific CLIR,
in particular the problem of distinguishing domain-specific meanings, have been noted in
[35]. Newer tasks in NTCIR (an evaluation forum focused on Asian languages) focused on
patent retrieval. All of these task identify in-domain data a priori, and in many cases the

use of additional training data is prohibited.

1.3 Contributions

This thesis provides a solution to automatically adapting translation models to specific target
corpora and domains using multiple criteria.

Specific contributions include:

e Existence proof by demonstration that automated means for domain specific training
corpus selection for training translation mode Is to improve cross-language information

retrieval and machine translation

e Developing, examining and evaluating multiple criteria for selecting and weighting

translation training resources for multilingual applications

e A flexible framework for incorporating individual criteria (i.e. translation quality,

instance size, lexical similarity, taxonomy information, other metadata) into a resource



adaptation model

Integrating a high-performing statistical machine translation (MT) system into the
domain adaptation framework by translation model adaptation. Exploring the benefits
of adaptation by examining a) its impact on state-of-the-art MT systems and b) the

effect of individual criteria on MT-specific issues.

Examining the performance tradeoffs between traditional online training set adaptation

and its more realistic offline adaptation counterpart in the context of MT.

Developing methods for translation model adaptation, as specifically pertaining to the
problem of cross-language information retrieval (CLIR). Demonstrating the ad-
vantages of these methods by examining their impact on state-of-the-art CLIR systems

and the effect of individual adaptation criteria on CLIR-specific performance.

Delivering an instrument for cost reduction in an active learning context. The
labeling/translation cost is drastically reduced by identifying and focusing on the un-
labeled (i.e. monolingual) training instances with the highest estimated utility given a

domain sample.

Providing a high performing statistical CLIR system and using it as an application

within the domain adaptation framework.

Compensating for inconsistent or particularly poor parallel corpora by integrat-
ing translation quality estimates into the selection model and showing the significant

performance improvements.

Presenting a flexible technique for leveraging existing domain-specific resources
(dictionaries, taxonomies, parallel corpora) by simply including them in the pool of

resources to be selected and weighted.

Using global and local non-linear optimization methods such as Reactive Affine Shaker
and Continuous Reactive Tabu Search in order to find optimal weights dictat-
ing relative importance of above-mentioned criteria incorporated in a domain

adaptation method.

Significantly alleviating the considerable performance penalty incurred when using a
proven high-performance (but general domain) MT system on domain specific test
data.
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e Prioritizing training instances such that a reduction in training resources by more
than 90% results in 10% performance difference, even when compared to using all of
the available domain-specific data. More than one order of magnitude reduction in
training data can be accomplished with little performance loss, or, in the case of online

adaptation, a performance gain.

e A tool that, given a target corpus (or domain sample) and a pool of translation re-
sources (parallel corpora, dictionaries etc.) will present a customized parallel cor-

pus (or pre-trained translation model) tailored to the given domain sample.
The remainder of the thesis is organized as follows:

e Chapter 2 presents the parallel resource domain adaptation (PARDA) framework. It

discusses adaptation criteria and their combination into a model.

e Chapter 3 includes the first of the multilingual applications - statistical machine trans-
lation system and data used.

e Chapter 4 continues by showing adaptation results on statistical machine translation.

e Chapter 5 describes the cross-language information retrieval system we have developed,

including its performance and the data used.

e Chapter 6 shows the effects of corpus domain adaptation on domain specific cross-

language information retrieval.

e Chapter 7 concludes the thesis by emphasizing its contributions and impact.



Chapter 2

Parallel Resource Domain Adaptation
(PARDA)

Framework and Adaptation Criteria

2.1 Overview

In the first chapter, we have motivated the need for a flexible framework that, given several
parallel resources and a domain sample, produces a customized, domain adapted parallel
resource.

Lexical similarity is the most direct adaptation criterion to ensure the domain match of
the newly created parallel resource. However, especially in the case of today’s heterogeneous
parallel corpora, it is especially important to consider issues such as corpus and translation
quality, noise, size distribution, redundancy, genre or other available metadata in additional
to lexical similarity. In this chapter we present an adaptation framework that incorporates
several adaptation criteria. In later chapters, we show the individual (and combined) criteria

effects on MT and CLIR performance.

11
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2.2 The Parallel Resource

Domain Adaptation Process

The high-level adaptation process involves automatically weighting several training resources
such as parallel and comparable corpora and dictionaries, according to several criteria, in
order to better match a provided domain sample.

Figure 2.1 illustrates the high-level concept of adapting parallel resources to a given

Bl

Parallel Resources

domain sample.

axonom
presentati

Domain Specific
Customized Parallel Resource -:I

Figure 2.1: Adaptation Framework Overview

Given the domain sample and a parallel resource candidate (i.e. an entire corpus, or
a particular parallel sentence, or a dictionary entry), the first component of the system
produces a profile for each of the given resource. The profile includes features such as

the lexical domain similarity to the target corpus, the language, the within-corpus topic
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Figure 2.2: Adaptation Framework Overview - Integration and Evaluation

distribution, the corpus size and a translation quality estimate. More specifically, each of
the above-mentioned criteria calculates a fitness score for the candidate. The criteria can be
included or excluded, depending on their suitability to a particular task.

The second component of the system decides the relative weights of each criterion (and
criterion-specific score) in the profile and it can range from a simple model giving equal
weights to all criteria, to directly using confidence scores generated using individual criterion,
to a more sophisticated non-linear optimization module based on evaluation results when

training data is available (the approach described in this thesis). In this setting, a key
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observation is that the training of the relative weights depends on the available validation
data. This module, described in Chapter 7, optimizes the corresponding performance of the
resulting translation model for each multilingual application.

Once each parallel resource candidate has been assigned a weight, the domain-adapted
resource is constructed by a) mixing the given resources proportionally with their weights,
or b) ranking all the candidates and keeping the top N% as contributors in the new domain-
adapted resource.

Figure 2.2 shows how the adaptation framework fits into training and evaluation. Once
the domain adapted corpus is created, a multilingual (CLIR or SMT) system is trained and
evaluated. In the learning phase, the results of the evaluation are fed back into the criteria
combination module, optimizing their relative weights. In the evaluation phase, results are
reported on CLIR/SMT performance given the pre-trained mixture model, and the resulting
domain-adapted parallel training corpus.

The specifics of each criteria, as well as the combination mechanisms and weights are

outlined below.

2.3 Adaptation Granularity

When constructing a new, customized translation training resource from existing resources,
we have several choices for the granularity that is the most appropriate for the selec-
tion/weighting unit. In particular, when combining parallel corpora, we could make the

following decisions concerning the basic unit of combination:

e Corpus level: An entire parallel corpus, or the translation model trained on such a

corpus (macro adaptation)

e Document level: A document in any of the parallel corpora. Since many corpora are
sentence-aligned, the document in this case is a sentence, or a dictionary entry in the

case of dictionaries (micro adaptation)
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e Cluster level: A cluster of documents originating in the same corpus. In this setting,
the additional problem of cluster size, density and number introduces additional free
parameters into the system but it has the potential of faster performance in the case

of a pre-trained model.

2.3.1 Macro (Corpus Level) Adaptation

In macro adaptation, the basic unit used to construct a new, customized parallel resource is
an entire parallel corpus (or a translation model trained on such corpus). The corpus is seen
as a coherent unit, with consistent translation quality, within a single domain and/or topic,
with documents belonging to the same genre. Any available meta-data varies from corpus
to corpus, but is consistent within the corpus.

These assumptions are usually true for corpora obtained from the same source (for exam-
ple, bilingual news in the same newspaper, a translated novel, or the Canadian Parliament
proceedings). Moreover, this level of granularity has the advantage of allowing off-line train-

ing of the translation models followed by efficient on-line combination when required.

2.3.2 Micro (Document Level) Adaptation

In macro adaptation, we use entire weighted parallel corpora as resources to build a domain-
specific translation model. This approach treats a parallel corpus as a homogeneous entity,
an entity that is self-consistent in its domain and document quality. In this section, we
propose that instead of weighting entire resources, we can select individual documents from
multiple corpora in order to build a parallel corpus that is tailor-made to fit a specific target
collection (e.g. a set of topically coherent documents to translate). In previous work [59]
micro-adaptation lead to superior results when compared to macro-adaptation on a medical
domain corpus.

We compute the domain match score between the target collection and each individual
document in the parallel corpora for that respective language. Once this is computed for

each document in the parallel corpora, only the top N most similar documents are kept for
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training. Alternatively, the document score can also be incorporated into the translation

model, eliminating the need for thresholding.

2.4 Adaptation Criteria

Several factors influence the extent an individual parallel corpus or translation resource
contributes to a newly constructed domain-specific corpus. The vocabulary match (or the
lexical similarity) is a prime indicator for a close domain match. Translation/corpus quality
(i.e. the degree to which the corpus is actually parallel) is another feature we need to consider,
especially when the quality and sources of the available corpora vary. The size of a corpus
is important since it provides a measure of the quantity of the training data available. A
resource can be projected into dimensions determined by taxonomies and genres; similarity

along these dimensions can prove to be significant when adapting the translation model.

2.4.1 Lexical-Based Domain Similarity

Word-level (lexical) similarity is the low-hanging fruit of domain matching. A good overview
of distributional similarity measures (as applied to word distributions) can be found in [39].
Usually used exclusively, word-level similarity is a crucial domain match criterion. For both
online and off-line adaptation, we calculate the similarity of each candidate sentence in the
parallel corpus to the domain sample. Similarity measures vary, starting with word overlap,
cosine similarity and ending with the language-model information retrieval measure of the
probability of a segment being generated by the domain sample. In this thesis, our results are
shown using the latter, as implemented by INDRI [64], without pseudo-relevance feedback
and using Dirichlet smoothing.

We examine a series of other similarity measures an outline their advantages and disad-

vantages in order to analyze their suitability to the task at hand (lexical similarity).

1. Cosine Similarity
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cos(p,r) = 2 P0)r (W) (2.4.1)

Ve, r(w)?

Cosine similarity does not depend on the length: This allows documents with the same

content, but different length (i.e. a document duplicated over and over) to be treated
identically which makes this the most popular measure for text documents. We have
experimented with cosine similarity in the German language experiments presented in

Chapter 5.

. Jaccard’s coeflicient

The binary version of Jaccard’s coefficient measures the degree of overlap between two

sets:

plr
Jaacy(p,r) = ]ler’|

(2.4.2)

Jaccard’s coefficient binary definition can be extended to non-negative features:

> P(w)r(w)
Zw p<w)2 + Zw r(w)Q — pr(w)r(w) (243)

which is equivalent to the binary version when the feature vector entries are binary.

Jac(p,r) =

It retains the sparsity property of the cosine while allowing discrimination of collinear
vectors.
. Dice coefficient

The Dice coefficient is monotonic in Jaccard’s coefficient, so its inclusion would be

redundant [39]

. 2y plw)r(w)
Dice(p,r) = S )+ S, (W) (2.4.4)
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4. Overlap (vocabulary coverage)

Vocabulary coverage is particularly important in machine translation tasks, where the
effect of an out-of-vocabulary word is more easily noticed. We have experimented with

overlap in [46].

I
cov(p,r) = MTPF (2.4.5)

5. Euclidean distance

Lo(p.r) = \/Z (p(w) — r(w))? (2.4.6)

6. Hellinger distance

di(p,r) = (v/p(w) — v/r(w))? (2.4.7)

7. Kullback-Leibler divergence

Also known as relative entropy, the KL Divergence can be seen as the distance between

two distributions, although it is not symmetric.

Zp log p(w) (2.4.8)

w

8. Jensen-Shannon divergence

The Jensen-Shannon divergence is a symetrized and smoothed version of the KL di-

vergence above.

IS(p,7) = 5K Lp, 3(p+ 7)) + 5K Lr, 50+ 7)) (2.4.9)
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9. Pearson Correlation

In collaborative filtering, correlation is often used to predict a feature from a highly
similar mentor group of objects whose features are known. The [0,1]-normalized Pear-

son correlation is defined as

s (20, 2) = ! <| (Ta = Ta) (2o = T) + 1) (2.4.10)

2\l 2a —Ta 2 25— |

where T, denotes the average feature value of over all dimensions.

10. Language Model Perplexity

Given the n sentences in the domain sample (57 ....S,,), we can calculate the perplexity

of the language model trained on the parallel corpus p. The perplexity is defined as:

Perp = Q_WIIZ?ZNOgP(Si) (2411)

One important issue that we need to take into consideration is that the perplexity of a
language model depends on its application domain. There is generally higher precision

(and less ambiguity) in specialized fields [60].

Similarity Aggregation: Mean Reciprocal Rank

Once the similarity is computed, there are two possible views of the domain sample: either
as being represented by the centroid of its constituent datapoints, or as being represented
by the datapoints themselves. In the second approach, identified by MRR. in the results
chapter, a candidate training instance (i.e. the parallel corpus sentence being evaluated)
is selected according to its nearest neighbors in the domain sample. We use the mean
reciprocal rank over all domain sample datapoints in order to score a candidate (hence
the MRR name). Each candidate data point ¢; in the training data is scored, and the
top candidates are subsequently selected. Intuitively, the score of a candidate encodes the

aggregate usefulness/similarity to each of the domain sample data points (i.e. sentences) d;.
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Figure 2.3 provides the algorithm for aggregating the similarity scores between each

candidate and the domain sample.

for each @ domain sample d,
rank all © training data candidates {c,-c}

1. ¢ 1. ¢,
2. C
Step 1 C3 3
P 3. C4 3. ¢
for each Otraining data candidates c;
Step 2 collect reciprocal ranks (MRR)
MRRc, ~ ...+1/2 + 12 + ..
MRRc, ~ ...+1/1 + 13 + ..
Step 3 for each O training data candidates C, use

MRR as score for candidate selection

Figure 2.3: Mean Reciprocal Rank Calculation

We define the relevance (similarity) of training candidates C' to a sentence in the domain
sample d; by ranking each candidate c; according to its distance to d;, rank;;. The candidate
score is then the reciprocal rank: scorej; = 1/rank;;.

In the second step, we compute the overall score for each candidate given the entire

domain sample D. The mean of all reciprocal rank scores is used as the aggregate score:
|D| Dl

1 1
b L= 2.4.12
score; e ZZ:;score] 15 Zz:; rank; ( )

, which is known as the mean reciprocal rank (MRR).

Finally, once an overall MRR score is computed for each candidate, the selection process
focuses on the highest-scored top N candidates which are most relevant to the overall domain

sample:

Cs = {c; = argmax score; }, where|Cs| = N (2.4.13)
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2.4.2 Translation Quality Estimate (TQE)

A monolingual corpus can vary in quality due to noise, speech recognition or OCR errors and
encoding issues. A parallel corpus has the added possibility of poor translations, misaligned
sentences, or completely wrong sentences undetected by, for example, a parallel corpus web
mining software. In our case, parliament proceedings (carefully translated by humans) result
in a high-quality parallel corpus, leading to more accurate translation models. In contrast,
noisy corpora collected from the web, or comparable corpora known not to be exact trans-
lations of each other, lead to noisier translation models. This criterion is orthogonal to the
domain match (or word-based domain similarity), and we need to find suitable tradeoffs
when weighting the two.

There are several approaches to automated translation quality estimation, such as transla-
tion equivalence [63], length ratio variance, and bootstrapping+evaluation (described below).
We have used length-ratio variance as a step function followed by bootstrapping and evalu-
ation. In preliminary experiments, this method proved more stable than using translation
probability stability (below) as a translation quality estimate. Manual approaches (such as
corpus-level metadata based on the source of the translation, or using bilingual speakers to
estimate a sample chosen for each corpus) can also be utilized but have not been the focus

of this thesis.

Length/Ratio Variance as Translation Quality Estimate

When translating from a language to another, the ratio of the number of words in the
original text vs. the translated text tends to remain constant for a certain language pair.
We calculate the variance over the entire collection:

1 9 Zizl..|C| (A = pn)?

— =0g° = 2.4.14
m Tl (2.4.14)

where:
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|C'| = the size of the collection in sentences or documents
Ai = the ratio of the lengths (in words) of the i-th sentences in each half of C

i = the mean of \; in C'

A large variance might indicate problems such as missing parts on either side of the
translation, parsing or processing mistakes that occurred at the time of the corpus collection
etc.

In the past, using this criterion as a filter did not lead to a significant improvement [57],

but has been used in practice [47, 56].

Translation probabilities stability

We can examine how the term-to-term translation probabilities change when a random

selection of documents is eliminated from the training corpus.

l _ Zi:l..K (al - H3)2 (2'4'15)

qe K

where K is the number of folds/turns in eliminating documents, and

Zi=1..\ve\,j=1..|vf\ (p(elf5) — pr(esl 7))
Vel < |Vl

A large change can indicate inconsistent translations and a lower parallel corpus quality.

Ok =

(2.4.16)

Bootstrap and Evaluation

This is the method later used in Chapters 4 and 6, partly due to its ability to leverage existing
general domain trained models. It consists of two steps: first, half of the parallel corpus is
translated using another parallel corpus - if available, even if it is domain-mismatched -
or itself. Then, an automatic MT evaluation measure such as BLEU (including modified
BLEU) or NIST is applied to each sentence. This method has the disadvantage of using
measures that have been shown to be unreliable at the sentence/segment level. However,

according to the JHU MT workshop report [50] examining solutions for evaluation at the
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sentence level, no alternative features are fully reliable at this granularity level. This method
has the advantage of catching misaligned sentences that a length-based estimate might miss,

as well as those the estimate does identify.

2.4.3 Size or Sentence Length

The size of the parallel corpus used for training has been shown repeatedly to affect perfor-
mance in applications such as MT and CLIR [46]. It follows that size is a natural choice for
the selection of a parallel corpus as a training resource. Anecdotaly, size has been used as
the only criterion for the selection of training resources, since it implies a bigger known vo-
cabulary size and more training examples, which affect the robustness of the trained model.
However, size alone is not a good predictor of whether a particular parallel corpus would lead
to the best performing translation model, even if the two corpora are in the same general
domain [46].

The size of the selected sentence is important in that smaller sentences add little addi-
tional information, but overly-long sentences lead to less sharp co-occurrence probabilities
used for the translation model. The size criterion can be used either through its value, or
as a thresholding measure. In the experiments presented in this thesis, the size criterion has

been tempered by the log function before combined with the other criteria.

2.4.4 Genre

Genre information can be extracted from a) metadata for the parallel corpora, and b) auto-
matic classification by constructing a vector representation of a corpus projection into genre
space. Genre classification has been the object of several studies [21]. However, it is not
clear to what extent other features such as vocabulary match are already capturing the genre
specific characteristics.

Examination of a corpus produced during our previous work showed that such features
are being indeed captured (i.e. documents selected from the TED corpus in order to be

used to translate spoken presentations showed spoken language characteristics). The results
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presented later in the thesis do not identify genre as a separate dimension, since the genre
of the data being used is homogeneous. Heterogeneous genre corpus exploration is left to

future work.

2.4.5 Taxonomy Representation and other Meta-Data

Other criteria that have the potential to be used for domain adaptation depend on the specific
metadata (if any) available. For example, PubMed makes MeSH categories available for its
articles and abstract. When taxonomy information is missing for some corpora, classifiers
trained on the corresponding taxonomy can be used to project these corpora into the multi-
dimensional space defined by using the taxonomy as dimensions. This representation has
the advantage of incorporating several sub-domains of the target corpus, along dimensions
that humans deemed important.

Our previous work in this area involves using MeSH categories to represent documents
in the medical domain, effectively using the taxonomy as an interlingua for cross-lingual

information retrieval.

2.4.6 Redundancy

The quality of a parallel corpus and its associated segments also depends on its degree of
redundancy. If a large quantity of data selected from a redundant corpus is itself redundant,
its utility is diminished regardless of how closely it matches the domain.

Redundancy is traditionally measured by examining the lexical level similarity between
the previously selected (or higher ranked) parallel sentences and a new candidate sentence.
Using this criterion has the practical disadvantage of imposing an order on the selection
process (i.e. two-staged re-ranking). A certain degree of redundancy is, however, needed by
the statistical translation modules. We leave the task of fully exploring the effects of this

criterion to future work.
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2.5 Adaptation Criteria Combination

The criteria values are not probabilities and they are not independent. However, they can
be normalized to [0, 1] in order to allow their combination. (Weighted) arithmetic average
acts as a soft OR and allows i.e. misaligned sentences (poor TQE) to have a high score if i.e.
the domain match is high, which is not a desirable effect. However, weighted geometric and
harmonic mean give us the desired soft-AND effect; they have been used in the experiments
presented in this paper.

While the simplest approach is to use equal weights for all criteria, the problem of as-
signing the relative importance to each criteria when ranking parallel sentence candidates
requires optimizing a highly non-linear, non-convex multi-dimensional function. Since mul-
tiple local optima may exist, we require a global constrained optimization method. Global
optimization strategies include branch-and-bound methods (however, most have the disad-
vantage of relying on information about the problem structure or on the availability of an
analytic formulation), bayesian partition algorithms (where a prior on the problem dimen-
sions is needed), genetic algorithms, adaptive stochastic search (e.g simulated annealing,
which places a non-zero probability on moving away from the optimum) etc. Many of the
above methods suffer from two main drawbacks: requiring a (fast) calculation of the objec-
tive function gradient, requiring smooth continuous functions or the availability of a formula,
and /or requiring too many objective function calls. Since our particular function (corpus do-
main adaptation, then CLIR) is a fairly time-consuming black box, minimizing the function
evaluation calls and not having to provide a gradient are important considerations.

Since it provides a satisfactory answer to the two considerations mentioned above, our
method of choice is continuous reactive tabu search (CRTS) [2], as described below and in

Chapter 7 .
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2.6 Continuous Reactive Tabu Search for Criteria Op-

timization

We are optimizing CLIR average precision f : w — R, where w is the set of feasible points
and a subset of R"™, defined by bounds on the n weights w; : 0 < w; < 1. Our function f’s
convexity and differentiability cannot be relied upon, therefore algorithms such as simple hill
climbing are not recommended. We use CRTS [2], a global, deterministic, tabu-search based
optimization method that uses the reactive affine shaker (RASH) [6] algorithm as its local
optimization routine. CRTS’s combinatorial optimization algorithm focuses on locating the
set of promising boxes in the search space, and it initializes RASH while adapting box size
and other search parameters.

More details on RASH and CRTS, as well as experimental results can be found in Chapter

2.7 Online versus Offline Adaptation

The most common approach, in both language model and translation model domain adap-
tation, is to use information retrieval methods to find the nearest neighbors in a particular
corpus for each of the test sentences. Then, a mixture model is built from a) the general lan-
guage model or translation model and b) the adapted, domain-specific model (i.e. [46, 14]).
We refer to this scenario as online adaptation; such adaptation permits very specific and ac-
curate adaptation tailored to a specific test sentence or query. However, both the language
model and translation model adaptation are time-consuming, as they involve searching and
model retraining. One can argue that retraining the models when presented with a test
sentence is not a realistic scenario. We therefore compare it with and explore the impact of
what we refer to as offiine adaptation: adaptation when the domain is known and a domain
sample is available. We remind the reader that a domain sample is defined as a set of

unlabeled datapoints in the target domain. In both the cross-lingual information retrieval
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and the machine translation scenario, a domain sample is a collection of monolingual sen-
tences that represent the target domain. The quantity and quality of the domain sample
does affect the adaptation quality - but obtaining such data is not difficult, given that it
need not be parallel. For example, monolingual technical manuals or monolingual medical
articles are abundant.

One of the main advantages of domain adaptation is the significant reduction in the
amount of training data necessary. When the adaptation is performed offline, adaptation
can be seen as an active learning scenario, in that the selected data can be translated at
a much smaller cost that an entire corpus. The sentence selection, in this case, can be
performed out of available monolingual corpora (with criteria such as translation quality
taken out of the equation) The traditional active learning labeling of examples is, in this
case, the translation process itself. Similarly, re-training can be performed less often and
requires fewer resources. Online adaptation, on the other hand, does not allow for the manual

translation of monolingual sentences and is therefore less suited to an active learning scenario.






Chapter 3

PARDA for Statistical Machine

Translation: System and Data

3.1 Overview

After introducing the PARDA framework in Chapter 2, we now focus on the two multilin-
gual, corpus-based tasks we chose as its applications. The first task is statistical machine
translation (MT), more specifically the corpus-based methods that rely on parallel corpora
as training data in order to tackle the task of automatically translating written text from
one language to another. We start by describing the datasets used for this task, as well as
the MT system details. In the following chapter, we analyze the effects of automatically
selecting the best training data subset, which is subsequently used by our corpus-based MT
system.

In addition to showing the significant effect that selection has on the amount of paral-
lel/training data necessary to produce satisfactory MT results, we address the experimental
differences between a given domain (in our case, we use data in the medical field), and
a sub-domain (in our case, the heart-related medical domain subset). We also contrast a)
medical-domain adaptation results with results obtained using a general-domain corpus, and
b) on-line and off-line adaptation.

We explore the effect of several individual RDA criteria: lexical-based mean reciprocal

29
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rank (MRR), translation quality estimate (TQE), sentence size, as well as the taxonomy
projection described in 2. We show that, while the MRR criterion is crucial, the addition of

quality estimates and categories improves the MT results.

3.2 Phrase-Based Statistical Machine Translation: Sys-

tem Details

Although for CLIR we are building our own high performing system (discussed in Chapter
5), we have taken a different approach when a Statistical Machine Translation system was
needed. We have used freely available, off the shelf, components in order to assemble our
phrase-based Statistical MT system. In order to obtain state-of-the-art performance we
have experimented with several baseline MT choices, using components such as GIZA++
[51], the CMU-Cambridge Statistical Language Modeling kit, the SRI Statistical language
Modeling Toolkit, the ISI decoder, Pharaoh Phrase-based decoder, and the Carmel finite-
state transducer Kkit.

The combination used in the experiments presented here is GIZA++ [51] and Pharaoh
[53], without the costly minimum error rate training for parameter estimation [49]. The
language model we use is a general English language model; we do not perform language
model adaptation. This general purpose system has been trained on the European Parlia-
ment English-French corpus, tuned on a development set from the same corpus, and tested
on a 2,000 sentences test set provided by the 2006 Statistical Machine Translation Workshop
organizers [37]. This allows us to establish a system baseline by directly comparing the
results with 2005 state-of-the art systems.

Figure 3.1 shows the performances of top 5 MT systems; the black bar is the baseline
for the system we used. We present this high baseline in order to establish the system as a
competitive one, and attribute poor performance in subsequent experiments to the test &
training data (more specifically, to its domain mismatch).

The most popular evaluation metrics (and the ones we use in this thesis) are BLEU[52]
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and modified BLEU (MBLEU) [66]. These evaluation metrics are fundamentally different
from the CLIR metric in that they take into account the translation accuracy and the fluency
of the resulting text when evaluating the quality of system-produced output. MBLEU is
different from BLEU in that the n-gram level scores are combined using arithmetic mean
instead of geometric, allowing more stable scores in short MT samples (e.g. sentences and
paragraphs) when long n-grams do not match . Due to the n-gram influence in evaluation
metrics, one possible similarity criteria to incorporate for MT is n-gram-level similarity (as
opposed to unigram only). In this respect, MT differs from the other two application areas, in
that the final fluency and grammatical correctness of the output is a factor in the evaluation.
The evaluation metric used for the rest of the chapter is the BLEU score [52]; similar trends

and effects are obtained when using modified BLEU.
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Figure 3.1: Top 5 MT workshop systems results (BLEU) on Europarl data (left) vs. our
GIZA++ with Pharaoh baseline system (right, in black), demonstrating its competitive

performance.
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3.3 Resource Domain Adaptation

for Machine Translation

3.3.1 Datasets
MedTitle and MedTitleTest

One of the domain-specific corpus we are using is MedTitle, a collection of 505,000 titles of
French medical articles, together with their English counterparts. The collection has been
mined by the author from the PubMed online database, by querying for French articles for
which the English translation of the title is available. MedTitleTest is the test set used in
conjunction with MedTitle, and it contains 1,000 titles in each language. MedTitleTest is
also parallel, and it is a randomly selected (and excluded) subset of MedTitle. The French
half of MedTitle is used as input to the MT system, and the English half is used as the
evaluation gold standard. Both MedTitleTest and MedTitle are parallel.

For these and the following datasets, we refer to each title as a sentence for consistency
and comparison with other parallel datasets, although each title is also its own document,

complete with its own metadata.

MedCat

A similar and highly overlapping parallel collection we have created is MedCat. Using the
same methodology as in the MedTitle case, we have also included the MeSH [48] categories
where available, and excluded articles for which taxonomy information was not available.
This sentence-level metadata allows us to experiment with a ”perfect” (human-quality) clas-
sifier using an extensive and established taxonomy. This method produced 423,702 parallel

sentences and their corresponding categories.

MedHeart: A Subdomain Parallel Dataset

While MT adaptation to the medical domain in general is a crucial goal of this chapter, we

also plan to examine the effect adaptation has when the domain in question is more focused.
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We choose the Heart top-level subdomain, as identified by the MeSH categories. Out of the
403K sentences in the MedCat collection, approximately 30K were identified by their MeSH
category as belonging to the Heart subdomain. After randomly selecting 1,000 of these as
the test sentences, and subsequently deleting them from the MedCat collection, we use the
remaining sentences in the MedCat collection as the pool of sentences to select from. A few

of the 1,000 test sentences are shown in Table 3.1.

MedTitle-IT

We have also downloaded 177,000 Italian/English titles for which the French counterpart
was not available (MedTitle-IT). We are using this corpus as a domain sample when the

untranslated test set is not available, as is the case in offline adaptation.

Med* Validation and Testing

Our domain-specific test and validation set consists of 1,000 sentence pairs each, randomly
selected and removed from the MedTitle (or MedCat, where applicable) collection. The
reference translation were the parallel counterparts. Although we are aware not using mul-
tiple reference translations can be problematic, securing multiple translations for a technical

domain is costly and is reserved for research focused on this effect.

Europarl

Another parallel corpus that has extensively been used for statistical machine translation
training is Europarl [36], a collection of English/French sentence-aligned proceedings of the
European Parliament. The domain mismatch between Europarl and MedTitle is significant
- they differ in genre, vocabulary and even sentence length distribution. As we have seen
in [46], this domain mismatch yields to an extremely poor performance when an Europarl-

trained M'T system is tested on MedTitle.
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English (reference) translation of sampled sentences in the MedHeart test set

angioedema associated with the use of dihydropyridines

hormone replacement therapy and cardiology : don ’ t dream !

syncope

diagnosis of coronary insufficiency in diabetics . when , how , why ?

calcium antagonists and arterial hypertension

anatomo-clinical conference . inflammatory syndrome , glomerulopathy and
abnormal pulmonary images in a patient with a starr ’ s valve

myocardial infarction without q wave . clinical course characteristics and therapy
anterior interventricular revascularization using the internal mammary artery.
short and medium-term follow-up of 140 patients

prognostic value of the normalization of the exercise test under medical
treatment in coronary insufficiency

prognostic factors of hypereosinophilic syndrome . study of 40 cases

late effect of intracoronary urokinase . apropos of a case of recurrent
coronary thrombosis after angioplasty

vascular risk factors

quantitation of left ventricular function after an inferior or superior
myocardial infarct . comparative value of resting ejection fractions or after
effort attenuation of cardiocirculatory reactions induced by the ablation of
acoustic neurinomas ( trans-labyrinthine approach )

left ventricle in noonan ’s syndrome . electro-vecto-echo and angiocardiographic aspects
continuous emission doppler study with spectrum analysis in the evaluation
of aortic stenosis in adults . apropos of 30 cases

percutaneous aortic valvuloplasty by trans-septal approach

fetal cardiology : a new perspective in pediatric cardiology

significance of minor vectorcardiographic changes ( the qrs complex )
bidimensional echocardiography in the search for the latent origin of cerebral
embolism

Table 3.1: MedHeart test set sample (20 out of 1,000 sentences shown).

Dataset Summary

The pre-processing was identical for all data sets, after first eliminating PubMed-specific

noise such as HTML tags etc. The character encoding was consistent across datasets. Table




3.2 summarizes the dataset properties!:
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Dataset Size' | Genre Source

MedTitle 505K | Medical Article Titles PubMed — authors’ translations
MedTitle-IT | 177K | Medical Article Titles PubMed

Europarl 648K | (Spoken) Parliament Proceedings | Transcripts, professional translations
MedCat 424K | Medical Article Titles PubMed — authors’ translations
MedHeart 29K | Medical Article Titles PubMed; test data is selected from

the “heart” category

1

Table 3.2: Datasets: domains and characteristics.

stze is given in sentence pairs







Chapter 4

PARDA for Statistical Machine
Translation : Experiments, Results

and Discussion

4.1 Overview

After describing the statistical machine translation system used to evaluate the effects of
parallel corpus adaptation, we now present the effects of automatically selecting its training
data subset.

In addition to showing the significant effect that selection has on the amount of paral-
lel/training data necessary to produce satisfactory MT results, we address the experimental
differences between a given domain (in our case, we use data in the medical field), and
a sub-domain (in our case, the heart-related medical domain subset). We also contrast a)
medical-domain adaptation results with results obtained using a general-domain corpus, and
b) on-line and off-line adaptation.

We explore the effect of several individual RDA criteria: lexical-based mean reciprocal
rank (MRR), translation quality estimate (TQE), sentence size, as well as the taxonomy
projection described in 2. We show that, while the MRR criterion is crucial, the addition of

quality estimates and categories improves the MT results.
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4.2 System Performance on Domain-Mismatched Data

We revisit results shown in [46], using the dataset described in Section 3.3.1. Figure 4.1
illustrates how the well-performing Europarl-trained system fails dramatically when out-of-

domain.

30 2756 26.98

25

20

15
11.32

10 +—

5 A4

MT Performance (BLEU scores)

Europarl (648K) MedTitle (505K) Both (1.2M)

Training Dataset

Figure 4.1: Translation performance (BLEU) after training on standalone corpora and testing
on MedTitle-Test. Note that in-domain data performance is slightly better than combining
it with out-of-domain data and more than doubling its size.

This result is significant in the motivation for domain adaptation not only as an optional
enhancement leading to slight improvements, but crucial to effective performance. In order
to allow the reader to get a better feel for the translation quality difference, we include a few
translation examples in Table 4.1.

The italicized portions indicate where an additional translation reference would have

been helpful to distinguish correct (but not exact) translations from actual errors.

4.2.1 MRR vs. Centroid Adaptation: Implementation Details

For both online and off-line adaptation, we calculate the similarity of each candidate sentence

in the parallel corpus to the domain sample. As discussed in Chapter 2, similarity measures



39

Source Text

Reference sequencing of adjuvant treatment after surgery for invasive breast
cancer : recognize the fragility of the patient
Trained on MedTitle | sequence of adjuvant treatments after surgery breast

cancer : recognize the fragility of the guards

Reference
Trained on MedTitle

6 neurosyphilis cases : value of cerebrospinal fluid analysis

6 neurosyphilis : the contribution of the study of the
cerebrospinal fluid

Reference airway remodeling

Trained on MedTitle | bronchial remodeling
Reference nystagmus and vibration test research of mechanisms , theoretical
methods

Trained on MedTitle | nystagmus and test vibratory research on mechanisms ,
theoretical approach

Table 4.1: The effects of training on a mismatched domain datasets: Examples.

vary, starting with word overlap, cosine similarity and ending with the language-model in-
formation retrieval measure of the probability of a segment being generated by the domain
sample. Our results are shown using the latter, as implemented by INDRI [64], without
pseudo-relevance feedback and using Dirichlet smoothing.

Once the similarity is computed, there are two possible views of the domain sample: either
as being represented by the centroid of its constituent datapoints, or as being represented

by the datapoints themselves. The second approach is described in detail in Section 2.4.1.
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4.2.2 MRR vs. Centroid Adaptation: Results

The two approaches described in Section 2.4.1 (distance to one centroid vs. the mean recip-
rocal rank of the nearest neighbors of each domain sample instance) are compared in Figure
4.2. This figure covers the MedTitle dataset. Note that using the entire dataset yields the
best results using MRR, but here we are interested in comparing the centroid and MRR

conditions when the quantity of available data is smaller.

27.37
28 27.01 26.98

26.16
26 24.61 B
24 —
22 —
H centroid
20 1 ~ Mrandom
18 'i — MRR
16 B T T T T
10K 25K 50K

MT Performance (BLEU scores)

100K  MedTitle +
Europarl

Dataset (size)

Figure 4.2: MT adaptation results on MedTitle (BLEU Score). We compare the one centroid
and MRR approach at various sentence selection levels. A 1.4 difference in BLEU score is

statistically significant.

Figure 4.2 shows how a 24-fold reduction in training examples has identical results to
using all available data, and a 12-fold reduction yields to a performance improvement. To
establish statistical significance, we have used the bootstrap resampling method described
in [54]. With a 1,000 sentences test set, a difference of 1.4 in BLEU score was statistically
significant (p value < 0.05)

In Figure 4.3 we examine the tradeoff between the more realistic offline adaptation and
online adaptation discussed in Section 2.7. We note that, in the case of offline adaptation,

there is a performance cost to be paid in exchange for the reduction in training data. This
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Figure 4.3: Online vs. offline MT adaptation results (BLEU scores) on MedTitle. We
are using MedTitle-IT as the offline domain sample. Note that offline adaptation is still

improving at 100K parallel sentences, but online adaptation appears to be saturating.

cost is alleviated by the use of additional criteria. We find the offline adaptation scenario
more realistic, even more so when our experiments indicated that a large monolingual domain
sample (177K sentences) had virtually identical performance with a 1,000-sentence domain

sample randomly chosen from the 177K sentences.

4.2.3 The Effect of Individual Criteria on MT Adaptation

One-criterion Adaptation

To examine the effects of adaptation itself, we started by testing the RDA-MRR criterion
(the criterion that measures lexical simlarity as described in 2.4.1). We also included an
experimental setting that only used the taxonomy information (i.e. the MeSH categories),
in order to properly separate each criterion effect. Both are shown in Figure 4.4, together with
a baseline of sentences randomly selected from the MedCat training subset. As expected, the
RDA-MRR criterion performed well, significantly reducing the number of sentences needed

to reach close to peak performance.
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Figure 4.4: One criterion MT adaptation effect on the MedCat test dataset (BLEU score,

semilog plot). Sentences are selected from the MedCat training set.

We notice significant improvement when RDA-MRR adaptation is used versus random
selection of the training data. This effect is more pronounced at the smaller dataset levels,
where it can be argued that adaptation performance has the most impact.

Similarly, we examine the case where selection is performed using the MeSH categories.
When this taxonomy information is used alone to represent both the domain sample and the
sentences used for selection, the selection has a similar effect to the RDA-MRR selection when
the number of selected sentences is low. However, when the number of sentences is higher, the
MRR criterion outperforms the taxonomy criterion, due to its richer representation power
(i.e. more numerous and more diverse features).

Figure 4.5 examines the same one-criterion conditions for the heart subdomain (Med-
Heart, described in Section 3.3.1.) Here, the adaptation effect is even more dramatic: the
difference between randomly selected sentences and RDA-MRR selected sentences is as-
tounding (7 BLEU points at the 5,000 sentence level - MRR increases the BLEU score from
17 to 24). Moreover, the MT performance when the training data is reduced by two orders of
magnitude is reduced by less than 10%, even when the selection here is done in the medical

corpus as it is in Figure 4.5. The gap between the MRR~only method and the taxonomy-only
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method is also further increased.
Since the taxonomy and vocabulary-based representations of the same datapoints both

lead to good adaptation performance, the next subsection examines the effects of their com-

bination.
28
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Figure 4.5: One criterion MT adaptation effect on the MedHeart dataset (BLEU score,
semilog plot). On this more specific dataset, even 1K properly selected sentences lead to
performance close to that obtained when training on 500K sentences. Sentences are selected
from the MedCat training set.

Taxonomy /Categories as an Adaptation Criterion

The MedCat dataset is designed by taking advantage of the availability of human-assigned
MeSH categories. Since Figure 4.4 shows that adaptation based on both the taxonomy
representation and vocabulary representation improve MT performance, we combine the
two criteria, as well as add the TQE criterion where applicable. The TQE criterion is added
by including it in the pool of criteria to be combined as described in Section 2.5. Not that the
TQE criterion cannot be used alone - well translated but irrelevant sentences are not helpful
in a domain adaptation task. Figure 4.6 implies that adding the taxonomy information does

improve the performance; however, the best performance was obtained when all the above
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three criteria were used. To establish statistical significance, we have used the bootstrap
resampling method described in [54]. With a 1,000 sentences test set, a difference of 1.4 in
BLEU score was statistically significant (p value < 0.05).

A similar result was obtained on the MedHeart dataset, in Figure 4.7. Table 4.2 shows
the top selected sentences when all criteria are combined. One interesting observation is
that, while the performance is similar at the 1K sentence level, only 33% of the sentences
are common between the RDA-MRR condition and using all 3 criteria. This number is even
lower for the top 100 sentences (19%); however, using 100 sentences to train an MT system

is not realistic.
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Figure 4.6: The effect of the taxonomy criterion on the MedCat dataset. The translation
quality estimate criterion is included for completeness. Sentences are selected from the

MedCat training set.

Translation Quality Estimate (TQE) as an Adaptation Criterion

The effect of adding the translation quality to the MRR and Taxonomy-based criterion is
shown in Figure 4.8 and Figure 4.9 for the MedCat and MedHeart datasets, respectively.
The improvement over the taxonomy-only case is larger than over the MRR~only case; both

improvements are small. As discussed in Chapter 6, this small improvement is expected in
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Figure 4.7: The effect of the taxonomy criterion on the MedHeart dataset. Sentences are

selected from the MedCat training set.
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Figure 4.8: The effect of the TQE criterion on the MedCat dataset. Sentences are selected
from the MedCat training set.

a corpus where translation quality is consistent from sentence to sentence.
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English half of the selected parallel pair

valvular prosthesis in children . indications and results

hemodynamic effects of milrinone in the treatment of cardiac insufficiency after
heart surgery with extracorporeal circulation

paroxysmal supraventricular tachycardia with complete atrio-ventricular block or
dissociation

circulatory assistance with double-purpose tube of aspiration in the left ventricle
and reinjection in the aorta introduced in the apex of the heart by sub-xyphoid
abdominal approach

transluminal coronary ngioplasty : immediate and short-term results . apropos
of 302 dilated vessels

endocavitary fulguration in the treatment of ventricular tachycardia
complicating myocardial infarction

surgical plasty of the coronary trunks : an alternative to bypass techniques
effects of molsidomine during the cold test in stable coronary insufficiency
under beta-blocker treatment

automatic analysis of polygraph recordings of sleep

antihypertensive action and inhibition of tissue conversion enzyme by ramipril ,
perindopril and enalapril in the spontaneously hypertensive rat ( shrsp )
post-infarction anterior left ventricular aneurysms . echocardiographic and
hemodynamic study of the nonaneurysmal contractile zone

effects of epinephrine upon the circulatory system of the 17-day-old rat fetus .
emergency coronary surgery after transluminal angioplasty . immediate results
and long-term outcome of 100 operations

rhythm disorders in the acute phase of myocardial infarct and their treatment
results of radiofrequency ablation of the atrioventricular junction in patients
with refractory atrial arrhythmia and severe impairment of the left

ventricular systolic function

Table 4.2: Top selected MedHeart sentences using the Springer queries as the domain sample.
The criteria used here are RDA-MRR+TQE+Taxonomy.

The Use of Sentence Length as an Adaptation Criterion

To examine the effect that selected sentence length has on machine translation quality,
we used the top 100K domain-specific sentences, selected according to the RDA-centroid

criterion. We have divided them into 4 approximately equal bins based on sentence length,
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Figure 4.9: The effect of the TQE criterion on the MedHeart dataset. Sentences are selected
from the MedCat training set.

then truncated the bins to bring them to the same size. This has resulted in 20K sentences
in each size bin.

As in the case of sentence length, we noticed that adding the TQE criterion performs
better than RDA-Centroid alone. These experiments were performed using the centroid
approach; the results change when using the MRR approach, on the test set, at the 100K
level (shown in Table 4.3)

Criterion Online-BLEU | Online-MBLEU
MRR+TQE(BLEU) || 26.47 32.03
MRRA+TQE(NIST) || 26.88 32.47
MRR Only 27.37 32.69

Table 4.3: Using NIST vs. BLEU as translation quality estimates. (MedTitle, 100K selected

sentences).

The results in Table 4.3 were obtained selecting a 100K sentence pair parallel corpus.

Modified BLEU scores are also presented the effects are similar.
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Online vs. Offline Adaptation and Criteria Combination

We combined normalized length, TQE and RDA-MRR using harmonic and geometric means.
Weighted geometric and harmonic mean give us the desired soft-AND effect. The criteria
were equally weighted for simplicity /generality. Table 4.4 shows that, while the averaging
method does not have a significant effect, offline adaptation is improved by adding additional
criteria to the RDA-MRR domain match. The already high-performing online adaptation is
not improved in the case of the MedTitle dataset and at 100K selection level; however, we

have shown improvements at lower dataset size in Figure 4.8

Criterion || Online-BLEU | Offline-BLEU
Harmonic 26.50 25.46
Geometric || 26.64 25.33

Random 23.1 23.1

MRR Only || 27.37 24.82

Table 4.4: Combining size, quality and similarity using various combination methods. These
are results obtained on MedTitle, at the 100K selection level.

4.2.4 Statistical Machine Translation Adaptation: Conclusions

In this chapter, we explore the effect of several individual RDA criteria on statistical MT
performance. We examine mean reciprocal rank (RDA-MRR) and RDA-Centroid, trans-
lation quality estimate (TQE), sentence size, as well as the taxonomy projection criterion
described in Chapter 2. We show that, while the RDA-MRR criterion is crucial, the addition
of quality estimates and categories improves the MT results, especially when using a small
to moderate amount of data. Another tradeoff we explore is that between on-line (done at
testing time) and off-line (done before testing, assuming the availability of a domain sample)
adaptation. We also address the experimental differences between a given domain ( the med-
ical field), and a sub-domain (in our case, the heart-related medical domain subset). Here,
our selection method allows a two-order of magnitude reduction in training data with only

a 10% BLEU-score decrease, vs. a 35% decrease for randomly-selected but in-domain data.



Chapter 5

PARDA for Cross-Language
Information Retrieval: System and
Data

5.1 Overview

This chapter describes our corpus-based approach to CLIR, presenting system details as
well as results in international cross-lingual evaluation forum tasks. By establishing it as a
competitive system in this chapter, we proceed to examine it in a multilingual task in the
domain-adaptation evaluation shown in Chapter 6. In this chapter, we also specify the two
CLIR systems used to examine domain adaptation evaluation tasks, and we introduce the

domain specific data used in the adaptation experiments shown in Chapter 6.

5.2 The CLIR task

The Cross-Lingual Information Retrieval (CLIR) problem consists of finding documents in
a target language that are relevant to queries expressed in a (different) source language.
In CLIR, system performance is measured by comparing a ranked list of the documents

identified as relevant by the system with a pre-determined set of human-labeled relevant
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documents. The metric used is Mean Average Precision (MAP), which averages the perfor-
mance over all queries. MAP is also the metric used in monolingual information retrieval.
This allows a direct comparison between the cross-lingual and monolingual scenarios, and in
many cases the cross-language performance is close to that of the monolingual case. Initially,
this has been attributed to the query expansion effect that corpus (or dictionary) based trans-
lation introduces - however, this effect is maintained even with monolingual query expansion
[12].

As discussed in previous chapters, the CLIR methods we use are statistical methods
based on parallel corpora - text data presented in two different languages. In the following

section we present our implementation of a high-performing CLIR system and its results.

5.3 CLIR Systems

We have built a corpus-based CLIR system, using query expansion both before and after
translation. A significant difference from machine translation (MT) or online dictionary
based approaches is that instead of using a rank-based cutoff (i.e. the first or first two
variants for each word) we are using all translations weighted by their translation probability.
The most successful CLIR corpus-based approaches combine the translation of queries and
documents, or integrate translation in the retrieval models [11][17][18]. Our approach is
similar, and it has the welcome side effect of providing a very focused query expansion.
Our approach consists of 4 general steps. Given source (query) language L; and the

target (document) language Lo,

1. Expand the query in L; using pseudo-relevance feedback
2. Translate the query, while preserving the relative weights from 1.
3. Expand the query in Ly using pseudo-relevance feedback

4. Retrieve documents in Lo
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Here, pseudo-relevance feedback is the process of retrieving documents and adding the
terms of the top-ranking documents to the query for expansion. We used simplified Rocchio
positive feedback as implemented by Lemur [64] - the number of documents used for feedback
(20) is based on CLEF multi-language training data. Our corpus-based methods differ only

in the translation step, as described below.

5.3.1 Weighted Model 1 (WM1)

IBM’s statistical machine translation Model-1 (or simply ”"Model 17) [4] uses a sentence-
aligned training corpus to compute the term-term translation probabilities across two lan-

guages. The translation probability from term s (in L;) to term ¢ (in Lg) is defined as:

m

p(tls) = A1 P(S.alS) Y 6(s,5;)0(t ta,) (5.3.1)

j=1
where ); is a normalization factor, a is an alignment of cross-lingual term-term translation,
S is a sentence in the L; or Ly half of the parallel corpus, m is the number of tokens in
the sentence in L, and the second summation is the number of times s aligns with ¢ in the
corresponding alignment.

A matrix of translation probabilities is initialized and updated iteratively (we set the
iteration number to 10 in our experiments). We use the resulting matrix to translate each
query from L; to Lg: for each query word in the source language (L;), the entire vector
of the corresponding target terms (in L) is used in the translation, with the normalized
probability as the weight of each target term. We named this method ”Weighted Model 1”
to distinguish it from using only the top target word in the translation of each source word.

Our approach is similar to IBM’s and BBN’s approaches to CLIR [16] except that the

translation is not integrated in the retrieval model; only the query is translated. We found

that this method performed well in CLIR benchmark evaluations [45].
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5.3.2 Chi-square Statistic (CHI)

Chi-squared statistics are commonly used to measure the dependence between terms and
categories in text classification; we are including it as a measure for term-term similarity
between a source language term (s) and a target language term (¢). CHI measures the
dependence between s and ¢ using four counts: A, B, C' and D, where A is the number of
passages (sentences or documents, depending on how the parallel training corpus is aligned)
in which s and ¢ co-occur, B is the number of passages s occurs without ¢, C' is the number

of passages t occurs without s, and D is the number of passages where none of them occur:

ooy (A+B+C+D)x(AD - CBY
X(Sv)—(A+C)X(B+D)><(A+B)><(C'+D)

This calculation results in a matrix of term-term associations, which we use for query

(5.3.2)

translation in the same manner as the matrix of translation probabilities in WM1. The
advantage of this calculation is its efficiency, compared to that of WMI1. The effectiveness of
CHI vs. WM1 in CLIR is a question worth examining; in [46] we show that the effectiveness is
comparable. We also show that point-wise mutual information (PMI, below) is both efficient

and effective in our experiments.

5.3.3 Point-wise Mutual Information (PMI)

Point-wise mutual information is another common choice for measuring the empirical associ-
ation between two variables (in our case, two terms across languages). The metric is defined

as:

P(s,t)
P(s)P(1)

The main difference between CHI and PMI is that PMI measures the positively correlated

PMI(s,t) = P(s,t)log (5.3.3)

dependence while CHI counts both the positively and negatively correlated dependencies.
With respect to our task, translating a term from one language to another, PMI appears to

be a more appropriate measure since we do not want to consider ¢ as a translation of s if
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the joint probability of the two terms in human translations is too low. The same argument
applies to Information Gain (IG). In terms of computation, the two methods are equally
efficient since the joint and marginal probabilities used in computing PMI can be easily

derived from the counts of A, B, C' and D defined in Section 5.3.2

5.3.4 Weighted SYSTRAN (WSYS)

Although not a corpus-based method, we are including this approach in order to provide
a comparison with a general-purpose machine translation system that is used as a strong
baseline in standard evaluation benchmarks such as CLEF [12]. We use SYSTRAN online
to translate each query after the expansion using local feedback. In order to have a fair com-
parison, and not put SYSTRAN at a disadvantage, we preserve the term weights before the
translation, and propagate the weight of each word to its translations. Post-translation query
expansion is also included in the process and is identical to that of our corpus-based meth-
ods. Note that, unlike in the case of our corpus-based methods, morphological processing of

a query has to be postponed until the query is translated.

5.4 CLIR Systems: Performance and Uses

In order to test the performance of our CLIR system and compare it with other state-of-
the-art CLIR sysems all over the world, we have participated in CLEF 2003, a cross-lingual
evaluation forum similar to TREC, specialized in multilingual tasks.

In addition to participating in the (non-domain specific) multilingual retrieval tasks, we

have included our CLIR system as a module in a cross-lingual question answering task.

5.4.1 Cross-Lingual Question Answering

We have participated in the cross-lingual question answering task at CLEF 2003 [12] by
combining our cross lingual IR system with a monolingual QA system [40]. After tuning

the combined systems on available question/answer datasets, we focused on participating
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in the cross-lingual French-to-English QA CLEF task. The CLIR system produced both
a list of relevant documents as well as a translated expanded query with corresponding
weights for each word. These were subsequently used by the monolingual QA system by
applying a term weighted proximity measure to candidate answers of a type determined by a
question classification module. Evidence for a particular answer is then combined with that
of identical or similar answers in order to compute its final score.

Our hybrid CLQA system was not a high performing one - however, when compared to
other participating systems (at the time, similarly performing), it showed the advantages of

a modular approach that allows weighted queries and weighted query translation.

5.4.2 CLEF 2003: Bilingual and Multilingual Results

The retrieval tasks we participated in were two bilingual tracks (DE — IT, IT — ES) and
the four-language multilingual task. The retrieval task here was not domain specific, which
conferred an advantage to commercial general-purpose translation systems. However, our
CLIR system’s performance in CLEF 2003 was consistently in the top 5.

According to [12], the main CLEF multilingual corpus consists of sets of documents in
different European languages but with common features (e.g., same genre and time period,
comparable content). The CLEF corpus includes both newswires and national newspapers
and most collections cover the period 1994-1995. There were 60 queries, and the relevance
judgments were provided by CLEF.

As training data, we have used the European Parliament proceedings 1996-2001 [36]. It
includes versions in 11 European languages: Romance (French, Italian, Spanish, Portuguese),
Germanic (English, Dutch, German, Danish, Swedish), Greek and Finnish. We have also
prepared German-Italian and Italian-Spanish versions for the two bilingual CLEF tasks we
participated in. We preprocessed the parallel corpora and CLEF documents by eliminating
punctuation, stopwords, and document sections disallowed in the task description. We have
used the Porter stemmer for English and the rule-based stemmers and stopword lists provided

by J. Savoy [61]. After stemming, we have used 5-grams as a substitute for German word
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decompounding. Detailed parameter settings and further analysis can be found in [45].
Figures 5.1 and 5.2 show the system performance compared to other participants in the
multilingual and bilingual task, respectively. among the systems in this evaluation, using
IBM Model 1 to build the translation matrix used in the query vector multiplication is
specific to our system. This performance establishes our CLIR approach as a competitive

system - a necessary condition in order to allow its use as an RDA evaluation task.
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Figure 5.1: Top systems in CLEF 2003 — multilingual task.

5.5 CLIR Adaptation Data: Domain Specific Datasets

and Parallel Corpora

Since the CLIR methods we use are statistical methods based on parallel corpora, the domain
adaptation problem refers to adapting the parallel corpus (i.e. the system training resource)
to the domain of the queries. As we will see in Chapter 6, good CLIR systems suffer a
significant performance degradation when used in a new domain.

In order to evaluate the impact of domain adaptation on domain-specific CLIR, the

evaluation dataset would need to contain domain-specific documents in the target language,
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Figure 5.2: Our CLIR system (denoted by CMU) was one of the top performers in CLEF.

as well as domain-specific queries and their relevance judgments. These evaluation corpora
are extremely difficult and costly to construct, due to the specialized skills and effort involved
in designing the queries and making the relevance judgments. We have leveraged one such
corpus in the medical domain by translating the queries in multiple languages. We have
augmented the Springer corpus [46], which is a product of the MUCHMORE project, an

international effort concerned with cross-lingual retrieval in the medical domain. It consists of
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9,640 documents (titles plus abstracts of medical journal articles) in English and in German,
with 25 queries in both languages, and relevance judgments made by native German speakers
who are medical experts and are fluent in English. In Table 5.2 we show the English version
of these queries. The Springer corpus is unique in its combination of domain-specificity
and availability of multilingual queries with relevance judgments made by highly qualified
medical professionals. Other parallel corpora such as Europarl are neither domain specific
nor do they have multilingual queries with relevance judgments.

In its original incarnation, the parallel corpus was split into two subsets - one (4,688
documents) for training, and the remaining subset (4,952 documents) as the test set. In
addition to the German queries, the dataset has been augmented with French, Italian and
Spanish versions of the queries, translated by human domain experts. In [46], the corpus
has been split into training and testing, so that the German half can be used for training.
In this thesis, we used the French version of the queries (seen in Table 5.1) and the entire
English corpus as the target corpus, since no German language training was needed.

In addition to Springer, we are also using the domain specific parallel corpora described
in Chapter 3 (MedTitle, MedCat, MedTitle-IT). We remind the reader that these corpora
consist of 500K+ titles/sentences of medical articles in French and English. Note that the
training corpus contains titles only, whereas the target corpus consists of articles. In the case
of CLIR, it can be argued that titles are closer to queries, therefore MEDTITLE as training

data implies a fortunate genre match.

5.5.1 CLIR Adaptation Data: Corpus Degradation for Transla-

tion Quality Criterion Evaluation

In order to systematically explore the translation quality estimate criterion presented in
Chapter 2, we set out to simulate parallel corpus translation mistakes. Since the parallel
corpus is assumed to be translated by humans, the mistakes are inherently different from

typical machine translation errors. While detection of machine translation errors is more



Query # | French Query

1 Traitement arthroscopique des lésions des ligaments croisés
2 Complications de l'intervention arthroscopique

3 Pathophysiologie et prophylaxie de I'arthrofibrose

6 Epidémiologie du VIH, évaluation du risque

9 Indications et limites d’analgésie a la demande

10 Amorcage avec des myorelaxants non dépolarisants

19 Complications aprs la cholécystectomie par laparoscopie

29 Trombopénie provoquée par 'héparine, diagnostic et gestion
66 Diagnostic de la maladie de Lyme

69 Traitement de 'infarctus aigu du myocarde

71 Ablation du cathéter et cartographie cardiaque

78 Approche de diagnostique pour les blessures de 1'épaule

81 Diagnostic différentiel de fertilité

88 Approche de la correction des malformations orthopédiques
91 Traitement du carcinome spino-cellulaire

95 Maladies associées avec les diabtes insulino-dépendants

99 Thérapie de la douleur chronique du dos

103 Traitement de la tachycardie ventriculaire

104 Indication pour un défibrillateur interne a synchronisation automatique
108 Cause de la dysphagie

109 Traitement de la surdité de perception

112 Réparation chirurgicale de I’anévrysme aortique

115 Complications chez les patients souffrant de troubles psychosomatiques
124 Nouvelle approche de la chirurgie des ligaments croisés

Table 5.1: Translated French queries.

o8

broadly studied (starting with i.e. [43]), human mistakes are not. One exception is Tran-

sCheck [28], a prototype system developed at RALI. It detects several classes of mistakes

humans make and it involves extensive human translator research.

Human translation mistakes include:

e Mistranslations

e Sentence alignment errors

e Omissions and/or insertions
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Query # | Original Query

1 Arthroscopic treatment of cruciate ligament injuries

2 Complications of arthroscopic interventions

3 Pathophysiology and prophylaxis of arthrofibrosis

6 HIV epidemiology , risk assessment

9 Patient-controlled analgesia indications and limits

10 Priming with non-depolarizing muscle relaxants

19 Complications after laparoscopic cholecystectomy

29 Heparin induced thrombocytopenia , diagnosis and management
66 Diagnostic in lyme disease

69 Treatment of acute myocardial infarction

71 Catheter ablation and cardiac mapping

78 Diagnostic approach in injuries of the shoulder

81 Differential diagnosis in infertility

88 Approach of the correction of deformities in orthopedics
91 Treatment of squamous cell carcinoma

95 Associated diseases with insulin dependent diabetes mellitus
99 Therapy in chronic low back pain

103 Treatment of ventricular tachycardia

104 Indication for implantable cardioverter defibrillator ( icd )
108 Cause of dysphagia

109 Treatment of sensorineural hearing loss ( snhl )

112 Complications of surgical repair of aortic aneurysm

115 Treatment of psychosomatical patients

124 New approach in cruciate ligament surgery

Table 5.2: Original Springer queries.

e Deceptive cognates (“false friends”)
e Grammatical errors (not addressed in the current model)
e Geo-cultural errors (not addressed in the current model)

We are examining and modeling the first three types of errors; the rest are left to future
work.
Sentence alignment errors are specific to parallel corpora: a text segment in language A

is designated as being the translation of another text segment in language B that is nearby
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the true translation.

Misalignments are easily detected by the quality estimate criterion; in fact, most mis-
alignments are eliminated at the parallel corpus construction stage ([47])

Error models simulating human mistranslation and omission could span a wide range
of approaches. Simple models include randomly omitting or replacing a word with another
vocabulary word. More complex models could take into account language model probabilities
at the unigram and n-gram level, replace words with synonyms instead of random vocabulary
words, and consider domain-specific priors. Learning-based models are trained on datasets of
tagged human translations and learn the type of errors made, their frequency and occurrence
context. TransCheck [28] concentrates on detecting such errors - to our knowledge, it does
not attempt to generate them.

In our experiments, we are using a simple error model (i.e. randomly replacing a word
with another vocabulary word). However, more sophisticated error generation models as the
ones mentioned above can easily be incorporated into the RDA framework.

In order to systematically explore the effect of the translation quality estimate (TQE)
criterion, we degraded the English (target) half of the parallel corpus using the error model
described above. The experiments in this chapter use F-1 [65] as the quality criterion esti-
mate. The relationship between the quality estimate criterion and the degradation value is
explored in Figure 5.3

Here, we have ranked the 100,000 sentences that the lexical-level similarity criterion
selected by their Translation Quality Estimate (in this case, the F-1 score) at various degra-
dation levels. As expected, we observe a very strong correlation between F-1 score and the
degradation level, due to the word substitution error model discussed above.

We can use this correlation to our advantage. If the F-1 measure is an accurate estimate
of translation quality, it can be used as part of the input features to the learning algorithm
that decides how to weigh the different criteria. For example, the average F-1 score can
determine to what extent the quality estimate criterion should be used: if the translation is

very good, the criterion is not needed and can have a lower weight; if, on the other hand,



61

1.2 . . . .
—— 1% degradation
—— 10% degradation
1.0 —— 50% degradation

e e
[=2] [=2]
T T

Quality Estimate Score
(=]
~

0.2F

0.0

0 20000 40000 60000 80000 700000
sentence

Figure 5.3: Translation Quality Estimate vs. Degree of Degradation. The X axes represents
the number of degraded sentences in the parallel corpus. The sentences are ranked by quality

estimate, as calculated by their F-1 measure relative to the non-degraded value.

the translation quality is estimated to be poor, the quality criterion is crucial.

5.5.2 Corpus and Query Pre-Processing

In our experiments, we have used several stages of pre-processing, applied to the target

corpus, the parallel corpus, as well as the query. These pre-processing stages consisted of:
e case normalization
e selective punctuation removal

e rule-based (Porter) stemming for both English and French. For the German experi-

ments, we have used overlapping character 6-grams.

e target corpus indexing using the INDRI search engine [64].



62

To explore the effect of the pre-processing order in our selection-CLIR pipeline, we ex-
amine two different pre-processing conditions. In the first experimental setting (S1), the
selection of the parallel sentences to be used for training was done before stopword removal
and stemming, in order to mimic the machine translation selection process. In the second
experimental setting (S2), the queries and parallel corpora were stemmed and stopped before

the selection process began. This setting is closer to that of corpus-based CLIR.

5.6 CLIR Adaptation: Systems Used

5.6.1 Baseline (MT-based) System (BMT)

We used our existing statistical machine translation system (discussed in Chapter 3) as the
basis for constructing a simple CLIR engine . The system uses GIZA++ and the Pharaoh
decoder [53], and a general English language model. This baseline, machine-translation
based system (BMT) first trains its MT component using an RDA-selected subset of the
MEDTITLE corpus. The parameter setting remains unchanged from the MT task. Then,
the trained system is used to translate the pre-processed queries from the source language
to the target language.

Once translated, the queries are used to retrieve documents in the INDRI-indexed target
corpus. Pseudo-relevance feedback is used at this stage in order to facilitate a more direct
comparison with our high-performing CLIR system below. The BMT system only serves as
a baseline in order to compare its performance (and adaptation sensitivity) to that of a true

CLIR system (PMI).

5.6.2 PMlI-based CLIR system (PMI)

Our second system is the corpus-based CLIR system described earlier in this chapter. PMI
is a true CLIR system in the sense that intermediary results are intended for computer, as
opposed to human consumption: instead of choosing the best word or phrase, all weighted

alternatives are included. More specifically, the function used to calculate word-to-word
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similarity is PMI.
There are several fundamental differences between the experimental settings described
in [46] and those described in this chapter. Although the same system is used, the results

obtained reflect the following changes:

a. Different source language (German vs. French). This implies different morphological

processing and degree of appropriateness of the query terms

b. Different target corpora (half of the available documents in [46], vs. all of them here).

This implies a different set of relevant documents

c. A completely different training set (MEDTITLE vs. half of the Springer corpus)

5.6.3 Parameter Values and Design Decisions

Where possible, we have kept the parameter values consistent when using the same CLIR
system. Due to data scarcity and the numerous degrees of freedom such a system entails, we
used conservative, generally accepted parameter values that have worked well across tasks
and data collections. Since this thesis’ main goal is not CLIR parameter optimization, we
preferred to avoid the risk of overfitting. In BMT, the parameters were the ones used for
the machine translation experiments in Chapter 3. When blind feedback was used, the
parameters were identical to those of the PMI system. In PMI, the parameters used were
tuned on the CLEF 2002 data collection, and values with solid performance across languages
were selected. These parameters include: the number of documents and words used for blind
feedback (both on the source and target side), and the minimum number of parallel instances
in which two words co-occur in order to be included in the translation candidate list. The

choices were 5, 20 and 3 respectively.
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5.7 Chapter Summary

In this chapter, we have described various aspects of our high-performing CLIR systems,
as well as their performance in international evaluation forums. We have introduced CLIR-
specific evaluation datasets and parallel corpora, obtained by augmenting existing medical

CLIR evaluation datasets like Springer.



Chapter 6

PARDA for Cross-Lingual
Information Retrieval: Experiments
and Results

6.1 Overview

In Chapter 1 we presented a succinct overview of the cross-lingual information retrieval
(CLIR) problem, evaluation metrics and domain-specific challenges. In Chapter 5, we de-
scribed in detail our corpus based CLIR systems and presented results on general-domain
(i.e. CLEF evaluation) datasets, in order to establish our CLIR system as a high-performing
system in the general domain. As in the case of statistical machine translation, using our
general-domain CLIR system on a medical domain evaluation dataset results in significantly
degraded results (explored in Section 6.9.1).

In this chapter, we focus on the specific application of our RDA framework to the CLIR
problem, taking advantage of the PMI CLIR system described in Chapter 5 and the domain-
specific Springer CLIR, dataset discussed in [46] and in Section 5.5. More specifically, our
framework automatically selects the best training data subset, which is subsequently used
in our corpus-based CLIR methods.

In addition to showing the significant effect that selection has on the amount of paral-

lel/training data necessary to produce satisfactory CLIR results, we compare two different

65
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corpus-based CLIR systems and two different preprocessing settings.
We explore the effect of several individual RDA criteria: mean reciprocal rank (MRR),
translation quality estimate (TQE) and sentence size. We show that, while the MRR criterion

is crucial, the TQE criterion fulfills a very important role when the parallel corpus is noisy.

6.2 Lexical Similarity (RDA-MRR) Effect on CLIR

Performance

We remind the reader that the MRR criterion (see Section 2.4.1) is a sentence selection
criterion based on its mean reciprocal rank when ranked by lexical similarity to the domain

sample.
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Figure 6.1: Springer FR-EN CLIR Results: Mean Average Precision when the parallel corpus
is a) randomly selecting sentences out of MEDTITLE, b) selected from MEDTITLE using
Mean Reciprocal Rank, and c¢) absent. Medical terminology similarity in the two languages
yields a high no-translation baseline. Note that the full corpus performance in this case is the
rightmost point of the PMI lines. In this particular case, the performance for 100 selected

sentences is equivalent to 10,000 randomly selected sentences.

Figure 6.1 shows CLIR results on the Springer dataset [46], with French as the source

language and English as the target language. The X-axis represents (on a log scale) the
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number of parallel sentences selected by each method to obtain the respective CLIR result.

Due to the medical terminology similarity in the two languages, morphological processing
alone with no translation leads to results that are higher than normally observed for this
setting. The random setting is a purposely high baseline, due to the random selection being
performed in a corpus that is already domain-specific (MEDTITLE).

The highest performance is obtained when the entire MEDTITLE corpus is utilized. We
remind the reader that the corpus contains approximately half a million article titles in
French, with their English counterparts. The important observation emerging out of this
log-scale plot is that 90% of the performance is obtained at the 100 sentences level, when
they are selected using MRR. In other words, when RDA-MRR is used, the parallel corpus
translation cost is reduced by more than 90%, while the CLIR performance level is reduced
by only 10%. The same result is shown in Figure 6.2, which answers the following question:
Given that the CLIR performance using this dataset has an upper bound in the performance
obtained when the training corpus consists of all MEDTITLE documents, what percentage

of this performance can be obtained with significantly fewer documents?
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Figure 6.2: How many parallel sentences are needed to reach a fraction of the best perfor-
mance? (semilog plot; this plot quantifies the relative (percent of peak) performance vs.

absolute performance in Figure 6.1.)
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6.3 Example Queries: Expansion and Translation

Given the queries in Table 5.1, the top selected documents in the S1 setting (Section 5.5.2)
are shown in Table 6.1. Some documents can be traced directly to the query they support;

others are selected due to high mean reciprocal rank across several queries.

Rank | English half of the selected parallel pair

1 surgic repair chronic instabl cruciat ligament knee cyst

2 cruciat ligament knee treatment simpl radio guid punctur

3 arthroscop treatment chronic anterior shoulder instabl

4 treatment plant injuri caus marin anim caledonia approach

5 indigen treatment diagnosi treatment lyme diseas children

6 letter canadian societi pediatr binder syndrom maxillo nasal

7 dysostosi orthoped malform complic cholecystectomi laparoscopi
8 avoid low back pain women diagnosi treatment role intern

9 committe dermatolog patient control analgesia studi fentanyl

10 requir burnt patient acut phase unusu dysphagia esophag

11 tuberculosi epidemiolog atherosclerot cardiovascular risk hiv

12 infect patient map radiofrequ ablat form peri atriotomi flutter
13 complex tachycardia myocardi infarct criteria ventricular

14 tachycardia diagnosi develop heparin induc thrombocytopenia
15 biolog clinic aspect result associ depolar depolar muscl relax

16 analysi case myocardi ruptur acut myocardi infarct treatment
17 renal osteodystrophi physiopatholog secondari effect aneurysm
18 transvers arch aorta ruptur left lung surgic cure case report

19 author transl occup rehabilit patient mental psychosomat disord

Table 6.1: Top selected MEDTITLE documents using the Springer queries as the domain
sample. The criterion used here is MRR, and the selection/pre-processing order setting is
S1 (see Section 5.5.2). The documents are processed and tokenized.

However, the documents are severely altered at the 50% degradation level. Table 6.2
shows the selected documents after the degradation process. Note that the quality criterion
has not been applied. The low document quality is reflected in low CLIR scores. This effect
is mitigated by the addition of the quality criterion - the results of this selection are shown
in Table 6.3.

The composition of the documents changes significantly when the quality criterion is
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Rank | English half of the selected parallel pair — with 50% degradation
1 surgic infants resettlement 6.30 epidemiology discrimination

2 knee legitimises inauguration wake knee treatment simpl boot
3 guid punctur arthroscop treatment opportunist countries

4 shoulder instabl treatment tamils injuri caus marin air surface
) 1977 mobiles treatment beef thereby vitro explained utri diseas
6 children letter attribution societi pediatr binder template

7 them ibrahim dysostosi formulations peres obligation

8 cholecystectomi impartially avoid low back prepares vain

9 diagnosi treatment unworkable recognising committe eliminates
10 patient control analgesia stay endeavouring communications

11 honestly advised acut swear

12 unusu catalyst definitive tuberculosi photos atherosclerot

13 biotechnological smell isis rent patient map executed ablat

14 form peri atriotomi complexion penalise undcp myocardi infarct
15 criteria ventricular tachycardia diagnosi develop lawlessness

16 induc rearing biolog clinic aspect result formerly sub-regional
17 depolar egunkaria deterioration analysi concentration affairs

18 ruptur fixed myocardi delivering ries redressing osteodystrophi
19 physiopatholog secondari effect twenty-one transvers disbanded
20 question klamt repudiate lung surgic conservatism

21 case earliest author transl

22 occup autonomous exaggerated helped psychosomat o flourish

Table 6.2: Top selected MEDTITLE documents using the Springer queries as the domain
sample. The English half shown here have been degraded using the simple error model
described above, at the 50% level. The criterion used here is MRR, at the selection/pre-
processing order setting is S1. The documents are processed and tokenized.

added to the 50% degraded documents (Table 6.3). More specifically, the selected documents
are either ones where the degradation was kept to a minimum, or where the less significant
(less domain-specific) words were the ones replaced by the degradation process, leaving the
content words intact.

The parallel corpus selection affects query expansion as well as selection. In Figure 6.3,
and 6.4 we show the two example queries (number 1 and number 71 in Table 5.2 and 5.1) after

their expansion. The Y- axis shows the proportional (normalized) weight (in percent) that



Rank | English half of the selected parallel pair

— with 50% degradation and with quality criterion
1 complic cholecystectomi laparoscopi avoid
2 role consulates committe dermatolog arthroscop treatment
3 chronic wasted bases instabl diagnosi effect subclin burst
4 spraying case analysi societal eventualities pop acut myocardi
5 infarct binder syndrom 12.00 nasal dysostosi enter
6 old-fashioned treatment plant optimising caus marin hormones
7 fancy approach indigen treatment undernourished transl unusu
8 dysphagia providers bic immunotherapi optimist reintroduce
9 squamou staggering carcinoma ey auditori local speech australia
10 bicycles infringement studi case perceptu deaf map
11 inundated gendarmerie form today atriotomi flutter complex week
12 myocardi infarct impairment scandal heralded
13 cyst cruciat macrofinancial knee scenes bodes eliminating guid
14 punctur occup candidate patient complies psychosomat crashed
15 innovate 300,000 laparoscop cholecystectomi vascular biliari
16 complic cages control gujarat studi keen requir a5-0162 patient
17 solely phase submit disrupted anterior instabl
18 shoulder opportunity treatment lyme gbp optimising yearly
19 anadian attwooll exposes latent hiring inherent demand
20 converging psychiatrist art displac cruciat manufacturer
21 creeping flexion normal ecologists hoping apolipoprotein level
22 insulin depend nostalgic patient 800 glycosyl
23 hemoglobin fructosamin
24 epicardi undermine case miracles tachycardia caus sordid blood
25 myocardi infarct origin smallest surgic approach lyme options
26 biolog diagnosi treatment

70

Table 6.3: Top selected MEDTITLE documents using the Springer queries as the domain

sample. The English half shown here have been degraded using the simple error model

described above, at the 50% level. The criterion used here is MRR and TQE (translation
quality estimate), and the selection/pre-processing order setting is S1. The documents are

processed and tokenized.

the X-axis word has in the expanded query. The two settings shown are when the expansion

has been done in 1) the entire MEDTITLE corpus and 2) the top 100 selected sentences

(shown in Table 6.1). For both settings, the number of documents used for expansion was 5,
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and the number of words, 20. The words are sorted according by the average weight between
the two settings, and only the top 14 are shown.

The 100 selected sentences allow the top terms to behave similarly to when the entire
corpus is used. Moreover, the top terms added to the original query are very relevant.
However, this is expected since finding 5 relevant sentences in 100 sentences selected for
query set relevance is not a difficult task. For one particular query (Example Query 1 in
figure 6.3), the task is even easier since there are similar queries in the Springe dataset, which

over-weights arthroscopic-related documents when MRR is used.
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Figure 6.3: Example Query 1: Expanded Query using the entire MEDTITLE parallel corpus
vs. a 100-sentences RDA-MRR selected corpus. The Y-axis shows the proportional (nor-
malized) weight (in percent) that the X-axis word has in the expanded query. Note that the
top weighted words are the same for using the entire corpus or 100 sentences, and the words
introduced by 100-sentence expansion include some query-relevant words such as “genou”,
“chirurg”, “repar”.

The difference is more pronounced after the expanded queries have been translated (in
figure 6.5 and 6.6) . In these queries, the 100-(selected) sentences and 500K-sentences corpora
have been used for both the expansion phase as well as the PMI-based translation phase.

Note that although the small corpus introduces noise (“author”), and leaves some terms
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Figure 6.4: Example Query 72: Expanded Query using the entire MEDTITLE parallel
corpus vs. a 100-sentences RDA-MRR selected corpus. The Y-axis shows the proportional

(normalized) weight (in percent) that the X-axis word has in the expanded query.

untranslated (anterieur, cardiaq), the top terms are the same as with the 5,000 times larger
corpus, and are translated correctly. This greatly influences the CLIR performance, which

is very high given the 100-sentences parallel corpus.

6.4 BMT vs. PMI: Comparing the Two CLIR Systems

We compared the two CLIR methods discussed in Chapter 5. BMT, based on machine
translation, translates the query after training a statistical machine translation system. The
second system (PMI) projects the weighted query in the other language using corpus-based
similarity statistics.

The parallel corpora used to train the two alternatives are the same, when the same
experimental conditions are shown in the graphs. Figure 6.7 shows the results when both
system are trained with parallel corpora which have been stemmed after selection. The
selection here has been done using MRR. The PMI method yields significantly better results.

Since the performance difference can be attributed to several factors, we decided to
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Figure 6.5: Example Query 1: Translated Query using PMI and the entire MEDTITLE
parallel corpus vs. a 100-sentences RDA-MRR selected corpus. The Y-axis shows the pro-

portional (normalized) weight (in percent) that the X-axis word has in the query.
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Figure 6.6: Example Query 72: Translated Query using PMI and the entire MEDTITLE
parallel corpus vs. a 100-sentences RDA-MRR selected corpus. The Y-axis shows the pro-

portional (normalized) weight (in percent) that the X-axis word has in the query.



74

62
60
58
56
54

52

CLIR Performance (MAP %)

50 ( ==MRR-PMI |
48 MRR-BMT
46
100 1000 10000 100000 1000000

Log (number of selected sentences in the parallel corpus)

Figure 6.7: Springer FR-EN CLIR Results: Comparing PMI and BMT when the parallel
corpus is selected from MEDTITLE using MRR.

examine the most likely contributors other than the system itself: a) the query expansion
(and weighting) effect and b) the general language model being present or absent in the final
step of the translation.

We modified the BMT system to accept the same expanded queries (together with word-
level weights) that the PMI system used. The weights are preserved through the final retrieval
step and are being attributed to a phrase wherever the translation is a phrase.

The results are presented in Figure 6.8. Figure 6.8 shows that introducing query expan-
sion before the translation step results in lower CLIR performance. This effect (which is
contrary to the effect observed in the PMI system) can be attributed to a) the expanded
query being translated by a phrase-based decoder like Pharaoh, and b)introducing noisy
terms that cannot be successfully under-weighted by the (post-translation) retrieval engine.

The second factor that could contribute to the better performance of the PMI system
is the presence of the language model. Since CLIR queries are not destined for human
consumption, their post-translation fluency is not relevant. Moreover, it could hurt by
favoring less relevant terms that contribute to fluency. In order to test this hypothesis, we

set the weight of the language model to zero at decoding time. The results are presented in
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Figure 6.8: Springer FR-EN CLIR Results: Comparing query expansion effects when using
the BMT system.
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Figure 6.9: Springer FR-EN CLIR Results: the impact of the language model when using
BMT.

We notice that the lack of a language model hurt, instead of improving the CLIR results.
By examining the resulting queries and comparing them with the ones produced with the

language model, we notice many queries show several spurious terms introduced by the
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translation model, but filtered out by the language model.

Since neither the language model nor the query expansion is responsible for the per-
formance improvement, we continue using the dedicated, true CLIR system (PMI-based)
for future experiments in this chapter, instead of the baseline, machine-translated queries

system (BMT) that did not match its performance.

6.5 Comparing the Two Pre-Processing Settings

In this section, we examine the effect of the S1 and S2 preprocessing settings described in

Section 5.5.2.
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Figure 6.10: Springer FR-EN CLIR Results: Mean Average Precision when the parallel

corpus is stopped and stemmed before selection (S2) or after (S1).

We used two pre-processing settings, identified by S1 and S2. One (S1) performs the
stemming and stopping after the selection process, closely resembling the machine translation
setting. The second (S2) performs the selection after stopping and stemming, similar to
traditional corps-based CLIR.

This allows us to explore the effect of the pre-processing order. The results are somewhat
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surprising, given this is a CLIR task: S1 had better performance. We offer as an interpreta-
tion the possibility that the more specific terminology present before the stemming-induced

conflation increase the precision of the selection process.

6.6 Using Sentence Size as a Selection Criterion

In this section we consider the sentence (and corpus) size as a selection criterion. Longer sen-
tences have more information, and the length criterion may also be needed to counterbalance
the perfect quality scores short sentences might have, akin to a brevity penalty. However,
longer sentences are harder to align word-to-word, and the length needs to be balanced with
the other criteria. Moreover, it can be argued that, in the cases where RDA is used as
an active learning device, longer sentences carry a higher translation cost which should be
factored into the overall sentence score. Figure 6.11 shows CLIR performance when sentence
size is used as a threshold after the initial MRR-based selection. More specifically, sentences

shorter than a specific threshold (on the X axis) are eliminated from the training data.

52
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48
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47
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5 6 7 8 9 10

CLIR AvgP

Sentence Length Cutoff (short sentences eliminated)

Figure 6.11: CLIR performance when using sentence size as a threshold. The number of
selected sentences is always 100. Sentences shorter than a specific threshold (on the X axis)
are eliminated from the training data, which results in lower quality sentences for high cutoff

values.
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We notice that the elimination of short sentences does improve performance - however,
once we eliminate medium-sized sentences the drop in quality is noticeable. This is a pre-
dictable effect, since when too many top scoring (MRR~wise) sentences are eliminated, the
performance of the CLIR system suffers. The exact break-even point for this criterion de-
pends on several factors, one of the most important being the cost function associated with

data translation and processing speed.

6.7 The Effect of the Translation Quality Estimate (TQE)
Criterion

on CLIR Results

The translation quality estimate criterion is added to the selection process using the geomet-
ric mean combination function (see Section 2.5 for more details). In particular, the specific
measure used here is sentence averaged word-level F-1, calculated between the English half
of the parallel corpus and the translated French half of the parallel corpus (bootstrap and
evaluation in Section 2.4.2). The MT system used for this purpose is one trained on the
entire MEDTITLE dataset.

Adding the quality estimate criterion does not affect the CLIR results significantly. This
is the expected result when the quality of the translation and/or alignment is consistent
throughout the corpus. In the case of MEDTITLE, the translation quality is high throughout
the corpus, and since the titles were not further broken down into sentences, the alignment
problems were minimal.

However, the potential of the quality criterion is better reflected in results when the
quality varies throughout the corpus. As discussed in Section 5.5.1, we simulate this setting
with various degrees of parallel corpus degradation. The results for this experimental setting

are described in Section 6.7.1.
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Figure 6.12: Springer FR-EN CLIR Results: Mean Average Precision when the parallel cor-
pus is selected from MEDTITLE using Mean Reciprocal Rank vs. using the Mean Reciprocal
Rank and the Translation Quality Estimate criterion. The dip is due to a noisy selected sen-
tence that lead to a misleading translation. The difference between the two test conditions
is not statistically significant: The TQE criterion does not improve CLIR performance when
the corpus translation quality is high and homogenous; we explore a different setting in the

next section.

6.7.1 Effects of the Translation Quality Estimate (TQE) Criterion
Given a Low Quality Parallel Corpus

We remind the reader that the translation quality estimate criterion refers to the quality
of the parallel corpus (i.e. human) translations. As described in section 5.5.1, in order
to systematically explore the effect of the TQE criterion we have degraded the quality of
the parallel corpus by replacing a certain percentage of the English words with random
vocabulary words.

Figure 6.13 examines the effect of said degradation on the CLIR results. It is an inter-
polated heatmap, with datapoints collected at the 1%, 5%, 10%, 30% and 50% degradation
level (on the x axis), and at 100, 200, 300, 500, 700, 800 and 1000 selected sentences (on
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the y axes). The temperature represents mean average precision (MAP) - the red regions
represent better performance than the blue regions. The experimental setting here is using

the PMI system, with the S1 preprocessing scheme.
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Figure 6.13: CLIR adaptation results for various degrees of corpus degradation ( best viewed
in color). The thermometer legend shows the corresponding MAP value for each color - red
indicates high performance, blue low. The CLIR performance suffers at high levels of corpus

degradation, but only when few sentences are selected.

As expected, when the parallel corpus has a higher degree of degradation and is small,
the CLIR performance decreases dramatically (see Figure 6.13).

Maintaining the same experimental settings as before, we add the quality estimate crite-
rion, using weighted geometrical mean as the combination method between TQE and MRR
(see Section 2.5 for more details). For simplicity, these experiments use equal weights for
the two criterion.

Figure 6.14 examines the effect of adding the quality criterion to the selection process,

for various degrees of degradation. As before, it is an interpolated heatmap, with datapoints
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collected at the 1%, 5%, 10%, 30% and 50% degradation level (on the x axis), and at 100, 200,
300, 500, 700, 800 and 1000 selected sentences (on the y axes). The temperature represents
mean average precision (MAP). The temperature scale is the same as Figure 6.13 in order

to make the figures directly comparable.
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Figure 6.14: The effect of adding the quality criterion to the selection process, for various
degrees of degradation (S1) (best viewed in color). The thermometer legend shows the
corresponding MAP value for each color - red indicates high performance, blue low. The

CLIR performance is significantly improved for high degradation values.

We notice that the previous region of concern (high degradation, small parallel corpus)
has greatly improved. This implies that, even though the TQE criterion does not significantly
improve (or hurt) the results when the quality is high (or consistent) throughout, it offers
superior protection against moderately or severely mistranslated texts.

Figure 6.15 highlights the difference between Figure 6.14 and Figure 6.13 .

Here, warm (red and yellow) values are indicative of an improvement when using the

quality criterion vs. not using it, and cold (blue) values show a decrease in performance.
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Figure 6.15: The improvement obtained by adding the TQE criterion (best viewed in color).

Green values indicate no change in either direction.

6.7.2 TQE: Related Observations and Results

Figure 6.16 shows the correlation between translation quality measures (such as F1 and mod-
ified BLEU) used to evaluate the Springer queries, and the subsequent CLIR performance
(MAP). The correlation is weaker than expected, with F1 having better correlation than
MBLEU. This suggests that we cannot use MBLEU of F1 as a strong predictor for CLIR
MAP - other factors, such as expansion effects and relevant document set size affect CLIR

performance.
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6.8 CLIR Results: Comparing Previous Experimental
Settings

In order to provide an overall picture of the various factors and experimental conditions that
affect CLIR performance, Figure 6.17 shows the results for all the condition and criteria
discussed above. Figure 6.18 zooms into the zone where selection has the most impact -
when the number of sentences is limited to 100-1,000.

The most surprising result is the impact RDA-MRR has on CLIR results when little data
is used, especially when compared to random selection (be it in the medical domain, but not

in the specific sub-domain).
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Figure 6.17: Springer FR-EN CLIR Results: Comparing all experimental settings.

6.9 CLIR Adaptation: Language Variation Results

In this thesis, we have applied the same CLIR method for both German and French, with
minor differences in data pre-processing. In this section, we present results obtained with
a preliminary version of our system on German/English data. While the main body of the

thesis uses French as the query language, the adaptation results are similar across the two
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Figure 6.18: Springer FR-EN CLIR Results: Comparing all experimental settings: Selecting
up to 1,000 sentences.

languages (French/German).

For CLIR training and testing we have used the Springer corpus (introduced in Sec-
tion 5.5). We split this parallel corpus into two subsets, and used the first subset (4,688
documents) for training, and the remaining subset (4,952 documents) as the test set in all
our experiments. We applied an alignment algorithm to the training documents, and ob-
tained a sentence-aligned parallel corpus with about 30K sentences in each language. The
sentence-aligned version of the Springer training set was used in the experiments presented
here.

In addition to Springer, we have used four other English-German parallel corpora for

training:

e NEWS is a collection of 59Kx2 parallel sentences extracted from news stories, down-
loaded from the web and covering the 1996-2000 period. It is available for download
at
hitp://www.isi.edu/ koehn/publications/de-news/.

e WAC is a small (60Kx2 sentences) parallel corpus obtained by mining the web. Tt is
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more general and it does not focus on a particular domain.
e EUROPARL ([36]) is a parallel corpus introduced in Section 3.3.1.

e MEDTITLE-DE, another product of the MUCHMORE project, is an English-German
parallel corpus consisting of 549K paired titles of medical journal articles. These titles

were gathered from the PubMed online database (http://www.ncbi.nlm.nih.gov/PubMed/)

Table 6.4 presents a summary of the five training corpora characteristics.

Name Approximate Size | Domain
(sentences, words)

NEWS 59Kx2, 2M news

WAC 60Kx2, 1.1M mixed

EUROPARL 665Kx2, 35M politics

SPRINGER 30Kx2, 0.9M medical

MEDTITLE-DE | 550Kx2, 21M medical

Table 6.4: Characteristics of English-German parallel training corpora.

6.9.1 Applying General Domain Models to the Medical Domain

Our preliminary translation model adaptation results are obtained by using a very simple
method for automatically choosing and weighting the training resources to adapt them to
the target collection in the medical domain. We were able to show 5 — 10% improvements in
average precision over corpus-based approaches that used all available resources, and very
significant improvements over general purpose MT systems such as SYSTRAN. Additionally,
we have shown the need for proper selection of training resources, as seen in Figure 6.19.
CLIR results in the medical domain with different training corpora show that choosing
the largest collection (EUROPARL), using all resources available without weights (ALL),
and even choosing a large collection in the medical domain (MEDTITLE) are all sub-optimal
strategies. This motivates our search for a more sophisticated adaptation model, as presented

in the rest of this thesis.
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Figure 6.19: CLIR results in the medical domain with different training corpora. Notice the
large differences obtained with domain-mismatch training data. Choosing the largest collec-
tion (EUROPARL), using all resources available without weights (ALL), and even choosing
a large collection in the medical domain (MEDTITLE) are all sub-optimal strategies.

Data Preprocessing

We have eliminated all punctuation, stopwords and numbers for both German and English,
and we have used the English Porter stemmer. To simulate German decompounding, we
first stemmed the German portion of the corpus and we split the words into 5-grams. The

German stemmer and stopword list was provided by [61].

Selection Criterion: Vocabulary Coverage

A naive, but quick method to measure domain similarity in these experiments is by us-
ing vocabulary overlap between the training corpus and the domain sample as a domain
match approximation. Table 6.5 shows the vocabulary coverage with respect to the training
collection. The training vocabulary coverage is calculated as follows:

o |‘/train N Vsample|

Cov(train, sample) = Vo] (6.9.1)
train




Name DE Coverage (%) | EN Coverage (%)
NEWS 27.9 14.5

WAC 28.8 12.5

EUROPARL | 6.6 1.8

SPRINGER | 57.7 35.4

MEDTITLE | 10.8 3.4

38

Table 6.5: Vocabulary coverage of training corpora with respect to the Springer test set

Selection Criterion: Cosine Similarity

The second simplest idea to approximate domain matching is to use the cosine similarity
between the testing and training corpus (TFIDF term weights). Note that these documents
are very short (sentences), which means the document length is fairly constant and TF and

DF tend to be close. Table 6.6 shows the cosine similarity between the five training corpora

and the test set.

Name DE COS (%) | EN COS (%)
NEWS 44.08 33.90
WAC 54.67 33.84
EUROPARL | 49.82 36.22
SPRINGER | 99.29 90.89
MEDTITLE | 55.20 72.94

Table 6.6: Cosine similarity of training corpora with respect to the Springer test set

Combining Translation Resources

Our previous approach has been to use vocabulary coverage or cosine similarity as the weight
for each translating resource when combining them, instead of using it as a criterion for
the selection threshold. Each parallel corpus produces a similarity matrix, using one of
the methods outlined in Chapter 5. A new similarity matrix is produced from their linear
combination, using the vocabulary coverage or cosine similarity as the corresponding weights.

In practice, it is only necessary to calculate this linear combination for dictionary entries
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present in the queries.
This approach has the advantage that it does not require relevance judgments and existing

queries to learn the weights. We examine the robustness of this approach in Table 6.7

Using Vocabulary Coverage or Cosine Similarity as Weights

Figures 6.21 and 6.20 show that both vocabulary coverage and cosine similarity between the
training and target corpus are positively correlated with retrieval performance, as measured
by the average precision over all queries. However, MEDTITLE-DE is a significant outlier
in this respect (when considering vocabulary coverage in Figure 6.20). We believe this to
be because of the different spelling normalization applied to MEDTITLE-DE when it was
downloaded from the web; document length did not have a significant effect. However, this
disparity is alleviated in Figure 6.21, because the high TF-IDF terms are medical terms

where fewer spelling variations occurred.
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Figure 6.20: CLIR performance (of PMI) vs. the training-set vocabulary coverage

We wish to examine the robustness of using vocabulary coverage or cosine similarity
between the target collection and the parallel corpus as linear combination weights. To that

end, it is insufficient to experiment with weighting the five corpora mentioned above. For this
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Figure 6.21: CLIR performance (of PMI) vs. the cosine similarity

approach to be robust, the combination should be consistent in not performing significantly
worse than the best collection available — as given by an oracle — and in not performing worse
than using all collections with equal weight. Naturally, the combination should also perform
better than the expected performance of a randomly selected collection, but in our case this
straw man baseline is not needed.

In Table 6.7 and its corresponding experiments, we simulate the availability of 5, 4 and
3 training collections from the five we have described above. We did not examine resource
pairs, since the resource selection problem becomes trivial in this case. There are a total of
16 testing conditions: 1 way to choose all 5, 5 ways to choose 4, and 10 ways to choose 3
(order does not matter).

The first column enumerates which training collections we are allowed to select from
and/or to weight. The respective collections (WAC, MEDTITLE, SPRINGER, EUROPARL,
NEWS) are represented by their initials. All 16 combinations are shown for both DE-EN
and EN-DE.

In this table, COV represents performance when training set coverage was used as the

weight; COS represents performance when the cosine similarity was used as the weight; EQ
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DE-EN DE-EN

Available COS Best Single COS Best Single
Resources cov (%impr EQ Collection cov (% impr EQ Collection

over EQ) (Oracle) over EQ) (Oracle)
WESNM 59.61 57.34(5.52%) 54.34 60.56(S) 66.36 66.52 (5.23%) 63.21 66.47(S)
ESNM 60.33 59.37(4.23%) 56.96 60.56(S) 66.51 67.5 (2.61%) 65.78 66.47(S)
WENM 40.24 55.26(5.94%) | 52.16 55.1(M) 48.46 61.62 (2%) 60.41 63.5(M)
WESM 59.07 57.7(5.61%)" 54.63 60.56(S) 66.92 67.13 (4.75%) 64.08 66.47(S)
WESN 60.15 | 58.79(9.74%)* | 53.57 60.56(S) 65.35 59.47(9.64%) 54.24 66.47(S)
WSNM 59.89 57.88(3.67%) | 55.83 60.56(S) 66.71 67.44(5.49%) 63.93 66.47(S)
WNM 40.71 54.83(2.29%) | 53.60 55.1(M) 52.49 62.26(-0.24%) 62.41 63.5(M)
WES 59.77 | 58.82(7.49%) | 54.72 60.56(S) 65.74 64.91(19.76)" 54.20 66.47(S)
WEN 18.79 19.01(0.21%) 18.97 15.39(W) 22.22 22.83(15.88) 19.70 17.26(W)
WSM 59.27 57.25(3.11%) 55.52 60.56(S) 66.33 66.86(2.76) 65.06 66.47(S)
ESM 60.32 58.87(0.56%) 58.54 60.56(S) 66.98 66.44 (-1.24%) 67.28 66.47(S)
WEM 44.01 55.42(2.74%) 53.94 55.1(M) 56.07 61.78(0.29%) 61.60 63.5(M)
ESN 60.88 60.08(4.63%) | 57.42 60.56(S) 66.72 | 66.56(11.02%)" | 59.95 66.47(S)
SNM 60.31 59.57(1.72%) | 58.56 60.56(S) 67.10 67.19(0.97%) 66.54 66.47(S)
ENM 48.39 55.55(0.34%) 55.36 55.1(M) 51.25 63.15(0.66%) 62.73 63.5(M)
WSN 59.86 59.68(7.33%) | 55.60 60.56(S) 65.08 | 65.02(10.74%)* | 58.71 66.47(S)

Table 6.7: Collection Availability Simulation for Macro Adaptation

represents using all available resources with equal weights; and Best Single Collection shows
the performance of the single best one training corpus, if it were possible to know which
one is the best in advance. Numbers in bold highlight the best performance of the four
conditions. The star indicates statistical significance within the 95% confidence interval,
using the paired t-test.

From this table, we see that cosine similarity is a better weighting measure than vocabu-
lary coverage, which is to be expected. This simple method is robust when we simulate the
availability of different collections; however, we believe more research is needed to explore
different weighting criteria.

Summarizing across all 16 testing conditions, we observe that our strategy accounts for
a 4 — 5% improvement over using all resources with no weights, for both retrieval directions.

It is also very close to the ”oracle” condition, which chooses the best collection in advance.

Document Level Selection

In the previous section, we used cosine similarity between training and target corpora as
respective weights when building a translation model. This approach treats a parallel corpus
as a homogeneous entity, an entity that is self-consistent in its domain and document quality.
In this section, we propose that instead of weighting entire resources, we can select individual

sentences from these corpora in order to build a parallel corpus that is tailor-made to fit a
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specific target collection.

In addition to proposing individual documents as the unit for building custom-made
parallel corpora, in this section we start exploring the criteria used for individual document
selection by examining the effect of ranking documents using the length-normalized Okapi-
based similarity score between them and the target corpus.

In this section, as well as in the rest of the thesis, we focus on a lower granularity level:
individual documents in the parallel corpora. In the case of sentence-aligned corpora, a
“document” is a sentence. Possible intermediary granularity levels include document(or
sentence) clusters and paragraphs; higher granularity levels include collection clusters. We
seek to construct a custom parallel corpus, by choosing individual documents which best
match the domain sample. We compute the similarity between the test collection (in German
or English) and each individual document in the parallel corpora for that respective language.
We have a choice of similarity metrics, but since this computation is simply retrieval with a
long query, we start with the Okapi model [58], as implemented by the Indri search engine
[64]. Although the Okapi model takes into account average document length, we compare
it with its length-normalized version, measuring per-word similarity. The two measures are
identified in the results shown below by ”Okapi” and ”"Normalized”. Once the similarity is
computed for each document in the parallel corpora, only the top N most similar documents
are kept for training. They are an approximation of the domain(s) of the test collection.
Selecting N has not been an issue for this corpus (values between 10 — 75% were safe).
However, more generally, this parameter can be tuned to a different test corpus as any other
parameter. Alternatively, the document score can also be incorporated into the translation
model, eliminating the need for thresholding.

We start by selecting individual documents that match the domain of the test collection.

We examine the effect this choice has on domain-specific CLIR.
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Using Okapi Weights to Build a Custom Parallel Corpus

Figures 6.22 and 6.23 compare the two document selection strategies to using all available
documents, and to the ideal (but not truly optimal) situation where there exists a "best”
resource to choose and this collection is known. By "best”, we mean one that can produce
optimal results on the test corpus, with respect to the given metric. In reality, the true
"best” resource is unknown: as seen above, many intuitive choices for the best collection are

not optimal.
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Figure 6.22: CLIR DE-EN performance vs. Percent of Parallel Documents Used. Best

Corpus is given by an oracle and is usually unknown.

Notice that the normalized version performs better and is more stable. Per-word simi-
larity is, in this case, important when the documents are used to train translation scores:
shorter parallel documents are better when building the translation matrix. Our strategy
accounts for a 4—7% improvement over using all resources with no weights, for both retrieval

directions. It is also very close to the "oracle” condition, which chooses the best collection
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Figure 6.23: CLIR EN-DE performance vs. Percent of Parallel Documents Used. ”Best

Corpus” is given by an oracle and is usually unknown.

in advance. More importantly, by using this strategy we are avoiding the sharp performance
drop when using a mismatched, although very good, resource (such as EUROPARL).

Offline adaptation consists of building profiles for all translation resources and the target
corpus, then combining the resources into a customized translation model. The (online)
query is then translated with the resulting translation model.

To avoid confusion, it is helpful to remember that in IR settings the true test data are
the queries, not the target documents. The documents are available off-line and can be (and
usually are) used for training and system development. In other words, by matching the
training corpora and the target documents we are not using test data for training.

The results presented in this section show that choosing the largest collection, using all
resources available without weights, and even choosing a relatively large parallel collection
in the medical domain are all sub-optimal strategies. This results is maintained across the

two languages, with different corpora and different adaptation methods.
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6.10 Chapter Summary and Conclusion

In this chapter we have examined the effects of domain adaptation of the parallel corpus,
using cross-lingual information retrieval as the evaluation task.

The particular characteristic differentiating CLIR from other multilingual tasks is its
advantage of not having humans as the post-translation end-users. This property allows
greater flexibility when generating the translation: i.e., instead of premature optimization
and lexical selection, the post-translation result (the translated query) can remain in its
weighted-token form. When this flexibility is taken away (i.e. when using the BMT system),
the results suffer accordingly.

We have shown that, when data is costly to translate or when domain specific data is
available in limited quantities, appropriate selection is crucial. The results obtained under
these circumstances show that 100 RDA selected sentences can lead to 90% of the perfor-
mance obtained with 5,000 times more data in the same general domain.

We have also examined the impact of two other criteria in the RDA framework. The
length of a sentence does impact the CLIR results; however, whether this criterion can
be successfully exploited depends on the training data generation cost function The other
criterion we examined was TQE - translation quality estimate. While ineffective when the
parallel corpus quality is high, the criterion significantly improves CLIR performance when
data is scarce and of low quality.

Selection using the various RDA criteria is crucial when CLIR training data generation
is expensive - as it usually is the case with domain-specific data. When using the RDA
framework to perform document selection, the CLIR performance is similar to when using
three orders of magnitude more data. This result surpasses the random selection baseline

by a significant margin.






Chapter 7

Criteria Optimization for
Cross-Lingual IR

Domain Adaptation

7.1 Overview

Automatic subset selection from a parallel corpus significantly improves cross-lingual infor-
mation retrieval (CLIR) performance, in addition to increasing its efficiency. Our selection
method extracts relevant training data by incorporating additional criteria (i.e. estimated
corpus quality, taxonomy projection and size) in addition to lexical-based criteria. The chal-
lenge lies in combining these criteria using a meaningful scoring function that can be used for
ranking parallel sentence candidates. We choose weighted geometric mean for its soft-AND
properties, and we optimize criteria weights by wrapping the CLIR task in an optimization
shell. We start by exploring local optimization - in particular, the reactive affine shaker
(RASH) method, an efficient algorithm which continuously adjusts its search area in order
to identify a local minimum. However, due to the indeterminate nature of the search space
convexity properties, we also investigate continuous reactive tabu search (CRTS), a global
optimization method. We use a large parallel corpus in the medical domain to examine the
effect of adaptation criteria and their combination on CLIR performance. In our experi-

ments, 100 selected sentences yield 90% of the performance obtained with 5,000 times more
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in-domain parallel sentences. Our optimized criteria weights considerably outperform the
uniform distribution baseline, as well as lexical similarity adaptation, the preferred approach

in statistical machine translation

7.2 Problem Description and Motivation

In previous chapters we have shown the impact each adaptation criterion has on CLIR
performance. We have shown that, especially in the case of today’s heterogeneous parallel
corpora, it is especially important to consider issues such as corpus and translation quality,
noise, size distribution, redundancy, genre or other available metadata in additional to lexical
similarity. In this context, the results presented in Chapter 6 and 3 were obtained using equal
criterion weights whenever criteria were combined.

In this chapter, we enhance the adaptation framework by focusing on the challenge of
combining these criteria: in particular, on the problem of assigning the relative importance
to each criteria when ranking parallel sentence candidates.

The problem of assigning criteria weights requires optimizing a highly non-linear, non-
convex multi-dimensional function. Since multiple local optima may exist, we require a
global constrained optimization method. Global optimization strategies include branch-
and-bound methods (however, most have the disadvantage of relying on information about
the problem structure or on the availability of an analytic formulation), bayesian partition
algorithms (where a prior on the problem dimensions is needed), genetic algorithms, adaptive
stochastic search (e.g simulated annealing, which places a non-zero probability on moving
away from the optimum) etc. A more detailed description of global optimization methods
and heuristics, as well as pointers to related work and comprehensive surveys can be found
at [42]. Many of the above methods suffer from two main drawbacks: requiring a (fast)
calculation of the objective function gradient, requiring smooth continuous functions or the
availability of a formula, and/or requiring too many objective function calls. Since our
particular function (corpus domain adaptation, then CLIR) is a fairly time-consuming black

box, minimizing the function evaluation calls as well as avoiding to provide a gradient are
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important considerations.

Our method of choice is continuous reactive tabu search (CRTS), as described in [2].
This is a global, deterministic, tabu-search based optimization method that uses the reactive
affine shaker (RASH) [2] method as its local optimization routine. CRTS’s combinatorial
optimization algorithm focuses on locating the set of promising areas in the search space,
and it initializes RASH while adapting search parameters and area size.

In the results presented in this chapter, we combine criteria using weighted geometric
mean, chosen for its soft-AND properties, and we optimize criteria weights by wrapping the
CLIR task in a CRTS optimization shell.

The questions we aim to explore in future sections are:

e Does information other than lexical domain match help domain adaptation for CLIR?

If so, to what extent?

e Can we learn the relative importance of such adaptation criteria to produce optimal

performance in domain specific CLIR tasks?

e What are the trade-offs and limitations of using a local vs. global optimization method?

7.3 Continuous Reactive Tabu Search for Criteria Op-

timization

We are optimizing CLIR mean average precision f : w — R, where w is the set of feasible
points and a subset of R", defined by bounds on the n weights w;: 0 < w; < 1. Our function
f’s convexity and differentiability cannot be relied upon, therefore algorithms such as simple
hill climbing are not recommended. We use CRTS [2], a global, deterministic, tabu-search
based optimization method that uses the reactive affine shaker (RASH) [6] algorithm as its
local optimization routine. CRTS focuses on locating the set of promising boxes in the search

space, and it initializes RASH while adapting box size and other search parameters.



100

7.3.1 RASH

RASH [6] is an adaptive random optimization algorithm for functions of continuous variables.
For our purposes, the crucial advantages of RASH are a) its support for functions that are
discontinuous or non-differentiable, requiring only the availability of the optimized function
value at a given point and b) the assumption that the main computational cost lies in the
function evaluation. In our case, the function evaluation is the entire adaptation, training and
testing process - clearly a very expensive function call. Other than being a local optimization
algorithm, RASH is therefore perfectly suited for black-box, computationally expensive CLIR,
adaptation and evaluation.

The RASH original pseudocode is included in Figure 7.1. The main idea behind RASH is
to adapt the step size and direction to maintain the largest possible movement per function
evaluation, given uniformly distributed ”trial points”. After an initial function evaluation at
a randomly chosen point (z), a new point is generated within the search region by sampling it
with a uniform probability distribution, and testing function improvement at both x+ 9 and,
if not successful, at x — §. This choice drastically reduces the probability of generating two
consecutive unsuccessful samples ([6]). Then, the search region is adapted to the outcome of
the tentative point. If the sampling is successful (i.e. the new function value is better), the
region is expanded along the promising direction; if not, the region shrinks. The search area
undergoes an affine (i.e. linear followed by translation) transformation so that the successful

point becomes the center of the region.

7.3.2 CRTS

CRTS|[2] is a hybrid between a combinatorial optimization component (reactive tabu search
(RTS)) and RASH, the local optimization algorithm (RASH).

RTS activates RASH within a sub-region of the search space when it estimates that the
sub-region contains a good local optimum. RTS uses an iterative modified greedy search
to bias the search towards good f values; the tabu component refers to the prohibition of

visiting previously seen points. The CRTS hybrid creates a tree of search boxes (where the
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procedure affine_shaker
comunent: The constont adjustment factors for the search region I are pespand = 2, Peompress = 1/2.
fnitialize @

t— 0 {teration counfer);

X — [(intial random potnt);
L Ej — &, % {1/4)x {range of j-th variable) where £ is the canonical basis of R
repeat
i { “dowble shot™ strategy: )

§= ; rand; ¥ 'E‘:_i' frand; = rondom nwmbers in (-1,1) )

it fiX+8) < f(X) then

[ X - x 48 (first “shoi™ successful)
Pl + (pexpand — 1]%% fezpand ')

| vi b — P

else if fiX — .!'.T,'I < f(X] then

[ X—XxX-7 {second “shot” suceessful)
P I + (Pezpand — 1]%:—; (erpand T')

Wi b, — P b

else {no success)
[ it . .
=1+ [ﬁcwnpress - HTL';”—_ {compress 17}
Wi by — 'y
L t—(t+1) {increment terafion counter)

until convergence criterion is satisfied

Figure 7.1: Original RASH pseudocode. See explanation in Section 7.3.1.

children are subdividing a box), and generates a path to reach a leaf. RTS identifies the
promising boxes after sampling them, and launches RASH. CRTS is fully described in [2];
the RASH original pseudocode is included in Figure 7.2.

7.3.3 CLIR System Adaptation Specifics

We optimize criteria weights by wrapping the CLIR task in a CRTS optimization shell.
Due to the repeated evaluation of the objective function in the optimization process, a fast-
training CLIR system is desirable. The PMI system, described in Chapter 5 is extremely

fast and since encouraging results are observed when the training parallel corpus is small,
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procedure reactive_tabu_search
{Initialize the doile structures for fabu:)
t— 0 {tleration counter): 'J'F':O:' — 1/N {fractional prohibition period )i t7 — 0 {lest time Tp was changed );
C— B {set of often-repeated configurations )y Rgpe — 1 {moving average of repetition inferval;
X1 — random X € X [initiol configuration); Xy — X0 fhest so far X kfo— _f[.’f':mJ fbest so far f )
repeat
[ (See whether the current configuration is o vepefition:)

escape — memory_based_reaction( X ':‘3} {see Fig. 9}

if escape = Do_NoT_EscaPE then
[ — argming 4oy fle{X0}]

Xit+1) = w{ X0y

Alp) — ¢ (ALL) and TUV gre therefore implicitly chonged)

{Update trme, and besi_so_far:)

t—(t+1)

if fIX) < f, then

[ fo — F(X1H)

L Xp — Xtk

else

L diversify—search
until f; is acceptable or maximum no. of iterations reached

function diversify_search
comment: 4 seqguence of random steps, that become tabu as soon as they are applied.
i repeat for i =1 to Max(2, 0. N/4) (et least two moves )
[ 7, — move corresponding to a random step {see text for details)
XUt — g (X))
Moy —1t | ALY and TUH gpe thevefore changed)
{Update time, and bestasoofar:)
te— (t4 1)
if fiX'Y) < fp then
[ fu— SN
i Xp — X't

Figure 7.2: Original CRTS pseudocode. See explanation in Section 7.3.2.

but well chosen, we choose 100 sentences as the size of the training corpus. Adaptation
effects are most important at this size, and are crucial when adaptation is used as an active
learning scenario (e.g. when the system chooses monolingual sentences to be translated by a
very costly domain expert). The dimensions used in this experiment are MRR, translation

quality estimate (bootstrap and evaluation) (TQE) and size (log (sentence length)).
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Figure 7.3: 2-D projections of the 3-D search parameter space and the corresponding CLIR
performance. The color represents average precision of the CLIR system when trained with
100 sentences selected using the criteria weights shown on the X and Y axes. MRR represents
lexical domain match; TQE is the estimate translation quality for the candidate sentence;

size is the (log of) the length of the sentence. (best viewed in color).

7.3.4 Using RASH and CRTS to Optimize Criteria Weights: Ex-

periments and Results

In this section, we compare CRTS with its local optimization component, the Reactive
Affine Shaker algorithm. Since the objective function evaluation (CLIR average precision,
see beginning of this section) is costly, we are trying to minimize the number of iterations
- therefore, quick convergence to a good local optimum is a desirable feature. Figure 7.4
shows how fast each of the two optimization methods find a better objective function value.

CRTS samples the search space faster and quickly (in less than 10 iterations) finds a good,
although not optimal, value. RASH, on the other hand, finds the global optimum faster than
CRTS. However, in most cases RASH cannot be assumed to find the global optimum, since
it is a local optimization method.

We explore the (training) parameter space sampled by CRTS and RASH in Figure 7.3.
The three figures are interpolated heatmaps, with warmer colors representing better average
precision on the training set. In each of the three figures, the data is projected from the

three dimensions (MRR, TQE and size) into two. Values projected into the same point are
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changes in ranking of the relevant documents.

averaged.

MRR TQE Size
017 1.0 0.46

Table 7.1: Final criteria weights optimized by CRTS & RASH on the training data.

| MRR Only Equal Optimized
training 0.4953 0.4538 0.5204
testing | 0.4642 04667  0.5259

Table 7.2: CLIR Average precision for criteria combination experiments for both training
and testing scenarios. Optimized weights yield better results than giving equal importance
to all criteria, or than using lexical similarity alone. The optimized criteria weights found in

the training process are shown in Table 7.1.
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When interpreting the heatmaps in Figure 7.3, it is important to keep in mind the
underlying 3-D surface. For example, the third plot (TQE weight vs. log(size) weight) helps
explain the red and blue band in the first plot (TQE weight vs. MRR weight): the red band
is the projection of CLIR performance when the weight of the size criterion is large, while
the blue band is the projection of CLIR performance when the weight of the size criterion
is small. It is interesting to observe that, if the MRR weight is non-zero (in other words,
the domain match is not ignored), better results are obtained when its corresponding weight
is kept small relative to quality estimate and size. However, the question is whether these
results optimized on training data allow us to take advantage of non-MRR criteria when
adapting and evaluating the test queries.

In this case, both RASH and CRTS reached the same optimum. The optimized criteria
weights found in the training process are shown in Table 7.1.

We use them to adapt a 100-sentences parallel corpus to the test queries, then we evaluate
the CLIR performance. This performance, along with two high baselines, is shown in Table
7.2.

It is important to note that the “equal weights” baseline, which we have used earlier
in this section to mix criteria, significantly underperforms the MRR-only condition. This

condition is, in turn, outperformed by our optimized criteria weights.






Chapter 8

Conclusions

In this dissertation we have focused on domain specific, corpus-based multilingual applica-
tions (more specifically, cross-language information retrieval and statistical machine transla-
tion). We have shown that high-performing, but general-domain systems have disappointing
results when confronted with this class of problems. This poor performance pinpoints do-
main adaptation as a necessary component in statistical translation-based systems. Although
manual domain adaptation is possible and has been the prevailing approach, our goal is to
tackle this issue in an automated fashion.

To that end, we have introduced a multi-faceted adaptation framework that addresses the
problem of translation model adaptation in the context of multilingual applications based on
parallel corpora. The Parallel Resource Domain Adaptation (PARDA) framework allows the
integration of several characteristics of parallel corpora (or parallel aligned units) by using
them as criteria in a flexible scoring model. Its goal is that of automated selection of the best
building blocks for assembling a high quality, domain specific, customized parallel resource.
The evaluation characteristics or criteria include: lexical similarity between the selection
candidate and the domain sample, candidate translation quality estimate, candidate size,
and similarity between the taxonomy projections of the candidate and the domain sample.

We have introduced a new, million-sentence medical domain parallel corpus, annotated
with MeSH taxonomy information, and we have used it to examined the effect that each

criterion (and their combination) has on both CLIR and MT performance. By adapting the
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translation model, we significantly alleviate the considerable performance penalty incurred
when using a proven high-performance (but general domain) CLIR or MT systems on domain
specific test data.

When data is costly to translate - as it usually is the case with domain-specific data -
or when only limited quantities are available, appropriate selection is crucial. For CLIR,
the results obtained under these circumstances show that relatively few selected sentences
can lead to 90% of the performance obtained with significantly more in-domain data. We
have explored the effect of several adaptation criteria on CLIR performance before criteria
optimization. In particular, experiments show that the translation quality criterion can
compensate for inconsistent or poor quality parallel corpora when integrated in the selection
model. In our particular domain specific machine translation task, our selection method
allows a two-order of magnitude reduction in training data with only a 10% BLEU-score
decrease, vs. a 35% decrease for an equivalent quantity of in-domain data.

We have also addressed the experimental differences between a given domain (the medical
field), and a sub-domain (in our case, the heart-related medical domain subset). We have
also explored the use and effect of a domain-specific taxonomy or ontology in the training
set selection.

A challenging problem in the PARDA framework is learning the relative importance of
miscellaneous criteria incorporated in a domain adaptation method for cross-language IR.
We have used global and local non-linear optimization methods in order to find optimal
weights assigned to criteria such as lexical similarity, corpus quality and instance size. We
have compared two learning methods, one local (Reactive Affine Shaker) and one global
(continuous reactive tabu search) and their effect on optimizing the criteria weights used in
CLIR medical domain adaptation. Our optimization methods (RASH & CRTS) allow us
to find better mixing criteria weights. On the test set, optimized weights outperform the
two high baselines represented by a) giving criteria equal importance and b) using lexical
similarity alone.

Through the PARDA framework, we have provided a tool that, given a domain sample
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and a pool of parallel resources, produces a customized parallel corpus tailored to the given
domain sample. Through a flexible, trainable set of evaluation criteria, we accomplish the
two-fold goal of 1) significantly alleviating the considerable performance penalty incurred
by general-domain systems, and 2) prioritizing training instances such that a significant
reduction in training resources results in 10% performance difference, even when compared

to using all of the available domain-specific data.

8.1 Future Directions

There are many possible future directions that can build upon our domain adaptation work.

They include:

e Exploring various other adaptation criteria in order to establish their importance and
impact within the PARDA framework. Such criteria include redundancy, genre, data

sources etc.

e Cross-domain experiments with additional exploration of sub-domains, similar to the

work presented here for a medical sub-domain.

e Exploring the stopping criterion problem: i.e. how much data should one select? What

are the tradeoffs in speed and accuracy relevant to this issue?

e One interesting application of our adaptation framework is as an active learning tool
- i.e. to what extent using PARDA on monolingual collections allows the rapid, short
cycle training of domain-specific translation models? In the case of domain-specific
translation, it is important to minimize the quantity of data to be translated, as the

cost per unit is likely higher than general domain translation.

e Generalizing the selection problem to an instance weighting problem taking all criteria
into account. This is particularly useful when documents or entire collections (as

opposed to sentences) are the granularity at which the adaptation process is performed.
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8.2 Impact and Significance to the Broader Research

Community

Domain specific translation and cross-language retrieval are crucial for a variety of appli-
cations: translation of technical manuals, patents, and medical records and literature. The
impact of a properly domain-adapted translation model is significant in these areas, and
this thesis provides a flexible and adaptable mechanism for automated constructions of such
models.

Translating domain-specific data using human translators is expensive, since the trans-
lators need to be trained in a specific domain’s vocabulary. Generally, the more technical
the domain, the more expensive the translation. The impact of domain-adapted training
resources therefore increases as the domain becomes more technical, and the availability of
a collection of algorithms to select training data tailored to a given domain sample leads to
significant cost savings in both time and resources.

A significant contribution of this work to the broader research community is challenging
the conventional wisdom that more training data is always better. We have shown that
having the right training data is crucial, and that it is possible for multilingual applications
to yield superior results with less data. We have built an argument for domain adaptation
as a standard pre-processing step that should be performed and experimented with as part

of the data preparation phase of any application relying on parallel corpora as training data.
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