
Discovering Web Structure with Multiple
Experts in a Clustering Framework

Bora Cenk Gazen

CMU-CS-08-154

December 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jaime Carbonell, Carnegie Mellon University, Chair

William Cohen, Carnegie Mellon University
John Lafferty, Carnegie Mellon University

Steven Minton, Fetch Technologies

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Bora Cenk Gazen

Keywords: Structure discovery, heterogeneous experts, hypothesis language, confi-
dence scores, clustering, unsupervised data extraction, world wide web, record linkage

Abstract
The world wide web contains vast amounts of data, but only a small por-

tion of it is accessible in an operational form by machines. The rest of this vast
collection is behind a presentation layer that renders web pages in a human-
friendly form but also hampers machine-processing of data. The task of con-
verting web data into operational form is the task of data extraction. Cur-
rent approaches to data extraction from the web either require human-effort
to guide supervised learning algorithms or are customized to extract a narrow
range of data types in specific domains. We focus on the broader problem of
discovering the underlying structure of any database-generated web site. Our
approach automatically discovers relational data that is hidden behind these
web sites by combining experts that identify the relationship between surface
structure and the underlying structure.

Our approach is to have a set of software experts that analyze a web site’s
pages. Each of these experts is specialized to recognize a particular type of
structure. These experts discover similarities between data items within the
context of the particular types of structure they analyze and output their dis-
coveries as hypotheses in a common hypothesis language. We find the most
likely clustering of data using a probabilistic framework in which the hypothe-
ses provide the evidence. From the clusters, the relational form of the data is
derived.

We develop two frameworks following the principles of our approach. The
first framework introduces a common hypothesis language in which heteroge-
neous experts express their discoveries. The second framework extends the
common language to allow experts to assign confidence scores to their hy-
potheses.

We experiment in the web domain by comparing the output of our ap-
proach to the data extracted by a supervised wrapper-induction system and
validated manually. Our results show that our approach performs well in the
data extraction task on a variety of web sites.

Our approach is applicable to other structure discovery problems as well.
We demonstrate this by successfully applying our approach in the record
deduplication domain.

iv

Acknowledgments
I have been fortunate to have great teachers. Without their guidance, I

would have not made it this far. I would especially like to thank Ari Requicha,
who introduced me to research and academia, Craig Knoblock, who encour-
aged me to pursue my academic ambitions, Jaime Carbonell, who provided
me inspiration with his amazingly deep and broad knowledge and intellect,
and Steve Minton, who supported me with his continuous guidance and en-
couragement. Thanks to William Cohen and John Lafferty for their patient
and meticulous supervision.

I also want to thank everyone at Fetch for supporting me during the last
6 years. In particular, I want to thank Evan Gamble for helping me with the
thesis project and for the great discussions on science, and Greg Barish and
Sofus Macskassy for sharing their PhD experiences and encouraging me to
keep working on mine.

Also, many thanks to Steven Spitz. Having him to talk to has kept me sane
through the many years in graduate school.

Finally, I would like to thank my parents and my wife, Pui. My dad has
always reminded me that I could do better when I thought I had done my best
and celebrated my success when I felt I could have done better. And Pui,
without your love and support, I would have quit long time ago. Thank you
for being my partner in life. We accomplished all this together.

vi

Contents

1 Introduction 1
1.1 Overview . 1

1.1.1 Goal . 1
1.1.2 Current Approaches . 2
1.1.3 Challenges . 3
1.1.4 Contribution . 4

1.2 Problem Description . 5
1.2.1 Site extraction . 5
1.2.2 Inverse Problem - Site Generation 7

1.3 Thesis Statement . 8
1.4 Roadmap . 9

2 Approach - Principles 11
2.1 Motivation . 11
2.2 Structure Discovery . 13
2.3 Tackling Structure Discovery Problems 14

2.3.1 Multiple Heterogeneous Experts 15
2.3.2 Combining Heterogeneous Experts 16
2.3.3 Experts vs. Complex Models . 17

2.4 Summary . 18

3 CHEX: Clustering with Heterogeneous Experts 19
3.1 Overview . 19
3.2 Expert Framework . 20
3.3 Hypothesis Language . 22
3.4 Probabilistic Model . 23
3.5 Clustering . 26
3.6 Finding Data Clusters . 28
3.7 Web Experts . 30
3.8 Clusters to Relational form . 36
3.9 Summary . 41

vii

4 Results - CHEX 43
4.1 Evaluation Methodology . 43

4.1.1 Dataset . 43
4.1.2 Precision/Recall/F1 on Matching Clusters 44

4.2 Results . 45
4.3 Observations . 52

5 CONFHEX: Clustering with Confidence Scores from Heterogeneous Experts 53
5.1 Overview . 53
5.2 Bayesian Network . 54

5.2.1 Structure . 54
5.2.2 Parameters . 56
5.2.3 Confidence Scores . 57
5.2.4 Belief Propagation . 59

5.3 Combining Experts . 60
5.4 Web Domain . 63

5.4.1 Overview . 63
5.4.2 Page Clustering . 63
5.4.3 Data Clustering . 65

5.5 Summary . 69

6 Results - CONFHEX 71
6.1 Goals . 71
6.2 CONFHEX on the Web Dataset . 71

6.2.1 Page Clustering . 72
6.2.2 Data Clustering . 72

6.3 Comparing CONFHEX to AgentBuilder 78
6.4 Comparing CONFHEX to RoadRunner 79
6.5 Comparing CONFHEX to CHEX . 81
6.6 Applications . 82

6.6.1 News Extraction . 82

7 Record Deduplication 87
7.1 Overview . 87

7.1.1 Citation Experts . 90
7.1.2 Venue experts . 91

7.2 Experiments . 91
7.2.1 Results . 91

7.3 Summary . 92

8 Related Work 93
8.1 Data Extraction from the Web . 93

8.1.1 Wrappers . 93
8.1.2 Table Extraction . 95

viii

8.1.3 Grammar Induction . 96
8.1.4 Unsupervised Extraction . 97

8.2 Relational Model Learning. 98
8.2.1 Data Mining in Graphs. 99

8.3 Clustering . 100
8.3.1 Coclustering . 101
8.3.2 Clustering with Constraints . 101
8.3.3 Ensemble Clustering . 102

8.4 Multi-Expert Approaches . 103
8.4.1 GRAVA - Self-Adaptive Architecture 104
8.4.2 Proverb - A Crossword Solver 105
8.4.3 Poirot - Integrated Learning . 106

9 Conclusions and Future Work 107
9.1 Summary . 107
9.2 Contributions . 108
9.3 Future work . 109

9.3.1 Theoretical Framework . 109
9.3.2 Representation of Underlying Structure 110
9.3.3 Iterative Interpretation . 110
9.3.4 Other Domains . 110

Bibliography 113

ix

x

List of Figures

1.1 Extracted Data in Relational Form — The goal of our approach is to re-
cover the relational structure of web data. Here information about a par-
ticular book has been extracted and put into a relational table. 6

1.2 Relational Model of a Web Site — Two relational tables store the data
presented on this web site. Each row of the States table corresponds to a
page that displays information about a particular state. Similarly, each row
of the CityWeather table corresponds to a page that displays information
about a particular city. 8

3.1 Clusters of Pages and Tokens — Pages and tokens are clustered at the same
time while maintaining the constraint that tokens from two pages can be
in the same token cluster only if the pages are in the same page cluster. . . 29

3.2 Alignment of Fields on a Web Page — On web pages that display tabular
data, the alignment of data items as seen on the screen usually reflects the
underlying relational structure of the data. Columns of the relational table
are aligned parallel to a vertical axis and rows are parallel to a horizontal
axis. 36

3.3 Relational Structure of Data — References to values in other tables have
been replaced with the actual values. For example, the second column
in the first row refers to values stored in another table. These values,
[s2,s3],[s4,s5],[s6,s7], are shown as an inner table within a cell of the outer
table. 37

3.4 Merge Steps to Compose Tables from Clusters — We merge clusters, each
of which corresponds to a column, in a bottom-up fashion to form tables. 39

4.1 Target and Extracted Clusters – To evaluate the accuracy of clustering, we
compare the values in each target cluster with the values in each one of
the extracted clusters. For each target cluster, we pick the extracted cluster
with the highest recall score. Thus, cluster A is evaluated against cluster
1, cluster B against cluster 4 and cluster C also against cluster 4. Note
that because each value is placed in exactly one extracted cluster, it is not
possible to achieve recall and precision scores of 1.0 simply by generating
all possible clusters of values. 46

xi

5.1 Bayesian Network for Clustering — Evidence as collected by the experts
enter the network at the leaf nodes and determines the probability of a
pair of samples being in the same cluster. This is then used to find the
most likely assignment to the root node C which ranges over all possible
clusterings of the samples. 55

5.2 Sample Probability Tables — The probability table for the root node C
reflects that all clusterings are equally likely, the probability table for Lab

reflects the deterministic relation between a particular clustering and the
existence of a link between samples a and b, and the probability table for
E1ab reflects the confidence of expert E1 on the hypothesis that a and b are
in the same cluster. 56

5.3 Distribution of Distance Scores for an Expert — For this particular expert,
the distribution of distance scores is skewed towards small values for pairs
that are in the same cluster and towards larger values for those that are in
separate clusters. 58

5.4 Sample HTML as Displayed in a Browser — Only text nodes, such as
“Feels Like:” and “SW 14mph” are visible on screen. 65

6.1 Data Clustering Results — Histogram of precision, recall and F1 scores in
bins of width 0.1. 75

6.2 Snippet from Sample Web Page — A name-value list such as the one on
this page can be represented as multiple rows in a name-value table or as
a single row where the names correspond to the columns of the table. . . . 77

6.3 Levels of Effort — We compare the levels of effort required to extract
data from the web using three different approaches: AgentBuilder (a su-
pervised rule induction system), RoadRunner (an unsupervised wrapper
induction system), and CONFHEX (an unsupervised site-extraction system) 81

7.1 Record Linkage Results — Tacking the citation deduplication problem
with knowledge-rich experts gives results comparable to those obtained
with a more sophisticated and computationally-expensive framework. . . 92

xii

List of Tables

4.1 Summary of Results — We ran experiments in three domains: Journals,
E-Commerce Sites, and Job-Listings. We report precision, recall and F1
scores by comparison to data in fields extracted by wrappers induced by a
supervised learning system. The output of CHEX includes these fields as
well as all other data found on each site. 47

4.2 Extraction from E-Commerce Sites — All but one field is extracted with
high accuracy across a number of sites. 48

4.3 Extraction from Electronic Journals — CHEX extracts almost all fields
with 100% accuracy. 50

4.4 Extraction from Sites with Job Listings — On this domain, we evaluated
CHEX on a larger dataset. 51

6.1 Clustering Web Pages — The goal of this experiment was to show that
combining multiple experts leads to better results overall than using indi-
vidual experts. The scores are pairwise-F1 scores as percentages. Bold
font indicates the best score of each row. In the last row, we report p-
values obtained via the paired two-tail Student’s t-test. The p-value is the
probability of observing the reported difference in the F1-scores with the
assumption that there is no change in the performance of the system. Thus,
lower p-values indicate that the results are unlikely to be coincidental. . . 73

6.2 Comparing CHEX and CONFHEX — We simulated CHEX using a modified
version of CONFHEX to compare the two systems. CONFHEX achieves
better precision scores than CHEX. 85

xiii

xiv

Chapter 1

Introduction

1.1 Overview

1.1.1 Goal

The web contains vast amounts of data, estimated to be in the order of tens of billions

of pages[36] or even more when the hidden web, pages that are not accessible by simple

links, is included[38]. Unfortunately, machines can only use a very small portion of this

large data. This is because a human-browsable web requires a thick presentation layer and

this layer makes data and its rich structure obscure for machines.

Consider the problem of populating an ontology with product information. There are

many web sites that sell products online and provide detailed information (pricing, specifi-

cations, availability, etc.) about each product. Let’s consider the problem of extracting all

the product information from a single site to populate part of an ontology. Even within a

single site the product data is spread across many pages, sometimes by automated mapping

from a database, whose structure we wish to recover, and sometimes by manual embed-

ding.

The sub-problem of collecting pages that contain relevant data is relatively easy to

solve by spidering all the pages on the site, so we will focus on the problem of extracting

product information. Product information can be represented as records with fields such as

product name, product description, price, and specifications. If the specifications vary over

different groups of products, they may be represented as name-value pairs in a separate

set of records related to the parent product record. Example specifications are weight,

dimensions, input power, number of pages, etc. For each product, it might also be useful

1

to extract associated reviews. Like the specifications, reviews may be represented as a

related set of records where these records would have fields such as reviewer email, date

the review was posted, and the text of the review. Our goal is to find all such information

on a given site and transform it into a form that can be as easily used as if the data was

stored in a relational database.

1.1.2 Current Approaches

One approach to extracting data from the web is to use wrappers[48]. A wrapper is a func-

tion that maps the text of the web page into the value of a particular field, which is normally

a substring of the web page. Wrappers can be hand-written or induced by machine learn-

ing algorithms. A common tool for hand-writing wrappers is regular expressions[68]. A

regular expression is a pattern that describes a collection of strings. For example, the regu-

lar expression “ab*a” describes all strings that start and end with the symbol “a” and have

an arbitrary number of “b”s in between. Applying a regular expression to a string checks

whether the string is within the set of strings described by the regular expression. A reg-

ular expression matches a string if the string is within the set of strings described by the

regular expression. A wrapper can be constructed from a regular expression by applying

the regular expression to all substrings of a web page. The result of extraction is then a

substring that matches the regular expression. To make the extraction more predictable,

substrings are typically ordered from left-to-right and longest-to-shortest. As a concrete

example, take the regular expression “Price: $[0-9][0-9]*.[0-9][0-9]”. This will match

strings like the following: “Price: $1.79”, “Price: $24.00”, and “Price: $199.99”, but will

not match “Shipping: $2.00” or “Price: N/A”. A wrapper constructed out of this regular

expression will extract the first substring that contains the price information. For example,

when applied to the input string “Availability: In Stock. Price: $1.79”, the wrapper will

extract “Price: $1.79” as this is the longest left-most substring that matches the regular

expression.

Writing regular expressions by hand is a tedious task as it is difficult to gauge whether

the pattern is too specific and too general without trying it out a number of sample pages.

Alternatively, machine learning techniques[46] can be used to induce regular expression-

like patterns from positive and negative training samples. With machine learning, a wrap-

per can be built simply by providing sufficient labeled training samples.

The main problem with wrappers, whether they are hand-built or induced by machine

2

learning, is that they are specific to a particular site or a data field or, more commonly, to

both. Thus, extracting data from a site always requires some overhead whether it is in writ-

ing the wrappers by hand or providing training data to the wrapper induction algorithm.

This overhead becomes especially significant when the problem involves extracting data

from a large number of sites.

An entirely different approach to utilizing web data is building indices of web pages

that can then be quickly searched to find the most relevant pages to a query. There are

many web services, such as Google search, that provide this kind of access to web pages.

These services, also called search engines, have a shallow understanding of web pages and

build indices using simple models, such as a bag-of-words model, where the index keeps

track of the number of occurrences of individual words on each page[65]. This kind of

approach provides access to all pages that are relevant to a query as long the query can be

formulated within the constraints of the search engine’s model. Since a search engine has

a shallow understanding of web pages, the range of queries and responses is narrow. For

example, with a search engine one can find all web pages that refer to a particular product,

especially if the product has a unique name or other identifier, because presumably any

page that refers to the product will refer to it by its unique name. However, no simple

indexing model can be sufficient when queries involve relationships between data fields

on pages. For example, if the product query is extended to include only pages on which

the price is below some threshold, a deeper understanding is necessary where at least the

price displayed on the page is extracted and associated correctly with the product.

1.1.3 Challenges

The problem of data extraction from the web is a structure discovery problem, where the

goal is to discover the structure of data from clues gathered from its representation. It

is similar to other structure discovery problems such as speech recognition or vision in

that the underlying structure of the data, such as text or a 3D scene, partially surfaces in

its representation, such as a sound signal from a microphone or 2D image captured by a

camera. On the web, the relational form of the data is obscured as its transformed into a

human-browsable web site.

For example, on a given site, pages that contain the same type of information often

have a similar layout on the screen. However, it is non-trivial to determine that two pages

contain the same type of information only by looking at their layout. This is because

3

among all possible layout features only some will be related to the content of the pages

and without additional structure it is impossible to choose the right ones. Similarly, on a

given site, values of the same field will be formatted in the same manner, but again this

structure on its own is not sufficient to reliably determine which value belongs to which

field. For example, even though publishing dates are always in the form of “January 20,

2007” on a particular site, other types of dates on a page, such as the date a review is

written, can easily have the same format. Thus, relying on the date format on such a site

is not sufficient to correctly extract publishing date.

The challenge in web data extraction is to make clever use of heterogeneous types of

structure as it surfaces in multiple forms.

1.1.4 Contribution

As we described earlier, current approaches to web data extraction focus on a shallow

understanding (e.g., indexing of individual words) or have narrow scope (e.g., extraction

from a particular site, extraction of person names). We focus on the broader problem of

discovering the underlying structure of all data on any site. Our approach automatically

discovers all relational data that is hidden behind many types of web sites by combining ex-

perts that identify the relationship between surface structure and the underlying structure.

Web sites that our approach is well suited for are those that are or can be generated from

relational data, such as retail sites, news sites, blogs, travel sites, job listing sites, weather

sites, review sites, wikis, directories and so on. Most web sites fall into this category but

there are some that don’t such as web sites of an individual persons or hand-written sites

with little or no structure.

We focus on the data extraction problem and not the spidering task, so we assume

we are given a set of pages obtained by spidering a web site. The new approach works

as follows: First, a set of software experts analyze the given set of pages. We define

an expert as an algorithm that generates hypotheses about the solution to the extraction

problem. Each of these experts concentrates on a particular type of structure. For example,

we have experts that can induce common types of grammars for web pages, experts that

analyze visual layout information, experts that can parse particular data types such as

dates, experts that look for patterns in URLs, and so on. These experts discover similarities

between text tokens based on the particular types of structure they analyze and output their

discoveries as hypotheses in a common hypothesis language. Next, we find the most likely

4

clustering of the tokens using a probabilistic framework in which the hypotheses provide

the evidence. Each cluster represents one particular field of the data. Thus, the clustering

follows the underlying relational structure of the data closely and as a final post-processing

step, we generate the relational form of the data from the most-likely clustering.

1.2 Problem Description

1.2.1 Site extraction

Given a set of pages from a web site and the links between the pages, the problem is to find

a set of relational tables that best represent the data that is available on the pages. Next,

we introduce some terminology and define the problem more formally.

The web is a collection of documents, or pages, linked to each other via hyper-links,

which we will simply call links. A link on a document is defined by referring to the URL

of another document. URLs are identifiers for web pages. A link can be fully or partially

specified. When it is partially specified, the user provides input on a web form, which is

a collection of user interface elements for selecting or typing text. The user input is then

used to completely determine the link.

In addition to linking documents to one another, URLs are also useful for associating

a page to its underlying data. This is done by including identifiers for the underlying data

elements within the URL, e.g., as in “http://weather/current?zip=15213”. Content on web

pages is annotated with HTML which allows a web page developer to organize the content

in a hierarchical fashion and assign formatting and semantic categories to the elements

in the hierarchy. When HTML documents are parsed, they are often represented in the

standard Document Object Model, often abbreviated as DOM.

In this work, a web site is a collection of pages that provide a consistent view of a

data collection1. All web pages in a web site should be reachable by spidering, which

is the process of automatically navigating through a web site and collecting all its pages.

Automatically navigating through a web site involves extracting links on each page and

retrieving the pages pointed by these links. Doing this for fully-specified links is straight-

forward. However, navigating through web forms is difficult in general because web forms

need to be filled in with appropriate input before they can be spidered. In this dissertation,

1It is possible that a site contains multiple data collections. Our approach can then be applied to subsets

of pages that correspond to individual collections

5

Hardcover pages432
Hardcover pages654
Paperback pages560

Figure 1.1: Extracted Data in Relational Form — The goal of our approach is to recover the relational

structure of web data. Here information about a particular book has been extracted and put into a relational

table.

our focus is not on the spidering task, so we limit the collection of pages in a web site to

those that can be spidered without navigating through web forms, although the extraction

approach would be as applicable to pages that can reached via web forms as it is to pages

that can be reached directly.

Typically, a web site is hosted on a particular domain, such as cs.cmu.edu or ama-

zon.com, although some domains host multiple web sites and some other web sites are

hosted on multiple domains. For example, it is common for internet providers to host

separate web sites for their users and for large web sites to spread their pages across mul-

tiple domains, e.g., domains in multiple countries. In this work, a web site is a collection

of pages that provide a consistent presentation of some data collection regardless of the

domain or domains it is hosted on.

Our goal is to take a web site and turn it into a set of relational tables. A relational table

is a set of tuples (or records). Each record in a table has a set of attributes and records in

the same table have the same set of attributes. They can be related to other records through

the use of references to the unique identifiers of other records.

Figure 1.1 shows how the tokens on a web page would be placed in a relational table.

The partial view of the table displays three records, each containing the data from a single

page; and four columns, each corresponding to some data field on the page.

One way to think about the site extraction problem is to consider the inverse problem

of site generation: given relational data, generate a set of pages and links to present it as a

web site.

6

1.2.2 Inverse Problem - Site Generation

As in many other structure discovery problems, site extraction has an inverse problem,

namely site generation. The inverse problem has the following form in general: given

structured data, present the data in a form appropriate for consumption (by humans, typ-

ically). Some examples of inverse structure discovery problems are voice synthesis from

text and scene-generation from 3d-models. In this section, we will briefly examine site

generation.

Site generation is the task of creating a web site to present data. As a concrete exam-

ple, take the case of presenting weather information. We’d like to present current weather

data, such as temperature, humidity, etc., for U.S. cities. A diagrammatic view of a such a

site and the relation between its pages and the underlying data is shown in Figure 1.2. The

weather data is best represented as a relational table “CityWeather” where the attributes

are CityName, Temperature, Humidity and Wind. Generating an HTML page for a given

city involves looking up the given city in CityWeather and decorating the result with ap-

propriate HTML tags. We call the set of pages that are generated from individual rows of

a relation table a page type.

Geographical data inherently has more structure than a flat list. Places are normally or-

ganized in a hierarchical fashion, from larger regions at the top of the hierarchy to smaller

ones at the bottom, with the “world” as the root of the hierarchy. As is typically done,

this hierarchy can be used to organize the weather site. For example, U.S. cities can be

grouped under the state in which they are in. To represent this relation, we expand the

relational model as follows. The states are stored in a new table “State” with attributes

StateID, StateName, and Abbrv. The city table has a new attribute StateId to link each

city to its state. For example, the StateId of Pennsylvania would be stored in the rows for

Pittsburgh, Philadelphia, and Harrisburg among others.

Generating HTML pages for States involves retrieving data from more than one table.

The first step is to look up the given state in States and find StateID, StateName and

StateAbbr. Next, the list of cities that are related to StateID are found in CityWeather.

Finally, the HTML page is generated for the given state using the values found in the

previous steps. The state page shows the attributes of the state and the list of cities in that

state. Each city listed on a state page can also be hyper-linked to the corresponding city

page. Figure 1.2 depicts the structure of the weather site and its relation to the tables in

which the underlying data is stored.

7

California

Los Angeles

CityWeather

States

CityWeather
page-type

State
page-type

Homepage
page-type

San Francisco
San Diego
Pittsburgh
Philadelphia

70
65
75
50
55

0
1
2
3
4

0
0
0
1
1

0
1 Pennsylvania

CA
PA

StateId

City
Id

City
Name

Te
mp.

StateId

StateName

Abbr.

Figure 1.2: Relational Model of a Web Site — Two relational tables store the data presented on this web site.

Each row of the States table corresponds to a page that displays information about a particular state. Sim-

ilarly, each row of the CityWeather table corresponds to a page that displays information about a particular

city.

Site extraction is the inverse of site generation. Given a set of HTML pages from a web

site, the problem is to discover the relational form of the data. Unfortunately, the mapping

from relational data to web pages cannot be mathematically inverted in the general case

because it is clearly not a one-to-one mapping.

Clearly, not all elements of the web site are in relational form. For example, parts of

the HTML page are generated by a program and are not stored in relational form and there

is no way to know definitively which are which ahead of time. Also, more than one model

can generate the same set web site, i.e., there is not necessarily a unique solution.

1.3 Thesis Statement

The problem of data extraction from structured web sites can be solved by developing

experts that encapsulate human knowledge about various types of web structure and then

combining these experts while maintaining a globally consistent model of the underlying

data.

The approach is applicable to web sites where some combination of surface structures

represent the underlying relational structure of the data and recognizers for these surface

8

structures can be encoded as experts.

1.4 Roadmap

In the following chapters, we first describe the principles behind our approach. Next, we

develop a basic framework for combining multiple experts, a method for evaluating it and

report our results. Then, we describe a more sophisticated framework which allows proba-

bilistic hypotheses. We report on our experiments with the second framework, comparing

it to the first framework in the web domain. Next, we show the generality of our approach

by applying it in a second domain which is different from the web domain and compare

our results to another research project. Before concluding, we describe related work in

several different areas of research.

9

10

Chapter 2

Approach - Principles

In this chapter, we discuss our approach of combining heterogeneous experts at a high-

level. In the following chapters, we describe two concrete frameworks that follow the

principles of our approach.

2.1 Motivation

To demonstrate the need for multiple experts in attacking the data extraction problem, we

first try to solve it using grammar induction and demonstrate the shortcomings of relying

on one particular type of structure. We pick grammar induction because it has been used

for extraction from the web by other researchers (e.g., [24], [3], Page Templates in [50])

and also because it exemplifies the issues that arise from focusing on a single type of

structure.

The idea behind data extraction via grammar induction is that if an appropriate gram-

mar that generates a set of web pages can be found, then the symbols of the grammar can

be used to label the data fields.

As an example, suppose we are extracting data from the following three pages:

p1: <h2>Los Angeles</h2><p>Temperature: 70

p2: <h2>Pittsburgh</h2><p>Temperature: 68

p3: <h1>California</h1><p>Select a City:

A grammar induction algorithm that incrementally builds a grammar from examples

might first correctly induce the following grammar after observing the examples p1 and

p2.

P -> <h2>S1</h2><p>Temperature: S2

11

S1 -> Los Angeles | Pittsburgh

S2 -> 70 | 68

This grammar already achieves the extraction goal. The data fields are identified by

non-terminals S1 and S2 and the corresponding data values as “Los Angeles”, “Pitts-

burgh”, “70”, and “68”. When the third page is considered, the “correct” grammar be-

comes less obvious. One possible grammar is the following:

P -> T1 | T2

T1 -> <h2>S1</h2><p>Temperature: S2

S1 -> Los Angeles | Pittsburgh

S2 -> 70 | 68

T2 -> <h1>California</h1><p>Select a City:

Another one is this:

P -> S1 <p> s2

S1 -> <h2>Los Angeles</h2> | <h2>Pittsburgh</h2> | <h1>California</h1>

S2 -> Temperature: 70 | Temperature: 68 | Select a City:

Clearly, making the right induction decisions requires extensive use of heuristics, rang-

ing from utilizing syntactic clues (e.g., not allowing HTML tags as data values or distin-

guishing HTML elements h1 and h2) to understanding semantic relations (e.g., rejecting

California in a rule that expands to Los Angeles and Pittsburgh or rejecting ”Select a City:

” in a rule that contains name value pairs.

Some of these heuristics can be implemented by pre-processing the input. For example,

replacing names of well-known entities with their semantic classes as a pre-processing step

will in general help the grammar induction algorithm. Unfortunately, some heuristics are

hard to represent in this way. For example, the visual layout of a page contains useful clues

about the underlying relational structure of the page in that relational tables are usually

represented as lists on the page. However, it is not clear how these clues could be utilized

in a grammar induction approach.

The small number of types of structure that grammar induction can use limits the

types of grammars that can be practically induced. Thus, grammar induction approaches

(e.g., [24], Page Templates in [50]) typically assume that the pages have been clustered

according to page-type and all input comes from a single page type. This allows the

grammar induction algorithm avoid having to generate “clustering” rules, such as P ->

T1 | T2 above. Unfortunately, correctly clustering the pages is a significant part of the

site extraction problem.

12

A better approach to the problem of site attraction is to build a general framework that

allows any number of structures to be analyzed and combined in the process of discovering

the underlying structure of the data.

2.2 Structure Discovery

In this thesis, we use the term structure to mean any type of regularity or pattern that data

exhibits. There are many different languages for describing structure, some extensively

studied and formalized, such as formal languages, graphs, and relations, and some ad-hoc

and specific to particular problems, such as URL patterns and page layout. Our goal is

to be able to combine information that is present in different types of structure to find the

hidden, underlying structure of data.

In structure discovery problems, the goal is to discover the hidden structure of data

from partial and potentially noisy observations. Structure discovery problems arise be-

cause as structured data is transformed into observable forms, its regularity is also trans-

formed. Surface structure is what remains of the underlying structure in the transformed

data. Often, the surface structure appears in multiple forms because there are multiple

transformations which are applied to the data and different transformations take the origi-

nal regularity of data into different types of patterns.

Many AI problems can be cast as structure discovery problems. For example, com-

puter vision aims to determine the hidden 3D structure of a scene from 2D observations

(e.g., [42]). Some of the types of surface structure in this domain are edges, shadows,

parallax effects, texture, etc. In record deduplication[79], the goal is determine sets of

records that represent the same entity from the noisy attributes of the records. The hidden

structure is the grouping of records and some of the common types of surface structure

are acronyms and common misspellings. In protein structure prediction (e.g., [37, 52]),

the goal is to find various types of structure, such as folds, from sequence data or direct

physical measurements of the protein.

In structure discovery, data is assumed to have a particular type of structure. The

discovery problem is then the search for a specific instance of structure within the given

type of structure. For example, in our grammar induction approach above, we assume

that pages are generated from a regular grammar, which is a particular type of structure.

The structure discovery problem is to find the particular regular grammar that actually

13

generates the pages.

An important choice in solving structure discovery problems is the type of structure.

Some types of structures are more general than others in that any instance of the specific

structure is also an instance of the more general structure. For example, context-free gram-

mars are more general than regular grammars and so any particular regular grammar is also

a context-free grammar. The more general the type of structure, the more difficult structure

discovery is. On the other hand, the more specific languages for describing structures may

not be expressive enough to capture the underlying structure of the data.

In this work, we are mainly concerned with one particular type of structure discovery

problem, namely the site extraction problem that we have introduced previously. In con-

trast to some of the harder AI problems, such as natural language processing where the

underlying structure of data is not only hidden but its type is an approximation of some as-

yet-unknown mental structures, the underlying data in site extraction is in fact structured

in that most web sites store their data in relational databases, which are of course highly

structured.

2.3 Tackling Structure Discovery Problems

One common way to attack structure discovery problems is to first pick one type of struc-

ture as the underlying structure of data and try to find an instance of this structure for the

given data. This is what we did earlier in the chapter when we used grammar induction to

try to solve the site extraction problem.

For a given type of structure and a particular domain from which data is collected, it

is usually possible to develop an algorithm, usually incorporating heuristics, to induce the

particular structure of given data. For example, certain types of regular grammars can be

induced by finding common substrings of samples.

The main problem with focusing on one particular type of structure is that it is difficult

or impossible to pick the type of structure with the appropriate level of generality. Specific

types of structures are preferable as the discovery problem is easier with more specific

structures and for that structure are likely to be more accurate[78]. For example grammar

induction with regular languages is easier than with context-free languages. However,

the structure cannot be so specific that it is not able to represent all possible patterns in

the underlying data. Unfortunately, as the type of structure is allowed be more general,

14

the structure discovery problem becomes more and more under-specified, as was the case

in our grammar induction example, and some other heuristics of choosing an “optimal”

structure is needed.

Alternatively, the specific type of structure can be extended to be more general, for

example allowing certain types of context-free productions in a regular language. Unfor-

tunately, such extensions require ad-hoc heuristics which require an ad-hoc patch to the

heuristic induction algorithm and doing this becomes increasingly difficult as the number

of extensions increases.

In this thesis, we propose a new approach to tackle structure discovery problems. In

our approach, instead of picking a particular type of structure into which we fit the data,

we look for many different types of specific structure in the data and then combine the

information we have gained in the process in a more general structure.

An intuitive way to handle multiple types of specific structure is to develop an expert

for each type of specific structure. Each expert is then responsible for finding particu-

lar types of structure in the observed data and relating this structure to the more general

structure.

For example, in the computer vision domain, a “boundary” expert can detect bound-

aries which separate pixels that are formed by separate objects in the actual scene and

relate this information into objects in 3D. Detecting boundaries requires interpreting the

brightness, color and texture variations in an image (e.g., [54]). The complexity of under-

standing a particular type of clue, such as boundaries, is captured by an expert.

2.3.1 Multiple Heterogeneous Experts

Building experts which deal with arbitrary types of surface structure naturally leads to a

heterogeneous collection of experts. This is because as we discussed earlier, each type of

structure has an associated algorithm that induces the particular structure from the data.

These algorithms typically are highly-specific to the types of structures that they are work-

ing on and thus heterogeneous. For example, in the site extraction domain, one expert

might search for simple regular grammar patterns in data fields whereas another expert

might search layout patterns on pages. These experts are heterogeneous in that not only

do they use different characteristics of the data, but the patterns they find are in a sense in

different languages.

Even though a set of heterogeneous experts elegantly handles multiple types of specific

15

structure, it introduces a new challenge: If the experts are all working independently and

finding arbitrary types of patterns, then combining these patterns becomes non-trivial. For

example, if the regular grammar expert above finds particular grammar rules and a set of

values generated by these rules, whereas the layout expert finds DOM elements that are

arranged in a column, it is not clear how these patterns can be combined so that more of

the underlying structure is revealed.

To solve the problem of combining the outputs of heterogeneous experts, we introduce

a common language in which each expert can express its patterns. Experts are still allowed

to have heterogeneous views of the problem but output their hypotheses in a language that

is globally known. In the following chapters, we experiment with two languages. The first

language allows the experts to output their hypotheses in terms of primitive statements.

The second language extends the first by allowing the experts to assign confidence scores

to these statements.

2.3.2 Combining Heterogeneous Experts

As mentioned earlier, surface structure arises when the underlying structured data is trans-

formed into observable forms. Multiple transformations take the underlying structure into

multiple types of surface structure. This process clearly implies a dependence of sur-

face structures on the underlying structure. The dependence between multiple surface

structures and the underlying structure, when combined with the independence of trans-

formations, lead to an interesting and useful property: Even though from a single surface

structure, many different but equally valid underlying structures can be induced, the num-

ber of valid structures shrinks rapidly when multiple surface structures are taken into ac-

count. In other words, maintaining consistency across multiple surface structures allows

the hypotheses to be pruned to a degree that is not possible with individual experts.

This is best demonstrated with an example: Suppose on a web site, a product page

mentions the price of the product and the shipping cost. A “price” expert that interprets a

currency symbol followed by a decimal number will interpret both the price of the product

and the shipping cost as valid prices. Assuming each product page has exactly one value

for price, this expert leads to two plausible interpretations for each page: one where the

product price is correctly identified and one where the shipping cost is incorrectly iden-

tified as the price. Now, suppose we add a second expert that understands that the range

of prices are much larger than the range of shipping costs. This expert will be able to

16

eliminate the second interpretation on pages where the shipping cost is relatively small to

the price of the product. There is still a problem, though, because if the product price is

within the same range as the shipping cost, the second expert cannot help. Next, suppose

we add a third expert that understands that a single site normally lists costs in the same or-

der (e.g., product price comes before shipping cost) on all product pages. The third expert

will be able to eliminate the remaining incorrect interpretations by taking into account the

interpretations of the second expert on pages where product price and shipping cost are

more easily identified.

2.3.3 Experts vs. Complex Models

Experts encode and encapsulate domain knowledge about the relation between underlying

structure of the data and its surface structure. An alternative approach to solving structure

discovery problems is to use “simple” features and induce the relation between underlying

and surface structures as part of the discovery process.

As a concrete example, let’s consider taking advantage of page layout in discovering

the relational structure of data on a web page, while using simple features. Our goal is

to learn from training data the statement that data from a relational column is typically

displayed so that data elements line up on a vertical line. To represent page layout, we

use as features the x and y coordinates of data elements on the screen. The induction step

then is responsible for learning the concept of alignment in terms of x and y coordinates,

perhaps by searching through a space of equality constraints on coordinates. This is where

model complexity arises: having simple features necessitates having a space of models

where complex relations between simple features can be expressed.

Compare the approach above to the one using “experts”. If it is known that alignment

on the screen is a possible indicator of underlying relational structure, it can directly be

represented as a “rich” feature (perhaps, as a boolean feature among pairs of data ele-

ments). This simplifies the induction step greatly because the model no longer needs to

represent complex concepts that involve x and y coordinates.

In general, there is an inverse relation between rich features and complex models:

Richer features require simpler models whereas complex models can utilize simpler fea-

tures. The question then is whether it is better to solve a given structure discovery problem

using “experts” and a simpler model or using simple features and a more complex model.

In making this decision, various trade-offs need to be taken into account. In particular,

17

richer features by definition restrict the system to consider only the concepts that are al-

ready represented by features, whereas complex models tend to be more general in the

concepts that they can induce. With this in mind, we can describe a key characteristic

of structure discovery problems which are suited to expert based approaches: A structure

discovery problem is a good candidate for an expert based approach if the set of transfor-

mations that map the underlying structure into the observed structure are well-known and

each transformation can be defined independent of each other.

The web site extraction problem exhibits the characteristic above. First, the set of

transformations that map the underlying structure to the surface structure are well-known

(e.g., use of HTML templates to generate pages from relational tuples, use of links to con-

nect pages for related tuples, laying out pages so that relational tables are displayed as

tables, and so on). Second, individual transformations are independent (e.g., links are in-

dependent of layout and independent of tables). Contrast this to a domain, such as protein

structure discovery, where a complex model might be more suitable. In such domains, the

underlying structure and the observed structure are interlinked through as-yet unknown or

only partially known relations. Thus, these relations are difficult or impossible to encode

as experts and approaches based on complex model are more suitable than expert based

approaches.

2.4 Summary

In this chapter, we described the main principles of this thesis. In particular, we discussed

structure discovery problems in general and why these problems are best attacked with a

set of heterogeneous experts. In the following chapters, we describe two frameworks we

build on these principles.

18

Chapter 3

CHEX: Clustering with Heterogeneous
Experts

3.1 Overview

In this chapter, we focus on developing a basic probabilistic framework in which hypothe-

ses from heterogeneous experts are combined. We develop the framework for tackling

a specific data extraction problem, which we call site extraction: Extract all data that is

available on a given set of pages from a web site.

We start with a set of pages and the links between them, which we collect by spidering.

For example, for an online bookstore, the set of pages would include list pages that present

lists of books grouped under various categories and detail pages that contain information

about individual books, such as titles, author names, ISBNs, reviews, etc.

We assume the sites we are extracting data from are generated from relational tables.

This assumption is not limiting for two reasons: First, a large percentage of web sites are

in fact generated from data that is stored in relational tables. This is because relational

databases have become the norm for storing and querying collections of data since their

introduction around 1970[15]. Second, web sites that are not generated from relational

tables can sometimes be interpreted as if they are generated from relational tables.

Our goal is to find clusters of data such that each cluster corresponds to a column of

one of the relational tables. On an online bookstore, we expect to find, among many others,

a cluster of ISBNs, as ISBNs are commonly used to identify books.

The relational representation of data on a given web site is not necessarily unique or

19

even well-defined. Our goal is to find some relational representation such that further

processing of data becomes much simpler. This is similar to the goal of clustering in

general, which is to aid analysis of large amounts of data. Further processing might involve

other automated processes (such as labeling columns) or human input (selecting relevant

columns of data for the task at hand).

In finding the relational representation of a web site, there are three stages of pro-

cessing. In the first stage, experts analyze the set of pages and links, and output a set of

hypotheses about the structure of the underlying data. In the second stage, clusters of data

that is marginally consistent with respect to the hypotheses is found. In the third stage, the

clusters are converted to relational form.

In the following sections, we will define the expert framework, the hypotheses lan-

guage, what it means for a clustering to be optimal with respect to a set of hypotheses, and

our approach for searching optimal clusterings. We will also describe the experts we use

in detail and our method for converting clusters to relations.

3.2 Expert Framework

In many machine learning algorithms, samples are represented by their “features”[27].

For example, in clustering points on a 2-dimensional space, each point sample has two

features, its x-coordinate and y-coordinate. In a document classification problem, one way

to represent documents is by turning each possible word into a binary feature such that the

value of the feature is 1 when the document contains the word and 0 otherwise.

Features simplify the learning problem by reducing it to one that is on features rather

than the potentially more complex samples. In particular, each feature is typically a func-

tion of the sample. Given a sample, the value of a particular feature can be computed in

isolation from the rest of the samples.

For the structure-induction task, the reduction to feature-space is sometimes too much

of a simplification and makes the learning task too hard. In particular, some of the relations

between features are lost. One way of recovering some of these lost dependencies is by

post-processing the features, such as normalizing feature values or selecting important

features.

As in learning algorithms, clustering can be hindered when samples are mapped into

feature-space. This is especially the case because most clustering algorithms rely on the

20

notion of distance between samples[27] and some distance metrics in the sample-space

cannot be represented as a distance metric in the feature-space. Consider clustering strings

such that words that have similar spellings are clustered together (e.g., in building a spell

checking application). String-edit distance would be a useful measure for this problem,

but it can only be computed on pairs of strings directly and not on simpler features of the

string.

Within the clustering domain, one way to improve the expressivity of features is to

define features on pairs of samples rather than individual samples. This leads to pairwise-

clustering (e.g., [40]) which allows metrics such as the string-edit distance to be computed

as a feature as in [25].

The generalization of features from the domain of individual samples to pairs of sam-

ples can be taken further and leads to the concept of experts. Whereas features are usually

simple functions that map one or two samples into feature values, experts are arbitrarily

complex processes, which may refer to domain knowledge, or analyze the problem glob-

ally, before outputting their decisions.

Note that in defining the output of experts, we restricted the hypotheses to those that

can be computed given a single element of the solution space. Clearly, the range of all

possible hypotheses is much larger. As a simple example, consider an expert that generates

the hypothesis that a particular problem instance has a unique solution. Such a hypothesis

cannot be verified for individual elements of the solution space.

The elements of the solution space have structure in that hypotheses can be evaluated

within the context of each. Contrast this to a non-structured space where the elements

are atomic. In a non-structured space, the only possible type of hypothesis is whether the

element is a solution or not. The space of clusterings is an example of a structured space

in that many hypothesis can be stated and tested within a given clustering, e.g., “element

e1 and e2 are in the same cluster”, “number of clusters is at least 3”.

An important observation is that the set of hypotheses output by an expert define a

subset of the solution space where within each element of this subset all the hypotheses

are true. If this subset contains more than one solution, then the expert has not been able

to determine a unique solution. If the subset is empty, then the hypotheses output by the

expert is inconsistent in that there are no solutions in which all the hypotheses can be

satisfied.

The above observation leads to a straightforward, albeit fragile, framework for com-

bining experts: The set of solutions is the intersection of all the subsets defined by the

21

hypothesis sets. Alternatively, the set of solutions is the subset where the hypotheses from

all the experts are true.

The problem with this approach is that in practice the hypotheses from multiple experts

is likely to be inconsistent even if each expert generates self-consistent sets of hypotheses.

In particular, any hypothesis that is incorrect (i.e., false in solutions) will make the set of

hypotheses inconsistent if the remaining hypotheses are all true only in the solution set.

Thus, this type of approach is highly sensitive to any incorrect hypotheses generated by the

experts and will fail to find solutions unless the experts generate only correct hypotheses.

An interesting case where an expert generates inconsistent hypotheses is when the ex-

pert works on parts of a solution without considering the global consistency of the solution.

For example, in the crossword domain, an expert that works on individual clues can easily

generate hypotheses that when applied within the constraints of the grid are inconsistent.

If one expert requires 5-across to be either “LET” or “NET” and another expert requires 5-

down to be “RAIL” or “SAIL”, clearly there are solutions in which both sets of hypotheses

can be satisfied.

As an alternative and more robust approach, we define a probabilistic model of the

process of hypothesis generation so that for a given element in the solution space, each

hypothesis is assigned a probability. This allows us to search for solutions such that the

probability of the set of hypotheses generated by the experts is maximized. Note that un-

like the first framework we described where the set of hypotheses partitions the space into

solutions and non-solutions, the probabilistic approach orders its elements such that all

are candidate solutions, but some are more likely to have generated the observed set of hy-

potheses. This is true even when the hypotheses may be inconsistent. Before we describe

the probabilistic model in detail, let us first define the particular hypothesis language we

will use for clustering.

3.3 Hypothesis Language

We have already restricted the scope of hypotheses by requiring each to be testable given

any element of the solution space. Additionally, we desire the language to have the fol-

lowing properties:

• It should be expressive enough for arbitrary experts to output their hypotheses.

• It should be simple enough so that multiple sets of hypotheses can be combined

22

effectively.

In the clustering domain, this is achievable even by allowing only one type of hypothesis:

one which states that a particular pair of samples is in the same cluster. We call such a

hypothesis a hint.

Using this language, experts that evaluate pairs of samples can directly output their

hypotheses as hints. Such experts typically evaluate the similarity of two samples and if

that similarity is above some threshold, hypothesize that the pair is in the same cluster.

More complex hypotheses are expressible, too. For example, an expert that finds clus-

ters of samples outputs a hint for each pair of samples that is in the same cluster.

3.4 Probabilistic Model

Our ultimate goal is to find the most likely clustering given the set of hypotheses generated

by the experts. We do this by defining a probabilistic process of hint generation.

Probabilistic approaches to document clustering are not new. The goal in document

clustering in general is to find clusters of documents that are within the same topic. In the

typical approach, each document is represented by a vector of word counts, normalized by

one of a variety of methods, such as TF-IDF[64]. The probabilistic approaches model the

distribution of these vectors. A common approach to do this is to model the distribution

of words as a mixture model. In a mixture model, the word distribution is modeled as a

mixture of distributions that are conditioned on particular topics. The model can be used

for classification when topics and the parameters of the model are known or computed

beforehand[56]. The model can also be used for clustering by applying statistical inference

techniques such as EM to find locally optimal assignments to the unknown parameters

from observed data[6, 39].

The main focus of document clustering research is to find probabilistic models that

better fit data and to develop methods to estimate unknown parameters of these models

accurately and efficiently. For example, [1] improves on the bag-of-word representation

by using distributions that better model the dependence between multiple occurrences of

a word within a document. In contrast to the focus of this type of research, our focus is

making use of knowledge encoded within sophisticated experts and not on the probabilistic

model. Thus, we use a simple probabilistic model which serves to combine the output of

experts in a principled framework. We empirically assign values to the parameters of the

23

model and leave as future work inferring these from observed data.

To find the most likely clustering given the set of hypotheses generated by the experts,

we need to compute P (C|H) where where H is the set of hypotheses and C is the clus-

tering. We follow the usual approach of using the Bayes rule to expand this probability as

follows:

P (C|H) =
P (H|C)P (C)

P (H)

. We assume that the prior distribution P (C) is a discrete uniform distribution, i.e., P (C =

ci) = k for all clusterings ci and for some constant k. Combining this assumption with the

observation that P (H) is a constant for a given set of hypotheses, finding the clustering

that maximizes P (C|H) is equivalent to finding the clustering that maximizes P (H|C).

Like in naive Bayes classification, we then make an independence assumption, namely

we assume that each hypothesis is independent of other hypotheses given the clustering.

This leads to the following expansion:

P (H|C) = P (h1|C)P (h2|C)P (h3|C)...P (hn|C)

where hi is in H .

The next step is to define P (h|C) where h is a single hypothesis, in other words a hint.

We do this by defining a stochastic process of hint generation. This process has two steps:

1. Pick a cluster at random from C. The probability of picking a particular cluster is

1/NC where NC is the number of clusters. Call the selected cluster c0.

2. Pick a pair of elements from c0 at random. The probability of picking a particular

pair is 1/NP where NP is the number of distinct pairs in c0. Call the selected pair h.

Thus, the probability of generating h from C, P (h|C), is 1/NC × 1/NP where NC

is the total number of clusters in C and NP is the number of pairs in the cluster which

contains the pair of samples of the hypothesis h.

The following table shows the probability of generating the hypothesis that the ele-

ments A and B are in the same cluster for all the possible clusterings of three elements

A, B, and C. Given only one hypothesis that A and B are in the same cluster, the most

likely clustering based on the above process is AB,C. When the number of samples to be

clustered is large, the number of clusterings is too large to be enumerated. Thus, an ap-

proximate search approach is necessary. In the next section, we describe how we search

for the most likely clustering using the leader-follower algorithm[27].

24

Clustering P (hA,B)|C)

ABC 1/1× 1/3 = 1/3

AB,C 1/2× 1/1 = 1/2

AC,B 0

BC,A 0

A,B,C 0

The process assigns a probability of zero to hints that are inconsistent with respect to a

given clustering. A hint is inconsistent with a given clustering if the pair of samples is not

in the same cluster. The process described above has no way to generate such inconsistent

hints. This implies that when any hint in the set of hypotheses is inconsistent with a

clustering, the overall probability of the clustering is 0. Thus, when the set of hypotheses

is inconsistent, i.e., there is no clustering such that all hypotheses can be satisfied, then this

probabilistic model cannot pick a clustering that is “most consistent” with the hypotheses

as it assigns a zero probability to all clusterings.

We extend the model by incorporating a simple model of noise. To do this, we add

a new way of generating hints that is independent of the given clustering. The new way

of generating hints simply picks a pair of samples uniformly from all possible pairs, and

so allows all pairs to be generated as “noise” with some probability. We then extend the

overall process so that it either uses the normal steps of generating hints or the steps to

model noisy generation. The latter set of steps is followed with some small probability.

The new process has the following steps:

1. Pick whether the hint will be generated using the noise model or the basic model as

above.

2. If the hint will be generated using the noise model, pick a pair uniformly among all

sample pairs. The probability of picking a particular pair is 1/NP where NP is the

number of all sample pairs.

3. Otherwise:

(a) Pick a cluster at random. The probability of picking a particular cluster is

1/NC where NC is the number of clusters. Call the selected cluster c0.

(b) Pick a pair of elements from c0 at random. The probability of picking a par-

ticular pair is 1/Nc0 where Nc0 is the number of distinct pairs in c0. Call the

selected pair h.

25

In the new process, the probability of a hint given a clustering comes from two factors:

a small contribution from noisy generation and a large contribution from normal gener-

ation. For hints that are inconsistent with the current clustering, the factor from normal

generation is zero, but there is still a non-zero contribution from noisy generation. This

allows the model to assign non-zero probabilities to all clusterings even when some hy-

potheses are inconsistent. The inconsistent hypotheses simply reduce the probability of a

clustering.

3.5 Clustering

After the hypotheses are gathered from the experts, the next step is to find the most likely

clustering. The number of clusterings is at least exponentially large in the number of

samples1, so a linear search through all clusterings is not possible. Instead, we use the

leader-follower algorithm, a standard clustering algorithm[27] which runs in linear time in

the number of samples.

The leader-follower algorithm considers each sample in turn. The first sample is placed

in a cluster of its own. Then, for each sample, the nearest existing cluster is located. If the

distance to this nearest cluster is below some threshold, the sample is added to that cluster.

Otherwise, the sample starts a new cluster.

Compared to some other methods such as the agglomerative clustering algorithms

which run in quadratic time, the leader-follower algorithm is fast but makes decisions

given very limited knowledge especially at early stages where it has seen only a few of

the samples. In the approach described in this chapter, we utilize the leader-follower algo-

rithm, but other approaches are certainly possible. In later chapters, we experiment with

more sophisticated clustering algorithms.

The “distance” between a sample and a cluster is the change in probability of the set

of hints between the current clustering and the clustering when the sample is added to the

given cluster. As the leader-follower algorithm builds the clusters, the clustering is only

partial, i.e., the unseen samples have not been assigned to any clusters. The probabilistic

model cannot assign probabilities to hints that refer to yet unseen samples, so during the

1The number of clusterings for a sample set of size n is given by Bell numbers[63] which satisfy the

recurrence Bn+1 =
∑n

k=0

(
n
k

)
Bk[53]. From the recurrence, it follows that Bn+1 >

(
n

n−1

)
Bn−1 = nBn−1.

Thus, increasing the size of a sample set of size n− 1 by 2 samples increases the number of partitions by at

least a factor of n. This means the number of partitions is at least exponential in the size of the sample set.

26

clustering process, we only calculate properties for hints that refer to the currently clus-

tered samples. To determine the change in probability, we consider the clustering where

the new sample is in a new cluster of its own and evaluate the change when the sample is

added to one of the existing clusters.

distance(s, c) = P (H|Cs)− P (H|Cm)

where s is a sample, Cm is the current clustering but with s added as a new singleton

cluster, c is a cluster in current clustering, and Cm is the new clustering after s has been

merged into c. Note that the change in probability is not a “distance” in the formal sense.

Whereas distance metrics are non-negative and satisfy the triangle inequality, the change

in probability can be negative and does not satisfy the triangle inequality. However, it is

still able to serve as a distance measure within the context of the leader-follower algorithm,

which only depends on the distance score to make local decisions. In particular, the leader-

follower algorithm uses this score to choose which cluster to assign a given sample by

comparing the scores for different clusters while holding the sample constant. This process

makes no assumptions about the distance measure.

Adding a sample to an existing cluster affects the overall probability in two ways:

First, any hints between the current sample and the samples in the cluster are assigned

higher probabilities as the generation process for those hints switches from noisy (step 2)

to normal (step 3). Second, the hints between samples in the cluster are assigned smaller

probabilities as the number of potential sample pairs increases (step 3b).

Other standard algorithms can also be applied to the clustering problem we have de-

fined. Here we chose the leader-follower algorithm for its simplicity as we focus on com-

bining heterogeneous experts that share a common language. Once the clusters are estab-

lished, the leader-follower algorithm is optimal in the sense that its decision is based only

on the similarity of the existing clusters to the next sample. However, this also makes it

sensitive to the ordering of the samples. As an example, suppose the algorithm first sees

sample s0 which becomes the first cluster. When it processes the next sample s1, the deci-

sion to place s1 into the first cluster is based only on the similarity of s0 and s1. If s0 and

s1 are not similar, then s1 is put in a new cluster. Suppose now s0 and s1 are processed

after some clusters have been established and s0 is put in cluster c0. It may well be the case

that s1 is still placed in c0. This is because even though s0 and s1 are not similar, they may

be considered similar when their neighbors in c0 are taken into account. To address this

issue, in the following chapters, we look at a second technique, hierarchical agglomerative

27

clustering[27].

3.6 Finding Data Clusters

Our main goal is to cluster tokens such that each cluster corresponds to one column of a

relational table. In doing this, it is also convenient to cluster the pages themselves, in order

to identify page types. Thus, we have both page clusters and token clusters with the fol-

lowing relation between page clusters and token clusters: Each page cluster is associated

with one or more token clusters, such that the tokens of any page within the page cluster

are all contained in the token clusters associated with that page cluster. More formally, we

let child(cp) be the set of token clusters associated with page cluster cp such that if t is a

token on page p and p ∈ cp, then there is a token cluster ct ∈ child(cp).

For example, suppose we are working on the weather site which contains a home page

listing all the states, state pages listing all the cities in that state, and weather condition

pages that display the current conditions in a particular city. When we find the page clus-

ters for this site, if the clustering matches our natural grouping, we would expect to end

up with three clusters: one for weather condition pages, one for the state pages, and one

containing just the home page. The token clusters for the weather condition page cluster

might include a cluster for city names, another for low temperatures, and another for high

temperatures. In Figure 3.1, two page clusters and the four token clusters that they are

associated with are shown.

In the previous sections, we described the probabilistic framework in which we eval-

uate the clusterings. In those sections, we assumed there was one set of samples and one

set of hints. Since now we are clustering both pages and tokens we need to extend the

framework. To do this we consider the sub-problems independently. Thus, we have a page

clustering problem where we would like to find the most likely page clustering given a

set of page hints and we have a token clustering problem where we would like to find the

most likely token clustering given a set of token hints. Following the approach described

previously, a page hint is a hint indicating that two pages are in the same cluster and a

token hint is a hint indicating that the two tokens are in the same cluster.

We apply the leader-follower algorithm at both the page clustering level and the token

clustering level. To do this we process the input one page at a time. To determine the page

cluster in which the current page will be placed, we try placing the page in all possible page

28

California
Los Angeles
San Francisco
San Diego
Pittsburgh
Philadelphia

70
65
75
50
55

Pennsylvania
CA
PA

page clusters

token clusters

Figure 3.1: Clusters of Pages and Tokens — Pages and tokens are clustered at the same time while main-

taining the constraint that tokens from two pages can be in the same token cluster only if the pages are in the

same page cluster.

clusters. When we place the page in a page cluster, we apply the leader-follower algorithm

to all the tokens of that page, clustering the tokens into the page clusters associated with

the page cluster. Clearly, each trial of placing the current page in a page clustering results

in a new clustering. We evaluate the set of hints for each such clustering. The clustering

that improves the overall probability of hints is kept as the starting clustering for the next

iteration. Algorithms 1 and 2 contain an implementation of the leader-follower algorithm

for clustering pages. Note that in finding the cluster to which a page is going to be added,

a separate instance of the leader-follower algorithm is run on the tokens of the page.

Inputs: pages, hints, threshold

Outputs: clustering

page clustering = ∅
for all page in pages do

prob change = 0

if page clustering is not empty then
best clustering = best page clustering(page, hints, page clustering)

prob change = prob change(hints, page, best clustering, page clustering)

end if
if page clustering is empty or prob change < threshold then

create new page cluster c new with page in c new

add c new to page clustering

29

else
page clustering = best clustering

end if
end for
return page clustering

Inputs: page, hints, clustering

Outputs: clustering

best clustering = ∅
for all c in clustering do

c′ = leader follower tokens(page, c, hints)

clustering′ = clustering - c + c′

if prob(hints | clustering′) > prob(hints | best clustering) then
best clustering = clustering′

end if
end for
return best clustering

3.7 Web Experts

One obstacle in clustering data items on a given web site is determining which sequences

of characters constitute atomic data items. In this work, we avoid this problem by having

each expert determine boundaries according to their particular needs.

This is a problem similar to word or sentence boundary detection in natural language

processing in that boundaries can be ambiguous until after discovering the higher struc-

ture of the data, e.g., parsing the text or finding the relational form of the web data, but

discovering the higher structure can only be done after the boundaries are determined. For

example, an expert working on the parse tree of an HTML document may use HTML tags

to determine boundaries in the text. For example, from “ISBN: 11112222” an

expert may pick up “ISBN: 11112222” as a single token and not divide the text into smaller

tokens. After all experts are done with their processing, the union of all token boundaries

that experts use in their output determines the “global” token boundaries, thus the set

of data items. For example, if the output also contains “11112222” in addition to “ISBN:

11112222”, then the data items are “ISBN: ” and “11112222” because there are three token

30

boundaries: right before “I”, between the space and “1”, and right after “2”. Additionally,

output that originally referred to the single token “ISBN: 11112222” is updated to refer to

the token sequence “ISBN: ”, “11112222”. In addition, hints whose tokens are split by this

process, are rewritten as multiple hints over all new pairs. In other words, a hint on (s, t)

is rewritten as multiple hints (s1, t1), (s1, t2), ..., (s1, tn), (s2), (t2), ..., (sm, t1), ..., (sm, tn)

if s is split into s1, ..., sm and t into t1, ..., tn.

In applying our framework to the site extraction problem, we combine hypotheses from

four experts, which look for the most common types of web site structure. One of the four

experts generates page level hints and three generate token level hints. First we describe

the page level expert that analyzes URLs.

• URL Patterns: On many web sites, URLs clearly identify page types. For exam-

ple, on bookpool.com, pages listing the results of a query contain the query string

“ss?qs=” and pages displaying the details of a page contain the string “sm/” where

the text in brackets is a replaced with actual values. Here are some actual URLs

from bookpool.com.

http://www.bookpool.com/ss?qs=clustering&x=0&y=0

http://www.bookpool.com/ss?qs=learning&x=0&y=0

http://www.bookpool.com/sm/1590598296

http://www.bookpool.com/sm/0131882228

To utilize the URL structure, we’d like to find pairs of URLs which are similar and

then generate a page hint to indicate that the pages for these URLs are likely to be in

the same cluster. To determine whether two URLs are similar, we check if the URLs

have been generated from the same template. A template is a string where data

fields have been replaced with placeholders. By substituting actual data values into

the placeholders, a template can be used to generate a set of strings. In particular,

we define a template as a sequence of alternating stripes and slots where stripes are

string constants and slots are placeholders for data.

The definition above allows any two URLs to be generated from a template even

if the URLs are not similar, simply by having a template with one “large” slot that

takes in the whole URL as data. To make use of URL structure, we need to be able

to distinguish trivial templates and templates that indicate similarity. Intuitively, a

good template is one where the stripes of the template cover a high percentage of

31

the characters of the URLs. For example, the template for the first two URLs above,

which is shown below, has a coverage of 91%. The slots of the template are shown

as boxes.

http://www.bookpool.com/ss?qs= 0 e 1 r 2 ing&x=0&y=0

In contrast, the template for the first and the third URLs has a coverage of 59%:

http://www.bookpool.com/s 0

Thus, our URL pattern expert works as follows: Consider each pair of pages. For

each pair, build a template for their URLs and compute the coverage of the stripes

of the URL. If the coverage is above some threshold, then generate a page hint for

that pair of pages.

Note that the URL comparison done by this expert is simplistic in that it does not

take into account the inherent structure that URLs have. For example, a difference

in the host name (e.g., www.bookpool.com) is more significant than a difference in

some identifier (e.g., 013882228). This shortcoming can be addressed by using more

sophisticated measures of string-similarity[17] that can take into account the distri-

bution of samples or can be trained with labeled examples[16]. In related practical

work, we have also experimented with improving the URL expert so that various

common components that appear in URLs, such as host names, unique identifiers,

dates and so on, are identified and compared appropriately. In this dissertation, we

report results obtained with the basic URL expert.

The following list describes the token level experts in more detail:

• Templates: Perhaps the most prevalent type of structure on web pages arises from

templates. We have already defined templates in describing the URL pattern expert.

Here, we use templates as generators for groups of web pages where data fields have

been replaced with placeholders. To generate a set of web pages corresponding to a

set of records, the template is instantiated for each record. Instantiating a template

involves replacing the placeholders with appropriate values from the record.

It is not surprising that templates are a common type of structure, because they allow

producers of information to provide a familiar context to consumers of information

with minimal effort. The unchanging parts of the template provide context for the

data fields. The following example illustrates the use of templates in detail.

The following two HTML segments contain weather information for two cities. Af-

32

ter spending a few seconds to learn the structure of the following HTML segment,

it is easier to find the same weather information for a different city in the second

segment.

<TD VALIGN=MIDDLE ALIGN=CENTER CLASS=obsInfo2 WIDTH=50%>

<B CLASS=obsTempTextA>54°F

</TD></TR>

<TR><TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Partly Cloudy

</TD>

<TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Feels Like
54°F

</TD></TR>

<TD VALIGN=MIDDLE ALIGN=CENTER CLASS=obsInfo2 WIDTH=50%>

<B CLASS=obsTempTextA>77°F

</TD></TR>

<TR><TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Fair

</TD>

<TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Feels Like
75°F

</TD></TR>

Like the URL pattern expert, the template expert is concerned with a specific kind of

template where a template is a sequence of alternating slots and stripes. A template

for the two segments above is shown below. The slots of the template are the labeled

boxes.

<TD VALIGN=MIDDLE ALIGN=CENTER CLASS=obsInfo2 WIDTH=50%>

<B CLASS=obsTempTextA> actualTemp °F

</TD></TR>

<TR><TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA> currentCondition

</TD>

<TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Feels Like
 feelsLikeTemp °F

</TD></TR>

33

The idea behind the template expert is to first find a template for a pair of pages and

then use the slots to determine which data items are likely to be in the same cluster.

The first step in doing this is a to determine a template for a set of pages, a simple

form of grammar induction. We describe the details of the induction algorithm in a

later chapter. Once the template is determined, the data values that have been used

to generate specific pages from this template can be easily determined. Then, for

each pair of values that fall into the same slot, the template expert generates a token

hint. For example, in the example above, the slot actualTemp has been assigned the

value 54 to generate the first segment and 77 to generate the second segment. Thus,

the template expert generates a token hint for the pair (55, 74), as well as for the

pairs (Fair, PartlyCloudy), (54, 75).

• List Structure: Another common type of structure of web pages is tabular structure.

Tables are used when the results of a query that retrieves more than one record are

to be displayed. Multiple records are displayed in a list whose rows are generated

by iterating over the records.

Just as a page shares a common structure with pages of the same page-type, each

row of a list shares a common structure with the other rows in the same list, and the

template idea applies equally well to the rows of a list as it does to pages. Let us

call the template representing the common structure of rows in a list a row template.

We extend the basic template model so that slots are either content slots as before,

or list slots, which are containers for row templates.

As an example, let’s create a template to generate HTML segments like the following

segment:

<h2>Cities in Pennsylvania</h2>

Aaronsburg

Abbottstown

Abington

Ackermanville

The outer template generates the first, second and last lines of the segment and

“calls” the inner template (represented by a double box) to generate the elements of

the list:

34

<h2>Cities in state </h2>

cities

The inner template, cities, simply generates one row of the list.2

 city

Like the template expert, the list structure expert first finds templates, then finds the

values that have been substituted into the slots, and finally generates token hints

for tokens that fall into the same slot. In the example above, the city slot is

instantiated with values from the set {Aaronsburg, Abbottstown, Abington, Ack-

ermanville}. Thus, the list structure expert generates token hints for all the pairs:

(Aaronsburg, Abbottstown), (Aaronsburg, Abington),

• Layout: Another common type of structure on web pages is that values of the same

field are placed at the same horizontal position. This structure is more common

within a single page, where values of the same field are aligned in the same screen

column much like the columns of a spreadsheet. The structure is also appears across

multiple pages for fields when to the left of the field only fixed-width items such

as images and labels are present. Figure 3.2 shows an example where alignment of

values in the list matches perfectly with the underlying structure of the data.

The layout expert uses a web browser (Internet Explorer, IE for short) to find po-

sitional information. To render an HTML document on the screen, IE parses the

HTML document into a DOM tree, and lays out the nodes of this tree according to

the HTML specifications. In the process, IE assigns x and y-coordinates to nodes

that contain text elements. The layout expert queries IE to retrieve position informa-
2In practice, more information needs to be specified before pages can be generated. In particular, in

addition to the slots being linked to the underlying data source, a method for determining the set of cities for

a particular instantiation of state needs to be specified. To make this concrete, suppose the data source is

the one shown in Figure 1.2. The slot state is linked to the “StateName” column of the “States” table. The

slot city is similarly linked to the “CityName” column of the “CityWeather” table. The outer template is

instantiated for every row of “States” whereas the inner template is instantiated for rows of “CityWeather”

where the “StateId” column of “CityWeather” matches the “StateId” column of “States” for the current row

of “States” that is being used within the outer template. This information needs to be specified before the

templates can be used to generate pages.

35

Figure 3.2: Alignment of Fields on a Web Page — On web pages that display tabular data, the alignment of

data items as seen on the screen usually reflects the underlying relational structure of the data. Columns of

the relational table are aligned parallel to a vertical axis and rows are parallel to a horizontal axis.

tion for all the text elements on all the pages. For each distinct x-coordinate value

xi, the expert builds a list of text nodes that are positioned at xi. Then, it generates

a token hint for all pairs within every text node list.

3.8 Clusters to Relational form

Our approach leaves data in clusters, but it is more useful to have it in relational form.

In this section, we present an algorithmic approach to convert clusters to relational tables,

which does not guarantee full accuracy in the general case.

Clusters align the values within columns of tables. Finding the relational form is the

problem of grouping columns into tables and then aligning the columns into rows such

that values in a row belong to a single record.

Let us first examine the problem under some simplifying assumptions: there are no

missing values in the relational tables; the list tables contain at least 2 records for every

parent record; all the clusters were found with 100% accuracy.

A table is a partitioned set of rows. Each partition of rows contains consecutive se-

quences of text nodes. A cell can contain a sequence of text nodes or a reference to one of

the row partitions of another table. Each column contains either sequences of text nodes

36

s1 s2 s3

s4 s5

s6 s7

s8 s9 s10 s11

s12 s13

s14 s15 s16

s17 s18

s19 s20

t1 t2 t3

t4 t5

t6 t7 t8 t9

t10 t11

t12 t13

t14 t15 t16

t17 t18

t19 t20 t21

t22 t23

Figure 3.3: Relational Structure of Data — References to values in other tables have been replaced with the

actual values. For example, the second column in the first row refers to values stored in another table. These

values, [s2,s3],[s4,s5],[s6,s7], are shown as an inner table within a cell of the outer table.

or references to row partitions of one particular table.

We follow a bottom-up approach. First, we form an initial set of columns from the

initial set of clusters. Each cluster maps uniquely to a single column. Then we iteratively

merge columns into tables and partition the rows of the resulting tables. A set of columns

can be grouped as the columns of a table if the columns can be ordered such that for every

token in the first column, the next token is in the second column and for every token in

the second column, the previous token is in the first column; for every token in the second

column, the next token is in the third column and for every token in the third column, the

previous token is in the second column; and so on. As an example, suppose that when the

clustering approach was run on the site whose relational structure is show in Figure 3.3, it

generated the following clusters: c1={s1, t1}, c2={s2, s4, s6, t2, t4}, c3={s3, s5, s7, t3, t5},

c4={s8, t6}, c5={s9, s14, t7, t14, t19}, c6={s10, s12, s15, s17, s19, t8, t10, t12, t15, t17,

t20, t22}, and c7={s11, s13, s16, s18, s20, t9, t11, t13, t16, t18, t21, t23} where s and t are

two pages and their contents are the text node sequences (s1, s2, ..., s20) and (t1, t2, ..., t23)

respectively. These clusters are also the starting columns which are shown in Figure 3.4 as

the leaf nodes. Among these columns, the pair of clusters c2 and c3 and the pair of c6 and c7

37

can be grouped as the columns of a table. By taking into account the order of text nodes,

we form a partition of the rows of the resulting table. Each partition is a consecutive

sequence of tokens and are represented by sequence of text nodes. Thus, the result of

merging c2 and c3 is a new column of references c2,3={[s2-s7], [t2-t5]} and the result

of merging c6 and c7 is the new column c6,7={[s10-s13],[s15-s20],[t8-t13],[t15-t18],[t20-

t23]} where [si-sj] denotes the sequence of consecutive tokens between and including si

and sj. We then repeat the merging step until no columns can be merged. The sequence

of merges is shown in the merge tree. To ensure that tables are not unnecessarily split

into multiple tables, the approach follows a strict bottom-up approach. This implies that

a set of columns will be merged only if the columns containing adjacent text nodes have

been maximally merged and cannot be included in the current merge. For example, c4

will not be merged with c5,6,7={[s9-s20], [t7-t23]} if c3 has not yet been merged into c2,3.

Doing this merge without including c2,3 would cause the top level table to be broken up

into multiple tables.

After all clusters have been merged, finding the relational tables is trivial. Each non-

leaf node in the merge tree corresponds to a table. The children of the node are the columns

of the table. Each table also has an additional column whose values correspond to the row

partitions of the table. For example the table that corresponds to node {[s10-s13],[s15-

s20],[t8-t13],[t15-t18],[t20-t23]} is shown below. The partition of rows that represent

[s10-s13] is assigned an identifier of 0, [s15-s20] an identifier of 1, and so on.

0 s10 s11

0 s12 s13

1 s15 s16

...

4 t20 t21

4 t22 t23

When the values in a column are token sequences in the merge tree, these values are

represented by references to the partition identifiers of the child table. For example the

table that corresponds to node {[s9-s20],[t7-t23]} is the following:

38

s1
t1

s2
s4
s6
t2
t4

s3
s5
s7
t3
t5

s8
t6

s9
s14
t7
t14
t19

s10
s12
s15
s17
s19
t8
t10
t12
t15
t17
t20
t22

s11
s13
s16
s18
s20
t9
t11
t13
t16
t18
t21
t23

[s2-s7]
[t2-t5]

[s10-s13]
[s15-s20]
[t8-t13]

[t15-t18]
[t20-t23]

[s9-s20]
[t7-t23]

[s1-s20]
[t1-t23]

Figure 3.4: Merge Steps to Compose Tables from Clusters — We merge clusters, each of which corresponds

to a column, in a bottom-up fashion to form tables.

39

0 s9 0

0 s14 1

1 t7 2

1 t14 3

1 t19 4

Now let’s consider the problem without making the simplifying assumptions we started

with. Namely, the relational data contains missing values; lists possibly have less than 2

records; and the clustering step may not find the clusters with 100% accuracy. This affects

the approach we described above in several ways. First, the process of merging columns

cannot simply rely on matching each token in one column to another token in a second

column because for some tokens there will be no matches either because there are missing

values or because the clustering step has misplaced some tokens incorrectly. Similarly,

the process of determining row partitions cannot rely on finding consecutive sequences of

tokens as the clustering step might have incorrectly clustered some of the tokens.

Even though the simplistic approach described above does not solve the problem of

finding the relational representation in the general case, the approach can be generalized.

In particular, the approach relies on making two types of decisions: merging columns

and partitioning rows. In the basic approach above, these decisions are made on strict

constraints on the distribution of consecutive tokens into clusters. The problem with these

strict constraints is when the clusters are not perfect, the algorithm will not be able to apply

merging and partitioning operations. As a first generalization step, the constraints can be

softened so that even there is “noise” in the form of missing or incorrectly clustered tokens,

the algorithm can continue to apply these operations. For example, the merge step can be

made less strict such that rather than requiring matches between all tokens, it can require

matches between only a percentage of the tokens. One problem with a less strict approach

is that at any point in the process, there might be more than one way to merge columns or

partition rows and only one of these might lead to the correct relational structure. Thus, a

second level of generalization is to view the problem of finding the relational form from

clusters as a search problem where the space of different sequences of merge and partition

operations is explored. We leave these types of extensions to our approach as future work.

40

3.9 Summary

In this chapter, we described a framework for combining heterogeneous experts. A crucial

feature of the framework is that it defines a common hypotheses language. This allows

arbitrary experts to be combined in a principled fashion. We also described the particular

experts we use for the site extraction problem and how we convert clusters, which is an

intermediate representation that reflects the underlying structure of the data closely, into

relational form.

41

42

Chapter 4

Results - CHEX

4.1 Evaluation Methodology

4.1.1 Dataset

Our main goal in evaluating our approach was to demonstrate that it achieves high ex-

traction accuracy in a variety of domains exhibiting differently structured pages. Thus,

we collected pages from three types of web sites: E-commerce sites, scientific journals,

and company job listings and evaluated our approach against wrappers created using a

supervised learning approach as in [46].

The purpose of evaluation is to determine how close the output of the system is to the

underlying structure of the data. Thus, evaluation requires both a dataset whose underlying

structure is known or can be reliably reconstructed albeit with human help to create an

answer key and a measure to determine how well the output matches this structure.

Collecting web datasets whose underlying structure is known is difficult, because this

requires access to the data source that the web site uses, but web sites do not normally

provide access to their data other than through their web pages.

Given that it is not possible to a build a dataset just by collecting data and its underlying

structure from the web, we have two alternative ways to build a dataset. We can either

generate synthetic data or start with real web data which we then manually label.

In the first alternative, we can start with a dataset whose structure is known and gen-

erate a web site from it, but to do this in a way so that the resulting site is realistic in size

and complexity is non-trivial.

Alternatively, we can start with a dataset whose structure is unknown and manually la-

43

bel the output of the approach. Doing this completely manually is a daunting task because

of the vast size of the data, which includes every possible value that can be extracted from

the site. Fortunately, the manual labeling effort can be reduced in two independent dimen-

sions. First, we focus only on the main data items on the site, such as fields related to

books on a bookstore site, and not other secondary fields, such as advertisements, or pre-

sentation fields, such as fonts. Second, the number of actual values that need to be labeled

can be reduced by using a semi-automated approach. Thus, we train a supervised extrac-

tion system to extract particular data items, validate the output of the supervised extraction

system by sampling, and compare the extracted values to the output of our system.

Comparing our approach to other approaches would also be desirable. Unfortunately,

site extraction is a new problem and there are no well-established datasets and results that

address the general unsupervised extraction challenge. This meant that we were limited

to using our own datasets while evaluating our approach in the web domain and that a

comparative analysis was not possible. To do a comparative analysis, we decided to build

a new set of experts for the record-linkage domain and compare our results with some

recently published results. We discuss our work in the record linkage domain in a separate

chapter.

4.1.2 Precision/Recall/F1 on Matching Clusters

We have used the following process in evaluating clusterings, which is especially useful

when the correct clustering is only partial, i.e., only some of the samples are in the correct

clustering: We call the clusters in the correct clustering “target” clusters. We evaluate each

target cluster in isolation and then aggregate over the individual results[2]. To do this, for

each target cluster, we find the output cluster that contains the largest number of target

values. If there is a tie, we pick the cluster with the fewest total values. Then we calculate

the retrieved and relevant count (RR), i.e., the number of target values in the output cluster.

We also calculate the total number of values in the output cluster (Ret), and the total

number of target values (Rel). We then compute precision, recall and F1 scores using the

standard definitions of RR/Ret, RR/Rel and 2 × precision × recall/(precision + recall),

respectively.

As a concrete example, suppose there are three target clusters A, B, and C as shown

in Figure 4.1. The evaluation process determines precision and recall values for all the

clusters. To determine precision and recall for cluster A, we find the extracted cluster that

44

contains the most number of values in A, which in this case is cluster 1. All values in

cluster 1 are also in cluster A so both the count of retrieved samples (Ret) and retrieved

and relevant samples (RR) is 3. This gives a precision score of 3/3 for cluster A. The

number of samples in cluster A, which is the count of relevant values, is 5. That gives

a recall of 3/5 and F1 of 3/4. Note that cluster A can be evaluated against any cluster,

but the evaluation process chooses the cluster that gives the highest recall. Even though

the evaluation process picks “good” matches, because each token is clustered into exactly

one cluster, the evaluation is still fair. This kind of evaluation would not work if it was

possible to have the output contain all possible clusters, but that would require tokens to

be in multiple clusters, which is not allowed by our approach. Next, we evaluate precision

and recall for cluster B. The extracted cluster that best matches cluster B is cluster 4.

This match gives a precision of 5/7, recall of 5/5 and F1 of 5/6. The third cluster C is best

evaluated against cluster 4 and that match gives a precision of 2/7, recall of 2/2, F1 of 2/9.

Note that both clusters B and C are evaluated against cluster 4. A more strict evaluation

method might be not to allow an extracted cluster to be matched to more than one target

cluster. In our method, the “penalty” for over-general clusters such as cluster 4 is reflected

as a drop in precision, but not in recall, which we found to be satisfactory. Note also that

the spurious cluster 2 does not play a role in the evaluation. This in fact is by design and

resolves the issue that even though in our approach we extract all of the data, our “labeled”

data set is only a small subset of the data. In this particular example, the target clusters do

not include any of the members of cluster 2.

4.2 Results

Evaluating our system is challenging because of the size and scope of the problem we

address. The output of existing web extraction systems is normally a small subset of the

output produced by our system on any given site. For example, if we compare our system

against a web-page wrapper, we can only evaluate a few of many clusters because the

wrapper would normally extract only a few fields whereas our system would cluster all the

tokens on the pages. Manually evaluating the system is also difficult because of the size of

the output. So instead of evaluating the full output, we focus here on evaluating how well

our system does in extracting target data from different types of web-sites, such as product

catalogs, electronic journals and job-listings.

45

target clusters

extracted clusters

Los Angeles
San Francisco
San Diego
Pittsburgh
Philadelphia

70
65
75
50
55

Los Angeles
San Francisco
San Diego

Pittsburgh
Philadelphia
California
Pennsylvania

7
5

70
65
75
50
55
7
5

F
C

1 2

3
4

A
B

C

Figure 4.1: Target and Extracted Clusters – To evaluate the accuracy of clustering, we compare the values

in each target cluster with the values in each one of the extracted clusters. For each target cluster, we pick

the extracted cluster with the highest recall score. Thus, cluster A is evaluated against cluster 1, cluster B

against cluster 4 and cluster C also against cluster 4. Note that because each value is placed in exactly one

extracted cluster, it is not possible to achieve recall and precision scores of 1.0 simply by generating all

possible clusters of values.

Specifically, we compare the output of CHEX to the output of web wrappers that have

been created using AgentBuilder [55] (a supervised wrapper induction system) and manu-

ally validated for correctness. The output of a wrapper when applied to a set of pages can

be represented as a table whose columns correspond to the fields extracted by the wrap-

per. We refer to these columns as target columns (or, equivalently, target fields) and the

extracted data values in each column as the target data.

We report experiments in three domains (Table 4.1). In the first experiment, we com-

pared CHEX to seven wrappers that return data from retail sites. These wrappers were

originally built for SRI’s CALO project[11] using a supervised extraction system. CALO

used these web agents to extract data about products from a specific category of the site’s

catalog. For example, the agent for buy.com extracts information about projectors for sale.

Ideally, we would like to spider each site, and then run CHEX to get the same data. In

practice, the size of these sites – hundreds of thousands of pages1 – made this impractical.

We would end up with too many pages for the current implementation of CHEX to handle

(a subject we address later). To scale the size of the problem down, we directed the spider

1For example, Google reports 996,000 matches to the query “site:buy.com”, which matches any page on

buy.com.

46

Field RR Ret. Rel. Precision Recall F1

Manufacturer 81 81 81 100% 100% 100%

Manufacturer No. 100 100 103 100% 97% 99%

Model No. 66 68 71 97% 93% 95%

Name 97 100 103 97% 94% 96%

Price 77 88 103 88% 75% 81%

Author 1173 1197 1212 98% 97% 97%

Title 1173 1188 1212 99% 97% 98%

URL 528 528 1212 100% 44% 61%

Position 1502 1502 1582 100% 95% 97%

Id 1318 1318 1551 100% 85% 92%

Location 1413 1413 1524 100% 93% 96%

Table 4.1: Summary of Results — We ran experiments in three domains: Journals, E-Commerce Sites, and

Job-Listings. We report precision, recall and F1 scores by comparison to data in fields extracted by wrappers

induced by a supervised learning system. The output of CHEX includes these fields as well as all other data

found on each site.

down to the correct category to collect pages that are relevant to the extraction task. Even

with a smaller number of relevant pages, the task is non-trivial as there are multiple types

of pages such as list and detail pages. To make the set of pages closer in characteristic

to one that a full-spidering would collect, we also spidered the site randomly to collect

additional pages. This gave us a collection of pages that is small enough but contains a

higher ratio of pages on which the CALO wrappers will work.

The target fields for this experiment were product name, manufacturer, model number,

item number (SKU) and price, all of which are generic across product types. We do almost

perfectly on 4 of the 5 fields (Table 4.2). On the price field, where we miss some values,

we in fact fail only on two of the sites. In both of these sites, CHEX extracts the price as

part of a larger field because of variations in the formatting of the price field. Note that

our evaluation criteria is rather strict: CHEX gets no credit for the longer field values even

though the values include the prices and they are in a cluster of their own. This in turn

lowers the overall precision and recall scores in Table 4.2.

Below are sample clusters extracted from overstock.com demonstrating the types of

clusters that CHEX extracts from retail sites. The structure of the output mirrors the or-

ganization of page and data clusters. Each page cluster contains a set of pages. For each

47

Web Site Extracted

Products Mfr Mfg# Mod# Name Price

Vendor Pgs. (Rel) (RR/Ret) (RR/Ret) (RR/Ret) (RR/Ret) (RR/Ret)

buy 24 12 12/12 12/12 10/12 9/12 0/0

compusa 26 16 16/16 16/16 16/16 16/16 15/16

gateway 22 9 - 6/6 6/6 6/6 6/6

newegg 24 10 10/10 10/10 10/10 10/10 0/10

overstock 26 13 - 13/13 13/13 13/13 13/13

tigerdirect 23 11 11/11 11/11 11/11 11/11 11/11

photoalley 44 32 32/32 32/32 - 32/32 32/32

Table 4.2: Extraction from E-Commerce Sites — All but one field is extracted with high accuracy across a

number of sites.

page cluster, the data fields on pages within that cluster are grouped into data clusters. The

output displays these data clusters below each page cluster. Looking at the data, it appears

that page cluster 9 is a set of list pages and page cluster 11 a set of detail pages. Data

cluster 192 is a cluster of category paths. In data cluster 150, CHEX has grouped together

some HTML comments, apparently referring to some internal site data. This cluster illus-

trates the difficulty of evaluating the output of CHEX against supervised wrappers. These

comments would not even be visible on a browser, so it is very unlikely that a user would

have built a wrapper to extract the data contained in the comments. Data cluster 291 is

a cluster of product names cleanly extracted from detail pages. In contrast, cluster 340

contains some HTML markup around extracted data. In fact, the extracted data is the

constant “Dimensions” for this set of pages and so not particularly useful. Both of these

issues can be solved by post-processing of the data: HTML markup can be stripped off

from text and clusters that contain the same value across all the pages can be eliminated

from further processing. Data cluster 305 is a cluster of unique identifiers. These types of

identifiers are common on retail sites. They are sometimes assigned arbitrarily by the site

and sometimes actual product codes. In data cluster 396, CHEX has collected pure HTML

with no useful content. Post-processing of the clusters can clearly remove this cluster as

well.
PageCluster 9 - Pages 7 1 5 11 3 8

DataCluster 192(6)
doc48475.HTML Apparel Shoes & Access. >> Handbags & Accessories
doc48477.HTML Books Music & Videos >> Videos
doc48473.HTML Electronics & Computers >> Computers & Printers
doc48474.HTML Electronics & Computers >> Home Office Equipment

48

doc48471.HTML Home & Garden >> Housewares
doc48476.HTML Worldstock Handcrafted >> World Jewelry

DataCluster 150(4)
doc48476.HTML <!- noSkus: 309 -> \n<!- itemCount: 0 -> \n<!- skuPage: 24 ->
doc48474.HTML <!- noSkus: 39 -> \n<!- itemCount: 0 -> \n<!- skuPage: 24 ->
doc48471.HTML <!- noSkus: 65 -> \n<!- itemCount: 0 -> \n<!- skuPage: 24 ->
doc48475.HTML <!- noSkus: 775 -> \n<!- itemCount: 0 -> \n<!- skuPage: 24 ->

PageCluster 11 - Pages 23 18 15 22 14 21 16 20 13 17 24 25 19
DataCluster 291(13)
doc48484.HTML Advueu 18-in. LCD Flat Panel Monitor with Speakers
doc48482.HTML Black 17-in. LCD Flat Panel Monitor with Speakers
doc48480.HTML Dell 2000FP 20in. LCD Flat Panel Monitor
doc48488.HTML Dell P1130 Black 21-inch Flat FD Trinitron CRT
...
doc48485.HTML Telart LT17A 17-inch LCD Monitor

DataCluster 340(13)
doc48487.HTML
 \nDimensions:
doc48481.HTML
 \nDimensions:
...
doc48486.HTML
 \nDimensions:

DataCluster 305(13)
doc48488.HTML 1042847
doc48486.HTML 1043475
...
doc48483.HTML 716735

DataCluster 396(7)
doc48481.HTML
 \n<table width=’100%’><tr><td valign=top> \n
doc48492.HTML
 \n<table width=’100%’><tr><td valign=top> \n
...
doc48488.HTML
 \n<table width=’100%’><tr><td valign=top> \n

To test CHEX on fully spidered sites, for our second experiment we selected four open-

access electronic journals which could be completely spidered: DMTCS, EJC, JAIR and

JMLR. We built wrappers for the author, title, and ArticleURL fields for either the ”detail

pages” (the pages with meta-data on the individual articles) or in the case of EJC for the

table-of-contents pages (because it had no detail pages on the individual articles). We ran

CHEX on the full collection of pages.

As shown in Table 4.3, CHEX correctly retrieved all the target values on DMTCS and

missed only one article on JMLR. CHEX retrieved approximately 90% of the values for

JAIR. The missed values are on pages that are clustered separately from the main cluster

of detail pages. On the EJC site, there are no individual pages for articles, but all the

information is still available from the table-of-contents pages (thus the large difference

between the number of pages and the articles). CHEX returned all the target values for the

author and title fields, but also included some spurious set of values. For the PDF/PS URL

field (for downloading the articles) on the EJC site, the results show 0 retrieved values

because CHEX returned a longer field containing multiple links to different formats of the

article, e.g.:
ps | pdf

For the last experiment, we picked 50 companies web sites with online job listings

49

Web Site Extracted

Articles Author Title URL

Journal Pages (Rel) (RR/Ret) (RR/Ret) (RR/Ret)

DMTCS 128 112 112/112 112/112 112/112

EJC 19 645 645/669 645/660 0/0

JAIR 347 297 259/259 259/259 259/259

JMLR 183 158 157/157 157/157 157/157

Table 4.3: Extraction from Electronic Journals — CHEX extracts almost all fields with 100% accuracy.

from the Forbes 500 list. On each of these sites, we spidered from the main job-listings

page down to the individual posting pages. Among the sites, the common fields were

position, requisition-id, and location, so we decided to evaluate CHEX on those. In Table

4.4, we report the results for 41 of the 50 sites. CHEX extracts 73% of the fields with

precision and recall scores higher than 0.9. On the fields where CHEX fails, the failure is

usually because CHEX extracts a larger field containing the target field.

The remaining 9 sites out of the 50 proved to be too difficult for CHEX. The set of

experts we used in the current version were not able to find structures correctly. The

most common cause of this was that some sites include long job descriptions in free-form

text with little HTML markup. Not only the experts have no particular understanding of

text, but they attempt to interpret text by breaking it into tokens This generates short and

usually meaningless segments with the result that the actual structures that the experts look

for become much harder to find. For example, the template structure easily gets obscured

by the long sequence of words in natural language text. In domains where free-form text

can be treated as atomic for the purposes of extraction, a pre-processing step where long

sequences of text is replaced with place-holder tokens would be useful so that individual

experts don’t have to be concerned with free-form text. In the more sophisticated approach

we describe in the next chapter, we address this issue by working on DOM text nodes

which provide a more meaningful decomposition of long free-form text segments.

Note that in the experiments, we report mainly on fields of base tables, which have

only one value per page, and not on fields of list tables, which may have any number of

values on a single page. List fields are generally more difficult to extract and the results

are often harder to evaluate.

50

Web Site Extracted(RR/Ret)
Pgs. Jobs(Rel) Position ID Location

altera 49 13 13/13 13/13 13/13
amer. tower 44 32 32/32 32/32 32/32
amerus 51 31 31/31 31/31 31/31
assoc. bank 39 16 16/16 0/0 16/16
avalonbay 29 25 25/25 25/25 25/25
bankunited 63 20 20/20 20/20 20/20
bea 114 93 47/47 47/47 47/47
broadcom 22 10 10/10 10/10 10/10
carolinafirst 253 84 84/84 84/84 84/84
devon 96 58 40/40 40/40 40/40
devonenergy 91 53 52/52 52/52 52/52
ea 28 15 15/15 15/15 15/15
eogresources 42 20 20/20 20/20 20/20
equitable 28 8 8/8 8/8 NA
fbr 33 30 30/30 30/30 30/30
flagstar 159 141 136/136 136/136 136/136
indymac 106 101 100/100 100/100 100/100
insight 63 31 31/31 NA 31/31
juniper 49 21 19/19 19/19 19/19
markel 33 19 16/16 16/16 16/16
medimmune 147 115 115/115 115/115 115/115
microchip 47 37 37/37 37/37 37/37
mylan 36 26 26/26 26/26 26/26
ncen 133 132 132/132 132/132 132/132
oge 11 5 5/5 5/5 5/5
oldnational 72 71 71/71 0/71 71/71
patterson 26 4 4/4 4/4 4/4
pepco 15 10 10/10 10/10 10/10
phoenix 23 15 15/15 15/15 15/15
pixar 32 27 23/23 23/23 23/23
pnc 45 20 20/20 20/20 20/20
protective 37 31 31/31 31/31 0/31
qlogic 61 59 59/59 59/59 59/59
rga 57 16 16/16 0/0 16/16
simon 66 49 49/49 49/49 49/49
skyfi 39 10 10/10 10/10 10/10
tollbrothers 53 50 50/50 50/50 50/50
troweprice 59 50 50/50 0/0 NA
trz 39 14 14/14 14/14 14/14
whitney 59 10 10/10 10/10 10/10
wilm. trust 14 10 10/10 10/10 10/10

Table 4.4: Extraction from Sites with Job Listings — On this domain, we evaluated CHEX on a larger dataset.

51

4.3 Observations

In the approach we described in the this chapter, experts make binary decisions in that for

a given pair, an expert chooses to output the hypothesis to state that the pair is in the same

cluster or chooses to not output the same hypothesis. When an expert does not generate

the hypothesis for a pair, it is ambiguous whether the expert has no knowledge about the

pair or it considers the pair unlikely to be in the same cluster. This is a shortcoming of

the approach because we’d like to allow the experts to be able to express hypotheses that

samples should not be in the same cluster.

Another shortcoming of the approach is that for a large class of experts the decision

to generate hypotheses is intrinsically not binary. Any expert that computes a distance or

similarity measure between samples falls into this class. An obvious way to turn the range

of values into a binary decision is by thresholding but this potentially loses information

that may be useful while combining the hypotheses.

An interesting property of our approach is that unlike standard clustering approaches

where the clustering granularity is specified by an external parameter such as number

of clusters or intra-cluster distance threshold, the probabilistic evaluation naturally finds

the optimal granularity. This also means that the trivial solution of a single cluster of

all samples, which by definition satisfies any set of hints, is not necessarily the optimal

solution. A clustering where clusters include only a minimal set of samples to satisfy the

given set of hypotheses generally leads to a higher conditional probability of the given set

of hypotheses and thus is the optimal solution.

52

Chapter 5

CONFHEX: Clustering with Confidence
Scores from Heterogeneous Experts

5.1 Overview

In the previous two chapters, we defined a basic framework for combining heterogeneous

experts, applied it to data extraction in the web domain, and reported on the results of our

experiments with it. Although the basic framework performs well, it has some some short-

comings, namely that experts cannot hypothesize that samples are not in the same cluster

and that any level of confidence an expert may assign to its hypotheses is not available at

the time when hypotheses are combined. In this chapter, we address these shortcomings

by extending the hypothesis language so that experts assign confidence scores to the hy-

potheses they generate, but leave other “shortcomings” such as coping with unstructured

text for future work.

A confidence score on a hypothesis represents a probability estimate of that expert that

the statement is going to be true in the solution. A score of 0 indicates that the expert

believes the hypothesis to be false and a score of 1 indicates that it believes the hypothesis

to be true. If a hypothesis is completely out of the domain of an expert, it can assign the

hypothesis a score of 0.5 indicating that as far as the expert is concerned, the hypothesis is

equally likely to be true or false.

53

5.2 Bayesian Network

5.2.1 Structure

In CHEX, we defined an optimal clustering as one that maximized the probability of the hy-

potheses given the clustering. To compute this probability, we defined a stochastic process

of hypotheses generation from clusterings. This kind of approach assigns a probability to

a given set of hypotheses for a given clustering, but cannot take into account confidence

scores assigned to the hypotheses, which is what we would like to do in CONFHEX.

Instead of attempting to define a stochastic process of hypotheses generation as we

did in CHEX, here we utilize Bayesian networks, which have been extensively studied

for representing hypotheses and confidence scores. We use the conceptual structure of a

Bayesian network and represent hypotheses with nodes in the network without actually

using the network to compute probabilities.

In typical applications of Bayesian networks[44, 74], there are a number of variables

which model the hidden state of the world and another set of variables which represent

the observations. The structure and parameters of the network represent the dependencies

between all the variables, but most importantly between hidden variables and observed

variables, and allows the distribution of assignments to the hidden variables to be deter-

mined given the assignments to the observed variables.

As in CHEX, our goal is to find the optimal clustering given a set of hypotheses. We

represent the clustering problem as a Bayesian network as follows (Figure 5.1. The struc-

ture of the network is a tree. There is one root variable C which represents the clustering

and whose domain is the set of all clusterings (of the given samples). The immediate de-

scendants of this node represent the set of hypotheses on pairs. Let’s call these variables

Lij where i and j range over the samples [L stands for link]. The domain of Lij is true,

false. The descendants of each Lij are nodes that represent experts and there is one such

node Ekij for each expert where k ranges over the set of experts.

These nodes are virtual because rather than being true random variables that range

over the output of the experts, they always take on the “observed” value together with a

confidence score assignment[58]. In contrast, a true observed variable would have a proper

domain and assigned a single value from that domain (with the implied confidence score

of “1”).

The Bayesian network determines the full joint distribution of variables C, Lij , and

54

E1ab

E2ab

Lab

E1ac

E2ac

LacC

E1bc

E2bc

Lbc

clusterings
{{abc}},
{{ab}, {c}},
{{ac}, {b}},
{{bc}, {a}},
{{a}, {b}, {c}}

link between a&b
true, false

virtual evidence
from E2 on link
between b&c

Figure 5.1: Bayesian Network for Clustering — Evidence as collected by the experts enter the network at

the leaf nodes and determines the probability of a pair of samples being in the same cluster. This is then

used to find the most likely assignment to the root node C which ranges over all possible clusterings of the

samples.

Ekij . Our goal is to find the most likely value of the clustering node C given the values

of Ekij , which represent the outputs from the experts. In doing this we are interested in

computing the values of P (C = c|Evidence) for different values of c, where Evidence is

the set set of Ekij . First, we apply the Bayesian theorem:

P (C = c|Evidence) =
P (C = c ∧ Evidence)

P (Evidence)
=

P (Evidence|C = c)P (C = c)

P (Evidence)

The factor P (C = c) is a constant because we assume that all clusterings are equally

likely. It does not need to be taking into account in determining the most likely value of C.

The prior probability of evidence P (Evidence) does not depend on c and so does not play

a role in determining the most likely value of C either. The last factor P (Evidence|C = c)

can be computed with the assumption that the experts’ outputs, Ekij , are independent given

a clustering:

P (Evidence|C = c) =
∏
i,j,k

P (Ekij|C = c)

In computing the factors of this product, the intermediate nodes Lij need to be taken into

account. The domain of Lij is True, False, so:

P (Ekij|C = c) = P (Ekij|Lij = True)P (Lij = True|C = c)

+P (Ekij|Lij = False)P (Lij = False|C = c)

Of the two terms, one will always be zero. That’s because P (Lij = True|C = c) is 1

55

Figure 5.2: Sample Probability Tables — The probability table for the root node C reflects that all cluster-

ings are equally likely, the probability table for Lab reflects the deterministic relation between a particular

clustering and the existence of a link between samples a and b, and the probability table for E1ab reflects the

confidence of expert E1 on the hypothesis that a and b are in the same cluster.

when samples i and j are in the same cluster in c and 0 when they are not. Thus:

P (Ekij|C = c) =

{
P (Ekij|Lij = True) if i, j are in the same cluster in c

P (Ekij|Lij = False) otherwise

The last equation leads to a method to compute unnormalized probabilities for clus-

terings. To determine the conditional probability of a clustering c given the output of the

experts, first determine whether each Lij is true or false by checking if samples i and j are

in the same cluster in c. Then for each expert Ekij , multiply the probabilities P (Ekij|Lij).

The product of all these intermediate factors is the unnormalized conditional probability

of clustering c.

5.2.2 Parameters

Corresponding to the three levels of the Bayesian Network, there are three types of proba-

bility tables. Here we describe how the probabilities in each of these tables are determined.

The first is the probability distribution of variable C. As before, we assume each clus-

tering is equally likely and assign a uniform distribution to C. The second is the conditional

probability table for Lij . This table contains values for P (Lij|C). Given a particular clus-

tering, the value of Lij is fully determined, thus the values are either 0 or 1. If the samples

i and j are in the same cluster in C, then P (Lij|C) is 1. Otherwise, it is 0. The third type

of parameter, P (Ekij|Lij), represents the belief of expert k in the hypothesis Lij .

56

Figure 5.2 shows the probability tables for a clustering problem of three samples a,

b, and c. The table for P (C) assigns a uniform probability of 0.2 to each clustering as

there are a total of five clusterings of 3 samples. The table for P (Lab|C) demonstrates

the deterministic relation between the clustering variable C and the hypotheses Lij . For

example when C takes on the value ac, b, the value of Lab is false by definition. Thus,

P (Lab = True|C = ac, b) = 0 and P (Lab = False|C = ac, b) = 1. The third table,

P (E1ab|Lab), contains confidence scores assigned to the hypothesis Lab by expert 1. In

this particular example, expert 1 has assigned a score of 0.7 to Lab = True and 0.3 to

Lab = False. The next sections describe what these numbers mean and how they are

computed.

5.2.3 Confidence Scores

When an expert generates output, it assigns a confidence score to each hypothesis. One

question is how experts arrive at these confidence scores. We discuss two alternatives:

each expert determining its own confidence score and the Bayesian network modeling the

output of each expert.

Virtual Nodes

One approach is to make it the responsibility of the expert to determine the confidence

scores which are introduced to the Bayesian network via the virtual nodes Ekij . This

provides some flexibility in that each expert can use a different method to determine con-

fidence scores. For example, experts that are hand-coded to represent some human expert

knowledge can use the human expert’s subjective confidence level. Experts that rely on

“global” statistics (e.g., distribution of first names) can use these global statistics to assign

confidence scores.

Leaving aside the subjective confidence level, the mapping of experts output to con-

fidence scores can be viewed as a learning problem. More specifically, the problem is to

estimate P (Ekij|Lij) where Lij is either true or false. When Lij is true P (Ekij|Lij) is the

distribution of the output that the expert generates given that the samples are in the same

cluster. We call this the within-cluster distribution. For example, a string-edit distance ex-

pert would generate output that is skewed towards smaller values when the samples are in

the same cluster (i.e., refer to the same entity). The second distribution, P (Ekij|Lij) when

Lij is false, is the distribution of the output when the samples are not in the same clus-

57

0

200

400

600

800

1000

1200

0.2 0.4 0.6 0.8 1.0

 Normalized String-Edit Distance

C
ou

nt
 o

f S
am

pl
es

within-cluster
betwen-clusters

Figure 5.3: Distribution of Distance Scores for an Expert — For this particular expert, the distribution of

distance scores is skewed towards small values for pairs that are in the same cluster and towards larger values

for those that are in separate clusters.

ter. We call this distribution, the between-cluster distribution. In Figure 5.3, the within-

cluster and between-cluster distributions of sample counts for a string-edit based expert

are shown. To determine these distributions, we used training data in which samples were

clustered manually. We ran the string-edit expert on the data, which assigned a distance

to each sample pair. The distances were normalized by the total length of the strings so

that the values fall between 0.0 and 1.0. We next divided the sample pairs into two sets

to determine the within-cluster and between-cluster distributions. One set contained pairs

such that both samples are in the same cluster and the other set contained the remaining

pairs. Then, we counted the number of sample pairs whose distance fall into bins of width

0.1 for both sets and plotted the graph shown in Figure 5.3. As expected the within-cluster

distribution is clearly skewed towards smaller values and the between-cluster distribution

to relatively larger values.

If the form of the distributions can be determined, learning the mapping from expert

output to confidence scores reduces to estimating the parameters of these distributions.

For example, if the expert generates output that tend to fall into a normal distribution for

samples from the same cluster, then the statistics collected from the training data deter-

mines P (Ekij|Lij = true). Alternatively, the output can be discretized into the buckets

of a multinomial distribution to approximate the unknown form of the actual distribution.

The statistics collected from the training data determine the probabilities of the buckets.

The statistics we collect from training data is potentially noisy and can lead to proba-

58

bility values of zero. To reduce some of this noise, we apply a smoothing technique to the

multinomial distribution. In particular, we smooth our initial estimate of the distribution

by computing its convolution with a Gaussian. The smoothing step flattens the probability

distribution such that probabilities which are near the extremes of 0 and 1 are pulled to-

wards 0.5. The amount of smoothing depends on the standard deviation of the Gaussian.

We determined 0.051 to work sufficiently well empirically and have consistently used it to

smooth the distribution estimates.

After training, an expert goes through the following steps for each sample pair i, j:

1. Generate output for the given sample.

2. Map the discretized output value to a confidence score.

3. Set Ekij to “observed” in the Bayesian network and P (Ekij|Lij = true) to the

confidence score.

Observed Nodes

A second and simpler approach is to model the multinomial distribution within the Bayes-

ian network directly. To do this, we extend the domain of Ekij to all the discretized values

of expert k. Then the conditional probability table of P (Ekij|Lij) in the Bayesian network

directly represents the multinomial distribution. The values of this table can be determined

using the same approach as above, but now the expert does not need to map its output to

a confidence score as that step becomes the responsibility of the network. Thus, the steps

are:

1. Generate output for the given sample.

2. Set Ekij to the discretized output value.

None of the experts we have used for our experiments has an intrinsic mechanism to

assign confidence levels. Each expert simply outputs similarity or distance scores, which

the second approach allows to be directly introduced to the Bayesian network. Thus, we

use observed nodes in our Bayesian network model.

5.2.4 Belief Propagation

In a typical application of a Bayesian network, once the values of the observed variables

are assigned, the belief is propagated to the hidden variables and thus the distribution of the

1All scores are normalized so that they take on values between 0 and 1 and discretized into 10 bins.

59

unknown state of the world is discovered. The propagation of belief through the network

can be done with efficient algorithms.

Unfortunately, standard propagation algorithms cannot be efficiently applied to the

Bayesian network described here. This is because in the typical usage, the hidden state of

the world is represented by a number of variables each of which has a small domain, but

in our representation, it is represented by a single variable with a very large domain. The

standard propagation algorithms ultimately find the distribution of each of the variables

and so compute the probability of every value in the exponentially large domain of the

clustering variable. This takes an exponentially long time.

The difference between the typical Bayesian model and ours arises from inherent con-

sistency constraints of the clustering domain. An alternative representation is to remove

the root variable C from the network. The remaining network can be evaluated efficiently

as the only remaining hidden variables are Lij whose domains are true, false. Unfortu-

nately, it is not possible to use the independent distributions of Lij . The most likely value

of some node might not be the most likely value of that node if all the other nodes are

taken into account, because the most likely values of other nodes might be in conflict with

the most likely value of that node.

As before, we are interested only in the most likely value of the clustering node and

not in its full distribution. Thus, we revert to a search-based approach to find the most

likely clustering and use the Bayesian network to evaluate particular clusterings.

In evaluating a particular clustering c, the network assigns P (C = c|Evidence) the

product of all Pij where Pij = P (Lij = True|Evidence) if si and sj are in the same

cluster in c and P (Lij = False|Evidence) otherwise. Each P (Lij|Evidence) can be

computed by simply propagating belief from its children, namely Ekij .

5.3 Combining Experts

The approach combines expert in two ways: first, in assigning the combined confidence

score to a single hypothesis that a particular pair is in the same cluster, and second, in

finding the most likely clustering given all the hypotheses.

Combining the confidence scores of multiple experts for individual hypotheses using

the Bayesian network is equivalent to naive-Bayes learning for binary classification. Con-

sider the problem of determining if a pair of samples is in the same cluster given a set

60

of similarity scores from multiple experts. This problem is a binary classification prob-

lem on pairs where features are defined on pairs (rather than on individual samples) in

the form of experts. Each feature represents a different method of computing a similarity

measure on a pair of samples. The classification problem is to assign a value of true or

false to a pair based on the values of these features. This can be cast to a probabilistic

framework as finding the value of H such that P (H|F1, F2, ..., Fn) is maximized, where

H is the hypothesis that a particular pair is in the same cluster and Fi are the n experts.

We can simplify this problem by assuming that the similarity score from each expert is

conditionally independent give the hypothesis. This assumption leads to the well-known

formula:

P (H|F1, F2, ..., Fn) =
P (H)

∏
i P (Fi|H)

Z

where Z is a constant representing the prior probability of observing the features. This

formula is essentially identical to the one used in propagating belief from the expert nodes

to Lij . This is expected as the structure of the Bayesian network makes the naive-Bayes

assumption explicit: The only dependence relation between an expert and the rest of the

graph is through the hypothesis node Lij . Thus, knowing the value of Lij , which corre-

sponds to H above, breaks the transfer of information from child expert nodes Ekij . In

other words, experts are conditionally independent given the hypothesis.

The more interesting case is combining the confidence scores on multiple hypothe-

ses to find a consistent model. The approach we follow here enforces consistency by

restricting solutions to only consistent subsets of hypotheses. These subsets of consistent

hypotheses is defined by the domain of root node which varies over clusterings and by the

conditional probability tables of Lij which set the probability of inconsistent hypotheses

to zero.

The following example illustrates how consistency is maintained by the root node and

how this affects the distributions of various variables through propagation. First, we’ll use

a simplified network from which Ekij have been removed. Thus, the observations will be

whether a hypothesis is true or not instead of the output of experts. The network has 4

nodes for clustering 3 samples a, b, and c: one root node C whose domain is the set of

five clusterings {a, b, c}, {a, bc}, {b, ac}, {c, ab}, and {abc}; and three nodes Lab, Lac,

and Lbc whose domains are true, false. We assume that each clustering is equally likely

so the distribution of C without any observations is the uniform distribution: P(C=c)=0.2

for clustering c. Suppose now hypothesis Lab is observed to be true. Propagating the

61

new distribution of Lab through its conditional probability table to node C gives the new

distribution for C: P (C = c|Lab = true) = .5 for c=c, ab or c=abc and 0 otherwise. At

this point, the clusterings that are not in agreement with Lab have 0 probability. Suppose

next hypothesis Lac is observed to be true. Propagating this distribution to node C updates

the distribution of C so that the only possible value of C is abc, the only clustering that

is in agreement with both Lab and Lac. Note that the conditional distribution of Lbc, the

remaining hypothesis, reflects that its value is determined by the observations on the other

hypotheses: P (Lbc = true|Lab = true, Lac = true) = 1. Clearly, assigning false to Lbc

as the observed value results in an inconsistent set of observations and the probability of

any clustering becomes 0.

Propagation of belief when the observations are on outputs of the experts follows the

same pattern, but inconsistent beliefs are handled gracefully. Suppose the combined belief

from the experts is 0.7 on Lab and 0.8 on Lac. This results in the following distribution for

node C:

P (a, b, c|Lab = true, Lac = true) = 0.06

P (a, bc|Lab = true, Lac = true) = 0.06

P (b, ac|Lab = true, Lac = true) = 0.23

P (c, ab|Lab = true, Lac = true) = 0.13

P (abc|Lab = true, Lac = true) = 0.53

Suppose now the combined belief on Lbc is 0.4. In a non-probabilistic setting where

confidence scores below 0.5 imply negation, a confidence score of 0.4 on Lbc would mean

that b and c are not in the same cluster, but this is in conflict with the previous hypotheses

which state that samples a and b are in the same cluster as well as samples a and c. Fortu-

nately, the conflicting belief can be propagated through the network as before to compute

the new distribution of P.

P (a, b, c|Lab = true, Lac = true) = 0.07

P (a, bc|Lab = true, Lac = true) = 0.05

P (b, ac|Lab = true, Lac = true) = 0.28

P (c, ab|Lab = true, Lac = true) = 0.16

P (abc|Lab = true, Lac = true) = 0.44

The hypothesis that samples b and c should not be in the same cluster reduce the pos-

terior probability of {abc} and {a, bc} as would be expected intuitively, but the level of

confidence in Lbc is not high enough to change the most likely clustering. In this particular

case, the belief in Lbc needs to be less than 0.3 before the most likely clustering switches

62

to {b, ac} from {abc}.

5.4 Web Domain

5.4.1 Overview

In the web domain, we solve two clustering problems: page clustering and data clustering.

These problems are dependent in that solving the page clustering problem makes the data

clustering easier and vice versa, so a co-clustering approach as in [26] or [25] is reasonable.

However, we were able to achieve good results without co-clustering techniques in both

the web domain and the record linkage domain. We leave it as future work to determine

whether further improvement in performance is possible by applying co-clustering on top

of our framework.

In page clustering, the goal is to find clusters of pages such that each cluster corre-

sponds to one page-type. In data clustering, the goal is to find clusters tokens such that

each cluster corresponds to one column of a relational table.

5.4.2 Page Clustering

Being able to cluster pages according to their page-type, a set of pages that contain the

same type of data and have similar HTML structure, is a useful step in unsupervised data

extraction. If an accurate page clustering is found, then data clustering, which we describe

in the next section, can take advantage of the page clustering. One approach to doing this

is by limiting data clustering to within page clusters, which reduces the overall size of the

data clustering problem by dividing it into multiple independent problems.

To cluster web pages from a web-site, searching multiple types of structure is useful,

if not necessary. As in the previous chapters, our approach to page-clustering is to build

experts for finding different types of structures. Each expert focuses on a particular struc-

ture and passes its discoveries as hypotheses into the Bayesian network. Unlike CHEX,

the Bayesian network approach allows experts to assign confidence scores to hypotheses.

This in turn expands the types of experts that can be combined in CONFHEX.

We use the following experts for page clustering:

63

Experts

• URL Expert: As in CHEX, this expert takes advantage of the structure of the URLs

on a given site. Two pages that are of the same type will normally have similar

URLs. In contrast to CHEX where the expert uses a threshold on similarity scores,

here the similarity scores are introduced to the Bayesian network as evidence. The

similarity of the URLs of two pages is computed from the length of the longest

common subsequence of their characters.

• Template Expert: We have defined templates and one type of template expert in

Chapter 3. In CONFHEX, we use the template structure to determine a similarity

score on a pair of pages. The template expert determines the similarity of two pages

by comparing the length of the template to the length of the pages. The longer the

sequence, the more likely the pages are to be in the same cluster.

• Layout Expert: As in CHEX, we make use of the layout structure of pages. In

page clustering, the layout experts compute a similarity score from the layout of a

pair of page as follows: The layout expert first computes the distribution of DOM

nodes along the x-axis. This is simply the number of DOM nodes with the same

x-coordinate at each position along the x-axis. The expert then assigns a similarity

to a pair of pages by comparing the distributions of the two pages. In particular, the

expert casts the distributions as vectors (where each position is a dimension) and

finds the cosine similarity between the two “vectors” of the documents. The idea

behind this expert is that similar pages, especially similar list pages, have many items

that are all positioned at the same x-coordinate and their DOM node distribution

along the x-axis will be similar.

• List Expert: We use the same expert as in CHEX to analyze list structure, but instead

of generating token hints, we use the list structure to compute a similarity score

between two pages based on the coverage of the template.

• Table Expert: This is a new expert that we introduce in CONFHEX. It uses tem-

plate coverage to determine similarity but only after finding HTML tags that are

commonly used to represent tabular data and then dropping all but the first few rows

of each table. The idea behind this expert is that even when tables (and lists) have

widely varying number of elements across multiple pages, if the pages are of the

same page-type, then the first few rows, which typically include column names,

64

Figure 5.4: Sample HTML as Displayed in a Browser — Only text nodes, such as “Feels Like:” and “SW

14mph” are visible on screen.

from corresponding tables will be similar.

5.4.3 Data Clustering

To automatically extract data from web pages, we cluster text segments so that each cluster

corresponds to a single column of a relational table. We can then determine the relational

tables by examining the clusters of text segments and the order in which they appear on

the web pages.

One problem is determining the text segment boundaries. We bypass this problem by

taking advantage of the HTML structure of pages. The HTML parse tree of a web page

already separates the text into reasonably-sized segments: Any sequence of characters that

are not part of HTML markup becomes a single text segment. Thus, given a web site,

we first determine the set of text segments using the HTML parse tree and then run our

clustering algorithm on the set of text segments. As an example, take the following HTML

snippet which is taken from the web page shown in Figure 5.4:

<div class="forecast-module">
Current conditions as of 3:53 pm PDT
<h3>Fair</h3>
<dl>
<dt>Feels Like:</dt><dd>68°</dd>
<dt>Barometer:</dt><dd>29.91 in and falling</dd>
...

The parse tree for this segment is as follows:

65

Node: div
Node: em

Text: Current conditions as of 3:53 pm PDT
Node: h3

Text: Fair
Node: dl

Node: dt
Text: Feels Like:

Node: dd
Text: 68°

Node: dt
Text: Barometer:

Node: dd
Text: 29.91 in and falling

...

The set of text nodes in the parse tree define the set of samples for clustering. In

this example, the sample set would include the 6 text segments “Current conditions as

of 3:53 pm PDT”, “Fair”, “Feels Like:”, “68°”, “Barometer:” and “29.91 in and

falling”. Note that even though the samples are just text segments, the experts can still use

contextual information. For example, we have an expert that determines the similarity of

two text segments by comparing the path from each node to the root of the HTML parse

tree. This expert clearly uses information that is only available when the text segment is

considered within its HTML context.

Experts

We group the data experts into three types. The first type of expert uses only the content

of the text segment in assigning similarity scores. In other words, a pair of text segments

will be assigned the same similarity score regardless of where on a page and on a web site

they appear. The second type uses context from the page. This implies that a pair of text

segments may be assigned a different similarity score depending on where they appear on

the page. In fact, our current experts of this type rely only on context and not content in

assigning similarity scores. The third type of expert also uses contextual information, but

the context is global in the sense that it can extend to all spidered pages and links. The

template experts are of this third type in that the similarity score depends on a template

which is induced from multiple pages.

The following experts are content-based:

• Date Expert: Determines the similarity of two text segments by comparing the

dates they contain. The date expert can interpret many different representations of

66

dates. To do this, it searches for a variety of patterns so that it can find dates such

as “2/16/07”, “20 Jan 2007”, and “May 23”. It assigns a similarity score to a pair of

samples based on the formats of the dates it finds in each sample. Two samples that

contain the same format are assigned a larger similarity score than two samples that

contain dates in different formats which are in turned assigned a larger similarity

score than two samples only one of which contains a date. The expert computes

the similarity score by first transforming each sample into a sequence of pattern

identifiers, then finding the string-edit distance between the two pattern sequences

and finally normalizing the distance by the length of the sequences.

• Levenshtein Expert: Determines the similarity of two text segments by calculating

the Levenshtein distance between the character sequences of the two. The distance

is normalized by the sum of lengths of the text segments.

• Text Pattern Expert: Determines the similarity of text segments by analyzing the

sequence of character classes of the two. For example, ”12.49” and ”109.49” are

similar because both contain a sequence of digits, followed by a period, followed

by a sequence of digits. This is done by tokenizing each text segment and then

determining the similarity of the token sequences with Levenshtein distance. The

goal of tokenization is to reduce character sequences into more generic tokens. In

our current implementation, we have four such generic tokens: <consecutive upper

case letters>, <consecutive lower case letters>, <digits>, and <spaces>. All other

characters are represented as individual tokens and maintain their identity. In the

example above, both sequences are tokenized as <digits><.><digits>. Thus, the

distance between them is 0.

The next two experts use page context:

• DOM Path Expert: Analyzes the HTML structure of pages and determines the

similarity of two text segments by comparing their paths in the HTML parse tree.

The path of a text segment is the sequence of ancestor nodes up to the root of the tree.

It is common for web sites to use the same kind formatting to display particular types

of information even when the information appears in different context on different

pages. The idea behind this expert is to identify text segments that are surrounded

by similar HTML tags even though the segments may appear in different parts of

the tree. For example, we would like the expert to assign a high similarity score

to two bold segments that are items in a list which is itself in a table cell. To do

67

this, the expert first determines the path from each text node to the root of the parse

tree. In this particular example, the path, going from immediate parents to the root,

start as follows: <TD> <TR> <TABLE> ... The expert then

finds the first location on the two paths that don’t refer to the same type node. In

the example, the paths are identical all the way to the 6th position which refers to

the <TABLE> node. If the next elements are not the same, then the first position

where paths differ would be the 7th. The expert then normalizes this number by the

total length of the paths so that identical paths get a similarity score of 1 and paths

that differ in the first position get a similarity score of 0.

• Layout Expert: Analyzes the layout of pages and hypothesizes that two text seg-

ments are in the same cluster if they are aligned in columns, that is, they have the

same x-coordinate on the screen. Most lists on web pages are laid out so that items

in the list are precisely at the same x-coordinate. The same observation is true for

columns of tables. This expert first determines the x-coordinate of text nodes by

loading pages into a browser window and querying the browser. It then assigns a

similarity of zero to pairs of text nodes that have the same x-coordinate and one to

pairs that do not.

The next two experts use global context:

• Template Expert: Analyzes the token sequence of pages to find unique sequences

of tokens that are common to all the pages. These common sequences determine a

template for the given set of pages. This expert hypothesizes that text segments that

fall into the same slot of a template are in the same cluster.

• DOM Template Expert: Analyzes the HTML structure of a page to find repeating

patterns and hypothesizes that segments that match the same “slot” of a pattern are

in the same cluster. The expert first applies the Hierarchical Template algorithm,

described in detail in an earlier chapter, to each page. This results in a template

which contains sub-templates each of which matches repeating subtree structures

within the HTML parse tree. For example, a page that contains a list of product

matches to a query as well as a list of product categories will result in a template that

has two sub-templates: one sub-template will match the rows of the product list and

another sub-template will match the rows of the category list. Applying the template

to the page gives the data segments that fall into the slots of the sub-templates. These

slots usually correspond to the fields of the items in each list. For example, the slots

68

of first sub-template above might be the product title, detail URL, and the price and

the slots of the second might be the category name, and the category URL. Each

slot can be identified by its position in the hierarchy of templates. For example,

the first slot of the second list is different from the second slot of the same list and

different from the first slot of the first list. The DOM template expert assigns a

similarity score to text segment pairs in relation to the hierarchical distance between

the slots in which they fall. Text segments that fall into the exact same slot, i.e., in

the same column of the same list, get the highest similarity score. Segments that are

in different top-level lists get the lowest score.

5.5 Summary

In this chapter, we developed a second framework for clustering with heterogeneous ex-

perts. In the new framework, experts assign confidence scores to their hypotheses. This

allows more information from the experts to be available at the time when the hypotheses

are combined.

In the next chapters, we first describe our experiments in the web domain and report

our results. Then, we apply the same framework to the record linkage domain and do a

comparative analysis on our results.

69

70

Chapter 6

Results - CONFHEX

6.1 Goals

We have several goals in evaluating our approach. Our main goals are to demonstrate that

our approach achieves high clustering accuracy and that the results obtained by combining

multiple experts are generally better than those that can be obtained by individual experts.

Another goal is to empirically show that CONFHEX is an improvement over CHEX.

We apply our approach to both the page clustering task and the data clustering task,

two tasks which we described in the previous chapter. For the page clustering experiments,

we manually label all pages spidered from web sites. Each page is assigned a label repre-

senting its page-type. We then evaluate the page clusters against these labels. For the data

clustering experiments, we use a set of agents previously built using a supervised wrapper

induction tool. Each of these agents extract product information from a particular site. We

evaluate the data clusters against data extracted by the agents.

6.2 CONFHEX on the Web Dataset

To evaluate our approach in the data extraction domain, we run two sets of experiments.

In the first set, we cluster pages into their page-types, such as detail pages or list pages. In

the second set of experiments, we cluster text segments so that each cluster corresponds to

a column of relational data.

71

6.2.1 Page Clustering

In this section, we report our results on page clustering performance. Our experiments

show that the system achieves a micro-averaged pairwise-F1 score of 0.83 and that clus-

tering accuracy is higher when all experts are active compared to when any one expert is

active.

In this set of results, we use a commonly used (e.g., [14, 25, 69]) performance measure

in clustering work, namely the pairwise-F1 score. The pairwise-F1 score is suitable when

cluster labels of all samples are known. This is the case in evaluating the page clusters

where we have manually labeled all pages according to their page-types, but is not the

case in evaluating data clusters because we know labels only for fields extracted by the

wrappers.

In computing the pairwise-F1 score, the clustering problem is evaluated as a classifi-

cation problem on pairs of samples. Each pair is labeled as either “in the same cluster”

(positive) or “in separate clusters” (negative). The output clustering is evaluated on how

well it matches these labels on pairwise decisions. This gives counts on true positives and

negatives, and false positives and negatives. From these counts, the standard F1 score is

computed.

For the web domain, we experiment with a collection of pages from on-line retail

stores. We collect sets of pages from these sites by both directed and random spidering,

so that the sets include a variety of page-types. Then we manually label all the pages with

their page-types. In the experiments, we hold out one site at a time, train our system on the

remaining sites and then evaluate the system on the held-out site. We use the pairwise-F1

measure to evaluate clustering accuracy and calculate averages over the sites.

In our experiments, we compare the clustering performance of individual experts with

that of all the experts combined. Our results are summarized in Table 1. The results in

the “all” column are obtained by running the system with all the experts. The remaining

columns contain results obtained by enabling one expert at a time. The results indicate

that the clustering accuracy increases when multiple experts are combined.

6.2.2 Data Clustering

To evaluate data extraction performance, we use labeled data which we collect using man-

ually built agents. We start with a set of existing agents that extract product information

from web sites. These agents navigate through category and list pages of various retail

72

Site All Base URL Layout List Table Template URL

antonline 61.4 1.1 62.1 1.5 36.5 18.3 68.3
buy 95.0 97.1 97.9 94.3 86.4 2.8 97.1

compusa 100.0 100.0 99.7 74.7 99.7 2.2 89.7

gateway 77.8 10.0 49.8 6.7 87.1 81.3 46.4

newegg 95.6 93.6 65.1 85.2 65.1 0.0 80.6

overstock 88.4 50.4 42.4 49.0 76.3 4.2 54.2

pcnation 98.2 78.8 59.5 0.2 77.7 21.7 92.3

photoalley 78.3 98.4 73.6 45.7 80.8 67.6 71.6

restockit 54.7 7.2 40.5 1.4 42.0 22.6 39.8

tigerdirect 83.8 95.9 78.8 65.6 68.0 42.0 82.1

average 83.3 63.3 66.9 42.4 72.0 26.3 72.2

p-value 0.074 0.018 0.002 0.018 0.001 0.027

Table 6.1: Clustering Web Pages — The goal of this experiment was to show that combining multiple experts

leads to better results overall than using individual experts. The scores are pairwise-F1 scores as percentages.

Bold font indicates the best score of each row. In the last row, we report p-values obtained via the paired

two-tail Student’s t-test. The p-value is the probability of observing the reported difference in the F1-scores

with the assumption that there is no change in the performance of the system. Thus, lower p-values indicate

that the results are unlikely to be coincidental.

sites and extract product information, such as name, description, price, availability and

specifications from detail pages.

One issue with using agents is the mismatch between units of extraction. In general,

agents extract data that does not necessarily lie on text segment boundaries, but the cluster-

ing approach does. This is because the clustering approach takes text segments as samples.

As a demonstration of the problem, take the following HTML code:

<td>Dimensions: 10" x 2" x 12"</td>

From this HTML code, an agent has the option of extracting the dimensions as three

separate fields. In contrast, the data clustering approach works on text nodes from the

HTML parse tree and the string ‘Dimensions: 10” x 2” x 12”’ is an indivisible sample.

To work around this issue, we generate labels for text segments from extracted data as

follows: For each text segment, we find all fields that are extracted from it, even if only part

of the extracted data is contained within the text segment. Next, we compose a label for

the text segment as a sequence of field names. Thus, the text segment in the example above

73

would be assigned a label of “Length, Height, Width” assuming that the fields extracted

by the agent are “Length”, “Height”, and “Width”. In practice, most extracted data fields

correspond uniquely to text segments. Thus, most of the labels are actually sequences of

length one.

The labeling process assigns a label to only some of the text segments because agents

extract only information relevant to some given extraction task, e.g., these agents do not

extract product reviews even when they are available on the site.

We evaluate the clustering results as we do in Chapter 4. In particular, for each agent

we partition all labeled text nodes into target clusters such that a pair of text nodes are

in the same cluster if and only if they have the same label. Then we compute precision,

recall and F1 scores on each target cluster. As before, to compute these scores, we find

the output cluster that contains the most number of target values and break ties by picking

the smallest cluster. Note that even though each such decision is biased towards achieving

the highest recall score, the overall evaluation is still “fair” because the clusters in the

output are disjoint. In other words, it is not possible to trivially achieve perfect scores by

creating a clustering of all possible clusters. After selecting an output cluster for the given

target cluster, we compute precision, recall and F1 scores by taking the target cluster to

be the relevant set and the output cluster to be the retrieved set, and applying the standard

formulas.

Figure 6.1 shows the distribution of precision, recall and F1 scores for all target clus-

ters. CONFHEX performs well on approximately 70% of target clusters where it achieves

F1 scores over 0.9. On the remaining clusters, F1 scores vary from 0.2 to 0.9. Next we an-

alyze the output of CONFHEX in more detail both on samples it performs well and others

where the scores are lower.

In the listing below are some sample clusters and values for an agent where CONFHEX

performs well. Samples are listed one per line and are grouped by the clusters that

CONFHEX outputs. Each line contains the text of the sample, followed by the name of

the HTML page from which it was extracted and the label that was assigned using the

agent. In clusters 1 and 2, CONFHEX’s output is in agreement with the labels assigned

by the agent. The values in clusters 3, 4 and 5 have not been assigned any labels be-

cause these values are not in any field that this agent extracts. Cluster 4 is interesting in

that CONFHEX has grouped values from different date fields, year, month, and day, into a

single cluster. Analysis of these pages show that these values are from adjacent multiple

drop-down menus which the DOM Template expert interprets to be a list of menus each

74

0

10

20

30

40

50

60

70

80

.95.85.75.65.55.45.35.25.15.05

0

10

20

30

40

50

60

70

80

.95.85.75.65.55.45.35.25.15.05

0

10

20

30

40

50

60

70

80

.95.85.75.65.55.45.35.25.15.05

Precision

P
er

ce
nt

ag
e

of
 d

at
a

fie
ld

s

Histogram of Precision Scores

Recall

P
er

ce
nt

ag
e

of
 d

at
a

fie
ld

s

Histogram of Recall Scores

F1

P
er

ce
nt

ag
e

of
 d

at
a

fie
ld

s

Histogram of F1 Scores

Figure 6.1: Data Clustering Results — Histogram of precision, recall and F1 scores in bins of width 0.1.

75

of which is a list of values. With this interpretation, the DOM Template expert generates

strong hints to place these values in the same cluster. Values in cluster 5 are values from

a drop-down menu. CONFHEX correctly separates this cluster from cluster 4. Cluster 3 is

essentially noise where separator characters have been clustered together.
cluster 1:

32.00 [Page15.html] [Price]
35.00 [Page3.html] [Price]
30.00 [Page1.html] [Price]
26.00 [Page12.html] [Price]
35.00 [Page5.html] [Price]
...

cluster 2:
Traditional arrangement of seasonal fresh flowers [Page11.html] [Title]
Posy bowl with dark seasonal fresh flowers [Page8.html] [Title]
Designer arrangement of vibrant fresh flowers [Page6.html] [Title]
Elegant bouquet of seasonal fresh flowers [Page13.html] [Title]
The Gift Wrapping Service [Page10.html] [Title]
...

cluster 3:
| [Page14.html] []
: [Page13.html] []

cluster 4:
July [Page12.html] []
1 [Page6.html] []
19 [Page9.html] []
July [Page7.html] []
2005 [Page4.html] []
31 [Page5.html] []
May [Page5.html] []
May [Page4.html] []
December [Page7.html] []
...

cluster 5:
Birthday [Page1.html] []
YellowPetal News [Page1.html] []
Get Well [Page4.html] []
Wedding [Page6.html] []
Other [Page14.html] []
...

To understand ways in which CONFHEX fails to find correct clusters, we sampled

agents where CONFHEX’s scores are low and analyzed the output in detail. The main

reason for getting low precision scores is that CONFHEX interprets name-value lists such

as “Price: $9.99, Tax: $0.80” as a single list (i.e., [“Price: $9.99”, “Tax: $0.80”]) whereas

the more usual interpretation is to separate the values into fields identified by the “names”

in the list (i.e., [$9.99, ...], [$0.80, ...]).

Figure 6.2 shows a web page in which fields are displayed in a name-value list. In this

particular case, both the DOM Template expert and Layout expert identify the name-value

lists as lists of values from a single field whereas the correct clustering separates the price,

manufacturer, model number and description fields. This of course leads to low precision

76

Figure 6.2: Snippet from Sample Web Page — A name-value list such as the one on this page can be

represented as multiple rows in a name-value table or as a single row where the names correspond to the

columns of the table.

(≤ 0.25) scores on all four fields. Below is a listing that shows a sample of CONFHEX’s

output for this page.

...
Price [Page17.html] []
Manufacturer [Page17.html] []
Bosch [Page17.html] [Manufacturer]
Model Number [Page17.html] []
239.00 [Page17.html] [Price]
...

Another reason for getting low scores, in particular low recall scores, is over-speciali-

zation of clusters. For example, when some product names are in all capital letters and

some are not, CONFHEX may create two clusters for product names: one where product

names are in all capital letters and one where they are not. This lowers recall scores as the

evaluation picks only one of these over-specific clusters. In practice, low recall scores are

less of a concern that low precision scores, as it is easier to merge over-specific clusters in

a post-processing step.

Overall, CONFHEX performs well in the retail domain even though the experts we have

used are generic experts with no domain-specific knowledge. In future work, we believe

that we can obtain even better performance by building experts that make use of domain-

specific knowledge. For example, an expert that can discover name-value pairs is relatively

easy to develop in a specific domain as the “names” and “values” in a particular domain

are more predictable.

77

6.3 Comparing CONFHEX to AgentBuilder

An interesting measure of success is the reduction in labeling effort obtained by using

CONFHEX instead of a supervised wrapper induction system such as AgentBuilder. In-

tuitively, we except the user to do less work with CONFHEX than with AgentBuilder to

extract the same data.

In measuring this reduction, a completely objective measure is difficult to obtain with-

out user studies because the user experience in the two tasks are not identical and so simple

measures such as time taken or number of mouse clicks are not representative of the actual

effort. The induction system of AgentBuilder requires that the user supply one or more

sample values for each field to be extracted. To provide sample data, a user needs to iden-

tify, either with mouse selection or typing, sample text for each field to be extracted. In

contrast, CONFHEX generates clusters that need to be matched to fields to be extracted.

Thus, labeling in CONFHEX requires the user to select a cluster of values among many

clusters for each field. To compare these different tasks, we define two approximate mea-

sures of effort and evaluate the reduction in effort in terms of these approximate measures.

In the first measure, we simply count the number of labeling actions required per field

on average. We analyzed the markup of 17 agents that we have used in the above exper-

iments. On average each field has 6.6 samples. Thus, AgentBuilder requires 6.6 labeling

actions per field, whereas assuming CONFHEX generates correct clusters, CONFHEX re-

quires only 1, namely the action of picking the correct cluster for the given field. The

reduction in labeling effort is therefore approximately 6.6:1.

The first measure assigns the same weight, 1.0, to the action of highlighting sample text

on an HTML page and the action of picking a cluster among many clusters. Intuitively,

the weight of the action should be proportional to the difficulty of performing that action.

We approximate the difficulty of an action by the number of bits that would be required to

encode the result of that action. Thus, we define the difficulty of an action as log2 c where c

is the number of choices from which a selection has to be made. The total labeling effort is

then suma log2 ca where a varies over the required actions and ca is the number of choices

for that action.

In AgentBuilder, we take the number of choices to be the number of text nodes on

the page being marked-up. For example, if a field requires two training samples from

two pages and one page has 128 text nodes and the other has 256 nodes, then the total

labeling effort for this field is log2128 + log2256 = 15. Similarly, in CONFHEX, we take

78

the number of choices to be the total number of clusters that are in the optimal clustering

found by CONFHEX.

We analyzed the total labeling effort required for training AgentBuilder and selecting

clusters in CONFHEX for the same set of agents as before. To do this, we evaluated total

labeling effort for all the fields and then computed the average labeling effort per field. In

AgentBuilder, the average labeling effort per field is 44.5 bits. In CONFHEX, the effort per

field is 6.7 bits. The ratio of these is 6.7 which is just a little over the ratio we obtained

by the first measure. That these ratios are close is surprising at first but is explained by

the fact that the first measure does not take into page size or number of clusters. Thus,

it varies widely compared to the second measure and coincidentally happens to be in the

same range as the second measure for this set of agents.

6.4 Comparing CONFHEX to RoadRunner

We also compared CONFHEX to RoadRunner, an unsupervised extraction system. Road-

Runner induces a grammar from a set of sample pages and then uses the induced grammar

to extract data from pages that have been generated from the same grammar. To compare

CONFHEX to RoadRunner, we measured the total labeling effort that would be required

to build wrappers using RoadRunner. Even though RoadRunner is an “unsupervised” ap-

proach, in practice, there are two steps during which RoadRunner requires supervision.

The first step is in clustering pages according to page-type. This is needed because Road-

Runner requires its input pages to have been generated from the same grammar, thus the

sample pages need to be grouped into page-types before being fed to RoadRunner.1 The

second step where RoadRunner requires supervision is in filtering the output. Just like

CONFHEX, RoadRunner extracts all data from the set of pages in its input. However,

only some of those fields contain data that is useful to the user. Thus, the user has to

pick the fields that are of interest among all the extracted fields. To compare RoadRunner

to CONFHEX and AgentBuilder, we measured the labeling effort for the two steps and

compared it to our measurements of the labeling effort required in CONFHEX.

For our experiments with RoadRunner, we started with the 17 agents that we have used

above. These 17 agents contained a total of 75 different wrappers, each of which corre-

1When pages from multiple page types are given to RoadRunner, RoadRunner will still induce a gram-

mar. However, the data extracted with this grammar is not generally useful, as the grammar cannot capture

the similarities between the pages. In the extreme, the whole page becomes a single data field.

79

sponds to a particular page-type. Among these 75 wrappers, only 59 had more than one

sample page. RoadRunner cannot induce a grammar when the input set contains only one

sample page, because the heuristics in RoadRunner’s grammar induction algorithms rely

heavily on common substrings across multiple pages. Thus, we evaluated RoadRunner

only on 59 page-types.2 When we ran RoadRunner on these 59 page-types, RoadRun-

ner appeared to hang on 22, so we terminated the test after 2 minutes of execution on a

2.4 GHz processor. On the remaining 37 page-types, RoadRunner was able to induce a

grammar within a few seconds. We then counted the number of fields, which we use in

computing the labeling effort, that RoadRunner extracted using the induced grammar.

To compute the labeling effort in using RoadRunner, we used the following process:

• Collect all necessary pages from the site. We assume grammar induction will need

as many sample pages as have been used in AgentBuilder to induce extraction rules.

For each wrapper, we find this number from the hand-built agent and pass as input to

RoadRunner the same sample pages that have been used to induce extraction rules.

• Classify each page into its correct page-type. Each such decision requires choosing

one page-type among n page-types. The number of page-types is determined from

the number of wrappers in the hand-built agent. This is the first manual decision

making step.

• Run RoadRunner on each page-type.

• Among all the fields RoadRunner extracts, pick the columns that are of interest. For

each field, this requires picking one from n-fields where we compute n by examining

the output of RoadRunner. This is the second manual decision making step.

From the data we collected by running RoadRunner on the 37 page-types, we com-

puted the labeling effort to be 8.6 bits per field. Of that amount, 2.6 bits come from clus-

tering pages into the correct page-types, and 6.0 bits come from selecting fields of interest

among all extracted fields. These numbers (Figure 6.3) match our expectations: Using

RoadRunner requires less effort (8.6 bits/field) than using AgentBuilder (44.5 bits/field),

but more than using CONFHEX (6.7 bits/field).

A second observation is that the extra effort in using RoadRunner comes from the fact

the input pages need to be sorted into correct clusters before being fed to RoadRunner.

Even though this suggests that an alternative to CONFHEX is running a page clustering

2This shortcoming of RoadRunner can be addressed by collecting sample pages at different times, as-

suming the data on the page changes over time.

80

0

10

20

30

40

50

Labeling Effort (bits/field)

ConfhexRoadRunnerAgentBuilder

Figure 6.3: Levels of Effort — We compare the levels of effort required to extract data from the web using

three different approaches: AgentBuilder (a supervised rule induction system), RoadRunner (an unsuper-

vised wrapper induction system), and CONFHEX (an unsupervised site-extraction system)

algorithm before running grammar induction on particular page-types, the clustering ac-

curacy of a human would be difficult to replicate without actually “understanding” the

contents of the pages, which is essentially what CONFHEX does.

6.5 Comparing CONFHEX to CHEX

We developed CONFHEX, motivated by our observations of the shortcomings of CHEX. In

this section, we experimentally test whether CONFHEX performs better than CHEX.

One significant difference between CHEX and CONFHEX is that in CONFHEX hypothe-

ses have confidence scores whereas in CHEX they are boolean-valued. Ideally, we would

like to compare CHEX and CONFHEX by evaluating them on the exact same dataset. Un-

fortunately, the two systems work on different units of text (CHEX on token sequences

and CONFHEX on DOM text nodes) and generate output in different forms. This means

that the effort required to accurately compare the two systems is prohibitive. Instead, to

verify that confidence scores lead to an improvement in performance we decided to sim-

ulate CHEX using CONFHEX. To do this, we modified CONFHEX so that the confidence

scores generated by CONFHEX are rounded to either 0 or 1 depending on whether they are

less than or greater than the neutral confidence score of 0.5. We call the modified system

81

CONFHEX0-1. We then ran both CONFHEX0-1 and CONFHEX on a set of agents. Table

6.2 shows the precision and recall scores obtained by the two systems on a set of agents.

In general, CONFHEX appears to achieve better precision scores at about the same recall

level. Statistical analysis confirms that with CONFHEX, precision is better than that with

CONFHEX0-1 at 5% significance level using the Wilcoxon signed-rank test (z=2.09)3 and

differences in recall are statistically insignificant.

6.6 Applications

In this section, we demonstrate the use of CONFHEX in a particular application domain,

namely news extraction, where the task is to extract the date, author and text of news

articles from news sites.

6.6.1 News Extraction

The goal in the news extraction domain is to extract news articles from a news or blog site.

More specifically, given a page that contains, among others, links to news stories, the goal

is to extract the title, the body, the author and the date of each news story. In this section

we demonstrate the use of CONFHEX to tackle the news extraction task.

For this set of experiments, we built agents using AgentBuilder to extract headlines,

article bodies and dates from four different newspaper web sites. We use two of the agents

to train the system and the other two to test. Then we switch the two sets of agents for

training and testing, so that we get data for all four news sites.

Below is some sample data from clusters that CONFHEX has found on Pittsburgh Post-

Gazette’s web site. Headlines are correctly clustered (cluster 2). Dates have good recall but

date-like strings appearing in some text nodes are wrongly clustered into the date cluster

(cluster 4). Providing more training data is likely to improve the accuracy of the confidence

scores for the date expert and reduce this type of error. Paragraphs of article bodies are

also correctly clustered (cluster 5). However, this cluster requires some post-processing

to more accurately represent data, because each article body has been split into multiple

paragraphs and ideally these paragraphs need to be grouped together into article bodies.

The remaining clusters demonstrate other clusters that are not relevant to this extraction

task but have been identified by CONFHEX.

3The test assumes the distributions have the same shape and spread

82

cluster 1:
Rates [Page8.html] []
Vacation [Page3.html] []
Rates [Page10.html] []
What’s New [Page2.html] []
...

cluster 2:
How they voted [Page1.html] [Headline]
Senate OKs bill to update mine safety measures [Page1.html] [Headline]
Hearing held to decide on new trial in 1989 slaying [Page1.html] [Headline]
Jefferson Hills man gets 20 yrs. for distributing drugs [Page1.html] [Headline]
...

cluster 3:
$530 [Page7.html] []
PG.GoogleAd(); [Page2.html] []
OAS_AD("x03"); [Page3.html] []
$174,900 [Page10.html] []
...

cluster 4:
(02/12/2008) [Page1.html] []
Sunday, February 10, 2008 [Page10.html] [Date]
Monday, February 11, 2008 [Page9.html] [Date]
In addition, ... 2008-2009 ... years. [Page8.html] [Body:]
...

cluster 5:
There was never a groundbreaking date ... [Page5.html] [Body]
"All of the plays are darkly comic ... [Page2.html] [Body]
"Click" concerns a husband who entertains ... [Page2.html] [Body]
...

These initial experiments showed that the application of CONFHEX in the news ex-

traction domain can be improved in two areas. First, by adding domain specific experts

and providing more training data, we believe CONFHEX can achieve higher accuracy in

the news extraction task. Second, by trading off the generality of CONFHEX for extraction

performance, the system can be made to run faster. In the rest of this section, we discuss

the trade-off between generality and performance in more detail.

One alternative to directly applying CONFHEX is to run CONFHEX off-line to analyze

and understand the structure of the site and then build an agent using a supervised wrapper

induction approach but providing the automatically discovered structure as training data.

The resulting agent can then be executed for high-performance extraction. In general, this

is a useful approach to automatically build agents, which maintains build-time generality

and trades off run-time generality for performance.

Another alternative is to take advantage of the fact that a large percentage of news sites

have the same simple structure: each site has a number of “sections”, such as “world”,

“U.S.”, or “technology”, each of which contain a list of links to news articles. Starting

from these section pages, the news extraction task is to identify links on section pages that

83

point to news articles and then to identify the author, date and text of articles on the article

pages.

The news extraction task, when defined much more narrowly compared to the site ex-

traction problem, still benefits from sophisticated, heterogeneous experts but allows sim-

pler methods in combining the experts. For example, for the article URL identification

sub-task, experts can analyze each URL within the context of list pages, using information

obtained from complex structures such as layout and DOM structure, much like the ex-

perts of CONFHEX. Combining the output of these experts to determine which URLs link

to news articles is then a task of classification, rather than clustering, where the input to the

classification step is the output of the experts. Extracting fields from the article pages can

be done in a similar fashion: experts analyze the article page so that finding the value of

a field becomes a classification task given the output of all the experts. Unlike CONFHEX

and the first alternative discussed above, this approach only works on particular types of

news sites, but has the advantage of being simpler overall.

The news extraction application is interesting not only in that we are able to use

CONFHEX directly to perform automatic extraction, but also in that we can trade off the

generality of CONFHEX for performance to satisfy real-world constraints.

84

Precision Precision Recall Recall
Site CONFHEX0-1 CONFHEX CONFHEX0-1 CONFHEX

Appliance4U 25.60 25.40 100.00 99.00
ApplianceDirect 25.60 30.90 74.20 73.20
AuchanHistoryPoliticsBooks 53.20 100.00 100.00 100.00
BumpsMaternity 49.80 56.60 97.20 95.10
BuyDiscountPerfumes 17.30 15.60 88.60 88.10
Castorama5 30.00 33.20 71.80 94.00
CcSportsAndFitness 83.30 55.30 82.50 73.10
CdExpressL 20.20 20.30 99.00 99.00
CdExpressS 16.90 12.60 97.40 97.40
CdExpressWXYZ 16.90 16.90 98.60 97.40
DecathlonFr 72.60 56.20 81.20 69.40
DigiUk 100.00 100.00 65.20 100.00
EpFashions 50.00 100.00 94.20 100.00
Etam 14.40 14.40 100.00 100.00
FamoustoreDVDs 100.00 100.00 55.80 44.80
FergusonFitness 31.80 20.00 100.00 89.30
Flowers800 26.60 47.50 95.40 96.60
FrontRowDvd 20.80 20.70 93.00 99.70
GardenBuildingsDirect 53.80 53.90 96.80 95.80
GeraldOnline 38.00 47.60 100.00 96.60
GreatSoftwareOnline 81.30 25.50 98.60 99.30
HiEnergyShop 36.40 27.10 99.40 99.40
HqHair 53.60 57.60 97.90 63.50
InternetCamerasDirectAccessories 53.60 56.60 92.60 95.90
Joueclub 15.70 26.60 96.30 98.40
LookFantastic 23.00 38.40 78.20 75.80
MattressOnline 53.40 53.40 100.00 100.00
MillerPC 33.30 93.10 57.40 52.60
Mx2 49.70 86.30 83.20 50.70
Natoora 24.40 60.10 78.50 81.00
PixelFlash 21.40 37.30 92.00 86.40
Quelle 20.00 20.00 90.50 92.30
SaverSoftware 86.80 86.80 100.00 100.00
Scarlett4U 40.80 54.00 92.90 88.20
ShoeShop 48.20 61.80 93.40 96.80
SnapdragonJewellery 70.90 44.80 100.00 100.00
SportE 44.00 46.20 72.70 75.20
TackleShop 100.00 100.00 90.60 100.00
TrueShopping 58.50 40.40 99.30 77.40
TvAndVideoDirect 39.90 54.10 96.80 100.00
UKAppliances 21.30 38.70 54.60 49.80
WaitRoseDirect 60.40 79.40 88.50 83.00
WowWoman 17.70 22.90 90.10 93.90
YellowPetal 66.70 58.30 85.70 100.00
unemilleordifr 25.60 55.50 93.20 95.20

Table 6.2: Comparing CHEX and CONFHEX — We simulated CHEX using a modified version of CONFHEX

to compare the two systems. CONFHEX achieves better precision scores than CHEX.

85

86

Chapter 7

Record Deduplication

7.1 Overview

In the previous chapters, we developed a framework for clustering web data with hetero-

geneous experts and used this approach to automatically extract data from web sites. We

evaluated our approach using data collected by supervised wrappers, but we were not able

to do a comparative analysis because of lack of standard site-extraction datasets. In this

chapter, we apply our approach to record deduplication, where we compare our results to

some published results.

Record deduplication is the problem of identifying records that refer to the same entity.

The challenge in record deduplication is to be able to do this even when records contain

noise such as misspelled, missing, incorrect or ambiguous values. For example, does the

record “Name: John Smith Address: 123 Main St” refer to the same person as “Name:

Smith, John Address: 132 Maing Street”? Making a good guess to answer this question

involves understanding that “John Smith” and “Smith, John” are the same names, that

“John Smith” is a common enough name that it does not necessarily uniquely identify

a person, that “St” is an abbreviation for “Street”, that depending on whether 123 and

132 are legitimate street numbers on “Main Street”, the digits 2 and 3 might have been

unintentionally transposed, that “Maing” is a misspelling of “Main” and so on.

Even though the name record deduplication implies finding and removing records that

are identical in a given dataset, the techniques used in record deduplication are also useful

in aggregating data from multiple data sources. In aggregating data, it is also useful to

identify records that refer to the same entity so that the relations between the records

87

can be correctly established. When cast as the problem of linking records from multiple

data sources, record deduplication is also referred to as record linkage. The record linkage

problem has gained importance as many new data sources have become accessible through

the web. For example, if one data source contains product reviews and a second source

contains pricing information, it is useful to be able to link the two data sources together so

that there is a unified set of products and to each product its correct review and price are

assigned. If each product is assigned a unique identifier and both data sources include the

identifiers, then clearly the problem is trivial. Unfortunately, this is rarely the case. Either

there are no unique identifiers or the identifiers are not valid across multiple data sources.

Thus, the problem is identical to record deduplication.

In our experiments in the record deduplication domain, we analyze citations, which

consist of individual fields such as authors, title, and venue, each of which has their own

characteristics. We identify duplicate citations by clustering the records such that each

cluster represents the set of duplicate citations. In doing this, we use experts that under-

stand how the value of a particular field from duplicate citations may be represented in

different forms, e.g., abbreviations of conference names.

There has been a great deal of research in the record linkage domain. Most of this work

(e.g, [5, 61]) focuses on the pairwise record-linkage problem formalized much earlier by

Fellegi and Sunter[31], where each pair of records is considered independently. In Fellegi

and Sunter’s formalization, a file of records A is merged with another file of records B.

During the merge, every record in A is compared against every record in B. The goal of

the comparison is to determine whether the record in A represents the same entity as the

record in B. The comparison decision is a function of a comparison vector of features on

pairs of records. For example, one component of the comparison vector might represent

whether a particular field of the two records contains identical strings. Fellegi and Sunter

show how to determine an optimal comparison function by minimizing errors that the

resulting record linkage rule makes.

In some recent work (e.g, [25, 57]), the focus has shifted to modeling the record-

linkage decisions jointly. The main difference between Fellegi and Sunter’s formalization

and the recent work is that whereas in the former the decision for each pair of records is

made independently of any other decisions, in the latter the decision for a pair has influence

over decisions on other pairs. To see why the latter approach is more powerful, consider

the case where record a is compared against records b1 and b2. If a can be linked to b1

and b1 can be linked to b2, then intuitively there is additional support for linking a to b2.

88

Fellegi and Sunter’s formalization does not take into account such support whereas the

recent work in modeling decisions jointly does.

The application of our approach to the record linkage domain is more closely related to

this type of modeling. In particular, it is useful compare our approach to Culotta and Mc-

Callum’s recent work [25]. Both approaches model pairwise similarities in a probabilistic

framework and use greedy agglomerative clustering to find a locally optimum solution.

The main difference between the two approaches is that Culotta and McCallum focus on

learning feature coefficients jointly by using conditional random fields whereas we use a

simpler Bayesian model and train experts independently.

An advantage of our approach is that it is much easier to add new experts. Because each

expert is trained independently, adding new experts is not computationally demanding. In

contrast, adding a new expert to a joint-model involves retraining all the experts.

We used the same experimental set-up as Culotta and McCallum, based on a dataset

from the Cora Computer Science Research Paper Engine. The Cora dataset is a collection

of citation records, where each record consists of a number of fields such as title, author,

date, journal, etc. The record linkage problem is to identify those records that refer to the

same citation.

To cluster records, Culotta and McCallum define a set of features over pairs of samples.

Their features are based on string-edit distance of individual field values and also of the

full string representation of a record. By using simple features, Culotta and McCallum

leave it up-to their learning algorithm to discover what is already known about the citation

domain. Thus, their approach requires a framework that can learn complex relationships

between simple features.

This kind of approach may be useful in some domains, but most real-world problems

don’t require such complex frameworks if more background knowledge about the problem

can be made available to the solver.

Like Culotta and McCallum, we also solve the citation and venue deduplication prob-

lems, and do so without co-clustering, and compare our results to theirs. In contrast to their

string-edit based features, we developed several knowledge-rich experts that capture some

of the common types of structures that we observed in the citation domain. We were able to

obtain good results by solving the citation and venue problems independently. Investigat-

ing whether co-clustering with knowledge-rich experts provides additional improvement

remains as future work.

As our baseline, we also evaluated our approach using a generic expert that measures

89

string similarity between pairs of samples. We created multiple instances of this expert for

individual fields. Thus, we have experts for fields such as author, title, and date. This is

similar to Culotta and McCallum’s approach except that the learning approach is consid-

erably simpler.

The next two section describe the experts we have used for clustering citations.

7.1.1 Citation Experts

• Normalized Title: Many variations of titles are due to differences in spacing, cap-

italization, and truncation, so we applied string-edit distance to titles after we re-

moved spaces, lower-cased all letters, and truncated long titles to a fixed number of

characters.

• Venue Type: In the Cora dataset, some fields are optional. In particular, there are

several different fields, e.g., journal or book-title, that contain the venue name and

each record has only one of these fields present. One of our experts simply identifies

whether two records have the same venue field or not. Note that this information is

not available by string-edit distance on corresponding fields.

• Venue Name: One of the experts compares the venue name regardless of which of

the several venue fields it comes from after normalizing it by removing spaces and

common stop words, and lower-casing it.

• Book Title: The book title field is overloaded in that it is sometimes the title of the

book in which the cited work appears and sometimes the title of the book which is

being cited. In the former case, the record also contains a title field whereas in the

latter it does not. Thus, the expert which compares the book title field uses the value

in this field only when the title field is not present.

• Journal Article: Most citations to journal articles contain two fields, volume and

page, in addition to the journal field. One of our experts uses all three fields in a

hierarchical way to compare citations. If all three fields match, then similarity is

high; if only journal and volume match, then similarity is lower; if only journal

matches, then it is still lower; if no fields match; then it is lowest. Before comparing

the individual fields, the expert also normalizes the journal name (in the same way

as titles are normalized), and the volume and page fields by removing all characters

except the digits.

90

• Location: This expert simply computes string-edit distance on the location field.

7.1.2 Venue experts

• Venue Abbreviations: This expert checks whether one venue name is an abbrevia-

tion of another name when one name is less than four characters long and the other

is more. For the shorter name to be an abbreviation of the longer one, each of its

characters must appear as the first character of some word in the longer.

• Editor: This expert simply computes string-edit distance on the editor field.

• Normalized Title: Same expert as above.1

• Venue Name: Same expert as above.

7.2 Experiments

Culotta and McCallum approach the citation-deduplication problem as a co-clustering

problem where they simultaneously cluster the dataset to find co-citations and also cluster

it to find co-venues. This is useful because identifying co-citations provides additional

information for finding co-venues and vice versa. Thus, they report two sets of results:

baseline results for clustering citations and venues independently and improved results

from co-clustering them.

Following Culotta and McCallum’s experimental design, we evaluate our system on

each of the three hold-out subsets,2 use the pairwise-F1 measure to evaluate clustering

accuracy, and report micro-averages over the pairs.

7.2.1 Results

Our approach achieved pairwise-F1 scores of 0.938 and 0.891 in the two sub-problems

of the dataset. These scores are higher than Culotta and McCallum’s scores of 0.908 and

1Note that even though we use the exact same expert for both the citation and venue problems, the

confidence scores assigned to a pair of samples by the same expert will be different in the two problems. For

example, a matching journal name indicates co-venues with high probability but co-citations with a much

lower probability.
2The running time of our system varied between a few minutes to half an hour on a 2.4 GHz Pentium.

Culotta and McCallum report running times from 20 minutes to an hour, but experiments were done on

different hardware, so performance results are not comparable.

91

 0

 0.2

 0.4

 0.6

 0.8

 1

VenuesCitations

M
ic

ro
-a

ve
ra

ge
d

P
ai

rw
is

e
F

1

Domains

String-edit
Independent (Culotta)

Co-clustering (Culotta)
Knowledge-rich

Figure 7.1: Record Linkage Results — Tacking the citation deduplication problem with knowledge-rich

experts gives results comparable to those obtained with a more sophisticated and computationally-expensive

framework.

0.845 on the two datasets, but additional experiments using both systems would be needed

to infer that one system is better than the other. Figure 7.1 gives a summary of the four

sets of results: Our baseline with the generic string-edit distance, Culotta and McCallum’s

independent clustering and co-clustering, and our results with knowledge-rich experts.

There are two observations to make. First, our baseline is lower than Culotta’s independent

clustering results in the citation problem but not in the venue problem. We believe this is

because the venue problem is simple enough that the more powerful representation of

Culotta’s approach does not provide any gains over our simpler approach. Second, using

knowledge-rich experts with a naive-model gives better results than that of learning a joint-

model of simple “experts”, at least on this particular dataset.

7.3 Summary

In this chapter, we applied our approach in the record deduplication domain by developing

a set of experts specific to this domain. Our results demonstrate that combining experts

that analyze multiple types of structure compares well to a framework that learns complex

interdependencies between simple features.

92

Chapter 8

Related Work

8.1 Data Extraction from the Web

Data extraction from the web is a well-studied area of applied artificial intelligence re-

search. Much of the previous work focuses on finding new ways to extract data from the

web pages or improve the quality of existing techniques. Our work also follows this path,

but rather than focusing on a particular technique, our goal is to build a framework in

which many of these techniques can be combined in a principled fashion. In this section,

we describe some of the common techniques used for data extraction from the web.

8.1.1 Wrappers

A wrapper is a function that maps web pages to extracted data[48]. The wrapper induction

algorithms take as training examples a set of labeled pages and typically find regular-

expression like patterns to locate the labels within the pages.

Extensions to the basic wrapper, such as in Stalker[46], are possible so that the induced

wrapper extracts structured data instead of labels. The input to Stalker is the embedded

catalog, which defines the hierarchical structure of the data in terms of lists, groups and

items, and a set of training examples, which are labeled pages. A page is labeled by

marking up the data to be extracted on the page and linking it to its role in the embedded

catalog. Stalker then learns a set of extraction rules using a covering algorithm and attaches

them to the embedded catalog. The embedded catalog together with the attached rules is a

wrapper that can extract structured data.

Wrapper induction systems like Stalker require no programming and are very useful

93

in reducing the time to generate a wrapper by hand, but they have several shortcomings:

First, an induced wrapper typically works on a single type of page. Second, a wrapper

makes available only the type of data that it is trained on (e.g., if a wrapper is built to

extract zip codes, it will not extract state abbreviations). And most importantly, wrapper

induction requires human effort to create training sets.

In contrast to wrapper induction systems, our approach can wrap a web site without

any training sets and will turn all data that is on the site into machine processable form. In

fact, the output from our approach can be viewed as the result of building and applying a

consistent set of wrappers to a given site.

Wrapper induction can also be cast as a classification problem[19]. In this type of

approach, an HTML page is first represented as a DOM tree. Each DOM node is then

assigned a label which represents whether the content of the node is extracted or not. The

classification problem is to assign to each node the correct label. When extraction is cast a

classification problem, standard machine learning algorithms can be used to automatically

build a classifier from training data. The resulting classifier can then be applied to new

pages to extract data from unseen pages. This type of approach requires each DOM node

to be represented as features. Cohen and Fan define 19 such features. These features

represent the local structure of the DOM tree, such as the name of the parent node, the

number of child nodes and so on. The advantage of this approach over the more traditional

wrapper induction approaches is that the induced classifier can be made more general than

a traditional wrapper in the sense that it can successfully label nodes from different page

types. This is because the hand-coded features are less sensitive to page-type than the

actual extraction patterns that wrapper induction algorithms learn. Our approach is similar

to Cohen and Fan’s approach in that the types of structure that the algorithms work on are

at a higher level of abstraction than individual tokens. However, while Cohen and Fan’s

approach uses hand-coded features over the DOM tree, our approach raises the level of

abstraction from features to arbitrary experts, allowing multiple types of representation

such as page layout and link structure to be utilized.

Another dimension in which wrappers can be generalized is the page representation

over which extraction patterns are learned. Cohen, Hurst and Jensen introduce a system

in which the wrapper induction system is composed of a master algorithm which learns

extraction rules over multiple languages each of which is defined by a builders[20]. Each

builder defines an extraction language over a different representation, such as token se-

quences, DOM trees, or page layout and also a method to minimally generalize an extrac-

94

tion rule in that language to match training samples. For example, a builder can define

an extraction language over the token sequence representation of a page, so that a rule to

extract the price of a product from HTML segments such as “Price: $7.99” can simply

be expressed as the tokens following “Price:”. The master learner than induces extraction

rules from training samples by a set-covering algorithm that combines the extraction rules

from the builders. This approach and our approach shares the intuition that for successful

extraction over many types of page-types and web sites, it is necessary to take advantage

of different types of structure. Whereas Cohen, Hurst and Jensen focus on inducing wrap-

pers by directly utilizing different representations of pages, we focus on discovering the

relational form of the page indirectly from the hypotheses generated by analyzing different

types of web structure.

In a recent survey of web data extraction approaches[12], Chang et al., compare cur-

rent approaches in three areas: level of structure in the input (e.g., extracting facts from

free-form news articles as opposed to extracting data from HTML), techniques used in

the approach (e.g., extraction rule induction or grammar induction), level of automation

(e.g., whether an approach requires collecting training samples). Additionally, they cat-

egorize current approaches into four levels of supervision: manually built, supervised,

semi-supervised, and unsupervised. It is useful to analyze our approach along the first

two areas (the level of automation is mainly reflects the engineering effort put into turning

an approach into a polished system) and level of supervision. Our approach falls into the

unsupervised category, requiring no training samples for extraction. Unlike other unsuper-

vised approaches which rely on grammar induction and require input pages to be of the

same page-type, our approach works on pages from multiple page-types. In terms of the

structure of input, like other web extraction approaches, our approach expects its input to

be semi-structured. In particular, our approach relies on the assumption that many web

sites are generated from data that is relational to start with and that the relational structure

has been partially preserved in the observable structure of the site. In terms of extraction

techniques, our approach is novel in that it uses a clustering approach whereas existing

approaches either use induction or classification for extraction.

8.1.2 Table Extraction

Table extraction research focuses on detection and understanding of tables in text and

web documents[81]. Detection involves locating tables on a page whereas understand-

95

ing involves segmenting tabular data into cells and aligning them correctly. The current

techniques either rely on the layout of the document or on the syntax and semantics of its

content. For example, it is possible to take advantage of HTML markup commonly used

to display tables to find values inside a table. Furthermore, because almost all tables are

formatted such that records are laid out horizontally on the page, it is valid to assume that

records are composed of consecutive values as they appear in the HTML source. With

these assumptions, table understanding can be cast and solved as a constraint-satisfaction

problem[49]. As another example, semantic information represented in the form of an

ontology can be used to perform table understanding[29, 77]. The ontology defines the

group of attributes that records in a table are likely to have, the patterns that match val-

ues of attributes, and keywords that are likely to be around particular attributes. The

knowledge stored in the ontology then makes it possible to identify records and their at-

tributes on HTML pages. Alternatively, tables can be extracted by using heuristics that

rely only on visual, in other words page-layout, information[33]. In general, these types of

approaches[13, 47, 59, 72] focus on a particular structure and are complimentary to ours

in that a table extractor can easily be turned into an expert.

In this work, we are attacking a bigger problem, which includes table extraction as a

sub-problem. In fact, a table extraction algorithm can be used as an expert. Even though

the problem is bigger, our approach is potentially at an advantage, because it starts with

richer input that can include multiple samples of a single table structure as well as other

types of structure such as URL patterns that help in extracting tabular data.

8.1.3 Grammar Induction

Starting from a set of positive and negative examples, grammar induction aims to find a

formal grammar or automata for a language that contains the positive examples but not the

negative ones. In general, grammar induction is a hard problem.

The site-extraction problem can be cast as a grammar induction problem where the

relational structure is imposed on the space of grammars. For example, the grammar

rule for a page is in the form of pagei → cell1cell2 . . . celln and each cell rule is either

celli → literal or celli → relationj . In this formulation, the problem is to choose the

correct rules and instantiate the literals to correct token sequences.

One early grammar induction system is Sequitur. Sequitur relies on two hard con-

straints to limit its search space: Pairs of symbols are unique within the right side of

96

grammar rules and every rule is used more than once.

Another research project that is based on grammar induction and that aims to build

wrappers for web pages automatically is RoadRunner[24]. In general, grammar induction

is an intractable problem, but RoadRunner restricts the form of candidate grammars to

turn its search space into a tractable one and can induce grammars from a set of positive

examples.

Zhai and Liu[82] describe a method to automatically build wrappers for list pages by

analyzing a single sample page. Their method relies on the following two assumptions. 1.

Each record is contained within a unique subtree of the parse tree. 2. Collections of records

are laid out in contiguous areas on the screen. With these assumptions, their method works

as follows: 1. Identify collections of data records by finding subtrees that are close to each

other on the screen and similar in structure. 2. Within each collection, identify records and

their fields by aligning subtrees with a heuristic tree alignment algorithm. Interestingly,

even though their method relies heavily on DOM structure, it does not directly use the

DOM tree obtained from the HTML source of a page. Rather, it constructs a new DOM

tree by combining information from the layout and parse of a page. The authors observe

that a page that is displayed correctly does not necessarily have a correct DOM structure.

This observation is in line with our hypothesis that discovering web page structure requires

multiple types of experts.

In general, the disadvantage of grammar induction is that utilizing different types of

web structure becomes difficult within a grammar induction framework. For example, to

use the layout of a page during grammar induction, either the layout information has to be

encoded into the samples, which normally contain only text of the pages, or the induction

algorithm has to be modified in an ad-hoc fashion to make use of the layout information,

perhaps as a heuristic, while it is processing the pages. Clearly, neither of these approaches

is satisfactory.

8.1.4 Unsupervised Extraction

When the extraction task is restricted to a specific domain, it is possible to extract data

without explicitly building wrappers. In their recent work[60, 80], both Wong et al. and

Probst et al. focus on the task of extracting product attributes from web pages. The

intuition in Wong’s approach is that by combining site-independent, but domain specific

knowledge, about products and site-dependent page-layout information, product attributes

97

can be extracted in an unsupervised fashion. When some of the values of attributes are

known, these values can be used to understand the site-specific page-layout of a new site.

For example, knowing that the attribute “resolution” takes in values such as “600 dpi”

allows the discovery of specific formatting (e.g.,“italic font on the second column of the

parent table”) on a particular site. The discovery of the site-specific format then allows

the rest of the attributes and their values to be located. Wong et al. use this intuition

to develop a framework which assigns probabilities to text segments and their attributes

by combining site-independent domain knowledge and site-specific layout information

which are represented in a probabilistic graphical model. Similarly, Probst et al., describe

an approach where attribute values are extracted via classification. To reduce the number

of training samples, they use a heuristic approach to automatically label samples with high

precision (but low recall) and then use naive Bayes to improve the recall. In comparison

to our approach which defines a general framework for combining an arbitrary number of

structures, both approaches focus on a particular extraction task and use a small number of

specific types of structure: values of attributes are generally common across multiple sites

and that different attributes are formatted similarly or appear adjacent to similar words on

any given site. The trade-off over our approach is that the specific extraction task can be

accomplished without the need to build many experts.

8.2 Relational Model Learning.

The relational learning problem is to find a model that can predict the values in a relation.

The model, which can be decision trees, first order logic formulas, Markov models, etc., is

built based on a given set of tuples from the relation. Once the model is learned, missing

attributes can be predicted based on the values of known attributes. We will look at Rapier

and probabilistic relational models (PRMs), two approaches that have been applied to the

web domain, in detail.

Rapier’s[10] learning algorithm is based on ideas from inductive logic programming

(ILP) research. The extraction pattern language it uses is analogous to the first order logic

formulas of ILP in that the patterns are generalizations of the training examples. Rapier

uses a specific-to-general search to find patterns and guides its search using a compression-

based metric.

PRMs[34] extend Bayesian networks from modeling flat data sets to modeling richer

98

relational data sets. Like Bayesian networks, PRMs are probabilistic networks that rep-

resent the statistical dependencies of attributes within a single table, but in addition to

Bayesian networks, the dependencies in PRMs also include attributes from related tables.

Once the parameters of a PRM are determined, it assigns a probability to any instantiation

of the relational structure.

In general, relational model learning approaches are difficult to apply to the web wrap-

ping problem, because these approaches assume that their input is from a relational source.

In the web wrapping problem, the bulk of observable data is in the form of token se-

quences. To apply relational model learning approaches, the web sites need to be converted

into relational form first.

One way to do the conversion is to use a meta-model where the relations do not model

the relations between the data but between the objects, such as pages and tokens, that

represent the data[35]. To capture the sequential relation between tokens, the meta-model

has to introduce either some “precedes” relation or indices to label the tokens. In the first

case, long range structures, such as between the header and footer of a page, are hard to

discover. In the second case, the indices need to be treated specially, because withing the

relational model, indices do not carry their usual ordering and closeness meaning.

A second way is to start with a known relational model for the data[71]. This ap-

proach is useful in classifying and clustering pages when the underlying relational model

is known, but applying it to new sites requires additional manual modeling work.

In contrast to relational model learning approaches, where the algorithms look for a

model that best fits the relational data, our approach searches for a relational representation

of the (sequential and linked) data that best represents the multiple types of substructure

of the data.

8.2.1 Data Mining in Graphs.

Another area of research, which is related to grammar induction and relational model

learning, is data mining in graphs. Subdue[22] is a system that discovers substructures

in structural data represented as graphs. Objects in the system are represented by nodes

or small subgraphs, and relations between them by edges. Substructures are subgraphs

that occur multiple times in the graph. Subdue builds a dictionary of substructures and

replaces the occurrences, which may match only approximately to the substructures, by

references to the entries of the dictionary. The process is repeated on the resulting graph

99

and substructures are allowed to contain references to existing substructures. In this way,

nested substructures can be discovered.

The hierarchical template expert and the Subdue approach are similar in that starting

from instances of a concept, both induce the concept and replace the instances with ref-

erences to the concept and so are able to discover complex structures. In the case of the

hierarchical template, the instances are the rows of a list and the concept is the row tem-

plate. In Subdue, the instances are the subgraphs and the concept is a pattern that matches

the subgraphs.

The hierarchical template algorithm is a specialized version of Subdue, because it

works on a particular graph, the DOM tree, and looks for a particular kind of substructure.

As in the relation learning case, applying graph mining techniques to the web wrapping

problem suffers from the fact that the token sequences are not easily put into structured

form.

8.3 Clustering

Clustering is the problem of partitioning data so that similar samples are grouped together.

Our approach uses clustering as a framework in which multiple heterogeneous experts

combined. In particular, the common language that experts use is defined over clusters.

Experts output hypotheses that state how likely two samples are in the same cluster. We

also use standard clustering algorithms[27], such as the leader-follower algorithm in CHEX

and the greedy agglomerative algorithm in CONFHEX.

Even though our approach relies on clustering concepts and techniques, the emphasis

of our approach is orthogonal to that of core clustering research. Our focus is combin-

ing heterogeneous experts in a principled way whereas the focus of clustering research

is clustering algorithms[41]. Core clustering research focuses on improving clustering

algorithms in performance and accuracy.

There are some specific research areas within the clustering domain which are more

relevant to our approach than core clustering research. Next we discuss several relevant

areas: coclustering, clustering with constraints and ensemble clustering.

100

8.3.1 Coclustering

In coclustering, two related clustering problems are solved simultaneously to take advan-

tage of the fact that a cluster of samples in the first clustering problem provides some

information about the clustering of related samples in the second problem. For example,

when documents and words are clustered into topics, documents in the same cluster are

more likely to contain words that are also grouped together. As another example, in the

citation deduplication problem of Chapter 7, when two records are identified to be in the

same venue, then they are more likely to refer to the same citation. In the web domain,

data items are clearly more likely to be in the same cluster when the pages which the data

items are on are in the same cluster.

One approach to coclustering is to model the particular coclustering constraints ex-

plicitly. For example, in the citation deduplication problem of Chapter 7, Culotta and

McCallum[25] define a probabilistic model that explicitly defines the relation between

two records having the same venue and two records referring to the same citation. Al-

ternatively, a more general approach to coclustering can be taken by considering the joint

distribution of two random variables over the two sample sets and minimizing the loss in

mutual information in going from individual samples to clusters of samples.

In our experiments in the citation deduplication domain, we are able to achieve results

better than those achieved with coclustering. This is because we are able to take advantage

of the coclustering structure with experts that take into account venues. In more complex

domains, an extension of our approach to allow coclustering may be useful. One way to do

this is to add a new root node that represents the joint clustering to the Bayesian network

of Chapter 5. The prior probability distribution of this node would represent coclustering

constraints such as those between venues and citations. Finding the optimal clustering in

this new formulation becomes more difficult as the search would need to take into account

the prior probabilities. We leave this extension as future work.

8.3.2 Clustering with Constraints

An alternative approach for combining experts is to interpret their output as constraints

that can then be used to improve the performance of clustering algorithms. In this ap-

proach, experts would output their hypotheses as must-link or cannot-link constraints that

respectively indicate whether two samples should or should not be in the same cluster[75].

A set of must-link and cannot-link constraints is consistent if there is at least one clustering

101

such that all constraints are satisfied.

The resulting set of constraints can then be used to improve clustering algorithms in a

variety of ways. For example, constraints can be used to reduce the size of the clustering

search space by assuring that the search only considers clusterings where all constraints

are satisfied[76]. Alternatively, constraints can be used to distort the sample space such

that samples referred in a must-link constraint are brought closer and samples referred in

a cannot-link constraint are pushed farther apart[45]. Distorting the sample space has the

advantage that the effects of constraints are propagated to samples that are in the neighbor-

hood of the samples referred by the constraints. Assuming the constraints are consistent,

another alternative is to use the constraints to generate initial partitionings. Clustering al-

gorithms, such as k-means, that require a initial partitioning can benefit from generating

the initial partition from constraints rather than randomly[4].

Constraints can also be used to train a classifier which can then extrapolate whether

unseen pairs of samples are in the same cluster or not[18]. This approach is similar to

our approach in that the clustering step uses a learned function between pairs rather than a

pre-defined metric on the sample space.

8.3.3 Ensemble Clustering

Another research area that is relevant to our approach is ensemble clustering[70]. In en-

semble clustering, the goal is to find a new clustering by combining the information in

multiple clusterings of the same data set. This type of work focuses on defining a cluster-

ing criteria that takes into account how samples are clustered in different clusterings. This

is relevant to our approach in that complete or partial clusterings rather than pairs can be

used as the common language of experts. The combination of experts can then be done

through ensemble clustering techniques. As a simplified example, consider taking advan-

tage of both URL patterns and page content similarity to find clusters of pages. The pages

can be independently clustered using URLs and page content, perhaps using a standard

document clustering algorithm, and then the resulting clusterings can be combined using

ensemble clustering techniques. The advantage of this is that if an expert does generate

a clustering hypothesis as part of its processing, then the output captures the clustering

hypothesis directly. With pairwise hints as the common language, the same clustering

hypothesis needs to be expressed as a large collection of hypotheses on individual pairs.

102

8.4 Multi-Expert Approaches

Combining multiple experts, as we do for the web data extraction problem, has been ap-

plied to many difficult AI problems, such as document classification, scene interpreta-

tion[9] or speech recognition[30]. Under certain simplifying assumptions, such as predic-

tion of 0-1 valued functions, it can be proven that it is possible to combine the output of

multiple experts in a way so as to bound the number of errors as a function of the errors

made by the best expert[8].

The theoretic results in combining multiple experts is typically done in the on-line

learning setting[51]. Here, the meta-learner receives predictions from multiple learners,

makes its prediction based solely on the predictions from the learners and then is given

the correct prediction with which the meta-learner updates its model of the learners for its

next prediction.

Even though the meta-learner may not perform as well as the best learner on particular

instances, if there is not one particular learner that outperforms all others on all instances,

then the meta-learning approach performs well because it is always bounded by the error

rate of the best learner. This is also the intuition behind our approach: By combining

multiple experts, we can achieve better extraction results on average than using particular

types of structure.

When there are many experts to combine some of which are not relevant to the current

problem instance, as is the case in text classification[21], it is more efficient to use only a

subset of relevant experts[7, 32].

In blackboard systems[23], a number of experts collectively solve a problem by com-

municating through a blackboard. The common language in which messages are posted

to and read from the blackboard is specifically designed for the type of problems that the

system is built to solve. Our approach is similar to blackboard systems in that the experts’

hypotheses are collected in a central location. Unlike blackboard systems, our experts do

not read and make use of hypotheses posted by other experts, although this is an area that

deserves future work: for example, experts that are computationally expensive are better

run on small sub-problems as they arise from the hypotheses of cheaper experts. As a con-

crete example, it might not be possible to run an ISBN lookup on every ten digit number,

but if some experts generate a hypothesis that a group of numbers are all ISBN numbers,

the ISBN lookup expert could be run to verify this hypothesis.

Like blackboard systems, in multi-agent systems[28], multiple experts or agents are

103

utilized to solve problems. Unlike blackboard systems, the emphasis of multi-agent sys-

tems is to avoid central control of agents. Thus, multi-agent system research focuses

building autonomous agents that can function without central control, and the communi-

cation(e.g., [43]) and coordination (e.g., [66]) of such autonomous agents.

Next we describe some example multi-expert systems and compare them to our ap-

proach.

8.4.1 GRAVA - Self-Adaptive Architecture

Robertson[62] describes a multi-agent architecture for solving vision problems robustly.

He observes that scene interpretation can be solved relatively easily in specialized ap-

plications (such as in manufacturing) where the environment (lighting, sensor locations,

objects in the scene, etc.) is well-known and tightly controlled, but the problem becomes

much harder in applications where the environment changes dynamically. As a solution,

Robertson proposes an adaptive and layered architecture, where higher layers interpret the

output from lower layers. The interpretation provided by the top level is the output of

the system. The architecture is adaptive because when unexpected results are found, a

lower-layer can signal a higher-layer which then can regenerate the lower-layer using the

additional knowledge that current assumptions are not valid.

In general, for a given problem instance, multiple interpretations are possible. GRAVA

uses the MDL principle to pick the most likely interpretation. MDL provides a uniform

measure across multiple agents even when the agents operate at differing levels of abstrac-

tion. Optimizing for MDL is equivalent to finding the most likely interpretation.

Tessar[73] describes an application of Robertson’s architecture where the problem is

to interpret ancient text. The two agents in this application are the character agent which

matches the stroke information extracted from the image of the text to the characters in the

training set and the word agent which matches the character sequences from the character

agent against a corpus of words. Both agents compute the description lengths of their in-

terpretations. For example, a perfect word match generates a description length that is only

related to the frequency of the word in the corpus whereas a partial match generates a de-

scription length that combines the frequency of the word and the length of the description

for a transformation that turns the word into the partially matched character sequence.

The application uses Monte Carlo approximation to search across interpretations. In

the Monte Carlo approach, agents are asked to output interpretations multiple times. Each

104

agent picks an interpretation in relation to the description length of that interpretation: The

shorter the description length, the more likely it is for an interpretation to be picked. The

Monte Carlo approach allows the system to avoid local minima. If an agent always picks

the most likely interpretation for its input, the overall most likely interpretation might

never be found because it might be the case that the optimal high-level interpretation does

not include the locally-optimal low-level interpretation. By running the Monte Carlo sim-

ulation many times, the distribution of the top-level interpretation is sampled. From this

distribution, the most likely interpretation is picked as the solution.

Comparison to our approach

Robertson’s approach uses MDL whereas we use probabilities to measure overall progress.

The two measures can be shown to be equivalent under certain conditions. Regardless of

whether they are equivalent or not, the two formalizations both provide a common unit

of measure where values have a global meaning across heterogeneous experts and can be

combined in a principled way.

Robertson has a separate interpreter that controls the activation of agents while we sim-

ply allow all experts to run on the problem. Robertson’s approach works well when there

is a clear hierarchy of experts such that the output of experts in one layer is consumed by

experts at the next layer. Our approach avoids the additional complexity of an interpreter

by having all experts run independent of each other. In simplifying the framework, we

give up on the flexibility of having experts that use other experts’ output.

8.4.2 Proverb - A Crossword Solver

Our approach of combining multiple experts in a probabilistic framework is similar to

Proverb[67], a crossword puzzle solver. A clue in a crossword puzzle can have multiple

answers. This is because there are multiple categories of clues such as synonyms, quota-

tions, abbreviations, or geography and also because even when interpreted in a particular

category, a clue can have multiple answers. One of the challenges of the crossword prob-

lem is that in finding the correct answer to a particular clue (in a particular crossword), one

has to consider both multiple interpretations of the clue and the constraints of the answer

grid.

Proverb has a number of “experts” that given a clue, output their list of best candidate

answers together with probabilistic preferences assigned to each candidate. The solution

105

to the puzzle is found by globally optimizing the probability assignment for the particular

choice of answers. Proverb’s experts are analogous to our experts. Its common hypothesis

language is lists of candidate answers with a confidence score attached to each answer.

8.4.3 Poirot - Integrated Learning

Poirot is an ambitious project that aims to achieve human-like performance in learning in

planning domains. Given a single demonstration of a successful execution of a task, Poirot

aims to learn to generate plans that solve similar tasks. For example, Poirot can be given

the sequence of actions that a human user follows as he schedules a medical evacuation

task and asked to solve another evacuation task but in the military domain instead of the

civil domain.

Poirot follows a similar approach to ours at a high-level. It consists of a set of learners

that generate hypotheses and a meta-learner that ultimately combines the hypotheses into

one workflow. Learners are similar to our experts in that they work independently from

each other, have access to use as much background knowledge as necessary, and output

their hypotheses in LTML, the common language.

LTML is more expressive than our common language in general. Its expressions are

in a higher-order logic, where hypotheses about other hypotheses can be expressed. In

contrast, the common language we have experimented with only allows statements about

pairs of samples. One area in which it is more expressive than LTML is on probabilistic

statements. In our common language, each hypothesis has a confidence score associated

with it whereas in LTML hypotheses are binary: they are either posted by the experts or

not.

Having an arbitrarily complex “common” language makes combining the experts dif-

ficult. In our approach, the experts are combined simply by finding the most-likely clus-

tering given the hypotheses about pairs from the experts. Poirot follows a different ap-

proach where some meta-experts examine posted hypotheses and post new ones to guide

the learners so that eventually hypotheses describe a correct and complete workflow.

The termination of our approach is well defined. First experts generate hints, then the

most likely model is found and returned as the solution. Poirot follows a more iterative

approach. Experts continually read and post hypotheses until a meta-learner determines

that enough hypotheses have been generated to form a solution.

106

Chapter 9

Conclusions and Future Work

9.1 Summary

In this dissertation, we introduced a new approach to solve the problem of web site ex-

traction, which falls into the general class of structure discovery problems. Site extraction

is the problem of finding a set of relational tables that best represent the data available

on a web site. This is an important problem as the web contains enormous amounts of

data which lays under a representation layer that facilitates human use but hides it from

machines. Extensive research has been done on making it easier to extract data from the

web and put it in machine-accessible form, but in general research has focused on ex-

tracting particular types of data or from particular sites or the approaches have required

human effort for training. In this dissertation, we introduced a new approach of tackling

the problem of site extraction. The new approach applies to many types of web sites and

even other domains where the problem can be cast as a structure discovery problem. Our

approach also reduces the the human effort involved in extracting data.

The main principle of the new approach is to take advantage of many different types

of clues, such as URL patterns or visual layout, that appear on a web site. This is done

by combining experts each of which focuses on a particular type of clue. Following this

principle, we developed two frameworks.

In the first framework, our focus was on developing a common hypotheses language. A

common language allows a collection of heterogeneous experts to express their discoveries

in a uniform way and the output from the experts to be combined in a principled fashion.

With the common language defined, we went on to develop a set of experts for the site

107

extraction problem. Our experiments with this system showed that it was able to achieve

good extraction accuracy in terms of the standard precision, recall and F1 measures on a

number of sites of different types, but it was also clear that better performance was still

possible as the first framework has an inherent shortcoming: experts are not able to assign

confidence scores to their hypotheses. Next, we developed a second framework where the

common language allows confidence scores on hypotheses.

In the second framework, each expert not only generates hypotheses from the particu-

lar type of structure it specializes in, but also assign confidence scores to its hypotheses.

This allows more information from the experts to be available while the hypotheses are

combined. We experimented with the second framework first in the web domain where

we improved on the results of the first framework. Then, we applied the same framework

to the record linkage domain by developing a set of experts specific to this domain. This

allowed us to do a comparative study against published results, which was difficult to do

in the web domain. Our results indicate that combining experts that analyze multiple types

of structure compares well to a framework that learns complex interdependencies between

simple features.

9.2 Contributions

The main contribution of this work is a new approach to data extraction from the web. In

our thesis statement we claimed that by encapsulating human knowledge about different

types of web structure as software experts and combining these experts while maintaining

a consistent model of the underlying data, we can solve the web data extraction problem

successfully. To this end, we developed two frameworks for combining software experts,

defined a cluster-based representation of data as an intermediate form from which the re-

lational form can be derived, built experts that understand common types of web structure,

and demonstrated that the approach achieves high accuracy in data extraction from the

web.

Other contributions are:

• Site Extraction: We defined the problem of site extraction, which is the problem

of finding the relational form of all data on a given web site. This is a novel way

to look at the problem of data extraction from the web as previous work focuses

on extracting specific types of data, such as person names, addresses, or dates, or

108

extracting data from specific page-types. Considering the site as a whole instead

gives our experts a potentially richer set of structures to work on.

• Clustering with Heterogeneous Experts: We introduced a new approach of com-

bining heterogeneous experts to solve clustering problems. The approach relies on

a common language in which experts output their findings and a search strategy that

ensures global consistency of the solution. In particular, the common language re-

quires each hypothesis to assert whether a pair of samples are in the same cluster or

not. The common language allows our approach to be able to make use of the output

from any expert regardless of the particular type of structure that it is working on.

An important aspect of the process of combining experts is that global consistency

of the data model is maintained. For the clustering approach, this means that the

solution is a proper partitioning of the samples so that each sample belongs to one

and exactly one cluster.

• Implementation: We implemented a flexible clustering system into which any num-

ber of experts can be added. We also developed a number of sophisticated experts

that understand complicated web structures. The clustering system and the web ex-

perts can be used together for the site extraction problem. The clustering system and

the set of web experts are also useful on their own for future work.

9.3 Future work

9.3.1 Theoretical Framework

In this work, we viewed the problem of data extraction from the web as a structure dis-

covery problem, tackled it by combining heterogeneous experts that encapsulate human

knowledge about surface structure and showed empirically that the approach works in

the web and record linkage domains. An important next step is to build a theoretical

framework of structure discovery via experts that understand surface structure. A theory

of structure discovery would define hidden and surface “structure” formally, characterize

the relation between hidden and surface structure, characterize experts in terms of how

accurately they represent this relation, all with the goal of tying together coverage and ac-

curacy of experts, complexity of the hidden structure and the characteristics of the relation

of hidden and surface structure.

109

9.3.2 Representation of Underlying Structure

The two frameworks we developed use a clustered-based representation as an intermedi-

ate form from which the ultimate relational representation can be derived. Alternatively,

the data can be directly modeled as relational tables rather than as clusters. This would

potentially allow experts to be more explicit in their discoveries. For example, the page

layout expert can generate separate hypotheses about data in rows versus data in columns,

assuming that the horizontal versus vertical layout of data is reflective about the underly-

ing structure of data. The challenge in doing this is to develop efficient search algorithms

that can search through the space of such models.

9.3.3 Iterative Interpretation

Perhaps a more powerful approach to structure discovery is an iterative approach where at

each iteration, the model of the underlying data structure is updated based on the current set

of hypotheses from the experts’ and then experts re-“interpret” the problem while taking

into account the current model. This is similar to blackboard systems as discussed earlier,

with the exception that the experts consider only the current model rather than hypotheses

that have been generated by other experts. The current work does not directly address

this kind of iterative reasoning. An interesting path for future work is investigating how

experts can be made to make use of this type of dynamic knowledge.

9.3.4 Other Domains

To further validate the principles of our approach, it will be necessary to apply it in other

domains. This involves three areas of work:

• Developing Experts: One of the challenges in applying our approach to new do-

mains is developing the set of experts which understand the common types of struc-

ture particular to that domain. This is a more difficult task the similar task of defining

features. Features allow samples to be represented in a simple, uniform manner so

that learning and using more complicated structures of the domain remain as part

of the discovery or learning problem. In contrast, experts encode as much as possi-

ble of the known structures so that the discovery process can make use of existing

knowledge.

110

• Common Language: Another task in applying our approach to new domains is

the selection of a common language. The common language needs to be chosen

with the experts and the representation of the underlying structure in mind. A good

common language allows experts that work on heterogeneous structures to express

their discoveries naturally, but also is not overly complex that the search for the

underlying structure becomes prohibitive.

• Search: In our approach, we used a cluster-based representation of the underlying

data. This allowed us to use standard clustering algorithms, such as the leader-

follower algorithm and the agglomerative clustering algorithm, as our “search” al-

gorithm. However, other data representations will require new search strategies.

Consider the problem of scene-recognition where the hidden 3D-model consists

of known set of solid objects. The search space for this problem is the set of all

configurations in 3D-space of the known objects such that none of the physical-

world constraints are violated. Effectively searching this space to find the solution

that maximally agrees with the hypotheses requires a strategy specific to this search

space and the hypothesis language.

111

112

Bibliography

[1] Edoardo M. Airoldi, William W. Cohen, and Stephen E. Fienberg. Bayesian methods

for frequent terms in text: Models of contagion and the ∆2 statistic. In CSNA &

INTERFACE Annual Meetings, St. Louis, MI, 2005. 3.4

[2] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and

tracking pilot study, 1998. 4.1.2

[3] Arvind Arasu and Hector Garcia-Molina. Extracting structured data from web pages.

In SIGMOD Conference, pages 337–348, 2003. 2.1

[4] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic framework

for semi-supervised clustering. In KDD04, pages 59–68, Seattle, WA, August 2004.

8.3.2

[5] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learn-

able string similarity measures. In KDD ’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 39–48,

New York, NY, USA, 2003. ACM Press. 7.1

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.

Mach. Learn. Res., 3:993–1022, 2003. 3.4

[7] Avrim Blum. Empirical support for Winnow and weighted-majority based algo-

rithms: results on a calendar scheduling domain. In Proc. 12th International Confer-

ence on Machine Learning, pages 64–72, San Francisco, CA., 1995. Morgan Kauf-

mann. 8.4

[8] Avrim Blum. On-line algorithms in machine learning. In Online Algorithms, pages

306–325, 1996. 8.4

[9] W. Butera and V. Bove. The coding ecology: Image coding via competition among

experts, 2000. 8.4

113

[10] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for infor-

mation extraction. In Working Notes of AAAI Spring Symposium on Applying Ma-

chine Learning to Discourse Processing, pages 6–11, Menlo Park, CA, 1998. AAAI

Press. 8.2

[11] CALO. http://www.ai.sri.com/project/calo. 4.2

[12] Chia-Hui Chang, Moheb Ramzy Girgis, Mohammed Kayed, and Khaled Shaalan.

A survey of web information extraction systems. IEEE Transactions on Knowledge

and Data Engineering, 18(10):1411–1428, October 2006. 8.1.1

[13] H. Chen, S. Tsai, and J. Tsai. Mining tables from large scale html texts, 2000. 8.1.2

[14] Yejin Choi and Claire Cardie. Structured local training and biased potential functions

for conditional random fields with application to coreference resolution. In Human

Language Technologies 2007: The Conference of the North American Chapter of

the Association for Computational Linguistics; Proceedings of the Main Conference,

pages 65–72, Rochester, New York, April 2007. Association for Computational Lin-

guistics. 6.2.1

[15] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377–387, 1970. 3.1

[16] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string metrics for match-

ing names and records. 3.7

[17] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics

for name-matching tasks, 2003. 3.7

[18] W. Cohen and J. Richman. Learning to match and cluster large high-dimensional

data sets for data integration, 2002. 8.3.2

[19] William W. Cohen and Wei Fan. Learning page-independent heuristics for extract-

ing data from web pages. In In AAAI Spring Symposium on Intelligent Agents in

Cyberspace, 1999. 8.1.1

[20] William W. Cohen, Matthew Hurst, and Lee S. Jensen. A flexible learning system

for wrapping tables and lists in html documents. In WWW ’02: Proceedings of the

eleventh international conference on World Wide Web, pages 232–241. ACM Press,

2002. 8.1.1

[21] William W. Cohen and Yoram Singer. Context-sensitive learning methods for text

114

categorization. In Hans-Peter Frei, Donna Harman, Peter Schäuble, and Ross Wilkin-

son, editors, Proceedings of SIGIR-96, 19th ACM International Conference on Re-

search and Development in Information Retrieval, pages 307–315, Zürich, CH, 1996.

ACM Press, New York, US. 8.4

[22] Diane J. Cook and Lawrence B. Holder. Graph-based data mining. IEEE Intelligent

Systems, 15(2):32–41, 2000. 8.2.1

[23] Daniel D Corkill. Collaborating Software: Blackboard and Multi-Agent Systems &

the Future. In Proceedings of the International Lisp Conference, New York, New

York, October 2003. 8.4

[24] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards

automatic data extraction from large web sites. In Proceedings of 27th International

Conference on Very Large Data Bases, pages 109–118, 2001. 2.1, 8.1.3

[25] Aron Culotta and Andrew McCallum. Joint deduplication of multiple record types in

relational data. In CIKM ’05: Proceedings of the 14th ACM international conference

on Information and knowledge management, pages 257–258, New York, NY, USA,

2005. ACM Press. 3.2, 5.4.1, 6.2.1, 7.1, 8.3.1

[26] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In

Proceedings of The Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining(KDD-2003), pages 89–98, 2003. 5.4.1

[27] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience

Publication, 2000. 3.2, 3.4, 3.5, 8.3

[28] E.H. Durfee, V.R. Lesser, and D.D. Corkill. Distributed Problem Solving. The En-

cyclopedia of Artificial Intelligence, Second Edition, January 1991. 8.4

[29] David W. Embley, Cui Tao, and Stephen W. Liddle. Automatically extracting onto-

logically specified data from html tables of unknown structure. In ER ’02: Proceed-

ings of the 21st International Conference on Conceptual Modeling, pages 322–337.

Springer-Verlag, 2002. 8.1.2

[30] L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy. The HEARSAY-II Speech

Understanding System: Integrating Knowledge to Resolve Uncertainty. Computing

Surveys, 12(2):213–253, June 1980. 8.4

[31] Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal of the

115

American Statistical Association, 64(328):1183–1210, 1969. 7.1

[32] Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using

and combining predictors that specialize. pages 334–343, 1997. 8.4

[33] Wolfgang Gatterbauer, Paul Bohunsky, Marcus Herzog, Bernhard Krüpl, and Bern-

hard Pollak. Towards domain-independent information extraction from web tables.

In WWW ’07: Proceedings of the 16th international conference on World Wide Web,

pages 71–80, New York, NY, USA, 2007. ACM. 8.1.2

[34] Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning proba-

bilistic models of relational structure. In Proc. 18th International Conf. on Machine

Learning, pages 170–177. Morgan Kaufmann, San Francisco, CA, 2001. 8.2

[35] Lise Getoor, Eran Segal, Ben Taskar, and Daphne Koller. Probabilistic models of

text and link structure for hypertext classification, 2001. IJCAI Workshop on ”Text

Learning: Beyond Supervision”. 8.2

[36] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In

WWW ’05: Special interest tracks and posters of the 14th international conference

on World Wide Web, pages 902–903, New York, NY, USA, 2005. ACM Press. 1.1.1

[37] Michael Habeck, Michael Nilges, and Wolfgang Rieping. Bayesian inference applied

to macromolecular structure determination. Physical Review E (Statistical, Nonlin-

ear, and Soft Matter Physics), 72(3):031912, 2005. 2.2

[38] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the

deep web. Commun. ACM, 50(5):94–101, 2007. 1.1.1

[39] Thomas Hofmann. Probabilistic latent semantic analysis. In Proc. of Uncertainty in

Artificial Intelligence, UAI’99, Stockholm, 1999. 3.4

[40] Thomas Hofmann and Joachim M. Buhmann. Pairwise data clustering by determin-

istic annealing. IEEE Trans. Pattern Anal. Mach. Intell., 19(1):1–14, 1997. 3.2

[41] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing

Surveys, 31(3):264–323, 1999. 8.3

[42] Hailin Jin, Anthony J. Yezzi, and Stefano Soatto. Mumford-shah on the move:

Region-based segmentation on deforming manifolds with application to 3-d recon-

struction of shape and appearance from multi-view images. J. Math. Imaging Vis.,

29(2-3):219–234, 2007. 2.2

116

[43] Hyuckchul Jung and Milind Tambe. On communication in distributed constraint

satisfaction. In AAMAS ’04: Proceedings of the Third International Joint Conference

on Autonomous Agents and Multiagent Systems, pages 1480–1481, Washington, DC,

USA, 2004. IEEE Computer Society. 8.4

[44] Zu Whan Kim and Ramakant Nevatia. Expandable bayesian networks for 3d object

description from multiple views and multiple mode inputs. IEEE Trans. Pattern Anal.

Mach. Intell., 25(6):769–774, 2003. 5.2.1

[45] Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. From instance-level

constraints to space-level constraints: Making the most of prior knowledge in data

clustering. In Claude Sammut and Achim G. Hoffmann, editors, ICML, pages 307–

314. Morgan Kaufmann, 2002. 8.3.2

[46] Craig A. Knoblock, Kristina Lerman, Steven Minton, and Ion Muslea. Accurately

and reliably extracting data from the web: A machine learning approach, pages 275–

287. Intelligent Exploration of the Web. Springer-Verlag, Berkeley, CA, 2003. 1.1.2,

4.1.1, 8.1.1

[47] Bernhard Krüpl, Marcus Herzog, and Wolfgang Gatterbauer. Using visual cues for

extraction of tabular data from arbitrary HTML documents. In Proceedings of the

special interest tracks and posters of the 14th international conference on World

Wide Web (WWW 2005, pages 1000–1001. ACM Press, May 2005. 8.1.2

[48] Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial

Intelligence, 118(1-2):15–68, 2000. 1.1.2, 8.1.1

[49] Kristina Lerman, Lise Getoor, Steven Minton, and Craig Knoblock. Using the struc-

ture of web sites for automatic segmentation of tables. In SIGMOD ’04: Proceedings

of the 2004 ACM SIGMOD international conference on Management of data, pages

119–130. ACM Press, 2004. 8.1.2

[50] Kristina Lerman, Steven Minton, and Craig A. Knoblock. Wrapper maintenance: A

machine learning approach. JAIR, 18:149–181, 2003. 2.1

[51] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Mach. Learn., 2(4):285–318, 1988. 8.4

[52] Yan Liu, Jaime G. Carbonell, Peter Weigele, and Vanathi Gopalakrishnan. Segmen-

tation conditional random fields (scrfs): A new approach for protein fold recognition.

In Satoru Miyano, Jill P. Mesirov, Simon Kasif, Sorin Istrail, Pavel A. Pevzner, and

117

Michael S. Waterman, editors, RECOMB, volume 3500 of Lecture Notes in Com-

puter Science, pages 408–422. Springer, 2005. 2.2

[53] Laszlo Lovasz. Combinatorial Problems and Exercises. Elsevier Science Ltd, 1979.

1

[54] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries

using brightness and texture, 2002. 2.3

[55] Steven Minton, Sorinel I. Ticrea, and Jennifer Beach. Trainability: Developing a

responsive learning system. In IIWeb, pages 27–32, 2003. 4.2

[56] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.

Learning to classify text from labeled and unlabeled documents. In Proceedings

of AAAI-98, 15th Conference of the American Association for Artificial Intelligence,

pages 792–799, Madison, US, 1998. AAAI Press, Menlo Park, US. 3.4

[57] Parag and P. Domingos. Multi-relational record linkage. In Proceedings of 3rd

Workshop on Multi-Relational Data Mining at ACM SIGKDD, Seattle, WA, August

2004. 7.1

[58] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. 5.2.1

[59] A. Pivk, P. Cimiano, and Y. Sure. From tables to frames, 2005. 8.1.2

[60] Katharina Probst, Rayid Ghani, Marko Krema, Andrew E. Fano, and Yan Liu. Semi-

supervised learning of attribute-value pairs from product descriptions. In Manuela M.

Veloso, editor, IJCAI, pages 2838–2843, 2007. 8.1.4

[61] P. Ravikumar and W. Cohen. A hierarchical graphical model for record linkage,

2004. 7.1

[62] Paul Robertson and Robert Laddaga. The grava self-adaptive architecture: History;

design; applications; and challenges. In ICDCSW ’04: Proceedings of the 24th Inter-

national Conference on Distributed Computing Systems Workshops - W7: EC (ICD-

CSW’04), pages 298–303, Washington, DC, USA, 2004. IEEE Computer Society.

8.4.1

[63] Gian-Carlo Rota. The number of partitions of a set. American Mathematical

Monthly, 71(5):498–504, 1964. 1

[64] Gerard Salton and Michael McGill. Introduction to Modern Information Retrieval.

118

McGraw-Hill Book Company, 1984. 3.4

[65] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., New York, NY, USA, 1986. 1.1.2

[66] P. Scerri, R. Vincent, and R. Mailler. Comparing three approaches to large scale

coordination, 2004. 8.4

[67] Noam M. Shazeer, Michael L. Littman, and Greg A. Keim. Solving crossword puz-

zles as probabilistic constraint satisfaction. In AAAI/IAAI, pages 156–162, 1999.

8.4.2

[68] Michael Sipser. Introduction to the Theory of Computation. Course Technology,

December 1996. 1.1.2

[69] Yang Song, Jian Huang, Isaac G. Councill, Jia Li, and C. Lee Giles. Efficient topic-

based unsupervised name disambiguation. In JCDL ’07: Proceedings of the 2007

conference on Digital libraries, pages 342–351, New York, NY, USA, 2007. ACM.

6.2.1

[70] Alexander Strehl and Joydeep Ghosh. Cluster ensembles – a knowledge reuse frame-

work for combining partitionings. In Proc. Conference on Artificial Intelligence

(AAAI 2002), Edmonton, pages 93–98. AAAI/MIT Press, July 2002. 8.3.3

[71] Benjamin Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and

clustering in relational data. In Bernhard Nebel, editor, Proceeding of IJCAI-01, 17th

International Joint Conference on Artificial Intelligence, pages 870–878, Seattle, US,

2001. 8.2

[72] Ashwin Tengli, Yiming Yang, and Nian Li Ma. Learning table extraction from ex-

amples. In COLING ’04: Proceedings of the 20th international conference on Com-

putational Linguistics, page 987, Morristown, NJ, USA, 2004. Association for Com-

putational Linguistics. 8.1.2

[73] Melissa M. Terras. Image to Interpretation. Oxford, 2006. 8.4.1

[74] Kentaro Toyama and Eric Horvitz. Bayesian modality fusion: Probabilistic integra-

tion of multiple vision algorithms for head tracking. In Proceedings of ACCV ’00,

Fourth Asian Conference on Computer Vision, 2000. 5.2.1

[75] Kiri Wagstaff and Claire Cardie. Clustering with instance-level constraints. In ICML

’00: Proceedings of the Seventeenth International Conference on Machine Learning,

119

pages 1103–1110, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers

Inc. 8.3.2

[76] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-means

clustering with background knowledge. In ICML ’01: Proceedings of the Eighteenth

International Conference on Machine Learning, pages 577–584, San Francisco, CA,

USA, 2001. Morgan Kaufmann Publishers Inc. 8.3.2

[77] H. L. Wang, S. H. Wu, I. C. Wang, C. L. Sung, W. L. Hsu, and W. K. Shih. Semantic

search on internet tabular information extraction for answering queries. In CIKM ’00:

Proceedings of the ninth international conference on Information and knowledge

management, pages 243–249, New York, NY, USA, 2000. ACM. 8.1.2

[78] G. I. Webb and D. Brain. Generality is predictive of predication accuracy. In T. Yam-

aguchi, A. Hoffmann, H. Motoda, and P. Compton, editors, Proceedings of the 2002

Pacific Rim Knowledge Acquisition Workshop (PKAW’02), pages 117–130, Tokyo,

2002. Japanese Society for Artificial Intelligence. 2.3

[79] W. Winkler. The state of record linkage and current research problems, 1999. 2.2

[80] Tak-Lam Wong, Wai Lam, and Tik-Shun Wong. An unsupervised framework for

extracting and normalizing product attributes from multiple web sites. In SIGIR ’08:

Proceedings of the 31st annual international ACM SIGIR conference on Research

and development in information retrieval, pages 35–42, New York, NY, USA, 2008.

ACM. 8.1.4

[81] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table recognition: Models,

observations, transformations, and inferences. 8.1.2

[82] Yanhong Zhai and Bing Liu. Automatic wrapper generation using tree matching and

partial tree alignment. In AAAI. AAAI Press, 2006. 8.1.3

120

	1 Introduction
	1.1 Overview
	1.1.1 Goal
	1.1.2 Current Approaches
	1.1.3 Challenges
	1.1.4 Contribution

	1.2 Problem Description
	1.2.1 Site extraction
	1.2.2 Inverse Problem - Site Generation

	1.3 Thesis Statement
	1.4 Roadmap

	2 Approach - Principles
	2.1 Motivation
	2.2 Structure Discovery
	2.3 Tackling Structure Discovery Problems
	2.3.1 Multiple Heterogeneous Experts
	2.3.2 Combining Heterogeneous Experts
	2.3.3 Experts vs. Complex Models

	2.4 Summary

	3 Chex: Clustering with Heterogeneous Experts
	3.1 Overview
	3.2 Expert Framework
	3.3 Hypothesis Language
	3.4 Probabilistic Model
	3.5 Clustering
	3.6 Finding Data Clusters
	3.7 Web Experts
	3.8 Clusters to Relational form
	3.9 Summary

	4 Results - Chex
	4.1 Evaluation Methodology
	4.1.1 Dataset
	4.1.2 Precision/Recall/F1 on Matching Clusters

	4.2 Results
	4.3 Observations

	5 Confhex: Clustering with Confidence Scores from Heterogeneous Experts
	5.1 Overview
	5.2 Bayesian Network
	5.2.1 Structure
	5.2.2 Parameters
	5.2.3 Confidence Scores
	5.2.4 Belief Propagation

	5.3 Combining Experts
	5.4 Web Domain
	5.4.1 Overview
	5.4.2 Page Clustering
	5.4.3 Data Clustering

	5.5 Summary

	6 Results - Confhex
	6.1 Goals
	6.2 Confhex on the Web Dataset
	6.2.1 Page Clustering
	6.2.2 Data Clustering

	6.3 Comparing Confhex to AgentBuilder
	6.4 Comparing Confhex to RoadRunner
	6.5 Comparing Confhex to Chex
	6.6 Applications
	6.6.1 News Extraction

	7 Record Deduplication
	7.1 Overview
	7.1.1 Citation Experts
	7.1.2 Venue experts

	7.2 Experiments
	7.2.1 Results

	7.3 Summary

	8 Related Work
	8.1 Data Extraction from the Web
	8.1.1 Wrappers
	8.1.2 Table Extraction
	8.1.3 Grammar Induction
	8.1.4 Unsupervised Extraction

	8.2 Relational Model Learning.
	8.2.1 Data Mining in Graphs.

	8.3 Clustering
	8.3.1 Coclustering
	8.3.2 Clustering with Constraints
	8.3.3 Ensemble Clustering

	8.4 Multi-Expert Approaches
	8.4.1 GRAVA - Self-Adaptive Architecture
	8.4.2 Proverb - A Crossword Solver
	8.4.3 Poirot - Integrated Learning

	9 Conclusions and Future Work
	9.1 Summary
	9.2 Contributions
	9.3 Future work
	9.3.1 Theoretical Framework
	9.3.2 Representation of Underlying Structure
	9.3.3 Iterative Interpretation
	9.3.4 Other Domains

	Bibliography

