
Information Mediation in the Presence of

Constraints and Uncertainties

Sandeep Pandey

May 2008

CMU-CS-08-125

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Christopher Olston, Chair

Christos Faloutsos

Geo�rey J. Gordon

Andrew Tomkins

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy

c© 2008 Sandeep Pandey

The views and conclusions contained in this document are those of the author, and should not be interpreted as

representing the o�cial policies, either expressed or implied, of any sponsoring institution, the U.S. government, or

any other entity.

Keywords: information mediator; search engine; constrained optimization; uncertainty; explo-

ration/exploitation tradeo�; web crawling; web page ranking; advertisement ranking; web page

discovery; set cover; greedy; synchronization; web page refreshing; randomized ranking; entrench-

ment e�ect; rank promotion; multi-armed bandit; click-through rate; BMMP

This thesis is dedicated to

my sister Sushma,

who has been an inspiration to me for her strength in face of overwhelming adversity,

and my parents,

whose sel�ess love and support, words can't describe.

Abstract

People often require a uni�ed view of multiple disparate information sources. This role is played

by information mediators such as Web search engines and database integration systems. Internally,

information mediators perform three basic tasks: acquisition, analysis, and presentation of content.

For example, Web search engines acquire Web pages via crawling, analyze the text and link structure

of the crawled pages, and present lists of pages in response to user search queries.

In environments such as the Web that have very large amounts of content, the content acquisition

and presentation tasks can be viewed as constrained optimization problems. On the acquisition

side, the resources required to discover, and maintain synchronization with, all available online

content vastly exceed the capacity of even the most well-provisioned information mediators. On

the presentation side, the constraint is on user attention: users cannot be expected to sift through

large amounts of content. Rather than being exhaustive, an information mediator must be selective

in acquiring and presenting content, with selections driven by some meaningful objective function.

This dissertation studies formulations of, and solutions to, these optimization problems.

A complication that arises in this setting is that some parameters needed to solve the optimiza-

tion problem are unknown. For example, in the Web search context, due to autonomy of sources

a search engine may not know the update rate of pages, making it di�cult to conduct an optimal

synchronization strategy. Similarly, due to sparsity of user feedback, the search engine may not

have accurate page quality measurements, making it di�cult to present search results in the opti-

mal order. This dissertation studies means of simultaneously estimating unknown parameters and

exploiting current estimates. We focus speci�cally on the Web search context, although many of

our ideas apply to other contexts as well.

v

Thesis Committee

Christopher Olston (Chair)

Computer Science Department

Carnegie Mellon University

Christos Faloutsos

Computer Science Department

Carnegie Mellon University

Geo�rey J. Gordon

Machine Learning Department

Carnegie Mellon University

Andrew Tomkins

Search Department

Yahoo!

vii

Acknowledgments

I am thankful to many people for helping me during my graduate studies. First of all, I would like

to thank my advisor, Chris Olston. Chris is an excellent advisor and researcher who always went

above and beyond the call of duty in supporting and guiding me. He spent countless hours helping

me improve my research, writing and presentation skills. His ability of thinking clearly and paying

attention to small details amazes me. Thinking back, I feel he epitomizes the skills that I lacked the

most when I started working under him �ve years ago, and so this Ph.D., as a learning experience,

couldn't have been any better.

I am thankful to my thesis committee members, Christos Faloutsos, Geo� J. Gordon and Andrew

Tomkins for �nding time to read this dissertation and for giving their invaluable feedback. A big

thanks to Sharon Burks, Deborah A. Cavlovich and Frank Pfenning for being so kind and patient

in dealing with my �unusual situation.� I would like to thank all my collaborators from CMU, IIT,

UCLA and Yahoo!: Deepak Agarwal, Deepayan Chakrabarti, Soumen Chakrabarti, Junghoo Cho,

Anirban Dasgupta, Kedar Dhamdhere, Arpita Ghosh, Vanja Josifovski, Ravi Kumar, and Sourashis

Roy.

Finally, I would like to thank my family, without whose love and support, none of this would

have been possible. One life would simply not be enough to pay my gratitude to them. A big thanks

to my dear friend Shruti for her unwavering faith in me. She was always there to encourage me

when I doubted myself.

ix

Table of Contents

Abstract v

Thesis Committee vii

Acknowledgments ix

Table of Contents xv

List of Figures xviii

List of Tables xix

1 Introduction 1

1.1 Acquisition of Content . 3

1.2 Presentation of Content . 4

1.3 O�ine and Online Settings . 5

1.4 Organization of Dissertation . 6

2 Related Work 9

2.1 Architecture Design . 9

2.2 Content Acquisition . 11

2.3 Content Presentation . 12

3 Web Page Discovery 15

3.1 Introduction . 16

3.2 Problem Formulation . 17

xi

xii TABLE OF CONTENTS

3.2.1 Overhead Metric . 18

3.2.2 Discovery Optimization Problem . 19

3.3 Chapter Outline . 19

3.4 Related Work . 20

3.5 Feasibility of Discovering New Content . 20

3.5.1 Data . 21

3.5.2 An Algorithmic Upper Bound: Greedy . 22

3.5.3 Measurements . 22

3.6 History-based Algorithms . 26

3.6.1 Algorithm Based on Outdegree . 26

3.6.2 Algorithms based on Overlap . 27

3.6.3 Algorithm Based on Greedy Cover . 29

3.6.4 Aggregating Past Observations . 30

3.6.5 Upper Bounds on Performance of Historical Algorithms 30

3.6.6 Analysis of Historical Algorithms . 31

3.7 Chapter Summary . 34

4 Web Page Synchronization 35

4.1 Introduction . 35

4.2 Problem Formulation . 36

4.2.1 Repository Quality Metric . 37

4.2.2 Web Synchronization Optimization Problem 39

4.3 Chapter Outline . 41

4.4 Related Work . 41

4.5 New Web Synchronization Policy . 42

4.5.1 Change in Quality . 42

4.5.2 Synchronization Policy . 43

4.6 Estimating Changes in Quality During Crawler Operation 44

4.6.1 Approximation Scheme . 45

4.6.2 Taking Measurements During Index Maintenance 47

4.6.3 Overhead of Measurement Scheme . 48

4.7 Experiments . 48

4.7.1 Web Page Synchronization Schemes Evaluated 49

TABLE OF CONTENTS xiii

4.7.2 Estimation of Page Change Characteristics 51

4.7.3 Comparison of Page Synchronization Schemes 52

4.8 Chapter Summary . 56

5 Web Page Ranking 57

5.1 Introduction . 57

5.1.1 Entrenchment E�ect in Other Contexts . 58

5.1.2 Overview of Our Approach . 58

5.1.3 Experimental Study . 60

5.2 Chapter Outline . 60

5.3 Related Work . 61

5.4 Problem Formulation . 62

5.4.1 Page Popularity . 62

5.4.2 Metrics and Exploration/Exploitation Tradeo� 64

5.4.3 Web Page Ranking Optimization Problem . 65

5.5 Randomized Rank Promotion . 66

5.6 Analytical Model . 67

5.6.1 Page Birth and Death . 68

5.6.2 Awareness Distribution . 68

5.6.3 Popularity to Visit Rate Relationship . 70

5.7 E�ect of Randomized Rank Promotion and Recommended Parameter Settings 72

5.7.1 Default Scenario . 72

5.7.2 E�ect of Randomized Rank Promotion on TBP 73

5.7.3 E�ect of Randomized Rank Promotion on QPC 74

5.7.4 Balancing Exploration, Exploitation, and Reality 75

5.8 Robustness Across Di�erent Community Types . 77

5.8.1 In�uence of Community Size . 77

5.8.2 In�uence of Page Lifetime . 77

5.8.3 In�uence of Visit Rate . 78

5.8.4 In�uence of Size of User Population . 79

5.9 Mixed Sur�ng and Searching . 80

5.10 Real-World E�ectiveness of Rank Promotion . 81

5.10.1 Experimental Procedure . 81

xiv TABLE OF CONTENTS

5.10.2 Results . 83

5.11 Chapter Summary . 84

6 Advertisement Ranking 85

6.1 Problem Formulation . 85

6.2 Overview of Our Approach . 86

6.3 Chapter Outline . 87

6.4 Related Work . 88

6.5 Unbudgeted Unknown-CTR Advertisement Problem 88

6.6 Budgeted Unknown-CTR Advertisement Problem . 90

6.6.1 Budgeted Multi-armed Multi-bandit Problem 90

6.6.2 Performance Bound for BMMP Policies . 91

6.6.3 Policy BMIX and its Variants . 93

6.7 Experiments . 95

6.7.1 Experiment Setup . 95

6.7.2 Exploration/Exploitation Tradeo� . 96

6.8 Practical Extensions of BMIX . 97

6.8.1 Exploiting Prior Information About CTRs . 97

6.8.2 Performance Comparison . 99

6.8.3 Allowing Submission/Revocation of Ads at Any Time 100

6.8.4 Exploiting Dependencies in CTRs of Ads . 101

6.9 Chapter Summary . 102

7 Future Work 103

7.1 Web Page Discovery . 103

7.2 Web Page Synchronization . 104

7.3 Web Page Ranking . 105

7.4 Advertisement Ranking . 105

8 Summary 107

9 Appendix 121

9.1 Overhead of Discovering New Web Sites . 121

9.2 Proof of Theorem 2 . 122

TABLE OF CONTENTS xv

9.3 Performance Bound for BMMP Policies . 125

9.4 Performance Bound for MIX . 130

xvi TABLE OF CONTENTS

List of Figures

1.1 Basic <content-shipping, pull>-based information mediator. 2

1.2 Response for a search query on Yahoo! search. 4

1.3 Likelihood of viewing a result item as a function of its rank. 5

1.4 Basic search engine architecture. 7

1.5 Dissertation organization. 7

3.1 Old pages linking to new pages. 16

3.2 (a) Overhead and number of covered pages, (b) fraction of new pages covered. 24

3.3 Overlap distribution. 25

3.4 Global discovery of new pages on old sites. 25

3.5 Coverage as a function of average cover size, recrawl frequency 1. 33

3.6 Coverage as a function of average cover size, recrawl frequency 4. 33

4.1 Our synchronization policy. 44

4.2 Overhead of our measurement scheme. 48

4.3 Amenability to forecasting of time-normalized change in quality (δQA(p)). The four

graphs shown correspond to (a) BDS data set with TF-IDF scoring function, (b)

BDS with inlink count scoring function, (c) MDS data set with TF-IDF, and (d)

MDS with inlink count. All graphs are on a log-log scale. 53

4.4 Repository quality versus resource usage. The di�erent graphs are for (a) BDS data

set with TF-IDF scoring function, (b) BDS with inlink count scoring function, (c)

MDS data set with TF-IDF, and (d) MDS with inlink count. 54

4.5 Examples drawn from our real-world boston.com data set. 55

5.1 Exploration/exploitation tradeo�. 64

xvii

xviii LIST OF FIGURES

5.2 Awareness distribution of pages of high quality under randomized and nonrandomized

ranking. 69

5.3 Popularity evolution of a page of quality Q = 0.4 under nonrandomized, uniform

randomized, and selective randomized ranking. 74

5.4 Time to become popular (TBP) for a page of quality 0.4 in default Web community

as degree of randomization (r) is varied. 74

5.5 Quality-per-click (QPC) for default Web community as degree of randomization (r)

is varied. 75

5.6 Qualitiy-per-click (QPC) for default Web community under selective randomized rank

promotion, as degree of randomization (r) and starting point (k) are varied. 76

5.7 In�uence of community size. 78

5.8 In�uence of page lifetime. 78

5.9 In�uence of visit rate. 78

5.10 In�uence of size of user population. 79

5.11 In�uence of the extent of random sur�ng. 81

5.12 Improvement in overall quality due to rank promotion in live study. 83

6.1 Advertiser and query model. 87

6.2 Problem variants. 87

6.3 Revenue generated by di�erent advertisement policies (C=1). 97

6.4 E�ect of C (number of ads displayed per query). 97

6.5 E�ect of the prior information. 99

6.6 E�ect of ad lifetime. 100

9.1 Chile site-level discovery. 122

List of Tables

3.1 Summary of symbols and their meanings. 18

3.2 Analysis of covers produced by historical algorithms. 32

4.1 Example scenario. 37

4.2 Summary of symbols and their meanings. 40

5.1 Notation used in this chapter. 63

8.1 Content acquisition and presentation tasks formulated as optimization problems with

constraints and uncertainty. 108

9.1 Fraction of new pages appears on new sites versus old sites in the Chilean web data

set. 121

xix

xx LIST OF TABLES

Chapter 1

Introduction

Online content is spread across a large number of disparate sources. People often want to have a

uni�ed view of content. As a result, there is much interest in information mediators which collect

content from multiple sources and make it accessible to users in a uniform way. Examples of such

applications include Web search engines and database integration systems. There are two major

design choices involved in building an information mediator:

• Content shipping vs. Request shipping1 : In the content shipping model the information

mediator maintains a cache into which content is downloaded from content sources. User

content requests are answered using the local cache afterward.2 In the request shipping model,

when a user submits a content request, it is dispatched to the content sources. Each source

produces a partial result using its local content, and all these partial results are then merged

by the mediator to output the �nal result.

• Pull vs. Push : The communication of data between the information mediator and the content

sources can be either pull-based or push-based. In the pull-based model the information

mediator requests the required content from the sources explicitly, while in the push-based

model the sources automatically send the required content to the information mediator.

1This choice is also known as data warehouse vs. mediation in the database literature [114, 115].
2The content shipping model does not restrain from employing centralized or distributed model of computing.

For example, the local cache can be stored at one location or distributed among several self-created peer locations.
Similarly, the processing of content requests can also be centralized or distributed [11, 87, 103].

1

2 CHAPTER 1: INTRODUCTION

Figure 1.1: Basic <content-shipping, pull>-based information mediator.

This dissertation speci�cally focuses onWeb-based content sources, e.g., Web sites, Web databases.

Since Web sources are largely pull-oriented (e.g., follow the HTTP protocol) and have limited capa-

bility to process user content requests on behalf of information mediators, most of the information

mediators in the Web context fall under <content-shipping, pull> architecture design. Figure 1.1

shows a <content-shipping, pull>-based information mediator (explained in detail later). One ex-

ample of an environment that follows this design is search engines, which download Web pages from

the Web and acquire advertisements from advertisers, and store these pages/ads into a local cache to

answer user search queries, e.g., Google [46], MSN [78], Yahoo! [120].3 Another example is product

review/recommendation providers which collect user reviews scattered on di�erent Web sites on the

Web and process them locally to present a uni�ed view to the interested users, e.g., Wize [118],

Consumer Search [30]. As a third example, many Web-based continuous query (CQ) processing sys-

tems proposed in the literature are based on this architecture, e.g., CONQUER [70], Niagara [79].

However, there are other scenarios in which the involved content sources are more cooperative and

other architecture designs are employed, i.e., �le sharing [41, 45], Web databases [47, 48, 58].

3Strictly speaking, search engines are not entirely <content-shipping, pull>-based since they deal with sponsored
advertisements using the <content-shipping, push>-based architecture model, i.e., while search engines need to
download pages from Web sites, advertisements are submitted to search engines by advertisers themselves.

1.1: ACQUISITION OF CONTENT 3

Since <content-shipping, pull> is the predominant architecture used among Web-based informa-

tion mediators, we focus on this architecture henceforth. However, many of our ideas also generalize

to other architectures. In the <content-shipping, pull> architecture, the mediator maintains a local

cache, called a repository, into which content is downloaded from Web sites. Then the mediator

analyzes the text and link structure of the acquired content to facilitate answering user content

requests. When a user submits a content request, the mediator returns the content items �useful�

for the request. Hence, there are two ways in which Web-based information mediators interact with

external agents: (a) acquisition of content and (b) presentation of content. We discuss them in

detail next.

1.1 Acquisition of Content

The mediator polls Web sites to download content into its repository. However, Web sites update

their content every now and then. Furthermore, some Web sites disappear from the Web over time

while new Web sites appear. Answering user content requests correctly requires that the information

mediator's repository is kept both fresh and complete with respect to Web sites. The freshness of

repository depends on how up-to-date its content is, while the completeness depends on the fraction

of Web content that has been downloaded.4 Keeping the repository fresh and complete involves

(a) discovering new Web pages and (b) continuously synchronizing with the known live Web pages.

Since Web pages link to each other, discovery is achieved by polling known Web pages and following

their outlinks. Synchronization also requires polling known Web pages in order to download their

(possibly updated) content. The main question is how often to poll each page.

A simple scheme is to poll each Web page with the same period, uniform polling. In practice, the

rate of polling is bounded, for various reasons, e.g., politeness constraints enforced by Web sites, 5

limited network bandwidth and limited computation resources at the mediator. In the presence of a

bounded polling rate and a large number of Web pages, uniform polling results in a very infrequent

polling of Web pages. For example, given 10 billion Web pages [49] and 100 nodes with each node

polling at the rate of 100 pages per second [24, 52] in parallel, uniform polling scheme polls each

4In practice, some undesirable pages (e.g., so-called spam pages) may be intentionally omitted.
5A politeness constraint enforced by a Web site limits the number of times the Web site can be probed in a given

time period by an external agent. Typically, Web sites impose these constraints to avoid getting large tra�c from
automated engines, e.g., mediators.

4 CHAPTER 1: INTRODUCTION

Figure 1.2: Response for a search query on Yahoo! search.

Web page once in every 12 days. On the other hand, Web pages are updated at a wide range of

timescales [24], e.g., some Web pages are updated on an hourly basis, while other Web pages are

not updated for a long time (over 3 months). Hence, non-uniform polling is preferred.

Content acquisition is a constrained optimization problem. The constraint is limited resources

available for polling pages. The objective is to maximize the freshness and completeness of the

information mediator's repository (de�ned formally in Chapters 3 and 4).

1.2 Presentation of Content

In response to a user content request, the mediator searches its local repository and returns the

content items deemed �useful� for the request. For example, search engines attempt to return

relevant, high quality Web pages and advertisements for a user search query, as shown in Figure 1.2.

In many cases the number of useful content items can be too large for users to read through.

Moreover, Figure 1.3 shows that the likelihood of a user viewing a result item decreases with the

item's position in the ranked list, as observed in [69]. Hence, it is important to present the most

1.3: OFFLINE AND ONLINE SETTINGS 5

Figure 1.3: Likelihood of viewing a result item as a function of its rank.

useful results at the top of the list.

Similar to acquisition, content presentation is also a constrained optimization problem. In this

case the constraint is limited user attention. The objective is to maximize the cumulative usefulness

of results items as perceived by users (de�ned formally in Chapters 5 and 6).

1.3 Offline and Online Settings

We have described how the acquisition and presentation tasks can be formulated as constrained

optimization problems. A complication that arises is that some parameters needed to solve the

optimization problems are unknown. For example, the update rate of pages may not be known

to the information mediator beforehand, making it di�cult to conduct an optimal polling scheme.

Similarly, the relevance of Web pages (or advertisements) may not be known in advance, making it

di�cult to present search results in the optimal order.

We study the acquisition and presentation tasks in two di�erent scenarios:

• O�ine scenario: all parameters relevant to the optimization problem (e.g., rate of link creation

or page relevance) are given.

• Online scenario: some characteristics are not fully known at the outset, but they can be

estimated over time. For example, the rate at which a Web page is updated or is linked

6 CHAPTER 1: INTRODUCTION

to new Web pages can be estimated by polling the Web page a few times and observing its

content. Similarly, the relevance of a Web page (or a product review) can be estimated by

showing the page to users and observing their feedback, e.g., how many users click on the

page [61] or create links to it, how much time they spend reading it.

While the online scenario is more realistic in many cases, it is instructive to study the o�ine

scenario as well because it is often simpler. Observe that in the online scenario, estimating an

unknown parameter requires spending resources (e.g., polling resources in the acquisition task)

which are constrained. Hence, while allocating resources there is an exploration/exploitation

tradeo� involved where exploration is required to estimate the unknown parameters, while

exploitation is required to make use of the currently available parameter estimates to maximize

the objective in hand.

1.4 Organization of Dissertation

This dissertation studies the content acquisition and presentation tasks in the o�ine and online

settings. For convenience, we address these problems speci�cally in the context of search engines,

although some of our ideas apply more broadly. The basic architecture of a search engine is shown in

Figure 1.4. As depicted in the �gure, the search engine's local repository consists of Web pages and

advertisements. While Web pages are acquired by polling Web sites and dealt using the <content-

shipping, pull> architecture, advertisements are submitted by advertisers themselves and thus han-

dled using the <content-shipping, push> architecture. Since this dissertation focuses on the former

architecture, we study the acquisition of Web pages only (and ignore the acquisition of ads). We

study the presentation task of both pages and ads though, since the underlying approach is the

same in both cases.

A complete organization of this dissertation is given in Figure 1.5. We begin by focusing on the

acquisition task. In particular, we address the problem of discovering new Web pages in Chapter 3.

In Chapter 4 we study how to synchronize a search engine's repository with known Web pages.

Then we turn our attention to the presentation task. We focus on the problem of ranking Web

pages in Chapter 5 and lastly in Chapter 6 we study how to rank ads, as shown in Figure 1.2, in

response to user search queries.

1.4: ORGANIZATION OF DISSERTATION 7

Figure 1.4: Basic search engine architecture.

Web page

Web page

discovery

synchronization

ranking

Chapter 2

Chapter 3

Chapter 4

Chapter 5ranking

acquisition
Content

Problem Chapter

presentation
Content

Web page

Advertisement

Figure 1.5: Dissertation organization.

8 CHAPTER 1: INTRODUCTION

Chapter 2

Related Work

In this chapter we discuss previous work that is broadly related to this dissertation; more speci�c

related work is discussed in the relevant chapters. We divide the related work into the following

categories: (a) architecture design of information mediators (Section 2.1), (b) content acquisition

(Section 2.2), and (c) content presentation (Section 2.3).

2.1 Architecture Design

The problem of providing centralized access to distributed content has been well studied in the

database community. The primary architecture designs that have been considered are data ware-

housing [114] and mediation [115] which we refer to as content-shipping and request-shipping, re-

spectively. Their main focus has been on semantically integrating heterogeneous content, i.e., trans-

lating the content provided by di�erent sources which adhere to di�erent content schemas, into a

single schema [22, 86, 115]. In the Web search context, a tight integration of content is infeasible

because Web content is largely unstructured and does not adhere to any speci�c schema. Hence,

Web-based information mediators, e.g., search engines, typically work by operating on content that

has not been semantically integrated.

Many search engines have been developed in in the past, but for proprietary reasons there is not

much detail that is available about them in the public domain. A basic search engine architecture

has been described in [15, 20, 52]. In [15] a preliminary design of Google search engine is described.

9

10 CHAPTER 2: RELATED WORK

While a large scale search engine is a complex system consisting of several modules, for illustration

we can think of it consisting of three main modules: crawler, indexer and searcher. The crawler

module is responsible for downloading pages from the Web and storing them into a local repository.

The indexer module reads pages from the repository and creates an inverted index.1 Given a word

the inverted index returns the list of pages containing the word. The indexer module also extracts

links from pages and indexes anchor text. Given a search query the searcher module uses the

inverted index to retrieve and rank the pages relevant for the query.

Since we study the acquisition and presentation of content, and not the local computation that

is performed at a search engine, our main focus is on the crawler and searcher modules. While

deferring the discussion of searcher to Chapter 2.3, we discuss the related work on crawler next. A

comprehensive description of a Web crawler, called Mercator, is given in [52]. The Internet Archive

crawler is described in [18, 104]. Typically Web-scale crawlers download hundreds to thousands of

pages per second. Achieving this downloading rate requires a high degree of parallelization whereby

crawlers run on multiple machines and download multiple pages in parallel. The design of parallel

crawlers and the challenges faced therein are discussed in [20, 24].

The basic principle of a crawler is as follows: it starts with an initial set of URLs. It downloads

these pages and stores them into a local repository. By extracting the outlinks of the downloaded

pages, the crawler discovers new URLs which are also downloaded and added to the repository.

Then, the crawler goes out again to redownload the repository pages, and this cycle goes on end-

lessly. Depending on how the crawler redownloads the pages of the repository, two contrasting

crawler designs have been proposed, called the batch and incremental crawler [26]. A batch crawler

operates in cycles where it redownloads each page of the repository in each cycle. Between two

successive cycles the crawler is �rested� for some time period, during which time the pages down-

loaded in the previous cycle are incorporated into the repository. On the other hand, an incremental

crawler runs continuously. It prioritizes the redownloading of repository pages so that it redown-

loads more important pages more frequently, unlike the batch crawler which treats each repository

page equally. The incremental crawler incorporates Web pages into the repository as soon as they

are (re)downloaded, i.e., in-place updating mechanism. As pointed out in [26], in principle, an incre-

mental crawler can be more e�ective than a batch crawler since it has the freedom of prioritizing the

redownloading of pages unlike the batch crawler. Of course, the performance improvement would

1An inverted index maps each word to the list of pages in which the word occurs. It is typically created by
inverting the forward index, i.e., index which maps each page to the list of words that occur in it.

2.2: CONTENT ACQUISITION 11

critically depend on how well the incremental crawler performs the task of redownload prioritization

which is the focus of Chapters 3 and 4.

2.2 Content Acquisition

As discussed in Chapter 1, acquiring content involves (a) discovering new content sources and (b)

synchronizing with the known live sources. The di�culty of discovering content sources has been

studied and documented. In particular, [80] estimated that roughly 320 million new pages are

created every week and that half of the pages are replaced by new ones in every 9 months (i.e.,

half life of 9 months). Many other characteristics of Web evolution have also been studied, e.g., the

rates of page and link churn [31, 39, 80], the rates of duplicate evolution [38], and the change rates

of individual pages [13, 26, 88]. The work presented in this dissertation on Web page discovery

(Chapter 3) is the �rst work, to the best of our knowledge, that studies the discoverability of the

Web from search engines' point of view. In particular, we characterize the arrival of new pages and

provide algorithms for discovery that exploit this characterization.

The problem of synchronizing information mediator's repository is broadly discussed in the

context of data warehousing in [114]. Four di�erent types of information sources are discussed

there: cooperative, logged, queryable and snapshot sources. The di�erence between the sources is

in terms of the way they provide content updates. More speci�cally, the cooperative sources push

content update noti�cations to the data warehouse, the logged sources maintain a log of content

updates that can be pulled by the data warehouse, the queryable sources needs to be polled/queried

for their content to detect updates, and the snapshot sources push periodic dumps/snapshots of

content in an o�ine fashion. This dissertation assumes sources to fall under the queryable category,

as is true for most sites on the Web.

As mentioned before, in the Web search context the content is largely unstructured. If the

content is structured instead, as is assumed in the data warehousing setting, then the synchronization

problem can be seen as a materialized view maintenance problem as pointed out in [114]. In

particular, the data in the central warehouse acts as a materialized view, where the base data

resides at the information sources. The challenge is in maintaining the materialized view while

the base tables at remote locations are being autonomously updated. This problem has been

extensively studied under several sub-problems, e.g., view self-maintenance [50, 55], consistency

12 CHAPTER 2: RELATED WORK

maintenance [116, 122] and online view maintenance [89]. A detailed survey of this work is given

in [98].

In Chapter 4 we propose a synchronization approach for search engines. Our synchronization

approach is signi�cantly di�erent than prior approaches because we consider the manner in which

pages change and the way in which users query and view results. In particular, we note that lack

of synchronization can lead to both false-positives and false-negatives in a search result where (a)

a false-positive occurs when a user inspects a page in the search result that is not relevant to the

search query, while (b) a false-negative occurs when the search engine omits a relevant, high-quality

page from the search result. Then we propose a metric of search repository quality and derive our

synchronization policy that prioritizes redownloading of Web pages based on the expected gain in

repository quality. More details are provided in Chapter 4.

2.3 Content Presentation

Much work has been done on visualizing query results for Web-based information systems [23, 42,

62, 71, 73, 117]. For example, in [73] it is suggested that in the Web search context, browsing

and searching should be smoothly integrated into a single interface. Also, the focus has been on

displaying Web search results in the context of surrounding documents. For example, in Cha-

Cha [23] and AMIT [117], search results are organized into a nested list to show the hierarchical

structure of the owner Web sites in which these pages appear. In Web-Cutter [71] a map of the

Web is built and search results are shown as highlighted nodes in the map. Also, there has been

work on highlighting Web hyperlinks according to the result of a query and user needs [42, 62]. In

this dissertation we do not focus on the visualization aspect of search results. Instead, we focus

on the orthogonal problem of �nding the usefulness of result pages so that they can be presented

accordingly.

The usefulness of a result page depends on its relevance for the user search query for which

it is being shown. The problem of estimating relevance of a query-page pair has been extensively

studied under Text Information Retrieval [8, 40, 97]. This task is performed by the searcher module

of the search engine as discussed in Chapter 2.1. Several retrieval models have been proposed in

the literature that can be employed by the searcher, e.g., Boolean, Vector and Probabilistic Model.

The Boolean model classi�es each page to be either relevant or irrelevant to the query, i.e., there is

2.3: CONTENT PRESENTATION 13

no notion of being partly relevant [108, 112]. The Vector Model generalizes the Boolean model by

allowing the notion of a page being partially relevant for a query [63, 95, 96, 97]. In particular, in the

Vector Model each query-page pair is assigned a similarity score, which is computed based on the

weights of the terms present in the query and the page. A widely used weighting scheme is TFIDF

as discussed in [8]. The result pages are then presented in decreasing order of similarity scores.

The Probabilistic model proposes a probabilistic approach to estimate the relevance of query-page

pairs [64, 91, 92, 105]. More speci�cally, in the probabilistic model the similarity score of a query-

page pair is set to be equal to the odds of the page being relevant to the query (i.e., probability

of being relevant divided by the probability of being irrelevant). Some parameters involved in this

computation can be estimated by taking user feedback into account, and this model is known as

the probabilistic relevance feedback model.

In this dissertation we consider a simpli�ed model of ranking result pages2 whereby pages are

�rst �ltered by a Boolean model of relevance, i.e., each page is classi�ed to be either relevant

or irrelevant. Then the relevant pages are ordered based on some notion of quality. We leave

incorporating other retrieval models as future work. The challenge is that the quality of pages

is not known beforehand, as mentioned in Chapter 1. We propose to estimate quality by taking

user feedback (e.g., link creation, click impression, browse time) into account. The prior work on

relevance feedback [51, 61, 93] also takes user feedback into account, but they do not study the

involved exploration-exploitation tradeo� (discussed in Chapters 5 and 6). We address this tradeo�

and propose algorithms with a proven performance guarantee.

The problem of estimating quality through user feedback has also been studied in the context

of recommendation systems [9, 67, 72, 90]. There are some fundamental di�erences between the

recommendation setting and the Web search setting as pointed out in [72]. For example, in many

recommendation systems, users have some control of what they see and give feedback for, while in

the Web search setting it is mostly controlled by search engines. Also, in recommendation systems

there is typically no explicit notion of reward, while it is present in the Web search setting (e.g.,

search engines earn money through ads) and hence, the exploration/exploitation tradeo� and reward

maximization take a markedly more relevant role.

2The model for ranking advertisements is presented in Chapter 6.

14 CHAPTER 2: RELATED WORK

Chapter 3

Web Page Discovery

As discussed in Chapter 1, search engines download pages from the Web and maintain a local

repository to answer user search queries. The objective is to keep the repository fresh and complete.

Doing so requires (a) discovering new pages on the Web and (b) synchronizing the repository

with known live pages. These tasks are performed by a module called a crawler, as discussed

in Chapter 2.1. Given an initial set of URLs, a crawler operates by selecting a URL and then

downloading the page into the repository. By extracting the outlinks of downloaded pages, the

crawler discovers new pages on the Web which are then added to the URL list.

Both discovery and synchronization tasks require redownloading of pages in the repository. De-

pending on the manner in which the crawler redownloads these pages, two di�erent types of crawler

have been proposed in the literature, called the batch and the incremental crawler, as discussed

in Chapter 2.1. Since incremental crawlers are believed to be more e�ective [24], this disserta-

tion assumes the following setting: an initial batch crawl is performed to create a su�ciently large

repository. Then an incremental crawler takes over and it maintains the repository by continuously

performing the discovering and synchronization tasks. We study the challenges that arise in do-

ing so, i.e., redownload prioritization of pages in the incremental crawler setting for discovery and

synchronization purposes. This chapter concentrates on discovery; the following chapter gives a

treatment of synchronization.

15

16 CHAPTER 3: WEB PAGE DISCOVERY

3.1 Introduction

The primary mechanism for discovery is by downloading known pages and following their outlinks.

Figure 3.1 illustrates the key challenges of our problem. First, page p5 may be discovered by

downloading either page p1 or page p3, introducing a combinatorial cover problem that is NP-hard

to solve exactly. Second, pages p6 and p7 may be discovered only by downloading new page p4. We

will study policies for redownloading known pages in order to minimize the overhead of discovering

new pages. More speci�cally, we have three goals: (a) characterize the arrival of new pages, (b)

provide algorithms for discovery that exploit this characterization and (c) measure the overhead of

discovering these pages for various levels of coverage.

Figure 3.1: Old pages linking to new pages.

There are two primary mechanisms by which new pages arrive on the web. First, a Web site

puts up a new page, and links to this new page from an existing page. Second, an entirely new Web

site appears and is linked-to from an existing Web site. We focus on the �rst mechanism in this

chapter, while the second mechanism is brie�y studied in Appendix 9.1. A third possible mechanism

is that one Web site puts up a new page without linking to it, and another Web site provides a link

to the new page � this situation is very uncommon in general, and we do not study it.

Suppose the crawler has performed an initial complete crawl of some site at time t. Now imagine

that at time t + ∆ the crawler must revisit the site and �nd all the new pages. If it is the case that

a small set of old pages collectively links to all new pages, then the crawler can in principle discover

new pages with minimal overhead. For example, in Figure 3.1, redownloading just page p1 leads to

discovery of all new pages. How well this idea can work on the real Web is the subject of our work.

The fundamental questions are as follows:

1. Basic feasibility of the approach:

• Is it the case for real Web sites that most new pages can be discovered via a small set of

old pages?

3.2: PROBLEM FORMULATION 17

2. Key characteristics that determine what crawling approaches are likely to work well:

• To what extent are links to new pages redundant (as in p1 → p5 and p3 → p5 in

Figure 3.1)?

• Does the set of old pages that link to many new pages tend to remain consistent over

time?

3. E�cient crawl policies for content discovery:

• What is a good choice of old pages to seed the discovery process, given historical infor-

mation and limited crawling resources?

• What fraction of the crawling resources should be spent assessing the usefulness of various

old pages, versus exploiting ones already known to be somewhat useful?

3.2 Problem Formulation

A snapshot Gt of a given site at time t is a directed graph (Vt, Et), where Vt is the set of nodes

(pages) and Et is the set of directed edges (hyperlinks). De�ne Xt
∆= ∪t−1

j=1Vj to be the set of old

pages at time t, and de�ne Yt
∆= Vt \Xt to be the set of new pages at time t. The old pages Xt are

pages that appeared before time t and the new pages Yt are pages that appeared �rst at time t.

For convenience, we use the following representation for the old and new pages at any time t.

Let Ht = (Xt, Yt, Zt) be a bipartite graph consisting of the old pages Xt, the new pages Yt, and

an edge set Zt. An edge z = (x, y) exists whenever y ∈ Yt is e�ciently discoverable from x ∈ Xt,

i.e., there is a path from x to y of the form x → y1 → y2 → · · · → yk = y where each yi ∈ Yt is a

new node. In this case we say that each yi is covered by x0. Figure 3.1 shows the motivation for

this de�nition: by downloading a node that reveals the start of a long chain of new pages, we may

now proceed to download the entire chain of new pages recursively with no additional discovery

overhead (as each node of the chain is new, and hence must be downloaded anyway).1

Next we introduce some notations and our evaluation metric.

1In practice, the chain is not pursued inde�nitely. For example, if a downloaded page is of poor quality, then its
outlinks to new pages may not necessarily be followed. And even for a page of good quality, only a bounded number
of its outlinks (of su�cient quality) are pursued to avoid getting trapped in unintentional or malicious traps, e.g.,
�in�nitely� deep sites [20].

18 CHAPTER 3: WEB PAGE DISCOVERY

Notation De�nition

Xt Set of old pages at time t.

Yt Set of new pages at time t.

Ht Bipartite graph (Xt, Yt, Zt) consisting of the old pages Xt, the new
pages Yt, and an edge set Zt.

N(S) Set of new pages that are e�ciently discoverable given set S, i.e.,
neighbors of pages in S in graph Ht.

Jxy Jaccard coe�cient between the neighborhood sets, N(x) and N(y),
of pages x and y.

px Fraction of new pages discoverable by page x, i.e., |N(x)|/N where
N denotes the total number of new pages.

Table 3.1: Summary of symbols and their meanings.

Notation. For each x ∈ Xt, we denote by N(x) the set of new pages e�ciently discoverable from

x, i.e., N(x) = {y | (x, y) ∈ Zt}. For a subset S of Xt, we de�ne N(S) = ∪x∈SN(x).

The Jaccard coe�cient between two pages x and y is

Jxy =
|N(x) ∩N(y)|
|N(x) ∪N(y)|

.

A Jaccard coe�cient close to 1 means that x and y point to a very similar set of pages, and a

value close to 0 means that they are almost non-overlapping. For convenience, a summary of the

notations used in this chapter is provided in Table 3.1. (Some of these notations are not introduced

until later in the chapter, and should be ignored for now.)

3.2.1 Overhead Metric

In general, if a set O of old pages are redownloaded to discover |N(O)| new pages, then we de�ne the

overhead of O as |O|/|N(O)|. Overhead numbers should be read as follows: if 100 new pages may

be captured by a cover of size �ve, then an algorithm must perform �ve �wasted� downloads, in the

sense that they do not return new pages, in order to generate enough information to discover the

100 new pages. The overhead is 5%, and is a direct measure of the fraction of additional downloads

necessary to gather a given number of new pages, in other words, a measure of e�ciency.

3.3: CHAPTER OUTLINE 19

3.2.2 Discovery Optimization Problem

As mentioned before, we study the discovery task (and the synchronization task) in the context

of incremental crawlers. An incremental crawler operates by prioritizing the redownloading of

repository pages. We perform this prioritization at the granularity of k old pages. In other words,

�rst we decide which k old pages are redownloaded next. After these pages have been redownloaded

(as well as the new pages e�ciently discoverable from them), the next batch of k old pages is

selected, and so forth and so on.

The problem of redownloading prioritization for discovering new pages can be formulated as the

following optimization problem:

• Objective: Maximize the number of discovered new pages, i.e., covered pages in Yt. (In other

words, minimize the overhead.)

• Constraint: Download at most k old pages, i.e., pages from Xt.

• Uncertainty: Graph Ht between the old and new pages is not completely known.

We address this optimization problem in the o�ine and online settings. The simpler case, i.e.,

when Ht is known, is the o�ine problem (Chapter 1). We study it in Section 3.5 and show that it is

NP-hard. The online problem is studied in Section 3.6 where we do not have access to the complete

Ht and we aim to learn its key characteristics over time.

3.3 Chapter Outline

We start by studying the basic feasibility of our approach of discovering new content by crawling

old pages, in Section 3.5. To do so we describe an algorithm called Greedy in Section 3.5.2, which

has complete information about Ht; this algorithm should be viewed as an upper bound on the

performance of any realistic algorithm.2 We describe some real world snapshots of graph Ht in

Section 3.5.1 and then study the performance of Greedy on this data in Section 3.5.3.

Next, in Section 3.6 we propose a family of algorithms that use information that is realistically

available about Ht during crawling. In particular, they do not have access to Ht, but depending

2This algorithm is not strictly speaking an upper bound, as it makes approximations in order to solve an NP-
hard problem (details in Section 3.5.2); however, the information available to the algorithm allows it to perform
substantially better than any realistic algorithm we have seen.

20 CHAPTER 3: WEB PAGE DISCOVERY

on the model, they may have partial information about old pages (Xt) and statistical information

about Ht based on partial information about Ht′ for t′ < t.

3.4 Related Work

Numerous early web studies focused on properties of a snapshot of the web graph [10, 16, 37, 66, 75].

More recently, attention has turned to evolutionary properties of the corpus. In this evolutionary

model, researchers have considered the growth of the Web [13], the rates of page and link churn [31,

39, 80], the rates of duplicate evolution [38], and the change rates of individual pages [13, 26, 39, 88].

Parallel to this line of work, there has been a signi�cant body of work on synchronizing already-

discovered content, which has been studied in [25, 32, 33, 84, 119]. Already-discovered pages are

redownloaded to keep the search engine local repository fresh so that the search queries are not

answered incorrectly due to stale information, while the discovery of new pages is important for

ensuring that as many relevant query results are shown as possible. It is tempting to view our

problem as equivalent, with new outlinks taking the role of new content on existing pages, but there

is a critical distinction: in our problem, many pages can be redownloaded, each of which points to

a new page, but the value depends on the union rather than the sum. If the pages all point to the

same new content, there is very little value from a discoverability standpoint, but great value from

the standpoint of the freshness of the redownloaded pages. To our knowledge, this speci�c problem

has not been studied previously.

Finally, there has been work in ordering the frontier of a crawl [27, 36], in which various policies

are studied from the perspective of estimating the quality of a candidate for �rst-time crawl. In our

work the focus is on maximizing the size of the frontier while incurring a minimal overhead.

3.5 Feasibility of Discovering New Content

In this section we study the feasibility of discovering new content on the Web by crawling old pages.

We start by describing the data used for this feasibility study.

3.5: FEASIBILITY OF DISCOVERING NEW CONTENT 21

3.5.1 Data

We consider two datasets, to address two distinct problems within our scope. First, we consider a

sequence of complete crawls of a number of websites. This dataset allows us to study the problem

of discovering new pages on existing sites. Second, we consider a sequence of complete crawls of the

Chilean web. This dataset by contrast allows us to study inter-site linking, and particularly, the

problem of discovering entirely new websites. We describe these two datasets below.

Site recrawl dataset. We consider a repeated crawl of 200 web sites over a period of many weeks.

This dataset was used in earlier work by Ntoulas, Cho, and Olston; see [80] for more details about

the crawl and the principles used to select the web sites. The authors of that work have continued

to collect data, and have generously allowed us to employ more recent snapshots than those in their

reported results.

Of the 200 web sites they crawl, we removed those sites that contained fewer than 100 pages in

any snapshot (i.e., the site did not have signi�cant size) or more than 200,000 pages (which was a

crawler-imposed upper bound on the number of pages per site, introducing skew into the analysis

of new pages). This resulted in 77 sites. Of these sites, we selected 42 that were well-represented

at each snapshot, and that did not show any gross anomalies.

The 42 websites in the results dataset were crawled repeatedly over a period of 23 weeks from

11/14/2004 to 6/12/2005 (the crawler did not execute during every week). The total number of

pages at the �rst timestep was 640,489 and 223,435 new pages appeared over this period, of which

about 40% are directly linked to some old page.

For each of the web sites and for each snapshot, we �rst parsed the crawl output, and extracted

the outlinks and redirect information. We omitted all o�-site links and focused only on on-site

links. We also discarded orphans � pages in Yt that are not covered by any page in Xt. Orphans

accounted for less than 5% of the new pages in our dataset. We then constructed the bipartite

graph Ht de�ned above for the purposes of analysis; recall that this step involves examining paths

from old pages to new pages.

Chilean web dataset. We have three snapshots of the Chilean web, based on complete crawls

performed monthly for three months; the �rst snapshot had 7.40M pages and 67.50M edges and the

third snapshot had 7.43M pages and 70.66M edges.

22 CHAPTER 3: WEB PAGE DISCOVERY

3.5.2 An Algorithmic Upper Bound: Greedy

Our goal is to study the extent to which a crawling policy can discover new content by crawling old

pages on the Web. To obtain an upper bound on the performance of any such crawling policy, we

assume complete information about Ht to be known in this section. Recall that Ht = (Xt, Yt, Zt)

is the bipartite graph between the old pages Xt and the new pages Yt. As discussed before in

Section 3.2.2, the problem of maximizing the number of new pages discovered is equivalent to the

k-budgeted problem in that case. The dual formulation of our optimization problem is when we are

given a constant ρ ≤ 1 and the goal is to cover at least ρ · |Yt| pages in Yt using as few pages from

Xt as possible (i.e., incur minimum overhead). This problem is also NP-hard and is known as the

ρ-partial cover problem.

While the maximization problem of k-budgeted cover admits a (1 − 1/e)-approximation algo-

rithm, the minimization problem of ρ-partial cover can only be approximated to within a log |Xt|
factor [65, 101]. Coincidentally, the same greedy algorithm can be used for both problems. For

completeness, we present the greedy algorithm below. In words, the algorithm proceeds by repeat-

edly returning the old page that covers the most uncovered new pages.

Algorithm Greedy (Xt, Yt, Zt)

Set Ct = ∅.
While �not done� do,

Find x ∈ Xt \ Ct that maximizes |N(x) \N(Ct)|;
break ties arbitrarily.

Set Ct = Ct ∪ {x}.
Return Ct.

For the k-budgeted cover problem, the predicate �not done� is true as long as |Ct| ≤ k. For the

ρ-partial cover problem, this predicate is true as long as |N(Ct)| < ρ|Yt|.

3.5.3 Measurements

In this section we present a series of feasibility measurements. In particular, we will measure in

detail the extent to which algorithm Greedy is able to e�ciently cover the new content.

We will begin with a series of experiments on the site recrawl dataset, studying the discovery

of new pages on existing sites. In Appendix 9.1 we will perform an analysis of the Chilean dataset,

3.5: FEASIBILITY OF DISCOVERING NEW CONTENT 23

in which we study the relative prominence of new pages on existing sites, versus new pages on new

sites.

3.5.3.1 Cover Size

For each site at each time, we construct the bipartite graph H and employ Greedy to cover

new pages. In particular, we run Greedy until either all new pages have been covered, or the

current cover has reached a certain size k; this corresponds to the k-budgeted cover problem. In

Figure 3.2(a-b), the x-axis represents the threshold k that is the maximum size cover we will employ

for any site/time pair. Figure 3.2(a) shows two curves. The higher curve is measured on the left

axis; it shows for each value of k the average number of new pages captured by the cover. However,

notice that for a �xed value of k, each site/time pair might have a cover of k or smaller, depending

on whether a smaller cover was adequate to capture all the new pages. We therefore also include

the lower curve, which is measured on the right axis. It shows for each value of k the overhead of

the cover. As k grows large, the number of pages covered tops out at about 300 on average, which

is a re�ection of our dataset. However, the overhead never exceeds 9%, indicating that although

the rightmost region of the curve returns 300 new pages per cover, with k = 600, nonetheless the

�average� cover size is in fact only 9% of 300, or about 27.

We mention in passing that, while the x-axis of the �gure has been truncated at 600 to focus on

the region of interest, the remainder of both curves are stable at 300 and 9% respectively. Figure

3.2(a) is therefore a measure of how e�ciently covers truncated at a certain size can return new

content, but so far we have said nothing about what fraction of the total new content has been

returned. Figure 3.2(b) covers this question. Once again, the x-axis represents the threshold k on

the cover size, and the y-axis now shows the overall fraction of new pages that would be covered, if

all covers were truncated at size k. Setting k = 200, we cover 97.3% of all new content. We cover

90% of new content once k reaches 83.

3.5.3.2 Page Redundancy

If no two old pages link to the same new page, then the cover problems addressed by Algorithm

Greedy become trivial; the problem is interesting only when there is overlap in the set of new

pages covered by old pages. In our data, most pairs of pages (within a site) fall into one of two

categories: either they link to almost the same set of new pages, or they have almost no new pages

24 CHAPTER 3: WEB PAGE DISCOVERY

Figure 3.2: (a) Overhead and number of covered pages, (b) fraction of new pages covered.

in common. Figure 3.3 shows that a signi�cant fraction of pairs have Jaccard coe�cient very close

to 0 or very close to 1. This has important algorithmic implications, as we will see later in Section

3.6.2.

3.5.3.3 Overhead of Discovering New Pages

Figure 3.4 shows the overhead for various cover sizes. As the �gure shows, and as stated above, we

attain 90% covers with 3% overhead, and 100% covers with 9% overhead.

Recall, however, that these numbers are the results of a thought experiment in which a crawler

happens to pick a near-perfect set of pages to crawl in order to �nd new content; they represent a

goal we would like to attain. The reader should be heartened that the numbers look so promising,

but should await Section 3.6 to determine whether these numbers can be matched by a real algorithm

that must search for new content in a more hit-or-miss fashion.

In Appendix 9.1 we study the overhead of discovering new pages on new sites (instead of new

pages on old sites). For the remainder of this chapter we focus our exploration on existing sites.

3.5: FEASIBILITY OF DISCOVERING NEW CONTENT 25

Figure 3.3: Overlap distribution.

Figure 3.4: Global discovery of new pages on old sites.

26 CHAPTER 3: WEB PAGE DISCOVERY

3.6 History-based Algorithms

In the previous section we studied the feasibility of using a small set of existing pages to cover most

of newly generated content � i.e., we measured whether there exists a small set of old pages with

links to most of the new content. In this section we move to the algorithmic question of choosing

such a set of pages when we do not have access to the entire bipartite graph Ht. We assume that

we have access to the old pages Xt but not to Zt, the set of edges, or to Yt, the set of new pages.

(In reality, we may only have access to a subset of Xt since some pages in Xt may not have been

discovered at t due to incomplete crawling before t. We ignore this for now.)

In this section we explore algorithms that use historical information, i.e., statistics from Ht−i, in

order to discover new content in Ht. There are two separate questions: how to aggregate information

from the various Ht−i to estimate relevant statistics, and second and more open-ended, which

statistics lead to good covers?

To address this, we describe and evaluate three algorithms that employ di�erent statistics gath-

ered from past observations to solve the k-budgeted cover problem. The �rst algorithm, Od, down-

loads pages according to the number of new pages discovered historically when downloading the

page. The second algorithm Cliq employs past degree information as well, and in addition uses

information about overlaps in the set of pages discovered by each pair of pages. Rather than com-

puting and storing all pairwise information between existing pages, Cliq groups existing pages into

clusters that have produced the same set of pages in the past, according to the gap observation of

Section 3.5.3.2, and employs this information in order to choose a cover. The third algorithm Cov

uses historical results of the algorithm Greedy, i.e. it chooses to track pages that were previously

in the cover constructed from full recrawls of the data.

In what follows, we de�ne S? be the optimal solution to the k-budgeted cover problem on Ht

(Section 5.4). Let S be the solution returned by an algorithm Alg. We de�ne ρ(Alg) as the ratio

of the number of new pages covered by S to that covered by S?, i.e., ρ(Alg) = N(S)/N(S?). We

use N to denote the total number of new pages.

3.6.1 Algorithm Based on Outdegree

We consider a very basic algorithm �rst. Suppose that for every old page i, we have an estimate of

pi = |N(i)|/N , the fraction of new pages covered by i. A natural algorithm is the following: pick k

old pages with the largest pi's and download these pages. We refer to this algorithm as Od. Below,

3.6: HISTORY-BASED ALGORITHMS 27

we state a bound on its performance, if the pi's are correct estimates. Subsequently, we will de�ne

variants of this algorithm that are amenable to experimentation, based on di�erent approaches to

estimating the pi values.

Lemma 1 Let p[j] denote the j-th largest of the pi's. Then, ρ(Od) ≥ p[1]

p[1]+
P2k−1

i=k+1 p[i]
.

Proof: Suppose there are N1 new pages obtained from pages with degrees p[2], ..., p[k] that are

distinct from the new pages obtained from p[1]. The number of new pages found by the greedy

algorithm is (N · p[1]) + N1. The number of new pages found by the optimum cannot be greater

than (N · p[1]) + N1 + N ·
∑2k

i=k+1 p[i] (recall that p[i] are decreasing). So

ρ(Od) ≥
Np[1] + N1

Np[1] + N1 + N
∑2k−1

i=k+1 p[i]

≥
p[1]

p[1] +
∑2k−1

i=k+1 p[i]

The above bound is tight. If the degree distribution of pages in Xt is a power law, the bound

shows that this naive algorithm will perform very well. However the presence of mirrors can cause

this fraction to be as small as 1/k. This, together with the observations in Section 3.5.3.2 lead to

the next algorithm.

3.6.2 Algorithms based on Overlap

Here we describe an algorithm for choosing a small cover that exploits estimated overlap information.

Let pi be as above, and for a pair of old pages i, j, let pij be the fraction of new pages that i and j

both cover: pij = |N(i)∩N(j)|/N . Figure 3.3 empirically demonstrated that most pages overlap in

either a very large or a very small set of links. We state a lemma showing that under an idealized

form of the observation, it is possible to uniquely partition pages into groups that all link to almost

the same set of new pages. Then,

Lemma 2 Let εb, εs ≤ 1/3. If for all pages i, j, we have either Jij ≥ 1 − εb or Jij ≤ εs, then the

set of old pages Xt can be partitioned into equivalence classes, where every pair of old pages i, j in

an equivalence class has Jaccard coe�cient Jij ≥ (1− εb).

Proof: We will show that for such ε, if Jij ≥ 1 − εb, Jjk ≥ 1 − εb, then Jik cannot be less

than εs. From the assumptions, |N(i) \ N(j)| ≤ εb · |N(i) ∪ N(j)|, and similarly |N(k) \ N(j)| ≤

28 CHAPTER 3: WEB PAGE DISCOVERY

εb · |N(k) ∪N(j)|. So the most number of elements not in common between i and k is εb · (|N(i) ∪
N(j)|+ |N(j) ∪N(k)|), i.e.,

|N(i) ∩N(k)| ≥ |N(i) ∪N(k)| − εb · (|N(i) ∪N(j)|+ |N(j) ∪N(k)|)

⇒ Jik ≥ 1− εb ·
(|N(i) ∪N(j)|+ |N(j) ∪N(k)|

|N(i) ∪N(k)|

≥ 1− εb ·
(
|N(i) ∪N(j)|

|N(i)|
+
|N(k) ∪N(j)|

|N(k)|

)
≥ 1− εb ·

(
1

1− εb
+

1
1− εb

)
,

that is strictly greater than εs for εb, εs ≤ 1/3. The last line follows from |N(i)| ≥ |N(i) ∩N(j)| ≥
(1 − εb) · |N(i) ∪ N(j)|, and similarly for k. In summary, we showed that Jij ≥ (1 − εb), Jjk ≥
(1 − εb) ⇒ Jik > εs for εb, εs ≤ 1/3. Recall that J·,· is a metric. By our assumption, Jik is either

greater equal (1 − εb) or less equal εs, so we have shown that Jik ≥ (1 − εb), i.e., old pages can be

partitioned into equivalence classes.

We analyze the performance of the following algorithm, Cliq. Let C1, . . . , C` be the equivalence

classes as above and let k′ = min(k, `). Let qi = maxj∈Ci pj be the degree of the highest-degree

page in i-th equivalence class and let ni be the page with this degree. We �rst sort C1, . . . , C` in

order of descending pi's. The output S of the algorithm is the set of ni's corresponding to the k′

largest qi's.

Theorem 1 ρ(Cliq) ≥ 1−k′εs
1+kεb

.

Proof: First we lower bound the number of new pages obtained by Cliq. Denote by Tj the

number of new pages obtained by adding j to S. From n1 we get T1 = N · q1 new pages. De�ne

qij = pninj = |N(ni) ∩ N(nj)|/N . From the j-th page added by Cliq, the number of new pages

obtained is Tj ≥ (N · qj)−
∑j−1

i=1 (N · qij). Since ni and nj belong in di�erent classes, Jninj ≤ εs, so

qij ≤
Jninj · |N(ni) ∪N(nj)|

N

≤ εs · (|N(ni)|+ |N(nj)|)
N

= εs · (qi + qj).

3.6: HISTORY-BASED ALGORITHMS 29

Substituting above, Tj ≥ (N · qj)−N · εs ·
∑j−1

i=1 (qi + qj). Summing over all j,

k′∑
i=1

Ti ≥
k′∑

i=1

(N · qi)−
∑
j<i

(
N · εs · (qi + qj)

)
≥

k′∑
i=1

(
N · qi · (1− k′ · εs)

)
Now we upper bound the number of new pages covered by the optimum. The optimum cannot

choose more than k pages from a class Ci, and so it cannot get more than (1 + k · εb) · qi new pages

from Ci: every new page added after ni contributes no more than
(
ε ·N · qi

)
new pages to N(Ci).

Since the cliques are ranked in order of decreasing degree, the qi's of the k′ cliques chosen by the

optimum are upper bounded by the k′ highest qi's (chosen by Cliq), and so optimum is upper

bounded by (1 + k · ε) ·N ·
∑k′

i=1 qi. So ρ(Cliq) ≥ (1− k′ · εs)/(1 + k · εb)

In reality, not all pairs of old pages may satisfy the condition in Lemma 2 with su�ciently small

values of εb, εs, in which case we do not obtain the equivalence classes in Lemma 2. We use a

modi�ed version of the algorithm, in which we �rst group the old pages into clusters recursively as

follows. We choose a value for the parameter εb, and initialize with every page in its own cluster.

We merge the clusters so that an old page i belongs to a cluster C if maxj∈C Jij ≥ 1 − εb, i.e., it

has high overlap with any other page in the cluster. (Note that this partitioning into clusters is

well-de�ned.) We then run Cliq using these clusters instead of equivalence classes.

3.6.3 Algorithm Based on Greedy Cover

Finally, we describe an algorithm Cov that exploits previously observed cover information. Let S

be the set of old pages returned by the Greedy algorithm for the k-budgeted cover on Ht′ where t′

is the index of the most recent complete recrawl. The algorithm Cov uses this set S of size k as the

cover till the next complete recrawl. Note that this algorithm has the following disadvantages over

Cliq : a cover cannot be de�ned unless the site is completely crawled, whereas pairwise overlap

information can still be gathered from partial recrawls. Also, it is not easy to `average' cover

information from multiple recrawls but overlap information can be averaged across recrawls.

30 CHAPTER 3: WEB PAGE DISCOVERY

3.6.4 Aggregating Past Observations

We now de�ne several variants of Od and Cliq in which information from multiple historical

recrawls is aggregated to determine future behavior of discovery crawls. For concreteness, we assume

the site is fully crawled every ∆ weeks, and our goal is to discover new content in between these

periodic full recrawls.

For �xed ∆, we may estimate the degree statistics pi using exponential weighting with parameter

α:

pt
i =

(∑
t′

(
αt−t′ · pt′

i

))
/

(∑
t′

αt−t′

)
,

where t′ ranges over the time indices when a full recrawl was performed. We refer to Od with

this method of estimating pi as Od-Win. We de�ne Od-All as the particular instance of Od-Win

with recrawl frequency ∆ = 1; this algorithm must discover new content using complete information

about all prior weeks. Similarly, for any ∆ we de�ne Od-1 as the algorithm that estimates pt
i based

on the most recent recrawl, consulting no further historical information.

To approximate the statistics for Cliq, we do the following. To the set of all clusters from the

most recent recrawl, we add one cluster for every old page in Xt that ever linked to a new page

in any past recrawl. The qi for these singleton clusters is the estimate pt
i as computed above. We

apply Cliq to this set of clusters with the corresponding parameters. We will refer to this algorithm

as Cliq-Win. As above, we refer to the version of the algorithm with pt
i measured from the most

recent recrawl as Cliq-1.

3.6.5 Upper Bounds on Performance of Historical Algorithms

We begin by constructing an upper bound as follows. We implement the policy of downloading at

time t every page that historically yielded any link to a new page at time t− 1 or before. Any new

page that cannot be discovered by this technique will be very di�cult to �nd; in fact, it is hard to

imagine �nding such pages without simply exploring the entire site. The result of this experiment

is that we discover only 74% of new content, suggesting that roughly a quarter of new content is

simply not amenable to e�cient discovery.

We then perform an experiment to explore the decay in discovery as we use increasingly remote

information, as follows. We imagine a periodic full recrawl of a site every w timesteps, and at each

week we make use only of pages that linked to a new page during some past periodic recrawl; thus,

3.6: HISTORY-BASED ALGORITHMS 31

if w = 4 we make use of information that is one, two or three timesteps old. The following table

shows the results.

Recrawl policy Full Periodic, w = 2 Periodic, w = 4

New pages 74% 64% 59%

Thus, it is theoretically possible to discover 74% of new pages with an amount of overhead lower

than crawling the entire web, but as the freshness of our information decays, the fraction of new

content we can realistically expect to discover also drops. In the following section we will study how

close to these (empirical) upper bounds our algorithms come, as a function of the amount of e�ort

expended.

3.6.6 Analysis of Historical Algorithms

Some care is required in our evaluation methodology for this section. We compare a number of

algorithms that may have access to di�ering amounts of historical information, and hence di�ering

numbers of candidate pages to recrawl. Thus, we may see an algorithm that performs very well

when asked to produce a cover of 80%, but that is unable to produce a cover of 90%. We adopt the

following methodology to allow a meaningful comparison of such policies.

We �x a budget k, which is the maximum number of recrawls that may be performed at a

particular site. We evaluate each algorithm at each time, and ask it to cover as large a set of new

pages as possible, using no more than k old pages. We then measure for each algorithm the average

cover size produced (which may be less than k), the average overhead, and the average coverage

(measured as total number of covered pages on all sites at all timesteps divided by total number

of new pages on all sites and all time steps). Occasionally, we will refer to the average cover size

as average depth. We repeat these measurements for all values of k, so that we can for instance

compare covers of a particular average depth, or a particular level of coverage.

We performed an experiment to compare all our historical algorithms against an approximation

to optimal, in the form of Algorithm Greedy. For all versions of Cliq, we used εb = 0.8. We

evaluated various values for the exponential decay parameter α, and found that α = 0.8 and α = 1

perform well. We adopt α = 1 (i.e., even weighting of all history) henceforth.

The results are shown in Table 3.2. Here are some conclusions that might be drawn from the

data.

32 CHAPTER 3: WEB PAGE DISCOVERY

Budget Depth Over- Cove- Budget Depth Over- Cove- Budget Depth Over- Cove-
head rage head rage head rage

Cliq-Win Cov Od-Win

1 0.00 14.77 8% 1 0.00 13.40 9% 1 0.00 14.73 8%
10 4.34 49.75 19% 10 2.91 37.04 23% 10 4.35 51.81 18%
100 37.09 100.2 37% 100 9.36 13.89 37% 100 37.30 120.5 35%
1000 218.34 153.8 52% 1000 11.80 13.89 37% 1000 218.07 151.5 53%
10000 647.63 156.3 69% 10000 13.40 13.89 37% 10000 649.17 153.8 69%

Od− 1 Optimal Od-All-1
1 0.00 13.48 9% 1 0.00 2.22 56% 1 0.00 7.79 16%
10 3.65 45.25 21% 10 3.03 12.79 81% 10 4.49 42.37 24%
100 21.82 106.4 28% 100 9.65 26.39 95% 100 40.09 121.9 36%
1000 67.49 109.9 43% 1000 11.96 26.74 98% 1000 249.05 161.3 55%
10000 181.77 109.9 44% 10000 13.56 26.74 100% 10000 870.83 163.9 74%

Table 3.2: Analysis of covers produced by historical algorithms.

(1) Upper bound on historical algorithms. Algorithm Od-All with in�nite budget will

eventually download every page that has historically produced an outlink to new content. Dis-

turbingly, even this aggressive approach is su�cient to cover only 74% of the new content. This

suggests that much new content during any given week is extremely di�cult to discover.

(2) Extent of historical information. Algorithms Od-Win and Cliq-Win, averaged over

recrawl frequencies ranging from 2 to 6, capture 69% of the new content. Algorithm Od-1, which

has access only to the information from the most recent recrawl, is able to capture only 44% of the

new content � the set of old pages considered for any time step is the smallest for Od-1. Thus,

the entire collection of pages that referenced new content during the previous week is not adequate

to discover new content during the current week, and in fact captures only 55% of the content that

can be discovered using pages that have historically linked to new content. Purely recent statistics

are not su�cient to discover new content e�ectively.

(3) Comparison between di�erent statistics. The algorithms Cliq-Win and Od-Win per-

form similarly to each other in both overhead and coverage, while the Cov algorithm has lesser

overhead, but with less coverage. We observe that incorporating aggregated past information sig-

ni�cantly reduces the overhead of Od, but has smaller impact on Cliq-1. Recall that the primary

advantage of the Cliq-1/Cliq-Win family is that they make more e�cient use of collections of

pages, all of which reference the same new content. The impact of aggregated historical statistics

is su�cient to make this overlap almost irrelevant in terms of both overhead and coverage, and

therefore it is enough to track degree statistics over time.

3.6: HISTORY-BASED ALGORITHMS 33

Figure 3.5: Coverage as a function of average cover size, recrawl frequency 1.

Figure 3.6: Coverage as a function of average cover size, recrawl frequency 4.

Based on these observations, we move to an evaluation of realistic candidates for discovery

algorithms. Figure 3.5 plots coverage as a function of average depth (which is the same as average

cover size) based on statistical information created during the previous timestep (and earlier for

algorithms that aggregate historical information). There are two conclusions. First, Cov performs

34 CHAPTER 3: WEB PAGE DISCOVERY

very well up to 32% coverage, then is unable to cover any more new content. Second, Algorithm

Cliq and algorithm Od perform very similarly, and have the best coverage in the limit.

Figure 3.6 shows the same information when historical data is available based only on monthly

recrawls. The scaling of the x-axis allows the overhead of the algorithms to be compared, but does

not show that total coverage asymptotes at 59% rather than 69% when more recent information is

available.

Our conclusion is the following. For highly e�cient discovery of a smaller fraction of new content,

Cov performs exceptionally well. But for discovery of as much new content as is realistically

possible, algorithm Od-Win performs nearly as well as alternatives and is particularly simple to

implement.

3.7 Chapter Summary

In this chapter we studied the problem of discovering new pages by redownloading known pages.

We formulated this as an optimization problem where the unknown parameter is the bipartite graph

between the known and new pages. First, we studied the inherent di�culty of the o�ine discovery

problem (i.e., with perfect foreknowledge of which known pages link to which new pages) using

a maximum cover formulation. Second, we studied the online problem which is a more realistic

setting. Here the crawler must use historical statistics to estimate which known pages are most

likely to yield links to new content. We recommended a simple algorithm that performs comparably

to all approaches we consider.

We measured the overhead of discovering new content, de�ned as the average number of down-

loads required to discover one new page. We showed �rst that in the o�ine setting, it is possible

to discover all new content with little overhead (9%). But online algorithms, which do not have

access to perfect foreknowledge, face a more di�cult task: one quarter of new content is simply not

amenable to e�cient discovery.

Chapter 4

Web Page Synchronization

In this chapter we turn from the issue of how to discover pages, to how to keep the repository

synchronized as pages are updated on the Web.

4.1 Introduction

In response to a user search query, a search engine returns a list of relevant pages and ads, as

shown in Figure 1.2. We refer to this response as the slate of the submitted query. Before we delve

into the details of the synchronization task, we explain how a search engine processes the slates of

queries. The slates are prepared using the local repository in which the search engine downloads

and stores Web content. When a user submits a query, �rst the search engine �nds out all the pages

in the repository that are relevant for this query, as discussed in Chapter 2.3. Then it applies an

internal scoring function to each relevant Web page. Applying this function to a page produces a

numerical score, representing the best available estimate of the usefulness of the page to the user

who submitted the query. Query results are then arranged on the slate in the form of a sequential

list in descending order of score. When the user clicks on a link in the query result list, her Web

browser fetches the current copy of the linked page from the live Web.1

If the repository is not closely synchronized with the Web, then the search engine may not

include the most useful pages for a query at the top of the result list. Since users' attention is

1In this chapter we assume that the search engine does not serve copies of Web pages directly from its repository.

35

36 CHAPTER 4: WEB PAGE SYNCHRONIZATION

strongly biased toward the top of query result lists (Figure 1.3) and they have limited time to

inspect results, users are likely to visit Web pages that are on the whole less useful than the ones

they would visit if presented with an accurate slate, i.e., a slate consisting of a hypothetical result

list generated from a fully synchronized repository.

We present a simple example to illustrate the ways in which an out-of-date repository can

adversely impact the user experience. Before proceeding we introduce some notation. Let W refer

to the current collective content of the Web, and letWL refer to the collective content of the search

engine's local repository. For a Web page p,W[p] denotes the current live Web copy of p, andWL[p]

denotes whatever copy of p (if any) is currently stored in the repository.

Now, suppose the Web is tiny, such that W = {W[p1], W[p2],W[p3]}. Suppose the repository
WL contains copies of two of the three pages currently available on the Web (namely, pages p1

and p2), plus a copy of one more page p4, which has been removed from the Web since it was last

downloaded into the repository. Hence, WL = {WL[p1],WL[p2],WL[p4]}. Suppose furthermore

that the repository copies of p1 and p2 are both out of date, such that WL[p1] 6= W[p1] and

WL[p2] 6= W[p2]. The content of each copy of each page is shown in Table 4.1.

Consider the query �cancer.� For the sake of our example assume a simple Boolean scoring

function that returns true if there is a keyword match, and false otherwise. Observe four types

of discrepancies between the repository and the live Web, each of which leads to distorted results

for this query: (1) Web pages with increased score not yet re�ected in the repository, e.g., p1, (2)

pages with decreased score, e.g., p2, (3) pages not yet discovered by the search engine, e.g., p3, and

(4) pages that have been removed from the Web but remain present in the repository, e.g., p4.

The third discrepancy described above was studied under the discovery problem in Chapter 3.

Hence, in this chapter we focus on the problem of synchronizing Web pages already present in the

repository. To handle the synchronization of newly discovered pages, we can incorporate them into

the repository and apply the same technique.

4.2 Problem Formulation

First we introduce a metric for the quality of a search engine's repository in Section 4.2.1. The

metric takes into account the discrepancies that can arise due to an out-of-date repository as de-

scribed above. Then in Section 4.2.2 we use this metric to formulate the synchronization task as a

4.2: PROBLEM FORMULATION 37

Page Web copy Search engine copy
p W[p] WL[p]
p1 New Technology: A New Technology: A

new thyroid cancer new chipset designed
therapy for cell phones

p2 Seminar: Important Seminar: Cancer
tra�c laws and rules symptoms

p3 Cancer Management: (Not present in the
Early tests to detect repository)
breast cancer

p4 (Removed from the Cancer association
Web) seeking volunteers to

help raise awareness

Table 4.1: Example scenario.

constrained optimization problem.

4.2.1 Repository Quality Metric

We begin by introducing some additional notation. (For convenience, a summary of the notation

we use is provided in Table 4.2.) Let A(q,WL) denote the answer provided by a search engine in

response to query q, which we assume is in the form of a ranked list, compiled according to scores

computed over copies of Web pages stored in the local repository WL. Let S(WL[p], q) denote the

result of applying the search engine's scoring function S to the locally-available repository copy of p

for query q. Similarly, let S(W[p], q) denote the result of applying the same scoring function to the

live Web copy W[p] of page p for query q. We assume the scoring function provides an estimate of

the usefulness of a page to a user who submits a particular query. We restrict the scoring function

S() to be one in which the score of a page depends on the content of that page only. (The score

may also incorporate a global notion of �importance,� e.g., PageRank [81], that is recomputed on

occasion, at a time-scale that is large relative to the rate of redownloading pages.) We also assume

the score of a page is zero if it does not contain at least one instance of every term in a query.

If V (p, a) denotes the likelihood with which a typical user would view page p if presented with

result list a (most likely in�uenced strongly by the rank position of p within a, as discussed below),

then we can express the expected cumulative usefulness of the search engine's answer a = A(q,WL)

38 CHAPTER 4: WEB PAGE SYNCHRONIZATION

to query q as:

k ·
∑
p∈a

V (p, a) · S(W[p], q)

where k is an arbitrary constant of proportionality. If we expect a certain workload Q of queries,

with each query q ∈ Q issued with frequency fq, we can write the expected average usefulness of

querying the search engine as:

∑
q∈Q

fq · k ·
∑

p∈A(q,WL)

V (p, A(q,WL)) · S(W[p], q)

We model the quality of a repositoryWL with respect to a particular scoring method S() and an

expected usage pattern (query workload Q and viewing likelihood function V ()) as a scalar value

Q(WL). In particular we de�ne Q(WL) to be directly proportional to expected average usefulness:

Q(WL) ∝
∑
q∈Q

fq ·
∑
p∈W

V (p, A(q,WL)) · S(W[p], q) (4.1)

We discuss how to model the viewing likelihood function now. Empirical measurements taken during

an extensive user study [61] indicate that the expected viewing likelihood V (p, a) depends primarily

on the rank of p in a, denoted R(p, a), as mentioned above. In light of these observations we model

viewing likelihood as a function of rank, so that V (p, a) = I(R(p, a)) for some function I(r), serves

as a reasonable �rst-order approximation of true user behavior (the same model was also adopted

in [28]). The function I(r) can be estimated by monitoring user behavior and �tting a curve. For

example, AltaVista usage logs analyzed in [28, 69] reveal that the following relationship holds quite

closely:

I(r) = c · r−3/2 (4.2)

where c is a normalization constant.2 By substituting into Equation 4.1 we obtain:

Q(WL) ∝
∑
q∈Q

fq ·
∑
p∈W

I(R(p, A(q,WL))) · S(W[p], q) (4.3)

2User views were measured at the granularity of groups of 10 results in [69], and later extrapolated to individual
pages in [28].

4.2: PROBLEM FORMULATION 39

(The rank of a page not present in a result list is taken to be ∞, with I(∞) = 0.)

Ideal Repository Quality. It is instructive to formulate an expression for the upper bound

on search repository quality. As long as the inspection likelihood function I(r) is monotonically

nonincreasing, the expected cumulative score of visited pages is maximized when pages are always

presented to users in descending order of their true score S(W[p], q). This ideal situation occurs

when a search engine's repository is exactly synchronized with the Web at all times, such that

WL = W. Hence, we denote the highest possible search repository quality as Q(W), where:

Q(W) ∝
∑
q∈Q

fq ·
∑
p∈W

I(R(p, A(q,W))) · S(W[p], q) (4.4)

It is not di�cult to construct a formal proof that presenting search results in descending order

of true score (based on the live Web copy) does indeed achieve a tight upper bound on quality.

Normalized Quality Metric. It is convenient to represent search repository quality on a known,

bounded scale. Hence we de�ne the quality of repositoryWL relative to the upper bound on quality

corresponding to the case in which WL = W, such that Q(WL) ∈ [0, 1]. In this way we arrive at

our �nal, normalized expression for Q(WL):

Q(WL) =

∑
q∈Q fq ·

∑
p∈W I(R(p, A(q,WL))) · S(W[p], q)∑

q∈Q fq ·
∑

p∈W I(R(p, A(q,W))) · S(W[p], q)
(4.5)

4.2.2 Web Synchronization Optimization Problem

Similar to the discovery task in Chapter 3, we study the synchronization task under the incremental

crawler setting. We perform redownload prioritization at the granularity of B pages, i.e., �rst we

decide which B pages are redownloaded next, and after these pages have been redownloaded, we

select the next batch of B pages to redownload, and so forth and so on. (We assume uniform resource

cost across all pages.) Also, we assume the crawler to employ the in-place updating mechanism,

i.e., the local repository is updated on the �y as Web pages are downloaded.

Based on the above metric of repository quality we formulate the synchronization problem as

follows:

• Objective: Maximize the repository quality as de�ned by the quality metric Q(WL) (Equa-

40 CHAPTER 4: WEB PAGE SYNCHRONIZATION

Notation De�nition

W Current content of the Web.

WL Current content of the search engine's local repository.

Q Workload of queries.

fq Frequency of query q.

W[p] Current live Web copy of page p. Similarly, WL[p] denotes the
current search engine copy of p.

S(W[p], q) Score of the Web copy of page p for query q. Similarly, S(WL[p], q)
denotes the score of the local copy of p.

A(q,W) Ranked list provided by the search engine in response to query q
given repository W.

R(p, a) Rank of page p in result list a.

V (p, a) Viewing likelihood of page p in result list a.

I(r) Inspection probability of rank r in a result list.

Q(W) Quality of repository W.

∆Q(p, t) Change in repository quality on redownloading of page p at time t.

Table 4.2: Summary of symbols and their meanings.

tion 4.5).3

• Constraint: Redownload at most B pages.

• Uncertainty: The update behavior of repository pages is unknown, i.e., how W[p]'s involved

in the quality metric (Equation 4.5) change over time.

The optimization problem can be studied in the o�ine and online settings. In the o�ine setting

the update behavior of pages is known while in the online setting it is unknown.

We propose a synchronization policy that prioritizes redownloading of Web pages based on the

expected gain in repository quality. In particular, let ∆Q(p, t) denote the expected improvement in

repository quality if p is redownloaded into the repository at time t (details in Section 4.5.1). Then

in the o�ine setting we can compute ∆Q(p, t) exactly (using the current Web copy and search copy

of p) and prioritize redownloading of pages accordingly. In the online setting we do not have access

to the Web copy of p (before redownloading it), and so the principal challenge is how to estimate

∆Q(p, t) if a particular page were to be redownloaded, without redownloading it.

3Note that the repository quality metric corresponds to the primal optimization problem (i.e., maximize the
objective given a �xed amount of resources), while the overhead metric of Section 3 applies to the dual optimization
problem, i.e., minimize the resources required to achieve the given objective. This di�erence in metrics is not intrinsic
to the problems; both discovery and synchronization tasks can be studied as primal or dual problems.

4.3: CHAPTER OUTLINE 41

4.3 Chapter Outline

In Section 4.5 we formally de�ne the bene�t of redownloading a Web page (∆Q(p, t)) which forms the

basis for our o�ine synchronization policy. Then we move on to describe the online synchronization

policy. In Section 4.6 we provide an e�cient method for measuring ∆Q(p, t) approximately. Our

method is tightly integrated with the process of updating an inverted index that is maintained

over the repository, and incurs little additional overhead. We evaluate the e�ectiveness of our

synchronization policy empirically using real Web data in Section 4.7. In particular we show that the

improvement in quality yielded by redownloading a particular page is fairly consistent across time,

making our approach feasible. We also compare our policy against prior Web page synchronization

schemes, and show that our policy makes much more e�ective use of resources when measured

according to our notion of repository quality.

4.4 Related Work

Web crawling is a well-studied research problem. The subproblem of synchronizing pages under

resource constraints has been studied in [25, 119]. In [25], the optimization objective is to minimize

the average freshness or age of pages in the repository, treating all pages and changes to pages with

uniform importance. Unlike in our work, neither the manner in which pages change nor the way in

which users query and view results are considered.

In [119] a metric that assesses the level of �embarrassment� to the search engine was proposed,

along with a corresponding page synchronization policy. In the model of [119], embarrassment ac-

crues whenever a user clicks on a search result link, only to discover that the destination page is

not, in fact, relevant to the query she had issued. While a search engine with a high embarrassment

level clearly does not provide quality service to its users, minimizing (or even eliminating) embar-

rassment is not all that is needed to ensure a good user experience. Consider that the omission of

high-quality, relevant documents from search results generates no embarrassment, although it can

degrade the quality of the user experience substantially (of course the user may not �know what she

is missing�). This example illustrates the di�erence in philosophy between embarrassment-based

crawling and our crawling paradigm. We provide a thorough experimental comparison of our page

synchronization scheme with those of [25] and [119] in Section 4.7.

42 CHAPTER 4: WEB PAGE SYNCHRONIZATION

As mentioned before, we take search queries and their frequencies into account in our synchro-

nization policy. For a large scale search engine the storage/computation overhead of considering

each query in the crawler can be considerable. In [85] it is shown how to reduce this overhead in the

context of prioritizing the crawling of uncrawled pages (i.e., pages in the frontier). In particular,

they give a method for identifying needy queries which are those queries whose search results can

be improved the most by crawling. It is shown that instead of considering the complete query

log, a crawler can focus on just the needy queries and still achieve most of the advantage of using

the query log. While [85] provides a de�nition of needy queries for the purpose of prioritizing the

frontier, a similar de�nition should be derivable for the synchronization task in hand. Doing this is

left as future work; for the purpose of this chapter we will simply use the complete query log in our

synchronization policy.

Work on focused crawling [21] concentrates on how to obtain an initial crawl of the portion of

the Web likely to be of interest to a particular community of users. Our work is complementary.

Our approach to incremental crawling can be used to keep the repository of a focused search engine

up-to-date as the Web evolves.

4.5 New Web Synchronization Policy

Our Web synchronization policy is driven directly by our metric of search repository quality intro-

duced in Section 4.2.1. More speci�cally, if ∆Q(p, t) denotes the expected improvement in repository

quality if p is redownloaded into the repository at time t, then at each time step t our policy attempts

to redownload pages that have highest ∆Q(p, t) values. Next we de�ne ∆Q(p, t) formally.

4.5.1 Change in Quality

Before we describe ∆Q(p, t), we extend our notation to incorporate time as follows. Let Wt and

WL
t refer to the state of the live Web and of the local repository, respectively, at time t. Now

consider a page p and let WL+p
t refer to the state of the repository if it is altered by incorporating

the latest version of p, such that WL+p
t [p] = Wt[p]. (As mentioned before, we assume the process of

redownloading a page and incorporating it into the repository occurs instantaneously.) We de�ne

4.5: NEW WEB SYNCHRONIZATION POLICY 43

the change in repository quality ∆Q(p, t) due to redownloading page p at time t as:

∆Q(p, t) = Q(WL+p
t)−Q(WL

t)

=

∑
q∈Q fq ·

∑
p′∈W ∆I(p′, q,WL

t ,WL+p
t) · S(Wt[p′], q)∑

q∈Q fq ·
∑

p′∈W I(R(p′, A(q,Wt))) · S(Wt[p′], q)
(4.6)

where ∆I(p, q,W1,W2) denotes the change in the expected frequency with which users inspect page

p as a consequence of issuing query q, if repository W2 is used instead of W1 to construct query

answers. Formally:

∆I(p, q,W1,W2) = I(R(p, A(q,W2)))− I(R(p, A(q,W1))) (4.7)

As an aside, we highlight two important yet subtle characteristics of ∆Q(p, t). First, the value of

∆Q(p, t) for a given page p depends on the current state of the Web at largeWt, because our quality

metric is normalized relative to the quality of a hypothetical ideal search engine that has perfect

and instantaneous access to the live Web. Second, ∆Q(p, t) also depends on the current state of

pages other than p in the search engine repository WL
t . Consequently, if we consider two pages p1

and p2 that are redownloaded nearly simultaneously although in some serial order, the improvement

in quality attributed to the action of redownloading each page may depend on the order in which

they are redownloaded. Both of these characteristics imply the following property: Given a page p

and two moments of time t1 and t2 such that page p is never updated or redownloaded during the

interval [t1, t2] (i.e., bothWt[p] andWL
t [p] remain unchanged for all t ∈ [t1, t2]), it is not necessarily

the case that ∆Q(p, t1) = ∆Q(p, t2).

4.5.2 Synchronization Policy

We are ready to describe our synchronization policy now. Suppose that, due to resource limitations,

it is only possible to redownload and reindex up to B pages per time unit. In our crawling policy,

as shown in Figure 4.1, page redownloading is scheduled on the basis of priorities. Each page p is

assigned a numeric priority P (p, t) and ideally, we would set P (p, t) = ∆Q(p, t). Since it is generally

far from feasible to determine the precise value of ∆Q(p, t) (due to the absence of information

about the update behavior of p), we substitute the best available estimate of the expected change

in repository quality due to redownloading page p. Stated formally, we set P (p, t) = E(∆Q(p, t)),

44 CHAPTER 4: WEB PAGE SYNCHRONIZATION

where E() denotes our estimation procedure. Since pages in the repository have been downloaded

at least once in the past, the expected bene�t in terms of repository quality of redownloading the

page again in the future can be estimated using information observed during previous redownloads

of the same page. In particular, we propose to estimate ∆Q(p, t) for present or future values of t

based on the value of ∆Q(p, t′) measured at one or more times t′ at which page p was redownloaded

in the past (t′ < t). (We give a method for doing this extrapolation in Section 4.7.1.)

At time t:

• For each page p compute its priority P (p, t) = E(∆Q(p, t)).

• Redownload B pages of highest priority.

Figure 4.1: Our synchronization policy.

The main challenge is how to estimate the change in repository quality each time a page is

redownloaded, without incurring substantial additional overhead. We address this issue next.

4.6 Estimating Changes in Quality During Crawler Oper-

ation

Our approach to page redownload scheduling hinges on the ability to measure the change in repos-

itory quality, ∆Q(p, t), each time a page is redownloaded. Clearly, a highly e�cient method of

measuring ∆Q(p, t) is needed. We focus on measuring the numerator of our expression for ∆Q(p, t)

(Equation 4.6), since the denominator is the same across all pages and does not a�ect relative di�er-

ences in priorities. Hence our goal is to measure the absolute change in quality, ∆QA(p, t), de�ned

as:

∆QA(p, t) =
∑
q∈Q

fq ·
∑

p′∈W
∆I(p′, q,WL

t ,WL+p
t) · S(Wt[p′], q)

where WL
t denotes the contents of the search engine repository before page p is redownloaded, and

WL+p
t denotes its contents afterward. From Equation 4.7, ∆I(p, q,W1,W2) =

I(R(p, A(q,W2)))− I(R(p, A(q,W1))).

4.6: ESTIMATING CHANGES IN QUALITY DURING CRAWLER OPERATION 45

The anticipated workload Q can be estimated using recent query logs, and the function I(r)

can be determined from usage logs. For the remainder of this chapter we assume I(r) = c · r−3/2,

following [28]. As mentioned before we restrict the scoring function S() to be one in which the score

of a page depends on the content of that page only.

Even if we sidestep the di�culty that true scores S(Wt[p′], q) of pages p′ 6= p are unavailable,

say by substituting estimates, it is very expensive to compute ∆QA(p, t) directly. Doing so requires

materializing the result list of every query a�ected by the change in content of page p, and for each

list examining the scores and ranks of every page whose rank has changed. Therefore we seek an

e�cient approximation scheme.

4.6.1 Approximation Scheme

Our approximation scheme has the following two parts:

Approximating the Workload: Since most search engine queries consist of only one or two

terms, we approximate the query workload by breaking each multiple-term query into a set of

single-term queries. The resulting simpli�ed workload, Q′, consists of only single-term queries and

their frequencies, where the frequency fq′ of a single-term query q′ ∈ Q′ is set equal to the sum

of the frequencies of the queries in Q in which q′ occurs. Now, observe that for any query q in Q′

consisting of a term that occurs in neither WL
t [p] nor WL+p

t [p], S(WL+p
t [p], q) = S(WL

t [p], q) = 0

so the result of q remains unchanged by the update to page p. Hence we arrive at the following

approximate expression for ∆QA(p, t):

∆QA(p, t) ≈
∑
q∈S

fq ·
∑

p′∈W
∆I(p′, q,WL

t ,WL+p
t) · S(Wt[p′], q)

where S = Q′ ∩ (WL
t [p] ∪WL+p

t [p]).

Approximating the Score-Rank Correspondence: To avoid computing result lists directly, we

use precomputed histograms that provide an approximate mapping between score and rank among

the results of a particular query. In particular, for each query q ∈ Q′ we maintain a histogram Hq

of result scores, consisting of the average score for each of a sequence of ranges of rank values, with

ranges distributed in an exponential fashion so that scores corresponding to small rank values are

46 CHAPTER 4: WEB PAGE SYNCHRONIZATION

approximated most accurately. Since they are only intended to provide an approximate mapping

between score and rank, these histograms need only be updated periodically, and can be made

very small so as to �t in main memory (in our experiments described in Section 4.7, we used three

buckets per histogram; the space requirement is just 20 bytes per query). Let R̂(s,Hq) denote the

result of using histogram Hq to estimate the rank in the result of query q of a page whose score is

s. Conversely let Ŝ(r, Hq) denote the result of using Hq to estimate the score of a page appearing

at rank position r in the result of query q. Using our technique of approximating the relationship

between score and rank for a particular query using a histogram, we estimate ∆QA(p, t) as follows.

At the time page p is redownloaded, suppose we are able to determine the set S of queries

a�ected by the changes in p, as well as for each q ∈ S the scores for p both before and after the

redownload is applied, i.e., S(WL
t [p], q) and S(WL+p

t , q), e�ciently. (We describe how to obtain

these quantities e�ciently later in Section 4.6.2.) For notational ease let s1 = S(WL
t [p], q) and

s2 = S(WL+p
t [p], q). For each query q ∈ S we estimate R(p, A(q,WL

t)) and R(p, A(q,WL+p
t)) as

r1 = R̂(s1,Hq) and r2 = R̂(s2,Hq), respectively. Our expression for the component of ∆QA(p, t)

corresponding to query q becomes:

∑
p′∈W

∆I(p′, q,WL
t ,WL+p

t) · S(Wt[p′], q) ≈
(
(I(r2)− I(r1)) · s2

)
+

∑
p′∈W,p′ 6=p

∆I(p′, q,WL
t ,WL+p

t) · S(Wt[p′], q)

Now we focus on transforming the second term into a form that is amenable to e�cient evalua-

tion. Assume r1 < r2 (the case in which r1 > r2 is symmetric). We transform the summation over

pages into a summation over rank positions a�ected by the shift in rank of page p, and invoke our

histogram function to obtain a ballpark estimate of true scores:

∑
p′∈W,p′ 6=p

∆I(p′, q,WL
t ,WL+p

t) · S(Wt[p′], q) ≈
r2∑

r=r1+1

(
I(r − 1)− I(r)

)
· Ŝ(r, Hq)

Assume now that r1 and r2 fall into the same histogram bucket Bi (it is straightforward to extend

our expressions to handle the case in which r1 and r2 span multiple buckets). We model the scores

for rank values within a single histogram bucket as being evenly distributed. Let δi denote the

di�erence between the scores for two consecutive rank positions in bucket Bi. For rank position r

(r1 < r < r2), Ŝ(r, Hq) = s1 − (r − r1) · δi. Substituting into our expression above and simplifying,

4.6: ESTIMATING CHANGES IN QUALITY DURING CRAWLER OPERATION 47

we obtain:

(
I(r1) · Ŝ(r1 + 1,Hq)

)
−

r2−1∑
r=r1+1

(
I(r) · δi

)
−
(
I(r2) · Ŝ(r2,Hq)

)
For cases in which (r2− r1) is small we evaluate the above expression exactly, using I(r) = c · r−3/2.

When (r2 − r1) is large we use an approximate form of the middle term derived by substituting a

de�nite integral in place of the summation. A closed-form solution for the integral is easy to obtain.

The net result of applying the integral approximation is:

j∑
k=i

k−3/2 ≈ 2 ·
(

1√
i
− 1√

j − 1

)

We found our experimental results (Section 4.7) not to be very sensitive to the settings of our

approximation parameters: the cuto� for treating rank value di�erences as �large� and the number

of histogram buckets to use.

4.6.2 Taking Measurements During Index Maintenance

Our scheme for estimating the change in repository quality upon redownloading page p described

in Section 4.6.1 takes as input the set S ⊆ Q′ of single-term queries a�ected by the changes in p,

and for each q ∈ S the scores for p both before and after the redownload is applied, i.e., S(WL
t [p], q)

and S(WL+p
t , q). Conveniently, it is possible to compute these scores e�ciently by closely coupling

the measurement process with the process of updating the inverted index, which is a necessary

operation that makes newly-downloaded content �searchable.�

An inverted index contains lists of postings extracted from the repository. A posting corresponds

to a unique term/page pair, and typically contains the number of times term appears in the page,

font sizes, and any other information required to evaluate the scoring function. Postings are typically

updated in batches, after a set of pages have been redownloaded into the repository. During the

index updating process, postings corresponding to terms no longer present in pages are removed, and

new postings are added corresponding to new terms. With our measurement technique, whenever

a posting corresponding to term T in page p is added or removed, the resulting shift (if any) in

the score of p for query q = {T } is recorded in a special in-memory bu�er. After processing of the

batch of updates has completed, ∆QA estimates are computed using the procedure of Section 4.6.1.

48 CHAPTER 4: WEB PAGE SYNCHRONIZATION

0 400 800 1200 1600 2000
Batch Size (MB)

0

500

1000

1500

2000

2500

3000

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Indexing without measurements
Indexing with measurements

Figure 4.2: Overhead of our measurement scheme.

4.6.3 Overhead of Measurement Scheme

We integrated our quality change measurement scheme with the indexing component of Lucene [59],

a publicly-available document indexing and retrieval system. Figure 4.2 shows the time it takes to

index a batch of HTML pages, both with and without our special measurement code. Batch size (in

megabytes) is plotted on the x-axis. Total running time is plotted on the y-axis. Our measurement

scheme incurs very modest overhead of 7− 8%.

4.7 Experiments

We compared our synchronization scheme with other schemes proposed in the literature, using

simulations over real Web evolution data. We used two di�erent data sets (both from the UCLA

WebArchive project data[113, 80]):

1. Boston Data Set (BDS): A 48-week archive of a single Web site, www.boston.com. The

complete Web site was crawled once every week. Since our focus is on redownloading the pages

that persist over an extended period of time, pages not present in all 48 weekly snapshots were

removed. The remaining Web pages number around 16, 000.

4.7: EXPERIMENTS 49

2. Multiple site Data Set (MDS): A 48-week archive of 15 di�erent Web sites, each sampled

from a di�erent OpenDirectory topic area. As with BDS, pages not present in every weekly

snapshot were removed. Furthermore, in order to emphasize the role played by Web page

redownloading in the relatively short duration of the Web evolution data we had access to,

and also to reduce the time required to perform each run of our experiments, we only retained

pages that changed in some way (as determined by a checksum) at least once during the

48-week period. The �nal data set consists of around 19, 000 pages.

To obtain query workloads for our experiments we used the publicly-available AltaVista query

log [5]. It consists of around seven million single-term and multi-term queries. Since our data sets

are concentrated around fairly speci�c topics, whereas the topics represented in the query log are

quite broad, we created workloads speci�c to each data set by �ltering queries based on relevance

to the pages in each data set. In particular, we eliminated queries for which the sum of TF-IDF

scores across all pages in a data set was below a certain threshold. The threshold was chosen based

on observing a knee in the distribution that we felt would serve as a natural cuto� point for query

relevance.

Next we describe each of the three page synchronization strategies we evaluated in turn.

4.7.1 Web Page Synchronization Schemes Evaluated

Staleness-Based Synchronization Policy:

With staleness-based synchronization (SBR) [25], the objective is to minimize the number of stale

pages in the search engine repository.4 It is shown in [25] that under the staleness objective, when

resources are limited it is best to abandon redownloading of frequently updated pages in favor of

redownloading of other, less frequently updated pages.

In the simplest implementation of SBR, the repository copy of a page is considered stale if it

is not identical to the current Web copy. Since Web pages are often updated in fairly minor ways

(e.g., advertisements, timestamps) we used the standard method of shingling [14, 17] as a heuristic

for discriminating between signi�cant and insigni�cant updates. A page is considered stale if the

fraction of shingles that di�er between the repository copy and Web copy of the page exceeds a

4In [25] an alternative optimization objective, minimizing average age, is also proposed. Our preliminary experi-
ments showed that age-based synchronization did not perform as well as staleness-based synchronization under our
metric, so we did not consider it further.

50 CHAPTER 4: WEB PAGE SYNCHRONIZATION

particular threshold τSBR ∈ [0, 1]. In our experiments we tested values of τSBR throughout the

range [0, 1].

The work in [25] focuses uniquely on determining with which frequency to redownload each page.

No algorithm is provided for scheduling redownloads in the presence of hard resource constraint.

We used the transportation algorithm suggested in [119] for this purpose.

Embarrassment-Based Synchronization Policy:

With embarrassment-based synchronization (EBR) [119], the objective is to minimize the level of

�embarrassment� to a search engine provider. Embarrassment accrues whenever a user clicks on a

search result link, only to discover that the destination page is not, in fact, relevant to the query

she had issued. (A boolean notion of relevance is assumed.)

The work in [119] applies to a wide variety of page update models, including the fairly general

quasi-deterministic model. We did not feel our 48-week data set contained a su�cient duration of

data to �t a reliable quasi-deterministic model, so we used the simpler Poisson update model, as

done in [25].

An important parameter in EBR is d(p), which denotes the probability that if the repository

copy of page p is out-of-date with respect to the current Web copy (i.e., WL[p] 6= W[p]), whenever

the search engine presents page p to a user, p turns out to be an irrelevant response for the query

that was issued (note that d(p) is a query-independent parameter). No method of estimating this

parameter is provided in [119]. Since the shingling technique is a widely-accepted way of measuring

the di�erence between two Web pages, or two copies of the same page, we apply it here. In par-

ticular, we assume that if a page undergoes an update, it becomes irrelevant to an average query

if the fraction of shingles that change exceeds a con�gurable threshold τEBR. We compute d(p) as

the fraction of updates to page p that induce at least τEBR fraction of the shingles to change. In

our experiments we tested values of τEBR throughout the range [0, 1].

Our Synchronization Policy:

Our page synchronization scheme is parameterized by a scoring function S(). While our approach is

compatible with a wide variety of possible scoring functions, for our experiments we needed to use a

speci�c scoring method. Since no standard exists, we used two well-accepted methods that we feel

constitute two extremes among the spectrum of options: (1) the well-known TF-IDF metric [97],

using the variant employed in the popular Lucene software [59], and (2) inlink count obtained by

4.7: EXPERIMENTS 51

querying Google, which we used as a surrogate for PageRank [81] due to lack of adequate data (it

has been suggested that inlink count and PageRank yield similar results [106]). In both cases the

result of a query consists of a list of all pages that contain every term in the query, arranged in

descending order of score.

In our page synchronization scheme, each page p is assigned an associated priority value P (p, t),

which may vary over time. Page redownloading is scheduled according to priority. The priority

of a page is set equal to the expected change in repository quality of that page is redownloaded,

as estimated by extrapolating from past measurements of this quantity taken during previous re-

downloads of the same page. These measurements are obtained using the estimation procedure of

Section 4.6.

A variety of extrapolation methods can be used. The option we selected for our experiments is

as follows. Given a set R(p)5 of time instants of past redownloads of page p, let:

δQA(p) =
1

|R(p)|
∑

t∈R(p)

∆QA(p, t)
t− LR(p, t)

where LR(p, t) denotes the time of the most recent redownload of page p prior to t. Set P (p, t) =

δQA(p) · (t− LR(p, t)).

4.7.2 Estimation of Page Change Characteristics

Each of the page synchronization schemes we consider relies on forecasting of Web page change

behavior based on behavior observed in the past. In particular, for each page p SBR requires a

Poisson change rate parameter λ(p), EBR requires a query irrelevance probability parameter d(p),

and our synchronization policy requires a time-normalized quality change value δQA(p). We opted

against splitting our data sets to perform parameter �tting and evaluation over di�erent portions

(say, 24 weeks each), because shortening our somewhat short 48-week data any further would make

it di�cult to obtain reliable performance measurements. Plus, in this chapter we do not focus on

the forecasting problem, and we seek to compare all three methods on equal footing, independent

of the forecasting method used. Therefore, for all three policies we used the entire 48-week data set

5We envision that in a real deployment the set R(p) would be determined based on a sliding window of recent
redownloads of page p. (Other heuristics for favoring recent observations, such as exponentially-decayed averaging,
warrant investigation as well; we leave this topic as future work.)

52 CHAPTER 4: WEB PAGE SYNCHRONIZATION

to estimate the necessary parameter for each page p.6

Still, we wanted to check that quality change values δQA(p) are amenable to forecasting based

on past measurements. For this purpose we estimated δQA(p) values (using our approximation

method of Section 4.6.1) for each page, once over the �rst 24 weeks of our data set, and again over

the second 24 weeks, under the scenario in which every update to a page triggers an immediate

redownload. We then compared the δQA(p) estimates across the two 24-week periods. Figure 4.3

shows the outcome, for each of our two data sets under each of the two scoring functions we tested.

In each graph, δQA(p) over weeks 1 − 24 is plotted on the x-axis, and δQA(p) over weeks 25 − 48

is plotted on the y-axis. Each dot in each graph corresponds to one page. When δQA(p) = 0,

that indicates no change in repository quality due to updates to page p. Beyond that the scale

of the axes is immaterial (since we are not measuring normalized quality). Each graph is plotted

on a log-log scale, with pages with a value of 0 for one of the two δQA(p) measurements inserted

arti�cially along the edges. Pages with δQA(p) = 0 for weeks 1 − 24 as well as weeks 25 − 48 are

not plotted (hence these graphs present a conservative view of amenability to forecasting). Dots are

colored according to quantiles of proximity to the diagonal; see the key below the graphs. Points

that are close to the diagonal (y = x line) correspond to pages whose δQA(p) values remain fairly

consistent in both halves of the data set, implying that they can be forecasted accurately at this

time-scale based on past measurements. These �ndings are in accord with those presented in [80],

which assessed amenability to forecasting of the Web page change characteristics as measured by

TF-IDF cosine similarity directly.

4.7.3 Comparison of Page Synchronization Schemes

We compared the three page synchronization schemes (SBR, EBR, and our crawling policy) using

our repository quality metric which, as we have argued, we believe serves as a suitable metric for

evaluating a crawler serving a search engine. Of course, crawling can also be used for other purposes

(archival, mining, etc.), in which case our metric is not appropriate. For the purpose of evaluating

the performance of a synchronization scheme we applied the precise formula for repository quality

(Equation 4.5), and did not rely on any approximation techniques.

For this experiment we provided each synchronization scheme with a fully synchronized repos-

itory at week 1, and then allowed a �xed number of pages, B, to be redownloaded every week

6Note that for SBR and EBR, di�erent settings for the shingles threshold τSBR (τEBR, respectively) result in
potentially di�erent λ(p) (d(p)) values, which is precisely the purpose of varying the threshold.

4.7: EXPERIMENTS 53

-4.00 -1.00 2.00 5.00 8.00
-4.00

-1.00

2.00

5.00

8.00

(a)

δQ

(p
)

du
ri

ng
 w

ee
ks

 2
5-

48
A

-4.00 -1.00 2.00 5.00 8.00
-4.00

-1.00

2.00

5.00

8.00

(b)

-4.00 -1.00 2.00 5.00 8.00
-4.00

-1.00

2.00

5.00

8.00

δQ

(p
)

du
ri

ng
 w

ee
ks

 2
5-

48
A

δQ (p) during weeks 1-24A
(c)

-4.00 -1.00 2.00 5.00 8.00
-4.00

-1.00

2.00

5.00

8.00

δQ (p) during weeks 1-24A
(d)

Top 50% Top 80% Top 90% Remaining

Figure 4.3: Amenability to forecasting of time-normalized change in quality (δQA(p)). The four
graphs shown correspond to (a) BDS data set with TF-IDF scoring function, (b) BDS with inlink
count scoring function, (c) MDS data set with TF-IDF, and (d) MDS with inlink count. All graphs
are on a log-log scale.

for the remaining 47 weeks. We compared page synchronization schemes in terms of the resource

requirement (B value) necessary to achieve a certain level of repository quality according to our

metric, for two di�erent scoring functions, TF-IDF and inlink count, over each of our two data

sets, BDS and MDS. The results are plotted in Figure 4.4. In each graph, repository quality is

plotted on the x-axis, and the resource requirement B is plotted on the y-axis. For each of SBR

and EBR, for each B value the best repository quality level obtained using shingle threshold values

54 CHAPTER 4: WEB PAGE SYNCHRONIZATION

0.89 0.91 0.93 0.96 0.98 1.00
0

1200

2400

3600

4800

6000

R
es

ou
rc

e
us

ag
e

(r
ef

re
sh

es
/w

ee
k)

 (
B

)

(a)

SBR
EBR
User-Centric

0.66 0.73 0.80 0.86 0.93 1.00
0

1200

2400

3600

4800

6000

(b)

SBR
EBR
User-Centric

0.87 0.90 0.92 0.95 0.97 1.00
Repository Quality Q(W)

0

3000

6000

9000

12000

15000

R
es

ou
rc

e
us

ag
e

(r
ef

re
sh

es
/w

ee
k)

 (
B

)

(c)

SBR
EBR
User-Centric

L

0.67 0.74 0.80 0.87 0.93 1.00
Repository Quality Q(W)

0

3000

6000

9000

12000

15000

(d)

SBR
EBR
User-Centric

L

Figure 4.4: Repository quality versus resource usage. The di�erent graphs are for (a) BDS data set
with TF-IDF scoring function, (b) BDS with inlink count scoring function, (c) MDS data set with
TF-IDF, and (d) MDS with inlink count.

τ ∈ {0.1, 0.2, . . . , 0.9, 1.0} is plotted. For both data sets and both scoring functions, our page syn-

chronization scheme requires substantially fewer resources to achieve the same level of repository

quality than either of SBR and EBR.

We highlight the primary underlying reasons for this result using the following two examples

taken from our boston.com data set:

Example 1: Figure 4.5(a) shows an advertisement added to a Web page in the boston.com data set.

As it turned out, although the new advertisement consists of a large textual segment, none of the

terms in the advertisement match frequently-issued queries in the AltaVista query workload. Hence,

from the perspective of our repository quality metric it is not important to capture the content of

4.7: EXPERIMENTS 55

(a)

(b)

Figure 4.5: Examples drawn from our real-world boston.com data set.

the advertisement. Consequently our page synchronization scheme did not devote resources to

redownloading this page (which turned out not to be updated in any way other than changing of

advertising material), leaving more resources available for other tasks. This example illustrates that

heuristics for estimating the importance of an update based on the number of words that change

do not always work well.

Example 2: Figure 4.5(b) shows a portion of a Web page containing seminar announcements, that

was updated to remove outdated announcements and replace them with a new announcement of an

upcoming law seminar series. If this page is not redownloaded in a timely fashion, users querying

for, say �Boston campaign �nance� would not see this page among the query results even though

it should appear (and be placed at a good rank position under at least some scoring functions).

Our repository quality metric is particularly good at characterizing the importance of keeping this

page up to date in the repository, by noting the high degree of match between frequent queries

and evolving content (for example, the query �cancer� occurs frequently in the AltaVista query

workload). This example illustrates (1) the importance of accounting for false negatives as well

as false positives, and (2) that certain frequently-updated pages merit the devotion of precious

redownloading resources, if it is the case that the updates tend to have a large impact on the user

experience.

56 CHAPTER 4: WEB PAGE SYNCHRONIZATION

One may be inclined to suppose that, say, 95% repository quality is su�cient, and that there

is no need to shoot for quality values very close to 100%. However, the di�erence between 95%

and 99% repository quality can have a signi�cant impact on the user experience. In fact, we came

across Example 2 by examining a scenario in which SBR and EBR each achieved ∼ 95% quality,

whereas our scheme attained over 99% quality under the same resource constraint. Both SBR and

EBR neglected to redownload this important seminar announcement page, leading to a substantial

degradation in the quality of search results for a large number of (simulated) users.

4.8 Chapter Summary

In this chapter we studied the problem of synchronizing search engines' local repository. We in-

troduced our repository quality metric which takes user experience into account, in terms of which

queries are issued, with what frequency, and which results are inspected by users. Using this metric

we formulated the synchronization task as an optimization problem, where the unknown parameter

is the update behavior of pages. For the o�ine problem (i.e., when the update behavior of pages

is known) we proposed a synchronization policy which computes the bene�t of redownloading each

page, measured in terms of repository quality, and then schedules redownloading tasks accordingly.

For the online problem we showed that the bene�t of redownloading a particular page is amenable

to prediction based on measurements of the bene�t of downloading the page in the past. We devised

an e�cient method for taking these measurements that is tightly integrated with the process of

updating an inverted index maintained over the repository and incurs little additional overhead.

Lastly we compared our page synchronization scheme against prior schemes empirically using real

Web data. Our results demonstrate that our scheme requires substantially fewer resources to achieve

the same user experience quality, leaving more resources for other important tasks such as discovering

and downloading new pages.

Note that we studied the discovery task under the objective of maximizing the number of newly

discovery pages, while for the synchronization task our goal was to redownload known pages so as

to maximize a user-centric metric of repository quality. A part of our future work is to optimize the

discovery and synchronization tasks together, possibly under one objective, since both tasks share

the same crawling resources. We discuss future work in detail in Chapter 7.2.

Chapter 5

Web Page Ranking

Recall from Figure 1.4 that search engines perform two main tasks: content acquisition and presen-

tation. In the previous two chapters we studied content acquisition. In this chapter and the next,

we focus on content presentation. Content presentation involves arranging the relevant pages and

ads on the slates of search queries submitted by users. In this chapter we focus on the presentation

of Web pages while postponing the presentation of ads to the next chapter.

5.1 Introduction

As discussed in Chapter 4, search engines apply a scoring function to arrange pages on the slate

of a query. Ideally, the scoring function should compute some intrinsic measure of usefulness or

quality of pages that are relevant to a given query. Quality cannot be measured directly. However,

various notions of popularity, such as number of in-links, PageRank [81], number of visits, etc., can

be measured. Most Web search engines assume that popularity is closely correlated with quality,

and rank results according to popularity.

Unfortunately, the correlation between popularity and quality is very weak for newly-created

pages that have few visits and/or in-links. Worse, the process by which new, high-quality pages

accumulate popularity is actually inhibited by search engines. Since search engines always lists

highly popular pages at the top, and because users usually focus their attention on the top few

results [61, 69], newly-created but high-quality pages are �shut out.� This increasing �entrenchment

57

58 CHAPTER 5: WEB PAGE RANKING

e�ect� has witnessed broad commentary across political scientists, the popular press, and Web

researchers [43, 53, 57, 77, 100, 110] and even led to the term Googlearchy. In a recent study, Cho

and Roy [28] show that heavy reliance on a search engine that ranks results according to popularity

can delay widespread awareness of a high-quality page by a factor of over 60, compared with a

simulated world without a search engine in which pages are accessed through browsing alone.

Even if we ignore the (contentious) issue of fairness, treating popularity as a surrogate for quality

is unacceptable since it negatively a�ects the goal for which search engines are designed, i.e., help

users in �nding high-quality content. Assuming a notion of intrinsic page quality as perceived by

users, a hypothetical ideal search engine would bias users toward visiting those pages of the highest

quality at a given time, regardless of popularity. On the other hand, a search engine which treats

popularity as a surrogate for quality sets up a vicious cycle of neglect for new pages, and make

entrenched pages collect an increasing fraction of user attention. Given that some of these new

pages will generally have higher quality than some entrenched pages, the popularity-based search

engine clearly fails to maximize an objective based on average quality of search results seen by users.

We formalize this in Section 5.4.

5.1.1 Entrenchment Effect in Other Contexts

The entrenchment e�ect may not be unique to the Web search engine context. For example, consider

recommendation systems [67], which are widely used in e-commerce [107]. Many users decide which

items to view based on recommendations, but these systems make recommendations based on user

evaluations of items they view. This circularity leads to the well-known cold-start problem, and is

also likely to lead to entrenchment.

Indeed, Web search engines can be thought of as recommendation systems that recommend Web

pages. The entrenchment e�ect is particularly acute in the case of Web search, because the sheer

size of the Web forces large numbers of users to locate new content using search engines alone.

5.1.2 Overview of Our Approach

We propose a very simple modi�cation to the method of ranking search results according to popu-

larity: promote a small fraction of unexplored pages up at random rank positions in the result list.

A new page now has some chance of attracting clicks and attention even if the initial popularity of

5.1: INTRODUCTION 59

the page is very small. If a page has high quality, the rank boost gives the page a chance to prove

itself. (Detailed de�nitions and algorithms are given later in the chapter.)

Still, the question remains as to how aggressively one should promote new pages. Many new

pages on the Web are not of high quality. Therefore, the extent of rank promotion has to be limited

very carefully, lest we negate the bene�ts of popularity-based ranking by displacing pages known to

be of high quality too often. With rank promotion there is an inherent tradeo� between exploration

of new pages and exploitation of pages already known to be of high quality. We study how to balance

these two aspects, in the context of an overarching objective of maximizing the average quality of

search results viewed by users, amortized over time. In particular we seek to answer the following

questions:

• Which pages should be treated as candidates for exploration, i.e., included in the rank pro-

motion process so as to receive transient rank boosts?

• Which pages, if any, should be exploited unconditionally, i.e., protected from any rank demo-

tion caused by promotion of other pages?

• What should be the overall ratio of exploration to exploitation?

Before we can begin to address these questions, we must model the relationship between user

queries and search engine results. We categorize the pages on the Web into disjoint groups by topic,

such that each page pertains to exactly one topic. Let P be the set of pages devoted to a particular

topic T (e.g., �swimming� or �Linux�), and let U denote the set of users interested in topic T . We say

that the users U and pages P corresponding to topic T , taken together make up a Web community.

(Users may participate in multiple communities.) For now we assume all users access the Web

uniquely through a (single) search engine. (We relax this assumption later in Section 5.9.) We

further assume a one-to-one correspondence between queries and topics, so that each query returns

exactly the set of pages for the corresponding community. Although far from perfect, we believe

this model preserves the essence of the dynamic process we seek to understand.

Communities are likely to di�er a great deal in terms of factors like the number of users, the

number of pages, the rate at which users visit pages, page lifetimes, etc. These factors play a signif-

icant role in determining how a given rank promotion scheme in�uences page popularity evolution.

For example, communities with very active users are likely to be less susceptible to the entrenchment

e�ect than those whose users do not visit very many pages. Consequently, a given rank promotion

60 CHAPTER 5: WEB PAGE RANKING

scheme is bound to create quite di�erent outcomes in the two types of communities. Hence, we

provide an analytical method (in Section 5.6) for predicting the e�ect of deploying a particular

randomized rank promotion scheme in a given community, as a function of the most important

high-level community characteristics.

5.1.3 Experimental Study

We seek to model a very complex dynamical system involving search engines, evolving pages, and

user actions, and trace its trajectory in time. It is worth emphasizing that even if we owned the

most popular search engine in the world, �clean-room� experiments would be impossible. We could

not even study the e�ect of di�erent choices of a parameter, because an earlier choice would leave

large-scale and indelible artifacts on the Web graph, visit rates, and popularity of certain pages.

Therefore, analysis and simulations are inescapable, and practical experiments (as in Section 5.10)

must be conducted in a sandbox.

Through a combination of analysis and simulation, we arrive at a particular recipe for randomized

rank promotion that balances exploration and exploitation e�ectively, and yields good results across

a broad range of community types. Robustness is desirable because, in practice, communities are

not disjoint and therefore their characteristics cannot be measured reliably.

5.2 Chapter Outline

In Section 5.4 we formalize the problem of ranking Web pages. In particular, we present our model

of Web page popularity, describe the exploration/exploitation tradeo� as it exists in our context,

and introduce two metrics for evaluating rank promotion schemes. We then propose our randomized

rank promotion method in Section 5.5, and supply an analytical model of page popularity evolution

under randomized rank promotion in Section 5.6. In Sections 5.7�5.9 we present extensive analytical

and simulation results, and recommend and evaluate a robust recipe for randomized rank promotion.

In Section 5.10 we describe a real-world study that we conducted to test the e�ectiveness of rank

promotion.

5.3: RELATED WORK 61

5.3 Related Work

The entrenchment e�ect has been attracting attention for several years [43, 53, 57, 77, 100, 110],

but formal models for and analysis of the impact of search engines on the evolution of the Web

graph [10, 76] or on the time taken by new pages to become popular [28] are recent.

A few solutions to the entrenchment problem have been proposed [7, 29, 121]. They rely on

variations of PageRank: the solutions of [7, 121] assign an additional weighting factor based on

page age; that of [29] uses the derivative of PageRank to forecast future PageRank values for young

pages.

Our approach, randomized rank promotion, is quite di�erent in spirit. The main strength of our

approach is its simplicity�it does not rely on measurements of the age or PageRank evolution of

individual Web pages, which are di�cult to obtain and error-prone at low sample rates. (Ultimately,

it may make sense to use our approach in conjunction with other techniques, in a complementary

fashion.)

The exploration/exploitation tradeo� that arises in our context is akin to problems studied in

the bandit theory [12]. However, direct application of bandit models to Web page ranking poses

some challenges, as described next. Search engines commonly employ one or more of following

three kinds of metrics to estimate quality of pages: (a) link-based metric is based on the number of

inlinks/outlinks of a page, (b) click-based metric is based on the number of clicks that users make

to a page when it is displayed in search results, while (c) visit-based metric uses the number of visits

that a page attracts either through a search engine or from somewhere else.

Link-based is the most established metric for Web page ranking currently. The di�culty in

applying bandit models under this metric is that when the search engine shows a page to a user

(which corresponds to taking an action in the bandit model), the user feedback or assessment of

the displayed page is not received immediately. In particular, if the user likes the page displayed by

the search engine, then he/she creates a link to the page and this gives the search engine a positive

feedback for the page. But this feedback comes after a signi�cant delay, for two reasons: (a) the

user takes time to create a link to the page after it was shown to her and (b) the search engine

takes time to crawl pages and discover this newly created link. The lack of immediate feedback is

a departure from the conventional bandit problem which assumes an immediate feedback/reward.

Click/visit-based metrics also su�er from this delayed feedback problem, though the problem is

not as severe under them as it is under the link-based metric. More speci�cally, for visit/click-based

quality metrics the user feedback is received in the form of visits/clicks which may take a while

62 CHAPTER 5: WEB PAGE RANKING

to be captured. However, this delay is generally fairly small (in comparison to the delay involved

in the link-based metric) and so, the search engines which rely heavily on these metrics are better

suited for using bandit models. So that our work is applicable to the link-based metric, we propose

a di�erent approach than bandit model in this chapter. There is some work on bandit model with

delayed responses [34, 35, 111]; we leave studying them as future work (more details in Chapter 7.3).

5.4 Problem Formulation

In this section we formalize the problem of ranking Web pages. First we introduce the model of

Web page popularity, adopted from [28], that we use in the rest of this chapter. (For convenience,

a summary of the notation we use is provided in Table 5.1.) Recall from Section 5.1.2 that in our

model the Web is categorized into disjoint groups by topic, such that each page pertains to exactly

one topic. Let P be the set of pages devoted to a particular topic T , and let U denote the set

of users interested in topic T . Let n = |P| and u = |U| denote the number of pages and users,

respectively, in the community.

5.4.1 Page Popularity

In our model, time is divided into discrete intervals, and at the end of each interval the search engine

measures the popularity of each Web page according to in-link count, PageRank, user tra�c, or

some other indicator of popularity among users. Usually it is only possible to measure popularity

among a minority of users. Indeed, for in-link count or PageRank, only those users who have the

ability to create links are counted. For metrics based on user tra�c, typically only users who agree

to install a special toolbar that monitors Web usage, as in [4], are counted. Let Um ⊆ U denote the

set of monitored users, over which page popularity is measured, and let m = |Um|. We assume Um

constitutes a representative sample of the overall user population U .
Let the total number of user visits to pages per unit time be �xed at vu. Further, let v denote

the number of visits per unit time by monitored users, with v = vu · m
u . The way these visits are

distributed among pages in P is determined largely by the search engine ranking method in use;

we will come back to this aspect later. For now we simply provide a de�nition of the visit rate of a

page p ∈ P.

5.4: PROBLEM FORMULATION 63

Symbol Meaning

P Set of Web pages in community

n = |P|
U Set of users in community

u = |U|
Um Set of monitored users in community

m = |Um|
P (p, t) Popularity among monitored users of

page p at time t

Vu(p, t) Number of user visits to page p
during unit time interval at t

V (p, t) Number of visits to p by monitored
users at t

vu Total number of user visits per unit
time

v Number of visits by monitored users
per unit time

A(p, t) Awareness among monitored users of
page p at time t

Q(p) Intrinsic quality of page p

l Expected page lifetime

Table 5.1: Notation used in this chapter.

De�nition 5.4.1 (Visit Rate) The visit rate of page p at time t, V (p, t), is de�ned as the number

of times p is visited by any monitored user within a unit time interval at time t.

Similarly, let Vu(p, t) denote the number of visits by any user in U (monitored and unmonitored

users alike) within a unit time interval at time t. We require that ∀t,
∑

p∈P Vu(p, t) = vu and

∀t,
∑

p∈P V (p, t) = v. Once a user visits a page for the �rst time, she becomes �aware� of that page.

De�nition 5.4.2 (Awareness) The awareness level of page p at time t, A(p, t), is de�ned as the

fraction of monitored users who have visited p at least once by time t.

We de�ne the popularity of page p at time t, P (p, t) ∈ [0, 1], as follows:

P (p, t) = A(p, t) ·Q(p) (5.1)

where Q(p) ∈ [0, 1] (page quality) denotes the extent to which an average user would �like� page p

64 CHAPTER 5: WEB PAGE RANKING

exploitation loss

exploration
with rank promotion

0

without rank promotion
V

is
it

 r
at

e
 benefit

Time l

Figure 5.1: Exploration/exploitation tradeo�.

if she were aware of p.

In our model page popularity is a monotonically nondecreasing function of time. Therefore if

we assume nonzero page viewing probabilities, for a page of in�nite lifetime limt→∞ P (p, t) = Q(p).

5.4.2 Metrics and Exploration/Exploitation Tradeoff

Time-To-Become-Popular Metric: If pages are ranked strictly according to current popularity,

it can take a long time for the popularity of a new page to approach its quality. Arti�cially

promoting the rank of new pages can potentially accelerate this process. One important objective

for rank promotion is to minimize the time it takes for a new high-quality page to attain its eventual

popularity, denoted TBP for �time to become popular.� In this chapter we measure TBP as the

time it takes for a high-quality page to attain popularity that exceeds 99% of its quality level.

Figure 5.1 shows popularity evolution curves for a particular page having very high quality cre-

ated at time 0 with lifetime l, both with and without rank promotion. (It has been shown [28] that

popularity evolution curves are close to step-functions.) Time is plotted on the x-axis. The y-axis

plots the number of user visits per time unit. Note that while the page becomes popular earlier

when rank promotion is applied, the number of visits it receives once popular is somewhat lower

than in the case without rank promotion. That is because systematic application of rank promotion

inevitably comes at the cost of fewer visits to already-popular pages.

Quality-Per-Click Metric and Exploration/Exploitation Tradeo�: The two shaded regions

5.4: PROBLEM FORMULATION 65

of Figure 5.1 indicate the positive and negative aspects of rank promotion. The exploration bene�t

area corresponds to the increase in the number of additional visits to this particular high-quality page

during its lifetime made possible by promoting it early on. The exploitation loss area corresponds to

the decrease in visits due to promotion of other pages, which may mostly be of low quality compared

to this one. Clearly there is a need to balance these two factors. The TBP metric is one-sided in this

respect, so we introduce a second metric that takes into account both exploitation and exploitation:

quality-per-click, or QPC for short. QPC measures the average quality of pages viewed by users,

amortized over a long period of time. We believe that maximizing QPC is a suitable objective for

designing a rank promotion strategy.

We now derive a mathematical expression for QPC in our model. First, recall that the number of

visits by any user to page p during time interval t is denoted Vu(p, t). We can express the cumulative

quality of all pages in P viewed at time t as
∑

p∈P Vu(p, t) · Q(p). Taking the average across time

in the limit as the time duration tends to in�nity, we obtain:

lim
t→∞

t∑
tl=0

∑
p∈P

(
Vu(p, tl) ·Q(p)

)
By normalizing, we arrive at our expression for QPC:

QPC = lim
t→∞

∑t
tl=0

∑
p∈P

(
Vu(p, tl) ·Q(p)

)∑t
tl=0

(∑
p∈P Vu(p, tl)

) (5.2)

5.4.3 Web Page Ranking Optimization Problem

Formally, the problem of ranking pages poses the following optimization problem:

• Objective: Maximize the average quality of results perceived by users (QPC), given in Equa-

tion 5.2.

• Constraint: Users pay limited attention to search results (i.e., bounded visit rate V (p, t)).

• Uncertainty: Page quality values (i.e., Q(p)'s) are unknown.

The o�ine problem, i.e., when page quality values are known, has a simple solution in this

case: rank the pages in decreasing order of quality. Doing so maximizes the QPC expression in

Equation 5.2 because visit rate Vu(p, t) decreases as the rank of page p in the ranked list increases

66 CHAPTER 5: WEB PAGE RANKING

(from Figure 1.3; details in Section 5.6.3). So, when pages are ranked in decreasing order of quality,

the maximum quality page gets the top rank and attracts the highest visit rate, and so on.

Next we focus on the online problem where the page quality values are unknown.

5.5 Randomized Rank Promotion

We now describe our simple randomized rank promotion scheme (this description is purely concep-

tual; more e�cient implementation techniques exist).

Let P denote the set of n responses to a user query. A subset of those pages, Pp ⊆ P is set

aside as the promotion pool, which contains the set of pages selected for rank promotion according

to a predetermined rule. (The particular rule for selecting Pp, as well as two additional parameters,

k ≥ 1 and r ∈ [0, 1], are con�guration options that we discuss shortly.) Pages in Pp are sorted

randomly and the result is stored in the ordered list Lp. The remaining pages (P −Pp) are ranked

in the usual deterministic way, in descending order of popularity; the result is an ordered list Ld.

The two lists are merged to create the �nal result list L according to the following procedure:

1. The top k− 1 elements of Ld are removed from Ld and inserted into the beginning of L while

preserving their order.

2. The element to insert into L at each remaining position i = k, k + 1, . . . , n is determined one

at a time, in that order, by �ipping a biased coin: with probability r the next element is taken

from the top of list Lp; otherwise it is taken from the top of Ld. If one of Lp or Ld becomes

empty, all remaining entries are taken from the nonempty list. At the end both of Ld and Lp

will be empty, and L will contain one entry for each of the n pages in P.

The con�guration parameters are:

• Promotion pool (Pp): We consider two rules for determining which pages are promoted:

(a) the uniform promotion rule, in which every page is included in Pp with equal probability r,

and (b) the selective promotion rule, in which all pages whose current awareness level among

monitored users is zero (i.e., A(p, t) = 0) are included in Pp, and no others. (Other rules are of

course possible; we chose to focus on these two in particular because they roughly correspond

to the extrema of the spectrum of interesting rules.)

5.6: ANALYTICAL MODEL 67

• Starting point (k): All pages whose natural rank is better than k are protected from the

e�ects of promoting other pages. A particularly interesting value is k = 2, which safeguards

the top result of any search query, thereby preserving the �feeling lucky� property that is of

signi�cant value in some situations.

• Degree of randomization (r): When k is small, this parameter governs the tradeo� between

emphasizing exploration (large r) and emphasizing exploitation (small r).

Our goal is to determine settings of the above parameters that lead to good TBP and QPC

values. The remainder of this chapter is dedicated to this task. Next we present our analytical

model of Web page popularity evolution, which we use to estimate TBP and QPC under various

ranking methods.

5.6 Analytical Model

Our analytical model has these features:

• Pages have �nite lifetime following an exponential distribution (Section 5.6.1). The number

of pages and the number of users are �xed in steady state. The quality distribution of pages

is stationary.

• The expected awareness, popularity, rank, and visit rate of a page are coupled to each other

through a combination of the search engine ranking function and the bias in user attention to

search results (Sections 5.6.2 and 5.6.3).

Given that (a) modern search engines appear to be strongly in�uenced by popularity-based

measures while ranking results, and (b) users tend to focus their attention primarily on the top-

ranked results [61, 69], it is reasonable to assume that the expected visit rate of a page is a function

of its current popularity (as done in [28]):

V (p, t) = F (P (p, t)) (5.3)

where the form of function F (x) depends on the ranking method in use and the bias in user attention.

For example, if ranking is completely random, then V (p, t) is independent of P (p, t) and the same for

all pages, so F (x) = v · 1
n . (Recall that v is the total number of monitored user visits per unit time.)

68 CHAPTER 5: WEB PAGE RANKING

If ranking is done in such a way that user tra�c to a page is proportional to the popularity of that

page, F (x) = v · x
φ , where φ is a normalization factor; at steady-state, φ =

∑
p∈P P (p, t). If ranking

is performed the aforementioned way 50% of the time, and performed randomly 50% of the time,

then F (x) = v ·
(
0.5 · x

φ + 0.5 · 1
n

)
. For the randomized rank promotion we introduced in Section 5.5

the situation is more complex. We defer discussion of how to obtain F (x) to Section 5.6.3.

5.6.1 Page Birth and Death

The set of pages on the Web is not �xed. Likewise, we assume that for a given community based

around topic T , the set P of pages in the community evolves over time due to pages being created

and retired. To keep our analysis manageable we assume that the rate of retirement matches the

rate of creation, so that the total number of pages remains �xed at n = |P|. We model retirement

of pages as a Poisson process with rate parameter λ, so the expected lifetime of a page is l = 1
λ (all

pages have the same expected lifetime1). When a page is retired, a new page of equal quality is

created immediately, so the distribution of page quality values is stationary. When a new page is

created it has initial awareness and popularity values of zero.

5.6.2 Awareness Distribution

We derive an expression for the distribution of page awareness values, which we then use to obtain an

expression for quality-per-click (QPC). We analyze the steady-state scenario, in which the awareness

and popularity distributions have stabilized and remain steady over time. Our model may not seem

to indicate steady-state behavior, because the set of pages is constantly in �ux and the awareness

and popularity of an individual page changes over time. To understand the basis for assuming

steady-state behavior, consider the set Ct of pages created at time t, and the set Ct+1 of pages

created at time t + 1. Since page creation is governed by a Poisson process the expected sizes of

the two sets are equal. Recall that we assume the distribution of page quality values remains the

same at all times. Therefore, the popularity of all pages in both Ct and Ct+1 will increase from the

starting value of 0 according to the same popularity evolution law. At time t + 1, when the pages

in Ct have evolved in popularity according to the law for the �rst time unit, the new pages in Ct+1

introduced at time t + 1 will replace the old popularity values of the Ct pages. A symmetric e�ect

1In reality, lifetime might be a positively correlated with popularity. If so, popular pages would remain entrenched
for a longer time than under our model, leading to even worse TBP than our model predicts.

5.6: ANALYTICAL MODEL 69

0.0 0.2 0.4 0.6 0.8 1.0
Awareness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

No randomization

0.0 0.2 0.4 0.6 0.8 1.0
Awareness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty Selective randomization
(r=0.2,k=1)

Figure 5.2: Awareness distribution of pages of high quality under randomized and nonrandomized
ranking.

occurs with pages that are retired, resulting in steady-state behavior overall. In the steady-state,

both popularity and awareness distributions are stationary.

The steady-state awareness distribution is given as follows.

Theorem 2 Among all pages in P whose quality is q, the fraction that have awareness ai = i
m (for

i = 0, 1, . . . ,m) is:

f(ai|q) =
λ

(λ + F (0)) · (1− ai)

i∏
j=1

F (aj−1 · q)
λ + F (aj · q)

(5.4)

where F (x) is the function in Equation 5.3.

Proof: See Appendix 9.2.

Figure 5.2 plots the steady-state awareness distribution for pages of highest quality, under both

nonrandomized ranking and selective randomized rank promotion with k = 1 and r = 0.2, for our

default Web community characteristics (see Section 5.7.1). For this graph we used the procedure

described in Section 5.6.3 to obtain the function F (x).

Observe that if randomized rank promotion is used, in steady-state most high-quality pages have

large awareness, whereas if standard nonrandomized ranking is used most pages have very small

awareness. Hence, under randomized rank promotion most pages having high quality spend most

of their lifetimes with near-100% awareness, yet with nonrandomized ranking they spend most of

their lifetimes with near-zero awareness. Under either ranking scheme pages spend very little time

in the middle of the awareness scale, since the rise to high awareness is nearly a step function.

Given an awareness distribution f(a|q), it is straightforward to determine expected time-to-

become-popular (TBP) corresponding to a given quality value (formula omitted for brevity). Ex-

pected quality-per-click (QPC) is expressed as follows:

70 CHAPTER 5: WEB PAGE RANKING

QPC =

∑
p∈P

∑m
i=0 f(ai|Q(p)) · F (ai ·Q(p)) ·Q(p)∑

p∈P
∑m

i=0 f(ai|Q(p)) · F (ai ·Q(p))

where ai = i
m . (Recall our assumption that monitored users are a representative sample of all

users.)

5.6.3 Popularity to Visit Rate Relationship

In this section we derive the function F (x) used in Equation 5.3, which governs the relationship

between P (p, t) and the expectation of V (p, t). As done in [28] we split the relationship between the

popularity of a page and the expected number of visits into two components: (1) the relationship

between popularity and rank position, and (2) the relationship between rank position and the

number of visits. We denote these two relationships as the functions F1 and F2 respectively, and

write:

F (x) = F2(F1(x))

where the output of F1 is the rank position of a page of popularity x, and F2 is a function from that

rank to a visit rate. Our rationale for splitting F in this way is that, according to Figure 1.3, the

likelihood of a user visiting a page presented in a search result list depends primarily on the rank

position at which the page appears.

We begin with F2, the dependence of the expected number of user visits on the rank of a page

in a result list. As discussed in Chapter 4 the following relationship holds quite closely based on

analysis of AltaVista usage logs [28, 69]:

F2(x) = θ · x−3/2 (5.5)

where θ is a normalization constant, which we set as:

θ =
v∑n

i=1 i−3/2

where v is the total number of monitored user visits per unit time.

Next we turn to F1, the dependence of rank on the popularity of a page. Note that since the

awareness level of a particular page cannot be pinpointed precisely (it is expressed as a probability

5.6: ANALYTICAL MODEL 71

distribution), we express F1(x) as the expected rank position of a page of popularity x. In doing so

we compromise accuracy to some extent, since we will determine the expected number of visits by

applying F2 to the expected rank, as opposed to summing over the full distribution of rank values.

(We examine the accuracy of our analysis in Sections 5.7.2 and 5.7.3.)

Under nonrandomized ranking, the expected rank of a page of popularity x is one plus the

expected number of pages whose popularities surpass x. By Equation 5.1, page p has P (p, t) > x if

it has A(p, t) > x/Q(p). From Theorem 2 the probability that a randomly-chosen page p satis�es

this condition is:

m∑
i=1+bm·x/Q(p)c

f

(
i

m

∣∣∣∣Q(p)
)

By linearity of expectation, summing over all p ∈ P we arrive at:

F1(x) ≈ 1 +
∑
p∈P

 m∑
i=1+bm·x/Q(p)c

f

(
i

m

∣∣∣∣Q(p)
) (5.6)

(This is an approximate expression because we ignore the e�ect of ties in popularity values, and

because we neglect to discount one page of popularity x from the outer summation.)

The formula for F1 under uniform randomized ranking is rather complex, so we omit it. We focus

instead on selective randomized ranking, which is a more e�ective strategy, as we will demonstrate

shortly. Under selective randomized ranking the expected rank of a page of popularity x, when

x > 0, is given by:

F ′
1(x) ≈

 F1(x) if F1(x) < k

F1(x) + min{ r·(F1(x)−k+1)
(1−r) , z} otherwise

where F1 is as in Equation 5.6, and z denotes the expected number of pages with zero awareness,

an estimate for which can be computed without di�culty under our steady-state assumption.

The above expressions for F1(x) or F ′
1(x) each contain a circularity, because our formula for

f(a|q) (Equation 9.1) contains F (x). It appears that a closed-form solution for F (x) is di�cult to

obtain. In the absence of a closed-form expression one option is to determine F (x) via simulation.

The method we use is to solve for F (x) using an iterative procedure, as follows.

We start with a simple function for F (x), say F (x) = x, as an initial guess at the solution. We

then substitute this function into the right-hand side of the appropriate equation above to produce

72 CHAPTER 5: WEB PAGE RANKING

a new F (x) function in numerical form. We then convert the numerical F (x) function into symbolic

form by �tting a curve, and repeat until convergence occurs.2 (In each iteration we adjust the curve

slightly so as to �t the extreme points corresponding to x = 0 and x = 1 especially carefully.)

Interestingly, we found that using a quadratic curve in log-log space led to good convergence for all

parameter settings we tested, so that:

log F = α · (log x)2 + β · log x + γ

where α, β, and γ are determined using a curve �tting procedure. We later veri�ed via simulation

that across a variety of scenarios F (x) can be �t quite accurately to a quadratic curve in log-log

space.

5.7 Effect of Randomized Rank Promotion and Recom-

mended Parameter Settings

In this section we report our measurements of the impact of randomized rank promotion on search

engine quality. We begin by describing the default Web community scenario we use in Section 5.7.1.

Then we report the e�ect of randomized rank promotion on TBP and QPC in Sections 5.7.2

and 5.7.3, respectively. Lastly, in Section 5.7.4 we investigate how to balance exploration and

exploitation, and give our recommended recipe for randomized rank promotion.

5.7.1 Default Scenario

For the results we report in this chapter, the default3 Web community we use is one having n =

10, 000 pages. The remaining characteristics of our default Web community are set so as to be in

proportion to observed characteristics of the entire Web, as follows. First, we set the expected page

lifetime to l = 1.5 years (based on data from [80]). Our default Web community has u = 1000 users

making a total of vu = 1000 visits per day (based on data reported in [54], the number of Web

users is roughly one-tenth the number of pages, and an average user queries a search engine about

2Though the convergence is not guaranteed to happen, in our experiments it always did.
3We supply results for other community types in Section 5.8.

5.7: EFFECT OF RANDOMIZED RANK PROMOTION AND RECOMMENDED PARAMETER SETTINGS73

once per day). We assume that a search engine is able to monitor 10% of its users, so m = 100 and

v = 100.

As for page quality values, we had little basis for measuring the intrinsic quality distribution

of pages on the Web. As the best available approximation, we used the power-law distribution

reported for PageRank in [28], with the quality value of the highest-quality page set to 0.4. (We

chose 0.4 based on the fraction of Internet users who frequent the most popular Web portal site,

according to [99].)

5.7.2 Effect of Randomized Rank Promotion on TBP

Figure 5.3 shows popularity evolution curves derived from the awareness distribution determined

analytically for a page of quality 0.4 under three di�erent ranking methods: (1) nonrandomized

ranking, (2) randomized ranking using uniform promotion with the starting point k = 1 and the

degree of randomization r = 0.2, and (3) randomized ranking using selective promotion with k = 1

and r = 0.2. This graph shows that, not surprisingly, randomized rank promotion can improve

TBP by a large margin. More interestingly it also indicates that selective rank promotion achieves

substantially better TBP than uniform promotion. Because, for small r, there is limited opportunity

to promote pages, focusing on pages with zero awareness turns out to be more e�ective than uniform

promotion. (It is worth exploring a relaxed version of selective promotion method that focuses on

zero awareness pages as well as pages of small non-zero awareness. We leave it as future work.)

Figure 5.4 shows TBP measurements for a page of quality 0.4 in our default Web community,

for di�erent values of r (�xing k = 1). As expected, increased randomization leads to lower TBP,

especially if selective promotion is employed.

To validate our analytical model, we created a simulator that maintains an evolving ranked list

of pages (the ranking method used is con�gurable), and distributes user visits to pages according

to Equation 5.5. Our simulator keeps track of awareness and popularity values of individual pages

as they evolve over time, and creates and retires pages as dictated by our model. After a su�cient

period of time has passed to reach steady-state behavior, we take measurements. These results are

plotted in Figure 5.4, side-by-side with our analytical results. We observe a close correspondence

between our analytical model and our simulation.4

4Our analysis is only intended to be accurate for small values of r, which is why we only plot results for r < 0.2.
From a practical standpoint only small values of r are of interest.

74 CHAPTER 5: WEB PAGE RANKING

0 100 200 300 400 500
Time (days)

0.0

0.1

0.2

0.3

0.4

Po
pu

la
ri

ty
 No randomization

Uniform randomization
Selective randomization

Figure 5.3: Popularity evolution of a page of quality Q = 0.4 under nonrandomized, uniform
randomized, and selective randomized ranking.

0.00 0.05 0.10 0.15 0.20
Degree of randomization (r)

0

100

200

300

400

500

T
im

e
to

 b
ec

om
e

po
pu

la
r

(T
B

P)
 (

da
ys

)

Selective (analysis)
Selective (simulation)
Uniform (analysis)
Uniform (simulation)

Figure 5.4: Time to become popular (TBP) for a page of quality 0.4 in default Web community as
degree of randomization (r) is varied.

5.7.3 Effect of Randomized Rank Promotion on QPC

We now turn to quality-per-click (QPC). Throughout this chapter (except in Section 5.9) we nor-

malize all QPC measurements such that QPC = 1.0 corresponds to the theoretical upper bound

5.7: EFFECT OF RANDOMIZED RANK PROMOTION AND RECOMMENDED PARAMETER SETTINGS75

0.00 0.05 0.10 0.15 0.20
Degree of randomization (r)

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y-

pe
r-

cl
ic

k
(Q

PC
)

Selective (analysis)
Selective (simulation)
Uniform (analysis)
Uniform (simulation)

Figure 5.5: Quality-per-click (QPC) for default Web community as degree of randomization (r) is
varied.

achieved by ranking pages in descending order of quality. The graph in Figure 5.5 plots normal-

ized QPC as we vary the promotion rule and the degree of randomization r (holding k �xed at

k = 1), under our default Web community characteristics of Section 5.7.1. For a community with

these characteristics, a moderate dose of randomized rank promotion increases QPC substantially,

especially under selective promotion.

5.7.4 Balancing Exploration, Exploitation, and Reality

We have established a strong case that selective rank promotion is superior to uniform promotion.

In this section we investigate how to set the other two randomized rank promotion parameters, k

and r, so as to balance exploration and exploitation and achieve high QPC. For this purpose we

prefer to rely on simulation, as opposed to analysis, for maximum accuracy.

The graph in Figure 5.6 plots normalized QPC as we vary both k and r, under our default

scenario (Section 5.7.1). As k grows larger, a higher r value is needed to achieve high QPC.

Intuitively, as the starting point for rank promotion becomes lower in the ranked list (larger k), a

denser concentration of promoted pages (larger r) is required to ensure that new high-quality pages

are discovered by users.

For search engines, we take the view that it is undesirable to include a noticeable amount of

randomization in ranking, regardless of the starting point k. Based on Figure 5.6, using only 10%

76 CHAPTER 5: WEB PAGE RANKING

0.0 0.2 0.4 0.6 0.8 1.0
Degree of randomization (r)

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y-

pe
r-

cl
ic

k
(Q

PC
)

k=1
k=2
k=6
k=11
k=21

Figure 5.6: Qualitiy-per-click (QPC) for default Web community under selective randomized rank
promotion, as degree of randomization (r) and starting point (k) are varied.

randomization (r = 0.1) appears su�cient to achieve most of the bene�t of rank promotion, as long

as k is kept small (e.g., k = 1 or 2).5 Under 10% randomization, roughly one page in every group

of ten query results is a new, untested page, as opposed to an established page. We do not believe

most users are likely to notice this e�ect, given the amount of noise normally present in search

engine results.

A possible exception is for the topmost query result, which users often expect to be consistent

if they issue the same query multiple times. Plus, for certain queries users expect to see a single,

�correct,� answer in the top rank position (e.g., most users would expect the query �Carnegie Mellon�

to return a link to the Carnegie Mellon University home page at position 1), and quite a bit of e�ort

goes into ensuring that search engines return that result at the topmost rank position. That is why

we include the k = 2 parameter setting, which ensures that the top-ranked search result is never

perturbed.

Recommendation: Introduce 10% randomization starting at rank position 1 or 2, and exclusively

target zero-awareness pages for random rank promotion.

5Note that r = 0.2 performs very well in Figure 5.6 but we prefer r = 0.1 over it so that the e�ect of randomization
is small and not noticed by users.

5.8: ROBUSTNESS ACROSS DIFFERENT COMMUNITY TYPES 77

5.8 Robustness Across Different Community Types

In this section we investigate the robustness of our recommended ranking method (selective promo-

tion rule, r = 0.1, k ∈ {1, 2}) as we vary the characteristics of our testbed Web community. Our

objectives are to demonstrate: (1) that if we consider a wide range of community types, amortized

search result quality is never harmed by our randomized rank promotion scheme, and (2) that our

method improves result quality substantially in most cases, compared with traditional deterministic

ranking. In this section we rely on simulation rather than analysis to ensure maximum accuracy.

5.8.1 Influence of Community Size

Here we vary the number of pages in the community, n, while holding the ratio of users to pages �xed

at u/n = 10%, �xing the fraction of monitored users as m/u = 10%, and �xing the number of daily

page visits per user at vu/u = v/m = 1. Figure 5.7 shows the result, with community size n plotted

on the x-axis on a logarithmic scale. The y-axis plots normalized QPC for three di�erent ranking

methods: nonrandomized, selective randomized with r = 0.1 and k = 1, and selective randomized

with r = 0.1 and k = 2. With nonrandomized ranking, QPC declines as community size increases,

because it becomes more di�cult for new high-quality pages to overcome the entrenchment e�ect.

Under randomized rank promotion, on the other hand, due to rank promotion QPC remains high

and fairly steady across a range of community sizes.

5.8.2 Influence of Page Lifetime

Figure 5.8 shows QPC as we vary the expected page lifetime l while keeping all other community

characteristics �xed. (Recall that in our model the number of pages in the community remains

constant across time, and when a page is retired a new one of equal quality but zero awareness

takes its place.) The QPC curve for nonrandomized ranking con�rms our intuition: when there is

less churn in the set of pages in the community (large l), QPC is penalized less by the entrenchment

e�ect. More interestingly, the margin of improvement in QPC over nonrandomized ranking due to

introducing randomness is greater when pages tend to live longer. The reason is that with a low

page creation rate the promotion pool can be kept small. Consequently new pages bene�t from

larger and more frequent rank boosts, on the whole, helping the high-quality ones get discovered

quickly.

78 CHAPTER 5: WEB PAGE RANKING

1E+03 1E+04 1E+05 1E+06
Community size (n)

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y-

pe
r-

cl
ic

k
(Q

PC
)

No randomization
Selective randomization (k=1)
Selective randomization (k=2)

Figure 5.7: In�uence of community size.

0.5 1.5 2.5 3.5 4.5
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y-

pe
r-

cl
ic

k
(Q

PC
)

No randomization
Selective randomization (k=1)
Selective randomization (k=2)

Expected page lifetime (l) (years)

Figure 5.8: In�uence of page lifetime.

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y-

pe
r-

cl
ic

k
(Q

PC
)

No randomization
Selective randomization (k=1)
Selective randomization (k=2)

Visit rate (v) (visits/day)u

1E+01 1E+03 1E+05 1E+07

Figure 5.9: In�uence of visit rate.

5.8.3 Influence of Visit Rate

The in�uence of the aggregate user visit rate on QPC is plotted in Figure 5.9. Visit rate is plotted

on the x-axis on a logarithmic scale, and QPC is plotted on the y-axis. Here, we hold the number of

pages �xed at our default value of n = 10, 000 and use our default expected lifetime value of l = 1.5

years. We vary the total number of user visits per day vu while holding the ratio of daily page visits

to users �xed at vu/u = 1 and, as always, �xing the fraction of monitored users as m/u = 10%.

5.8: ROBUSTNESS ACROSS DIFFERENT COMMUNITY TYPES 79

1E+02 1E+03 1E+04 1E+05 1E+06
Number of users (u)

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y-

pe
r-

cl
ic

k
(Q

PC
)

No randomization
Selective randomization (k=1)
Selective randomization (k=2)

Figure 5.10: In�uence of size of user population.

From Figure 5.9 we see �rst of all that, not surprisingly, popularity-based ranking fundamentally

fails if very few pages are visited by users. Second, if the number of visits is very large (1000 visits

per day to an average page), then there is no need for randomization in ranking (although it does

not hurt much). For visit rates within an order of magnitude on either side of 0.1 · n = 1000, which

matches the average visit rate of search engines in general when n is scaled to the size of the entire

Web,6 there is signi�cant bene�t to using randomized rank promotion.

5.8.4 Influence of Size of User Population

Lastly we study the a�ect of varying the number of users in the community u, while holding all

other parameters �xed: n = 10, 000, l = 1.5 years, vu = 1000 visits per day, and m/u = 10%. Note

that we keep the total number of visits per day �xed, but vary the number of users making those

visits. The idea is to compare communities in which most page visits come from a core group of

fairly active users to ones receiving a large number of occasional visitors. Figure 5.10 shows the

result, with the number of users u plotted on the x-axis on a logarithmic scale, and QPC plotted

on the y-axis. All three ranking methods perform somewhat worse when the pool of users is large,

although the performance ratios remain about the same. The reason for this trend is that with a

larger user pool, a stray visit to a new high-quality page provides less traction in terms of overall

awareness.

6According to our rough estimate based on data from [54].

80 CHAPTER 5: WEB PAGE RANKING

5.9 Mixed Surfing and Searching

The model we have explored thus far assumes that users make visit to pages only by querying a

search engine. While a very large number of surf trails start from search engines and are very

short, nonnegligible sur�ng may still be occurring without support from search engines. We use the

following model for mixed sur�ng and searching:

• While performing random sur�ng [81], users traverse a link to some neighbor with probability

(1 − c), and jump to a random page with probability c. The constant c is known as the

teleportation probability, typically set to 0.15 [60].

• While browsing the Web, users perform random sur�ng with probability x. With probability

(1−x) users query a search engine and browse among results presented in the form of a ranked

list.

We still assume that there is only one search engine that every user uses for querying. However,

this assumption does not signi�cantly restrict the applicability of our model. For our purposes the

e�ect of multiple search engines that present the same ranked list for a query is equivalent to a

single search engine that presents the same ranked list and gets a user tra�c equal to the sum of

the user tra�c of the multiple search engines.

Assuming that page popularity is measured using PageRank, under our mixed browsing model

the expected visit rate of a page p at time t is given by:

V (p, t) = (1− x) · F (P (p, t))

+ x ·
((

(1− c) · P (p, t)∑
p′∈P P (p′, t)

+ c · 1
n

))

Figure 5.11 shows absolute QPC values for di�erent values of x (based on simulation). Unlike

with other graphs in this chapter, in this graph we plot the absolute value of QPC, because the

ideal QPC value varies with the extent of random sur�ng (x). Recall that x = 0 denotes pure

search engine based sur�ng, while x = 1 denotes pure random sur�ng. Observe that for all values

of x, randomized rank promotion performs better than (or as well as) nonrandomized ranking.

It is interesting to observe that when x is small, random sur�ng helps nonrandomized ranking,

since random sur�ng increases the chances of exploring unpopular pages (due to the teleportation

probability). However, beyond a certain extent, it does not help as much as it hurts (due to the

5.10: REAL-WORLD EFFECTIVENESS OF RANK PROMOTION 81

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of random surfing (x)

0.00

0.05

0.10

0.15

0.20

A
bs

ol
ut

e
qu

al
ity

-p
er

-c
lic

k
(Q

PC
)

No randomization
Selective randomization (k=1)
Selective randomization (k=2)

Figure 5.11: In�uence of the extent of random sur�ng.

exploration/exploitation tradeo� as was the case for randomized rank promotion).

5.10 Real-World Effectiveness of Rank Promotion

In this section we describe a real-world study we conducted to test the e�ectiveness of rank promo-

tion.

5.10.1 Experimental Procedure

For this experiment we created our own small Web community consisting of several thousand Web

pages containing entertainment-oriented content, and nearly one thousand volunteer users who had

no prior knowledge of this project.

Pages: We focused on entertainment because we felt it would be relatively easy to attract a large

number of users. The material we started with consisted of a large number of jokes gathered from

online databases. We decided to use �funniness� as a surrogate for quality, since users are generally

willing to provide their opinion about how funny something is. We wanted the funniness distribution

of our jokes to mimic the quality distribution of pages on the Web. As far as we know PageRank

is the best available estimate of the quality distribution of Web pages, so we downsampled our

82 CHAPTER 5: WEB PAGE RANKING

initial collection of jokes and quotations to match the PageRank distribution reported in [28]. To

determine the funniness of our jokes for this purpose we used numerical user ratings provided by

the source databases. Since most Web pages have very low PageRank, we needed a large number

of nonfunny items to match the distribution, so we chose to supplement jokes with quotations. We

obtained our quotations from sites o�ering insightful quotations not intended to be humorous. Each

joke and quotation was converted into a single Web page on our site.

Overall site: The main page of the Web site we set up consisted of an ordered list of links to

individual joke/quotation pages, in groups of ten at a time, as is typical in search engine responses.

Text at the top stated that the jokes and quotations were presented in descending order of funniness,

as rated by users of the site. Users had the option to rate the items: we equipped each joke/quotation

page with three buttons, labeled �funny,� �neutral,� and �not funny.� To minimize the possibility of

voter fraud, once a user had rated an item the buttons were removed from that item, and remained

absent upon all subsequent visits by the same user to the same page.

Users: We advertised our site daily over a period of 45 days, and encouraged visitors to rate

whichever jokes and quotations they decided to view. Overall we had 962 participants. Each person

who visited the site for the �rst time was assigned at random into one of two user groups (we used

cookies to ensure consistent group membership across multiple visits, assuming few people would

visit our site from multiple computers): one group for which rank promotion was used, and one for

which rank promotion was not used. For the latter group, items were presented in descending order

of current popularity, measured as the number of funny votes submitted by members of the group.7

For the other group of users, items were also presented in descending order of popularity among

members of the group, except that all items that had not yet been viewed by any user were inserted

in a random order starting at rank position 21 (This variant corresponds to selective promotion

with k = 21 and r = 1.).8 A new random order for these zero-awareness items was chosen for each

unique user. Users were not informed that rank promotion was being employed.

Content rotation: For each user group we kept the number of accessible joke/quotation items

�xed at 1000 throughout the duration of our 45-day experiment. However, each item had a �nite

lifetime of less than 45 days. Lifetimes for the initial 1000 items were assigned uniformly at random

7Due to the relatively small scale of our experiment there were frequent ties in popularity values. We chose to
break ties based on age, with older pages receiving better rank positions, to simulate a less discretized situation.

8We chose this setting since it seemed to work the best in our simulations for the characteristics of the joke scenario
that we studied (e.g., number of users, number of jokes, lifetime of jokes).

5.10: REAL-WORLD EFFECTIVENESS OF RANK PROMOTION 83

without rank
	promotion

with rank
	promotion

0.00

0.10

0.20

0.30

0.40

R
at

io
 o

f
fu

nn
y

vo
te

s

0.00

0.10

0.20

0.30

0.40

R
at

io
 o

f
fu

nn
y

vo
te

s

Figure 5.12: Improvement in overall quality due to rank promotion in live study.

from [1, 30], to simulation a steady-state situation in which each item had a real lifetime of 30 days.

When a particular item expired we replaced it with another item of the same quality, and set its

lifetime to 30 days and its initial popularity to zero. At all times we used the same joke/quotation

items for both user groups.

5.10.2 Results

First, to verify that the subjects of our experiment behaved similarly to users of a search engine,

we measured the relationship between the rank of an item and the number of user visits it received.

We discovered a power-law with an exponent remarkably close to −3/2, which is precisely the

relationship between rank and number of visits that has been measured from usage logs of the

AltaVista search engine (see Section 5.6.3 for details).

We then proceeded to assess the impact of rank promotion. For this purpose we wanted to

analyze a steady-state scenario, so we only measured the outcome of the �nal 15 days of our

experiment (by then all the original items had expired and been replaced). For each user group we

measured the ratio of funny votes to total votes during this period. Figure 5.12 shows the result.

The ratio achieved using rank promotion was approximately 60% larger than that obtained using

strict ranking by popularity.

84 CHAPTER 5: WEB PAGE RANKING

5.11 Chapter Summary

In this chapter we studied the problem of ranking result pages. The objective is to rank pages in

decreasing order of quality while the page quality values are not known beforehand. The standard

method of ranking search results deterministically according to popularity has a signi�cant �aw:

high-quality Web pages that happen to be new are drastically undervalued. To address this prob-

lem we proposed our randomized ranking scheme of promoting unexplored pages at random rank

positions in the result list. We showed through extensive simulation of a wide variety of Web com-

munity types that our randomized ranking scheme (using just 10% randomization) consistently leads

to much higher-quality search results compared with strict deterministic ranking. We also presented

results of a real-world study which demonstrated the e�ectiveness of rank promotion. We developed

new analytical models of Web page popularity evolution under deterministic and randomized search

result ranking, and introduced formal metrics by which to evaluate ranking methods.

Chapter 6

Advertisement Ranking

Search engines display relevant advertisements along with relevant pages, as shown in Figure 1.2. It

serves two purposes: (a) for search engines it acts as a major source of revenue, and (b) for users it

brings relevant advertisements for commercial products/services, especially useful for queries with

�commercial intent.� In the previous chapter we studied how to rank pages. In this chapter we

focus on the presentation of advertisements.

6.1 Problem Formulation

Successful advertisement placement relies on knowing the appeal or �clickability� of advertisements.

The main di�culty is that the appeal of new advertisements that have not yet been �vetted� by

users can be di�cult to estimate. In this chapter we study the problem of placing advertisements

to maximize a search engine's revenue, in the presence of uncertainty about appeal.

Following [74], we formulate the problem of selecting advertisements to present as illustrated in

Figure 6.1. There are m advertisers A1, A2 . . . Am who wish to advertise on a search engine. The

search engine runs a large auction where each advertiser submits its bids to the search engine for

the query phrases in which it is interested. Advertiser Ai submits advertisement ai,j to target query

phrase Qj , and promises to pay bi,j amount of money for each click on this advertisement, where

bi,j is Ai's bid for advertisement ai,j . Each ad ai,j has an associated click-through rate (CTR) ci,j

which denotes the probability of a user to click on advertisement ai,j given that the advertisement

85

86 CHAPTER 6: ADVERTISEMENT RANKING

was displayed to the user for query phrase Qj . The CTRs of ads are not known to the search engine

beforehand.1

Advertiser Ai can also specify a daily budget (di) that is the total amount of money it is willing

to pay for the clicks on its advertisements in a day. Given a user search query on phrase Qj ,

the search engine selects a constant number C ≥ 1 of advertisements from the candidate set of

advertisements {a∗,j}, targeted to Qj . The objective in selecting advertisements is to maximize the

search engine's total revenue. The arrival sequence of user queries is not known in advance. Hence,

we have the following optimization problem:

• Objective: Maximize the search engine's advertising revenue (i.e., sum of ci,j ·bi,j for displayed

ads while respecting advertisers' budget constraints).

• Constraint: Select C or fewer ads to display for each query.

• Uncertainty: Click-through rates of ads (i.e., ci,j values) are unknown.

For now we assume that each day a new set of advertisements is given to the search engine and

the set remains �xed through out the day; we drop both of these assumptions later.

We show the space of problem variants (along with the best known advertisement policies) in

Figure 6.2. The o�ine problem, i.e., when CTRs are known, and the problem when CTR is equal

to 1 for all ads have been studied before. For the sake of completeness we summarize the results

here. GREEDY refers to selection of advertisements according to expected revenue (i.e., ci,j · bi,j).

In Cells I and III GREEDY performs as well as the optimal policy, where the optimal policy also

knows the arrival sequence of queries in advance. We write �ratio=1� in Figure 6.2 to indicate that

GREEDY has the competitive ratio of 1. For Cells II and IV the greedy policy is not optimal, but

is nevertheless 1/2 competitive. An alternative policy for Cell II was given in [74], which we refer

to as MSVV; it achieves a competitive ratio of 1− 1/e.

6.2 Overview of Our Approach

In our work we give the �rst policies for the online problem (i.e., Cells V and VI) where we

must choose which advertisements to display while simultaneously estimating click-through rates of

1We assume the CTR of an ad to be independent of its placement in the displayed page.

6.3: CHAPTER OUTLINE 87

Budgets

a

A 2

A 3

A 4

1,3a

5,4a

5,5a

2,1a

3,2a

4,4a

3,4a

A 1

A 5

d1

d2

d3

d4

d5

Q
1

Q
2

Q
3

Q
4

Q
5

QueryAdsAdvertisers
phrases

1,1

Figure 6.1: Advertiser and query model.

VI

constraints

I III V

IVII

general CTR, general CTR,

no budget
constraints

GREEDYMSVV

ratio=1−1/e ratio=1/2

budget

GREEDY GREEDY

ratio=1ratio=1

CTR known CTR unknown
CTR = 1
for all ads

this work

this work

Figure 6.2: Problem variants.

advertisements. The main issue we face while addressing Cells V and VI is to balance the explo-

ration/exploitation tradeo�. To maximize short-term revenue, the search engine should exploit its

current, imperfect CTR estimates by displaying advertisements whose estimated CTRs are large.

On the other hand, to maximize long-term revenue, the search engine needs to explore, i.e., identify

which advertisements have the largest CTRs. This kind of exploration entails displaying adver-

tisements whose current CTR estimates are of low con�dence, which inevitably leads to displaying

some low-CTR ads in the short-term. This kind of tradeo� between exploration and exploitation

shows up often in practice, e.g., in clinical trials, and has been extensively studied in the context

of the multi-armed bandit problem [12]. We draw upon and extend the existing bandit literature to

solve the advertisement problem in the case of unknown CTR.

6.3 Chapter Outline

In Section 6.5 we show that the unbudgeted variant of the problem (Cell V in Figure 6.2) is an

instance of the multi-armed bandit problem. Then, in Section 6.6 we introduce a new kind of

bandit problem that we termed the budgeted multi-armed multi-bandit problem (BMMP), and show

that the budgeted unknown-CTR advertisement problem (Cell VI) is an instance of BMMP. We

propose policies for BMMP and give performance bounds. We evaluate our policies empirically over

real-world data in Section 6.7. Also, in Section 6.8 we show how to extend our policies to address

various practical considerations, e.g., exploiting any similarity or prior information available about

the CTRs of ads, and permitting advertisers to submit and revoke advertisements at any time, not

88 CHAPTER 6: ADVERTISEMENT RANKING

just at day boundaries.

6.4 Related Work

We have already discussed the work of [74], which addresses the advertisement problem under the

assumption that CTRs are known. There has not been much published work on estimating CTRs.

Reference [72] discusses how contextual information such as user demographic or ad topic can be

used to estimate CTRs, and makes connections to the recommender and bandit problems, but stops

short of presenting technical solutions. Some methods for estimating CTRs are proposed in [56]

with the focus of thwarting click fraud.

Reference [2] studies how to maximize user clicks on banner ads. The key problem addressed in

[2] is to satisfy the contracts made with the advertisers in terms of the minimum guaranteed number

of impressions (as opposed to the budget constraints in our problem). Reference [94] looks at the

advertisement problem from an advertiser's point of view, and gives an algorithm for identifying

the most pro�table set of keywords for the advertiser.

6.5 Unbudgeted Unknown-CTR Advertisement Problem

In this section we address Cell V of Figure 6.2, where click-through rates are initially unknown and

budget constraints are absent (i.e., di = ∞ for all advertisers Ai). Our unbudgeted problem is an

instance of the multi-armed bandit problem [12], which is the following: we have K arms where

each arm has an associated reward and payo� probability. The payo� probability is not known to

us while the reward may or may not be known (both versions of the bandit problem exist). With

each invocation we activate exactly C ≤ K arms.2 Each activated arm then yields the associated

reward with its payo� probability and nothing with the remaining probability. The objective is to

determine a policy for activating the arms so as to maximize the total reward over some number of

invocations.

To solve the unbudgeted unknown-CTR advertisement problem, we create a multi-armed bandit

problem instance for each query phrase Q, where ads targeted for the query phrase are the arms,

2The conventional multi-armed bandit problem is de�ned for C = 1. We generalize it to any C ≥ 1 in this work.

6.5: UNBUDGETED UNKNOWN-CTR ADVERTISEMENT PROBLEM 89

bid values are the rewards and CTRs are the payo� probabilities of the bandit instance. Since there

are no budget constraints, we can treat each query phrase independently and solve each bandit

instance in isolation. 3 The number of invocations for a bandit instance is not known in advance

because the number of queries of phrase Q in a given day is not known in advance.

A variety of policies have been proposed for the bandit problem, e.g., [3, 6, 68], any of which can

be applied to our unbudgeted advertisement problem. The policies proposed in [6] are particularly

attractive because they have a known performance bound for any number of invocations not known

in advance (in our context the number of queries is not known a priori). In the case of C = 1, the

policies of [6] make O(ln n) number of mistakes, on expectation, in n invocations (which is also the

asymptotic lower bound on the number of mistakes [68]).4 A mistake occurs when a suboptimal

arm is chosen by a policy (the optimal arm is the one with the highest expected reward).

We consider a speci�c policy from [6] called UCB and apply it to our problem (other policies from

[6] can also be used). UCB is proposed under a slightly di�erent reward model; we adapt it to our

context to produce the following policy that we call MIX (for mixing exploration with exploitation).

We prove a performance bound of O(ln n) mistakes for MIX for any C ≥ 1 in Appendix 9.4.

Policy MIX :

Each time a query for phrase Qj arrives:

1. Display the C ads targeted for Qj that have the highest priority. The priority Pi,j of ad ai,j is

a function of its current CTR estimate (ĉi,j), its bid value (bi,j), the number of times it has

been displayed so far (ni,j), and the number of times phrase Qj has been queried so far in the

day (nj). Formally, priority Pi,j is de�ned as:

Pi,j =


(
ĉi,j +

√
2 ln nj

ni,j

)
· bi,j if ni,j > 0

∞ otherwise

2. Monitor the clicks made by users and update the CTR estimates ĉi,j accordingly. ĉi,j is the

average click-through rate observed so far, i.e., the number of times ad ai,j has been clicked on

divided by the total number of times it has been displayed.

Policy MIX manages the exploration/exploitation tradeo� in the following way. The priority

function has two factors: an exploration factor
(√2 ln nj

ni,j

)
that diminishes with time, and an ex-

3We assume CTRs to be independent of one another. Also, we ignore the latency involved in obtaining user clicks.
4The constant in O(ln n) depends on the payo� probabilities and rewards values of the bandit arms.

90 CHAPTER 6: ADVERTISEMENT RANKING

ploitation factor (ĉi,j). Since ĉi,j can be estimated only when ni,j ≥ 1, the priority value is set to

∞ for an ad which has never been displayed before.

Importantly, the MIX policy is practical to implement because it can be evaluated e�ciently

using a single pass over the ads targeted for a query phrase. Furthermore, it incurs minimal storage

overhead because it keeps only three numbers (ĉi,j , ni,j and bi,j) with each ad and one number (nj)

with each query phrase.

6.6 Budgeted Unknown-CTR Advertisement Problem

We now turn to the more challenging case in which advertisers can specify daily budgets (Cell VI

of Figure 6.2). Recall from Section 6.5 that in the absence of budget constraints, we were able

to treat the bandit instance created for a query phrase independent of the other bandit instances.

However, budget constraints create dependencies between query phrases targeted by an advertiser.

To model this situation, we introduce a new kind of bandit problem that we call Budgeted Multi-

armedMulti-bandit Problem (BMMP), in which multiple bandit instances are run in parallel under

overarching budget constraints. We derive generic policies for BMMP and give performance bounds.

6.6.1 Budgeted Multi-armed Multi-bandit Problem

BMMP consists of a �nite set of multi-armed bandit instances, B = {B1, B2 . . . B|B|}. Each bandit

instance Bi has a �nite number of arms and associated rewards and payo� probabilities as described

in Section 6.5. In BMMP each arm also has an associated type. Each type Ti ∈ T has budget

di ∈ [0,∞] which speci�es the maximum amount of reward that can be generated by activating all

the arms of that type. Once the speci�ed budget is reached for a type, the corresponding arms can

still be activated but no further reward is earned.

With each invocation of the bandit system, one bandit instance from B is invoked; the policy has

no control over which bandit instance is invoked. Then the policy activates C arms of the invoked

bandit instance, and the activated arms generate some (possibly zero) total reward.

It is easy to see that the budgeted unknown-CTR advertisement problem is an instance of

BMMP. Each query phrase acts as a bandit instance and the ads targeted for it act as bandit

arms, as described in Section 6.5. Each advertiser de�nes a unique type of arms and gives a budget

6.6: BUDGETED UNKNOWN-CTR ADVERTISEMENT PROBLEM 91

constraint for that type; all ads submitted by an advertiser belong to the type de�ned by it. When

a query is submitted by a user, the corresponding bandit instance is invoked.

We now show how to derive a policy for BMMP given as input a policy POL for the regular

multi-armed bandit problem such as one of the policies from [6]. The derived policy, denoted by

BPOL (Budget-aware POL), is as follows:

• Run |B| instances of POL in parallel, denoted POL1,POL2, . . . POL|B|.

• Whenever bandit instance Bi is invoked:

1. Discard any arm(s) of Bi whose type's budget is newly depleted, i.e., has become depleted

since the last invocation of Bi.

2. If one or more arms of Bi was discarded during step 1, restart POLi.

3. Let POLi decide which of the remaining arms of Bi to activate.

Observe that in the second step of BPOL, when POL is restarted, POL loses any state it has

built up, including any knowledge gained about the payo� probabilities of bandit arms. Surpris-

ingly, despite this seemingly imprudent behavior, we can still derive a good performance bound for

BPOL, provided that POL has certain properties, as we discuss in the next section. In practice,

since most bandit policies can take prior information about the payo� probabilities as input, when

restarting POL we can supply the previous payo� probability estimates as the prior (as done in our

experiments).

6.6.2 Performance Bound for BMMP Policies

Let S denote the sequence of bandit instances that are invoked, i.e., S = {S(1), S(2) . . . S(N)}
where S(n) denotes the index of the bandit instance invoked at the nth invocation. We compare

the performance of BPOL with that of the optimal policy, denoted by OPT, where OPT has advance

knowledge of S and the exact payo� probabilities of all bandit instances.

We claim that bpol(N) ≥ opt(N)/2 − O(f(N)) for any N , where bpol(N) and opt(N) denote

the total expected reward obtained after N invocations by BPOL and OPT, respectively, and f(n)

denotes the expected number of mistakes made by POL after n invocations of the the regular multi-

armed bandit problem (for UCB, f(n) is O(ln n) [6]). Our complete proof is rather involved. Here

we give a high-level outline of the proof (the complete proof is given in Appendix 9.3). For simplicity

we focus on the C = 1 case; C ≥ 1 is a simple extension thereof.

92 CHAPTER 6: ADVERTISEMENT RANKING

Since bandit arms generate rewards stochastically, it is not clear how we should compare BPOL

and OPT. For example, even if BPOL and OPT behave in exactly the same way (activate the same

arm on each bandit invocation), we cannot guarantee that both will have the same total reward in

the end. To enable meaningful comparison, we de�ne a payo� instance, denoted by I, such that

I(i, n) denotes the reward generated by arm i of bandit instance S(n) for invocation n in payo�

instance I. The outcome of running BPOL or OPT on a given payo� instance is deterministic

because the rewards are �xed in the payo� instance. Hence, we can compare BPOL and OPT on per

payo� instance basis. Since each payo� instance arises with a certain probability, denoted as P(I),

by taking expectation over all possible payo� instances of execution we can compare the expected

performance of BPOL and OPT.

Let us consider invocation n in payo� instance I. Let B(I, n) and O(I, n) denote the arms of

bandit instance S(n) activated under BPOL and OPT respectively. Based on the di�erent possibil-

ities that can arise, we classify invocation n into one of three categories:

• Category 1: The arm activated by OPT, O(I, n), is of smaller or equal expected reward in

comparison to the arm activated by BPOL, B(I, n). The expected reward of an arm is the

product of its payo� probability and reward.

• Category 2: Arm O(I, n) is of greater expected reward than B(I, n), but O(I, n) is not

available for BPOL to activate at invocation n due to budget restrictions.

• Category 3: Arm O(I, n) is of greater expected reward than B(I, n) and both arms O(I, n)

and B(I, n) are available for BPOL to activate, but BPOL prefers to activate B(I, n) over

O(I, n).

Let us denote the invocations of category k (1, 2 or 3) by N k(I) for payo� instance I. Let

bpolk(N) and optk(N) denote the expected reward obtained during the invocations of category k

(1, 2 or 3) by BPOL and OPT respectively. In Appendix 9.3 we show that

bpolk(N) =
∑
I∈I

(
P(I) ·

∑
n∈N k(I)

I(B(I, n), n)
)

Similarly,

optk(N) =
∑
I∈I

(
P(I) ·

∑
n∈N k(I)

I(O(I, n), n)
)

6.6: BUDGETED UNKNOWN-CTR ADVERTISEMENT PROBLEM 93

Then for each k we bound optk(N) in terms of bpol(N). In Appendix 9.3 we provide proof of

each of the following bounds:

Lemma 3 opt1(N) ≤ bpol1(N).

Lemma 4 opt2(N) ≤ bpol(N) + (|T | · rmax), where |T | denotes the number of arm types and rmax

denotes the maximum reward.

Lemma 5 opt3(N) = O(f(N)).

From the above bounds we obtain our overall claim:

Theorem 3 bpol(N) ≥ opt(N)/2−O(f(N)), where bpol(N) and opt(N) denote the total expected

reward obtained under BPOL and OPT respectively.

Proof:

opt(N)

= opt1(N) + opt2(N) + opt3(N)

≤ bpol1(N) + bpol(N) +
(
|T | · rmax

)
+ O(f(N))

≤ 2 · bpol(N) + O(f(N))

Hence, bpol(N) ≥ opt(N)/2−O(f(N)).

Next we use our generic BPOL framework to derive a policy for the budgeted unknown-CTR

advertisement problem.

6.6.3 Policy BMIX and its Variants

We supply MIX (Section 6.5) as input to our BPOL framework, and obtain BMIX as the output.

Policy BMIX operates as follows:

• Each time a query for phrase Qj arrives:

1. For ads whose advertisers have not depleted their budgets yet, compute the priorities as

de�ned in Policy MIX, and display the C ads of highest priority.

94 CHAPTER 6: ADVERTISEMENT RANKING

2. Update the CTR estimates (ĉi,j) of the displayed ads by monitoring user clicks.

Note that it is not necessary to restart the MIX instance for Qj when an advertiser's budget is

depleted as done in the generic BPOL (Section 6.6.1). The reason is that MIX maintains state (i.e.,

ni,j , ĉi,j 's) on a per-ad basis, so it can continue from where it left o� if some ads are removed from

consideration �in-�ight�.

In Appendix 9.4 we show that for MIX, f(n) is O(ln n) for any C ≥ 1. Hence, using our

general result of Section 6.6.2, we know that the average revenue generated by BMIX is at least

opt(N)/2 − O(ln N) for any C ≥ 1 where opt(N) denotes the optimal revenue generated from

answering N user queries.

So far, for modeling purposes, we have assumed the search engine receives an entirely new batch

of advertisements each day. In reality, ads may persist over multiple days. With BMIX, we can

carry forward an ad's CTR estimate (ĉi,j) and display count (ni,j) from day to day until an ad is

revoked, to avoid having to re-learn CTR's from scratch each day. Of course the daily budgets reset

daily, regardless of how long each ad persists. In fact, with a little care we can permit ads to be

submitted and revoked at arbitrary times (not just at day boundaries). We describe this extension,

as well as how we can incorporate and leverage prior beliefs about CTR's, in Section 6.8.

Next we propose some variants of BMIX. We do not derive a theoretical performance bound for

these variants, however we expect them to perform well in practice as demonstrated in Section 4.7

1. Varying the Exploration Factor. Internally, BMIX runs instances of MIX to select which

ads to display. As mentioned in Section 6.5, the priority function of MIX consists of an exploration

factor
(√2 ln nj

ni,j

)
and an exploitation factor (ci,j). In [6] it was shown empirically that the following

heuristical exploitation factor performs well, despite the absence of a known performance guarantee:√
ln nj

ni,j
·min

{1
4
, Vi,j(ni,j , nj)

}
where Vi,j(ni,j , nj) =

(
ĉi,j · (1− ĉi,j)

)
+

√
2 ln nj

ni,j

Substituting this expression in place of
√

2 ln nj

ni,j
in the priority function of BMIX gives us a new

(heuristical) policy we call BMIX-E.

2. Budget Throttling. It is shown in [74] that in the presence of budget constraints, it is

bene�cial to display the ads of an advertiser less often as the advertiser's remaining budget decreases.

6.7: EXPERIMENTS 95

In particular, they propose to multiply bids from advertiser Ai by the following discount factor :

φ(d′i) = 1− e−d′i/di

where d′i is the current remaining budget of advertiser Ai for the day and di is its total daily budget.

Following this idea we can replace bi,j by
(
φ(d′i) · bi,j

)
in the priority function of BMIX, yielding a

variant we call BMIX-T. Policy BMIX-ET refers to use of heuristics 1 and 2 together.

6.7 Experiments

From our general result of Section 6.6, we have a theoretical performance guarantee for BMIX.

In this section we study BMIX and its variants empirically. In particular, we compare them with

the greedy policy proposed for the known-CTR advertisement problem (Cells 1-IV in Figure 6.2).

GREEDY displays the C ads targeted for a query phrase that have the highest
(
ĉi,j · bi,j

)
values

among the ads whose advertisers have enough remaining budgets; to induce a minimal amount of

exploration, for an ad which has never been displayed before, GREEDY treats ĉi,j as∞ (our policies

do this as well). GREEDY is geared exclusively toward exploitation. Hence, by comparing GREEDY

with our policies, we can gauge the importance of exploration.

6.7.1 Experiment Setup

We evaluate advertisement policies by conducting simulations over real-world data. Our data set

consists of a sample of 85,000 query phrases selected at random from the Yahoo! query log for the

date of February 12, 2006. Since we have the frequency counts of these query phrases but not the

actual order, we ran the simulations multiple times with random orderings of the query instances

and report the average revenue in all our experiment results.5 The total number of query instances

is 2 million. For each query phrase we have the list of advertisers interested in it and the ads

submitted by them to Yahoo!. We also have the budget constraints of the advertisers. Roughly

60% of the advertisers in our data set impose daily budget constraints.

In our simulation, when an ad is displayed, we decide whether a click occurs by �ipping a coin

5Since we used random orderings of the query instances instead of the actual query sequence, we may have lost
some interesting structure there.

96 CHAPTER 6: ADVERTISEMENT RANKING

weighted by the true CTR of the ad. Since true CTRs are not known to us (this is the problem we

are trying to solve!), we took the following approach to assign CTRs to ads: from a larger set of

Yahoo! ads we selected those ads that have been displayed more than thousand times, and therefore

we have highly accurate CTR estimates. We regarded the distribution of these CTR estimates as

the true CTR distribution. Then for each ad ai,j in the dataset we sampled a random value from

this distribution and assigned it as CTR ci,j of the ad. (Although this method may introduce some

skew compared with the (unknown) true distribution, it is the best we could do short of serving live

ads just for the purpose of measuring CTRs 6).

We are now ready to present our results. To start with we consider a simple setting where the

set of ads is �xed and no prior information about CTR is available. We study the more general

setting in Section 6.8.

6.7.2 Exploration/Exploitation Tradeoff

We ran each of the policies for a time horizon of ten days; each policy carries over its CTR estimates

from one day to the next. Budget constraints are renewed each day. For now we �x the number of

displayed ads (C) to 1. Figure 6.3 plots the revenue generated by each policy after a given number

of days (for con�dentiality reasons we have changed the unit of revenue). All policies (including

GREEDY) estimate CTRs based on past observations, so as time passes by their estimates become

more reliable and their performance improves. Note that the exploration factor of BMIX-E causes

it to perform substantially better than that of BMIX. The budget throttling heuristic (BMIX-T and

BMIX-ET) did not make much di�erence in our experiments.

All of our proposed policies perform signi�cantly better than GREEDY, which underscores the

importance of balancing exploration and exploitation. GREEDY is geared exclusively toward ex-

ploitation, so one might expect that early on it would outperform the other policies. However, that

does not happen because GREEDY immediately �xates on ads that are not very pro�table (i.e., low

ci,j · bi,j).

Next we vary the number of ads displayed for each query (C). Figure 6.4 plots total revenue over

ten days on the y-axis, and C on the x-axis. Each policy earns more revenue when more ads are

displayed (larger C). Our policies outperform GREEDY consistently across di�erent values of C. In

6We also attempted to compute the CTRs of ads in our dataset based on their past click and display information.
However, for a non-negligible number of ads we did not have enough number of displays to compute their CTR
estimates reliably.

6.8: PRACTICAL EXTENSIONS OF BMIX 97

1 4 7 10
Time horizon (days)

0

1

2

3

4

5

T
ot

al
 r

ev
en

ue

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 6.3: Revenue generated by di�er-
ent advertisement policies (C=1).

1 4 7 10
Ads per query (C)

0

4

8

12

T
ot

al
 r

ev
en

ue

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 6.4: E�ect of C (number of ads
displayed per query).

fact, GREEDY must display almost twice as many ads as BMIX-E to generate the same amount of

revenue.

6.8 Practical Extensions of BMIX

In Section 6.6 we studied BMIX in a simple setting where the set of ads is �xed and no prior

information about CTR is available. We consider the more general setting now.

6.8.1 Exploiting Prior Information About CTRs

In practice, search engines may have some prior information available about the CTRs of ads even

before displaying them and gauging user response. The prior information may come from various

sources such as textual relevance of the ad to the query phrase or trustworthiness of the advertiser

who submitted the ad. We do not propose any method of deriving the prior information in this

paper; instead we focus on studying how the prior information, if it is available, can be used in the

advertisement policies and what di�erence it makes on their performance. For instance, it would be

interesting to �nd out whether our policies perform any better than GREEDY if the prior estimates

of CTRs are reasonably correct.

98 CHAPTER 6: ADVERTISEMENT RANKING

Modeling Prior Information: We use the following model of prior information. Suppose the true

CTR of ad ai,j is ci,j . We assume that the search engine does not know the CTR value a priori, but

has a prior distribution on the CTR. We set the form of prior distribution to a beta distribution 7

betai,j(αi,j , βi,j) where αi,j and βi,j are its parameters. We denote the mean and the variance of

betai,j by µ̂i,j and σ̂i,j .

In our experiments we synthetically generate the prior distributions of ads. While generating

these distributions, we vary two parameters: (a) the fraction of ads for which the prior distribution

is available, denoted by p, and (b) the accuracy of prior information, denoted by v. To synthesize

a prior distribution, we take the following two steps: (a) given the true CTR value ci,j we create a

beta distribution with mean ci,j and variance ci,j · (1− v) and (b) we then sample the mean of prior

distribution, µ̂i,j , from the created beta distribution and set the variance, σ̂i,j , to µ̂i,j · (1− v).

To give an intuition of how far the initial CTR estimate µ̂i,j can be from the actual CTR ci,j for

di�erent values of v, we consider an ad of CTR equal to 0.2. When v = 0.9, µ̂i,j is set between 0.1

and 0.3 with 0.58 probability. When v = 0.95, this probability increases to 0.68 and when v = 0.98,

it is almost 0.90.

Exploiting Prior Information: Next we show how we use the prior distributions of CTRs in our

advertisement policies. All our policies including GREEDY use CTR estimates (ĉi,j 's) in deciding

which ads to display. We use the prior distributions to �nd these CTR estimates. Initially, for

each ad ai,j the estimate of its CTR is the mean of its prior distribution betai,j(αi,j , βi,j), hence,

ĉi,j = µ̂i,j = αi,j

αi,j+βi,j
.

Once ad ai,j has been displayed for query phrase Qj , we condition its prior distribution using

the click observation of the ad and obtain the posterior distribution of its CTR. In particular, if the

prior distribution for ad ai,j is betai,j(αi,j , βi,j) and suppose that si,j denotes the number of times

the ad was clicked on when it was displayed for Qj while fi,j denotes number of times it was not,

then the posterior distribution of CTR is simply betai,j(αi,j + si,j , βi,j + fi,j). Given the posterior

distribution, the CTR estimate (or the mean) is
αi,j+si,j

αi,j+βi,j+si,j+fi,j
. We use this CTR estimate in all

the advertisement policies (GREEDY, BMIX and its variants).

7The event of clicking on an ad is a Bernoulli random variable. It is standard to use a beta distribution for
modeling the prior of Bernoulli event [19].

6.8: PRACTICAL EXTENSIONS OF BMIX 99

0.80 0.85 0.90 0.95 1.00

p = 0.3

0

1

2

3

4

5

6

T
ot

al
 r

ev
en

ue

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

0.80 0.85 0.90 0.95 1.00

p = 0.5

0

1

2

3

4

5

6

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

0.80 0.85 0.90 0.95 1.00

Accuracy (v)

0

1

2

3

4

5

6

T
ot

al
 r

ev
en

ue

p = 0.7

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

0.80 0.85 0.90 0.95 1.00

Accuracy (v)

0

1

2

3

4

5

6 p = 0.9

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 6.5: E�ect of the prior information.

6.8.2 Performance Comparison

For a given p and v we simulate the advertisement policies for a time horizon of ten days and

measure the total revenue generated. The results are shown in Figure 6.5, with v plotted on the

x-axis and the total revenue plotted on the y-axis. The four graphs are for di�erent values of p.

For a given value of p, if we increase v the prior estimates of CTRs (µ̂i,j) get closer to the actual

CTRs (ci,j), hence, all of the policies perform better. Similarly, if we increase p for a �xed v, the

policies get the prior distributions for more ads and they perform better. Note that unlike GREEDY

our policies are not a�ected signi�cantly by the prior distribution of CTRs. GREEDY does not have

any provision for exploration, so it relies heavily on the prior distributions. On the other hand,

our policies only use the prior distributions to start with (they keep low con�dence in the prior

100 CHAPTER 6: ADVERTISEMENT RANKING

1 4 7 10
Mean ad lifetime (days)

0.0

0.1

0.2

0.3

0.4

0.5

R
ev

en
ue

 p
er

 d
ay

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 6.6: E�ect of ad lifetime.

distributions due to small αi,j + βi,j) and once in steady state they largely rely on their own CTR

estimates.

Except when the amount (p) and accuracy (v) of prior information is exceptionally high, our

policies signi�cantly outperform GREEDY. Furthermore, our policies are never substantially worse

than GREEDY.

6.8.3 Allowing Submission/Revocation of Ads at Any Time

We now consider the scenario where advertisers can submit or revoke ads at any time. Observe that

BMIX (and its variants) seamlessly extends to this scenario. We make BMIX look at all the ads that

are available at the time a query phrase is being answered, hence any deleted ad is not considered

while every newly submitted one is.

Next we evaluate our policies empirically in this scenario. We use the following model of sub-

mission and revocation of ads: an ad stays with the search engine for a lifetime that is distributed

according to a Poisson random variable with the mean set to λ. The ad is revoked once its life is

over. When the ad is revoked, we submit a new ad with identical characteristics to the just revoked

one. Hence, the rates of submission and revocation of ads are kept the same.

Since the ads are in �ux in this experiment, we ran our experiment for a long enough time

6.8: PRACTICAL EXTENSIONS OF BMIX 101

horizon (100 days) to reach steady state. Figure 6.6 shows the result, with mean lifetime plotted

on the x-axis and the revenue generated per day in the steady state on the y-axis. As expected, as

the average lifetime of ads (λ) increases, the performance gap between our policies and GREEDY

increases. When ads tend to remain in the system for a long time, the exploration done by our

policies pays o� the most. Even for a reasonably short lifetime of ads, e.g., one day, our policies

still outperform GREEDY.

6.8.4 Exploiting Dependencies in CTRs of Ads

So far we assumed the CTRs of ads to be independent of one another. In practice, we often �nd

ads that are similar (e.g., similar textual content, same advertiser) exhibit similar CTR values. In

the presence of a large number of ads, it is important to exploit such dependencies in CTRs to

expedite the learning process. Fundamentally, we can think of this problem as the bandit problem

with dependent arms. Early work in this direction is described in [82, 83], which has two parts: (a)

studying and characterizing the dependencies between CTRs, using real-world advertisement data

and (b) proposing new bandit algorithms that make use of these dependencies.

In [82] the dependencies between CTRs of ads is modeled by partitioning them into clusters

whereby the assumption is that all the ads that belong to the same cluster are likely to have similar

CTRs. (These clusters were obtained by classifying ads into a given taxonomy using supervised

learning.) Classifying ads into clusters introduces a structure in the bandit problem which can be

exploited to reduce the learning cost. A two-level bandit policy is proposed for doing this. In the

two-level policy, �rst a bandit policy is run over clusters to pick a cluster, and then inside that

cluster another bandit policy is run to select an ad to display. Regret bounds are provided in [83].

Reference [1] studies bandit problems with dependent arms in the context of banner advertise-

ments. Unlike the clustering approach of [82, 83], they model dependencies between ads by assuming

that CTRs are a linear function of logical combinations of various ad features. They propose policies

for this bandit problem and prove regret bounds. Their policies work by maintaining a hypothesis

for the linear function relating features with CTRs and updating this hypothesis over time.

102 CHAPTER 6: ADVERTISEMENT RANKING

6.9 Chapter Summary

In this chapter we studied the problem of selecting which ads to display in order to maximize

revenue, when click-through rates are not initially known. We dealt with the underlying explo-

ration/exploitation tradeo� using multi-armed bandit theory. While we rejected this approach for

Web page ranking, in case of advertisement ranking we get immediate feedback in the form of user

clicks and thus, we could employ the conventional bandit theory.

In the process we contributed to bandit theory by proposing a new variant of the bandit problem

that we call budgeted multi-armed multi-bandit problem (BMMP). We proposed a policy for solving

BMMP and derived a performance guarantee. We gave extensions of our policy to address various

practical considerations. Extensive experiments over real ad data demonstrate substantial revenue

gains compared to a greedy strategy that has no provision for exploration.

Chapter 7

Future Work

We now discuss potential directions for future work.

7.1 Web Page Discovery

In Chapter 3 all our algorithms assume periodic complete recrawls to aid discovery of new content

but do not account for the associated cost. Ideally we would like to allocate the crawler budget

more e�ciently to simultaneously exploit already known high yield pages as well as explore other

possible pages with unknown yield.

Given a limited crawler budget, we model the tradeo� between crawling pages with known high

yield (exploitation), and pages with unknown yield to discover other high yield pages (exploration)

as an instance of the multi-armed bandit problem (described in Section 6.5). Note that designing

a reward function for a bandit policy is nontrivial in this setting, since the total reward of a set of

k arms can be less than the sum of the rewards from each arm, unlike the usual setting. However,

based on the performance of Od-Win, we design the bandit policy to converge to the set of k

arms with the highest (aggregated) outdegrees. In our case the arrival of each new page de�nes a

timestep. Each existing page is an arm of the bandit with payo� probability pi, the mean fraction

of new pages it covers. Unlike the conventional bandit formulation, k arms are not activated for

each new page arrival, but rather in batches corresponding to snapshots.

Various bandit policies [6, 44] can be used with the above formulation. Early experiments

103

104 CHAPTER 7: FUTURE WORK

indicate that the bandit policies can lead up to discovery of 64% coverage of new content, with

overhead comparable to Od-Win (Section 3.6.4).

7.2 Web Page Synchronization

In Chapter 4 we proposed our page synchronization scheme under the assumption that the scoring

function depends on the page content only. An important research direction is to extend the scheme

for scoring functions in which the score of a page depends partially on the content of other pages

(as with anchortext inclusion methods [15]). In principle such an extension can be made without

compromising the crucial ability to estimate changes in repository quality during index maintenance

operations. Another problem left as future work is to determine the most e�ective method of

forecasting the change in quality due to redownloading a page based on historical observations.

Lastly, observe that the synchronization task also faces the exploration/exploitation tradeo�

similar to the discovery task. For example, our synchronization policy redownloads pages based on

their ∆Q(p, t) estimates, which are inferred from the past redownloads of the same pages. Hence,

the policy can fall into a vicious cycle where some page are not redownloaded because their current

∆Q(p, t) estimates are poor, and since they are not redownloaded their ∆Q(p, t) estimates do not

change irrespective of their future behavior. This cycle can be avoided by designing synchroniza-

tion policies which have an explicit provision for exploring ∆Q(p, t) values, i.e., exploration-based

algorithms.

Another interesting research direction is to consider the discovery and synchronization tasks

together. We studied the discovery task under the objective of maximizing the number of newly

discovery pages, while for the synchronization task our goal was to redownload known pages so as

to maximize a user-centric metric of repository quality. Since both tasks require redownloading

of known pages and share the same crawling resources, it is natural to optimize them together,

possibly under one objective, for better usage of available resources.

7.3: WEB PAGE RANKING 105

7.3 Web Page Ranking

In Chapter 5 we proposed our randomized ranking scheme and analyzed it under a popularity

evolution model. Some other models of Web evolution have been previously proposed in [10, 14].

To strengthen the case of our randomizing approach it needs to be evaluated under these evolution

models as well (recall that performance evaluation through real-world experiments is impossible for

the reasons mentioned in Section 5.1.2).

Another direction for future work is to apply bandit models to this problem. In doing so we face

a couple of challenges. One challenge is that for link/visit-based quality metrics, search engines do

not receive immediate feedback, as discussed in Chapter 5.2, while the conventional bandit problem

assumes an immediate feedback for the action taken. For example, when a user is shown a page and

if she likes it, she does not create a link to the page right then. Instead, the link is created after a

non-trivial amount of time. The work on bandit models with delayed responses may prove helpful

here [35, 111]. In case of visit-based quality metrics (e.g., a page is considered of high quality if a

user likes it and visits it frequently afterwards) the feedback is not only delayed but is spread over

time. Moreover, such feedback is di�cult to be closely monitored by search engines. Hence, the

ranking policy also needs to be robust enough to handle missing or erroneous feedback observations.

(An example of a robust policy is our randomized policy of Section 5.5 which does not strongly rely

on such measurements.)

7.4 Advertisement Ranking

The advertisement ranking problem of Chapter 6 can also be extended in several ways. As mentioned

in Section 6.8.4, one such extension is to exploit similarity in ad attributes while inferring CTRs,

instead of estimating the CTR of each ad independently. Early work in this direction is described

in [82, 83].

Another research direction is to deal with click fraud while displaying advertisements. Click

fraud happens when fraudulent clicks are made, usually with the intent of increasing the payment of

the advertiser [56, 102, 109]. This merits studying an adversarial formulation of the advertisement

ranking problem. Also, this leads to general consideration of how to manage exploration versus

exploitation in game-theoretic scenarios.

106 CHAPTER 7: FUTURE WORK

Chapter 8

Summary

This dissertation studied information mediators which collect content and present it to users. After

discussing the design choices involved in the architecture of information mediators we focused on

the <content-shipping, pull>-based mediators, which include search engines. We discussed how

search engines work by performing the content acquisition and presentation tasks. We noted that

both these tasks pose resource-constrained optimization problems and some parameters relevant to

this problems may or may not be known leading to the o�ine and online scenarios, as shown in

Table 8.1. We began by studying content acquisition in Chapters 3-4. Content acquisition has two

aspects: discovering new content and synchronizing known content.

In Chapter 3 we focused on discovery, and studied the extent to which new pages can be

e�ciently discovered by a crawler by redownloading known pages. We formalized this problem as

an optimization problem where the unknown parameter is the bipartite graph between the old and

new pages. First we showed that the o�ine problem is NP-hard and can be approximated using

a greedy algorithm. Then we studied the online setting in which algorithms must use historical

statistics to estimate which pages are most likely to yield links to new content.

In Chapter 4 we studied synchronization, with the focus being on maximizing the quality of

the user experience. We proposed our synchronization policy for the o�ine problem in which page

redownloading tasks are scheduled in terms of their bene�t on repository quality. Then for the online

problem we showed that the bene�t of redownloading a particular page is amenable to prediction

based on measurements of the bene�t of downloading the page in the past. We devised an e�cient

method for taking these measurements and compared our page synchronization scheme against prior

schemes empirically using real Web data.

107

108 CHAPTER 8: SUMMARY

Task Objective Constraint Uncertainty

Web page dis-
covery

Maximize the number
of new pages discov-
ered

Limited crawling re-
sources

Unknown bipartite link
graph between repository
pages and new pages

Web page syn-
chronization

Maximize the repos-
itory quality (Equa-
tion 4.1)

Limited crawling re-
sources

Unknown update behavior
of repository pages

Web page
ranking

Maximize the quality
of results perceived by
users (Equation 5.2)

Limited user attention
paid to search results

Unknown quality values of
pages

Advertisement
ranking

Maximize the search
engine's advertising
revenue

Limited user attention
paid to ads

Unknown click-through
rates of ads

Table 8.1: Content acquisition and presentation tasks formulated as optimization problems with
constraints and uncertainty.

The second part of this dissertation focuses on the presentation task which involves ranking

pages and ads in response to user search queries. In Chapter 5 we studied the problem of ranking

Web pages where the unknown parameters are the page quality values. The o�ine problem, i.e.,

when page quality values are known, has a simple solution in this case: rank the pages in decreasing

order of quality. For the online problem we argued how the deterministic popularity-based ranking

scheme su�ers from the entrenchment e�ect. We proposed a randomized ranking policy to address

it, and showed through extensive simulation that our randomized ranking scheme consistently leads

to much higher-quality search results compared with strict deterministic ranking.

Finally, in Chapter 6 we studied the problem of ranking ads where the unknown parameters are

the click-through rates of ads. The o�ine problem had been studied before [74]. We studied the

online problem and dealt with the underlying exploration/exploitation tradeo� using multi-armed

bandit theory. We were able to use bandit theory because search engines get instant feedback

during advertisement ranking in the form of user clicks (while the feedback is delayed in case of

Web page ranking where link-based quality metric is primarily used). We proposed a bandit-based

advertisement policy and gave extensions of our policy to address various practical considerations.

Extensive experiments over real ad data demonstrate substantial revenue gains compared to a greedy

strategy that has no provision for exploration.

Bibliography

[1] N. Abe, A. Biermann, and P. Long. Reinforcement Learning with Immediate Rewards and

Linear Hypotheses. Algorithmica, 37(4):263�293, 2003.

[2] N. Abe and A. Nakamura. Learning to Optimally Schedule Internet Banner Advertisements.

In Proceedings of the 16th International Conference on Machine Learning, 1999.

[3] R. Agrawal. Sample Mean Based Index Policies with O(log n) Regret for the Multi-Armed

Bandit Problem. Advances in Applied Probability, 27:1054�1078, 1995.

[4] Alexa Web Search. http://www.alexa.com/.

[5] AltaVista Query Log. http://ftp.archive.org/AVLogs/.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multi-Armed Bandit

Problem. Machine Learning, 47:235�256, 2002.

[7] R. Baeza-Yates, F. Saint-Jean, and C. Castillo. Web Structure, Dynamics and Page Qual-

ity. In Proceedings of the 9th International Symposium on String Processing and Information

Retrieval, 2002.

[8] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, NY,

1999.

[9] M. Balabanovic. Exploring Versus Exploiting when Learning User Models for Text Recom-

mendation. User Modeling and User-Adapted Interaction, 8(1-2):71�102, 1998.

[10] A.-L. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science, 286:509�

512, 1999.

109

http://www.alexa.com/
http://ftp.archive.org/AVLogs/

110 BIBLIOGRAPHY

[11] M. Bender, S. Michel, P. Trianta�llou, G. Weikum, and C. Zimmer. MINERVA: Collaborative

P2P Search. In Proceedings of the 31st International Conference on Very Large Databases,

2005.

[12] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments. Chap-

man and Hall, London, 1985.

[13] B. Brewington and G. Cybenko. How Dynamic is the Web? In Proceedings of the 9th

International World Wide Web Conference, 2000.

[14] S. Brin, J. Davis, and H. Garcia-Molina. Copy Detection Mechanisms for Digital Documents.

In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data,

1995.

[15] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. In

Proceedings of the 7th International World Wide Web Conference, 1998.

[16] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and

J. Wiener. Graph Structure in the Web. WWW9 / Computer Networks, 33(1-6):309�320,

2000.

[17] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic Clustering of the Web.

In Proceedings of the 6th International World Wide Web Conference, 1997.

[18] M. Burner. Crawling Towards Eternity: Building An Archive of The World Wide Web. Web

Techniques Magazine, 2(5):37�40, 1997.

[19] G. Casella and R. L. Berger. Statistical Inference. Thomson Learning, 2001.

[20] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan

Kaufmann, 2002.

[21] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A New Approach to

Topic-Speci�c Web Resource Discovery. In Proceedings of the 8th International World Wide

Web Conference, 1999.

[22] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,

and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In

BIBLIOGRAPHY 111

Proceedings of the l00th Anniversary Meeting of the Information Processing Society of Japan,

1994.

[23] M. Chen, A. Hearst, A. Marti, J. Hong, and J. Lin. Cha-Cha: A System for Organizing

Intranet Results. In Proceedings of the 2nd USENIX Symposium on Internet Technologies

and Systems, 1999.

[24] J. Cho. Crawling the Web: Discovery and Maintenance of Large-Scale Web Data. Ph.D.

thesis, Stanford Computer Science Department, 2001.

[25] J. Cho and H. Garcia-Molina. Synchronizing a Database to Improve Freshness. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data, 2000.

[26] J. Cho and H. Garcia-Molina. The Evolution of the Web and Implications for an Incremental

Crawler. In Proceedings of the 26th International Conference on Very Large Databases, 2000.

[27] J. Cho, H. Garcia-Molina, and L. Page. E�cient Crawling Through URL Ordering. WWW8

/ Computer Networks, 30(1-7):161�172, 1998.

[28] J. Cho and S. Roy. Impact of Search Engines on Page Popularity. In Proceedings of the 13th

International World Wide Web Conference, 2004.

[29] J. Cho, S. Roy, and R. Adams. Page Quality: In Search of an Unbiased Web Ranking. In

Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data,

2005.

[30] Consumer Search. http://www.consumersearch.com/.

[31] F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate of Change and Other Metrics: A Live

Study of the World Wide Web. In Proceedings of the 1st USENIX Symposium on Internet

Technologies and Systems, 1997.

[32] J. E. Co�man, Z. Liu, and R. R. Weber. Optimal Robot Scheduling for Web Search Engines.

Journal of Scheduling, 1(1):15�29, 1998.

[33] J. Edwards, K. S. McCurley, and J. A. Tomlin. An Adaptive Model for Optimizing Perfor-

mance of an Incremental Web Crawler. In Proceedings of the 10th International World Wide

Web Conference, 2001.

http://www.consumersearch.com/

112 BIBLIOGRAPHY

[34] S. G. Eick. Gittins Procedures for Bandits with Delayed Responses. Journal of the Royal

Statistical Society, Series B (Methodological), 50(1):125�132, 1988.

[35] S. G. Eick. The Two-Armed Bandit with Delayed Responses. The Annals of Statistics,

16(1):254�264, 1988.

[36] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking the Web Frontier. In Proceedings of

the 13th International World Wide Web Conference, 2004.

[37] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law Relationships of the Internet

Topology. In Proceedings of the Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, 1999.

[38] D. Fetterly, M. Manasse, and M. Najork. On the Evolution of Clusters of Near-Duplicate Web

Pages. In Proceedings of the 1st Conference on Latin American Web Congress, 2003.

[39] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A Large-Scale Study of the Evolution

of Web Pages. Software Practice and Experience, 34(2):213�237, 2004.

[40] W. B. Frakes and R. A. Baeza-Yates. Information Retrieval: Data Structures and Algorithms.

Prentice Hall, Englewood Cli�s, NJ, 1992.

[41] Freenet Home Page. http://freenet.sourceforge.com/.

[42] G. W. Furnas and S. J. Rauch. Considerations for Information Environments and the NaviQue

Workspace. In Proceedings of the 3rd ACM Conference on Digital libraries, 1998.

[43] S. L. Gerhart. Do Web Search Engines Suppress Controversy? http://firstmonday.dk/

issues/issue9_1/gerhart/index.html#note5.

[44] J. Gittins. Bandit Processes and Dynamic Allocation Indices. John Wiley, 1989.

[45] Gnutella Development Home Page. http://gnutella.wego.com/.

[46] Google. http://www.google.com/.

[47] L. Gravano, C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. STARTS: Stanford Pro-

posal for Internet Meta-searching. In Proceedings of the 1997 ACM SIGMOD International

Conference on Management of data, 2004.

http://freenet.sourceforge.com/
http://firstmonday.dk/issues/issue9_1/gerhart/index.html#note5
http://firstmonday.dk/issues/issue9_1/gerhart/index.html#note5
http://gnutella.wego.com/
http://www.google.com/

BIBLIOGRAPHY 113

[48] L. Gravano, H. Garcia-Molina, and A. Tomasic. GlOSS: Text Source Discovery over the

Internet. ACM Transactions on Database Systems, 24(2):229�264, 1999.

[49] A. Gulli and A. Signorini. The Indexable Web is More than 11.5 Billion Pages. In Special

Interest Tracks and Posters of the 14th International Conference on World Wide Web, 2005.

[50] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and

Applications. IEEE Quarterly Bulletin on Data Engineering; Special Issue on Materialized

Views and Data Warehousing, 18(2):3�18, 1995.

[51] D. Harman. Relevance Feedback Revisited. In Proceedings of the 15th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, 1992.

[52] A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web Crawler. World Wide Web,

2(4):219�229, 1999.

[53] M. Hindman, K. Tsioutsiouliklis, and J. A. Johnson. Googlearchy: How a Few Heavily-

Linked Sites Dominate Politics on the Web. http://www.princeton.edu/~mhindman/

googlearchy--hindman.pdf.

[54] How Much Information? http://www.sims.berkeley.edu/research/projects/

how-much-info-2003/, 2003.

[55] N. Huyn. Multiple-View Self-Maintenance in Data Warehousing Environments. In Proceedings

of the 23rd International Conference on Very Large Data Bases, 1997.

[56] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar. Click Fraud Resistant Methods for

Learning Click-Through Rates. In Proceedings of the First International Workshop on Internet

and Network. Economics, 2005.

[57] L. Introna and H. Nissenbaum. De�ning the Web: The Politics of search Engines. IEEE

Computer Magazine, 33(1):54�62, 2000.

[58] P. Ipeirotis and L. Gravano. Distributed Search over the Hidden-Web: Hierarchical Database

Sampling and Selection. In Proceedings of the 28th International Conference on Very Large

Databases, 2002.

[59] Jakarta Lucene. http://jakarta.apache.org/lucene/docs/index.html.

http://www.princeton.edu/~mhindman/googlearchy--hindman.pdf
http://www.princeton.edu/~mhindman/googlearchy--hindman.pdf
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
http://jakarta.apache.org/lucene/docs/index.html

114 BIBLIOGRAPHY

[60] G. Jeh and J. Widom. Scaling Personalized Web Search. In Proceedings of the 12th Interna-

tional Conference on World Wide Web, 2003.

[61] T. Joachims. Optimizing Search Engines Using Clickthrough Data. In Proceedings of the 8th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.

[62] T. Joachims, D. Freitag, and T. Mitchell. WebWatcher: A Tour Guide for the World Wide

Web. In Proceedings of International Joint Conference on Arti�cial Intelligence, 1997.

[63] K. S. Jones. Statistical Interpretation of Term Speci�city and its Application in Retrieval.

Journal of Documentation, 28(1):11�20, 1972.

[64] K. S. Jones, S. Walker, and S. E. Robertson. A Probabilistic Model of Information Re-

trieval: Development and Comparative Experiments. Information Processing and Manage-

ment, 36(6):809�840, 2000.

[65] M. Kearns. The Computational Complexity of Machine Learning. MIT Press, Cambridge,

1990.

[66] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for Emerging

Cyber-Communities. WWW8 / Computer Networks, 31:1481�1493, 1999.

[67] S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Recommendation Systems: A

Probabilistic Analysis. In Proceedings of the 39th Annual IEEE Symposium on Foundations

of Computer Science, 1998.

[68] T. Lai and H. Robbins. Asymptotically E�cient Adaptive Allocation Rules. Advances in

Applied Mathematics, 6:4�22, 1985.

[69] R. Lempel and S. Moran. Predictive Caching and Prefetching of Query Results in Search

Engines. In Proceedings of the 12th International World Wide Web Conference, 2003.

[70] L. Liu, C. Pu, W. Tang, and W. Han. CONQUER: A Continual Query System for Update

Monitoring in the WWW. International Journal of Computer Systems, Science and Engi-

neering, 14(2):99�112, 1999.

[71] Y. S. Maarek, M. Jacovi, M. Shtalhaim, S. Ur, D. Zernik, and I. Z. Ben-Shaul. WebCutter:

A System for Dynamic and Tailorable Site Mapping. In Proceedings of the 6th International

World Wide Web Conference, 1997.

BIBLIOGRAPHY 115

[72] O. Madani and D. Decoste. Contextual Recommender Problems. In Proceedings of the 1st

International Workshop on Utility-based Data Mining, 2005.

[73] U. Manber, M. Smith, and B. Gopal. Webglimpse: Combining Browsing and Searching. In

Proceedings of the 1997 Usenix Technical Conference, 1997.

[74] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. AdWords and Generalized On-line Match-

ing. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,

2005.

[75] M. Mitzenmacher. A Brief History of Lognormal and Power Law Distributions. Internet

Mathematics, 1(2):226�251, 2004.

[76] R. Motwani and Y. Xu. Evolution of page popularity under random web graph models.

In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, 2006.

[77] A. Mowshowitz and A. Kawaguchi. Bias on the Web. Communcations of the ACM, 45(9):56�

60, 2002.

[78] MSN. http://www.msn.com/.

[79] Naughton et al. The Niagara Internet Query System. IEEE Data Engineering Bulletin,

24(2):27�33, 2001.

[80] A. Ntoulas, J. Cho, and C. Olston. What's New on the Web? The Evolution of the Web

from a Search Engine Perspective. In Proceedings of the 13th International World Wide Web

Conference, 2004.

[81] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing

Order to the Web. Stanford Digital Library Technologies Project, 1998.

[82] S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski. Bandits for Taxonomies: A Model-

based Approach. In Proceedings of the 2007 SIAM International Conference on Data Mining,

2007.

[83] S. Pandey, D. Chakrabarti, and D. Agarwal. Multi-armed Bandit Problems with Dependent

Arms. In Proceedings of the 24th International Conference on Machine Learning, 2007.

http://www.msn.com/

116 BIBLIOGRAPHY

[84] S. Pandey and C. Olston. User-centric Web Crawling. In Proceedings of the 14th International

World Wide Web Conference, 2005.

[85] S. Pandey and C. Olston. Crawl Ordering by Search Impact. In Proceedings of the 1st

International Conference on Web Search and Data Mining, 2008.

[86] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman. A Query Transla-

tion Scheme for Rapid Implementation of Wrappers. In Proceedings of the 4th International

Conference on Deductive and Object-Oriented Databases, 1995.

[87] C. Peery, F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen. Way�nder: Navigating

and Sharing Information in a Decentralized World. In Proceedings of the 30th International

Conference on Very Large Databases, 2004.

[88] J. Pitkow and P. Pirolli. Life, Death, and Lawfulness on the Electronic Frontier. In Proceedings

of the SIGCHI conference on Human factors in Computing Systems, 1997.

[89] D. Quass and J. Widom. On-line Warehouse View Maintenance. In Proceedings of the 1997

ACM SIGMOD International Conference on Management of Data, 1997.

[90] P. Resnick and H. R. Varian. Recommender Systems. Communications of the ACM, 40(3):56�

58, 1997.

[91] S. Robertson and K. S. Jones. Relevance Weighting of Search Terms. Journal of the American

Society for Information Science, 27(3):129�146, 1976.

[92] S. E. Robertson and S. Walker. Some Simple E�ective Approximations to the 2-Poisson Model

for Probabilistic Weighted Retrieval. In Proceedings of the 17th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, 1994.

[93] J. J. Rocchio. Relevance Feedback in Information Retrieval. In Gerard Salton, editor, The

SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall,

Englewood Cli�s, NJ, 1971.

[94] P. Rusmevichientong and D. Williamson. An Adaptive Algorithm for Selecting Pro�table

Keywords for Search-Based Advertising Services. In Proceedings of the 7th ACM Conference

on Electronic Commerce, 2006.

BIBLIOGRAPHY 117

[95] G. Salton. The SMART Retrieval System: Experiments in Automatic Document Processing.

Prentice-Hall, Englewood Cli�s, NJ, 1971.

[96] G. Salton and M. E. Lesk. Computer Evaluation of Indexing and Text Processing. Journal

of the ACM, 15(1):8�36, 1968.

[97] G. Salton and C. S. Yang. On the Speci�cation of Term Values in Automatic Indexing. Journal

of Documentation, 29(4):351�372, 1973.

[98] S. Samtani, M. K. Mohania, V. Kumar, and Y. Kambayashi. Recent Advances and Research

Problems in Data Warehousing. In Proceedings of the Workshops on Data Warehousing and

Data Mining: Advances in Database Technologies, 1998.

[99] Search Engine Watch. http://searchenginewatch.com/.

[100] C. Sherman. Are Search Engines Biased? http://searchenginewatch.com/

searchday/article.php/2159431.

[101] P. Slavik. Approximation Algorithms for Set Cover and Related Problems. Ph.D. thesis,

University at Bu�alo, SUNY, 1998.

[102] B. Stone. When Mice Attack: Internet Scammers Steal Money with `Click Fraud'. Newsweek,

2005.

[103] T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and K. Shanmuga-

sundaram. ODISSEA: A Peer-to-Peer Architecture for Scalable Web Search and Information

Retrieval. In Proceedings of the 6th International Workshop on the Web and Databases, 2003.

[104] The Internet Archive. http://www.archive.org/.

[105] H. Turtle and W. B. Croft. Evaluation of an Inference Network-Based Retrieval Model. ACM

Transactions on Information Systems, 9(3):187�222, 1991.

[106] T. Upstill, N. Craswell, and D. Hawking. Predicting Fame and Fortune: PageRank or Inde-

gree? In Proceedings of the 8th Australasian Document Computing Symposium, 2003.

[107] H. R. Varian. Resources on Collaborative Filtering. http://www.sims.berkeley.edu/

resources/collab/.

http://searchenginewatch.com/
http://searchenginewatch.com/searchday/article.php/2159431
http://searchenginewatch.com/searchday/article.php/2159431
http://www.archive.org/
http://www.sims.berkeley.edu/resources/collab/
http://www.sims.berkeley.edu/resources/collab/

118 BIBLIOGRAPHY

[108] J. Verhoe�, W. Go�man, and J. Belzer. Ine�ciency of the Use of Boolean Functions for

Information Retrieval Systems. Communications of the ACM, 4(12):557�558, 1961.

[109] N. Vidyasagar. India's Secret Army of Online Ad `Clickers'. The Times of India, 2004.

[110] J. Walker. Links and Power: The Political Economy of Linking on the Web. In Proceedings

of the 13th ACM Conference on Hypertext and Hypermedia, 2002.

[111] X. Wang. A Bandit Process with Delayed Responses. Statistics and Probability Letters,

48(3):303�307, 2000.

[112] S. Wartik. Boolean Operations. Information Retrieval: Data Structures and Algorithms,

Prentice-Hall, Englewood Cli�s, NJ, 1992.

[113] WebArchive. http://webarchive.cs.ucla.edu/.

[114] J. Widom. Research Problems in Data Warehousing. In Proceedings of the 4th International

Conference on Information and Knowledge Management, 1995.

[115] G. Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE Com-

puter, 25(3):38�49, 1992.

[116] J. L. Wiener, H. Gupta, W. Labio, Y. Zhuge, H. Garcia-Molina, and J. Widom. A System

Prototype for Warehouse View Maintenance. In The Workshop on Materialized Views, 1996.

[117] K. Wittenburg and E. Sigman. Integration of Browsing, Searching, and Filtering in an Applet

for Web Information Access. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 1997.

[118] Wize. http://wize.com/.

[119] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. Optimal Crawling

Strategies for Web Search Engines. In Proceedings of the 11th International World Wide Web

Conference, 2002.

[120] Yahoo! http://www.yahoo.com/.

[121] P. S. Yu, X. Li, and B. Liu. On the Temporal Dimension of Search. In Proceedings of the 13th

International World Wide Web Conference on Alternate Track Papers and Posters, 2004.

http://webarchive.cs.ucla.edu/
http://wize.com/
http://www.yahoo.com/

BIBLIOGRAPHY 119

[122] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. Consistency Algorithms for Multi-Source

Warehouse View Maintenance. Distributed and Parallel Databases, 6(1):7�40, 1998.

120 BIBLIOGRAPHY

Chapter 9

Appendix

9.1 Overhead of Discovering New Web Sites

In this section we study the relative importance of discovering new pages on old sites, versus new

pages on new sites. We perform the following experiment on the three snapshots of the Chilean

web. We begin by observing that a site that appears for the �rst time during the second or third

month contains on average 18.1 pages. Thus, the e�ort of discovering such a site may be amortized

across the 18+ pages that will be returned by crawling the site. Table 9.1 considers each page that

occurred for the �rst time in the second or third month of the crawl, and checks to see whether

the domain of the page occurred earlier. As the results show, 16% of new pages in the second

snapshot, and 7% of pages in the third snapshot, occur on sites that did not appear during the

previous snapshot. This suggests that the vast majority of new content appears on existing sites,

rather than new sites.

Figure 9.1 shows the number of existing pages that must be downloaded in order to discover new

web sites. Comparing Figures 3.4 and 9.1, we see that many more pages must be downloaded to

Snapshot new pages new pages Pr[new site
on new sites on old sites | new page]

1 → 2 452,461 2,404,045 16%
2 → 3 173,537 2,272,799 7%

Table 9.1: Fraction of new pages appears on new sites versus old sites in the Chilean web data set.

121

122 CHAPTER 9: APPENDIX

Figure 9.1: Chile site-level discovery.

discover new sites than to discover new pages on existing sites. (The main reason the latter problem

is easier is the propensity of webmasters to include useful pages guiding us to new information, e.g.,

the �What's new� page.) In the new site discovery problem, depending on the fraction of new sites

that must be covered, each page download will yield between 1.5 and 3 new sites. However, as we

observed above, each of these sites will return on average 18.1 pages, resulting in an overall overhead

of just 3.7%, even for 100% coverage.

9.2 Proof of Theorem 2

We prove the following theorem from Section 5.6.2 next.

Theorem 2 Among all pages in P whose quality is q, the fraction that have awareness ai = i
m (for

i = 0, 1, . . . ,m) is:

f(ai|q) =
λ

(λ + F (0)) · (1− ai)

i∏
j=1

F (aj−1 · q)
λ + F (aj · q)

(9.1)

where F (x) is the function in Equation 5.3.

9.2: PROOF OF THEOREM 2 123

Proof: Because we consider only the pages of quality q and we focus on steady-state behavior, we

will drop q and t from our notation unless it causes confusion. For example, we use f(a) and V (p)

instead of f(a|q) and V (p, t) in our proof.

We consider a very short time interval dt during which every page is visited by at most one

monitored user. That is, V (p)dt < 1 for every page p. Under this assumption we can interpret

V (p)dt as the probability that the page p is visited by one monitored user during the time interval

dt.

Now consider the pages of awareness ai = i
m . Since these pages are visited by at most one

monitored user during dt, their awareness will either stay at ai or increase to ai+1. We use PS(ai)

and PI(ai) to denote the probability that that their awareness remains at ai or increases from ai to

ai+1, respectively. The awareness of a page increases if a monitored user who was previously unaware

of the page visits it. The probability that a monitored user visits p is V (p)dt. The probability that

a random monitored user is aware of p is (1− ai). Therefore,

PI(ai) = V (p)dt(1− ai) = F (P (p))dt(1− ai)

= F (qai)dt(1− ai) (9.2)

Similarly,

PS(ai) = 1− PI(ai) = 1− F (qai)dt(1− ai) (9.3)

We now compute the fraction of pages whose awareness is ai after dt. We assume that before

dt, f(ai) and f(ai−1) fraction of pages have awareness ai and ai−1, respectively. A page will have

awareness ai after dt if (1) its awareness is ai before dt and the awareness stays the same or (2) its

awareness is ai−1 before dt, but it increases to ai. Therefore, the fraction of pages at awareness ai

after dt is potentially

f(ai)PS(ai) + f(ai−1)PI(ai−1).

However, under our Poisson model, a page disappears with probability λdt during the time interval

dt. Therefore, only (1− λdt) fraction will survive and have awareness ai after dt:

[f(ai)PS(ai) + f(ai−1)PI(ai−1)](1− λdt)

124 CHAPTER 9: APPENDIX

Given our steady-state assumption, the fraction of pages at ai after dt is the same as the fraction

of pages at ai before dt. Therefore,

f(ai) = [f(ai)PS(ai) + f(ai−1)PI(ai−1)](1− λdt). (9.4)

From Equations 9.2, 9.3 and 9.4, we get

f(ai)
f(ai−1)

=
(1− λdt)F (qai−1)dt(1− ai−1)

(λ + F (qai))dt(1− ai)

Since we assume dt is very small, we can ignore the second order terms of dt in the above equation

and simplify it to
f(ai)

f(ai−1)
=

F (qai−1)(1− ai−1)
(λ + F (qai))(1− ai)

(9.5)

From the multiplication of f(ai)
f(ai−1) ×

f(ai−1)
f(ai−2) × · · · ×

f(a1)
f(a0) , we get

f(ai)
f(a0)

=
1− a0

1− ai

i∏
j=1

F (qaj−1)
λ + F (qaj)

(9.6)

We now compute f(a0). Among the pages with awareness a0, PS(a0) fraction will stay at a0

after dt. Also, λdt fraction new pages will appear, and their awareness is a0 (recall our assumption

that new pages start with zero awareness). Therefore,

f(a0) = f(a0)PS(a0)(1− λdt) + λdt (9.7)

After rearrangement and ignoring the second order terms of dt, we get

f(a0) =
λ

F (qa0) + λ
=

λ

F (0) + λ
(9.8)

By combining Equations 9.6 and 9.8, we get

f(ai) = f(a0)
1− a0

1− ai

i∏
j=1

F (qaj−1)
λ + F (qaj)

=
λ

(λ + F (0))(1− ai)

i∏
j=1

F (qaj−1)
λ + F (qaj)

9.3: PERFORMANCE BOUND FOR BMMP POLICIES 125

9.3 Performance Bound for BMMP Policies

We prove the lemmas of Section 6.6 here. First we give some background. Recall that we have de�ned

payo� instance I such that I(i, n) denotes the reward for arm i of bandit instance S(n) for invocation

n in payo� instance I. Since I(i, n) takes a particular reward value with a certain probability,

say P(I(i, n)), we can get the probability with which payo� instance I arises by multiplying the

probabilities of all I(i, n)'s, hence P(I) =
∏N

n=1

∏
i∈S(n) P(I(i, n)). Let I denote the space consisting

of all payo� instances, then
∑

I∈I P(I) = 1.

The total expected reward obtained under BPOL, bpol(N), is:

bpol(N) =
∑
I∈I

(
P(I) · bpol(I,N)

)
where bpol(I,N) denotes the total reward obtained in payo� instance I. Also,

bpol(I,N) =
N∑

n=1

Z(B(I, n), n, I)

where Z(i, n, I) denotes the reward obtained by activating arm i of bandit instance S(n) for invo-

cation n in payo� instance I.

Since BPOL activates the arms of only those types whose budgets have not depleted yet,

Z(B(I, n), n, I) = I(B(I, n), n). Hence,

bpol(N) =
∑
I∈I

(
P(I) ·

N∑
n=1

Z(B(I, n), n, I)
)

=
∑
I∈I

(
P(I) ·

N∑
n=1

I(B(I, n), n)
)

126 CHAPTER 9: APPENDIX

Similarly,

opt(N) =
∑
I∈I

(
P(I) ·

N∑
n=1

I(O(I, n), n)
)

Some further notation: let µi,B denote the expected reward of arm i of bandit instance B. Let

dI(T, n) denote the remaining budgets of type T at invocation n under BPOL in payo� instance I.

As mentioned in Section 6.6, we classify each invocation n into the following three categories.

• Category 1: If µB(I,n),S(n) ≥ µO(I,n),S(n).

• Category 2: If {µB(I,n),S(n) < µO(I,n),S(n)} ∧ {dI(T, n) < I(O(I, n), n)}.

• Category 3: If {µB(I,n),S(n) < µO(I,n),S(n)} ∧ {dI(T, n) ≥ I(O(I, n), n)}.

For payo� instance I, let us denote the invocations of category k (1, 2 or 3) by N k(I). Let

bpolk(N) =
∑
I∈I

(
P(I) ·

∑
n∈N k(I)

I(B(I, n), n)
)

It is easy to see that bpol(N) =
∑3

k=1 bpolk(N). Similarly, opt(N) =
∑3

k=1 optk(N) where

optk(N) =
∑
I∈I

(
P(I) ·

∑
n∈N k(I)

I(O(I, n), n)
)

Lemma 3 opt1(N) ≤ bpol1(N).

Proof: Recall that:

bpol1(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 1(I)

I(B(I, n), n)
)

For any predicate Π we de�ne {Π(x)} to be the indicator function of the event Π(x); i.e., {Π(x)}

9.3: PERFORMANCE BOUND FOR BMMP POLICIES 127

= 1 if Π(x) is true and Π(x) = 0 otherwise. Using the de�nition of category 1,

bpol1(N)

=
∑
I∈I

(
P(I) ·

N∑
n=1

(
{µB(I,n),S(n) ≥ µO(I,n),S(n)} · I(B(I, n), n)

))

=
N∑

n=1

∑
I∈I

(
P(I) · {µB(I,n),S(n) ≥ µO(I,n),S(n)} · I(B(I, n), n)

)

For a given n we divide payo� instance I into two parts I1 and I2 where I1 consists of I(i, n′)'s

for n′ < n and I2 consist of I(i, n′)'s for n′ ≥ n. By de�nition, the arm selected by BPOL (and

OPT) at the nth invocation only depends on I1. Hence, we denote B(I, n) and O(I, n) by B(I1, n)

and O(I1, n) for the rest of this proof. Clearly, payo� instance space I = I1 × I2 where I1 and I2

denote the payo� instance spaces for I1 and I2 respectively and × denotes the cross product.

bpol1(N)

=
N∑

n=1

∑
I1∈I1

∑
I2∈I2

(
P(I1) · P(I2) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} · I2(B(I1, n), n)

)

=
N∑

n=1

∑
I1∈I1

(
P(I1) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} ·

∑
I2∈I2

(
P(I2) · I2(B(I1, n), n)

))

=
N∑

n=1

∑
I1∈I1

(
P(I1) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} · µB(I1,n),S(n)

)

Similarly,

opt1(N) =
N∑

n=1

∑
I1∈I1

(
P(I1) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} · µO(I1,n),S(n)

)

Since µB(I1,n),S(n) ≥ µO(I1,n),S(n) in the terms contributing to the above summations, we get

bpol1(N) ≥ opt1(N).

128 CHAPTER 9: APPENDIX

Lemma 4 opt2(N) ≤ bpol(N) + (|T | · rmax) where |T | denotes the number of arm types and rmax

denotes the maximum reward.

Proof: Recall that N 2(I) denotes the sequence of invocations of category 2 for payo� instance I.

Let us denote the set of O(I, n)'s for n ∈ N 2(I) by O2(I), i.e., O2(I) = {O(I, n) | n ∈ N 2(I)}.
Furthermore, let T 2(I) denote the set of types covering the arms of set O2(I). Consider any type

T from set T 2(I). By de�nition of category 2, we know that the remaining budget of type T drops

below rmax at some point in BPOL. Therefore, dI(T,N + 1) < rmax (here dI(T,N + 1) denotes the

remaining budget of type T in BPOL after all N bandit instances of sequence S have been invoked).

Since the total reward given by the arms of a type is the di�erence of its initial budget dI(T, 1)

and the �nal budget dI(T,N + 1),

bpol(I,N) =
∑
T∈T

(
dI(T, 1)− dI(T,N + 1)

)
≥

∑
T∈T 2(I)

(
dI(T, 1)− dI(T,N + 1)

)
≥

∑
T∈T 2(I)

(
dI(T, 1)− rmax

)
=

∑
T∈T 2(I)

(
dI(T, 1)

)
−
(
|T 2(I)| · rmax

)
≥

∑
T∈T 2(I)

(
dI(T, 1)

)
−
(
|T | · rmax

)

By rearranging the terms,

∑
T∈T 2(I)

dI(T, 1) ≤ bpol(I,N) +
(
|T | · rmax

)
Now we derive a bound for opt2(N). Recall that:

opt2(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 2(I)

(
I(O(I, n), n)

))

Since we know that the total reward given by the arms of a type can never exceed its initial

9.3: PERFORMANCE BOUND FOR BMMP POLICIES 129

budget,

opt2(N) ≤
∑
I∈I

(
P(I) ·

∑
T∈T 2(I)

dI(T, 1)
)

≤
∑
I∈I

(
P(I) ·

(
bpol(I,N) +

(
|T | · rmax

)))
=

∑
I∈I

(
P(I) · bpol(I,N)

)
+
(
|T | · rmax

)
= bpol(N) +

(
|T | · rmax

)
Hence, opt2(N) ≤ bpol(N) +

(
|T | · rmax

)
.

Lemma 5 opt3(N) = O(f(N)) where f(n) denotes the expected number of mistakes made by POL

for any �nite n.

Proof: Recall that:

opt3(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

(
I(O(I, n), n)

))

Since I(i, n) ≤ rmax for all i and n,

opt3(N) ≤
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

rmax

)

=
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

(
rmax ·

|B|∑
i=1

{S(n) = i}
))

= rmax ·
|B|∑
i=1

Ci(N)

where Ci(N) denotes the expected number of times bandit instance Bi happens to be invoked during

the invocations of category 3:

Ci(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

{S(n) = i}
)

130 CHAPTER 9: APPENDIX

In Lemma 6 we show that for every Bi ∈ B, Ci(N) = O(f(N)). Hence, opt3(N) = O(f(N)).

Lemma 6 For every bandit instance Bi in B, Ci(N) = O(f(N)).

Proof: Let Si denote the sequence of invocations at which bandit instance Bi is invoked in

sequence S, i.e., Si = {n | S(n) = i}. We analyze BPOL now. Recall that in BPOL as the arms of

a bandit instance run out of budget, they are being successively discarded. Let Si
d(I) denote the

sequence of those invocations at which an arm(s) of Bi is discarded in payo� instance I. We call

the sequence of invocations of Bi between two successive invocations of sequence Si
d(I) a batch. The

number of batches is upper bounded by the number of arms of Bi (which is �nite). Clearly, within

a batch the set of available arms of bandit instance Bi remains �xed and POL operates on them

independently and uninterruptedly.

Consider a batch in payo� instance I. Now pick an invocation n of category 3 in the batch

when bandit instance Bi is invoked. By de�nition of category 3, both arms B(I, n) and O(I, n)

are available to choose for POL at n. By choosing arm B(I, n) over O(I, n), POL makes a mistake

of choosing suboptimal arm since µB(I,n),S(n) < µB(I,n),S(n). Hence, we have shown that in a given

batch, each invocation of category 3 is caused by a mistake of POL. Given the performance bound

of POL, the expected number of such mistakes in a batch is f(batch length), hence O(f(N)). Since

the number of batches is �nite, Ci(N) is O(f(N)).

9.4 Performance Bound for MIX

The optimal policy for the unbudgeted unknown-CTR advertisement problem is to display the C

ads of the highest expected reward (ci,j · bi,j) for each query phrase. We prove that MIX makes

O(ln N) mistakes, on expectation, for any C ≥ 1 where N denotes the number of queries answered.

A mistake occurs when an ad of less expected reward (ci,j ·bi,j) is displayed for a query phrase while

keeping an ad of higher expected reward out. Since MIX is adapted from UCB, our proof is largely

inherited from [6].

Consider query phrase Qj ∈ Q. Let Aj denote the set of ads for phrase Qj and let Gj denote the

set of C ads of the highest expected rewards. For simplicity, we assume that each ad has a unique

expected reward. Clearly, a mistake occurs when an ad from set Aj − Gj is displayed for Qj . We

9.4: PERFORMANCE BOUND FOR MIX 131

denote the number of times ad ai,j is displayed by MIX by mi,j(nj) where nj denotes the number

of times query phrase Qj has been answered so far.

Theorem 4 For any ad ai,j ∈ {Aj−Gj}, E(mi,j(Nj)) = O(ln Nj) where E denotes the expectation.

Proof: Recall the priority function of MIX:

Pi,j =


(
ĉi,j +

√
2 ln nj

ni,j

)
· bi,j if ni,j > 0

∞ otherwise

Here ĉi,j denote the current CTR estimate of ad ai,j based on the past observations, bi,j is its bid

value, ni,j denotes the number of times ai,j has been displayed so far for phrase Qj and nj denotes

the number of times phrase Qj has been queried so far in the day. We denote the CTR estimated

after ni,j display of ads by ĉi,j(ni,j). For notation convenience, we denote
√

2 ln nj

ni,j
in the priority

function by g(nj , ni,j).

Some further notation: For any predicate Π we de�ne {Π(x)} to be the indicator function of

the event Π(x); i.e., {Π(x)} = 1 if Π(x) is true and Π(x) = 0 otherwise. For the nth
j occurrence of

query phrase Qj , let Lj(nj) denote the ad of lowest priority value in Gj and let Uj(nj) denote the

set of C ads displayed by MIX. Consider ai,j ∈ {Aj − Gj}, then:

mi,j(Nj) = 1 +
Nj∑

nj=|Aj |+1

{ai,j ∈ Uj(nj)}

{since each ad from Aj is displayed once initially}

≤ l +
Nj∑

nj=|Aj |+1

{ai,j ∈ Uj(nj), mi,j(nj − 1) ≥ l}

{where l is an arbitrary positive integer}

In order for ad ai,j to be displayed on the nth
j occurrence of query phrase Qj , its priority must

132 CHAPTER 9: APPENDIX

be greater than or equal to the priority of Lj(nj), hence,

mi,j(Nj)

≤ l +
Nj∑

nj=|Aj |+1

∑
ak,j∈Gj

{(
ĉi,j(mi,j(nj − 1)) + g(nj − 1,mi,j(nj − 1))

)
· bi,j ≥

(
ĉk,j(mk,j(nj − 1)) + g(nj − 1,mk,j(nj − 1))

)
· bk,j , ak,j = Lj(nj), mi,j(nj − 1) ≥ l

}

≤ l +
Nj∑

nj=|Aj |+1

∑
ak,j∈Gj

{
max

l≤si<nj

(
ĉi,j(si) + g(nj − 1, si)

)
· bi,j ≥

min
0<sk<nj

(
ĉk,j(sk) + g(nj − 1, sk)

)
· bk,j , ak,j = Lj(nj)

}
{since ∀ak,j , 0 < mk,j(nj − 1) < nj}

≤ l +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=l

{(
ĉi,j(si) + g(nj , si)

)
· bi,j ≥

(
ĉk,j(sk) + g(nj , sk)

)
· bk,j ,

ak,j = Lj(nj + 1)
}

Now we focus our attention on
(
ĉi,j(si) + g(nj , si)

)
· bi,j ≥

(
ĉk,j(sk) + g(nj , sk)

)
· bk,j where

ak,j ∈ Gj . Let us call it condition Y . Observe the following three terms:

ĉk,j(sk) ≤ ck,j − g(nj , sk) (9.9)

ĉi,j(si) ≥ ci,j + g(nj , si) (9.10)

ck,j · bk,j < ci,j · bi,j + 2 · g(nj , si) · bi,j (9.11)

It is easy to see that if none of these terms are true, then condition Y can not hold true. Hence,

we can replace condition Y in the above equation by condition {1 ∨ 2 ∨ 3} since the replacement

9.4: PERFORMANCE BOUND FOR MIX 133

does not make the RHS any smaller.

mi,j(Nj)

≤ l +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=l

({
ĉk,j(sk) ≤ ck,j − g(nj , sk)

}
+
{

ĉi,j(si) ≥ ci,j + g(nj , si)
}

+
{

ck,j · bk,j < ci,j · bi,j + 2 · g(nj , si) · bi,j

})
· {ak,j = Lj(nj + 1)}

(9.12)

We bound the probability of Terms 9.9 and 9.10 using Cherno�-Hoe�ding bound:

Pr{ĉk,j(sk) ≤ ck,j − g(nj , sk)} ≤ e−4·(ln nj) = n−4
j

Pr{ĉi,j(si) ≥ ci,j + g(nj , si)} ≤ e−4·(ln nj) = n−4
j

Recall that we can set l to any positive integer. We set l to lo = d(8 · (ln Nj) · b2
i,j)/∆2

i,je where
∆i,j = minak,j∈Gj

(
ck,j · bk,j − ci,j · bi,j

)
. For ak,j ∈ Gj and si ≥ lo, Term 9.11 is false because:

ck,j · bk,j − ci,j · bi,j − 2 · g(nj , si) · bi,j = ck,j · bi,j − ci,j · bi,j − 2 ·
√

2(ln nj)/si · bi,j

≥ ck,j · bk,j − ci,j · bi,j − 2 ·
√

2(ln Nj)/lo · bi,j

= ck,j · bk,j − ci,j · bi,j −∆i,j

≥ 0

134 CHAPTER 9: APPENDIX

Hence, by taking expectation of Equation 9.12,

E(mi,j(Nj))

≤ l +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=l

(
Pr{ĉk,j(sk) ≤ ck,j − g(nj , sk)}+ Pr{ĉi,j(si) ≥ ci,j + g(nj , si)}

+Pr{ck,j · bk,j < ci,j · bi,j + 2 · g(nj , si) · bi,j}
)
· Pr{ak,j = Lj(nj + 1)}

≤ lo +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=lo

(
Pr{ĉk,j(sk) ≤ ck,j − g(nj , sk)}

+Pr{ĉi,j(si) ≥ ci,j + g(nj , si)}
)
· Pr{ak,j = Lj(nj + 1)}

{ by setting l = lo }

≤ lo +
∞∑

nj=1

nj∑
sk=1

nj∑
si=1

∑
ak,j∈Gj

2 · n−4
j · Pr{ak,j = Lj(nj + 1)}

= lo +
∞∑

nj=1

nj∑
sk=1

nj∑
si=1

2 · n−4
j

≤
⌈8 · (ln Nj) · b2

i,j

∆2
i,j

⌉
+
(
1 +

π2

3
)

Hence E(mi,j(Nj)) = O(ln Nj).

Given the above result it is clear that the total expected number of mistakes made by MIX for

N queries,
∑

Qj∈Q
∑

ai,j∈Aj−Gj
E(mi,j(Nj)), is O(ln N).

	Abstract
	Thesis Committee
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Acquisition of Content
	1.2 Presentation of Content
	1.3 Offline and Online Settings
	1.4 Organization of Dissertation

	2 Related Work
	2.1 Architecture Design
	2.2 Content Acquisition
	2.3 Content Presentation

	3 Web Page Discovery
	3.1 Introduction
	3.2 Problem Formulation
	3.2.1 Overhead Metric
	3.2.2 Discovery Optimization Problem

	3.3 Chapter Outline
	3.4 Related Work
	3.5 Feasibility of Discovering New Content
	3.5.1 Data
	3.5.2 An Algorithmic Upper Bound: Greedy
	3.5.3 Measurements

	3.6 History-based Algorithms
	3.6.1 Algorithm Based on Outdegree
	3.6.2 Algorithms based on Overlap
	3.6.3 Algorithm Based on Greedy Cover
	3.6.4 Aggregating Past Observations
	3.6.5 Upper Bounds on Performance of Historical Algorithms
	3.6.6 Analysis of Historical Algorithms

	3.7 Chapter Summary

	4 Web Page Synchronization
	4.1 Introduction
	4.2 Problem Formulation
	4.2.1 Repository Quality Metric
	4.2.2 Web Synchronization Optimization Problem

	4.3 Chapter Outline
	4.4 Related Work
	4.5 New Web Synchronization Policy
	4.5.1 Change in Quality
	4.5.2 Synchronization Policy

	4.6 Estimating Changes in Quality During Crawler Operation
	4.6.1 Approximation Scheme
	4.6.2 Taking Measurements During Index Maintenance
	4.6.3 Overhead of Measurement Scheme

	4.7 Experiments
	4.7.1 Web Page Synchronization Schemes Evaluated
	4.7.2 Estimation of Page Change Characteristics
	4.7.3 Comparison of Page Synchronization Schemes

	4.8 Chapter Summary

	5 Web Page Ranking
	5.1 Introduction
	5.1.1 Entrenchment Effect in Other Contexts
	5.1.2 Overview of Our Approach
	5.1.3 Experimental Study

	5.2 Chapter Outline
	5.3 Related Work
	5.4 Problem Formulation
	5.4.1 Page Popularity
	5.4.2 Metrics and Exploration/Exploitation Tradeoff
	5.4.3 Web Page Ranking Optimization Problem

	5.5 Randomized Rank Promotion
	5.6 Analytical Model
	5.6.1 Page Birth and Death
	5.6.2 Awareness Distribution
	5.6.3 Popularity to Visit Rate Relationship

	5.7 Effect of Randomized Rank Promotion and Recommended Parameter Settings
	5.7.1 Default Scenario
	5.7.2 Effect of Randomized Rank Promotion on TBP
	5.7.3 Effect of Randomized Rank Promotion on QPC
	5.7.4 Balancing Exploration, Exploitation, and Reality

	5.8 Robustness Across Different Community Types
	5.8.1 Influence of Community Size
	5.8.2 Influence of Page Lifetime
	5.8.3 Influence of Visit Rate
	5.8.4 Influence of Size of User Population

	5.9 Mixed Surfing and Searching
	5.10 Real-World Effectiveness of Rank Promotion
	5.10.1 Experimental Procedure
	5.10.2 Results

	5.11 Chapter Summary

	6 Advertisement Ranking
	6.1 Problem Formulation
	6.2 Overview of Our Approach
	6.3 Chapter Outline
	6.4 Related Work
	6.5 Unbudgeted Unknown-CTR Advertisement Problem
	6.6 Budgeted Unknown-CTR Advertisement Problem
	6.6.1 Budgeted Multi-armed Multi-bandit Problem
	6.6.2 Performance Bound for BMMP Policies
	6.6.3 Policy BMIX and its Variants

	6.7 Experiments
	6.7.1 Experiment Setup
	6.7.2 Exploration/Exploitation Tradeoff

	6.8 Practical Extensions of BMIX
	6.8.1 Exploiting Prior Information About CTRs
	6.8.2 Performance Comparison
	6.8.3 Allowing Submission/Revocation of Ads at Any Time
	6.8.4 Exploiting Dependencies in CTRs of Ads

	6.9 Chapter Summary

	7 Future Work
	7.1 Web Page Discovery
	7.2 Web Page Synchronization
	7.3 Web Page Ranking
	7.4 Advertisement Ranking

	8 Summary
	9 Appendix
	9.1 Overhead of Discovering New Web Sites
	9.2 Proof of Theorem 2
	9.3 Performance Bound for BMMP Policies
	9.4 Performance Bound for MIX

