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ABSTRACT

THE amount of digital video has grown exponentially in recent years. We

are at a nexus in time where video capture technology, computing power,

storage capacity, and broadband networking have matured sufficiently to

fuel an explosion in consumer videos. A key part of this ecosystem is the ability

to search over vasts amounts of video data. While traditional methods have re-

lied on text, such as those extracted from closed captioning, speech analysis, or

manual annotation, we would to like search based on the automated recognition

of the visual events in the video. This would enable more general searches to be

performed without relying on previously labeled data. We propose a method for

visual event detection of human actions that occur in crowded, dynamic environ-

ments. Crowded scenes pose a difficult challenge for current approaches to video

event detection because it is difficult to segment the actor from the background due

to distracting motion from other objects in the scene. We propose a technique for

event recognition in crowded videos that reliably identifies actions in the presence

of partial occlusion and background clutter. Our approach is based on three key

ideas: (1) we efficiently match the volumetric representation of an event against

over-segmented spatio-temporal video volumes; (2) we augment our shape-based

features using flow; (3) rather than treating an event template as an atomic entity,

we separately match by parts (both in space and time), enabling robustness against

occlusions and actor variability. Our experiments on human actions, such as pick-

ing up a dropped object or waving in a crowd show reliable detection with few

false positives.
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CHAPTER 1

Introduction

DIGITAL video data has been growing rapidly in recent years. For exam-

ple, as of 2003, there are over 2.4 million CCTV cameras in Britain [96].

Most digital cameras and many cell phones can record video, and con-

sumers are recording and uploading their videos online, as evidenced by the pop-

ularity of video sharing sites such as YouTube. In August 2006, YouTube had over

6 million videos [65] and in January 2008, this has grown to over 60 million [4].1

Unfortunately, the technology for making intelligent searches on video has failed

to keep pace. Because of the large amount of data inherent in videos, it is extremely

computationally intensive to do searches on them. Current production systems can

only search videos based on text summarized from keywords and metadata. The

keywords are typically extracted from closed captioning, speech analysis, man-

ual annotation, and optical character recognition [27, 126]. While text-based search

is very efficient, annotating the videos is labor-intensive. Keyword searches are

limited by existing annotations and thus one can not search for unlabeled events.

Finally, manual annotation does not scale to large amounts of data and it is difficult

to do in real time. Many research video retrieval systems that analyze visual infor-

mation only process the key-frames in the video [107]. Ideally, we would like to

automatically recognize and annotate all objects and events that occur in a video.

For example, in a video of a football game, we would like to automatically recog-

nize all of the players, their actions, and the overall strategy of the teams. While

1Typical videos are between 5 and 10 minutes long.



CHAPTER 1. INTRODUCTION

the overall goal of general video understanding is beyond the scope of this thesis,

we propose fundamental building blocks that are instrumental towards this goal.

We propose the use of volumetric features for representing and searching over

video. We make the key observation that objects in video span both space and time,

and therefore three-dimensional spatio-temporal volumetric features are natural

representations for them. The goal of this thesis is to propose efficient volumetric

representations and to evaluate how well these representations perform in visual

event detection. There are already many promising techniques in the literature for

recognizing objects in static images. We borrow ideas from them while at the same

time keeping in mind that many techniques when directly applied to video are

often computationally intractable.

1. Thesis Contributions

This dissertation makes several contributions showing the usefulness of volu-

metric features for visual event detection.

• We use a discriminative classifier on volumetric features to build an effi-

cient, real-time event detector.

• We propose a method for matching volumetric shapes in automatically

segmented videos without requiring background subtraction.

• We use pictorial structures to match parts-based event models and com-

bine shape and flow features.

• We study the robustness of our system to challenges such as camera move-

ment, viewpoint changes, and other variations.

2. Visual Event Detection

Event detection is an important component of automatic human activity un-

derstanding. The goal of event detection is to identify and localize specified spatio-

temporal patterns in video, such as a person waving his or her hand. As we [79]

and Shechtman & Irani [119] have previously observed, the task is similar to object

detection in many respects since the pattern can be located anywhere in the scene

2



SECTION 2 VISUAL EVENT DETECTION

Feature Extraction

Event Detection

Activity Recognition

FIGURE 1.1. Event detection is one key component of the overall recogni-
tion pyramid.

(in both space and time) and requires reliable detection in the presence of signifi-

cant background clutter. Event detection is thus distinct from the problem of video

classification, where the primary goal is to classify a short video sequence of an ac-

tor performing an unknown action into one of several classes [16,117,152]. Typical

events that we wish to detect are around one second long. This is how long it takes

someone to perform one distinct action, such as getting up from a chair, serving

a tennis ball, or waving to someone. If the time scale is much smaller, e.g., one

tenth of a second, then there is insufficient movement in the video data. Longer

time scales typically capture a series of events and thus should be decomposed

into smaller atomic events. The eventual goal is to recognize a series of atomic

events and group them together for generalized activity recognition. Recognizing

events is one important part of the overall hierarchy in the recognition framework,

as illustrated in Figure 1.1. This thesis focuses on exploring volumetric features for

event detection.

Our goal is to perform event detection in challenging real-world conditions

where the action of interest is masked by the activity of a dynamic and crowded

environment. Consider the examples shown in Figure 1.2. In Figure 1.2(a), the per-

son waving his hand to flag down a bus is partially occluded, and his arm motion

occurs near pedestrians that generate optical flow in the image. The scene also con-

tains multiple moving objects and significant clutter that make it difficult to cleanly

segment the actor from the background. In Figure 1.2(b), the goal is to detect the

3
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(a) (b)

FIGURE 1.2. Examples of successful event detection in crowded settings.
(a) The hand-wave is detected despite the partial occlusion and moving
objects near the actor’s hand; (b) The person picking up the dropped ob-
ject is matched even though the scene is very cluttered and the dominant
motion is that of the crowd in the background.

person picking up an object from the floor. In this case, the image flow is domi-

nated by the motion of the crowd surrounding the actor, and the actor’s clothing

blends into the scene given the poor lighting conditions.

Similar to many image object detection systems, we use a sliding window ap-

proach to event detection in video, as shown in Figure 1.3. First, we specify a model

of the event that we are interested in detecting. The left part of Figure 1.3 shows

an example grab-cup event. We scan this model across all locations in the video in

space and time. When the classifier decides that we have a match, we label the

event at that particular location and time, as shown by the white box in Figure 1.3.

We will propose a number of features, models for representing events and classi-

fiers. However, we will use the sliding window framework throughout the entire

work.

Since we used a view-based approach to event detection, the system is sensi-

tive to variations such as camera viewpoint, scale, speed, and differences in how

actions are performed across people. Our baseline method is not invariant to these

changes. However, we will address these issues and show how improvements to

our baseline algorithm can cope with these variations. Using a parts-based model

and training from multiple examples, we will demonstrate experimentally the ro-

bustness of our algorithm to these variations.

4



SECTION 3 APPLICATIONS

FIGURE 1.3. We use a sliding window approach to event detection. The
model (left) is scanned at all spatio-temporal locations in the video (right).
We are able to localize the event detection in both space and time.

Interactive entertainment Assisted care Surveillance

Video annotation Home video search Sports annotation

FIGURE 1.4. Example applications.

3. Applications

Visual event detection is a fundamental building block for many applications.

If we can recognize all of the events that occur in the videos, then higher-level

recognition can be performed using the atomic events. Table 1.1 summarizes some

5
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TABLE 1.1. Example applications of event detection.

Application Domain Example Events and Uses
Assisted Care Falling down, waving for help.
Sports Annotation Tennis serve, kicking a goal.
Sports Training Determining whether an action is performed

correctly.
Human-Computer Interaction Gestures for controlling games or TV.
Video Search Searching for actions in home videos, movie

database, or online video sites.
Surveillance Picking up and dropping off packages, open-

ing doors.

of the application domains that can benefit from visual event detection and Fig-

ure 1.4 illustrates some examples. One example application is assisted care, where

it would be useful to recognize elderly people falling down or having trouble get-

ting up from a chair. An announcer would benefit from automatic recognition

of actions that occur in a sports game. Users could also search for the most in-

teresting parts of a game, for example when a goal is scored. If we compile sta-

tistics on the detected events, one could use it for sports training scenarios. We

can recognize whether certain actions are performed correctly to improve athlete

performance. Event detection can also be used in a gesture recognition system for

human-computer interaction. The user can wave to the TV to change channels or to

control a game. Finally, event detection can help in searching through large online

video or movie databases. A user might want to search for certain events in their

home videos or those uploaded by others on YouTube [26, 57]. Figure 1.5 shows

example event detections of a dog sitting and jumping. We are able to generalize

to non-human actions because our models are appearance-based. Another obvious

area is security and surveillance applications. While most of the work in this area

have focused on long-term activity such as movement and location patterns, being

able to recognize specific events such as picking up or dropping a package from

the ground or opening doors and windows would be very useful. It is clear that

event detection is useful in a wide range of applications.

6



SECTION 4 VOLUMETRIC FEATURES VS. 2D FEATURES

FIGURE 1.5. Example detections of a dog sitting and jumping. Our mod-
els are appearance-based, and therefore can generalize to non-human
events.

4. Volumetric Features vs. 2D Features

Many features and matching algorithms have been developed for object recog-

nition [14,77,135], and more recently object category recognition in static images [48,

52, 55, 133]. Some of those techniques, such as interest points [91], have been ex-

tended to their 3D analogues and are used activity recognition in videos [84, 117].

For the task of event detection, there are two general features which are both dis-

criminative and robust to variations – shape and flow. Both of them capture how

people deform and move through space-time, thus enabling us to recognize their

action. We believe that one particular feature that is popular in the image analysis

literature, patches of texture, is less relevant to this task because of its high variabil-

ity. People could wear clothing with many different textures and could also appear

in various lighting conditions. The shape (of a person’s silhouette) and flow are

both invariant to these kinds of changes.

Traditional methods for processing video have focused on analyzing individ-

ual frames independently, or possibly adjacent frames such as optical flow [92].

Features are typically extracted for each frame independently, and then subse-

quently linked together temporally [127]. The main limitation of these type of

approaches is that spatial and temporal analyses are done separately. It is dif-

ficult to find stable regions that are consistent in both dimensions, as shown in

Figure 1.6. Doing analysis jointly in space-time offers three advantages. First, the

region boundaries are stable. Second, the regions are automatically connected and

tracked across frames. In other words, we know that a region in one frame corre-

sponds to a specific region in the next frame, and no further region matching needs

7
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Frames in the video

Each frame independently segmented

Frames segmented jointly

FIGURE 1.6. Independently segmenting each frame in the video yields
varying and inconsistent segmentations across frames (middle). Jointly
segmenting several frames across space-time yields consistent segmenta-
tions across adjacent frames (bottom).

Frames in the video

Extracted Regions
Shirt Shorts Legs Ball Composite

FIGURE 1.7. Just as static images can be decomposed into 2D shapes,
video decomposed and represented as 3D volumes. A five-frame sequence
(above) is segmented (based on color), into the volumetric parts (below).
The parts are pieced back together and a composite is shown on the lower
right.

to be done. Finally, region growth and death are accounted for automatically. This

would be difficult to analyze if the segmentation were to be done independently

for each frame.

8
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Sequence 1

Sequence 2

FIGURE 1.8. Objects and actions represented as 3D volumes. Once the vol-
umes are extracted, object and action recognition is reduced to matching
3D shapes.

We argue that video should be thought of as three-dimensional volumes, and

thus the fundamental processing unit should be 3D blocks consisting of many

frames, instead of on a frame by frame basis, as shown in Figure 1.7. Only recently

have researchers begun to process blocks of frames of video [45, 119, 143]. Just as

previous work has decomposed images into their constituent shapes and used 2D

shape descriptors for analysis [14, 66, 125], video can be thought as a group of 3D

volumes and decomposed into 3D subregions. There are several advantages to

jointly analyzing a video’s space and time dimensions. First, spatial and tempo-

ral consistency can be easily maintained. Second, instead of analyzing pixels over

many frames, higher-level algorithms can focus on large, sparse regions for im-

proved efficiency. Finally, the appearance and motion of objects in the scene can be

jointly modeled, which can potentially lead to better recognition results.

Once we can represent and match individual volumes, we can use them to

recognize spatio-temporal events in video. Detecting events is reduced to matching

3D shapes, as shown in Figure 1.8. Given a single template of an action, we can

match other similar instances of the same action in a video database. A problem

with template matching is its low generalizability, in particular to different people

performing the action or to different camera views. We will propose techniques

9
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TABLE 1.2. Datasets used in our experiments.

Dataset # actions # actors Length Description
KTH [117] 6 25 2̃ hours Periodic motion on static back-

ground. Standard dataset.
Weizmann [16] 4 9 5 min. Standard dataset. Actions on static

background. Subset of actions used.
Wimbledon [2] 1 1 30 min. Broadcast sports videos.
Cluttered 5 6 20 min. Actions in cluttered environment and

dynamic background.
Multiview 3 3 30 min. Four cameras at different viewpoints

capturing events simultaneously.
Used to test robustness to viewpoint
changes.

Moving Camera 4 2 6 min. Videos captured using shaky and
panning cameras. Used to test robust-
ness.

YouTube [5] 4 20+ Var. Unscripted real world videos. Low
quality videos with lots of camera
movement.

Aerobics [1] 1 3 1 min. Three people performing actions si-
multaneously. Used to test multi-
instance event detection.

that can cope with these issues and we will measure quantitatively the system’s

robustness.

5. Datasets

The datasets used in our experiments cover a wide range of actions and vary in

difficulty. Some of the publicly available datasets such as the KTH dataset [117] and

the Weizmann dataset [16] were initially collected for action classification, where

the entire video clip is classified as one of n actions. Most of them have static

backgrounds and contain only one actor. Therefore, we collected more challeng-

ing datasets with dynamic backgrounds and multiple actors in the field of view.

We apply our method to published videos such as tennis matches, aerobics train-

ing videos, and videos uploaded by users on YouTube. The YouTube videos are

typically very low quality with lots of camera movement, as shown in Figure 1.12.

We also apply our method to standard action classification datasets for comparison

purposes even though our algorithm is designed for event detection. Table 1.2 lists

10



SECTION 5 DATASETS

FIGURE 1.9. Example actions from the KTH [117] dataset.

FIGURE 1.10. Example actions from the Weizmann [16] dataset.

all of the datasets we used and Figures 1.9, 1.10, 1.11 illustrates some of the actions

in the various datasets. Additional figures of the other datasets are included with

the results.

11
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0 degrees 15 degrees 30 degrees 45 degrees

Pick-up

Wave

Jumping
Jacks

FIGURE 1.11. Multiview Dataset. Camera viewpoint change of up to 45 degrees.

FIGURE 1.12. YouTube dataset. Notice the poor quality of the videos.
They have low frame rate, low resolution, motion blur, poor lighting, and
blockiness due to compression artifacts.

12
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Related Work

EARLIER work has identified several promising strategies that could be em-

ployed for event detection. These can be broadly categorized into ap-

proaches based on spatio-temporal shapes [16, 17, 148, 152], flow [49, 79,

119], interest points [46, 103, 117], and tracking [109, 123]. A more comprehen-

sive review of historical work is presented by Aggarwal and Cai [6]. More re-

cent work is surveyed by Wang et al. [145]. Our work is based on volumetric flow

and shape matching and thus is most related to works by Shechtman, Blank, and

Irani [16, 119]. We first review the related work in each of these areas and then we

describe in detail two baseline techniques that we use for comparison.

1. Shape Matching

Shape-based methods treat the spatio-temporal volume of a video sequence as

a 3D object. Different events in videos generate distinctive shapes, and the goal

of such methods is to recognize an event by recognizing its shape. Shape-based

methods employ a variety of techniques to characterize the shape of an event,

such as shape invariants [16, 152]. For computational efficiency and greater ro-

bustness to action variations, Bobick and Davis [17] project the spatio-temporal

volume down to motion-history images, which Weinland et al. extend to motion-

history volumes [148]. These techniques work best when the action of interest is

performed in a setting that enables reliable segmentation [139, 147]. In particular,
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for static scenes, techniques such as background subtraction can generate high-

quality spatio-temporal volumes that are amenable to this analysis. Unfortunately,

these conditions do not hold in typical real-world videos due to the presence of

multiple moving objects and scene clutter. Similarly, the extensive research on gen-

eralizing shape matching (2D [66, 90] and 3D [8, 8, 41, 59, 78]) requires reliable fig-

ure/ground separation, which is infeasible in crowded scenes using current seg-

mentation techniques. We will show how ideas from shape-based event detection

can be extended to operate on over-segmented spatio-temporal volumes and work

in challenging conditions.

2. Flow Matching

Flow-based methods for event detection operate directly on the spatio-temporal

sequence, attempting to recognize the specified pattern by brute-force correlation

without segmentation. Efros et al. correlate flow templates with videos to recognize

actions at a distance [49]. Shechtman and Irani propose an algorithm for correlat-

ing spatio-temporal event templates against videos without explicitly computing

the optical flow, which can be noisy on object boundaries [119]. More recently,

Zhu et al. uses an SVM classifier trained on histograms of optical flow to recognize

tennis actions [153, 154]. Jhuang et al. uses biologically-inspired features, which

includes optical flow, for action recognition [75]. We observe that flow has been

successfully used in many settings, and we extend the previous work by building

a real-time system for event detection based on Viola and Jones’ framework [140].

Our work has recently been extended by Laptev and Perez [85].

3. Space-time Interest Points

Recently, space-time interest points [84] have become popular in the action

recognition community [46, 103, 117], with many parallels to how traditional inter-

est points [91] have been applied for object recognition. While the sparsity of in-

terest points and their resulting computational efficiency are appealing, space-time

interest points suffer the same drawbacks as their 2D analogues, such as failure

to capture smooth motions and tendency to generate spurious detections at object

14
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circular motion figure eight motion

FIGURE 2.1. Two examples of smooth motions where no stable space-
time interest points are detected. The 3D plots of motion through time
were generated using software from [84]. The highlighted ellipsoids show
the detected interest points. All of these detections are non-informative,
caused by boundary interactions between the arm and the edge of the
frame. By contrast, our volumetric features are scanned over the video
sequence through space and time, and can accurately recognize such mo-
tions.

boundaries. They rely on expressing the local region around an area of interest

using representations that are robust to geometric perturbations and noise, yet dis-

tinctive enough to reliably identify the local region. However, these techniques rely

on the assumption that one can reliably detect a sufficient number of stable interest

points in the video sequence. For space-time interest points this means that the

video sequence must contain several instances of motion critical events — regions

where an object rapidly changes its direction of motion — such as the reciprocating

path traced by a walking person’s shoe. Unfortunately, these techniques fail to de-

tect useful interest points in many common situations where the motions contain

no sharp extrema, such as those illustrated in Figure 2.1. Space-time interest points

are also frequently triggered by the appearance of shadows and highlights in the

video sequence, as shown in Figure 2.2. These unstable “events” are sensitive to

lighting conditions and can reduce recognition accuracy for the action of interest.
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FIGURE 2.2. Space-time interest points are often found on highlights and
shadows. These points are sensitive to lighting conditions and reduce
recognition accuracy. This observation motivates our decision to apply
volumetric features to the motion vectors rather than to the raw pixels.

4. Pose Tracking

Methods based on tracking process the video frame-by-frame and segment

an object of interest from background clutter, typically by matching the current

frame against a model. By following the object’s motion through time, a trace

of model parameters is generated; this trace can be compared with that of the

target spatio-temporal pattern to determine whether the observed event is of in-

terest. We use a view-based approach that does not explicitly track these model

parameters. Therefore, we are able to generalize to human, animal, or mechani-

cal actions without prior models of these objects. Tracking-based approaches can

incorporate existing domain knowledge about the target event in the model (e.g.,

joint angle limits in human kinematic models) and the system can support online

queries since the video is processed a single frame at a time. However, initializing

tracking models can be difficult, particularly when the scene contains distracting

objects. And while recent work has demonstrated significant progress in cluttered

environments [110], tracking remains challenging in such environments, and the

tracker output tends to be noisy. An alternate approach to tracking-based event

detection focuses on multi-agent activities, where each actor is tracked as a blob

and activities are classified based on observed locations and spatial interactions

between blobs [9,68,72,86,137]. These models are well-suited for expressing activ-

ities such as loitering, meeting, arrival and departure; the focus of our work is on

finer-grained events where the body pose of the actor is critical to recognition.
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5. Baseline Comparisons

Our goal is to detect visual events in videos. While there are many proposed

techniques for action classification in videos, many of them assume that the actor is

well segmented from the background [16, 152]. Therefore, they can not be used as

a baseline for comparison in real world videos. The task is further constrained in

that the algorithm must work with as few as one training example. Therefore, we

selected one shape-based and one flow-based algorithm for comparison. We de-

scribe their basic matching approach and how we implemented them. The results

of these baseline algorithms are discussed in Chapter 5.

5.1. 3D Chamfer Matching

Chamfer distance matching is a classic technique for recognizing shapes in im-

ages. It was first proposed for 2D shape matching by Barrow et al. [12]. It was later

improved and generalized by Borgefors [20], Olson and Huttenlocher [106], and

Gavrila [61], amongst others. It is still being used extensively for pedestrian detec-

tion [62, 87, 118] and general shape recognition [131]. Closely related to Chamfer

distance transform is the Hausdorff distance metric [116]. In addition to 2D shape

matching, it could also be used to match 3D shapes [112,113]. Pedestrian detection

can be seen as a special case of human event detection, where people are walking in

an upright position. Therefore, we compare our proposed event detection method

to 3D Chamfer distance matching.

The distance transform is calculated by first running the Canny edge detec-

tor [23] on each frame in the video sequence.1 We then calculate a 3D distance

transform with time being the third dimension. Figure 2.3 illustrates the distance

transform calculated on a video clip with a hand-wave event. In the transform

image, dark areas represent larger distance to the original edge image. Notice the

gradual fall-off of the distance transform. The soft boundaries give it more robust-

ness to small deformations between the template and the target video.

1It would be interesting to experiment with other edge detectors as well [47, 93, 99, 129].
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Video Edges Distance Transform

FIGURE 2.3. Example of Chamfer distance transform on a hand-wave event.

5.2. Flow Consistency Matching

Shechtman and Irani proposed a flow-based method for matching actions in

videos [119]. Instead of explicitly computing the optical flow of a pixel, they showed

a way to calculate the flow correlation between two video volumes. Given a sin-

gle video template, they can find actions such as spinning, diving, or clapping in

real-world videos. By scanning the template across all locations in space and time

and thresholding on the correlation distance, we can detect all instances of the ac-

tion in the video. Using a similar notation as Shechtman and Irani, we review the

details of their algorithm. Let P be a small, e.g., 7 × 7 × 3 space-time patch in the

video. We define the space-time gradient as ∆Pi = (Pxi , Pyi , Pti) for each point in

P (i = 1 . . . n). We define the space-time Harris matrix M as follows (see S-I [121]

for further details):

(2.1) M =

 ∑
P 2

x

∑
PxPy

∑
PxPt∑

PyPx
∑

P 2
y

∑
PyPt∑

PtPx
∑

PtPy
∑

P 2
t

 .

We further define M♦ to be the upper left minor on M :

(2.2) M♦ =
[ ∑

P 2
x

∑
PxPy∑

PyPx
∑

P 2
y

]
.

A space-time patch P contains multiple motions if there is a rank increase be-

tween M♦ and M , or a single motion if there is no rank increase. Because the local

space-time patches are small, we can assume that most patches have only one mo-

tion. Suppose there are two space-time patches P1 and P2 where M1 and M2 are

the space-time Harris matrices of two patches, respectively. Determining whether

the two patches have inconsistent motion is equivalent to determining whether
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the concatenated patch P12 has multiple motions. This is straightforward since

M12 = M1 +M2. Ideally, one would like to calculate the rank-increase measure ∆r,

where

(2.3) ∆r = rank(M)− rank(M♦),

which one can do by calculating the number of non-zero eigenvalues of the matri-

ces. Due to noise, the eigenvalues are never exactly zero, and therefore Shechtman

and Irani defined a continuous rank-increase measure ∆r̃ where

(2.4) ∆r̃ =
λ2 · λ3

λ♦1 · λ♦2
=

det(M)
det(M♦) · λ1

and λi is the ith largest eigenvalue of M . Since finding the eigenvalues of a matrix

is time consuming, Shechtman and Irani approximated λ1 by the Frobenius norm

of M . The approximate continuous rank-increase measure ∆r̂ is therefore

(2.5) ∆r̂ =
det(M)

det(M♦) · ‖M‖F
,

where ‖M‖F =
√∑

M(i, j)2. The local inconsistency measure is defined as

(2.6) m12 =
∆r12

min(∆r1,∆r2) + ε
.

To calculate the matching distance between the template T and a video V at a

particular location l = (x, y, t) , we sum m12 at all locations where the template

and the video overlap. We define the flow matching distance as

(2.7) dF (T, V ; l) =

∑
i∈T,j∈(T∩V ) mij

|T |
.

Because we must sum over the entire template volume at every location, this is a

very time-consuming process. Shechtman and Irani optimized the running time by

doing a hierarchical search and using other techniques to avoid computation. The

only optimization we use is that we use quarter-sized templates on quarter-sized

videos, leading to a sixteen-times speedup. Our baseline implementation does not

do any other optimizations and searches over all pixels. While this is slow to run

in practice, it gives us the highest possible accuracy for this algorithm.
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CHAPTER 3

Efficient Event Detection using Volumetric
Features

1. Introduction

A fundamental limitation of video analysis is the large amount of data that

must be processed. Many sophisticated algorithms have been developed for an-

alyzing images and while spending a second or two per image is perfectly ac-

ceptable, the same algorithm applied to video analysis would be prohibitively

slow.1 For videos captured at thirty frames a second, this would be two orders

of magnitude slower than real time. Recently, Shechtman and Irani proposed an

action recognition technique based on flow correlation (described in Chapter 2 Sec-

tion 5.2) [119]. It demonstrated that correlating flow-based volumetric features is

viable, but their algorithm is computationally expensive. We propose a discrimina-

tive framework for efficient visual detection using volumetric features that runs in

real time. We will propose an extended shape-based framework in Chapter 4 and

discuss robustness issues in detail in Chapters 5 and 6.

Our work is motivated by Viola and Jones’ highly successful face detection

framework [140]. It is very efficient and it could process images at frame rate. We

borrow two main techniques they used for efficiency – simple features which are

fast to compute and a decision hierarchy for early discard of negative samples. We

propose a novel appearance-based framework that employs volumetric features

1Some algorithms, such as mean shift used for image segmentation, could take tens of seconds
per image [30].
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FIGURE 3.1. An example of our detector recognizing the grab-cup action.
Note that the detection volume (shown highlighted) is localized both in
space and time.

for efficiently analyzing video. Applying this framework to the video’s optical

flow, we learn activity detectors that perform event detection in real time. The

framework extends the rectangle features used by Viola and Jones [140] into the

spatio-temporal domain for video analysis. Unlike their follow-up work in pedes-

trian detection in video [141], which uses only two adjacent frames, our volumetric

features span longer time frames. To maintain computational efficiency and build a

real-time detector, we generalize the notion of integral images [140] to an efficient

space-time representation that we term integral videos. These allow us to perform

event detection on video sequences in real time, as shown in Figure 3.1.

Although our system is primarily designed to detect motion events, we have

also extended it to the action classification task, where each video sequence con-

tains several repetitions of a single action. Schuldt et al. [117] propose a technique

that uses local space-time features to classify six human actions (walk, jog, run,

wave, clap, and box) in challenging real-world video sequences. They argue that

global image measurements based on optical flow are unstable when there are mul-

tiple moving objects in the scene, or when the camera is not stationary. We show on

the same dataset used in their work that our technique achieves comparable perfor-

mance in the presence of camera motion, scale variation, and viewpoint changes.

We argue that the same problems that hinder the use of 2D local descriptors for
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object detection in static images also impact spatio-temporal local descriptors. For

example, changes in object or background appearance will affect the location of

the peaks found in spatio-temporal gradients. The trade-off between the stability

of the interest points and the number of points found also exists in this domain.

Because our technique uses dense optical flow measurements, our classifier is not

limited to the sparse information found at peaks in spatio-temporal gradients nor

affected by the instability of those peaks.

2. Volumetric Features

Given a video sequence, our goal is to classify whether an action event occurs

in any of the space-time volumes in the video sequence. This is similar to running

a classifier on all of the sub-windows in a 2D image for object detection. We now

describe our framework for efficient computation of volumetric features. We will

then run a discriminative classifier on these features, as we will describe in detail

in Section 4.

Our framework for extracting volumetric features is general enough that it

can be computed over many types of low level features, for example raw pixel

intensities, spatio-temporal gradients, or optical flow. This framework has been

successfully employed and extended by Laptev and Perez for action recognition

using their own flow- and gradient-based volumetric features [85]. For our task

of event detection, we believe that most of the salient information can be captured

from the optical flow, and that the appearance of the object is less relevant. Initial

experiments using pixel intensities performed poorly, mainly due to changes in

appearance of the actor, the background, and lighting conditions.

This motivates our decision to compute our volumetric features on the video’s

optical flow. First, for each frame we compute its dense optical flow using OpenCV’s

implementation of Lucas-Kanade [3, 92]. We separate the flow into its horizon-

tal and vertical components and compute volumetric features on each component.
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FIGURE 3.2. An example of the stand-up action and its optical flow. We
separate the optical flow into the horizontal (vx) and vertical (vy) compo-
nents. Lighter areas represent flow in the positive direction, while darker
areas represent flow in the other direction.

Let vx(x, y, t) and vy(x, y, t) denote the horizontal and vertical optical flow compo-

nents, respectively, at pixel location (x, y) and time t. Figure 3.2 shows an exam-

ple stand-up action and its corresponding horizontal and vertical flow components.

Even though the flow is very noisy and blurry (with imprecise boundaries), it has

a distinctive pattern that is repeatable across many stand-up actions. Our discrim-

inative classifier, discussed in Section 4, can learn to recognize these patterns and

separate them from other motions.

As shown in the first row of Figure 3.3, our volumetric features consist of one-

box or two-box volumes. The value of the one-box feature is simply the sum of the

pixels within the volume (vx or vy). Correspondingly, the value of a two-box fea-

ture is the difference of their individual sums. Just as in 2D object detection [140],

where one computes multiple rectangle features in a sub-window of the image,

we compute multiple one-box and two-box features in a detection sub-volume, as

illustrated in the second row of Figure 3.3. The horizontal and vertical size of the

volume must be varied to match the size of the object being detected. The temporal

span of the detection volume is both application and motion dependent. It is not

necessary for the time duration of the volume to exactly match that of the motion

to be recognized. Provided that the detection volume encompasses the motion, we
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FIGURE 3.3. The top row illustrates the 3D volumetric features used in
our classifiers. The first feature calculates the volume. The other three
features calculate volumetric differences in X, Y, and time. The bottom row
shows multiple features learned by the classifier to recognize the hand-
wave action in a detection volume.

can achieve satisfactory recognition even if the action is performed at moderately

different speeds (see Figure 3.8). If the training sequences are all aligned correctly

at the start of the motion, the training algorithm described in Section 3 will learn

that the tail ends of the sequences are noisy and thus less discriminative.

In our experiments, the features are computed over a volume of 64×64 pix-

els by 40 frames in time. A time-span of 40 frames is sufficient because we are

interested in detecting short-term events. An exhaustive enumeration of all possi-

ble one-box and two-box features over this volume would number in the billions.

Therefore one must sub-sample the feature space to reduce the set to a reasonable

size for learning. We discretize the space to sample approximately one million fea-

tures in our experiments, which is a large, but manageable set. The smallest feature

occupies a 4×4 pixel by 4 frame spatio-temporal volume.

Summing every pixel for every learned feature would be expensive to com-

pute. Viola and Jones used an integral image to reduce these sums to a few table-

lookups [140]. Similarly, we use an “integral video” data structure to efficiently

calculate the box features described above. This is a direct spatio-temporal gener-

alization of the integral image. An integral video at pixel location (x, y) and time

t is defined as the sum of all pixels at locations less than or equal to (x, y, t). More
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FIGURE 3.4. The volume of this box can be computed from the integral
video with eight array references: e− a− f − g + b + c + h− d.

formally, the integral video iv, is defined as

iv(x, y, t) =
∑
x′≤x

∑
y′≤y

∑
t′≤t

i(x′, y′, t′),

where i(x, y, t) is the pixel value at the original image. In our framework, we com-

pute two integral volumes for the two optical flow components, and use vx(x, y, t)

and vy(x, y, t) in place of i(x, y, t). iv can be easily computed using the following

recurrences:

s1(x, y, t) = s1(x, y − 1, t) + i(x, y, t)

s2(x, y, t) = s2(x− 1, y, t) + s1(x, y, t)

iv(x, y, t) = iv(x, y, t− 1) + s2(x, y, t),

where s1(x,−1, t) = s2(−1, y, t) = iv(x, y,−1) ≡ 0. Clearly, computing the inte-

gral video structure is only marginally more expensive than computing a series

of integral images in a video sequence. We only need to examine the last frame

in an integral video to add a newly captured frame. To compute the one-box fea-

ture shown in Figure 3.4 at any scale, location, or time, only 8 array references to

the integral video structure are needed. Long video sequences could accumulate

large sums that could overflow. Therefore, one must reset the sum periodically to

maintain numerical precision.

3. Learning the Classifier

Since our volumetric features can be computed efficiently, we employ a sliding-

window approach over the video to detect actions. This is an example of a rare-

event detection problem, and fits well in the framework of cascaded classifiers.

We use the direct forward feature selection method of Wu et al. [149] to select a

small subset and arrange them in a cascade for efficient detection. The algorithm
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selects features and their associated thresholds (termed filters), to classify whether

an event occurs in a particular detection volume. The filters are binary classifiers

that vote on the classification of the volume. While we could have used Adaboost

as did Viola and Jones, Wu et al.’s method enables us to train the classifier in a rea-

sonable amount of time despite the much larger set of initial candidate features.

We summarize our implementation below.

Given a set of positive examples P , negative examples N , and features F , we

construct a cascaded classifier that achieves high detection rate on the positive ex-

amples and low detection rate on the negative examples. For each node in the

cascade (to be learned), we randomly choose a set of negative examples N ′ ⊆ N ,

that have been misclassified by the previous stages, where |N ′| = |P |. Based on

P and N ′, we select the optimal threshold θi for each feature fi ∈ F that mini-

mizes the classification error rate independent of the other features. The optimal

threshold for each feature can be found in O(|P | log(|P |)) time by sorting the fea-

ture value of the positive and negative examples. We then iteratively add filters

to the ensemble to maximize its detection rate or minimize its false positive rate.

The decision output of the ensemble is simply the majority vote of the individual

filters. The stopping criteria for a node in the cascade is when its target detection

rate (100%) and false positive rate (less than 20%) are reached, or when it is not

possible to improve its performance by adding more filters. Once the stopping cri-

teria is reached, we eliminate the negative examples that were correctly classified

and train the next node in the cascade using the remaining examples.

While training the cascade, it is critical to have a representative sampling of

the space of negative samples. First, it is very difficult to pre-compute all of the

negative examples. Because the cascade must have a very low false positive rate,

we quickly exhaust all of the pre-computed negative examples after training only

a few nodes. Second, this problem is compounded by our use of three dimensional

features, where the feature space is much larger than the ones used for object de-

tection on images. Sung and Poggio [130] propose a bootstrapping method which

we use to generate more negative examples after training each node. As we train

the new nodes in the cascade, we first run the already-trained cascade on video
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sequences and extract all of the false detections. We use these detections as nega-

tive examples to train the new node, guaranteeing a sufficient supply of negative

examples.

4. Detection

To detect events in a video sequence, we first compute the integral video of the

sequence. We then scan a detection volume over all locations in space and time.

To make the detector work at different scales, we vary the width and height of the

detection volume and the associated filters. This is analogous to varying the size

of the detection window in 2D object detection on images. Our smallest window

size is 64×64 pixels. We slide the position of the window in increments of 1/16 of

the window size, and we increase the window size in increments of 1.25 in scale.

A complication is that different people can perform the same actions at different

speeds. In principle, this would indicate that we should also vary the time scale of

the detection window. However, we chose instead to train the detector on actions

performed at varying speeds and to detect actions using a fixed time scale window.

Section 5.2 confirms that this approach works well in practice.

As with all similar scanning-window type detection systems, there will be

multiple detections at adjacent locations, scales, and time around each “true” event.

One might argue that this is a drawback of such systems, but we use it to our

advantage to increase detection precision. Since we employ a purely discrimina-

tive technique (binary classifier), there is no explicit notion of detection “strength”.

However, the number of detections found in a small area in space-time is indica-

tive of the quality of the detections. In other words, a dense cluster of detections

is likely to indicate a true detection, while isolated detections are more likely to be

false positives. We model this formally as follows, similar to Rosenberg’s work in

object detection [115].

Suppose that our goal is to detect the event E at space-time location L. Let Di

indicate that the detector also detects this event at some nearby space-time location

Li relative to L. Intuitively, the more Di’s that are true, the more likely that the
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event E occurred at L. Given the set of Di’s, we wish to find the likelihood ratio

between the event occurring and the event not occurring at L, and threshold at

some value:
P (EL|{Di . . . Dn})

P (¬EL|{Di . . . Dn})
> T1.

Using the naive Bayes assumption, this is simply

P (D1|EL) . . . P (Dn|EL)
P (D1|¬EL) . . . P (Dn|¬EL)

> T2.

Assuming that P (Dn|¬EL) has identical uniform distribution, this becomes

P (D1|EL) . . . P (Dn|EL) > T3∑
i=1...n

log P (Di|EL) > T4,

which is equivalent to convolving the detections with a kernel that is dependent on

the distribution of Di’s, and thresholding the output. We model this distribution

as a 3D Gaussian kernel with diagonal covariance. We find the peaks of all clusters

that are greater than the threshold and report them as events.

5. Evaluation

The first set of experiments examine our system’s ability to detect and recog-

nize non-periodic events in a long video sequence. Our detector is trained and

tested on real videos with the sit-down, stand-up, close-laptop, and grab-cup actions.

We discuss our system’s robustness to different camera views, scale variations, and

changing speeds at which actions are performed. We also modify our action detec-

tor to do action classification to evaluate our system on existing public data sets. We

compute optical flow vectors using two off-the-shelf algorithms (Gautama et al. [60]

and standard Lucas-Kanade [92]) and achieve similar results.

5.1. Action Detection

We train our system to detect the following four non-periodic actions: sit-down,

stand-up, close-laptop, and grab-cup. The training set consists of four people perform-

ing a total of 60 repetitions of these actions. The test set consists of a different group
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FIGURE 3.5. ROC curves for our event detectors. Note that the sit detector
achieved 86% detection rate with no false positives.

of five people performing 20 repetitions. The ROC curve (see Figure 3.5) is gener-

ated by varying the threshold in the likelihood ratio test. For each action detector,

we measure its false positive rate by running it on 40 minutes of video with moder-

ate amounts of movement where none of these actions occur. The sit-down detector

performs extremely well; it detects 86% of the events with no false positives. The

stand-up detector achieves 90% recall with 0.6 false positives per minute. The close-

laptop detector achieves 78% recall at 0.5 false positives per minute. Finally, the

grab-cup detector achieves 92% recall at only 0.3 false positives per minute. Using

Lucas-Kanade for computing the optical flow, our system runs at thirty frames a

second on 160×120 pixel size videos.

5.2. Analysis

Our detector is trained on the optical flow of the video, and as with all meth-

ods that operate on low level features (as opposed to recovered 3D pose), its per-

formance is dependent on factors such as variations in camera view, the objects’

scale, and the speed at which the actions are performed. First, we investigate how

changes in camera view affect our system. The effects are motion dependent, where

horizontal moving actions are more likely to be distorted than vertical motions as

we pan the camera around the room. We give anecdotal evidence that our system

is robust to modest changes in camera view, roughly within 45 degrees. Our data
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Chair sequence

Laptop sequence

FIGURE 3.6. Our system is trained and tested in different environments
and camera views.

is gathered in uncontrolled office environments with no precise placement of cam-

eras. Figure 3.6 shows two typical frames in the sit and stand sequences, where the

two people face slightly different directions and sit on different chairs.

As described in Section 4, we make our detector scale invariant by adjusting

the size of the detection volume. Figure 3.7 shows the amount of scale variations

in the data, where the variations between training and testing objects are 1-2× for

our data and 1-3× for the KTH dataset. Part of this scale variation is caused by the

fact that we train the detector on 64×64 pixel size videos and test on 160×120 pixel

size videos, and part of the variation is caused by the differences in distance of the

object to the camera as well as camera zoom. The results show that our system is

robust to the scale changes.

Because people perform actions at different speeds, our detector must also be

robust to such variations. Figure 3.8 shows how three people perform the hand-

clapping action at different speeds over 40 frame sequences. The sequences are

shown to be aligned at the start of the motion, which we define to be when the

hands are closed. Note that the actions diverge at the end of the sequences, where

one person’s arms are closed while another’s arms are open. Our classifier auto-

matically learns to ignore the noisy tail ends of the sequences. This is shown at the
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Training (64×64 pixels) Testing (160×120 pixels)

FIGURE 3.7. Examples of the amount of scale changes in our data (2×)
and the KTH dataset (3×). We trained the system using 64×64 pixel size
videos (left) and tested on 160×120 pixel size videos (right).

FIGURE 3.8. This figure shows three people performing the hand-
clapping action at different speeds. Since the beginning of the sequences
are aligned, our classifier learns that this region is more discriminative.
The classifier selects more filters to classify the start of the sequences and
fewer filters to classify the end of the sequences, where they diverge.

bottom of Figure 3.8, where the density of filters is greater near the beginning of

the sequence.
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FIGURE 3.9. One cycle of the hand-wave motion, from the KTH dataset.

5.3. Action Classification

The second set of experiments compares our method against Schuldt et al.’s

method [117] in classifying periodic actions performed in short video sequences.

We use the same training and test sequences as in their paper, which contains eight

people in the training set and nine in the testing. Each person repeats six actions

(walk, jog, run, box, clap, and wave) in each of four scenarios (outdoor, outdoor +

camera zoom, outdoor + change of clothes, indoor). Each video clip, which con-

tains one person performing one action in one scenario, is about twenty seconds

long. Since we designed our detector to recognize aperiodic motion, we manually

segment several instances of each action for training, all starting at the same phase

to be positive examples. For example, we define a simple hand wave action to be

the one shown in Figure 3.9. For each action, we choose random parts of the other

action sequences in addition to the pre-recorded videos to generate the negative

examples. Figure 3.10 shows examples of the first few filters chosen to classify the

hand-wave and boxing motions. It is easy to see that the hand-wave classifier is

quite symmetric, capturing motion on both sides of the body. On the other hand,

the boxing filters are on one side and high, representing the punch thrown by the

boxer. We classify the entire sequence by summing likelihood ratios that pass the

threshold and select the action whose detector reported the highest sum.

Figure 3.11 shows the confusion matrix for these six actions for each technique.

We have an average accuracy of 63% while Schuldt et al.’s is 72%. Our results are

only slightly worse, which is encouraging since our system was trained to detect

a single instance of each action within arbitrary sequences while Schuldt et al.’s

system has the easier task of classifying each complete sequence (containing several

repetitions of the same action) into one of six classes.
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hand-waving boxing

FIGURE 3.10. Examples of first few filters learned for the hand-waving
and boxing actions.

.81 .11 .08 .00 .00 .00

.31 .36 .33 .00 .00 .00

.03 .25 .44 .00 .28 .00
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.84 .16 .00 .00 .00 .00
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(a) Our method (b) Schuldt et al.

FIGURE 3.11. Confusion matrices for (a) our method and (b) Schuldt’s LF
+ SVM method. We have an accuracy of 63% and they have an accuracy of
72%.

6. Limitations

While the proposed volumetric features are very efficient to compute, the frame-

work also has some limitations. Because we use a discriminative classifier, we

require many training examples. Typical algorithms for learning a face detector

require thousands of training examples for good performance [69]. It would be

very difficult to find this many examples to train an event detector. It is much more

labor-intensive to scan and label events in video than in images. A person can

quickly determine whether an image has a face and draw a rectangle around it to

label it. To find a sit-down event, on the other hand, one might need to sift through

hours of video to find a few dozen examples.

34



SECTION 6 LIMITATIONS

FIGURE 3.12. An example of an incorrect detection: the “clapping” mo-
tion shown in top row triggers the “boxing” detector. This is because the
left-to-right motion in the shaded area (caused by the clap) is very sim-
ilar to the motion generated by the extension of the arm in the boxing
action shown in the bottom row. This illustrates the limitation of relying
on motion features alone, as a model of appearance would easily be able
to distinguish between the two actions.

In addition to the manual labor, it is also difficult to train an event detector

due to computation time and memory constraints. We needed to sub-sample the

number of candidate features in order to train the classifier. Our implementation of

Wu et al.’s feature selection algorithm required one gigabyte of memory to train the

classifier [149]. It would be difficult to learn from thousands of training examples

even if we could label them manually.

There is a fundamental limitation of relying exclusively on motion information

for event detection. It does not explicitly take into account the shape of the person.

For example, Figure 3.12 shows an example where a “clapping” motion incorrectly

triggers the “boxing” detector because the left-to-right motion in the shaded area is

the same for both motions, even though they vary considerably in appearance. An

appearance-based detector should be able to easily determine that the grassy area

is not a person boxing. The challenge is to use the right kind of appearance infor-

mation. We believe that appearance in the form of silhouette outlines are useful,

while texture patches are not.

Another limitation of using only optical flow is that a cluttered and moving

background could dominate the motion field. Figure 3.13 shows the an example

hand-wave event and its corresponding optical flow. We see that the strongest

flow occurs in the background due to the moving crowd. A detector that relies on

optical flow alone is likely to fail in this scenario because the only motion caused

by the person is in their arms, which occupy a relatively small area.
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(a) Hand-waving event (b) Corresponding optical flow

FIGURE 3.13. The moving background dominates the optical flow in this
video. Any detector that relies on flow information alone is likely to fail.
The motion induced by arms moving occupies a relatively small area.

These limitations motivate us to explore alternative frameworks for event de-

tection. In the rest of the thesis, we propose a framework for event detection using

as few as one training example. The proposed algorithm incorporates both flow

and shape information in a principled framework. We show good detection results

in cluttered and dynamic environments.

7. Conclusion

We introduced a novel volumetric feature framework for analyzing video by

extending Viola and Jones’ work for static-scene object detection to the spatio-

temporal domain. Applying this framework on the video’s optical flow, we learn

activity detectors that can recognize events in video. We have shown that com-

puting integral videos and box features is only a small constant factor slower than

that of a series of integral images, and therefore we achieve real time recognition

performance. We have demonstrated good performance on detecting non-periodic

motions with low false positive rates on long sequences of video. Despite camera

movements and scale changes, our results on classifying the six actions are compa-

rable to the system by Schuldt et al.

We have successfully shown that object detection in static scenes and activity

recognition in video can be integrated into a common framework. One possible

future direction is to add an appearance model to increase accuracy. At the very

least, this will enable us to differentiate between the clapping and boxing actions
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shown in Figure 3.12 by discriminating between pixels that correspond to a person

rather than the background.
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CHAPTER 4

Volumetric Shape Matching

1. Introduction

We now propose a method for event detection using shape-based features.

This work is motivated by silhouette-based approaches to action recognition by

characterizing the shape of the actor’s silhouette through space-time [16,17,95,152].

Because shape-based techniques ignore texture and other appearance inside the sil-

houette, they are robust to variations in clothing and lighting. They show that the

deformation of a person’s silhouette over time is an important and distinctive fea-

ture for action recognition.

There are two major limitations with silhouette-based approaches. First, they

assume that the silhouettes can be accurately delineated from the background. Sec-

ond, they assume that the entire person is represented as one region. Therefore,

such techniques typically require static cameras and a good background model.

Bend Jumping jacks Jump Two-handed wave

FIGURE 4.1. Example noisy silhouettes extracted using background sub-
traction from the Weizmann dataset.
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FIGURE 4.2. 3D shape of an example hand-wave action. Event detection
is reduced to 3D shape matching of the volumetric shapes extracted from
a video.

Unfortunately, even state-of-the-art background subtraction techniques generate

holes when parts of the actor blend in with the background, or create protrusions

on the silhouette when strong shadows are present. Examples of noisy silhouettes

extracted from background subtraction are shown in Figure 4.1. These artifacts

consequently reduce the accuracy of shape-based action recognition techniques.

We propose a simple yet effective shape-based representation for matching

videos that does not require background subtraction, nor explicit background mod-

els. Event detection is reduced to 3D shape matching of the volumetric regions

found in the video. Figure 4.2 illustrates the 3D shape of an example hand-wave

action. Our shape-based matching consists of spatio-temporal region extraction

and region matching. For region extraction, we employ an unsupervised cluster-

ing technique to segment the video into three-dimensional volumes that are inter-

nally consistent in appearance; we term these “supervoxels” since they are con-

ceptually analogous to superpixels [114]. We observe that real object boundaries

in spatio-temporal volumes typically fall on supervoxel borders, just as superpixel

borders correspond to useful segmentation boundaries [102]. As with all bottom-

up segmentation techniques, we do not expect the region extractor to segment the

entire object as a single region, and thus we err on the side of over-segmentation.

We propose a shape matching technique that works on over-segmented videos.

This is similar in spirit to recent work in shape-guided figure-ground segmenta-

tion [19, 38].
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FIGURE 4.3. Example video and its resulting segmentation. The segmen-
tation is volumetric (3D); we can only show its 2D projection.

To achieve the best performance, we should use flow information in addition

to shape. Therefore, we combine our shape-based method with recent flow-based

techniques and demonstrate improved recognition performance. We discuss the

limitations of shape- and flow-based techniques for event detection and argue that

their complementary nature allows them to mitigate each other’s limitations. To

show the benefits of the combined features, we incorporate Shechtman and Irani’s

flow-based features [119] into our classifier and demonstrate improved perfor-

mance on a challenging event detection task and a standard video classification

task.

The baseline technique proposed in this chapter can recognize events with only

one training example. This is useful in scenarios where we can not quickly acquire

many training examples. For example, if we see a suspicious event in a surveil-

lance tape and we want to recognize other instances of that event, we could train

using the instance that we saw. However, we recognize that having more training

examples will improve performance and the algorithm’s ability to generalize. We

will explore these issues in Chapter 6. We now describe the details of our baseline

shape matching algorithm.
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2. Spatio-Temporal Region Extraction

We first automatically segment the video into 3D spatio-temporal volumes.

An ideal region extractor would not only automatically segment individual ob-

jects in space, but it would also track their motion through time. Stable object seg-

mentation is currently difficult for images [94] and video [143]. Because we want

the region extraction to be general for many types of applications, we use mean

shift [29, 34] to cluster the video into regions. Instead of individually segment-

ing video frames and then linking the regions temporally (which causes unstable

regions), we segment the three-dimensional spatio-temporal volume of pixels cre-

ated by stacking a sequence of frames. The smallest processing unit is a voxel,

taken from a 1 × 1 pixel from one 1 frame. The voxel location and color are used

as features for mean shift. Our method works well despite having used simple fea-

tures because it is not dependent on the precise segmentation of the object from the

background. Figure 4.3 shows an example video frame and its segmentation. We

show only a two dimensional projection although the original segmentation is in

3D. In general, this approach works with any segmentation algorithm. Future work

could explore whether there is benefit from using more sophisticated algorithms.

2.1. Mean Shift

Standard mean shift is an iterative procedure that finds local modes in the

data [58]. Researchers have successfully used it to segment images [34] and video [45,

143]. Wang et al. uses anisotropic kernels to segment video, which produces excel-

lent results for anisotropic shapes. However, their work only focuses on segmen-

tation and the regions were not used for recognition. DeMenthon and Doermann’s

work is similar to ours in that they both segment the video and build a represen-

tation for the regions for recognition. However, the representation consists of only

the cluster modes and does not take into account the shape of the cluster region.

Therefore, it is optimized for full frame descriptions, and not for specific objects or

event descriptions. There is no notion of an “object” in that work.
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X
Y

FIGURE 4.4. Mean shift moves the data points to the modes of the data
density. This figure shows two points moving iteratively to their cluster
centers (X and Y).

Let us describe mean shift in detail. Let fi be a d-dimensional point in a set

of n feature points, f1 . . . fn. To cluster the points, we find the mode near fi using

mean shift. We calculate

y(i,1) = fi(4.1)

y(i,j+1) =
∑n

k=1 fig(||y(i,j)−fk

h ||2)∑n
k=1 g(||y(i,j)−fk

h ||2)
,(4.2)

where j = 1, 2, . . . , with kernel g, typically a Gaussian kernel, and bandwidth

h. The mode yi is the limit of the series, where y(i,j) converges to a fixed point,

as shown in Figure 4.4. As a post-processing step, all data points within some

distance (typically h) of each other are grouped and labeled as one cluster. Note

that this segmentation process only needs to be performed once on the video. The

resulting segmentation can be used to match any template event. Therefore, the

segmentation can be thought as a preprocessing step and it is not a limiting factor

when searching for many events.

2.2. Efficient Region Clustering

One of the limitations with using mean shift to cluster data is that it is com-

putationally intensive. At every iteration, it needs to find the nearest neighbors

for every data point. Near neighbor search, especially in high dimensions, can

be quite slow. Previous work have focused on reducing the cost of near neighbor

search [34, 63, 73], or other methods [151]. Despite all of these efforts, a 640×480

image could take up to a minute to segment [63] and much longer to segment an
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FIGURE 4.5. Effect of using an initial octree clustering prior to mean shift.
Using larger (and thus fewer) octree clusters dramatically decreases the
amount of time needed to for mean shift to segment the video without
significantly decreasing the clustering quality. The amount of time that
mean shift uses without the octree clustering is normalized to 1 (upper
right). The experiments were done on a 160× 120× 15 block of video.

entire video clip. Reducing the number of data points that needs to be clustered

is another method that can reduce the cost of mean shift. A typical 320x240 by 15

frame video clip has over a million data points. It takes about 20 iterations for each

point to converge. Even with an approximately O(log n) algorithm to search for

nearest neighbors, it is still very expensive to do mean shift clustering. Therefore,

we use octrees to perform an initial coarse clustering of voxels that are similar in

color. Each group of voxels is then clustered again using mean shift to find more ac-

curate object boundaries. This enables a factor of 100-1000 speedup in computation

time without significant loss of quality. Figure 4.5 shows the amount of time it takes

to cluster a block of frames, where the timing for the full mean shift computation

is normalized to 1. An example octree clustering output is shown in Figure 4.6. It

would be interesting to explore other optimization techniques to further decrease

the running time [24] or try methods other than mean shift to do the volumetric

clustering.
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Sequence 1 Sequence 2 Sequence 3

Frame

Octrees

FIGURE 4.6. A 2D illustration of the octree clustering on the video. The ac-
tual clustering is done spatio-temporally. Notice that the octree divides re-
gions with high detail, which also have high variance into smaller blocks.
This enables us to adaptively adjust the block size to match the amount
of detail in the scene. The size of the segments used in practice are much
smaller than the ones shown in this figure.

2.3. Hierarchical Clustering

A critical parameter that must be chosen for mean shift, and nearly all clus-

tering algorithms, is the kernel bandwidth size. Intuitively, the bandwidth size

encodes the prior on the size of the objects that should be segmented. A small

bandwidth will correctly segment small objects, but will over-segment large ob-

jects into multiple parts. Conversely, a large bandwidth will correctly segment

large objects, but will incorrectly group small objects together. While there are pro-

posed methods for adapting the kernel bandwidth [33] or automatically choosing

a stable bandwidth based on scale-space theory [45, 89], it is inherently impossible

to choose the correct bandwidth for segmentation without higher-level semantic

knowledge. Therefore, we perform hierarchical clustering using mean shift that

segments the image into a pyramid of region sizes [44]. Because of the small scal-

ing factor of the region sizes, this only increases the number of regions by a small

constant factor, while enabling us to deal with arbitrarily-sized objects. Figure 4.7

shows hierarchical mean shift applied to a video sequence. As expected, larger

regions are extracted with larger bandwidths. At run-time, we search over the hi-

erarchy using the matching algorithm described below.
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Frame Level 1 Level 2 Level 3 Level 4

FIGURE 4.7. Hierarchical mean shift automatically finds differently-sized
regions at various levels of the hierarchy. The bottom level, with the small-
est bandwidth, finds the smallest regions. Larger regions are found at
higher levels of the hierarchy.

3. Volumetric Shape Matching

We present a novel method for matching an action template to an over-segmented

video which accomplishes three goals. First, the algorithm matches on the shape of

the spatio-temporal volume, rather than the pixels in the volume. This is motivated

by the fact that the spatio-temporal “shape” of an action is robust to variations in

an object’s appearance (e.g., an actor’s clothing). Second, the algorithm robustly

matches over-segmented spatio-temporal volumes. In other words, it identifies the

set of supervoxel regions that, when aggregated, best match the given template.

Finally, the method must be computationally-efficient because video data is ex-

tremely large. Because our action representation is composed of three-dimensional

shapes, it would seem straightforward to directly apply algorithms from the 3D

shape matching literature to this task. Unfortunately, most of the existing algo-

rithms cannot efficiently cope with over-segmented regions.

3.1. Proposed Algorithm

Our shape matching metric is based on the region intersection distance be-

tween the template volume and the set of over-segmented volumes in the video.

Given two binary shapes, A and B, a natural distance metric between them is the

set difference between the union and the intersection of the regions, i.e., |A ∪ B \

A ∩ B|.1 We adapt this distance metric to work with over-segmented regions as

1The distance metric D = |A ∪ B \ A ∩ B| is related to the similarity metric S = |A∩B|
|A∪B| with

D = (1− S) · |A ∪B|.
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FIGURE 4.8. Example showing how a template is matched to an over-
segmented volume using the Region Intersection method. The template
is drawn in bold, and the distance (mismatch) is the area of the shaded
region.

follows. Given a template T , we slide the template along the x, y, and t dimen-

sions of the video. Consider a candidate volume V with the template at some

location l = (x, y, t). Because the video is over segmented, V could be composed

of k regions Vi such that V = ∪k
i=1Vi. Consider how one might calculate the voxel

intersection distance between the template T and a subset of regions of V . Since ev-

ery region Vi is either selected or not selected, a naive approach would enumerate

all possible 2k subsets of V , calculate the voxel intersection between the template

T and each subset, and choose the minimum. We propose a fast method for both

identifying the subset of V that minimizes the distance and for calculating this dis-

tance.

There are four cases that we must consider when deciding whether a region Vi

belongs in the minimum set, where the minimum set Ŝ is defined as

(4.3) Ŝ =
⋃
i∈S

Vi,

and S is defined by

(4.4) argmin
S⊂{1,...,k}

|((∪i∈SVi) ∪ T ) \ ((∪i∈SVi) ∩ T )|.

In Figure 4.8, we have drawn the template T in bold and overlaid it onto the can-

didate volume V , which is segmented into 11 regions V1 . . . V11. The set of regions

that minimizes the distance to the template is {V4, V5, V7, V8}, and the actual dis-

tance is the area occupied by the shaded regions. By inspection, it is obvious that

removing any region from the minimal set or adding any region not already in
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the minimal set, will increase the distance. The four cases of region intersections

that we must consider are as follows. If a region Vi is completely enclosed by the

template, such as V5, then it is always contained in the minimal set. Similarly, if a

region Vi does not intersect with the template, such as V11, then it is never contained

in the minimal set. The two interesting cases are when Vi intersects the template,

such as V2 and V4. Let us consider V2; it is obvious that excluding V2 minimizes the

distance between the template and the minimal set. Similarly, including V4 in the

minimal set minimizes the distance. Intuitively, we should include a region if there

is a large overlap between the region and the template. More formally, the distance

between the template T and the volume V at location l is defined as

d(T, V ; l) =
k∑

i=1

d(T, Vi; l),(4.5)

where

(4.6) d(T, Vi; l) =
{

|T ∩ Vi| if |T (l) ∩ Vi| < |Vi|/2
|Vi − T (l) ∩ Vi| otherwise,

where T (l) denotes the template T placed at location l. This distance metric is

equivalent to choosing the optimal set of over-segmented regions and computing

the region intersection distance. It is important to note that once the relative po-

sitions of the template T and the candidate volume V are specified, each of the

regions Vi can be considered independently. In other words, whether Vi is in the

minimal set is independent of any of the other regions V{1...k}\i. The implementa-

tion details of the shape matching algorithm are summarized in Algorithm 1.

As we slide the window across the video, we mark all locations with a distance

less than some threshold θ as a match. We show next that the distance computa-

tions at adjacent locations can be updated with only a small update cost.

3.2. Speed Optimizations

Because we slide the template over the video volume in small increments, there

is significant overlap and redundant computation in successive calculations of the

distance function. A naive implementation would require O(|T |) time to calculate
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Input: C: 3D array of region labels for each voxel.
S: Array containing the size of each region.
N: Number of regions.
L: Location to calculate matching distance.
T: Array of points corresponding to the template shape.

Output: Matching distance

// overlap[i]: amount of overlap between T and region Vi.
overlap = {0}N ;

foreach p in T do
increment(overlap[C[~L + ~p]]) ;

end

dist = 0 ;

for i = 1 . . . N do
dist += min(overlap[i], S[i] - overlap[i]) ;

end

return dist ;
Algorithm 1: Shape matching algorithm.

FIGURE 4.9. When we shift the template to a nearby location, only the
shaded area changes. Therefore, we only need to update an area that is
proportional to the surface area of the template, rather than the volume of
the template. This dramatically decreases the running time during re-
trieval.

the distance function at each location. Figure 4.9 illustrates the template at two ad-

jacent horizontal positions. Once we have computed the distance at one location,

we only need to examine the shaded region to update the distance at the next lo-

cation. We define the shaded region as follows. Let T ′ be the set of points for the

template at location L′. Let T be the set of points for the template at a new location

L. The shaded region that needs to be updated is T ∪T ′ \T ∩T ′. We further divide
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Input: C: 3D array of region labels for each voxel.
S: Array containing the size of each region.
N: Number of regions.
L: New location to calculate matching distance.
overlap: Array of amount of overlap between T and region Vi at
location L′.
TP : Positive update region.
TN : Negative update region.

Output: Matching distance

foreach p in TP do
increment(overlap[C[~L + ~p]]) ;

end

foreach p in TN do
decrement(overlap[C[~L + ~p]]) ;

end

dist = 0 ;

for i = 1 . . . N do
dist += min(overlap[i], S[i] - overlap[i]) ;

end

return dist ;
Algorithm 2: Updating the shape matching distance as we move the tem-
plate to a new location nearby.

the update region into two subregions, the positive update region

(4.7) TP = (T ∪ T ′) \ T ′,

and the negative update region

(4.8) TN = (T ∪ T ′) \ T.

The number of voxels that need to be updated is proportional to the surface area of

the template, rather than the volume of the template. In practice, this optimization

results in approximately an order of magnitude speedup for the matching algo-

rithm. The algorithm is summarized in Algorithm 2.

3.3. Modeling Segmentation Granularity

A potential problem with our method is that highly-textured regions of the

video can generate many false positives. Figure 4.10 shows example false positives
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FIGURE 4.10. False positive in cluttered video regions. Because of the ex-
treme over-segmentation of these regions, the tiny regions can be arbitrar-
ily grouped to match any template.

of a tennis serve in a crowded region of a video segment. This is because such

volumes consist of many tiny supervoxels that can be appropriately aggregated

to match the given template. More formally, recall that the maximum error that a

region Vi can contribute to the distance between the template and the volume is

|Vi|/2. Therefore, as V is segmented into more regions, the smaller the size of each

region, and therefore the more likely that some portion of V will match any tem-

plate. In the limiting case, when V is segmented into |V | unit-sized supervoxels,

then the distance between V and any template is 0, since any volume can be triv-

ially constructed from 1×1×1 voxels. This motivates the need for a regularization

term that balances the template match by the target volume’s inherent flexibility.

This is illustrated in Figure 4.11, where we match an arbitrary template (a) to two

video volumes with a normal segmentation (b) and an extreme over-segmentation

(c). The expected distance between the template and the extreme over-segmented

video is much smaller than the distance to the typically-segmented video, as illus-

trated in (d) and (e). We propose a normalization model as follows.

We divide the distance metric d(T, V ) by a normalization term so that it be-

comes

(4.9) dN (T, V ; l) =
d(T, V ; l)

ET [d(·, V ; l)]
,

where the denominator is the expected distance of a template to volume V , aver-

aged over T , the set of all possible templates that fit within V . Essentially, this is

an estimate of the match confidence. Enumerating through all possible templates

to compute the expected value may seem intractable at first, but we show that it is
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(a) Template

(b) Normal segmentation (c) Extreme over-segmentation

(d) Distance on normal segmentation (e) Distance on extreme over-segmentation

FIGURE 4.11. Illustration of how the expected distance between an arbi-
trary template (a) to a typically-segmented video (b) is much larger than
the distance to an extreme over-segmented video (c). This motivates the
need for a regularization term in the distance metric.

possible to compute this efficiently. Writing out the definition of the expectation,

we have

ET [d(·, V )] =
1
|T |

∑
τ∈T

d(τ, V )(4.10)

=
1
|T |

∑
τ∈T

k∑
i=1

d(τ, Vi), by Equation. 4.5(4.11)

=
1
|T |

k∑
i=1

∑
τ∈T

d(τ, Vi), by independence.(4.12)

For each region Vi, we enumerate all possible templates that have j pixels inter-

secting the region, which is 2|V |−|Vi|
(|Vi|

j

)
. Then, we calculate the distance between

the region and the template which is either the area of the intersecting region or

the non-intersecting region, whichever is smaller. Therefore, the expected distance
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is equal to

ET [d(·, V )] =
1

2|V |

k∑
i=1

|Vi|−1∑
j=1

2|V |−|Vi|
(
|Vi|
j

)
min(j, |Vi| − j)(4.13)

=
k∑

i=1

1
2|Vi|

|Vi|−1∑
j=1

(
|Vi|
j

)
min(j, |Vi| − j).(4.14)

This can be simplified to (see Appendix B):

(4.15) ET [d(·, V )] =
k∑

i=1

f(|Vi|), where

(4.16) f(n) =

{
n
2 −

1
2n

(
n

n/2

)
(n/2), n even,

n
2 −

1
2n

(
n−1

(n−1)/2

)
n, n odd.

There exists a simple recurrence for computing f(n) (Eqn. 4.16) exactly. Let f(n) =

n/2− T (n). If n is even, then T (n) is defined as

(4.17) T (n) =
1
2n

(
n

n/2

)
(n/2).

The recurrence can be calculated as

T (n + 2) =
n + 1

n
T (n)(4.18)

T (2) = 1/2.(4.19)

If n is odd, then T (n) is defined as

(4.20) T (n) =
1
2n

(
n− 1

(n− 1)/2

)
n.

The recurrence can be calculated as

T (n + 2) =
n + 2
n + 1

T (n)(4.21)

T (1) = 1/2.(4.22)

To get an intuition of how this normalization function behaves, f(n) is illus-

trated in Figure 4.12 as a log-log plot. As n increases, f(n) approaches n/2 as ex-

pected. Note that Equation 4.15 depends only on the size of the regions Vi and

therefore can be pre-computed. At run-time, we only need to perform one table

look-up for each supervoxel in the volume.

Not only does this algorithm automatically filter out cluttered backgrounds, it

also chooses the best level in the segmentation hierarchy against which to match.

53



CHAPTER 4. VOLUMETRIC SHAPE MATCHING
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FIGURE 4.12. Illustration of Equation 4.16 on the size of the volume |V | in
a log-log plot. The expected error contribution, f(n), approaches n/2 as n

increases.

Objects that are under-segmented will not match the template at all. And although

over-segmented objects will match the template, they will be penalized for hav-

ing too many regions. The “correct” segmentation level, the one that least over-

segments without under-segmenting, will get the highest score.

4. Complementary Nature of Shape and Flow

We highlight some fundamental limitations of shape- and flow-based features

and how these can be overcome when the two feature types are combined. Previ-

ous work that employs shape features, whether in images or video, typically ex-

tracts the outline or silhouette of the object. This raw shape is then frequently rep-

resented as a binary image. While silhouettes are robust to appearance variations

due to internal texture and illumination, they are unable to represent the internal

motion of an object. For example, a textured rolling ball is indistinguishable from

a static ball based on shape alone — yet could easily be recognized based on flow.

Figure 4.13 shows a portion of a hand-clap action sequence. When viewed from

the front, the silhouette changes very little, although there is a distinctive change

of flow at the hands. Therefore, one would expect the addition of flow features to

help in cases where an action cannot be distinguished from its silhouette alone.
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FIGURE 4.13. Notice how the silhouette stays constant during this part of
the hand-clapping event. More generally, a fundamental limitation of such
shape features is that they cannot represent motion inside the silhouette.

Conversely, some actions cannot be distinguished using flow-based features

alone. While such features explicitly model the motion of an object, they only im-

plicitly model the object shape; more importantly, the shape of stationary parts of

the object are ignored. For example, as observed in Chapter 3 Section 6, in the KTH

action recognition database, the flow of the boxing action looks very similar to that

of the hand-clap (see Figure 3.12). This is because the horizontal trajectories of the

arms are similar and the (stationary) body of the actor is invisible; thus the outward

motion of the punch matches the inward motion of the clap. However, a shape-

based feature could trivially distinguish between the person and the grassy back-

ground and disambiguate these actions. Therefore, we argue that shape- and flow-

based features are complementary and should be used in conjunction for action

recognition. We believe that we are the first to propose a volumetric approach that

combines these two feature types and show their effectiveness on non-background

subtracted videos.

Despite the normalization, our shape-based correlation algorithm can some-

times generate false positives on highly-textured regions, which are finely seg-

mented (Figure 4.14a). However, we can obtain accurate flow measurements on

these regions and a flow-based algorithm such as Shechtman and Irani’s flow con-

sistency [119] can filter out these false positives. Similarly, uniform regions pose

an analogous problem for flow-based algorithms because these regions have inde-

terminate flow, and therefore can match all possible templates. Consequently, we

add a pre-filtering step to Shechtman and Irani’s technique to discard uniform re-

gions by thresholding on the Harris score of the region. Even with this filtering,
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(a) shape fp (b) flow fp

FIGURE 4.14. False positives on found using a) shape correlation and b)
flow consistency correlation. The false positives using shape features oc-
cur on highly textured regions, whereas the false positives using flow fea-
tures occur on uniform regions. Using both features filters out each other’s
false positives.

we observe that the majority of false-positives occur in low-textured regions (Fig-

ure 4.14b). Fortunately, our shape-based correlation works well on those regions

and can be used to filter out the false positives. We quantify the benefits of com-

bining shape and flow in Section 6.

5. Detection

This section describes a baseline technique for detecting events using spatio-

temporal shape and flow correlation. This technique is not scale invariant; stan-

dard techniques such as scanning a pyramid of scales can be applied. A more

powerful parts-based method for detection is described in Chapter 5. Suppose first

(for now) that we have a template of a single instance of an action of interest. To

find other instances of this action in a video clip, we can slide the template over the

entire video and measure the correlation distance at all locations in space and time.

We use Shechtman and Irani’s flow correlation method (described in Chapter 2

Section 5.2) to measure the flow matching distance [121]. More formally, for each

location l = (x, y, t) in the video, we position the template T at l and measure the

shape and flow correlation between T and the video. We use a linear combination

of the shape and flow correlation distance as follows:

(4.23) d(T, V ; l) = dN (T, V ; l) + αdF (T, V ; l) from Eqns. 4.9 and 2.7,
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FIGURE 4.15. The minimum correlation distance of two templates on a
hand-waving action. Notice the cycles in the action, where the distance is
minimized when the phase of the template matches that of the action.

where α is the relative weight between the flow and shape distances. We use α =

0.2 for all experiments. Thresholding the correlation distance and finding the peaks

give us locations of potential matches. Figure 4.15 shows the minimum correlation

distance of a hand-wave action projected on a time axis. Note that the cyclic nature

of the action and the distance is minimized when the phases of the template and

the action match. Although the action in the video is periodic, our algorithm does

not assume periodic motion and thus we can detect all instances of the event and

localize them in both space and time. The advantage of using single templates for

matching is that minimal human effort is required to bootstrap the system. This

works well in scenarios where we have not trained the system on a large collection

of template actions or where a human operator is interactively searching for novel

events in large video databases. In such scenarios, the user can manually adjust

the threshold to balance the detection and the false positive rates. We will show in

Chapter 6 on how to generalize to multiple templates.

6. Evaluation on Tennis Dataset

We now illustrate how our baseline algorithm performs on an event detection

task, where we try to detect and localize an event in space-time. For our first exper-

iment, we used a real life video — a Wimbledon 2000 match between Agassi and

Rafter [2]. This experiment is difficult because the video contains a lot of clutter
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FIGURE 4.16. Comparison of various features on 30 minutes of tennis
video in an event detection task.

(e.g., Figure 4.14a) and only a few instances of the actions are present in the video.

We manually selected an example of Rafter serving (Figure 4.18a) and used it as

a template to find all other instances of him serving in the first 30 minutes of the

video. The template was scanned over all spatio-temporal locations and we kept

the best match for each frame, assuming the action only occurs at most once per

frame. There were 28 instances of the serve and we considered a detection to be a

positive match if there was at least 75% overlap between the detection bounding

volume and the manually-labeled event volume. Figure 4.16 shows the results of

using various matching methods, where we varied the matching distance thresh-

old to generate the precision-recall curve. “Shape Baseline” is the performance of

our shape-based region intersection algorithm without normalizing for segmen-

tation granularity. “Shape (normalized)” normalizes for the segmentation granu-

larity and performs markedly better. “Flow” represents the results from our im-

plementation of Shechtman and Irani’s algorithm. In this experiment, flow-based

correlation performs better than shape-based correlation. This is partly due to false

positives matching on finely-segmented crowd scenes, despite the normalization.

Combining both features using a weighted sum of the detection scores, we achieve

the best results with 80% recall at 80% precision. The two features remove each

other’s false positives and results in a much higher precision. Qualitative exam-

ples of other actions we can detect are illustrated in Figures 4.17 and 4.18.
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(a) (b)

FIGURE 4.17. Hand-wave detections in a cluttered scene and with a mov-
ing background.

7. Comparison to Standard Datasets

Although our goal is to detect and locate events, we adapted our algorithm to

perform video classification on the KTH action database to compare against other

algorithms. The KTH actions database contains 25 people performing six actions in

four different scenarios [117]. Each video clip contains one person performing an

action multiple times. This dataset is difficult because it contains drastic lighting,

clothing, and scale changes (Figure 4.19). Different people also perform the actions

at different speeds and orientations. The videos were recorded using a handheld

camera, which prevents simple background subtraction techniques from reliably

extracting the person. The goal of the experiment is to classify the video clips into

one of the six actions — walking, jogging, running, boxing, clapping, and waving.

Classifying the entire video simplifies the training and recognition process because

we do not have to label each instance of the action; we only need to label the se-

quence as a whole.

To classify the video sequences, we first classify the individual frames and

then we assign the class label with the highest frame count to each video clip.

While there are a number of classifiers that one could use to classify the frames,

we chose to use SVM because of its reported success in a wide range of applica-

tions. We train the SVM (using LIBSVM [25] and an RBF kernel) as follows. Given

a candidate video at some space-time location, we correlate it with a database of

n template actions. This gives us a feature vector of size n if use our region inter-

section algorithm, or 2n if we also include flow features. Each dimension of the
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a) serve action

b) run right action

c) return serve action

FIGURE 4.18. Illustration of actions detected in a tennis sequence. Top
row: templates; Bottom row: example detections.
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(a) (b)

FIGURE 4.19. Notice the difference in scale between some videos in the
KTH dataset. The contrast is also low making segmentation difficult.

feature vector corresponds to a distance between the candidate video location and

a template action.

Following the methodology of Niebles et al. [103], we use leave-one-out cross-

validation grouped by person to measure the classification accuracy. To generate

the training data, we manually label 4 templates for each action. Each template

contains one cycle of the action, typically 15 to 30 frames long. The videos used to

extract the templates are removed from the cross-validation set. For each template

ti, we scan over all space-time locations in a video clip. For each frame of the video,

we extract the best correlation score for each template. There is one feature f per

frame, where fi is the best correlation score to template ti. During classification,

each frame in a video clip is classified as one of the six actions and votes for the

label of the entire video clip.

Figure 4.21 shows the confusion matrix on the KTH dataset. The result is gen-

erated using both shape and flow features and correlated against two templates

per action. We achieve an accuracy of 80.9%, which is comparable to the most re-

cent studies on the same dataset (Table 4.1). Unfortunately, we can only loosely

compare the results in Table 4.1 because different groups employed different ex-

perimental methodologies. Like the other studies, we find that there is confusion

mainly between walk-jog-run and box-clap-wave. As expected, running is more

easily confused with jogging than with walking. Boxing is also more easily con-

fused with clapping (horizontal motion) than waving (vertical motion). Figure 4.21

shows the effect of using different features and training on different number of
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FIGURE 4.20. KTH Actions confusion matrix. Walk, jog, and run actions
are most easily confused. Box, clap, and wave actions are sometimes con-
fused.
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FIGURE 4.21. Results on the KTH actions dataset. Training on more tem-
plates improves results with diminishing returns. The combined shape
and flow features perform better than either alone, especially with few
training examples.

templates. We are able to generalize the actions and increase the classification per-

formance by training on more templates, but with diminishing returns. On this

dataset, shape-based correlation performs better than the flow-based correlation,

and performance improves slightly when we combine the two features.
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TABLE 4.1. Although our method is not specifically designed for whole-
video classification, our results on the KTH actions dataset [117] are com-
petitive with recent studies.

Related work Accuracy
Our Method (shape + flow) 80.9%
Flow only from Chapter 3 [79] 63.0%
Schuldt et al. [117] 71.7%
Dollar et al. [46] 81.2%
Niebles et al. [103] 81.5%
Jiang et al. [76] 84.4%

8. Limitations

Although our baseline technique works well, it is still limited because it is

trained from one template. Due to the variations in how people perform an ac-

tion, we would like to train on many examples of an action. Similarly, our base-

line algorithm is not scale nor view invariant. We would need to scan over many

(spatio-temporal) scales and train from multiple viewpoints. Instead of scanning

over many templates, a possible solution to improve the generalizability of a sin-

gle template is to make it deformable. Our baseline technique only scans rigid

templates. These and additional issues are further explored in Chapter 5.

A limitation of searching over many templates is the speed of the algorithm.

We initially chose mean shift because of its high accuracy and success in image

segmentation. However, since our algorithm does not require an exact segmenta-

tion and since objects could be over-segmented, we could replace mean shift with

other faster segmentation algorithms [10, 15, 24, 122]. Another way to improve the

matching aspect is to do a coarse-to-fine approach in matching. This is essentially

an early discard technique that attempts to avoid computation on in which we are

confident that it could not match. On areas where there are possible matches, we

perform more higher precision calculations to determine the match. These ideas

are explored in related work for shape [38] and flow descriptors [119].
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9. Conclusion

We described our baseline method for event detection using volumetric shape

matching. The main contribution of this part is that we are able to do shape match-

ing on videos without having to rely on a foreground mask. Unlike previous work

that extracted the foreground mask by background subtraction, and thus requiring

videos with static backgrounds, we can match volumetric shapes on automatically

segmented videos. First, we segment the video volumetrically using mean shift.

The result is an over-segmentation of the video that tries to preserve object bound-

aries, by may cut an object into many segments. We then proposed a shape match-

ing distance based on region intersection that works on over-segmented videos. To

avoid false positives in finely segmented regions, we introduced a normalization

term that accounts for the segmentation granularity of the video. We further com-

bined our shape descriptor with Shechtman and Irani’s volumetric flow matching

technique for improved performance. The baseline algorithm shows good results

in the Tennis dataset and is comparable to other algorithms on the standard KTH

dataset.
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Parts Based Recognition

1. Introduction

We propose a parts-based shape matching technique that improves the gener-

alization power of our baseline technique described in the previous chapter. The

main strength of the baseline algorithm is that it can perform shape matching

without precise object masks in the input video [16, 17, 152]. Therefore, we can

use shape information extracted from automatic volumetric segmentation instead

of relying on background subtracted foreground masks. Further, using template-

based matching enables search with only one training example. However, like all

template-based matching techniques [17,119], it suffers from limited generalization

power due to the variability in how different people perform the same action. A

standard approach to improve generalization is to break the model into parts, al-

lowing the parts to move independently, and to measure the joint appearance and

geometric matching score of the parts. Allowing the parts to move makes the tem-

plate more robust to the spatial and temporal variability of actions. A parts-based

model allows us to improve generalization even with a single training template.

While we do not have a fully and arbitrarily deformable model, the parts-based

model is one step in making the model more deformable. This idea has been stud-

ied extensively in recognition in both images [146] and video [18, 120]. Therefore,
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(a) Whole (b) Parts

FIGURE 5.1. To generalize the model and allow for more variability in the
action, we break the action template (a) into parts (b). The model can be
split in both space or time to generate the parts.

we extend our baseline matching algorithm by introducing a parts-based volumet-

ric shape-matching model. Specifically, we extend the pictorial structures frame-

work [53, 56] to video volumes to model the geometric configuration of the parts

and to find the optimal match in both appearance and configuration in the video.

2. Parts Based Shape Descriptor

A key feature of our baseline algorithm is that it can perform shape matching

on over-segmented regions. However, it assumes that the template consists of a

single region, and that only the video is over-segmented. Given a single template,

one must use prior knowledge to break the template into parts. For events that

consist of human actions, these parts typically correspond to the rigid sections of

the human body, and therefore the process is straightforward. We illustrate how

one might manually break the hand-wave template into parts, as shown in Fig-

ure 5.1. We note that, for this action, only the upper body moves while the legs

remain stationary. Therefore, a natural break should be at the actor’s waist. Such a

break would allow the template parts to match people with different heights. An-

other natural break would be to split the top half of the action temporally, thus

producing two parts that correspond to the upward and downward swing of the

hand-wave action. This allows for some variation in the speed with which people

swing their arms. It is important to note that, just like the whole template, the parts

are also spatio-temporal volumes and could represent a body part in motion.
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FIGURE 5.2. Illustration of how we artificially cut the candidate volume
to match how the whole template is split into its constituent parts. The
candidate volume is dynamically cut as we slide the template parts along
it. The cutting process is very efficient.

We now generalize our baseline algorithm (in Chapter 4) and describe how

we match template parts to over-segmented regions. Consider the oval template

that has been split into two parts in the toy example of Figure 5.2. Although the

whole template matches the oval (V1 ∪ V2 ∪ V3) in the candidate volume, the parts

would match poorly because the over-segmentation is inconsistent with the bound-

aries between the two parts. For example, our baseline algorithm would not match

Part 1 to V1, nor Part 2 to V3. In general, there is no reason to believe that they

should match because some of the part boundaries are artificially created (as shown

by the dashed lines) and do not necessarily correspond to any real object bound-

aries. Our solution is to introduce additional cuts by using a virtual plane that is

aligned to and moves with the template part. For example, as we slide Part 1 across

the video, we subdivide all the regions that intersect with the cutting plane placed

on the right edge of the Part 1. V2 is divided correctly, and Part 1 now matches

the union of V1 and the shaded region of V2. For convenience, we only use cut-

ting planes that are aligned with the principal axes, but in general the plane can

be oriented in any direction. By pre-computing the cuts and with judicious book-

keeping, the parts-based matching can be performed with the same computational

efficiency as our baseline shape-based matching algorithm.
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3. 3D Pictorial Structures

We now describe how the framework of pictorial structures [53, 56] can be ex-

tended to parts-based event detection in video. Intuitively, each part in the tem-

plate should match the video well, and the relative locations of parts should be

in a valid geometric configuration. More formally, consider a set of n parts that

form a tree in a graph. Adopting a notation based on Felzenszwalb and Hutten-

locher [53], let the part model be specified by a graph G = (P,E). Template part

Ti is represented as a vertex pi ∈ P and the connection between parts pi and pj

is represented as an edge (pi, pj) ∈ E. The configuration of the parts is specified

by L = (l1, . . . , ln), where li = (xi, yi, ti) is the location of part Ti in the candidate

volume V . Let ai(li) be the correlation distance between the template part Ti and

the video at location li. Let dij(li, lj) be the distance in configuration between parts

Ti and Tj when they are placed at locations li and lj , respectively. We want to find

the optimal location of all of the parts, L∗, by minimizing the energy function:

(5.1) L∗ = argmin
L

 n∑
i=1

ai(li) +
∑

(vi,vj)∈E

dij(li, lj)

 .

The correlation distance a() is a linear combination of our normalized distance

metric (Equation 4.9) and Shechtman and Irani’s flow-based correlation distance

(Equation 2.7):

(5.2) ai(li) = dN (Ti, V ; li) + αdF (Ti, V ; li),

where α = 0.2 and we use the same weight for all experiments. For matching

efficiency, our parts model is organized in a tree structure and we model the relative

position of each part as a Gaussian with a diagonal covariance matrix. Therefore,

(5.3) dij(li, lj) = βN (li − lj , sij ,Σij),

where li − lj represents the offset in (x, y, t) between part Ti and Tj , sij is the mean

offset, and Σij is the diagonal covariance. β adjusts the relative weight of the con-

figuration vs. appearance terms and for all of our experiments we use β = 0.02.

The mean offset is taken from the location where we cut the parts, and the covari-

ance is set manually, typically around 10% of the template size. As described by

F&H [53], the minimization can be efficiently solved using distance transforms and
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dynamic programming. Because we use a sliding window approach to event detec-

tion, we also record the actual distance solved in the minimization and threshold

on the distance. Only those below a specified threshold are considered as detec-

tions. As we pointed out earlier, the key feature of the algorithm is that it requires

a segmented event template as a model, but it does not require an exact segmenta-

tion of the input video, thus making detection possible in cases, such as crowded

scenes, in which reliable segmentation would be difficult.

3.1. Evaluation of Parts-Based Matching

To evaluate the effectiveness of our parts-based matching algorithm, we se-

lected events that represent real world actions such as picking up an object from the

ground, waving for a bus, or pushing an elevator button (Figure 5.3). We acquired

videos by using a hand-held camera in cluttered environments with moving people

or cars in the background. This data set is designed to evaluate the performance of

the algorithm in crowded scenes. We study the effects of using different combina-

tions of shape and flow descriptors, and parts-based versus whole shape models.

One subject performed one instance of each action for training1. Between three

to six other subjects performed multiple instances of the actions for testing. We

collected approximately twenty minutes of video containing 110 events of interest.

The videos were down-scaled to 160x120 in resolution. There is high variability in

both how the subjects performed the actions and in the background clutter. There

are also significant spatial and temporal scale differences in the actions as well.

For each event, we create the model from a single instance by interactively seg-

menting the spatio-temporal volume using an interactive video cutout tool similar

to work by Wang et al. [142]. The templates are typically 60 × 80 × 30 in size and

range from 20,000–80,000 voxels. The whole template is then manually broken into

parts, as shown in Figure 5.3. The video is automatically segmented using mean

shift; the average segment size is approximately 100 voxels. We scan the event tem-

plate over the videos using the shape and flow distance metrics described earlier,

1The two-handed wave action template was taken from the KTH videos.
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and combine them using pictorial structures. There are approximately 120,000 pos-

sible locations to be scanned per second of video for a typical template. In these

experiments, to evaluate the robustness of our matching algorithm to variations in

observed scale, we match only at a single fixed scale; in practice, one could match

over multiple scales. The algorithm returns a three-dimensional distance map rep-

resenting the matching distance between the model and the video at every location

in the video. For efficiency and to reduce the number of potential false positives,

we project the map to a one-dimensional vector of scores, keeping only the best de-

tection for each frame, as shown in Figure 5.4(a). Since it is rare for two instances of

an action to start and end at exactly the same time instant, this is a reasonable sim-

plification. An event is detected when the matching distance falls below a specified

threshold. We vary this threshold and count the number of true positives and false

positives to generate the Precision-Recall graphs. A detected event is considered

a true positive if it has greater than 50% overlap (in space-time) with the labeled

event.

We now analyze the performance of our algorithm and compare it to the base-

line methods. Figure 5.3 shows example detections using our algorithm with the

parts-based shape and flow descriptor in crowded scenes. Note the amount of clut-

ter and movement from other people near the event. The precision-recall graphs

for all of the actions are shown in Figures 5.4(b)–(f). We compare our results to

Shechtman and Irani’s flow consistency method [119] as a baseline, labeled as Flow

(Whole) in our graphs. This state-of-the-art baseline method achieves low preci-

sion and recall in nearly all actions, demonstrating the difficulty of our dataset.

Our combined parts-based shape and flow descriptor is significantly better and

outperforms either descriptor alone, which confirms our previous findings [81].

The parts-based shape descriptor is better than the whole shape descriptor in the

hand-wave, push button, and two-handed wave actions, while there is little benefit

to adding the parts model for the jumping-jacks and pick-up actions. To illustrate

qualitatively the benefits of the parts-based model, we applied the two-handed

wave template to one of the videos in the KTH dataset. Figure 5.5 shows the dif-

ference between the whole and parts-based templates as they are overlaid (in pink)
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Model Example Detections

FIGURE 5.3. Examples of event detection in crowded video. Training se-
quences and event models are shown on the left. Detections in challenging
test sequences are shown on the right. The action mask from the appropri-
ate time in the event model is overlaid on the test sequence, and a bound-
ing box drawn around each part.

onto the video. There was a difference in hand-waving speed between the template

and the target video. Consequently, the whole template was not able to align both

phases of the action, while the parts-based template was able to stretch to match

the action well.

3.2. Comparison to Chamfer Distance Matching

It is important to compare our parts-based event detector to other baseline

techniques, in particular the classic technique of Chamfer distance matching. We

use the 3D spatio-temporal extension of the traditional 2D Chamfer distance match-

ing, as described in Chapter 2. Similar to the 2D case, the spatio-temporal extension

can also be computed in O(n) time, where n is the number of pixels. At run-time,
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FIGURE 5.4. (a) Projected matching distance on video with three pick-up
events. A threshold of 0.6 successfully detects all of them. (b)–(f) Preci-
sion/recall curves for a variety of events. Our parts-based shape and flow
descriptor significantly out-performs all other descriptors. The baseline
method [119], labeled as “Flow (Whole)”, achieves low precision and re-
call in most actions, demonstrating the difficulty of our dataset.

we slide the template along the video and at each iteration, we can calculate the

distance in O(m) time, where m is the number of pixels that lie on the surface

of the template, and is typically much smaller than the volume. A typical action

template captured from 320x240 pixel by 15 frame video might occupy approx-

imately 70,000 voxels, but the surface is only 8,800 voxels. Therefore, Chamfer

distance matching in the 3D case is still efficient to compute. Figure 5.6 shows an

example jumping-jacks event, its edges, and the Chamfer distance transform. The
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Whole Template
Up Phase Down Phase

Parts-Based Template
Up Phase Down Phase

FIGURE 5.5. Illustration of how our parts-based model can stretch to ac-
commodate the mismatch in speed between the template and the detected
action. While the down-phase of the hand-wave is matched to the whole
template, the up-phase is clearly misaligned. The parts-based template
matches both phases well and thus enables better detection accuracy.

Video Edges Distance Transform

FIGURE 5.6. Example of Chamfer distance transform on a jumping-jacks event.

edges are extracted using OpenCV’s Canny edge detector with threshold param-

eters (20, 200) and aperture size of 3 [3]. Figure 5.7 shows the results of compar-

ing our parts-based event detector with the baseline 3D Chamfer distance match-

ing. Chamfer distance fails in almost all cases except the push-elevator-button action.

That category has the cleanest background, which is probably why Chamfer dis-

tance matching performed well.
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4. Automatic Part Generation

We have previously assumed that the parts were manually cut from a single

training template. We would like to automatically cut the whole template in Fig-

ure 5.1a to look like the parts in Figure 5.1b. Given many training examples, we

can automatically learn the optimal place to cut the templates. Intuitively, the cuts

divide the templates into parts that move independently of each other. This is done

by trying cuts at various locations and see which cut gives the best performance.

Performance is measured by the amount of volumetric overlap between the indi-

vidual parts.

Suppose we have one training template that we would like to cut and n la-

beled events in a set of video files. First, we choose a cutting plane, for example the

X-T plane, which cuts the templates horizontally. We iterate through all possible

locations at which to cut, which in this case is equal to the height of the template.

At each cut location, we match the parts to the labeled events and we measure the

shape correlation distance. We scan a small area around the labeled event to find

the best matching distance. The cut location that minimizes the distance between

the parts and all labeled events is considered the best one. Figure 5.8 shows the
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FIGURE 5.8. Matching distance at different cut locations along each axis.

plot of the matching distance between the two-handed wave template and the la-

beled events at various cut locations. We see that there are two vertical cuts that

generate good matches. The parts are illustrated in Figure 5.9 and we see that these

two vertical cuts are near the arms, which is quite intuitive. The horizontal cut is

around the waist, suggesting that the arms move independently as expected. Fi-

nally, the temporal cut splits the up and down phases of the wave. We show only

the first division of the templates in Figure 5.9. Further divisions can be made by

recursively dividing the individual parts. Once we have the parts, we can learn the

part configuration parameters, which we describe next.

5. Learning Part Configurations

The two main parameters for the parts configuration are the mean and covari-

ance of the part offsets. When we were given only one template, we specified the

mean offset, sij , as the location where we cut the part and the covariance, Σij , as
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Vertical Cut 1 Vertical Cut 2

Part 1 Part 2 Part 1 Part 2

Horizontal Cut Temporal Cut

Part 1 Part 2 Part 1 Part 2

FIGURE 5.9. Automatically cutting whole template into parts.

10% of the template size. Ideally, we would want to learn these parameters auto-

matically given training data. If there are multiple labeled examples for an event,

we can learn these parameters as follows. We propose two methods for learning

the parameters – a completely supervised method and a semi-supervised method.

The supervised method for learning the part parameters is straight-forward.

First, we assume that we have already cut the template T into a set of m parts,

T = {T1 . . . Tm}. We then manually label the location of each part for all n training

examples. We denote lki as the location of part Ti for the kth training example. The

mean and covariance of the part offsets, sij and Σij , can be estimated directly.

(5.4) sij =
1
n

n∑
k=1

(lki − lkj ).

(5.5) Σij =
1
n

n∑
k=1

(lki − lkj − sij)2.

However, this is a labor-intensive process and we would like to minimize the

amount of required manual labeling. Further, we are constrained by the parts given

to us; if the template is divided into another part configuration, we would need

to relabel all of the events. Therefore, we propose a semi-supervised method for

learning the part parameters.
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s12

Σ12

FIGURE 5.10. Illustration of how the part offset parameters are initialized.

The overall learning is an EM-like iterative process [97]. First, we label only the

bounding box surrounding the event. Because we do not label the individual parts,

the manual labeling is much faster. However, this creates additional unknowns

that must be estimated. Specifically, we need to estimate the part offsets for each

labeled event, lki − lkj . We initialize our estimate of these parameters using the

same method as we used for the single template in Section 3. sij is initialized to

the location where we cut the part, and Σij is initialized to 10% of the size of the

template. Figure 5.10 shows an illustration of the parameters between two parts.

Now, we need to find the location of all the parts for every labeled example, {lki }.

Using the initial guess of sij and Σij , we run the detector in a small area around the

labeled event. From the kth event, we use pictorial structures to find the optimal

location of the parts, Lk∗ = {lk1 , . . . , lkm} (using Equation 5.1). Given the set of part

locations, we can now re-estimate sij and Σij using Equations 5.4 and 5.5. This

process is repeated until convergence. Our experiments indicate that they converge

relatively quickly, usually after a few iterations. The process is summarized in

Algorithm 3.

6. Conclusion

We extended our baseline shape matching algorithm to detect event parts (sliced

in both space or time), and we generalized the model to recognize actions with

higher actor variability. The parts are combined using pictorial structures to find
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Input: E = {E1 . . . En}: Location of training events.
s′,Σ′: Initial estimates of s and Σ.
T = {T1 . . . Tm}: Template parts.

Output: Estimated part configurations.

repeat
for i = 1 . . . n do

Estimate part locations {l1i . . . lmi } for event Ei using pictorial
structures with T, s′, and Σ′.

end

Estimate s,Σ using part locations for all events (Equations 5.4 and 5.5).

s′ = s ;
Σ′ = Σ ;

until s,Σ converges ;

return s,Σ ;
Algorithm 3: Estimating part configurations.

the optimal configuration. Our approach detects events in difficult situations con-

taining highly-cluttered dynamic backgrounds, and significantly out-performs the

baseline method [119]. The biggest limitation of the current work is that the model

is derived from a single exemplar of the event, thus limiting our ability to general-

ize across observed event variations. While we are able to generate the parts and

learn the part parameters from several training examples, we are still limited to

matching against one template. In the next chapter, we discuss ways to use multi-

ple templates and explore other robustness issues.
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CHAPTER 6

Improving Robustness

THERE are many important and practical issues that arise when we apply

event detection in real-world videos. There are more drastic variations,

such as viewpoint, scale, actor variability, and camera movement. For

example, Figure 6.1 shows the large amount of camera movement there exists in

a 2.5 second video clip. We analyze how our system performs in various settings

and how robust it is to these kind of variations.

1. Robustness to Viewpoint

A common challenge to all view-based recognition algorithms is that they are

dependent on the camera view point. While our method is not view invariant,

it is robust to small changes in viewpoint. We quantify this using the Multiview

dataset, where we used four cameras to simultaneously capture the events. The

cameras were arranged in a 45 degree semi-circle around the actors and sample

FIGURE 6.1. Example video sequence illustrating the a large amount of
camera movement.
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FIGURE 6.2. Robustness to camera view change. The performance is good
for a skew of up to 30 degrees.

frames are illustrated in Figure 1.11. We averaged the area under the precision-

recall curve (AUPRC) overall actions and plotted them against the camera view-

point, shown in Figure 6.2.1 The models were trained using a camera placed di-

rectly in front of the person, so we expect “0 degrees” to give the best performance.

The curves show that for all features, there is only a slight drop in performance for

a skew of up to 30 degrees. At 45 degrees, the performance drops significantly.

2. Multi-scale Detection

Our baseline algorithm is not invariant to spatial and temporal scale changes

in the events. While our parts-based method is more robust to scale variations, a

complete system would need to also explicitly search across scales. We show re-

sults that confirm the belief that searching across scales improves performance. We

scaled the templates linearly in both space and time and searched for these events

in the Multiview dataset. The templates were rescaled using factors of (0.8, 1.0, 1.2)

in space and time to generate 9 templates from each of the original templates. The

AUPRC averaged overall all actors, actions, and camera view points are plotted

in Figure 6.3. Column (a) shows the detection results using a single template per

1See Appendix A for a more in-depth discussion of AUPRC.
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FIGURE 6.3. Effectiveness of scanning multiple scales in space-time (on
the Multiview dataset). Left: Single template. Middle: in 9 scales (3 in
space and 3 in time). Right: Multi-scale normalized templates to account
for differences in template size.

action. Column (b) shows the results with the multi-scale templates and it clearly

improves over the single template.

A potential problem with using multi-scale templates is that since the tem-

plates are different sizes, they cannot be directly compared to each other using the

same detection threshold. This is evident by looking at our distance metric, shown

below.

(6.1) d(T, Vi; l) =
{

|T ∩ Vi| if |T (l) ∩ Vi| < |Vi|/2
|Vi − T (l) ∩ Vi| otherwise.

Larger templates generate larger distances, and therefore we cannot use the same

detection threshold for different templates. We introduce a regularization term that

normalizes for the size of the template as follows.

(6.2) dN (T, V ; l) =
d(T, V ; l)
EV [d(T, ·)]

Note that this is different than the regularization term for the segmentation gran-

ularity. We calculate EV [d(T, ·)] empirically by averaging the correlation distance

between the template T and many segmented videos. Using this normalized dis-

tance metric, we achieve the best detection results, as shown in column (c). Fig-

ure 6.4 shows anecdotal results on the Aerobics dataset. The spatial scale differ-

ence between the two views is 2.3x and we successfully detect all of the events.

The bounding box and template overlay show that we correctly detected the scale

of the events.

81



CHAPTER 6. IMPROVING ROBUSTNESS

(a) (b) (c)

FIGURE 6.4. Multiscale on aerobics videos. Successful detections on ac-
tions with a 2.3x scale difference. Images in (a) and (b) are from the same
sequence a few tenths of a second apart and show that all three events
were detected at slightly different temporal offsets. The actors were not
completely synchronized.

TABLE 6.1. Cycle periods of actions in the Weizmann dataset. There are
small temporal scale variations in this dataset, with a maximum of 1.43 on
the Pjump action.

Action Avg Std. Dev. Max/Min
Bend 2.35 0.13 1.19
Jack 1.11 0.06 1.17
Jump 0.54 0.06 1.36
Pjump 0.67 0.08 1.43
Side 0.63 0.03 1.17
Skip 0.49 0.05 1.36
Run 0.83 0.07 1.31
Walk 1.11 0.04 1.10
Wave1 1.15 0.08 1.26
Wave2 1.16 0.10 1.35

Unlike variations in spatial scale, there are much smaller temporal scale vari-

ations between actions. Spatial scale variations are determined by the size of the

person, the distance between the person and the camera, and the resolution of the

camera. The best-known technique for recognizing human actions at low resolu-

tions is limited to a minimum of around 30 pixels [49]. For 640 × 480 resolution

videos, this translates to a maximum of 16x in scale variation. Temporal variations,

on the other hand, are much smaller. Table 6.1 shows the cycle periods of actions

in the Weizmann dataset. The maximum scale change is only 1.43 as seen in the

Pjump action. Therefore, we only need to scan across a small range of temporal

scales for event detection.
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FIGURE 6.5. Video with three people performing an action at the same
time. Using single-instance detection only detects one of the three people.

3. Multi-instance Detection

Our baseline detection algorithm projects the three dimensional distance map

onto the temporal axis by preserving only the best detection for each frame. This

has two main advantages. First, false positives are minimized to a maximum of

one per frame. This is especially useful because of the high number of locations

that must be checked for the events. The other advantage is that it is simple to

check for local minimums. We only need to check on the horizontal axis. If no

projection was were, we would need to do local non-maximal suppression in 3D

to transform the distance map into a set of discrete detections. However, the draw-

back is that if two events occur very close in time (less than a couple of frames), one

of them is likely to be missed. Events from different actions can still be detected si-

multaneously, however, since they the distance maps are projected independently

of each other. Many types of videos do not have simultaneous events, and this type

of detection scheme will work well for them because it minimizes the number of

false positives. For example, in a tennis match, only one person serves at a time

and the serves are spaced far apart. However, in the Aerobics dataset shown in

Figure 6.5, there are multiple people performing the action simultaneously. The

single-instance detector only found one instance of the events. In order to detect

all of the instances, we would need to be able to detect multiple events that start

within a single frame.

Fortunately, the three-dimensional distance map contains all of the required

information for multiple instance detection. The two main challenges are that we
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FIGURE 6.6. Multiple instance detection on Aerobics dataset

need to detect all local minima and we need to perform local non-minimal sup-

pression in three dimensions. Both of these can be done simultaneously using

mean shift, similar to mean shift tracking [32]. First, we threshold the distance

map at some value. We then perform mean shift to form a set of clusters, where

each center is a candidate event detection. Small clusters (those with low weight)

are considered as noise and are discarded. The remaining clusters are then the

final detections. Using this method, we are able to detect instances of the same

event occurring simultaneously. Figure 6.6 shows the precision-recall of detecting

the raise-knee event in the Aerobics dataset. Using multiple-instance detection in-

creases the performance because the single-instance detection missed some events

that occurred simultaneously. Figure 6.4 shows example detections obtained using

the multi-instance detector. The three events that occurred in this small time pe-

riod were all detected. A potential problem with multiple-instance detection is that

the precision might drop dramatically because we could have many false positives

in a single frame, as opposed to a maximum of one for single-instance detection.

We ran the algorithm on the Cluttered Videos dataset and compared the result to

single-instance detection, as shown in Figure 6.7. Since there are no simultaneous

events in this dataset, there is no benefit in using multiple-instance detection and

thus we expect the performance to drop due to the increase in the number of false

positives. The performance only slightly drops in this dataset, showing that the

increased number of false positives is manageable.
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FIGURE 6.7. Multiple instance detection on cluttered videos.

4. Training with Multiple Templates

Given multiple examples of an event, we would like to use them to train a

set of optimal templates for recognition. We performed experiments on the Weiz-

mann dataset to show how the system can utilize multiple exemplars for improved

performance. The Weizmann dataset is well suited for this task because all of the

events have foreground masks and therefore we can automate the template extrac-

tion during training. The foreground masks are never used during testing; only the

spatio-temporal segmentations are used for shape matching. Since there are nine
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FIGURE 6.8. Given multiple exemplars for training, we see that training
for the best template using cross-validation (Trained) gives better per-
formance than using a random template (Random). “Best” denotes the
upper-bound in performance if we knew which template would give the
best results. Experiments performed on the Weizmann dataset.

actors, every action class has at least 9 exemplars; many have up to 36 if the actors

perform multiple instances of an action in one video clip. Therefore, we can divide

the data into training, validation, and testing sets and perform cross-validation

performance evaluations. Only the whole shape feature is used for the following

experiments.

Our first experiment is to show whether we can train a (single) good template

for detection given multiple training exemplars. For each action, we randomly set

aside the videos from 4 people for testing. Using videos from the remaining 5 peo-

ple, we find the single best template using cross-validation. This template is then

run on the testing set to measure its recognition performance. In Figure 6.8, the la-

bel “Trained” shows the results from this experiment. We compare it to “Random”,

where we randomly sample a training template and run it on the testing set. We

also compare it to “Best”, where given a testing set, we evaluate the performance

from the best possible training template. This is the upper-bound on performance

given the data. The graphs were generated by repeating the experiments 50 times

and averaging the AUPRC. The results show that training using multiple exem-

plars performs better than choosing a random template, as expected.
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FIGURE 6.9. Training on and using multiple templates simultaneously for
detection improves performance than using a single template. Experi-
ments on the Weizmann dataset.

Of course, we need not limit ourselves to a single template during training.

We can use a set of templates simultaneously for detection. The templates are cor-

related with the testing data and the events are considered to be detected if they

fall below a threshold to any of the templates. For this experiment, we again use

the videos from 4 randomly selected people for testing and use the remaining 5 for

training and validation. If we train for n templates, n people’s videos are used for

training and 5 − n people’s videos are used for validation. The results are shown

in Figure 6.9. We see that in general, using more templates for detection improves

performance.

5. Volumetric Segmentation

Using volumetric segmentation is better than segmenting the video on a frame-

by-frame basis. Figure 1.6 showed anecdotally the improvement in quality be-

tween segmenting frame-by-frame versus blocks of frames. We now demonstrate

quantitatively the effect of volumetric segmentation on recognition performance.

Figure 6.10 shows the results of detecting various actions on the Weizmann dataset.

“15F” denotes the results from segmentation on blocks of 15 frames and “1F” cor-

responds to the results from 1-frame segmentation. Only a single, whole shape

template is used per action to isolate the effects of segmentation. All mean-shift

segmentation parameters were fixed and we adjusted the average number of octree
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FIGURE 6.10. Recognition results comparing volumetric segmentation
(15F) versus single-frame (1F) segmentation on the Weizmann dataset. We
see that segmentation using blocks of 15 frames gives better results than
single-frame segmentation.

segmentations per frame to be the same for both method. We see that segmenta-

tion using blocks of 15 frames leads to better recognition results. This is because

volumetric segmentation is able to capture the object boundaries more consistently

through time. Given the same number of regions, volumetric segmentation can

more accurately represent the boundaries.

6. Robustness to Camera Movement

While our features are robust to small amounts of camera motion such as those

from a hand-held camera, they are not invariant to large camera movements. These

movements distort both the volumetric shape and flow features. We use an off-the-

shelf camera motion estimation software, Motion2D [105], to compensate for these

movements. A simple translation and rotation motion model is sufficient to stabi-

lize the camera motion. Prior approaches have encountered similar problems and

have also used camera stabilization to as a preprocessing step [9, 13, 98, 132]. To

measure the effect of camera movement, we captured a sequence of videos that

have large amounts of camera movement in them. There are two types of motion –

camera shake (hand-held camera) and panning (simulating a pan-tilt camera). Fig-

ure 6.1 shows an example of camera shake and Figure 6.12 shows an example of a

camera panning. The average displacement in this dataset is 2.73 pixels per frame,

compared to a displacement of less than 0.1 pixels per frame in a typical hand-held
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SECTION 6 ROBUSTNESS TO CAMERA MOVEMENT

(a) Video with Movement (b) Stabilized Video

FIGURE 6.11. Example detections from the Moving Camera dataset. The
jumping jacks were not detectable in the original video (a). Using an off-
the-shelf camera motion estimation algorithm [105], we were able to easily
detected events in the stabilized sequence (b).

FIGURE 6.12. Example video of a camera panning like that of a surveil-
lance camera. This type of motion can be easily stabilized and we are able
to detect the events in these videos.
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FIGURE 6.13. Detection results on the Moving Camera dataset. Using
camera stabilization dramatically increases the recognition rate.

camera. Panning at 2.73 pixels per frame gives a 82-pixel offset in one second of

video, or roughly half the video frame since the videos are 160 × 120. It would be

very difficult to reliably detect events with this amount of movement and without

motion compensation. Figure 6.11 shows example frames from an original unsta-

bilized and the corresponding stabilized video. Events that were undetectable in

the original videos are easily detected in the stabilized videos. Quantitative results

on the entire dataset is shown in Figure 6.13. The results for all actions improve

when we add camera stabilization.
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Pick-up
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FIGURE 6.14. Example detections of events on unscripted YouTube videos.

7. Real-world Videos

We now show anecdotal results on real-world videos download from YouTube.

The videos were found using the search terms “pick up coin” and “jumping jacks”.

Figure 6.14 shows example detections on these actions. We used the same tem-

plates as in prior experiments and used the parts-based shape and flow features for
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SECTION 8 EXTRACTING TRAINING TEMPLATES

FIGURE 6.15. These frames show how much camera movement there is in
a typical video sequence. The frames were extracted in a two second win-
dow.

detection. The videos are all unscripted and represent the diversity of how actions

can be performed. Many of the videos are low quality due to high compression,

noise, poor lighting, and have low frame rate. Since the videos are mostly taken

with hand-held cameras, we do camera stabilization as a pre-processing step on

the videos. Figure 6.15 shows how much camera movement there is in a typical

video.

8. Extracting Training Templates

Automatic template extraction would be useful during the training process.

From a video clip of the event, we need to find the person’s silhouette boundaries

to build the volumetric shape, as shown in Figure 6.16. Given controlled environ-

ments, the easiest way extract the silhouette is to have the actor perform the action

against a static background and use background subtraction. This is done for the

Weizmann dataset, for example [16]. Even on static backgrounds, background-

subtraction is not perfect and there may be cases where we need to refine the ex-

tracted silhouette.

We propose an alternative technique for segmenting the person from the back-

ground based on Wang et al.’s interactive video cutout technique [142]. The goal

is to use a small amount of manual labeling to approximately delineate the fore-

ground and background. The algorithm then computes the exact boundaries. Fig-

ure 6.17 shows an example of this process. We summarize our implementation of

the video cutout.
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FIGURE 6.16. Jumping jacks shape template.

FIGURE 6.17. Illustration of how we generate model templates using an
interactive video segmentation process similar to Wang et al. [142]. Given
the training video (left), we draw a few strokes to label the foreground
and background regions (middle), and graph-cut generates the complete
segmentation mask (right).

First, the user selects a block of frames (typically 15) in the video to segment.

The pixels in this video block is represented as a graph, a 3D grid where all adjacent

pixels (in space and time) are connected to each other. The weight between adjacent

pixels is similarity in RGB color between the pixels. Pixels with similar colors are

more likely to belong to the same component, and therefore have higher weight.

All labeled foreground pixels are connected to the source with infinite weight and

the sink with zero weight 2. Similarly, the background pixels are connected to the

sources and sinks with the appropriate weights. Finally, the unlabeled pixels are

connected to the sinks and sources with weights depending on the probability that

they are foreground and background pixels. This probability is computed based on

the color distribution of the labeled pixels. First, we quantize the color space into

5 bins per dimension for a total of 125 bins. All of the labeled pixels are quantized

2We use a large value for the weights instead of infinity to maintain numerical stability.
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and thus we can compute the probability of a pixel belongs to the foreground or

background based on its color.

We use the min-cut/max-flow algorithm by Boykov and Kolmogorov to com-

pute the figure/ground segmentation boundary [21]. The algorithm finds the min-

imum cut between the nodes in the graph. This corresponds to the edges that

is likely to be the person’s silhouette boundary. Sometimes, label refinement is

needed, so the user marks additional foreground and background pixels and re-

runs graph cut. After a few iterations, an accurate silhouette is extracted, as shown

in Figure 6.17.

9. Timing Experiments

Our system was designed with recognition accuracy as a high priority. Run

time performance is also important in production systems. Our system does not

run in real time, but there are many opportunities for improvement. We give tim-

ing results on various components of the system to show where one might achieve

the most performance gains during optimization. Figure 6.18 shows the amount of

time each component takes relative to the length of the video processed. The exper-

iments were done on a computer with a 1.4GHz Intel Pentium R©III processor 2GB

of RAM, averaged over 7 minutes of video. There are many factors that affect the

precise timing of the calculations, such as template size, complexity of the video,

or number of parts. Therefore, we focus on the relative speed of each component

rather than the precise measurements.

We see that from the table that flow matching takes the most amount of time

because it must do correlation in 3D. Region extraction also takes a significant por-

tion of time, but it only needs to be computed once. We can run any number of

event detectors on the extracted regions.
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FIGURE 6.18. Timing results. Flow matching currently takes the most
amount of time.

Aerobics Pick-up Pick-up

FIGURE 6.19. Failure cases due to occlusion. In the aerobics video, the
left-most person’s head falls outside the frame.

10. Limitations

We have discussed some of the failure modes of our system and how we ad-

dress them in previous robustness experiments. However, it is useful to see exam-

ples of where the system fails. Our system is sensitive to the same kind of problems

that affect other view-based approaches. Figure 6.19 shows examples of missed de-

tections due to occlusion. Figure 6.20 shows examples where the viewpoint change

is more than 45 degrees and therefore the templates fail to detect the events.

Another possible failure case is when the scale (in space or time) of the tem-

plate does not match the scale of the performed action. We previously addressed
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Aerobics Jumping jacks Pick-up

FIGURE 6.20. Failure cases due to viewpoint change.

this issue by scaling the template in both space and time and scanning the video at

all scales. The templates were scaled linearly, but the differences between actions

in the temporal axis may not be linear. These nonlinear changes raise the ques-

tion of how to generalize to the human variations in how an action is performed.

In another example, walking normally, walking with a limp, and walking with a

cane are all technically “walking”, but they look different visually. We propose

that instead of training for semantic classes, we should train for visual classes, and

therefore group these into three different types of events. Each one of them would

need to be trained separately.

A more fundamental limitation of view-based approaches is that they work

best when the actor is performing full body movements. Since our volumetric

shape matching algorithm does not use a discriminative classifier, it does not know

which part of the shape discriminates it against all their actions. The distance

is measured by the volumetric overlap between the template and the video, and

sometimes the discriminative part of the action is dominated by other irrelevant

parts of the template. Consider the pushing-elevator-button action in the third row

of Figure 5.3. The only difference between this action and standing-still is the small

part of the arm that extends forward. The arm occupies a relatively small volume

when compared to the entire template, and therefore its weight contribution to the

matching score is also small. Ideally, we would want to give higher weight to the

matching score of the arm, and lower weight to the score of the rest of the template.

In general, events with larger, full body movements will match better than events

with small movements.
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CHAPTER 7

Conclusion and Future Directions

IN this dissertation, we have proposed flow- and shape-based volumetric fea-

tures for event detection. Our models are appearance-based and operates

directly on the video without the need for background subtraction. Our first

approach uses cascaded discriminative classifiers and we built a system for event

detection that runs in real time [79]. We designed volumetric features that are

spatio-temporal extensions of Viola and Jones’ box features and operate on the

optical flow extracted from the video. The features are efficient to compute, but

required many training examples.

Next, we designed volumetric shape features that can operate on over-segmented

videos [81]. Because we do not require background subtraction, this technique can

work in cluttered scenes with dynamic backgrounds. The shape matching algo-

rithm is based on volume intersection between event templates and segmented

videos. Because it is based on shape correlation, the system works with as few as

one training example.

Finally, we proposed a number of techniques to generalize our matching algo-

rithms and demonstrate their effectiveness on real-world videos. To make the tem-

plates more deformable, we divided the templates into parts and matched them

using 3D pictorial structures [80]. We also used pictorial structures to combine

volumetric shape and flow features because they are complementary to each other.

The resulting templates can better match differences in speed and scale of event. To

further generalize the templates, we used multiple training templates and scaled
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them in both space and time to search the videos. Finally, we demonstrated that

our system works in videos with large camera movements by using off-the-shelf

image stabilization techniques.

1. Future Directions

We have shown the usefulness of using volumetric features for event detection.

However, it is only one piece of the puzzle in solving human activity recognition.

We describe several broad areas that may be useful for further investigation.

1.1. Speed Optimizations

We have not yet optimized for the run-time performance of our system. For the

system to be useful in production systems, it would have to run much faster than

its current state. There is already concurrent work in making many parts of the

system run in real-time. There are two general directions for speed optimization

– algorithmic and parallelization. Because the system was designed for the best

achievable accuracy, we did not focus on the run-time performance of the system.

We can improve the performance of several components of our system as follows.

Segmentation. We originally chose mean shift because of its reported success

and high accuracy in image segmentation. However, other region segmentation

algorithms can be used [10, 15, 24, 40, 82, 122, 124, 144, 150]. If the segmentation

algorithm can be significantly faster, we can incorporate additional features for

segmentation. Our method only uses color as inputs. It would be useful to add

texture and flow information as well. In addition, it might be useful to incorporate

other cues into the segmentation process. If we knew the cameras were stationary,

we could use background subtraction as an additional feature. Figure 7.1 shows an

example where we combine background subtraction with automatic segmentation.

Although background subtraction incorporated the shadow into the foreground,

the automatic segmentation was able to separate it from the background. This is

faster and more accurate than using either method alone.
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(a) Video Frame (b) Foreground Mask (c) Over-segmentation

FIGURE 7.1. Combining background subtraction and automatic segmen-
tation. Although background subtraction included the shadow into the
foreground, the automatic segmentation was able to separate it from the
person.

Although we have advocated using volumetric 3D segmentation for the high-

est accuracy, segmentation in 2D is significantly faster. One might argue that the

speed increase outweighs the performance hit over 3D segmentation. These trade-

offs can be assessed in production systems.

Flow Matching. In the latter part of the thesis, we used Shechtman and Irani’s

flow consistency measure for flow correlation. While it fits well into our frame-

work, it is one of the slowest parts of our system. S-I optimized their system to

run close to real-time by doing a hierarchical decomposition and skipping compu-

tation. However, this inevitably reduces accuracy when compared to doing the full

computation. We propose two possible methods for correlating flow efficiently.

One way to compute flow correlations uses the volumetric feature framework

proposed in Chapter 3. Instead of using the features in a discriminative framework,

one could find regions in the template that have similar flow. The entire region’s

flow can be described with its sum, which can be efficiently computed using inte-

gral videos.

We make the observation that flow consistency calculations are simply func-

tions on video gradients. In particular, they are functions on the six-dimensional M

matrices as described in Equation 2.4. Instead of computing the function at every

pixel, one could quantize the input matrices and perform table look-ups on them

to obtain the result directly. We have on-going work in this direction.
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Coarse to Fine Search. Coarse to fine search [11], also sometimes referred to

as hierarchical search [54,88] or branch and bound [22,28], is an optimization tech-

nique to reduce computation during search. Event detection is an instance of a

rare-event detection problem, and therefore only a tiny percentage of locations in

the video will contain the event. The goal of coarse to fine search is to use the least

amount of computation to discard large number of locations that we are certain

will not contain the event. The cascaded classifier used in Chapter 3 is an exam-

ple of this technique. We can apply similar techniques used by Shechtman and

Irani [119] or Cour and Shi [38] in our task. The idea is to search first search low

resolution videos to quickly discard locations with no-events, and then search in

progressively higher resolution at locations of possible events.

Parallelization. With the emergence of terascale computing, we are beginning

to see massively parallel hardware and software architectures at affordable, com-

modity prices [70]. Parallel execution architectures such as MapReduce can easily

distribute tasks to millions of computing nodes [31,43]. Event detection (and video

processing in general) is relatively easy to parallelize. Because the events are iso-

lated (by definition), different parts of the video can be processed independently

of each other. The video can be divided in space or time, and each template and

template variation can be scanned independently of each other. Parallelization can

be used in conjunction with all of the other algorithm speed optimizations.

1.2. Accuracy and Robustness

Active Shape Models. Active shape models and their derivatives have been

highly successful in matching deformable shape templates in images [35–37,67,83].

They work well because they have learned priors on the shape and they can deform

to match the local contours in the image. Local shape refinement can also be used

for shape-based event detection. While the prior work on active shape models are

too computationally expensive to be used as general search strategies, they could

be used to check whether candidate matches are correct. The shape template could

be locally deformed and matched against the video to compute and the amount of

deformation could be used as a distance measure.
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FIGURE 7.2. MDS projection of event shapes. The three event types form
three distinct clusters.

Discriminability of Appearance-based Shape Models. Determining the in-

trinsic discriminative power of our features is an interesting area of research. Blank et al.

demonstrated that shape invariants can classify the actions in their database very

well, but they require background subtraction [16]. We would like to know how

well the action shapes, based on the region-intersection distance, differ from one

another. If they are well separated, then it confirms that this distance metric could

work (without relying on background subtraction). Similar studies could be done

on combined shape and flow descriptors. Figure 7.2 shows a plot of the distances

between three types of events in the Weizmann dataset – bend, jumping-jacks, and

one-handed wave. We extracted the individual events from these actions and aligned

them in location and scale. We measured the region-intersection distances between

all of the events and projected them using multidimensional scaling (MDS) [39].

The different types of markers denote different types of actions. We see that the

events are well separated into three distinct clusters. As a preliminary experiment,

we used medoidshift to cluster these points, shown in Figure 7.3 [122].

Exhaustive Grouping of Regions. While there are many approaches to match-

ing 3D shapes using shape invariants [78], we can not directly use them for event

detection because of the over-segmentation problem. They require the object to
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FIGURE 7.3. Medoidshift clustering of event shapes.

be composed of one 3D shape. We could try to exhaustively group the over-

segmented regions to match the event template, but this scales exponentially with

the number of regions. If segmentation algorithms develop to the point where

objects are only slightly over-segmented, exhaustive grouping could work. This

would allow us to use more powerful shape matching algorithms for event detec-

tion.

1.3. Alternative Classifiers

We have proposed several classifiers for event detection, including a discrimi-

native cascade classifier [149], SVM [136], nearest neighbor [64], and pictorial struc-

tures [53]. The discriminative cascade is very efficient and results in a real-time

event detector, but requires many training examples. The nearest neighbor and

pictorial structures classifier can be used with only one training example. To im-

prove their generalizability, we must scan over many scales and train with mul-

tiple examples. Unfortunately, these classifiers scale linearly with the number of

training examples. We would like to improve both the efficiency and matching

performance by sharing features among many training examples [7, 50, 134]. One

aspect of pictorial structures that we did not exploit is the ability to parametrize the
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appearance of each part. For example, Felzenszwalb and Huttenlocher used rect-

angles with parametrized aspect ratios to match the limbs of people [53]. Our parts

are appearance-based, and therefore have no intrinsic parameters. However, we

observe that practical implementations of pictorial structures do not search over

continuous part parameters. Instead, they search over a discrete set of labels for ef-

ficiency. Therefore, we can potentially mix and match parts from different training

examples, similar to the Mr. Potato Head toys. This can increase the generalizabil-

ity of our training data exponentially while only linearly increasing the compu-

tational cost. In addition to shape parts, it would be interesting to build a set of

motion primitives as parts as well [74, 104, 138]. Finding the optimal set of parts

and how they can be shared is for future research.

In Chapter 4 Section 7, we used an SVM on the distances to several action tem-

plates to classify individual frames. We can further exploit the use of discriminative

classifiers as follows. Suppose that we are trying to detect n different events. Our

current framework independently compares the distances between a space-time

location in the video and event templates. It would be useful to use the distances

to all templates in a classifier for each action. The intuition is that some events

(one-handed waves) look similar to other events (two-handed waves), and there-

fore the distances to these events are correlated. We can learn these correlations in a

classifier and we could achieve better results. There should be minimal additional

computational cost since we must scan for all of the templates and the discrimina-

tive classifiers are typically very efficient.

1.4. Integration

Event detection is just one part of the overall goal of human activity recog-

nition. A complete system would need to integrate many components including

event detection. We propose that event detection should be combined with both

lower-level recognition, such as pose estimation, and higher-level recognition, such

as activity recognition. For example, a side effect of detecting a particular event is

that we know the actor’s pose at every time step [51]. By tracking a person’s move-

ment through the video, we can considerably reduce the number of locations that
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we have to scan to detect an event. Context is an important consideration and

Hoiem et al. recently demonstrated its usefulness in object detection [71]. In ad-

dition to geometric context, temporal context can greatly improve the accuracy of

the system. There is a lot of prior work on incorporating domain specific knowl-

edge to help in activity recognition [100, 101, 108, 111, 128, 153, 155]. For example,

after we see a person swing a tennis racket, we are likely to see more racket swings

rather than dancing moves. This motivates the need for integration with systems

that understand the high level semantics of the scene.

1.5. Applications

In Chapter 1, we discussed a number of applications that can utilize event

detection. In this thesis, we explored some of those applications such as sports an-

notation and surveillance. It would be interesting to extend this and build large

scale search applications, for example on the entire YouTube or movie database.

This raises a number of interesting application-specific questions such as how to

present the search results, how to manage large databases, and how to easily spec-

ify training examples? The issue of generating training examples is particularly

interesting because while it is easy to type in a particular search term, it would be

unwieldy to capture an example of someone performing an action before one can

search for it in the database. One might imagine a labeled database of human ac-

tions that are available for training. All of these issues will have to be solved for a

real deployment of the system.
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APPENDIX A

Area Under the Precision-Recall Curve

The receiver operating characteristic (ROC) curve is commonly used for measur-

ing classifier performance. The area under the ROC curve conveniently summa-

rizes the classifier’s discriminability with a single number. However, for skewed

datasets, where the number of positives and negatives are very different, precision-

recall is a better measure of classifier performance [42]. Our event-detection task

is an example of a skewed dataset, where the number of negatives far outweighs

the number of positives. Therefore, we use precision-recall as our main measure

and we summarize it with the area under the precision-recall curve (AUPRC). The

AUPRC enables us to more easily observe trends over many actions. Empirically,

we observe that the AUPRC is approximately equal to the recall at 50% precision,

as illustrated in Figure A.1. The reader is invited to read Davis and Goadrich’s

work for a more in-depth view of the relationship between precision-recall and

ROC curves [42].

(a) AUPRC = 0.30 (b) AUPRC = 0.67

FIGURE A.1. The area under the precision-recall curve (AUPRC) is empir-
ically observed to approximately equal the recall at 50% precision.





APPENDIX B

Approximation of Region Intersection
Background Model

We would like to simplify and approximate the expected distance between the vol-

ume and a random template, as described in Chapter 4 Section 3.3. This gives us

a better understanding of this term. Further, we can use the approximation when

the exact computation is too expensive for large numbers.
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2. Approximation for even n

For simplification of notation, we use n in place of |Vi|. We approximate the

term inside the outer sum. Suppose n is even, so that n/2 is an integer.
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, by Identity I(B.24)
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1
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]
, by Identity III(B.25)

∼ 1
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2
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√
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, by Approximation I(B.26)
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2
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√
n

2π
2n

]
(B.27)

=
n
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−

√
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(B.28)
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3. Approximation for odd n

Now, suppose n is odd, so that (n − 1)/2 and (n + 1)/2 are integers. The

approximation is very similar to the even case.

1
2n

n−1∑
j=1

(
n

j

)
min(j, n− j)(B.29)

=
1
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, by Identity I(B.34)
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, by Identity IV(B.35)

∼ 1
2n

[
n

2
2n − n

2n−1√
π(n− 1)/2

]
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4. Combined Approximation

Combining the two cases, we have

ET [d(·, V )] ∼
k∑

i=1

|Vi|
2

−
√
|Vi|
2π

(B.39)

Notice that for large |Vi|, |Vi|/2 dominates
√
|Vi|/(2π), and therefore the entire sum

approaches |V |/2.
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