
CZ: Multiple Inheritance Without Diamonds

Donna Malayeri and Jonathan Aldrich
December 2008

CMU-CS-08-169

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Multiple inheritance has long been plagued with the “diamond” inheritance problem, leading to solutions
that restrict expressiveness, such as mixins and traits. Instead, we address the diamond problem directly,
considering two important difficulties it causes: ensuring a correct semantics for object initializers, and
typechecking multiple dispatch in a modular fashion—the latter problem arising even with multiple inter-
face inheritance. We show that previous solutions to these problems are either unsatisfactory or cumber-
some, and suggest a novel approach: supporting multiple inheritance but forbidding diamond inheritance.
Expressiveness is retained through two features: a “requires” construct that provides a form of subtyp-
ing without inheritance (inspired by Scala [29]), and a dynamically-dispatched “super” call similar to that
found in traits. Through examples, we illustrate that inheritance diamonds can be eliminated via a com-
bination of “requires” and ordinary inheritance. We provide a sound formal model for our language and
demonstrate its modularity and expressiveness.

This research was supported in part by the U.S. Department of Defense, Army Research Office grant number DAAD19-02-1-0389
entitled “Perpetually Available and Secure Information Systems,” and NSF CAREER award CCF-0546550.

Keywords: Multiple inheritance, multiple dispatch, diamond inheritance

1 Introduction

Single inheritance, mixins [11, 19], and traits [16, 29] each have disadvantages: single inheritance restricts
expressiveness, mixins must be linearly applied, and traits do not allow state. Multiple inheritance is one
solution to these problems, as it allows code to be reused along multiple dimensions. Unfortunately how-
ever, multiple inheritance poses challenges itself.

There are two well-known problems with multiple inheritance: (a) a class can inherit multiple features
with the same name, and (b) a class can have more than one path to a given ancestor (i.e., the “diamond
problem”, also known as “fork-join” inheritance) [30, 32]. The first, the conflicting-features problem, can be
solved by allowing renaming (e.g., Eiffel [24]) or by linearizing the class hierarchy [33, 32]. However, there
is still no satisfactory solution to the diamond problem.

The diamond problem arises when a class C inherits an ancestor A through more than one path. This
is particularly problematic when A has fields—should C inherit multiple copies of the fields or just one?
Virtual inheritance in C++ is designed as one solution for C to inherit only one copy of A’s fields [18].
But with only one copy of A’s fields, object initializers are a problem: if C transitively calls A’s initializer,
how can we ensure that it is called only once? Existing solutions either restrict the form of constructor
definitions, or ignore some constructor calls.

There is another consequence of the diamond problem: it causes multiple inheritance to interact poorly
with modular typechecking of multiple dispatch. Multiple dispatch is a very powerful language mecha-
nism that provides direct support for extensibility and software evolution [13, 15]; for these reasons, it has
been adopted by designers of new programming languages, such as Fortress [2]. Unfortunately however,
problems arise when integrating modular multimethods even with restricted forms of multiple inheritance,
such as traits or Java multiple interface inheritance. Previous work either disallows multiple inheritance
across module boundaries, or burdens programmers by requiring that they always provide (possibly nu-
merous) disambiguating methods.

To solve these problems, we take a different approach: while permitting multiple inheritance, we dis-
allow inheritance diamonds entirely. So that there is no loss of expressiveness, we divide the notion of
inheritance into two concepts: an inheritance dependency (expressed using a requires clause, an extension
of a Scala construct [28]) and actual inheritance. Through examples, we illustrate that programs that require
diamond inheritance can be translated to a hierarchy that uses a combination of requires and multiple in-
heritance, without the presence of diamonds. As a result, our language, CZ—for cubic zirconia—retains
the expressiveness of diamond inheritance.

We argue that a hierarchy with multiple inheritance is conceptually two or more separate hierarchies.
These hierarchies represent different “dimensions” of the class that is multiply inherited. We express de-
pendencies between these dimensions using requires, and give an extended example of its use in Sect. 5.

Our solution has two advantages: fields and multiple inheritance (including initializers) can gracefully
co-exist, and multiple dispatch and multiple inheritance can be combined. To achieve the latter, we make
an incremental extension to existing techniques for modular typechecking of multiple dispatch.1

An additional feature of our language is a dynamically-dispatched super call, modelled after trait super
calls [16]. When a call is made to A.super. f () on an object with dynamic type D, the call proceeds to f
defined within D’s immediate superclass along the A path. With dynamically-dispatched super calls and
requires, our language attains the expressiveness of traits while still allowing classes to inherit state.

We have formalized our system as an extension of Featherweight Java (FJ) [22] (Sect. 8) and have proved
it sound (Appendix A).

Contributions:
• The design of a novel multiple inheritance scheme that solves (1) the object initialization problem and

(2) the modular typechecking of external methods, by forbidding diamond inheritance (Sect. 6).

1Without loss of generality, our formal system includes external methods (also known as open classes) rather than full multimeth-
ods; see Sect. 2.

1

« constructor »
Stream(int)

Stream

« constructor »
InputStream(int)

InputStream
« constructor »
OutputStream(int)

OutputStream

InputOutputStream

Stream.super(1024); Stream.super(2048);

Figure 1: An inheritance diamond. Italicized class names indicate abstract classes.

• Generalization of the requires construct and integration with dynamically-dispatched super calls
(Sect. 6).

• Examples that illustrate how a diamond inheritance scheme can be converted to one without dia-
monds (Sections 4 and 5).

• Examples from actual C++ and Java programs, illustrating the utility of multiple inheritance and
inheritance diamonds (Sect. 7).

• A formalization of the language (Sect. 8) and proof of type safety.
• An implementation of a typechecker for the language (using JastAdd [17]).

2 The Problem

To start with, the diamond problem raises a question: should class C with a repeated ancestor A have
two copies of A’s instance variables or just one—i.e., should inheritance be “tree inheritance” or “graph
inheritance” [12]? As the former may be modelled using composition, the latter is the desirable semantics;
it is supported in languages such as Scala, Eiffel, and C++ (the last through virtual inheritance) [28, 24, 18].

Next, diamond inheritance leads to (at least) two major problems that have not been adequately solved:
(1) determining how and when the superclass constructor/initializer should be called [33, 32], and (2) how
to ensure non-ambiguity of multimethods in a modular fashion [26, 20, 3]. The first problem arises when
the graph inheritance semantics is chosen, while the second appears with either tree or graph semantics.

Object initialization. To illustrate the first problem, consider Figure 1, which shows a class hierarchy
containing a diamond. Suppose that the Stream superclass has a constructor taking an integer, to set the
size of a buffer. InputStream and OutputStream call this constructor with different values (1024 and 2048,
respectively). But, when creating an InputOutputStream, with which value should the Stream constructor
be called? Moreover, InputStream and OutputStream could even call different constructors with differing
parameter types, making the situation even more uncertain.

Modular multiple dispatch. The second problem regards multiple dispatch, which has been argued to be
more natural and expressive than single dispatch [13, 15, 14]. However, typechecking multiple dispatch in
a modular fashion becomes very difficult in the presence of multiple inheritance—precisely because of the
diamond problem.

To simplify the discussion in this paper, we focus on external methods (also known as open classes),
which are essentially multimethods that dispatch on the first argument only (corresponding to the receiver
of an ordinary method). Multimethods with asymmetric dispatching semantics (i.e., the order of arguments

2

affects dispatch) can be translated to external methods in a straightforward manner.2 External methods
essentially allow programmers to add methods to a class outside of its definition.

To see why diamond inheritance causes problems, consider the following definition of the external
method3 seek:

method Stream.seek {
void Stream.seek(long pos) { } // default implementation: do nothing
void InputStream.seek(long pos) { ... } // seek if pos <= eofPos
void OutputStream.seek(long pos) { ... } // if pos > eofPos, fill with zeros

}

In the context of our diamond hierarchy, this method definition is ambiguous—what if seek() is called
on an object of type InputOutputStream? Unfortunately, it is difficult to perform a modular check to de-
termine this fact. When typechecking the definition of seek(), we cannot search for a potential subclass
of both InputStream and OutputStream, as this analysis would not be modular. And, when typechecking
InputOutputStream, we cannot search for external methods defined on both of its superclasses, as that
check would not be modular, either. We provide a detailed description of the conditions for modularity in
Sect. 8.1.

It is important to note that this problem is not confined to multiple (implementation) inheritance—it
arises in any scenario where an object can have multiple dynamic types (or tags) on which dispatch is
performed. For instance, the problem appears if dispatch is permitted on Java interfaces, as in JPred [20].

3 Previous Solutions

Object initialization. Languages that attempt to solve the object initialization problem include Eiffel [24],
C++ [18], Scala [28] and Smalltalk with stateful traits [8].

In Eiffel, even though (by default) only one instance of the repeatedly inherited class is included (e.g.,
Stream), when constructing an InputOutputStream, the Stream constructor is called twice. This has the
advantage of simplicity, but unfortunately it does not provide the proper semantics; Stream’s constructor
may perform a stateful operation (e.g., allocating a buffer), and this operation would occur twice.

In C++, if virtual inheritance is used (so that there is only one copy of Stream), the constructor problem
is solved as follows: the calls to the Stream constructor from InputStream and OutputStream are ignored,
and InputOutputStream must call the Stream constructor explicitly.4 Though the Stream constructor is
called only once, this awkward design has the problem that constructor calls are ignored. The semantics of
InputStreammay require that a particular Stream constructor be called, but the language semantics would
ignore this dependency.

Scala provides a different solution: trait constructors may not take arguments. (Scala traits are ab-
stract classes that may contain state and may be multiply inherited.) This ensures that InputStream and
OutputStream call the same super-trait constructor, causing no ambiguity for InputOutputStream. Though
this design is simple and elegant, it restricts expressiveness.

Smalltalk with stateful traits [8] does not contain constructors, but by convention, objects are initialized
using an initialize message. Unfortunately, this results in the same semantics as Eiffel; here, the Stream
constructor would be called twice [7].

Finally, we note that although (stateless) traits and mixins do not suffer from the object initialization
problem, they are less expressive than multiple inheritance. In particular, non-private accessors in a trait
negatively impact information hiding, and introducing new “state” in a trait (through accessors) results in
client classes having to implement these accessors [8]. On the other hand, though mixins do contain state,

2An asymmetric, or encapsulated multimethod dispatching on classes A1, . . . , An can be translated to external methods defined on
each Ai , where each method calls the method in class Ai+1, with the actual code defined in the method on An. Symmetric multiple
dispatch cannot be encoded using external methods; this semantics adds a few orthogonal typechecking issues.

3We have defined this method externally for illustrative purposes.
4Since there is no default Stream constructor, this call cannot be automatically generated.

3

they must be linearly applied and mixins cannot inherit from one another [11, 5]. If the latter were allowed,
this would be essentially equivalent to Scala traits, which do have the object initialization problem.

Modular multiple dispatch. There are two main solutions to the problem of modular typechecking of
multiple dispatch (or external methods) in the presence of multiple inheritance. The first solution is simply
to restrict expressiveness and disallow multiple inheritance across module boundaries; this is the approach
taken by the “System M” variant of Dubious [26].

JPred [20] and Fortress [3] take a different approach. The diamond problem arises in these languages
due to multiple interface inheritance and multiple trait inheritance, respectively. In these languages, the
typechecker ensures that external methods are unambiguous by requiring that the programmer always
specify a method for the case that an object is a subtype of two or more incomparable interfaces (or traits).
In our streams example, the programmer would have to provide a method like the following (in JPred
syntax):

void f(Stream s) when s@InputStream && s@OutputStream

(In Fortress, the method would be specified using intersection types.) Note that in both languages, this
method would have to be defined for every subset of incomparable types (that contains at least 2 mem-
bers), regardless of whether a type like InputOutputStream is ever defined. Even if two types will never
have a common subtype, the programmer must specify a disambiguating method, one that perhaps throws
an exception.5 Thus, the problem with this approach is that the programmer is required to write numer-
ous additional methods—exponential in the number of incomparable types—some of which may never
be called. JPred alleviates the problem somewhat by providing syntax to specify that a particular branch
should be preferred in the case of an ambiguity, but it may not always be possible for programmers to know
in advance which method to mark as preferred.

Neither JPred interfaces nor Fortress traits may contain state and thus the languages do not provide a
solution to the object initialization problem; neither does Dubious, since it does not contain constructors.

4 An Overview of CZ

CZ’s design is based on the intuition that there are relationships between classes that are not captured by
inheritance, and that if class hierarchies could express richer interconnections, inheritance diamonds need
not exist. Suppose the concrete class C extends A. As noted by Schärli et al., it is beneficial to recognize that
C serves two roles: (1) it is a generator of instances, and (2) it is a unit of reuse (through subclassing) [31].
In the first role, inheritance is necessary—it is the implementation strategy. In the second role, however,
it is possible to transform the class hierarchy to one where an inheritance dependency between C and A is
stated and where subclasses of C inherit from both C and A. This notion of inheritance dependency is of key
importance in CZ, because while multiple inheritance is permitted, inheritance diamonds are forbidden.

Consider the inheritance diamond of Fig. 1. To translate this hierarchy to CZ, InputStream’s relationship
with Stream would be changed from inheritance to an inheritance dependency, requiring that subclasses of
InputStream also inherit from Stream. In other words, InputStream requires the presence of Stream in the
extends clause of concrete subclasses, but it need not extend Stream itself. If we make InputStream an abstract
class (making it serve only as a unit of reuse), it can be safely treated as a subtype of Stream. However, any
concrete subclasses of InputStream (generators of instances), must also inherit from Stream. Accordingly,
InputOutputStreammust inherit from Stream directly.

We have reified this notion of an inheritance dependency using the requires keyword, a generalized
form of a similar construct in Scala [29, 28].6

5In Fortress, the programmer may specify that two traits are disjoint, meaning that there will never be a subtype of both. To allow
modular typechecking, this disjoint specification must appear on one of the two trait definitions, which means that one must have
knowledge of the other; consequently this is not an extensible solution.

6In Scala, requires is used to specify the type of a method’s receiver (i.e., it is a selftype), and does not create a subtype relationship.
As far as the Scala team is aware, our proposed use of requires is novel [35].

4

Stream

InputStream OutputStream

InputOutputStream

requiresrequires

ConcreteInputStream ConcreteOutputStream

EncryptedStream

EncryptedInputStream EncryptedOutputStream

requires

Figure 2: The stream hierarchy of Fig. 1, translated to CZ, with an encryption extension in gray. Italicized
class names indicate abstract classes, solid lines indicate extends, and dashed lines indicate requires.

When a class C requires a class B:
• C is abstract, and
• C is a subtype of B (but not a subclass), and
• Subclasses of C must either require B themselves (making them abstract) or extend B (allowing them

to be concrete).
In essence, C requires B is a contract that C’s concrete subclasses will extend B.

The revised stream hierarchy is displayed in Fig. 2. In the original hierarchy, InputStream served as
both generator of instances and a unit of reuse. In the revised hierarchy, we divide the class in two—one for
each role. The class ConcreteInputStream is the generator of instances, and the abstract class InputStream
is the unit of reuse. Accordingly, InputStream requires Stream, and ConcreteInputStream extends both
InputStream and Stream. The concrete class InputOutputStream extends each of Stream, InputStream,
and OutputStream, creating a subtyping diamond, but not a subclassing diamond, as requires does not
create a subclass relationship.

The code for InputStreamwill be essentially the same as before, except for the call to its super construc-
tor (explained further below). Because InputStream is a subtype of Stream, it may use all the fields and
methods of Stream, without having to define them itself.

Programmers may add another dimension of stream behavior through additional abstract classes,
for instance EncryptedStream. EncryptedStream is a type of stream, but it need not extend Stream,
merely require it. Concrete subclasses, such as EncryptedInputStream must inherit from Stream,
which is achieved by extending ConcreteInputStream. (It would also be possible to extend Stream and
InputStream directly.)

The requires relationship can also be viewed as declaring a semantic “mixin”—if B requires A,
then B is effectively stating that it is an extension of A that can be “mixed-in” to clients. For example,
EncryptedStream is enhancing Stream by adding encryption. Because the relationship is explicitly stated,
it allows B to be substitutable for A.

Using requires is preferable to using extends because the two classes are more loosely coupled. This al-
lows programmers to express inheritance relationships that would otherwise require diamond inheritance,
without those associated problems.

Object initialization. Because there are no inheritance diamonds, the object initialization problem is triv-
ially solved. Note that if class C requires A, it need not (and should not) call A’s constructor, since
C does not inherit from A. In our example, InputStream does not call the Stream constructor, while
ConcreteInputStream calls the constructors of its superclasses, InputStream and Stream. Thus, a subtyping
diamond does not cause problems for object initialization.

5

This may seem similar to the C++ solution; after all, in both designs, InputOutputStream calls the
Stream constructor. However, the CZ design is preferable for two reasons: a) there are no constructor calls
to non-direct superclasses, and, more importantly, b) no constructor calls are ignored. In the C++ solution,
InputStream may expect a particular Stream constructor to be called; as a result, it may not be properly
initialized when this call is ignored.

Modular multiple dispatch. A similar principle solves the problem of modular multiple dispatch. In CZ,
an external method may only override a method in a superclass, not a required class. (This restriction does
not apply to internal methods, as this scenario does not cause problems for modular typechecking.) So, the
definitions of InputStream.seek and OutputStream.seek do not override Stream.seek—such a definition
would essentially create two unrelated overloads of a method named seek.

Let us suppose for a moment that all classes in Fig. 2 have been defined, except InputOutputStream.
Accordingly, we would re-write the seekmethods as follows:

// unrelated methods that share the same name
void InputStream.doSeek(long pos) { ... }
void OutputStream.doSeek(long pos) { ... }

method Stream.seek {
void Stream.seek(long pos) { ... } // default implementation: do nothing

void ConcreteInputStream.seek(long pos) {
InputStream.super.doSeek();

}
void ConcreteOutputStream.seek(int pos) {

OutputStream.super.doSeek();
}

}

(Though these definitions are slightly more verbose than before, syntactic sugar could be provided.)
Note that the typechecker does not require that a disambiguating method be provided for

“InputStream && OutputStream”, unlike JPred and Fortress. If a programmer later defines
InputOutputStream, but does not re-define seek, the default implementation of Stream.seek will be in-
herited. An external or internal method for InputOutputStream can then be implemented, perhaps one
that calls OutputStream.doSeek().

Here, it is of key importance that subclass diamonds are disallowed; because they cannot occur, external
methods can be easily checked for ambiguities. Subtyping diamonds do not cause problems, as external
method overriding is based on subclassing.

Fragments of CZ. Note that it would be possible to omit multimethods from the language and use the CZ
design (as is) for only the object initialization problem. That is, our solution can be used to solve either the
object initialization problem, the modular multimethod problem, or both.

Using “requires”. Introducing two kinds of class relationships raises the question: when should pro-
grammers use requires, rather than extends? A rule of thumb is that requires should be used when a
class is an extension of another class and is itself a unit of reuse. If necessary, a concrete class extending the
required class (such as ConcreteInputStream) could also be defined to allow object creation. Note that this
concrete class definition would be trivial, likely containing only a constructor. On the other hand, when
a class hierarchy contains multiple disjoint alternatives (such as in the AST example in the next section),
extends should be used; the no-diamond property is also a semantic property of the class hierarchy in
question.

6

requires+ eval() : ASTNode

ASTNode
parent : ASTNode

+ eval() : ASTNode

DebugNode
location : SourceRef

+ eval() : ASTNode
Num

+ eval() : ASTNode
Var

+ eval() : ASTNode
+ getLeft() : ASTNode
+ getRight : ASTNode

Plus
+ eval() : ASTNode
DebugVar

+ eval() : ASTNode
DebugPlus

+ eval() : ASTNode
DebugNum

DebugNode.super.eval()

+ eval() : ASTNode
varDef : SourceRef
EnhancedDebugVar

requires

Figure 3: The AST node example in CZ. Abstract classes and abstract methods are set in italic.

Subtyping and subclassing. Since requires provides subtyping without subclassing, our design may
seem to bear similarity to other work that has also separated these two concepts (e.g. [21, 34, 14]). There is an
important difference, however, regarding information hiding. In a language that separates subclassing and
subtyping, an interface type (used in a non-Java sense) must necessarily contain only “public” members;
otherwise an arbitrary class would be able to access another class’s private or protected state. For this
reason, the requires relationship establishes a stronger relationship than simply subtyping; for example,
a member in Stream may be declared “protected” and may then be accessed by InputStream. This does
not violate information hiding, however, as we are guaranteed that concrete subclasses of InputStreamwill
extend Stream, fulfilling the intent that only extenders have access to protected state. For a more detailed
discussion, see Appendix B.

5 Example: Abstract Syntax Trees

Consider a simple class hierarchy for manipulating abstract syntax trees (ASTs), such as the one in Fig. 3.
The original hierarchy is the one on the left, which consists of ASTNode, Num, Var, and Plus. An ASTNode
contains a reference pointing to its parent node, as indicated in the figure. Each of the concrete subclasses
of ASTNode implements its own version of the abstract ASTNode.eval()method.

Suppose that after we have defined these classes, we wish to add a new method that operates over
the AST. For instance, we may want to check that variables are declared before they are used (assuming
a variable declaration statement). Since CZ supports external methods, a method defCheck() could be
added externally as follows:

method ASTNode.defCheck { // external method
void ASTNode.defCheck() { ... }
void Var.defCheck() { ... }
void Plus.defCheck() { ... }
void Num.defCheck() { ... }

}

(We could also use the Visitor pattern, but the need for this must be anticipated, and the double dispatch
code it requires is tedious and error-prone [15].) Note that the programmer would only have to define cases
for Num, Var and Plus; she need not specify what method should be called when an object has a combination
of these types—such a situation cannot occur (as there are no diamonds).

Now, suppose we wish to add debugging support to our AST, after the original hierarchy is defined.
Each node now additionally has a source location field, DebugNode.location. Debugging support, on the
right side of the figure, is essentially a new dimension of AST nodes, which we express using requires.
(For the moment, suppose that EnhancedDebugVar inherits directly from DebugNode and ignore DebugVar.
We will come back to this when comparing to mixins.) Now, classes like DebugPlus can multiply inherit
from ASTNode and DebugNode without creating a subclassing diamond. In particular, DebugPlus does not

7

class ASTNode {
abstract ASTNode eval();

}
class Plus extends ASTNode {

ASTNode eval() { ... }
String toString() { return "+"; }

}

...

class DebugNode requires ASTNode {
ASTNode eval() {

print(this.toString());
return ASTNode.super.eval(); // dynamic super call

}
}
class DebugPlus extends DebugNode, Plus {

ASTNode eval() {
return DebugNode.super.eval(); // ordinary super call

}
}

Figure 4: Implementing a mixin-like debug class using dynamically-dispatched super calls, and performing
external dispatch on the ASTNode hierarchy.

inherit two copies of the parent field, because DebugNode does not inherit from (i.e, is not a subclass of)
ASTNode. Thus, the no-diamond property allows fields and multiple inheritance to co-exist gracefully.

In this example, each of these classes has a method eval() which evaluates that node of the AST, as
in the code in Fig. 4. Suppose we intend DebugNode to act as a generic wrapper class for each of the sub-
classes of ASTNode. This can be implemented by using a dynamically-dispatched super call of the form
ASTNode.super.eval() after performing the debug-specific functionality (in this case, printing the node’s
string representation). The prefix ASTNode.supermeans “find the parent class of the dynamic class of this
along the ASTNode path.” At runtime, when eval() is called on an instance of DebugPlus, the chain of
calls proceeds as follows: DebugPlus.eval() → DebugNode.eval() → Plus.eval(). If the dynamically-
dispatched super call behaved as an ordinary super call, it would fail, because DebugNode has no superclass.

Each of the DebugNode subclasses implements its own eval()method that calls DebugNode.eval()with
an ordinary super call. (This could be omitted if the language linearized method overriding based on
the order of inheritance declarations, such as in Scala traits.) Dynamic super calls are a generalization of
ordinary super calls, when the qualifier class is a required class.

Discussion. The examples illustrate that subtyping allows substitutability; subclassing, in addition to
providing inheritance, defines semantic alternatives that may not overlap (such as Num, Var and Plus in
the example above). Because they do not overlap, we can safely perform an unambiguous case analysis
on them—that is, external dispatch. In other words, external dispatch in our system is analogous to case-
analyzing datatypes in functional programming.

Single Inheritance. This example would be more difficult to express in a language with single inheritance.
One straightforward design in a Java-like language is presented in Fig. 5. Multiple inheritance is simulated
using interfaces for subtyping, and composition for dispatch. For instance, calls to DebugPlus.getLeft()
are delegated to the wrapped IPlus object. The template method design pattern is used by DebugNode to
implement eval() (subclasses override getWrapped()).

Note the addition of 4 new interfaces and the boilerplate code needed to implement getters, setters
and delegation. The problem would be even worse if another dimension of behavior were to be added.
Furthermore, the design has the problem that the getters and setters have to be public, since they are defined

8

+ getParent() : IASTNode
+ setParent(IASTNode)

ASTNode
parent : ASTNode + getParent() : IASTNode

+ setParent(IASTNode)
+ eval() : IASTNode
getWrapped() : IASTNode

DebugNode
location : SourceRef

+ eval() : ASTNode
Num

+ eval() : ASTNode
Var

+ getLeft() : IASTNode
+ getRight() : IASTNode
+ eval() : IASTNode

Plus

getWrapped() : IVar
- wrapped : IVar
EnhancedDebugVar

+ getParent() : IASTNode
+ setParent(IASTNode)
+ eval() : ASTNode

<<interface>>
IASTNode

+ getLeft() : IASTNode
+ getRight() : IASTNode

<<interface>>
IPlus

+ getLeft() : IASTNode
+ getRight() : IASTNode
getWrapped() : IPlus

- wrapped : IPlus
DebugPlus

<<interface>>
IVar

<<interface>>
INum

getWrapped() : INum
- wrapped : INum

DebugNum

return
getWrapped().getParent()

print(this.toString());
return getWrapped().eval();

return wrapped.getLeft()

Figure 5: The example of Fig. 3 expressed in a Java-like language, resulting in a proliferation of interfaces
and boilerplate code. The visibility modifiers ‘+’, ‘-’ and ‘#’ indicate public, private and protected, respec-
tively. Dashed lines represent extends; solid lines represent implements.

in an interface. For instance, the “parent” field in ASTNode is effectively fully visible, adversely affecting
information hiding. Additionally, one would have to implement the visitor design pattern (not shown) to
allow external traversal of the AST.

Traits. Traits could be used to express this example, but they lack state, resulting in an information-hiding
problem with accessors (see Sections 3 and 9) similar to that of the single inheritance design. Stateful traits
do not address the object-initialization problem, as previously mentioned.

Using Mixins. This example would be difficult to express using mixins. Aside from the limitation
that a total ordering must be specified during mixin composition [16], other issues arise. Suppose that
DebugVar.eval() prints the variable name, while EnhancedDebugVar.eval() prints the variable name and
the location in the source program where it is defined. Since DebugVar is intended to be reused, it requires
rather than extends Var.

To translate this example, both DebugNode and DebugVar must become mixins (which we will prefix
with M). Since mixins cannot inherit from one another, MDebugVar would not be able to express an explicit
relationship with MDebugNode, but would instead have to declare location and eval() as required mem-
bers (e.g., Jam, Strongtalk [4, 5]). This, in turn, leads to two problems. First, MDebugVar cannot be treated as
a subtype of MDebugNode, greatly reducing expressiveness. Second (and more significantly), supposing that
external methods were to be integrated with mixins, it would be impossible to write an external method
for MDebugNode and override it for MDebugVar—there is no relationship between the two mixins. That is,
we may wish to write methods MDebugNode. f and MDebugVar. f (its override), and have EnhancedDebugVar
inherit this latter definition. Instead, the definition of f must be pushed down to EnhancedDebugVar, which
creates problems for code reuse. In particular, suppose that method f and EnhancedDebugVar are inde-
pendent extensions that have no knowledge of each other. In a mixin world, external method definitions
cannot be truly modular extensions.

The heart of the problem is that mixins are defined in isolation—though they can be composed, they
cannot be subclasses (or even subtypes) of one another. Our solution could be viewed as similar to mixins,
with the addition of subtyping and design intent (through requires) and (no-diamond) multiple inheri-
tance.

9

6 CZ Design

In this section, we give informal details of the typechecking rules in CZ, and provide an intuition as to
why typechecking is modular. In Sect. 8 we formalize CZ and provide a detailed argument showing its
modularity.

6.1 Multiple Inheritance

The properties of classes and internal methods in CZ are the following:
C1. If a class C extends D1 and D2 then there must not exist some E, other than Object, such that both D1

and D2 are subclasses of E (the no-diamond property).
C2. Each method name has a unique point of introduction. That is in the calculus, two classes only share a

method name if it exists in a common superclass or common required class.
C3. If a class C extends D1 and D2 and method m is defined on both D1 and D2 (internally or externally),

then C must also define m.
We have already described the reason for the no-diamond property, condition C1. We make a special

case for the class Object—the root of the inheritance hierarchy, since every class automatically extends
it. (Otherwise, a class could never extend two unrelated classes—the existence of Object would create a
diamond.) Note that this does not result in the object initialization problem, because Object has only a
no-argument constructor. Also, this condition does not preclude a class from inheriting from two concrete
classes if this does not form a diamond.

Condition C2 is imposed so that one kind of ambiguity can be checked locally. It prevents a name
clash if two methods (internal or external) in unrelated classes A and B coincidentally have the same name
and a third class inherits from both A and B.7 The condition can be easily implemented in the compiler
by appending the class name to a method name at the point in which it is introduced (i.e., method m
first introduced in class A becomes m_A). For example, if the classes Circle and Cowboy both have a
method draw, in the calculus the methods would be named draw_Circle and draw_Cowboy. Of course, an
implementation of the language would have to provide a syntactic way for disambiguating methods that
accidentally have the same name; this could be achieved through rename directives (e.g., Eiffel [24]) or by
using qualified names (e.g., C# interfaces and C++).

Note that if C requires B and it defines an internal method m, then C.m overrides B.m and is considered
part of the same method family (and therefore has the same name).

Condition C3 ensures that diamond subtyping does not lead to problems. If two classes D1 and D2 have
a common method m, then m must be contained in some common required class (as otherwise the two m’s
would have different qualified names). Since m is contained in two superclasses of C, this is an ambiguity
that must be resolved by C.

6.2 External Methods

CZ includes external methods; methods can be added to a class outside of its definition. Such methods may
be overridden by other methods, either internal or external. Typechecking an external method has two
components: exhaustiveness checking (i.e., the provided cases provide full coverage of the dispatch hierar-
chy) and ambiguity checking (i.e., when executing a given method call, only one method is applicable). As
previously mentioned, asymmetric multimethods can be encoded with external methods; accordingly, the
same typechecking issues apply to both.

In CZ’s formal system, exhaustiveness of external methods is ensured because there are no abstract
methods; if the language included abstract methods, external method definitions would not be permitted
to be abstract. This, and as the restrictions below, are enforced in Millstein and Chambers’s “System M”
variant of the Dubious calculus [26], and in later extensions such as MultiJava [15]. Of these, only System
M includes multiple inheritance.

7Incidentally, this is not the convention used in Java interfaces, but is that of C#.

10

To allow modular ambiguity checking, CZ methods must obey the following rules:
E1. All external method definitions of a method m must appear in the method block where the method

family m is introduced (using the method declaration).
E2. When an external method family m is introduced, it must declare an owner class C: this specifies that

the method family is rooted at C. C must be a proper subtype of Object, the root of the inheritance
hierarchy. An external method definition m for class D is valid only if D is a subclass of C.

E3. An external method must not override an internal one (though an internal method may override an
external one).

While all three conditions are the same as those in System M, that language did not allow multiple
inheritance across module boundaries. In CZ we can remove this restriction by ensuring that diamond in-
heritance does not occur—condition C1. (Note that in CZ, each class and each top-level method declaration
is in its own module.)

Condition E1 is necessary because otherwise there could be two external method definitions m defined
for the same class C, leading to an ambiguity.

Condition E2 ensures that diamonds with Object at the top (permitted by condition C1) do not cause
an ambiguity. Concretely, consider the following method definition:

method Object.g { // illegal CZ definition−owner cannot be Object
void Stream.g() { ... }
void Foo.g() { ... }

}

class Bar extends Stream, Foo { ... } // problem! two versions of g()!

If this were valid code, there would exist a method definition g() for each of Stream and Foo. In this case,
Barwould inherit two equally valid definitions of g(). For typechecking to be modular, when checking Bar,
we should not have to check all definitions of external methods, including g(). Note that not specifying an
owner class has the same effect as using Object as an owner.

Additionally, condition E2 ensures that diamond subtyping (as opposed to subclassing) does not result
in a class inheriting the same external method through more than one path. If overriding were permitted
based on subtyping, the problem described with diamond inheritance (Sect. 2) would re-appear.

The owner class is also important for implementing condition C2 from the previous section—the owner
class name must be part of the method name used by the internal language. (A related issue, defining two
external methods with the same name m, can be resolved by using a naming convention for compilation
units.)

Condition E3 is required to avoid a situation where an external method m is defined on class C and C
also defines an internal method m, causing an ambiguity.8

6.3 Discussion

Extensions. It would be possible to combine our solution with existing techniques for dealing with the
object initialization and modular multiple dispatch problems. A programmer could specify that a class C,
whose constructor takes no arguments, may be the root of a diamond hierarchy. Then, we would use the
Scala solution for ensuring that C’s constructor is called only once. To solve the multiple dispatch problem,
if C is the owner of a method family m, the typechecker would ensure that m contained disambiguating
definitions for the case of a diamond—the JPred and Fortress solutions.

Encapsulation and the diamond problem. As noted by Snyder, there are two possible ways to view
inheritance: as an internal design decision chosen for convenience, or as a public declaration that a subclass
is specializing its superclass, thereby adhering to its semantics [33].

8This restriction unfortunately prevents a class C from declaring an abstract method m for the purpose of allowing clients to “plug
in” different versions of m (in different namespaces) into the context where m is called. There is a solution to this, however: one can
use structural subtyping instead of abstract methods to define an interface for C.m [23].

11

Though Snyder believes that it can be useful to use inheritance without it being part of the external
interface of a class, we argue that the second definition of inheritance is more appropriate. In fact, if inher-
itance is being used merely out of convenience (e.g., Vector extending Stack in the Java standard library),
then it is very likely that composition is a more appropriate design [9]. For similar reasons, we do not believe
a language should allow inheritance without subtyping—e.g., C++ private inheritance—as this can always
be implemented using a helper class whose visibility is restricted using the language’s module system.

Nevertheless, if one takes the view that inheritance choices should not be visible to subclasses, a form
of the diamond problem can arise in CZ. In particular, suppose class D extends B and C, C extends A,
and B extends Object—a valid hierarchy (recall that condition C1 makes a special exception for diamonds
involving Object). Now suppose that B is changed to extend A, and the maintainer of B is unaware that
class D exists. Now A, B and C typecheck, but D does not. Thus, the use of inheritance can invalidate
subclasses, which violates Snyder’s view of encapsulation.

This situation highlights the fact that, in general, requires should be favored over extends if a class is
intended to be reused. This principle is in accordance with the design of classes in Sather [34], traits in Scala
and Fortress [28, 2, 3], and the advice that “non-leaf” classes in C++ be abstract [25]. In Sather, for example,
only abstract classes may have descendants; concrete classes form the leaves of the inheritance hierarchy
[34].

7 Real-World Examples

In this section, we present real-world examples (in both C++ and Java) that suggest that multiple inher-
itance, and diamond inheritance in particular, can be useful for code reuse. We also describe how these
examples can be expressed in CZ.

7.1 C++ Examples

We examined several open-source C++ applications in a variety of domains and found many instances of
virtual inheritance and inheritance diamonds. Here we describe inheritance diamonds in two applications:
Audacity9 and Guikachu.10

Audacity. Audacity is a cross-platform application for recording and editing sounds. One of its main
storage abstractions is the class BlockedSequence (not shown), which represents an array of audio samples,
supporting operations such as cut and paste. A BlockedSequence is composed of smaller chunks; these are
objects of type SeqBlock, depicted in Fig. 6 (a). One subclass of SeqBlock is SeqDataFileBlock, which
stores the block data on disk. One superclass of SeqDataFileBlock is ManagedFile, an abstraction for
temporary files that are de-allocated based on a reference-counting scheme. Since both ManagedFile and
SeqBlock inherit from Storable (to support serialization), this forms a diamond with Storable at the top.

This particular diamond can be easily re-written in CZ (Fig. 6 (b)), since the sides of the diamond
(SeqBlock and ManagedFile) are already abstract classes. (Compare to the example in Fig. 2, where new
concrete classes had to be defined for the sides of the diamond.) Here, we simply change the top two
virtual inheritance edges to requires edges, and make SeqDataFileBlock inherit from Storable directly.
This may even be a preferable abstraction; while in the original hierarchy SeqDataFileBlock is serializable
by virtue of the fact that SeqBlock is serializable, in the new hierarchy we are making this relationship
explicit.

Guikachu. Guikachu is a graphical resource editor for the GNU PalmOS SDK. It allows program-
mers to graphically manipulate GUI elements for a Palm application in the GNOME desktop environ-
ment. In this application, we found 10 examples of diamonds that included the classes CanvasItem,

9http://audacity.sourceforge.net/
10http://cactus.rulez.org/projects/guikachu/

12

http://audacity.sourceforge.net/
http://cactus.rulez.org/projects/guikachu/

Storable

SeqBlock ManagedFile

SeqDataFileBlock

virtualvirt
ua
l

virtual virt
ua
l

(a)

Storable

SeqBlock ManagedFile

SeqDataFileBlock

requiresreq
uire

s

(b)

Figure 6: An inheritance diamond (a) in the Audacity application, and (b) the re-written class hierarchy in
CZ. Abstract classes are set in italic.

CanvasItem

WidgetCanvasItem ResizeableCanvasItem

PopupTriggerCanvasItem

virtualvirt
ual

TextFieldCanvasItem ButtonCanvasItem

Figure 7: Three inheritance diamonds in the Guikachu application. Abstract classes are set in italic.

WidgetCanvasItem, and ResizeableCanvasItem. Figure 7 shows three of these 10 diamonds, formed by
TextFieldCanvasItem, PopupTriggerCanvasItem and ButtonCanvasItem, respectively. The hierarchy was
likely designed this way because there exist GUI elements that have only one of the two properties. For
instance, GraffitiCanvasItem and LabelCanvasItem (not shown) are not resizeable, but they are widgets.

In this application, we also observed the use of the C++ virtual inheritance initializer invocation
mechanism: TextFieldCanvasItem (for instance) directly calls the initializer of CanvasItem, its grandpar-
ent. As previously described, the initializer calls from WidgetCanvasItem and ResizeableCanvasItem to
CanvasItem are ignored. In this application, the initializers happen to all perform the same operation, but
this invocation semantics could introduce subtle bugs as the application evolves.

Due to space considerations, we have not shown the corresponding CZ class hierarchy; it would be
very similar to that of Fig. 6 (b). Essentially, the virtual inheritance would be replaced with requires
and each of the classes at the bottom of the diamond would inherit from all three of WidgetCanvasItem,
ResizeableCanvasItem, and CanvasItem. The CZ design has the advantage that constructor calls do not
occur more than one level up the hierarchy, and no constructor calls are ignored.

7.2 Java Example: Eclipse JDT

The Eclipse JDT (Java Development Tools) provides an example of where multiple inheritance could
be useful for Java programs. In the JDT, every AST node contains structural properties. A node’s
structural properties allow uniform access to its components. For example, DoStatement has 2
fields of type StructuralPropertyDescriptor: EXPRESSION_PROPERTY and BODY_PROPERTY. To get
the expression property of a DoStatement object, the programmer may call ds.getExpression() or
ds.getStructuralProperty(DoStatement.EXPRESSION_PROPERTY). Structural property descriptors are of-
ten used to specify how AST nodes change when a refactoring is performed.

Through inspection of the JDT code, we found that there was a great deal of duplication among the

13

code for getting or setting a node property using the structural property descriptors. For example, 19 AST
classes (for instance, AssertStatement and ForStatement) have getExpression/setExpression proper-
ties. As a result, in the method internalGetSetChildProperty (an abstract method of ASTNode), there are
19 duplications of the following code:

if (property == EXPRESSION_PROPERTY) {
if (get) {

return getExpression();
} else {

setExpression((Expression) child);
return null;

}
} else if (property == BODY_PROPERTY) {

... // code for body property
}

}

Additionally, there are duplicate, identical definitions of the EXPRESSION_PROPERTY field. Without
a form of multiple inheritance, however, it is difficult to refactor this code into a common location—
DoStatement, for example, already has the superclass Statement. With multiple inheritance, the pro-
grammer could create an abstract helper class ExprPropertyHelper that requires ASTNode. This new
class would contain the field definition and an override of internalGetSetChildProperty. DoStatement
would then inherit from both Statement and ExprPropertyHelper and would have the following body for
internalGetSetChildProperty:

if (property == BODY_PROPERTY) {
... // code for body property

} else
return ExprPropertyHelper.super.internalGetSetChildProperty(property, get, child);

Overall, our real-world examples suggest that multiple inheritance can be useful, and that even diamond
inheritance is used in practice. We have shown that the inheritance diamonds can be easily translated to
CZ and that the resulting designs offer some benefits over the original ones.

8 Formal System

In this section, we describe the formalization of CZ, which is based on Featherweight Java (FJ) [22]. We use
the same conventions as FJ; D is shorthand for the (possibly empty) list D1, . . . , Dn, which may be indexed
by Di. We use the same metavariables as FJ, with the addition that m and n range over internal and external
method names, respectively; M and N range over internal and external method declarations, respectively.

The grammar of CZ is presented in Fig. 8. Modifications to FJ are highlighted. Class declarations
may extend or require a list of classes. There is also a new type of declaration: top-level methods. The
declaration method C.m{N} introduces an external method family with the owner class C. (Owner classes
were described in Sect. 6.2.) The syntax requires that each external method be defined within the method
block; this effectively enforces condition E1 of Sect. 6.2.

Aside from virtual super calls, and the removal of casts (they are orthogonal to our goals), CZ expression
forms are identical to those of FJ. For simplicity, we have not modeled ordinary super calls in our calculus,
as this has been considered by others (e.g., [19, 27]) and is orthogonal to the issues we are considering.
Therefore, the class qualifier of a super call must be a required class.

We have added a new subtype judgement (Fig. 9), denoted by ‘<:’, which handles the requires rela-
tionship. Subclassing (‘�’) implies subtyping, and if class A requires B then A <: B, but A � B. In CZ,
the requires relation is not transitive; subclasses must either require or extend the required class. This is
enforced by the typechecking rules.

14

Declarations L ::= class C extends C requires C { C f ; K M } | method C.m { N }

Constructors K ::= C(C f) { this. f = f ; }

Methods M ::= C m(C x) { return e; }

External Methods N ::= C C.m(C x){ return e; }

Expressions e ::= x | e. f | e.m(e) | e.C.super.m(e) | new C(e)

Figure 8: CZ grammar

Subclassing C � D

C � C
C � D D � E

C � E

CT(C) = class C extends D1, . . . , Dn · · · { . . . }

C � Di

Subtyping C <: D

C � D
C <: D

C <: D D <: E
C <: E

CT(C) = class C extends D requires E1, . . . , En { . . . }

C <: Ei

Figure 9: Subclassing (�) and subtyping (<:) judgement

The auxiliary judgements for typechecking and evaluation appear after the typechecking and evaluation
rules, in Fig. 13. We will describe each of these when describing the rules that use them.

Static Semantics. The rules for typechecking expressions are in Fig. 10. The rule for method invocations,
T-INVK, is the same as that in FJ. However, the auxiliary judgement it uses, mtype, is different.

The CZ judgement mtype (Fig. 13) has two additional rules as compared to FJ: one for external method
definitions, and one for methods received from a required class. The judgement first looks for the method
m in the class itself, if it is not there, then it looks for an external method family with that name. If neither
of those two cases applies, superclasses are recursively searched; otherwise required classes are searched.

Γ ` e : C

Γ ` x : Γ(x)
(T-VAR)

Γ ` e0 : C0 fields(C0) = C f
Γ ` e0. fi : Ci

(T-FIELD)

Γ ` e0 : C0 mtype(m, C0) = D → C Γ ` e : C C <: D
Γ ` e0.m(e) : C

(T-INVK)

Γ ` e0 : C0 class C0 extends D0 requires B, E
mtype(m, B) = D → C Γ ` e : C C <: D

Γ ` e0.super.m(e) : C
(T-SUPER-INVK)

fields(C) = D f Γ ` e : C C <: D class C requires •
Γ ` new C(e) : C

(T-NEW)

Figure 10: Expression typing

15

M ok in C

Ê x : C, this : C ` e0 : E0
Ë E0 <: C0

Ì class C extends D requires E
Í override(m, D , C → C0) Î override(m, E , C → C0)

C0 m(C x){ return e0; } ok in C
(T-METHOD)

N ok in C.m

Ê x : C, this : C ` e0 : E0
Ë E0 <: C0

Ì class C extends D requires E
Í @C′. internalDef(m, C) = C′ Î C � B Ï override(m, D, C → C0)

C0 C.m(C x){ return e0; } ok in B.m
(T-EXT-METHOD)

Figure 11: Method typing

Declaration Typing L ok

Ê fields(Di) = Di gi (i ∈ 1..n) Ë K = C(Di gi, C f){ this.gi = gi
i∈1..n ; this. f = f}

Ì M ok in C Í class Di requires E′, implies ∃k. Dk � E′ or ∃k. Ek � E′ (i ∈ 1..n)

Î class Ei requires E′′, implies ∃k. Dk � E′′ or ∃k. Ek � E′′ (i ∈ 1..n)

Ï ∀i, j ∈ 1..n. i 6= j, implies @D′. Di � D′ and Dj � D′ (D′ 6= Object)

Ð ∀m. ∃i, j. i 6= j. internalDef(m, Di) 6= internalDef(m, Dj), implies m ∈ M

Ñ ∀m. ∃i, j. i 6= j. internalDef(m, Di) and external(m, Di) = A and Dj � A, implies m ∈ M

class C extends D1, . . . , Dn requires E1, . . . , En { C f ; K M } ok
(T-CLASS)

C 6= Object N ok in C.m
method C.m { N } ok

(T-TOP-METHOD)

Figure 12: Class and external method typing

In the last rule, @mtype(m, Dk) is shorthand for @B→ B. mtype(m, Dk) = B→ B.
Note that in our formalism, as in FJ, all definitions (including external methods) have global scope. In

a real implementation, there would be specific import statements for external methods that would control
their visibility.

The rule T-SUPER-INVK checks the virtual super call described in Sect. 6. Essentially, for a call of the form
this.B.super.m(e), where this : C0, instead of looking up mtype(m, C0), we look up mtype(m, B), where B is
the a required class of C0.

The rule T-NEW has one additional premise as compared to FJ: the requires clause must be empty.
This ensures that the class is concrete and can be instantiated, which in turn ensures the soundness of the
subtyping relation induced by requires.

Rules for typechecking methods are displayed in Fig. 11. The rule T-METHOD checks internal methods,
and uses the override auxiliary judgement, which is the same as that of FJ. In this rule, we check that method
m is a valid override of the same method in all superclasses and required classes.

Typechecking external methods is a bit more involved than checking internal ones. The first three
premises of the rule T-EXT-METHOD are the same of those in T-METHOD. Premise (4) ensures that there
is no internal definition of m in C, enforcing condition E3 of Sect. 6.2. Premise (5), C � B, ensures that
the class C on which the external method is defined is a subclass of the method family’s owner class B, as
required by condition E2. Finally, premise (6) ensures that the method being overridden (which will always

16

fields(C) = C f

fields(Object) = •

class C extends D requires E { C f ; K M }

fields(Di) = Bi gi (i ∈ 1..n)

fields(C) = Bi gi , C f

mtype(m, C) = D → D

class C · · · { C f ; K M }
B m(B x) { return e} ∈ M

mtype(m, C) = B→ B

class C · · · { C f ; K M }
m /∈ M CT(m) = method D.m { N }

B C.m(B x) { return e} ∈ N
mtype(m, C) = B→ B

class C extends D requires E { C f ; K M }
m /∈ M

CT(m) = method F.m { N } implies C.m /∈ N

∃k. mtype(m, Dk) = B→ B

mtype(m, C) = B→ B

class C extends D requires E { C f ; K M }
m /∈ M

CT(m) = method F.m { N } implies C.m /∈ N
∀k.@mtype(m, Dk)

∃k. mtype(m, Ek) = B→ B
mtype(m, C) = B→ B

internalDef(m, C) = D

class C · · · { C f ; K M }
B m(B x) { return e} ∈ M

internalDef(m, C) = C

class C extends D · · · { C f ; K M }
m /∈ M ∃k. internalDef(m, Dk) = D′k

internalDef(m, C) = D′k

class C extends D requires E { C f ; K M } m /∈ M
∀k.@D′. internalDef(m, Dk) = D′ ∃k. internalDef(m, Ek) = E′k

internalDef(m, C) = E′k

external(m, C) = A

CT(m) = method F.m { N }
C.m ∈ N

external(m, C) = F

class C extends D requires E
CT(m) = method F.m { N } C.m /∈ N

∃k. external(m, Dk) = F′

external(m, C) = F′

class C extends D requires E CT(m) = method F.m { N } C.m /∈ N
∀k.@A. external(m, Dk) = A ∃k. external(m, Ek) = F′

external(m, C) = F′

override(m, D, C → C0)

mtype(m, D) = D → D0 implies C = D and C0 = D0

override(m, D, C → C0)

Figure 13: CZ typechecking and evaluation auxiliary judgements

be an external method, due to the @internalDef premise) has the same type as the current method.
The T-CLASS rule (Fig. 12) checks class definitions. Premise (4) ensures that requires is propagated

down each level of the inheritance hierarchy; the extending class must either extend or require its parents’

17

Auxilliary Judgements

mbody(m, C) = x.e

class C · · · { C f ; K M }
B m(B x) { return e} ∈ M

mbody(m, C) = x.e

class C · · · { C f ; K M }
m /∈ M CT(m) = method D.m { N }

B C.m(B x) { return e} ∈ N
mbody(m, C) = x.e

class C extends D requires E { C f ; K M } m /∈ M

CT(m) = method F.m { N } implies C.m /∈ N ∃ unique k . mbody(m, Dk) = x.e

mbody(m, C) = x.e

super(C, D) = E

class C extends E E � D
super(C, D) = E

Evaluation e 7−→ e′

fields(C) = τ f
(new C(e)). fi 7−→ ei

mbody(m, C) = x.e0

(new C(e)).m(d) 7−→ [d/x, (new C(e))/this] e0
(E-INVK)

super(C, D) = E mbody(m, E) = x.e0

(new C(e)).D.super.m(d) 7−→ [d/x, (new C(e))/this] e0
(E-SUPER-INVK)

e0 7−→ e′0
e0. f 7−→ e′0. f

e0 7−→ e′0
e0.m(e) 7−→ e′0.m(e)

e0 7−→ e′0
e0.C.super.m(e) 7−→ e′0.C.super.m(e)

ei 7−→ e′i
e0.m(. . . , ei, . . .) 7−→

e0.m(. . . , e′i , . . .)

ei 7−→ e′i
e0.C.super.m(. . . , ei, . . .) 7−→

e0.C.super.m(. . . , e′i , . . .)

ei 7−→ e′i
new C(. . . , ei, . . .) 7−→

new C(. . . , e′i , . . .)

Figure 14: Evaluation rules

required classes. Premise (5) ensures that requires is copied at each level of the hierarchy. Premise (6)
specifies that a subclassing diamond cannot occur, except for the case of Object. Finally, premises (7) and
(8) enforce condition C3, ensuring that subtyping diamonds do not cause problems. The external(m, Di)
judgement returns the first superclass of Di for which an external method m is defined. Note that at most
one of C’s superclasses can have an external method m, as otherwise a diamond would occur.

The rule T-TOP-METHOD requires that the method owner not be Object, as required by condition E2.

Dynamic Semantics. The evaluation rules are presented in Fig. 14. Most of the rules are similar to FJ, with
the notable exception of E-SUPER-INVK. This rule uses the auxiliary judgement super(C, D), which finds the
immediate superclass of the class C along the path D. Then, mbody is called on the result of the super call.

The mbody judgement (Fig. 13) mirrors mtype with two differences: there is no requires rule, and there
must be a unique superclass that has a particular method body. The type safety theorems show that there
is a correspondence between these two judgements, based on the class and method typechecking rules.

The remaining new rules are straightforward congruence rules.

18

8.1 Modularity

Here, we describe the conditions under which a class-based system with external methods is modular when
there is no explicit module system. We argue informally that typechecking in CZ is modular based on the
structure of the typechecking rules.

Conditions for modular typechecking.
1. Checking a class definition C with methods M should only require examining: (a) signatures of meth-

ods transitively overridden in M, (b) signatures of methods transitively overridden by C’s inherited
methods, (c) class declarations of C’s supertypes, and (d) signatures of methods called by M.

2. Checking the definition of a particular external method C.m should only require examining: (a) the
declarations of C and its supertypes, (b) the signature of the external method that C.m overrides,
and (c) the signatures of methods that C.m calls. In particular, the typechecker may not search for
subclasses of C.

We show that typechecking in CZ obeys these rules. We must consider all direct or indirect uses of mtype,
because that judgement examines both internal and external methods. This includes uses of override, which
calls mtype. We must also examine uses of the auxiliary judgement external. Uses of internalDef(m, C)
are permitted, as this judgement finds the signature of m in C or its supertypes. This is permitted under
modularity condition 2(a).

Note that since our system does not have explicit modules, external and internal method names must
contain the “module” they are defined in. This convention can be used to simulate module import state-
ments.

In the rule for checking a class definition, T-CLASS, all premises but (3) and (8) are modular by inspec-
tion. Premise (3) uses the T-METHOD rule, which we will consider shortly, and premise (8) checks external
methods overridden by some Di. We observe that if there is a method m is defined or inherited by Di, we
are permitted to examine signatures of methods (internal or external) that it overrides. The external judge-
ment searches for such an external method. As mentioned, in a complete implementation of CZ, external
methods would be explicitly imported; this judgement would only examine those methods imported by
supertypes.

The T-METHOD rule has three premises for which we need to demonstrate modularity: typechecking
e0 (premise 1) and the two override checks (premises 4 and 5). However, note that when typechecking e0,
uses of any external methods may indeed use T-INVK or T-SUPER-INVK (both of which use mtype), but this
is effectively a case of client-side typechecking, rather than implementation-side typechecking. In other
words, this is an instance of case 1(c).

The two override checks are not problematic, either. In each case, mtype searches for an internal or
external method m in the superclasses and required classes of the class C. It does not examine all external
methods or examine subclasses of C. Note that since an internal method m must include a module name,
if it overrides an external method m it is implicitly “importing” the external method’s module. Therefore,
typechecking class definitions in CZ is modular.

Checking external methods is also modular. In the rule T-EXT-METHOD, premise (1) checks the method
body as with T-METHOD; the same reasoning as above applies here. We should therefore consider premise
(6). We observe that override(m, D, · · ·) will consider internal or external methods in superclasses of C.
Since we have @internalDef, internal methods are ruled out. Accordingly, override must be considering the
overridden method of the same method we are already checking, due to the syntactic restriction that all
cases of an external method are defined together (condition E1). Therefore, all the checks are modular; no
other external methods are being examined.

8.2 Type Safety

We prove type safety using the standard progress and preservation theorems, with a slightly stronger
progress theorem than that of FJ, due to the omission of casts. Note that in our system, type safety im-

19

plies that method calls are always unambiguous, as the mbody judgement requires that there be a unique
applicable method. We refer the reader to Appendix A for the proof of type safety; we give a brief outline
here.

Theorem 8.1 (Preservation). If Γ ` e : C and e 7−→ e′, then Γ ` e′ : C′ for some C′ <: C.

The proof of preservation is relatively straightforward and is similar to the proof of FJ. We make use of an
auxiliary lemma (not shown) that proves that mtype returns a unique value.

Theorem 8.2 (Progress). If · ` e : C then either e is a value or there is an e′ with e 7−→ e′.

The proof of progress is slightly more complex. The proof requires the following lemma:

Lemma 8.1. If mtype(m, C) = D → D and Γ ` new C(e) : C then mbody(m, C) = x.e0 for some x and e0.

However, unlike in FJ, we cannot prove this lemma by induction on the derivation of mtype, since for the
inductive step, we do not have a derivation Γ ` new Dk(e) : Dk. Instead, we make use of two auxiliary
lemmas:

Lemma 8.2. If D :: mtype(m, D) = B → B and C <: D and Γ ` new C(e) : C, then there exist D′ and D′

such that C � D′ and D′ :: mtype(m, D′) = B→ B does not contain the rule MTYPE4.

Lemma 8.3. If D :: mtype(m, C) and D does not contain the rule MTYPE4, then mbody(m, C) = x.e, for some
x and e.

Lemma 8.2 is needed because it is the rule MTYPE4 that could result in mbody not being defined—it is the
only rule that has no mbody counterpart. We make use of this lemma in the inductive step of the Lemma 8.3,
as it is straightforward to show that mbody is defined, but additional reasoning is needed to show that its
value is unique.

With these lemmas, the rest of the proof of progress is straightforward.

9 Related Work

10 Related work

Here we describe related work that was not previously discussed in Sect. 3.
As mentioned in Sect. 3, traits [16, 2] cause problems for information hiding—they essentially make it

impossible to have private or protected “state” that is not accessible by objects that reuse the trait, as such
“state” can only be implemented using accessors. Stateful traits [8] also do not help in this regard, as they
have been designed for maximal code reuse, rather than information hiding. In this design, state is hidden
by default, but clients can “unhide” it, and may have to resort to merging variables that are inherited from
multiple traits. While this provides a great deal of flexibility for trait clients, this comes at the cost of
information hiding. Also, as previously mentioned, this design does not address the problem of a correct
semantics for object initialization in the presence of diamonds.

As mentioned in Sect. 3, JPred [20] and Fortress [3] perform modular multimethod typechecking by
requiring that programmers provide disambiguating methods, some of which may never be called. Neither
language solves the problem of multiple inheritance with state.

On the other hand, we observe that the JPred and Fortress dispatch semantics may be more expres-
sive than that of CZ. In CZ, in the class hierarchy Fig. 2, the abstract class InputStream may not override
a Stream method externally (though it may override it internally), because it is not a subclass of Stream.
In contrast, if this hierarchy were expressed in e.g. JPred (using interfaces in place of abstract classes), a
predicate method defined on Stream could be overridden by either InputStream or OutputStream. Note,
however, that programmers can achieve a similar effect in CZ by having concrete classes call helper meth-
ods (which can be defined externally) in the abstract classes.

20

Cecil [13, 14] also provides both multiple inheritance and multimethod dispatch, but it does not include
constructors (and therefore provides ordinary dispatch semantics for methods acting as constructors), and
it performs whole-program typechecking of multimethods.

Like JPred, the language Half & Half [6] provides multimethod dispatch on Java interfaces. In this
language, if there exist external method implementations on two incomparable interfaces A and B, the
visibility of one of the two interfaces must be module-private. Like System M, this effectively disallows
multiple (interface) inheritance across module boundaries. Half & Half does not consider the problem of
multiple inheritance with state.

It is possible to modify the semantics of multimethod dispatch so that by definition ambiguities do not
arise in the presence of multiple inheritance. A language may linearize the class hierarchy [1] or choose
the appropriate method based on their textual ordering [10]. However, such semantics can be fragile and
confusing for programmers.

11 Conclusions

We have presented a language that solves two major problems caused by inheritance diamonds: object
initialization and external method dispatch. We have also shown how programs written with traditional
multiple inheritance can be converted to programs in our language. We note that though diamonds can
still cause encapsulation problems (depending on the definition of encapsulation), this problem can be
ameliorated by preferring requires over extends.

Acknowledgements

We would like to thank Neelakatan Krishnaswami, William Lovas, Steven Matuszek, Gilad Bracha, and the
anonymous reviewers of FOOL and FTfJP for feedback on an earlier version of this paper.

References

[1] R. Agrawal, L. DeMichiel, and B. Lindsay. Static type checking of multi-methods. In OOPSLA, pages
113–128, 1991.

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu, G. Steele, Jr., and S. Tobin-Hochstadt.
The Fortress Language Specification, Version 1.0. Available at http://research.sun.com/projects/
plrg/Publications/fortress.1.0.pdf, 2008.

[3] E. Allen, J. J. Hallett, V. Luchangco, S. Ryu, and G. L. Steele Jr. Modular multiple dispatch with multiple
inheritance. In SAC ’07, pages 1117–1121. ACM, 2007.

[4] D. Ancona, G. Lagorio, and E. Zucca. Jam - designing a Java extension with mixins. ACM Trans.
Program. Lang. Syst., 25(5):641–712, 2003.

[5] L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold, and U. Hölzle. Mixins in Strongtalk. In
ECOOP 2002 Workshop on Inheritance, 2002.

[6] G. Baumgartner, M. Jansche, and K. Läufer. Half & Half: Multiple dispatch and retroactive abstraction
for Java. Technical Report OSU-CISRC-5/01-TR08, Dept. of Computer and Information Science, The
Ohio State University, March 2002.

[7] A. Bergel. Personal communication, October 2008.

[8] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits and their formalization. Computer
Languages, Systems & Structures, 34(2-3):83–108, 2008.

21

http://research.sun.com/projects/plrg/Publications/fortress.1.0.pdf
http://research.sun.com/projects/plrg/Publications/fortress.1.0.pdf

[9] J. Bloch. Effective Java: Programming Language Guide. Addison-Wesley, 2001.

[10] J. Boyland and G. Castagna. Parasitic methods: An implementation of multi-methods for Java. In
OOPSLA, pages 66–76, 1997.

[11] G. Bracha and W. Cook. Mixin-based inheritance. In ECOOP ’90, 1990.

[12] B. Carré and J. Geib. The point of view notion for multiple inheritance. In OOPSLA/ECOOP ’90, pages
312–321. ACM, 1990.

[13] C. Chambers. Object-oriented multi-methods in Cecil. In ECOOP ’92, 1992.

[14] C. Chambers and the Cecil Group. The Cecil language: specification and rationale, Version 3.2. Avail-
able at http://www.cs.washington.edu/research/projects/cecil/, 2004.

[15] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: modular open classes and sym-
metric multiple dispatch for Java. In OOPSLA ’00, pages 130–145, 2000.

[16] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A.P. Black. Traits: A mechanism for fine-grained
reuse. ACM Trans. Program. Lang. Syst., 28(2):331–388, 2006.

[17] Torbjörn Ekman and Görel Hedin. JastAdd. http://www.jastadd.org, 2008.

[18] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1990.

[19] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In POPL ’98, 1998.

[20] C. Frost and T. Millstein. Modularly typesafe interface dispatch in JPred. In FOOL/WOOD’06, January
2006.

[21] N. C. Hutchinson. EMERALD: An object-based language for distributed programming. PhD thesis, Univer-
sity of Washington, Seattle, WA, USA, 1987.

[22] A. Igarashi, B. Pierce, and P. Wadler. Featherwieght Java: a Minimal Core Calculus for Java and GJ. In
OOPSLA ’99, November 1999.

[23] D. Malayeri and J. Aldrich. Integrating nominal and structural subtyping. In ECOOP 2008, July 2008.

[24] B. Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall, 1997.

[25] S. Meyers. Effective C++: 50 specific ways to improve your programs and designs. Addison Wesley Longman
Publishing Co., Inc. Redwood City, CA, USA, 1992.

[26] T. Millstein and C. Chambers. Modular statically typed multimethods. Inf. Comput., 175(1):76–118,
2002.

[27] N. Nystrom, S. Chong, and A. Myers. Scalable extensibility via nested inheritance. In OOPSLA ’04,
pages 99–115, 2004.

[28] M. Odersky. The Scala language specification. Available at
http://www.scala-lang.org/docu/files/ScalaReference.pdf, 2007.

[29] M. Odersky and M. Zenger. Scalable Component Abstractions. In OOPSLA ’05, 2005.

[30] M. Sakkinen. Disciplined inheritance. In ECOOP, pages 39–56, 1989.

[31] N. Schärli, S. Ducasse, O. Nierstrasz, and A.P. Black. Traits: Composable Units of Behaviour. In
ECOOP ’03. Springer, 2003.

22

http://www.cs.washington.edu/research/projects/cecil/
http://www.jastadd.org
http://www.scala-lang.org/docu/files/ScalaReference.pdf

[32] G. Singh. Single versus multiple inheritance in object oriented programming. SIGPLAN OOPS Mess.,
5(1):34–43, 1994.

[33] A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In OOPSLA,
pages 38–45, 1986.

[34] C. Szyperski, S. Omohundro, and S. Murer. Engineering a programming language: The type and class
system of Sather. In Jürg Gutknecht, editor, Programming Languages and System Architectures, volume
782 of Lecture Notes in Computer Science. Springer, 1993.

[35] G. Washburn. Personal communication, December 2008.

23

A Type Safety Proof

A.1 Preservation Lemmas and Proof

Lemma A.1 (Reflexivity of subtyping). The following rule is admissible:

C <: C

Proof. Immediate.

Lemma A.2. If C <: D and class D · · · { C f ; K M } and m ∈ M then internalDef(m, C).

Proof. Straightforward induction on the derivation of C <: D.

Lemma A.3. If mtype(m, D) = C → C0, then for C � D, mtype(m, C) = C → C0.

Proof. By induction on C � D.

case SUBC-REFL. Immediate.

case SUBC-TRANS. We have C � D and D � E. By the induction hypothesis, mtype(m, D) = C → C0.
Applying the induction hypothesis again gives the required result.

case SUBC-CLASS. There are three cases: m is defined in C, m is defined externally on C, or m is not defined
on C.

In the first case, by inversion on override and T-METHOD, m must be a valid override and must have
type C → C0. By rule MTYPE-1, mtype(m, C) = C → C0.

In the second case, by inversion on override and T-EXT-METHOD, m must be a valid override and there-
fore has type C → C0. By rule MTYPE-2, mtype(m, C) = C → C0.

In the third case, by rule MTYPE-3, mtype(m, C) = mtype(m, D). By Lemma A.6, if there is more than
one Dk such that mtype(m, Dk) is defined, they all have the same result, namely C → C0.

Lemma A.4. If C <: E and mtype(m, E) = B→ B, then mtype(m, C) = B→ B.

Proof. By case analysis of C <: D.

case SUB-SUBCLASS. Follows from Lemma A.3.

case SUB-TRANS. C <: D and D <: E.
By the induction hypothesis on D <: E, mtype(m, D) = B → B. The result then follows from the
induction hypothesis on C <: D.

case SUB-REQUIRES. There are three cases:

C defines m internally. Similar to the same case in Lemma A.3

C defines m externally. By Lemma A.2, m must be defined externally on E. We have that
CT(m) = method B.m{ N }, and by T-EXT-METHOD all external cases of m for class D must be a sub-
class of B, i.e., D � B. Therefore, E � B and the result follows from Lemma A.3.

C does not define m. By rule MTYPE-4, mtype(m, C) = mtype(m, E).

24

Lemma A.5 (Methods have a unique point of introduction). If mtype(m, D1) = B→ B and mtype(m, D2) =
B′ → B′ then there exists a D′ where D1 <: D′ and D2 <: D′ and mtype(m, D′) = B′′ → B′′.

Proof. Straightforward simultaneous induction on the mtype derivations, making use of the convention that
distinct method introductions result in distinct method names.

Lemma A.6 (mtype has a unique value).

1. If mtype(m, C) = B→ B and mtype(m, C) = B′ → B, then B = B′ and B = B′.

2. If C <: D1 and C <: D2 and m /∈ C
mtype(m, D1) = B→ B and mtype(m, D2) = B′ → B′

then B = B′ and B = B′.

Proof. By mutual lexicographic induction on the mtype derivations and the lemma clause number (clause
#2 may refer to clause #1 at the same mtype derivation, but clause #1 may only refer to clause #2 at a smaller
mtype derivation.)

1. We proceed by induction on the first mtype derivation and inversion on the second derivation. Based
on the structure of the judgement, the second derivation must end in the same rule as the first; each
rule excludes all other rules. Therefore, there are 4 cases to consider:

case MTYPE1, MTYPE1. Immediate.

case MTYPE2, MTYPE2. Immediate.

case MTYPE3, MTYPE3. By the induction hypothesis on clause #2, the result follows.

case MTYPE4, MTYPE4. Similar to above.

2. We proceed by simultaneous induction on the two mtype derivations.

MTYPE1, MTYPE1. By Lemma A.5, we have that mtype(m, D′) = B′′ → B′′, for some D′ where D1 <:
D′ and D2 <: D′. In such a case, by Lemma A.4, each m must be a valid override of D′.m so
therefore B = B′′ and B = B′′, and B′ = B′′ and B′ = B′′. From this, it follows that B = B′ and
B = B′, which is the required result.

MTYPE1, MTYPE2. There are 3 possibilities for the relationship between D1 and D2: D1 <: D2, D2 <:
D1, and D1 and D2 are unrelated.
D1 <: D2. In this case, D1.m overrides D2.m by Lemma A.4 and therefore B = B′ and B = B′.
D2 <: D1. By T-EXT-METHOD, we have @ internalDef(m, D2). By the definition of internalDef, we
have @ internalDef(m, D2). By Lemma A.2, this implies that D2 6<: D1.
D1 and D2 are unrelated. By Lemma A.5, we have that mtype(m, D′) = B′′ → B′′, for some
D′ where D1 <: D′ and D2 <: D′. The rest of the reasoning is similar to that for case
MTYPE1, MTYPE1 above.

MTYPE2, MTYPE2. By inversion on T-EXT-METHOD, D1 � D and D2 � D for some D where
CT(m) = method D.m{ N } and B D.m(B) ∈ N. By Lemma A.3, D1.m and D2.m must be valid
overrides of D.m so therefore mtype(D1) = B → B and mtype(D2) = B → B. By the induction
hypothesis for clause 1, these values are unique.

—, MTYPE3. By the transitivity of subtyping, we have C <: Dk1 and C <: Dk2 and mtype(m, Dk1) =
B → B and mtype(m, Dk2) = B′ → B′. By the induction hypothesis for clause #2, the result
follows.

—, MTYPE4. Similar to above.

25

Lemma A.7 (Substitution). If Γ, x : C ` e : D and Γ ` d : C′ where C′ <: C then Γ ` [d/x] e : D′ for some
D′ <: D.

Proof. Similar to proof of FJ, using Lemma A.3 for the case of method invocation.

Lemma A.8 (Weakening). If Γ, x : C, Γ′ ` e : B then for C′ <: C and B′ <: B, Γ, x : C′, Γ′ ` e : B′.

Proof. Straightforward induction on typing derivations.

Lemma A.9. If mbody(m, C) = x.e0 then there exists a unique B→ B such that mtype(m, C) = B→ B.

Proof. By induction on the derivation of mbody.

case MBODY-1. By definition, mtype = B→ B. By Lemma A.6 (1), this value is unique.

case MBODY-2. Similar to above.

case MBODY-3. We have mbody(m, Dk) = x.e0. By the induction hypothesis, mtype(m, Dk) = B → B. By
rule MTYPE-3, mtype(m, C) = B→ B. By Lemma A.6, this value is unique.

Lemma A.10. If mbody(m, C0) = x.e and mtype(m, C0) = C → C then there exists some D <: C such that
x : C, this : C0 ` e : D.

Proof. By induction on the definition of mbody(m, C0).

case MBODY-1. By inversion on T-METHOD, we have x : C, this : C0 ` e : D, where D <: C.

case MBODY-2. By inversion on T-EXT-METHOD, we have x : C, this : C0 ` e : D, where D <: C.

case MBODY-3. We have ∃ unique Dk. mbody(m, Dk) = x.e. By Lemma A.9, there exists some unique B→ B
such that mtype(m, Dk) = B → B. But, by the definition of mtype, mtype(m, C) = mtype(m, Dk). Since
the result of mtype is unique (Lemma A.6), B = C and C = B. Applying the induction hypothesis to
mbody(m, Dk) = x.e and mtype(m, Dk) = C → C yields the required result.

Theorem A.1 (Preservation). If Γ ` e : C and e 7−→ e′, then Γ ` e′ : C′ for some C′ <: C.

Proof. By induction on derivation of e 7−→ e′.

case E-FIELD.
e = (new C0(e)). fi
e′ = ei
fields(C0) = D f
Di = C

By the rule T-FIELD, Γ ` new C0(e) : C0 C0 <: C0.
By T-NEW, Γ ` e : C C <: D C0 = C0.
By transitivity of subtyping, ei : Di, which is the required result.

case E-INVK.
e = (new C0(e)).m(d)
e′ = [d/x, new C0(e)/this] e0
mbody(m, C0) = x.e0

By T-INVK and T-NEW:
Γ ` new C0(e) : C0

26

Γ ` d : C
C <: D
mtype(m, C0) = D → C

By Lemma A.10, there exists some D <: C such that x : D, this : C0 ` e0 : D. By Lemma A.7,
· ` [d/x, new C0(e)/this] e0 : D′, for some D′ <: D. By the transitivity of subtyping (Lemma A.1),
D′ <: C, which gives the required result.

case E-SUPER-INVK.
e = (new C0(e)).B.super.m(d)

By T-SUPER-INVK and T-NEW:
class C0 requires B, E
class C0 requires •

This is a contradiction, therefore this case is vacuous. Dynamically-dispatched super calls can only be
applied to classes with a non-empty requires clause.

The cases for the congruence rules are straightforward.

A.2 Progress Lemmas and Proof

Lemma A.11. If internalDef(m, C) = D then mtype(m, C) = B→ B, for some B→ B.

Proof. Straightforward induction on the definition of internalDef(m, C).

Lemma A.12. If external(m, C) = A then C � A.

Proof. Straightforward induction on the derivation of external(m, C).

Lemma A.13. If A � B and B requires C, then ∃C′ � C. A requires C′ or A � C′

Proof. Straightforward induction on A � B.

Lemma A.14. If A <: B and A � B then ∃B′ � B. A requires B′.

Proof. By induction on A <: B.

case SUB-SUBCLASS. Vacuous.

case SUB-TRANS. We have A � C and C � B.
Since A � B, there are three possibilities:

subcase A � C, C � B. By the induction hypothesis on the first derivation, we have ∃C′ �
C. A requires C′. By the induction hypothesis on the second derivation, ∃B′ � B. C requires B′.
We have C′ � C and C requires B′. Taking these facts together, by Lemma A.13, ∃B′′ �
B′. C′requiresB′′ or C′ � B′′. In the first case, again by Lemma A.13, ∃B′′′ � B′. A requires B′′′.
But, since B′′′ � B, this proves the required result.

subcase A � C, C � B. By the induction hypothesis, ∃B′ � B. C requires B′. Since A � C, by
Lemma A.13, ∃B′′ � B′. A requires B′′ or A � B′′.
In the first case, A requires B′′, the result follows from the fact that B′′ � B. In the second case,
A � B′′, we have A � B, which is a contradiction.

subcase A � C, C � B, by the induction hypothesis, ∃C′ � C. A requires C′. The result follows from
the fact that C′ � B.

27

case SUB-REQUIRES. Immediate.

Lemma A.15. If D :: mtype(m, D) = B → B and C <: D and Γ ` new C(e) : C, then there exist D′ and D′

such that C � D′ and D′ :: mtype(m, D′) = B→ B does not contain the rule MTYPE4.

Proof. By induction on the mtype derivation.

case MTYPE1, MTYPE2. We observe that D does not contain the rule MTYPE4. There are two possibilities:
either C � D, in which case let D′ = D, or C � D. In the latter case, by Lemma A.14, ∃E �
D. C requires E. But, this is impossible; by inversion on T-NEW, C requires •.

case MTYPE3. We have D extends Dk where Dk :: mtype(m, Dk) = B → B. The result follows from the
induction hypothesis.

case MTYPE4. Similar to above.

Lemma A.16. If C � D and D :: mtype(m, D) = B → B does not contain the rule MTYPE4, then ∃D′ ::
mtype(m, C) = B→ B that does not contain the rule MTYPE4.

Proof. Straightforward induction on C � D, using Lemma A.15 in the inductive step.

Lemma A.17. If C � D1 and C � D2 and Γ ` new C(e) : C and m /∈ C and mbody(m, D1) = x1.e1 and
mbody(m, D2) = x2.e2 then either D1 � D2 or D2 � D1.

Proof. By simultaneous induction on the mbody derivations.

case MBODY-1, MBODY-1. We have m ∈ D1 and m ∈ D2. This implies that internalDef(m, D1) = D1 and
internalDef(m, D2) = D2. By T-CLASS, this implies that m ∈ C, which is a contradiction. Therefore,
D1 = D2.

case MBODY-1, MBODY-2. m ∈ D1 CT(m) = method F.m{ N}, D2.m ∈ N.
In order for the two m’s to be in the same method family, ∃B. D1 <: B and D2 <: B, where m is defined
on B. m cannot be an internal method, since by inversion on T-EXT-METHOD, @internalDef(m, D2).
Therefore, external(m, B) = F.

Since inheritance diamonds are not permitted, either D1 � B or D2 � B. Suppose D1 � B. By
Lemma A.14, ∃B1. D1 requires B1 and B1 � B. By T-CLASS, either C extends B′ or C requires B′, for
some B′ with B′ � B1. We observe that the second case is impossible, by inversion on T-NEW.

In the first case, we have external(m, B′) = F and B′ � F (Lemma A.12). Since D1 requires B1 and
B1 � B, external(m, D1) = F. By assumption, we have internalDef(m, D1) = D1. Taking these together,
by premise (8) of T-CLASS, m ∈ C, which is a contradiction.

The case of D2 � B follows the same reasoning.

case MBODY1, MBODY3, MBODY2, MBODY3. By MBODY-3, we have ∃k. mbody(m, Dk) = xk.ek, where
D2 extends Dk. Since C � Dk, by the induction hypothesis, either D1 � Dk or Dk � D1. The first
case is impossible: we also have D2 � Dk, which results in an inheritance diamond with Dk at the
top. But Dk 6= Object, since ∀m. mbody(m, Object) is undefined, so this case is impossible. In the
second case, D2 � D1, which is the required result.

case MBODY2, MBODY2. We have m /∈ D1, m /∈ D2, and CT(m) = method F.m{ N}, where D1.m ∈ N and
D2.m ∈ N. By T-EXT-METHOD, D1 � F and D2 � F. There are three possibilities: D1 and D2 are
unrelated (by subclassing), D1 � D2, or D2 � D1. The first case is impossible, since F 6= Object and
this would mean that there is a diamond with F at the root. This proves the required result.

28

case MBODY3, MBODY3. By the premises of MBODY3, we have ∃k1. mbody(m, Dk1) = xk1 .ek1 , where
D1 extends Dk1 and ∃k2. mbody(m, Dk2) = xk2 .ek2 , where D2 extends Dk2 . By the induction hypoth-
esis, either D1 � Dk1 or D2 � Dk2 . In the first case, we have D1 � Dk1 and D2 � Dk2 , which means
there is a diamond with Dk2 at the top. But Dk 6= Object, since ∀m. mbody(m, Object) is undefined, so
this case is impossible. The reasoning for the second case is similar.

Lemma A.18. If D :: mtype(m, C) and D does not contain the rule MTYPE4, then mbody(m, C) = x.e, for
some x and e.

Proof. By induction on D.

case MTYPE1, MTYPE2. Immediate.

case MTYPE3. We have ∃Dk. mtype(m, Dk) = B → B, where C extends Dk. By the induction hypothesis,
mbody(m, Dk) is defined. It now suffices to show that @Dk. mbody(m, Dk) = x. e; the rule MBODY3 then
applies. Suppose ∃D′. C extends D′ and mbody(m, D′) = x′. e′. By Lemma A.17, either Dk � D′ or
D′ � Dk. If D′ 6= Dk, then in the first case, premise (6) of T-CLASS (no diamond rule) is violated.
Therefore, D′ = Dk.

case MTYPE4. Vacuous.

Lemma A.19. If mtype(m, C) = D → D and Γ ` new C(e) : C then mbody(m, C) = x.e0 for some x and e0.

Proof. By induction on the derivation of mtype.

case MTYPE1. The rule MBODY-1 applies.

case MTYPE2. The rule MBODY-2 applies.

case MTYPE3. We have mtype(m, Dk) = D → D where C extends Dk. By Lemma A.15, ∃D′. C � D′ and
D′ :: mtype(m, D′) = B → B. By Lemma A.16, ∃Dc :: mtype(m, C) = B → B that does not contain the
rule MTYPE4. Finally, Lemma A.18 gives the required result.

case MTYPE4. This rule cannot apply, since by inversion of T-METHOD, C requires •.

Theorem A.2 (Progress). If · ` e : C then either e is a value or there is an e′ with e 7−→ e′.

Proof. By induction on e : C.

case T-VAR. Vacuous.

case T-FIELD. e = e0. fi
We have fields(C0) = C f . By the induction hypothesis, either e0 is a value or it evaluates to some e′0.
In the first case, the rule T-FIELD1 applies. In the second case, the rule E-FIELD2 applies.

case T-INVK. e = e0.m(e)
By the induction hypothesis, either e0 is a value or it evaluates to some e′0. If it evaluates, then the rule
E-INVK-RECV applies. If it is a value, then either the arguments e evaluate or they are values. In the
first case, E-INVK-ARG applies. Otherwise, it suffices to show mbody(m, C0) is defined; the rule E-INVK

then applies. We have mtype(m, C0) = D → C and e0 : C0. By Lemma A.19, mbody(m, C0) is defined.

29

case T-SUPER-INVK. e = e0.D.super.m(e)
By the induction hypothesis, either e0 is a value or it evaluates to some e′0. If it evaluates, then the rule
E-INVK-SUPER-RECV applies. If it is a value, then either the arguments e evaluate or they are values. In
the first case, E-SUPER-INVK-ARG applies. Otherwise, we have e0 = new C(e), and it suffices to show
mbody(m, E) is defined, where E = super(C, D); the rule E-INVK then applies.

We have mtype(m, D) = D → C and E � D (by the definition of super) and e0 : C. By Lemma A.3,
mtype(m, E) = D → C. The result then follows from Lemma A.19.

case T-NEW. e = new C(e)
By the induction hypothesis, either e evaluates or it is a value. If it evaluates, the rule E-NEW-ARG

applies. Otherwise, the whole expression is a value.

B Subtyping vs. Subclassing

In CZ, the use of requires provides subtyping without inheritance, but it also places constraints on concrete
subclasses—they must inherit from their parent’s required classes. This raises the question of whether
simply providing subtyping without inheritance would be sufficient to encode the desired relationships.

When separating subtyping from inheritance, we may use nominal subtyping or structural subtyping.
However, in both cases, there is a problem with how to handle private members. If private members are
included in a subtyping relationship, this can violate encapsulation, if they are not, it can restrict expres-
siveness.

Concretely, consider the following program:

class A {
private int i;
boolean equals(A other) {

... // can access other.i?
}

}

class B subtypes A {
... // declare i?

}

Suppose that the subtypes keyword provides nominal subtyping without inheritance (but without the ad-
ditional constraints of requires). The question then arises: are private members considered when checking
subtyping? If so, then B must declare a private field i. Unfortunately, this also means that A.equals can
access B.i, which violates encapsulation. On the other hand, if we assume that subtyping does not include
private members, then A.equals cannot access other.i.

An analogous problem occurs if structural subtyping is used. Suppose the type keyword defines a
structural type, and we re-define A.equals as follows:

30

// option 1: allow access to private state, violate encapsulation
type TypeA = { private int i; boolean equals(TypeA); }

// option 2: restrict expressiveness of equals, disallow access to private state
type TypeA = { boolean equals(TypeA); }

class A {
private int i;
boolean equals(TypeA other) { ... }

}

Again we have the same problems as with nominal subtyping: if TypeA includes the private field, equals
can access the private fields of other classes; if it does not, it restricts the implementation of equals.

A solution to this problem is to use inheritance or requires for calling code that uses binary methods.

31

	1 Introduction
	2 The Problem
	3 Previous Solutions
	4 An Overview of CZ
	5 Example: Abstract Syntax Trees
	6 CZ Design
	6.1 Multiple Inheritance
	6.2 External Methods
	6.3 Discussion

	7 Real-World Examples
	7.1 C++ Examples
	7.2 Java Example: Eclipse JDT

	8 Formal System
	8.1 Modularity
	8.2 Type Safety

	9 Related Work
	10 Related work
	11 Conclusions
	A Type Safety Proof
	A.1 Preservation Lemmas and Proof
	A.2 Progress Lemmas and Proof

	B Subtyping vs. Subclassing

