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Abstract

The use of Craig interpolants has enabled the development of powerful hardware and software model check-
ing techniques. Efficient algorithms are known for computing interpolants in rational and real linear arith-
metic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms
for obtaining proofs of unsatisfiability and interpolants for conjunctions of linear diophantine equations,
linear modular equations (linear congruences), and linear diophantine disequations. We show the utility of
the proposed interpolation algorithms for discovering modular/divisibility predicates in a counterexample
guided abstraction refinement (CEGAR) framework. This has enabled verification of simple programs that
cannot be checked using existing CEGAR based model checkers.





1 Introduction

The use of Craig interpolation [12] has led to powerful hardware [23] and software [17] model checking
techniques. In [23] the idea of interpolation is used for obtaining over-approximations of the reachable
set of states without using the costly image computation (existential quantification) operations. In [17, 18]
interpolants are used for finding the right set of predicates in order to rule out spurious counterexamples. An
interpolating theorem prover performs the task of finding the interpolants. Such provers are available for var-
ious theories such as propositional logic, rational and real linear arithmetic and equality with uninterpreted
functions [24, 33, 19, 18, 28, 20, 10].

Efficient algorithms are known for computing interpolants in rational and real linear arithmetic [24, 28,
10]. Linear arithmetic formulas where all variables are constrained to be integers are said to be formulas
in (pure) integer linear arithmetic or LA(Z), where Z is the set of integers. There are no known efficient
algorithms for computing interpolants for formulas in LA(Z). This is expected because checking the satis-
fiability of conjunctions of atomic formulas in LA(Z) is itself NP-hard. We show that for various subsets of
LA(Z) one can compute proofs of unsatisfiability and interpolants efficiently.

Informally, a linear equation where all variables are integer variables is said to be a linear diophantine
equation (LDE). A linear modular equation (LME) or a linear congruence over integer variables is a type of
linear equation that expresses divisibility relationships. A system of LDEs (LMEs) denotes conjunctions of
LDEs (LMEs). Both LDEs and LMEs arise naturally in program verification when modeling assignments
and conditional statements as logical formulas. These subsets of LA(Z) are also known to be tractable,
that is, polynomial time algorithms are known for deciding systems of LDEs and LMEs. We study the
interpolation problem for LDEs and LMEs.

Given formulas F,G such that F ∧ G is unsatisfiable. An interpolant for the pair (F,G) is a formula
I(F,G) with the following properties: (i) F implies I(F,G), (ii) I(F,G) ∧ G is unsatisfiable, and (iii)
I(F,G) refers only to the common variables of F and G. This paper presents the following new results.

• F,G denote a system of LDEs: We show that I(F,G) can be obtained in polynomial time by using a
proof of unsatisfiability of F ∧G. The interpolant can be either a LDE or a LME. This is because in
some cases there is no I(F,G) that is a LDE. In these cases, however, there is always an I(F,G) in
the form of a LME. (Section 3)

• F,G denote a system of LMEs: We obtain I(F,G) in polynomial time by using a proof of unsatisfia-
bility of F ∧G. We can ensure that I(F,G) is a LME. (Section 4)

• Let S denote an unsatisfiable system of LDEs. The proof of unsatisfiability of S can be obtained in
polynomial time by using the Hermite Normal Form of S (represented in matrix form). A system of
LMEs R can be reduced to an equi-satisfiable system of LDEs R′. The proof of unsatisfiability for R
is easily obtained from the proof of unsatisfiability of R′. (Section 5)

• Let S denote a system of LDEs. We show that if S has an integral solution, then every LDE that is
implied by S, can be obtained by a linear combination of equations in S. We show that S is convex
[25], that is, if S implies a disjunction of LDEs, then it implies one of the equations in the disjunction.
In contrast, conjunctions of atomic formulas in LA(Z) are not convex due to inequalities [25]. These
results help in efficiently dealing with linear diophantine disequations (LDDs). (Section 6)

• Let S = S1 ∧ S2, where S1 is a system of LDEs, while S2 is a system of LDDs. We say that S is a
system of LDEs+LDDs. We show that S has no integral solution if and only if S1∧S2 has no rational
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solution or S1 has no integral solution. This gives a polynomial time decision procedure for checking
if S has an integral solution. If S has no integral solution, then the proof of unsatisfiability of S can
be obtained in polynomial time. (Section 6)

• F,G denote a system of LDEs+LDDs: We show I(F,G) can be obtained in polynomial time. The
interpolant can be an LDE, an LDD, or an LME. (Section 6)

• We show the utility of our interpolation algorithms in counterexample guided abstraction refinement
(CEGAR) based verification [11]. Our interpolation algorithm is effective at discovering modu-
lar/divisibility predicates, such as 3x + y + 2z ≡ 1 (mod 4), from spurious counterexamples. This
has allowed us to verify programs that cannot be verified by existing hardware and software model
checkers. (Section 7)

Polynomial time algorithms are known for solving (deciding) a system of LDEs [29, 7] and LMEs
(by reduction to LDEs) over integers. We do not give any new algorithms for solving a system of LDEs
or LMEs. Instead we focus on obtaining proofs of unsatisfiability and interpolants for systems of LDEs,
LMEs, LDEs+LDDs. We only consider conjunctions of LDEs, LMEs, LDEs+LDDs. Interpolants for any
(unsatisfiable) Boolean combinations of LDEs can also be obtained by calling the interpolation algorithm
for conjunctions of LDEs+LDDs multiple times in a satisfiability modulo theory (SMT) framework [10].
However, computing interpolants for Boolean combinations of LMEs is difficult. This is due to linear
modular disequations (LMDs). We can show that even the decision problem for conjunctions of LMDs is
NP-hard.

All proofs are present in the appendix of this paper.

1.1 Related work

It is known that Presburger arithmetic (PA) allows quantifier elimination [26]. Kapur et al. [19] show that
a recursively enumerable theory allows quantifier-free interpolants if and only if it allows quantifier elimi-
nation. The systems of LDEs, LMEs, LDEs+LDDs are subsets of PA. Thus, the existence of quantifier-free
interpolants for these systems follows from [19]. However, quantifier elimination for PA has an exponential
complexity and does not immediately yield efficient algorithms for computing interpolants. We give poly-
nomial time algorithms for computing proofs of unsatisfiability and interpolants for systems (conjunctions)
of LDEs, LMEs, LDEs+LDDs.

Let S1, S2 denote conjunctions of atomic formulas in LA(Z). Suppose S1 ∧ S2 is unsatisfiable. Pudlak
[27] shows how to compute an interpolant for (S1, S2) by using a cutting-plane (CP) proof of unsatisfiability.
The CP proof system is a sound and complete way of proving unsatisfiability of conjunctions of atomic
formulas in LA(Z). However, a CP proof for a formula can be exponential in the size of the formula.
Pudlak does not provide any guarantee on the size of CP proofs for a system of LDEs or LMEs. Our results
show that polynomially sized proofs of unsatisfiability and interpolants can be obtained for systems of
LDEs, LMEs and LDEs+LDDs.

McMillan [24] shows how to compute interpolants in the combined theory of rational linear arithmetic
LA(Q) and equality with uninterpreted functions EUF by using proofs of unsatisfiability. Rybalchenko and
Sofronie-Stokkermans [28] show how to compute interpolants in combined LA(Q), EUF and real linear
arithmetic LA(R) by using linear programming solvers in a black-box fashion. The key idea in [28] is to
use an extension of Farkas lemma [29] to reduce the interpolation problem to constraint solving in LA(Q)
and LA(R). Cimatti et al. [10] show how to compute interpolants in a satisfiability modulo theory (SMT)
framework for LA(Q), rational difference logic fragment and EUF . By making use of state-of-the-art SMT
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algorithms [14] they obtain significant improvements over existing interpolation tools for LA(Q) and EUF .
Yorsh and Musuvathi [33] give a Nelson-Oppen [25] style method for generating interpolants in a combined
theory by using the interpolation procedures for individual theories. Kroening and Weissenbacher [20]
show how a bit-level proof can be lifted to a word-level proof of unsatisfiability (and interpolants) for
equality logic.

To the best of our knowledge the work in [24, 33, 28, 20, 10] is not complete for computing interpolants
in LA(Z) or its subsets such as LDEs, LMEs, LDEs+LDDs. That is, the work in [24, 33, 28, 20, 10] cannot
compute interpolants for formulas that are satisfiable over rationals but unsatisfiable over integers. Such for-
mulas can arise in both hardware and software verification. We give sound and complete polynomial time
algorithms for computing interpolants for conjunctions of LDEs, LMEs, LDEs+LDDs. Efficient interpola-
tion algorithms for LDEs, LMEs, LDEs+LDDs are also crucial in order to develop practical interpolating
theorem provers for LA(Z) and bit-vector arithmetic [13, 6, 5, 15, 21, 9, 16, 8].

2 Notation and preliminaries

We use capital letters A,B, C, X, Y, Z, . . . to denote matrices and formulas. A matrix M is integral (ratio-
nal) iff all elements of M are integers (rationals). For a matrix M with m rows and n columns we say that
the size of M is m×n. A row vector is a matrix with a single row. A column vector is a matrix with a single
column. We sometimes identify a matrix M of size 1 × 1 by its only element. If A,B are matrices, then
AB denotes matrix multiplication. We assume that all matrix operations are well defined in this paper. For
example, when we write AB without specifying the sizes of matrices A,B, it is assumed that the number of
columns in A equals the number of rows in B.

For any rational numbers α and β, α|β if and only if, α divides β, that is, if and only if β = λα for some
integer λ. We say that α is equivalent to β modulo γ written as α ≡ β (mod γ) if and only if γ|(α−β). We
say γ is the modulus of the equation α ≡ β (mod γ). We allow α, β, γ to be rational numbers. If α1, . . . , αn

are rational numbers, not all equal to 0, then the largest rational number γ dividing each of α1, . . . , αn exists
[29], and is called the greatest common divisor, or gcd of α1, . . . , αn denoted by gcd(α1, . . . , αn). We
assume that gcd is always positive.

Basic Properties of Modular Arithmetic: Let a, b, c, d, m be rational numbers.
P1. a ≡ a (mod m) (reflexivity).
P2. a ≡ b (mod m) implies b ≡ a (mod m) (symmetry).
P3. a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m) (transitivity).
P4. If a ≡ b (mod m), c ≡ d (mod m), and x, y are integers, then ax + cy ≡ bx + dy (mod m) (integer
linear combination).
P5. If c > 0 then a ≡ b (mod m) if, and only if, ac ≡ bc (mod mc).
P6. If a = b, then a ≡ b (mod m) for any m.

Example 1 Observe that x ≡ 0 (mod 1) for any integer x. Also observe from P5 (with c = 2) that
1
2x ≡ 0 (mod 1) if and only if x ≡ 0 (mod 2).

A linear diophantine equation (LDE) is a linear equation c1x1 + . . . + cnxn = c0, where x1, . . . , xn are
integer variables and c0, . . . , cn are rational numbers. A variable xi is said to occur in the LDE if ci 6= 0. We
denote a system of m LDEs in a matrix form as CX = D, where C denotes an m × n matrix of rationals,
X denotes a column vector of n integer variables and D denotes a column vector of m rationals. When we
write a (single) LDE in the form CX = D, it is implicitly assumed that the sizes of C,X,D are of the form
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1× n, n× 1, 1× 1, respectively. A variable is said to occur in a system of LDEs if it occurs in at least one
of the LDEs in the given system of LDEs.

A linear modular equation (LME) has the form c1x1 + . . . + cnxn ≡ c0 (mod l), where x1, . . . , xn are
integer variables, c0, . . . , cn are rational numbers, and l is a rational number. We call l the modulus of the
LME. Allowing l to be a rational number allows for simpler proofs and covers the case when l is an integer.
For brevity, we write a LME t ≡ c (mod l) by t ≡l c. A variable xi is said to occur in a LME if l does not
divide ci.

A system of LDEs (LMEs) denotes conjunctions of LDEs(LMEs). If F,G are a system of LDEs (LMEs),
then F ∧G is also a system of LDEs (LMEs).

2.1 Craig Interpolants

Given two logical formulas F and G in a theory T such that F ∧G is unsatisfiable in T . An interpolant I
for the ordered pair (F,G) is a formula such that
(1) F ⇒ I in T
(2) I ∧G is unsatisfiable in T
(3) I refers to only the common variables of A and B.
The interpolant I can contain symbols that are interpreted by T . In this paper such symbols will be one of
the following: addition (+), equality (=), modular equality for some rational number m (≡m), disequality
(6=), and multiplication by a rational number (×). The exact set of interpreted symbols in the interpolant
depends on T .

3 System of linear diophantine equations (LDEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for LDEs. The following
theorem from [29] gives a necessary and sufficient condition for a system of LDEs to have an integral
solution.

Theorem 1 (Schrijver [29]) A system of LDEs CX = D has no integral solution for X , if and only if there
exists a rational row vector R such that RC is integral and RD is not an integer.

Definition 1 We say a system of LDEs CX = D is unsatisfiable if it has no integral solution for X . For
a system of LDEs CX = D a proof of unsatisfiability is a rational row vector R such that RC is integral
and RD is not an integer.

In section 5 we describe how a proof of unsatisfiability R can be obtained in polynomial time for an unsat-
isfiable system of LDEs. (We show in the appendix I that R can be converted to a polynomially sized proof
in a cutting-plane proof system [29, 7].)

Example 2 Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=

 1 1 0
1 −1 0
0 2 2

 x
y
z

 =

 1
1
3

 R = [12 ,−1
2 , 1

2 ]
RC = [0, 2, 1]
RD = 3

2
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Example 3 Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=
[

1 −2 0
1 0 −2

] x
y
z

 =
[

0
1

] R = [12 , 1
2 ]

RC = [1,−1,−1]
RD = 1

2

The above examples will be used as running examples in the paper.

Definition 2 (Implication) A system of LDEs CX = D implies a (single) LDE AX = B, if every integral
vector X satisfying CX = D also satisfies AX = B.

Similarly, CX = D implies a (single) LME AX ≡m B, if every integral vector X satisfying CX = D
also satisfies AX ≡m B.

Lemma 1 (Linear combination) For every rational row vector U the system of LDEs CX = D implies the
LDE UCX = UD. Note that UCX = UD is simply a linear combination of the equations in CX = D.
The system CX = D also implies the LME UCX ≡m UD for any rational number m.

Example 4 The system of LDEs CX = D in Example 3 implies the LDE [12 , 1
2 ]CX = [12 , 1

2 ]D, which
simplifies to x− y − z = 1

2 . The system CX = D also implies the LME x− y − z ≡m
1
2 for any rational

number m.

3.1 Computing interpolants for systems of LDEs

Let F ∧ G denote an unsatisfiable system of LDEs. The following example shows that an unsatisfiable
system of LDEs does not always have an LDE as an interpolant.

Example 5 Let F := x−2y = 0 and G := x−2z = 1. Intuitively, F expresses the constraint that x is even
and G expresses the constraint that x is odd, thus, F ∧G is unsatisfiable. We gave a proof of unsatisfiability
of F ∧ G in Example 3. Observe that the pair (F,G) does not have any quantifier-free interpolant that is
also a LDE. The problem is that the interpolant can only refer to the variable x. We can prove (using Lemma
6 or see Appendix A) that there is no formula I of the form c1x+ c2 = 0, where c1, c2 are rational numbers,
such that F ⇒ I and I ∧G is unsatisfiable.

As shown by the above example it is possible that there exists no LDE that is an interpolant for (F,G). We
show that in this case the system (F,G) always has an LME as an interpolant. In the above example an
interpolant will be x ≡2 0. Intuitively, the interpolant means that x is an even integer.

We now describe the algorithm for obtaining interpolants. Let AX = A′, BX = B′ be systems of
LDEs, where X = [x1, . . . , xn] is a column vector of n integer variables. Suppose the combined system of
LDEs AX = A′∧BX = B′ is unsatisfiable. We want to compute an interpolant for (AX = A′, BX = B′).
Let R = [R1, R2] be a proof of unsatisfiability of AX = A′ ∧BX = B′ according to definition 1. Then

R1A + R2B is integral and R1A
′ + R2B

′ is not an integer.

Recall that a variable is said to occur in a system of LDEs if it occurs with a non-zero coefficient in one of
the equations in the system of LDEs. Let VAB ⊆ X denote the set of variables that occur in both AX = A′

and BX = B′, let VA\B ⊆ X denote the set of variables occurring only in AX = A′ (and not in BX = B′),
and let VB\A ⊆ X denote the set of variables occurring only in BX = B′ (and not in AX = A′).
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We call the LDE R1AX = R1A
′ a partial interpolant for (AX = A′, BX = B′). It is a linear

combination of equations in AX = A′. The partial interpolant R1AX = R1A
′ can be written in the

following form ∑
xi∈VA\B

aixi +
∑

xi∈VAB

bixi = c (1)

where all coefficients ai, bi and c = R1A
′ are rational numbers. Observe that the partial interpolant does

not contain any variable that occurs only in BX = B′ (VB\A).

Lemma 2 The coefficient ai of each xi ∈ VA\B in the partial interpolant R1AX = R1A
′ (Equation 1) is

an integer.

Lemma 3 The partial interpolant R1AX = R1A
′ satisfies the first two conditions in the definition of an

interpolant. That is,
1. AX = A′ implies R1AX = R1A

′

2. (R1AX = R1A
′) ∧BX = B′ is unsatisfiable

If ai = 0 for all xi ∈ VA\B (equation 1), then the partial interpolant only contains the variables from VAB .
In this case the partial interpolant is an interpolant for (AX = A′, BX = B′).

The proof of above lemmas are given in the appendix A.

Example 6 Consider the system of LDEs CX = D in Example 2. A proof of unsatisfiability for this system
is R = [12 ,−1

2 , 1
2 ]. Let AX = A′ be the first two equations in CX = D, that is, x + y = 1 ∧ x − y = 1

(in matrix form). Let BX = B′ be the third equation in CX = D, that is, 2y + 2z = 3. Observe that
VA\B := {x}, VAB := {y}, VB\A := {z}. In this case R1 = [12 ,−1

2 ]. The partial interpolant for the pair
(AX = A′, BX = B′) is y = 0, which is also an interpolant because y ∈ VAB .

The following example shows that a partial interpolant need not be an interpolant.

Example 7 Consider the system CX = D in Example 3. A proof of unsatisfiability for this system is
R = [12 , 1

2 ]. Let AX = A′ be the first equation in CX = D, that is, x − 2y = 0. Let BX = B′ be the
second equation in CX = D, that is, x− 2z = 1. Observe that VA\B := {y}, VAB := {x}, VB\A := {z}.
In this case R1 = [12 ]. Thus, the partial interpolant for the pair (AX = A′, BX = B′) is 1

2x − y = 0.
Observe that the partial interpolant is not an interpolant as it contains the variable y, which does not occur in
VAB . This is not surprising since we have already seen in Example 5 that (x− 2y = 0, x− 2z = 1) cannot
have an interpolant that is a LDE.

We now intuitively describe how to remove variables from the partial interpolant that are not common to
AX = A′ and BX = B′. In example 7 the partial interpolant is 1

2x − y = 0, where y /∈ VAB . We show
how to eliminate y from 1

2x− y = 0 in order to obtain an interpolant. We use modular arithmetic in order to
eliminate y. Informally, the equation 1

2x − y = 0 implies 1
2x − y ≡ 0 (mod γ) for any rational number γ.

Let α denote the greatest common divisor of the coefficients of variables (in 1
2x−y = 0) that do not occur in

VAB . In this example α = 1 (gcd of the coefficient of y). We know 1
2x−y = 0 implies 1

2x−y ≡ 0 (mod 1).
Since y is an integer variable y ≡ 0 (mod 1). We can add 1

2x−y ≡ 0 (mod 1) and y ≡ 0 (mod 1) to obtain
1
2x ≡ 0 (mod 1) (note that y is eliminated). Intuitively, the linear modular equation 1

2x ≡ 0 (mod 1) is an
interpolant for (x− 2y = 0, x− 2z = 1). By using basic modular arithmetic this interpolant can be written
as x ≡ 0 (mod 2).

We now formalize the above intuition to address the case when the partial interpolant contains variables
that are not common to AX = A′ and BX = B′.
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Theorem 2 Assume that the coefficient ai of at least one xi ∈ VA\B in the partial interpolant (Equation 1)
is not zero. Let α denote the gcd of {ai|xi ∈ VA\B}.
(a) α is an integer and α > 0.
(b) Let β be any integer that divides α. Then the following linear modular equation Iβ is an interpolant for
(AX = A′, BX = B′).

Iβ :=
∑

xi∈VAB

bixi ≡ c (mod β)

Observe that Iβ contains only variables that are common to both AX = A′ and BX = B′. It is obtained
from the partial interpolant by dropping all variables occurring only in AX = A′ (VA\B) and replacing the
linear equality by a modular equality.

The proof can be found in the appendix A.2. In theorem 2, I1 is always an interpolant for (AX =
A′, BX = B′). For α > 1 theorem 2 allows us to obtain multiple interpolants by choosing different β. For
any β that divides α, Iα ⇒ Iβ and Iβ ⇒ I1. Depending upon the application one can use the strongest
interpolant Iα (least satisfying assignments) or the weakest interpolant I1 (most satisfying assignments).
The next example illustrates the use of Theorem 2 in obtaining multiple interpolants.

Example 8 Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=
[

30 4
0 1

] [
x
y

]
=

[
2
2

] R = [15 , 1
5 ]

RC = [6, 1]
RD = 4

5

Let AX = A′ be the first equation in CX = D, that is, 30x+4y = 2 (in matrix form). Let BX = B′ be the
second equation in CX = D, that is, y = 2. Observe that VA\B := {x}, VAB := {y}, VB\A := ∅. In this
case R1 = [15 ]. The partial interpolant R1AX = R1A

′ for the pair (AX = A′, BX = B′) is 6x + 4
5y = 2

5 .
The partial interpolant is not an interpolant as it contains the variable x, which does not occur in VAB .

Using Theorem 2 we can obtain four interpolants for the pair (AX = A′, BX = B′):

I1 :=
4
5
y ≡1

2
5

I2 :=
4
5
y ≡2

2
5

I3 :=
4
5
y ≡3

2
5

I6 :=
4
5
y ≡6

2
5

I6 implies all other interpolants. That is, I6 ⇒ I3, I6 ⇒ I2, I6 ⇒ I1. I1 is implied by all other interpolants.
That is, I2 ⇒ I1, I3 ⇒ I1, I6 ⇒ I1.

Lemma 3 and Theorem 2 give us a sound and complete algorithm for computing an interpolant for unsatis-
fiable systems of LDEs. (See Appendix A.3 for the algorithm pseudocode.)

4 System of linear modular equations (LMEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for LMEs. We first consider
a system of LMEs where all equations have the same modulus l, where l is a rational number. We denote this
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system as CX ≡l D, where C denotes an m × n rational matrix, X denotes a column vector of n integer
variables and D denotes a column vector of m rational numbers. The next theorem gives a necessary and
sufficient condition for CX ≡l D to have an integral solution.

Theorem 3 The system CX ≡l D has no integral solution X if and only if there exists a rational row vector
R such that RC is integral, lR is integral, and RD is not an integer. Note that lR denotes the row vector
obtained by multiplying each element of R by rational number l. (The size of R is 1×m.)

The proof uses reduction to LDEs. See the appendix B.1 for the proof.

Definition 3 We say a system of LMEs CX ≡l D is unsatisfiable if it has no integral solution X . A proof
of unsatisfiability for a system of LMEs CX ≡l D is a rational row vector R such that RC is integral, lR
is integral, and RD is not an integer.

Example 9 Consider the system of LMEs CX ≡8 D and a proof of unsatisfiability R:

CX ≡8 D :=

 2 2
2 1
4 0

[
x
y

]
≡8

 4
4
4

 R = [14 ,−1
2 ,−1

8 ]
RC = [−1, 0]
lR = [2,−4,−1]
RD = −3

2

Intuitively, CX ≡8 D is unsatisfiable because we can take an integer linear combination of the given
equations using lR to get a contradiction 0 ≡8 −12.

Definition 4 (Implication) A system of LMEs CX ≡l D implies a LME AX ≡l B, if every integral vector
X satisfying CX ≡l D also satisfies AX ≡l B.

Lemma 4 For every integral row vector U the system of LMEs CX ≡l D imply UCX ≡l UD.

4.1 Computing interpolants for systems of LMEs

Let AX ≡l A′ and BX ≡l B′ be two systems of LMEs such that AX ≡l A′ ∧BX ≡l B′ is unsatisfiable.
We show that (AX ≡l A′, BX ≡l B′) always has an LME as an interpolant. Let R = [R1, R2] denote
a proof of unsatisfiability for the system AX ≡l A′ ∧ BX ≡l B′ such that R1A + R2B is integral,
lR = [lR1, lR2] is integral, and R1A

′ + R2B
′ is not an integer. The following theorem shows that we can

take integer linear combinations of equations in AX ≡l A′ to obtain interpolants.

Theorem 4 We assume l 6= 0. Let S1 denote the set of non-zero coefficients of xi ∈ VA\B in R1AX . Let
S2 denote the set of non-zero elements of row vector lR1. If S2 = ∅, then the interpolant for (AX ≡l

A′, BX ≡l B′) is a trivial LME 0 ≡l 0. Otherwise, let S2 6= ∅. Let α denote the gcd of numbers in S1 ∪S2.
(a) α is an integer and α > 0.
(b) Let β be any integer that divides α. Let U = l

β R1. Then UAX ≡l UA′ is an interpolant for (AX ≡l

A′, BX ≡l B′).

The proof is given in the appendix B.2.

Example 10 Consider the system of LMEs CX ≡l D in Example 9. Let AX ≡l A′ denote the first two
equations in CX ≡l D and BX ≡l B′ denote the last equation in CX ≡l D. Observe that VA\B :=
{y}, VAB := {x}, VB\A := ∅. A proof of unsatisfiability for CX ≡l D is R = [14 ,−1

2 ,−1
8 ]. We have

R1 = [14 ,−1
2 ], lR1 = [2,−4], R1AX is −1

2x, S1 = ∅, S2 = {2,−4}, α = 2. We can take β = 1
or β = 2 to obtain two valid interpolants. For β = 1, U = [2,−4] and the interpolant UAX ≡l UA′

is −4x ≡8 −8 (equivalently x ≡2 0). For β = 2, U = [1,−2] and the interpolant UAX ≡l UA′ is
−2x ≡8 −4 (equivalently x ≡4 2).
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4.2 Handling LMEs with different moduli

Consider a system F of LMEs, where equations in F can have different moduli. In order to check the
satisfiability of F , we obtain another equivalent system of equations F ′ such that each equation in F ′ has
the same moduli. This is done using a standard trick described in Mathews [22]. Let m1, . . . ,mk represent
the different moduli occurring in equations in F . Let m denote the least common multiple of m1, . . . ,mk.
We multiply each equation t ≡mi c in F by m

mi
to obtain another equation m

mi
t ≡m

m
mi

c. Let F ′ represent
the set of new equations. All equations in F ′ have same modulus m. Using basic modular arithmetic one
can show that F and F ′ are equivalent. Suppose F is unsatisfiable. Then the interpolants for any partition
of F can be computed by working with F ′ and using the techniques described in the previous section. For
example, let F represent the following system of LMEs x ≡2 1 ∧ x + y ≡4 2 ∧ 2x + y ≡8 4. One can
work with F ′ := 4x ≡8 4 ∧ 2x + 2y ≡8 4 ∧ 2x + y ≡8 4 instead of F .

5 Algorithms for obtaining Proofs of Unsatisfiability

Polynomial time algorithms are known for determining if a system of LDEs CX = D has an integral
solution or not [29]. We review one such algorithm that is based on the computation of the Hermite normal
form (HNF) of the matrix C.

Using standard Gaussian elimination it can be determined if CX = D has a rational solution or not. If
CX = D has no rational solution, then it cannot have any integral solution. In the discussion below we
assume that CX = D has a rational solution. Without loss of generality we assume that matrix C has full
row rank, that is, all rows of C are linearly independent (linearly dependent equations can be removed).

The HNF of a m×n matrix C with full row rank is of the form [E 0] where 0 represents an m×(n−m)
matrix filled with zeros and E is a square m × m matrix with the following properties: 1) E is lower
triangular 2) E is non-singular (invertible) 3) all entries in E are non-negative and the maximum entry in
each row lies on the diagonal. The HNF of a matrix can be obtained by three elementary column operations.
1) Exchanging two columns. 2) Multiplying a column by -1. 3) Adding an integral multiple of one column
to another column. Each column operation can be represented by a unimodular matrix. A unimodular matrix
is a square matrix with integer entries and determinant +1 or -1. The product of unimodular matrices is a
unimodular matrix. The inverse of a unimodular matrix is a unimodular matrix. The conversion of C to
HNF can be represented as follows CU = [E 0], where U is a unimodular matrix, the sizes of C,U,E
are m × n, n × n, m ×m, respectively and 0 represents an m × (n −m) matrix filled with zeros (n ≥ m
because C has full row-rank). The following result shows the use of HNF in determining the satisfiability
of a system of LDEs. Let E−1 denotes the matrix inverse of E.

Lemma 5 (Schrijver [29]) For C,X,D,E defined as above, CX = D has no integral solution if and only
if E−1D is not integral.

Example 11 For the system of LDEs CX = D in example 2 we have the following: 1 1 0
1 −1 0
0 2 2


︸ ︷︷ ︸

C

 1 1 0
0 −1 0
0 1 1


︸ ︷︷ ︸

U

=

 1 0 0
1 2 0
0 0 2


︸ ︷︷ ︸

E

 1 0 0
−1
2

1
2 0

0 0 1
2


︸ ︷︷ ︸

E−1

 1
1
3


︸ ︷︷ ︸

D

=

 1
0
3
2


︸ ︷︷ ︸

not integral
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Example 12 For the system of LDEs CX = D in example 3 we have the following:[
1 −2 0
1 0 −2

]
︸ ︷︷ ︸

C

 1 2 −2
0 1 −1
0 0 −1


︸ ︷︷ ︸

U

=
[

1 0 0
1 2 0

]
︸ ︷︷ ︸

[E 0]

[
1 0
−1
2

1
2

]
︸ ︷︷ ︸

E−1

[
0
1

]
︸ ︷︷ ︸

D

=
[

0
1
2

]
︸ ︷︷ ︸

not integral

5.1 Obtaining a proof of unsatisfiability for a system of LDEs

If a system of LDEs CX = D is unsatisfiable, then we want to compute a row vector R such that RC is
integral and RD is not an integer. The following corollary shows that the proof of unsatisfiability can be
obtained by using the HNF of C.

Corollary 1 Given CX = D where C,D are rational matrices, and C has full row rank. Let [E 0] denote
the HNF of C. If CX = D has no integral solution, then E−1D is not integral. Suppose the ith entry in
E−1D is not an integer. Let R′ denote the ith row in E−1. Then (a) R′D is not an integer and (b) R′C is
integral. Thus, R′ serves as the required proof of unsatisfiability of CX = D.

The proof is given in the appendix C.

Example 13 In example 11 the third row in E−1D is not an integer. Thus, the proof of unsatisfiability of
CX = D is the third row in E−1 which is [0, 0, 1

2 ].
In example 12 the second row in E−1D is not an integer. Thus, the proof of unsatisfiability of CX = D

is the second row in E−1 which is [−1
2 , 1

2 ].

Proofs of unsatisfiability for LMEs Let CX ≡l D be a system of LMEs. Each equation ti ≡l di in
CX ≡l D can be written as an equi-satisfiable LDE, ti + lvi = di, where vi is a new integer variable. In
this way we can reduce the given CX ≡l D to an equi-satisfiable system of LDEs C ′Z = D. The proof of
unsatisfiability of C ′Z = D is exactly a proof of unsatisfiability of CX ≡l D (see the proof of theorem 3).

Complexity If a system of LDEs or LMEs is unsatisfiable, then we can obtain a proof of unsatisfiability
in polynomial time. This is because HNF computation, matrix inversion, and matrix multiplication can be
done in polynomial time in the size of input [29, 31]. The interpolation algorithms described in Sections 3
and 4 are polynomial in the size of the given formulas and the proof of unsatisfiability.

6 Handling Linear Diophantine Equations and Disequations

We show how to compute interpolants in presence of linear diophantine disequations. A linear diophantine
disequation (LDD) is of the form c1x1 + . . . + cnxn 6= c0, where c0, . . . , cn are rational numbers and
x1, . . . , xn are integer variables. A system of LDEs+LDDs denotes conjunctions of LDEs and LDDs. For
example, x + 2y = 1 ∧ x + y 6= 1 ∧ 2y + z 6= 1 with x, y, z as integer variables represents a system
of LDEs+LDDs. We represent a conjunction of m LDDs as

∧m
i=1 CiX 6= Di, where Ci is a rational row

vector and Di is a rational number. The next theorem gives a necessary and sufficient condition for a system
of LDEs+LDDs to have an integral solution.

Theorem 5 Let F denote AX = B ∧
∧m

i=1 CiX 6= Di. The following are equivalent:
1. F has no integral solution
2. F has no rational solution or AX = B has no integral solution.
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The proof of (2) ⇒ (1) in Theorem 5 is easy. The proof of (1) ⇒ (2) is involved and relies on the following
lemmas (full proof is given in the appendix F). The first lemma shows that if a system of LDEs AX = B has
an integral solution, then every LDE that is implied by AX = B, can be obtained by a linear combination
of equations in AX = B.

Lemma 6 A system of LDEs AX = B implies a LDE EX = F if and only if AX = B is unsatisfiable or
there exists a rational vector R such that E = RA and F = RB.

We use the properties of the cutting-plane proof system [29, 7] in order to prove lemma 6. The proof is
given in the appendix D. The next lemma shows that if a system of LDEs implies a disjunction of LDEs,
then it implies one of the LDEs in the disjunction (also called convexity [25]).

Lemma 7 A system of LDEs AX = B implies
∨m

i=1 CiX = Di if and only if there exists 1 ≤ k ≤ m such
that AX = B implies CkX = Dk.

We use a theorem from [29] that gives a parametric description of the integral solutions to AX = B in
order to prove lemma 7. See the appendix E for the full proof. Let F denote AX = B ∧

∧m
i=1 CiX 6= Di.

Using Theorem 5 we can determine whether F has an integral solution in polynomial time. This is because
checking if AX = B has an integral solution can be done in polynomial time [29, 7]. Checking whether the
system F has a rational solution can be done in polynomial time as well [25].

6.1 Interpolants for LDEs+LDDs

We say a system of LDEs+LDDs is unsatisfiable if it has no integral solution. Consider systems of
LDEs+LDDs F := F1 ∧ F2 and G := G1 ∧ G2, where F1, G1 are systems of LDEs and F2, G2 are
systems of LDDs. F ∧G represents another system of LDEs+LDDs. Suppose F ∧G is unsatisfiable. The
interpolant for (F,G) can be computed by considering two cases (due to theorem 5):
Case 1: F ∧ G is unsatisfiable because F1 ∧ F2 ∧ G1 ∧ G2 has no rational solution. We can compute an
interpolant for (F,G) using the techniques described in [24, 33, 28, 10]. For completeness we describe this
case in the appendix G. The interpolant can be a LDE or a LDD.
Case 2: F ∧ G is unsatisfiable because F1 ∧ G1 has no integral solution. In this case we can compute an
interpolant for the pair (F1, G1) using the techniques from Section 3. The interpolant for (F1, G1) will be
an interpolant for (F,G). It can be a LDE or a LME.

7 Experimental results

We implemented the interpolation algorithms for conjunctions of LDEs, LMEs, LDDs in a tool called INT2
(INTeger INTerpolate). The experiments are performed on a 1.86 GHz Intel Xeon (R) machine with
4 GB of memory running Linux. INT2 is designed for computing interpolants for formulas (LDEs, LMEs,
LDEs+LDDs) that are satisfiable over rationals but unsatisfiable over integers. Currently, there are no other
interpolation tools for such formulas.

7.1 Use of Interpolants in Verification

We wrote a collection of small C programs each containing a while loop and an ERROR label. These
programs are safe (ERROR is unreachable). The existing tools based on predicate abstraction and coun-
terexample guided abstraction refinement (CEGAR) such as BLAST [1, 17], SATABS [2] are not able to

11



Example Preds/Interpolants VINT2
ex1 y ≡2 1 2.72s
ex2 x + y ≡2 0 0.83s
ex4 x + y + z ≡4 0 0.95s
ex5 x ≡4 0, y ≡4 0 1.1s
ex6 4x + 2y + z ≡8 0 0.93s
ex7 4x− 2y + z ≡222 0 0.54s
forb1 x + y ≡3 0 -

Table 1: Table showing the predicates needed and time taken in seconds.
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Figure 1: Comparing Hermite Normal Form based algorithm and black-box use of Yices for getting proofs of unsat-
isfiability

verify these programs. This is because the inductive invariant required for the proof contains LMEs as
predicates, shown in the “Preds/Interpolants” column of Table 1. These predicates cannot be discovered
by the interpolation engine [24, 28] used in BLAST or by the weakest precondition based procedure used
in SATABS. The interpolation algorithms described in this paper are able to find the right predicates by
computing the interpolants for spurious program traces. Only one unwinding of the while loop suffices
to find the right predicates in 6 out of 7 cases. In program ex5 multiple unwindings of the while loop
produces predicates of the form x = 0, y = 4, x = 4, y = 8, . . .. After a few unwindings these predicates
are generalized to obtain x ≡4 0, y ≡4 0 (by taking gcd of the numbers involved).

We wrote similar programs in Verilog and tried verifying them with VCEGAR [3], a CEGAR based
model checker for Verilog. VCEGAR fails on these examples due to its use of weakest preconditions. Next,
we externally provided the interpolants (predicates) found by INT2 to VCEGAR. With the help of these pred-
icates VCEGAR is able to show the unreachability of ERROR labels in all examples except forb1 (ERROR
is reachable in the Verilog version of forb1). The runtimes are shown in “VINT2” column.
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7.2 Proofs of unsatisfiability (PoU) algorithms

We obtained 459 unsatisfiable formulas (system of LDEs) by unwinding the while loops for C programs
mentioned above. The number of LDEs in these formulas range from 3 to 1500 with 2 to 4 variables per
equation. There are two options for obtaining PoU in INT2.

(a) Using Hermite Normal Form (HNF) (Section 5.1). We use PARI/GP [32] to compute HNF of matrices.

(b) By using a state-of-the-art SMT solver Yices 1.0.11 [4] in a black-box fashion (along the lines of
[28]). Given a system of LDEs AX = B we encode the constraints that RA is integral and RB is
not an integer by means of mixed integer linear arithmetic constraints (see the appendix J). The SMT
solver returns concrete values to elements in R if AX = B is unsatisfiable.

The comparison between (a) and (b) is shown in Figure 1. There is a timeout of 1000 seconds per
problem. The HNF based algorithm is able to solve all problems, while the black-box usage of Yices cannot
solve 102 problems within the timeout. Thus, the HNF based method is superior over the black-box use of
Yices.

We also ran Yices to decide whether AX = B has an integral solution or not. The system AX = B (X
integral) is given to Yices. In this case, Yices is very efficient and reports the satisfiability or unsatisfiability
of AX = B quickly. However, no PoU is provided when AX = B is unsatisfiable. In principle it is possible
for Yices to provide a PoU when AX = B is unsatisfiable (although this will add some overhead).

Note that the interpolation algorithms proposed in our paper are independent of the algorithm used to
generate the PoU. Any decision procedure that can produce PoU according to definitions 1, 3 can be used
(we are not restricted to using HNF or Yices).

8 Conclusion

We presented polynomial time algorithms for computing proofs of unsatisfiability and interpolants for con-
junctions of linear diophantine equations, linear modular equations and linear diophantine disequations.
These interpolation algorithms are useful for discovering modular/divisibility predicates from spurious
counterexamples in a counterexample guided abstraction refinement framework. In future, we plan to
work on interpolating theorem provers for integer linear arithmetic and bit-vector arithmetic and make use
of the satisfiability modulo theories framework.

Acknowledgment. We thank Axel Legay and Jeremy Avigad for their valuable comments.
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A Proofs from Section 3

Proof of Lemma 1

Proof. UCX = UD is a linear combination of equations in CX = D. Let X0 be an integral solution to
CX = D. It is easy to verify that X0 also satisfies UCX = UD. Thus, the system of LDEs CX = D
implies the LDE UCX = UD for any rational row vector U .

Since UCX0 − UD = 0, any rational number m divides UCX0 − UD. It follows that X0 is also a
solution to the LME UCX ≡m UD. Thus, the system of LDEs CX = D implies the LME UCX ≡m UD
for any rational row vector U and rational number m. �

Why F ∧G has no LDE as interpolant in Example 5.

Proof. Recall, that F is x− 2y = 0 and G is x− 2z = 1, where x, y, z are integers. Observe that F has an
integral solution, for example, x = 2, y = 1. Thus, by lemma 6 any LDE that is implied by F must be of
the form r(x− 2y = 0), where r is a rational number.

Suppose (F,G) have an LDE I as an interpolant. Since F ⇒ I , I must be of the form r(x−2y = 0). But
I can only contain variable x (common variable of F and G). This is possible only when r = 0. With r = 0,
I reduces to 0 = 0 which is not unsatisfiable with G. Thus, (F,G) cannot have an LDE as an interpolant. �

Proof of Lemma 2

Proof. By definition of VA\B the coefficient of xi ∈ VA\B is zero in each equation of BX = B′. Thus, the
coefficient of xi ∈ VA\B must be the same in R1AX and (R1A + R2B)X . Since R1A + R2B is integral it
follows that the coefficient of xi ∈ VA\B (ai) in the partial interpolant is an integer. �

A.1 Proof of Lemma 3

Lemma 3. The partial interpolant R1AX = R1A
′ satisfies the first two conditions in the definition of an

interpolant. That is,
1. AX = A′ implies R1AX = R1A

′

2. (R1AX = R1A
′) ∧BX = B′ is unsatisfiable

If ai = 0 for all xi ∈ VA\B (equation 1), then the partial interpolant is also a interpolant for (AX =
B,A′X = B′). In this case the partial interpolant only contains the variables from VAB .

Proof. 1. AX = A′ implies R1AX = R1A
′. This follows from Lemma 1.

2. Observe that (R1AX = R1A
′) ∧BX = B′ is a system of LDEs[

R1A
B

]
X =

[
R1A

′

B′

]
We show that the row vector [1, R2] is a proof of unsatisfiability of I ∧ (BX = B′). This requires showing
the conditions in the definition of proof of unsatisfiability are met.
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- To show

[1, R2]
[

R1A
B

]
is integral.

The above product is equal to R1A + R2B which is integral.

- To show

[1, R2]
[

R1A
′

B′

]
is not an integer.

The above product is equal to R1A
′ + R2B

′ which is not an integer. Thus, [1, R2] is a proof of unsatisfia-
bility of I ∧ (BX = B′). So I ∧ (BX = B′) is unsatisfiable. �

A.2 Proof of Theorem 2

Recall that rational row vector [R1, R2] is the proof of unsatisfiability of AX = A′∧BX = B′ (A,B, A′, B′

are rational matrices) such that

R1A + R2B is integral

R1A
′ + R2B

′ is not an integer

We call R1AX = R1A
′ the partial interpolant for (AX = A′, BX = B′). It can be written as follows:∑

xi∈VA\B

aixi +
∑

xi∈VAB

bixi = c (2)

where all coefficients ai, bi and c = R1A
′ are rational numbers. The above equation is the same as Equation

1 repeated here for convenience.
Similarly, R2BX = R2B

′ can be written as follows:∑
xi∈VAB

eixi +
∑

xi∈VB\A

fixi = d (3)

where all coefficients ei, fi and d = R2B
′ are rational numbers. Observe that R2BX = R2B

′ does not
contain any variable from VA\B .

Lemma 8 Using the notation from Equations 2 and 3:
(a) For all xi ∈ VA\B , ai is an integer.
(b) For all xi ∈ VAB , bi + ei is an integer.
(c) For all xi ∈ VB\A, fi is an integer.
(d) c + d is not an integer.

Proof. The sum of the left hand sides of Equations 2 and 3 is∑
xi∈VA\B

aixi +
∑

xi∈VAB

(bi + ei)xi +
∑

xi∈VB\A

fixi

which is the same as (R1A+R2B)X . Since R1A+R2B is integral each coefficient in the above sum must
be an integer. This gives us the desired results (a),(b),(c).
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Since c + d = R1A
′ + R2B

′ and R1A
′ + R2B

′ is not an integer we get (d). �

Theorem 2. Assume that the coefficient ai of at least one xi ∈ VA\B in the partial interpolant (Equation 2)
is not zero. Let α denote the gcd of {ai|xi ∈ VA\B}.
(a) α is an integer and α > 0.
(b) Let β be any integer that divides α. Then the following linear modular equation Iβ is an interpolant for
(AX = A′, BX = B′).

Iβ :=
∑

xi∈VAB

bixi ≡ c (mod β)

Observe that Iβ contains only variables that are common to both AX = A′ and BX = B′. It is obtained
from the partial interpolant (Equation 2) by dropping all variables occurring only in AX = A′ (VA\B) and
replacing the linear equality by a modular equality.

Proof. (a) By lemma 8 each ai is an integer. Since α is the gcd of {ai|xi ∈ VA\B}, α must be an in-
teger. Also note that α is non-zero since at least one ai is non-zero. By definition of gcd α is positive.

(b) To show that Iβ is an interpolant for (AX = A′, BX = B′).
1. We need to show that AX = A′ implies Iβ . Recall, that AX = A′ implies the partial interpolant
R1AX = R1A

′ from lemma 3. We show that R1AX = R1A
′ implies Iβ .

From basic modular arithmetic it follows that s = t implies s ≡ t (mod γ) for any rational number γ.
Thus, the partial interpolant R1AX = R1A

′ implies R1AX ≡β R1A
′, where β is any integer that divides

α. Consider the equation form of R1AX ≡β R1A
′ (equation 2):∑

xi∈VA\B

aixi +
∑

xi∈VAB

bixi ≡β c (4)

By definition α divides ai for all xi ∈ VA\B . Since β divides α, it follows that β divides ai for all xi ∈ VA\B .
As xi is an integer valued variable, aixi is divisible by β for all xi ∈ VA\B . It follows that∑

xi∈VA\B

aixi ≡β 0. (5)

Subtract equation 5 from equation 4 to obtain ∑
xi∈VAB

bixi ≡β c.

The above equation is Iβ . AX = A′ implies R1AX = R1A
′ and R1AX = R1A

′ implies equation 4.
Equation 5 holds for any integral assignment to all xi ∈ VA\B . So R1AX = R1A

′ implies equation 5.
Equations 4, 5 imply Iβ . It follows that AX = A′ implies Iβ .

2. We need to show that Iβ ∧ BX = B′ is unsatisfiable. Assume for the sake of contradiction that
Iβ ∧ BX = B′ has an integral satisfying assignment. Let the satisfying assignment to Iβ ∧ BX = B′

be xi = gi where gi is an integer for all xi ∈ VAB ∪ VB\A. Since Iβ is satisfied by gi we have∑
xi∈VAB

bigi ≡β c
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Thus, there exists an integer t such that ∑
xi∈VAB

bigi + tβ = c (6)

The equation R2BX = R2B
′ is implied by BX = B′. Thus, the satisfying assignment xi = gi for all

xi ∈ VAB ∪ VB\A satisfies R2BX = R2B
′. By plugging in the values gi for xi in Equation 3 we get:∑

xi∈VAB

eigi +
∑

xi∈VB\A

figi = d (7)

We can sum the equations 6, 7 to get

tβ +
∑

xi∈VAB

(bi + ei)gi +
∑

xi∈VB\A

figi = c + d (8)

We know that t, β are integers, gi are integers for all xi ∈ VAB ∪ VB\A, and from Lemma 8 it follows that
bi + ei is integer for xi ∈ VAB and fi is integer for xi ∈ VB\A. It follows that the left hand side of Equation
8 is an integer. While the right hand side of Equation 8 is not an integer by Lemma 8. Thus, the above
equation is the required contradiction. It follows that Iβ ∧BX = B′ are unsatisfiable.

3. By the definition of Iβ it follows that Iβ only contains common variables of AX = A′ and BX = B′. �
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A.3 Algorithm for Computing Interpolants for LDEs

Algorithm 1 Interpolation for Linear Diophantine Equations
Require: Systems of LDEs AX = A′ and BX = B′, AX = A′ ∧BX = B′ is unsatisfiable.
Ensure: Return an interpolant for (AX = A′, BX = B′)

1: [R1, R2] ⇐ proof of unsatisfiability of AX = A′ ∧BX = B′

{R1A + R2B is integral and R1A
′ + R2B

′ is not an integer}
2: PI ⇐ R1AX = R1A

′ {PI represents partial interpolant}
3: PI can be written as ∑

xi∈VA\B

aixi +
∑

xi∈VAB

bixi = c

{VAB ⊆ X represents variables occuring in both AX = A′, BX = B′, while VA\B ⊆ X represents
variables occurring in only AX = A′}

4: if ai = 0 for all xi ∈ VA\B then
5: return PI {Interpolant is a LDE}
6: else
7: α ⇐ gcd{ai|xi ∈ VA\B} {α is an integer}
8: Let β be any integer that divides α. Let linear modular equation

Iβ :=
∑

i∈VAB

bixi ≡β c

9: return Iβ {Interpolant is a LME}
10: end if

B Proofs from Section 4

B.1 Proof of Theorem 3

In order to prove theorem 3 we reduce the given system of LMEs to an equisatisfiable system of LDEs. We
then use theorem 1 about the satisfiability of LDEs in order to complete the proof.

Reduction of a system of LMEs to an equisatisfiable system of LDEs

Suppose we are given a system CX ≡l D of linear modular equations:
c11 . . . c1n

c21 . . . c2n

. . .
cm1 . . . cmn


︸ ︷︷ ︸

C


x1

.

.
xn


︸ ︷︷ ︸

X

≡l


d1

d2

.
dm


︸ ︷︷ ︸

D
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For each equation
∑

j cijxj ≡l di in CX ≡l D we introduce a new integer variable vi, to obtain a new
equation (without modulo), given as follows:

n∑
j=1

cijxj + lvi = di

The above equation is equi-satisfiable to the linear modular equation
∑

j cijxj ≡l di. Let V denote the
vector of variables v1, . . . , vm. We call the new system of linear equations as C ′Z = D, where Z denotes
the concatenation of variable vectors X and V . Note that C ′Z = D is a system of linear diophantine
equations. 

c11 . . . c1n l 0 . . . 0
c21 . . . c2n 0 l . . . 0
. . .
cm1 . . . cmn 0 0 . . . l


︸ ︷︷ ︸

C′



x1

.
xn

v1

.
vm


︸ ︷︷ ︸

Z

=


d1

.

.
dm


︸ ︷︷ ︸

D

Lemma 9 The following are equivalent:
(a) the system of linear modular equations CX ≡l D has an integral solution
(b) the system of linear diophantine equations C ′Z = D has an integral solution.

Proof. The proof of the above lemma is elementary.

Theorem 3. Let C be a rational matrix, D be a rational column vector, and l be a rational number. The
system CX ≡l D has no integral solution X if and only if there exists a rational row vector R such that
RC is integral, lR is integral, and RD is not an integer.

From lemma 9 and theorem 1 the following are equivalent:

(a) linear modular equations CX ≡l D has no integral solution
(b) linear diophantine equations C ′Z = D has no integral solution
(c) There exists a row vector R such that RC ′ is integral and RD is not an integer.

We show that the property of R in (c) is equivalent to “(d) RC is integral, lR is integral, and RD is not an
integer”.

Let R = [r1, . . . , rm] then

RC ′ =

[
m∑

i=1

rici1,

m∑
i=1

rici2, . . . ,

m∑
i=1

ricin, lr1, . . . , lri, . . . , lrm

]

RC ′ = [RC, lR]

Thus, RC ′ is integral if and only if RC and lR are integral. This shows (c) is equivalent to (d). Thus, (a) is
equivalent to (d) as required by the proof. �
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B.2 Proof of Theorem 4

Recall that VA\B denotes the set of variables that occur only in AX ≡l A′ (and not in BX ≡l B′) and
VAB denotes the set of variables that occur in both AX ≡l A′ and BX ≡l B′. The rational row vector
R = [R1, R2] is a proof of unsatisfiability of AX ≡l A′ ∧BX ≡l B′ such that

R1A + R2B is integral (9)

lR = [lR1, lR2] is integral (10)

R1A
′ + R2B

′ is not an integer. (11)

Lemma 10 The coefficient of xi ∈ VA\B in R1AX is an integer.

Proof. By definition of VA\B the coefficient of xi ∈ VA\B is zero in R2BX . Thus, the coefficient of
xi ∈ VA\B is the same in R1AX and (R1A + R2B)X . We know R1A + R2B is integral from equation 9.
So the coefficient of xi ∈ VA\B in R1AX is an integer. �

Theorem 4. We assume l 6= 0. Let S1 denote the set of non-zero coefficients of xi ∈ VA\B in R1AX .
Let S2 denote the set of all non-zero elements of row vector lR1. If S2 = ∅, then the interpolant for
(AX ≡l A′, BX ≡l B′) is a trivial LME 0 ≡l 0. Otherwise, let S2 6= ∅. Let α denote the gcd of numbers
in S1 ∪ S2. (a) α is an integer and α > 0. (b) Let β be any integer that divides α. Let U = l

β R1. Then
UAX ≡l UA′ is an interpolant for (AX ≡l A′, BX ≡l B′).

Proof. S2 = ∅: If S2 = ∅ it follows that all elements of lR1 are zero. Since l 6= 0, R1 must be a zero vector.
It follows that R1A is a zero vector and R1A

′ = 0. Using equation 9 and R1A is a zero vector, it follows that
R2B is integral. Using equation 11 and R1A

′ = 0, it follows that R2B
′ is not an integer. Thus, BX ≡l B′ is

itself unsatisfiable with R2 as the proof of unsatisfiability. In this case we can simply take true as the inter-
polant for the pair (AX ≡l A′, BX ≡l B′). The interpolant true can be expressed as a trivial LME 0 ≡l 0.

S2 6= ∅: We first show that α is an integer. Since lR1 is integral (see equation 10) all elements of S2 are
non-zero integers. All elements of S1 are non-zero integers due to Lemma 10. Thus, S1 ∪ S2 is a set of
non-zero integers. Since S2 6= ∅ there exists at least one element in S1 ∪ S2. α is the gcd of the numbers in
S1 ∪ S2. So α is a non-zero integer and by definition of gcd α is positive.

Let β be any integer that divides α. Note that β 6= 0 as α 6= 0. We define

Iβ := UAX ≡l UA′ where U =
l

β
R1. (12)

We need to show that Iβ is an interpolant for the pair (AX ≡l A′, BX ≡l B′).

(a) To show AX ≡l A′ ⇒ Iβ . If we show that U is integral, then by lemma 4 it follows that AX ≡l A′ ⇒
UAX ≡l UA′ and thus AX ≡l A′ ⇒ Iβ . We need to show that U is integral.

Recall from equation 10 that lR1 is integral. By definition of α it follows that α divides every element
in S2 or the row vector lR1. Since β divides α, β divides every element in lR1. So lR1

β = l
β R1 = U is an

integral vector.
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(b) To show Iβ ∧ (BX ≡l B′) is unsatisfiable. Observe that Iβ ∧ (BX ≡l B′) is another system of LMEs[
UA
B

]
X ≡l

[
UA′

B′

]
We show that the row vector [β

l , R2] serves as the proof of unsatisfiability of Iβ ∧ (BX ≡l B′). We will
check the conditions in the definition of proof of unsatisfiability.
- To show

[
β

l
,R2]

[
UA
B

]
is integral

The above product is equal to β
l (UA) + R2B = R1A + R2B. By equation 9 we know that R1A + R2B is

integral.

- To show that l[β
l , R2] = [β, lR2] is integral. From equation 10, lR2 is integral and β is an integer by

definition.

- To show

[
β

l
,R2]

[
UA′

B′

]
is not an integer

The above product is equal to β
l (UA′)+R2B

′ = R1A
′+R2B

′. By equation 11 we know that R1A
′+R2B

′

is not an integer.

We conclude that [β
l , R2] is a proof of unsatisfiability of Iβ ∧ (BX ≡l B′). Thus, Iβ ∧ (BX ≡l B′) is

unsatisfiable.

(c) To show that Iβ only contains variables that are common to both (AX ≡l A′, BX ≡l B′). Since Iβ is
obtained by a linear combination of equations from AX ≡l A′, we can write Iβ as follows:∑

xi∈VA\B

aixi +
∑

xi∈VAB

bixi︸ ︷︷ ︸
UAX

≡l c︸︷︷︸
UA′

(13)

where all coefficients ai, bi and c = UA′ are rational numbers.
We will show that the coefficient ai of each xi ∈ VA\B in equation 13 is divisible by l. This will in turn

show that ∑
xi∈VA\B

aixi ≡l 0 (14)

since xi are integer variables. This will allow Iβ to be written in an equivalent manner (containing only
variables from VAB) as follows: ∑

xi∈VAB

bixi ≡l c.

We now show that the coefficient ai of each xi ∈ VA\B in equation 13 is divisible by l. Recall, that

Iβ := UAX ≡l UA′ where U =
l

β
R1 and β divides α. (15)
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By definition α divides every element in S1

⇒ α divides the coefficient of each xi ∈ VA\B in R1AX
⇒ β divides the coefficient of each xi ∈ VA\B in R1AX .
⇒ the coefficient of xi ∈ VA\B in 1

β R1AX is an integer.
⇒ the coefficient of xi ∈ VA\B in l × 1

β R1AX is divisible by l.
⇒ the coefficient of xi ∈ VA\B in UAX is divisible by l (as U = l

β R1)
The coefficient of xi ∈ VA\B in UAX is simply ai (equation 13). So l divides ai. �

Degenerate case l = 0. Let AX ≡l A′ be a system of LMEs. For l = 0, AX ≡l A′ is equivalent to a
system of LDEs AX = A′. In order to see this, consider an LME

∑n
i=1 aixi ≡0 b. This LME is satisfied if

and only if
∑n

i=1 aixi − b = 0× λ, for some integer λ. Thus, the LME
∑n

i=1 aixi ≡0 b is equivalent to the
LDE

∑n
i=1 aixi = b.

Suppose AX ≡0 A′ ∧ BX ≡0 B′ is unsatisfiable. Then the interpolant for (AX ≡0 A′, BX ≡0 B′)
can be obtained by computing the interpolant for the pair of LDEs (AX = A′, BX = B′).

C Proof of Corollary 1

Corollary 1. Given CX = D where C,D are rational matrices, and C has full row rank. Let [E 0] denote
the Hermite normal form (HNF) of C. If CX = D has no integral solution, then E−1D is not integral (due
to lemma 5). Suppose the ith entry in E−1D is not an integer. Let R′ denote the ith row in E−1. Then
(a) R′D is not an integer
(b) R′C is integral
Thus, R′ serves as the required proof of unsatisfiability of CX = D.

Proof. (a) Follows from the definition of R′

(b) We know that
CU = [E 0]

where U is a unimodular matrix. Since E is invertible (by definition of HNF) we can multiply both sides of
the above equation by E−1 to obtain

E−1CU = E−1[E 0].

The above equation simplifies to
E−1CU = [I 0]

where I is the identity matrix. Since U is unimodular its inverse (U−1) exists and it is a unimodular matrix.
Multiply both sides of the above equation by U−1 to obtain

E−1CUU−1 = [I 0]U−1.

The above equation simplifies to
E−1C = [I 0]U−1.

Since U−1 is unimodular the right hand side of the above equation has integral entries. Thus, the left hand
side E−1C is integral. In particular the ith row in E−1C is integral. Observe that the ith row in E−1C is
simply R′C. Thus, R′C is integral. �
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D Proof of Lemma 6

We need to introduce cutting-plane proof system [29, 7] in order to prove this lemma. Suppose we are given
a system of integer linear inequalities AX ≤ B, where A,B are rational matrices and X is a column vector
of integer variables. The following inference rules allow us to derive new inequalities that are implied by
AX ≤ B.

nonneg lin comb: We can take a non-negative linear combination of inequalities to derive a new in-
equality.

AX ≤ B

RAX ≤ RB
R ≥ 0

(R is a rational row vector whose each element is non-negative.)

rounding: If we have a linear inequality EX ≤ F such that all coefficients in E are integers (E ∈ Zn),
then we can round down the right hand side F .

EX ≤ F

EX ≤ bF c
E ∈ Zn

(EX ≤ F in the above rule represents a single inequality and not a system of inequalities. E is a row vector
containing n integers.) We say an application of the rounding rule is redundant if F = bF c in the above
inference rule.

weak rhs: Given F ≤ F ′ and a linear inequality EX ≤ F we can derive EX ≤ F ′

EX ≤ F

EX ≤ F ′ F ≤ F ′

We say an application of the weak rhs rule is redundant if F = F ′ in the above inference rule.

A cutting plane proof of an inequality EX ≤ F from AX ≤ B is a sequence of inequalities E1X ≤
F1, . . . , ElX ≤ Fl such that

AX ≤ B,E1X ≤ F1, . . . , Ei−1X ≤ Fi−1

EiX ≤ Fi
nonneg lin comb or rounding

for each i = 1, . . . , l and each step is an application of the nonneg lin comb or the rounding infer-
ence rules (E1, . . . , El are rational row vectors and F1, . . . , Fl are rational numbers). We do not need the
weak rhs rule anywhere, except possibly as the last step in a cutting plane proof.

ElX ≤ Fl

EX ≤ F
E = El, Fl ≤ F ′.

The cutting plane proof system provides a sound and complete inference system for integer linear in-
equalities. This is stated formally in the following theorem.

Theorem 6 (Schrijver [29]) We are given a system of integer linear inequalities AX ≤ B, where A,B are
rational matrices and X is a column vector of integer variables. Let EX ≤ F be an inequality, where E is
a rational row vector and F is a rational number.
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1. AX ≤ B has an integral solution and AX ≤ B implies EX ≤ F if and only if there is a cutting plane
proof of EX ≤ F from AX ≤ B.
2. AX ≤ B has no integral solution if and only if then there is a cutting plane proof of 0 ≤ −1 from
AX ≤ B.

We need to prove the following:
Lemma 6: The following are equivalent:
1. A system of LDEs AX = B implies a LDE EX = F
2. AX = B has no integral solution or there exists a rational row vector R such that E = RA and
F = RB.

Proof. (2) ⇒ (1) is straightforward.
(1) ⇒ (2): Given AX = B implies a linear equation EX = F . If AX = B has no integral solution we are
done, that is, (2) holds. Otherwise, assume that AX = B has an integral solution.

We can write AX = B as an equivalent system of inequalities AX ≤ B ∧ −AX ≤ −B. The
cutting plane (CP) proof rules provide a complete inference system for integer linear inequalities. We
can write the LDE EX = F as EX ≤ F ∧ −EX ≤ −F . The system of linear inequalities AX ≤
B ∧ −AX ≤ −B implies EX ≤ F ∧ −EX ≤ −F . Let us consider the CP proof of EX ≤ F from the
inequalities AX ≤ B ∧−AX ≤ −B. We show that the inference rules used in this proof will only involve
nonneg linear comb rule. Any application of rounding or weak rhs rule will either be redundant
or will lead to a contradiction. The later case is not possible because AX = B or the equivalent system of
inequalities has an integral solution.

Consider the first application of rounding in the CP proof of EX ≤ F .

EiX ≤ Fi

EiX ≤ bFic
Ei ∈ Zn

Since all the rules used to derive EiX ≤ Fi are non negative linear combination rules, we can combine
all steps used to derive EiX ≤ Fi by a single application of the nonneg lin comb rule. That is, we can
find rational row vector [R1, R2] such that[

A
−A

]
X ≤

[
B
−B

]
[R1, R2]

[
A
−A

]
X︸ ︷︷ ︸

EiX

≤ [R1, R2]
[

B
−B

]
︸ ︷︷ ︸

Fi

[R1, R2] ≥ 0

where R1, R2 are non-negative, Ei = R1A + R2(−A) and Fi = R1B + R2(−B). We can also derive
−EiX ≤ −Fi by taking a non negative linear combination of AX ≤ B ∧ −AX ≤ −B using [R2, R1]. If
Fi = bFic then the application of rounding rule

EiX ≤ Fi

EiX ≤ bFic
Ei ∈ Zn

is redundant. Otherwise, let bFic = k(6= Fi) and

EiX ≤ Fi

EiX ≤ k
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Since b−Fic = −k − 1. We apply apply rounding to −EiX ≤ −Fi to obtain

−EiX ≤ −Fi

−EiX ≤ −k − 1
− Ei ∈ Zn

By combining the above two equations (EiX ≤ k and −EiX ≤ −k − 1) we obtain an equation
0 ≤ −1. But this means that the original system of inequalities AX ≤ B ∧ −AX ≤ −B has no integral
solution, which contradicts our assumption. Thus, the first application of the rounding rule in the CP
proof must be redundant. Using similar reasoning (induction on the length of the proof) we can conclude
that all applications of rounding in the CP proof must be redundant.

In the CP proof system described above there can be only one application of weak rhs rule as the last
step in a CP proof. We now show that the application of weak rhs at the end of the CP proof must be
redundant.

EX ≤ Fl

EX ≤ F
Fl ≤ F.

If Fl = F , then the application of weak rhs is redundant. Otherwise, suppose Fl < F . Recall, that
−EX ≤ −F is also an implied inequality of the original system. We can add −EX ≤ −F and EX ≤ Fl

to obtain 0 ≤ Fl − F . Since Fl < F we can divide 0 ≤ Fl − F by positive rational number F − Fl, to
obtain the equation 0 ≤ −1. But this is a contradiction.

Thus, the cutting plane proof of EX ≤ F can only involve redundant applications of rounding or
weak rhs rules. These applications of rounding or weak rhs rules can be removed to obtain a deriva-
tion of EX ≤ F that only involves nonneg linear comb rule. All applications of nonneg linear comb
rule in a CP proof can be combined to obtain a vector [S1, S2] such that[

A
−A

]
X ≤

[
B
−B

]
[S1, S2]

[
A
−A

]
X︸ ︷︷ ︸

EX

≤ [S1, S2]
[

B
−B

]
︸ ︷︷ ︸

F

[S1, S2] ≥ 0

where S1, S2 are non-negative, E = S1A + S2(−A) and F = S1B + S2(−B). (Note that a proof of
−EX ≤ −F can be obtained by taking a non negative linear combination of AX ≤ B,−AX ≤ −B using
[S2, S1].) Thus, there exists a rational vector R = S1 − S2 such that E = RA and F = RB. This shows
(2) holds. �

E Proof of Lemma 7

We use the following result in the proof.

Theorem 7 (Schrijver [29]) Let AX = B be a system of LDEs, where A,B are rational matrices and X
is a column vector of n integer variables. If AX = B is satisfiable (has an integral solution), then we can
find in polynomial time integral vectors X0, . . . , Xt ∈ Zn such that

{X|AX = B;X integral} = {X0 + λ1X1 + . . . + λtXt|λ1, . . . , λt ∈ Z}

with X1, . . . , Xt linearly independent. (We think of X0, X1, . . . , Xt ∈ Zn as column vectors.)

27



Example 14 Consider a system of LDEs AX = B:

[
2 6 3
1 1 0

] x
y
z

 =
[

4
2

]

The set S of solutions to AX = B is given as:

S =


 2

0
0

 + λ1

 −3
3
−4

 ∣∣∣∣∣λ1 ∈ Z

 =


 2− 3λ1

3λ1

−4λ1

 ∣∣∣∣∣λ1 ∈ Z


Lemma 7: Let AX = B denote a system of LDEs, where A,B are rational matrices and X is a column
vector of integer variables. Let CiX = Di denote a LDE for 1 ≤ i ≤ m (Ci is a rational row vector and
Di is a rational number). The following are equivalent:
1. AX = B implies

∨m
i=1 CiX = Di

2. There exists a 1 ≤ k ≤ m such that AX = B implies CkX = Dk.

Proof. (2) ⇒ (1): This direction of the proof is straightforward.
(1) ⇒ (2): If AX = B has no integral solution, then AX = B implies any linear equation. Thus, (2) holds.

Assume that AX = B has an integral solution. In this case we can use the theorem 7 and write the set
S of all integral solutions to AX = B as

S := {X0 + λ1X1 + . . . + λtXt|λ1, . . . , λt ∈ Z}

where X0, X1, . . . , Xt ∈ Zn (assuming X has size n× 1).
By substituting X = X0 + λ1X1 + . . . + λtXt (with λ1, . . . , λt as symbolic variables) in CiX −Di we

obtain
Ci(X0 + λ1X1 + . . . + λtXt)−Di.

Since CiX0, . . . , CiXt are scalars (rational numbers), the difference CiX − Di for X ∈ S is a linear
expression in λ1, . . . , λt. We denote the difference CiX −Di for X ∈ S by δi. It follows that

δ1 = u10 + u11λ1 + . . . + u1tλt

. . .
δi = ui0 + ui1λ1 + . . . + uitλt

. . .
δm = um0 + um1λ1 + . . . + umtλt

 EQ

where uij are rational numbers, λ1, . . . , λt, δ1, . . . , δm are symbolic variables. An integral assignment
λ1 = β1, . . . , λt = βt where β1, . . . , βt ∈ Z gives a solution Xβ ∈ Zn to AX = B (Xβ ∈ S). If δi

evaluates to zero for λ1 = β1, . . . , λt = βt, then Xβ satisfies the LDE CiX = Di. Otherwise, Xβ does not
satisfy the LDE CiX = Di.

We consider two cases.
Case 1: If for some 1 ≤ k ≤ m, uk0 = . . . = ukt = 0, then δk = 0. That is, every X ∈ S satisfies
CkX = Dk. Therefore, AX = B implies CkX = Dk. In this case (2) holds.
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Case 2: For all 1 ≤ k ≤ m there is a 0 ≤ j ≤ t such that ukj 6= 0. We show that case 2 cannot arise
using proof by contradiction. We will give an algorithm for assigning integral values to λ1, . . . , λt such that
δ1 6= 0, . . . , δm 6= 0. In other words, we will show that there exists an X ′ ∈ S such that CiX

′ 6= Di for all
1 ≤ i ≤ m. This will mean that AX = B does not imply ∨m

i=1CiX = Di, leading to a contradiction.
It is convenient to think of expressions for δ1, . . . , δm as a system of equations in δ1, . . . , δm, λ1, . . . , λt.

We denote this system of equations as EQ.
We now give an algorithm for assigning integral values to λ1, . . . , λt such that δ1 6= 0, . . . , δm 6= 0. Our

algorithm will assign λi before λi+1 for each 1 ≤ i ≤ m− 1.
Let EQ0 ⊆ EQ denote the equations that do not contain any variables λ1, . . . , λt. If δk = uk0 is an

equation in EQ0, then we know that uk0 6= 0 (by case 2 assumption). Thus, CkX 6= Dk for any X ∈ S.
Alternatively, AX = B cannot imply CkX = Dk. We can safely ignore the equations in EQ0 for the rest
of the proof.

Let EQi ⊆ EQ for 1 ≤ i ≤ t denote the set of equations which contain only variables λ1, . . . , λi such
that the coefficient of λi is not zero (coefficients of λ1, . . . , λi−1 can be zero).

We now describe an algorithm for assigning integer values to λi for 1 ≤ i ≤ t. The algorithm uses EQi

to assign a value to λi. Suppose we have assigned integral values α1, . . . , αi−1 to λ1, . . . , λi−1, respectively.
If EQi = ∅, then assign an arbitrary integer value αi to λi. Otherwise, substitute λ1 = α1, . . . , λi−1 = αi−1

in EQi to obtain a system of equations EQ′
i. A representative equation in EQ′

i is

δl = vl0 + uliλi uli 6= 0

where vl0 is a rational number and uli is a non-zero rational number by definition of EQi. We want to assign
λi such that δl 6= 0 for every equation δl = vl0 +uliλi in EQ′

i. This can be done by assigning λi any integer
value that is different from −vl0

uli
. Let

λi := αi where αi ∈ Z and αi /∈
{
−vl0

uli
|l ∈ EQ′

i

}
where l ∈ EQ′

i is a short form of saying that equation δl = vl0 + uliλi is in EQ′
i. We can always

find a suitable αi because the set of integers has infinite cardinality (and we have a finite set of rational
numbers/integers that cannot be assigned to λi).

Let δl = ul0 +
∑i

j=1 uljλj denote an equation in EQ1 ∪ . . .∪EQi. The following invariant holds after
λi is assigned αi: if λ1 = α1, . . . , λi = αi is substituted in δl = ul0 +

∑i
j=1 uljλj , then δl 6= 0.

Thus, once we have assigned λ1 = α1, . . . , λt = αt using the above algorithm we have δ1 6= 0, . . . , δm 6=
0. Let X ′ ∈ S be an integral solution to AX = B given by λ1 = α1, . . . , λt = αt. Then δi = CiX

′−Di 6=
0 for each 1 ≤ i ≤ m. That is, AX = B does not imply ∨m

i=1CiX = Di, leading to a contradiction. Thus,
Case 2 cannot arise. �

F Proof of Theorem 5

In addition to lemmas 6,7 we will use the following theorem.

Theorem 8 (Schrijver [29]) Let A be a rational matrix, B be a rational column vector, C be a rational row
vector. Assume that the system AX = B has a rational solution. Then AX = B implies (over rationals)
CX = D if and only if there is a row vector R such that RA = C and RB = D.
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Theorem 5. Let F denote AX = B ∧
∧m

i=1 CiX 6= Di. The following are equivalent:
1. F has no integral solution
2. F has no rational solution or AX = B has no integral solution.

Proof. (2) ⇒ (1) is straightforward.
(1)⇒ (2): Given F has no integral solution. If AX = B has no integral solution, then (2) holds. Otherwise,
assume AX = B has an integral solution. Since F has no integral solution, every integral solution to
AX = B must satisfy CiX = Di for some 1 ≤ i ≤ m. That is,

AX = B ⇒
m∨

i=1

CiX = Di

By lemma 7 it follows that there exists a 1 ≤ k ≤ m such that

AX = B ⇒ CkX = Dk

By lemma 6 (and our assumption that AX = B has an integral solution) it follows that there exists a rational
row vector R such that

Ck = RA and Dk = RB

Using the vector R and theorem 8 we can conclude that AX = B implies CkX = Dk over rationals. So

AX = B ∧ CkX 6= Dk

is unsatisfiable over rationals, or

AX = B ∧
m∧

i=1

CiX 6= Di

is unsatisfiable over rationals. Thus, F is unsatisfiable over rationals and (2) holds. �

G Interpolants for Linear Diophantine Equations and Disequations (LDEs+LDDs)

We use the following theorem.

Theorem 9 (Schrijver [29]) Let A be a rational matrix, B be a rational column vector. The system AX =
B has no rational solution if and only if there exists a rational row vector R such that RA = 0 and RB 6= 0.

Let F ∧G be systems of LDEs+LDDs.

F := AX = B ∧
∧
i

CiX 6= Di

G := A′X = B′ ∧
∧
j

C ′
jX 6= D′

j

F ∧G represents another system of LDEs+LDDs. Suppose F ∧G is unsatisfiable (no integral solution). In
this case we want to compute an interpolant for the pair (F,G). We divided this problem into two cases in
Section 6. We describe Case 1 below.
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By case 1 assumption we know that F ∧G has no rational solution. We want to compute an interpolant
for (F,G). The interpolant for (F,G) can be obtained by using the techniques discussed in [24, 33, 28, 10].
For completeness we show how to obtain an interpolant for (F,G) by considering three sub-cases.

Case 1.1: AX = B ∧ A′X = B′ has no rational solution. Using theorem 9 there exists a row vector
[R1, R2] such that

R1A + R2A
′ = 0

R1B + R2B
′ 6= 0

In this case an interpolant for the pair (F,G) is the linear equation R1AX = R1B. One can verify that
R1AX = R1B satisfies all the conditions required by the definition of interpolants.

We describe Case 1.2 and Case 1.3 next. Since F ∧G is unsatisfiable over rationals we have

AX = B ∧A′X = B′ ⇒ (
∨
i

CiX = Di ∨
∨
j

C ′
jX = D′

j) (16)

The above implication holds for any rational X . We know that if a set of rational linear arithmetic con-
straints Γ imply a disjunction of linear equations

∨m
i=1 Eqi, then for some 1 ≤ k ≤ m, Γ implies Eqk. This

is due to convexity of rational linear arithmetic [25].

Due to convexity AX = B ∧A′X = B′ will imply either an equality belonging to
∨

i CiX = Di or an
equality belonging to

∨
j C ′

jX = D′
j in equation 16. This gives Case 1.2 and Case 1.3.

Case 1.2: For some j, AX = B ∧A′X = B′ ⇒ C ′
jX = D′

j .
Using theorem 8 there exists a row vector [R1, R2] such that

R1A + R2A
′ = C ′

j

R1B + R2B
′ = D′

j .

In this case an interpolant for (F,G) is the linear equation R1AX = R1B. One can verify that R1AX =
R1B satisfies all the conditions required by the definition of interpolants.

Case 1.3: For some i, AX = B ∧A′X = B′ ⇒ CiX = Di.
In the above two cases (1.1 and 1.2) the interpolant is a linear equation. In this case the interpolant will be a
linear disequation. Using theorem 8 there exists a row vector [R1, R2] such that

R1A + R2A
′ = Ci

R1B + R2B
′ = Di

Let VFG denote the variables that occur in both F and G and let VF\G denote the variables that occur only
in F (and not in G).

Observe that R1AX = R1B can be written as follows:∑
xi∈VF\G

aixi +
∑

xi∈VFG

bixi = k
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Similarly, CiX = Di can be written as follows:∑
xi∈VF\G

aixi +
∑

xi∈VFG

cixi = Di

Observe that the variables xi ∈ VF\G have same coefficients in R1AX and CiX . This is because
Ci = R1A + R2A

′ and the coefficients of xi ∈ VF\G in R2A
′X is zero.

We can write CiX 6= Di as ∑
xi∈VF\G

aixi +
∑

xi∈VFG

cixi 6= Di

Note that F implies R1AX = R1B and CiX 6= Di. Thus, F implies the disequation obtained by
subtracting R1AX = R1B and CiX 6= Di.∑

xi∈VFG

bixi −
∑

xi∈VFG

cixi 6= k −Di

The above equation is the required interpolant. It it implied by F and only contains variables common
to F,G. One can show that above disequation is R2A

′X 6= R2B
′. Since G implies R2A

′X = R2B
′ the

above equation is unsatisfiable with G.

H Handling of Linear Modular Disequations

Lemma 11 The problem of deciding whether a system (conjunction) of linear modular disequations (LMDs)
have an integral solution is NP-hard.

Proof. We reduce a well known NP-hard problem 3-SAT to a system of LMDs denoted by L. Let the
variables in 3-SAT problem be z1, . . . , zn. For each variable zi in the 3-SAT problem we introduce two
integer variables xi and x′i in L, where xi represents the literal zi and x′i represents the literal z̄i.

The modulus of LMDs in L will be four. We first express the constraints that xi ≡4 1 and x′i ≡4 0 or
xi ≡4 0 and x′i ≡4 1. This done by means of the following LMDs.

L1 :=
n∧

i=1

¬(xi ≡4 x′i) ∧
n∧

i=1

¬(xi ≡4 2) ∧
n∧

i=1

¬(xi ≡4 3) ∧

n∧
i=1

¬(x′i ≡4 2) ∧
n∧

i=1

¬(x′i ≡4 3)

Now consider any clause u ∨ v ∨ w in the given 3-SAT formula, where u, v, w ∈ {z1, . . . , zn, z̄1, . . . , z̄n}.
Let δ(u) map the literal u to the corresponding variable in L. For each clause u ∨ v ∨ w in the 3-SAT
formula, we generate the following LMD

¬(δ(u) + δ(v) + δ(w) ≡4 0).

The LMD above is falsified only when δ(u), δ(v), δ(w) are assigned 0 (mod 4). For all other assignment of
values δ(u), δ(v), δ(w) the LMD is satisfied (captures the semantics of the clause).
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Let the set of clauses in the 3-SAT formula be C.

L2 :=
∧

(u∨v∨w)∈C

¬(δ(u) + δ(v) + δ(w) ≡4 0)

Let L = L1 ∧L2. Observe that the 3-SAT formula is satisfiable if and only if L is satisfiable. The reduction
from the given 3-SAT formula to L is polynomial time. This establishes the NP-hardness of checking the
satisfiability of conjunctions of LMDs. �

H.1 Proofs of unsatisfiability and interpolants for LMDs

We can reduce a system of LMDs or LMEs+LMDs to a conjunction of atomic formulas in integer linear
arithmetic (both problems are NP-hard) and use the cutting-plane proof system to obtain a proof of unsatis-
fiability. Pudlak’s [27] algorithm can be used for obtaining interpolants.

I Obtaining polynomially sized cutting-plane proofs for LDEs

Given an unsatisfiable system of LDEs AX = B, a proof of unsatisfiability is a rational row vector R such
that RA is integral, while RB is not an integer. We know that R can be obtained in polynomial time.

We show that using R we can obtain a polynomially sized cutting plane proof of unsatisfiability of
AX = B. The cutting plane proof system was described in Appendix D. It consists of three inference rules
nonneg lin comb, rounding and weak rhs.

We first write R = S1−S2, where both S1, S2 are non-negative row vectors. For example, we can write
[12 ,−3

4 ] = [12 , 0]− [0, 3
4 ].

We write AX = B as AX ≤ B ∧ −AX ≤ −B. The cutting plane proof of unsatisfiability consists of
following steps.

AX ≤ B

S1AX ≤ S1B
S1 ≥ 0 nonneg lin comb

−AX ≤ −B

−S2AX ≤ −S2B
S2 ≥ 0 nonneg lin comb

S1AX ≤ S1B − S2AX ≤ −S2B

[S1 − S2]AX ≤ [S1 − S2]B
nonneg lin comb

Since R = [S1 − S2] we can write the above step as

S1AX ≤ S1B − S2AX ≤ −S2B

RAX ≤ RB
nonneg lin comb

Multiplying AX ≤ B by S2 and −AX ≤ −B by S1 we can derive

S2AX ≤ S2B − S1AX ≤ −S1B

−RAX ≤ −RB
nonneg lin comb

By definition of R we know that RB is not an integer. Let bRBc = k. Then b−RBc = −k − 1. Since RA
is integral we can apply rounding to RAX ≤ RB and −RAX ≤ −RB.

RAX ≤ RB

RAX ≤ k
rounding
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−RAX ≤ −RB

RAX ≤ −k − 1
rounding

The contradiction is obtained by summing RAX ≤ k and RAX ≤ −k − 1.

RAX ≤ RB −RAX ≤ −RB

0 ≤ −1
nonneg lin comb

Since R is polynomially sized the cutting plane proof is also polynomially sized.

J Using SMT solvers for obtaining a proof of unsatisfiability for LDEs/LMEs

We can determine if a system of LDEs CX = D is unsatisfiable and obtain a proof of unsatisfiability (if
applicable) by using decision procedures for (mixed) integer linear arithmetic in a black-box fashion. For
example, one can use modern SMT solvers such as Yices [4] to obtain proofs of unsatisfiability. The idea is
to encode the existence of a rational row vector R such that RC is integral and RD is not an integer in form
of a formula that can be checked using existing decision procedures. This is motivated by the idea proposed
in [28] for real and rational linear arithmetic. We illustrate the technique by means of an example.

Example 15 Consider the system of LDEs CX = D:

[
1 −2 0
1 0 −2

] x
y
z

 =
[

0
1

]

We use two rational variables r1, r2 to denote the proof of unsatisfiability R = [r1, r2]. We use three integer
variables v1, v2, v3 to express the constraint that RC is integral. We introduce another integer variable v4 to
express the constraint that RD = r2 is not an integer.

P := (v1 = r1 + r2) ∧ (v2 = −2r1) ∧ (v3 = −2r2) ∧ (v4 < r2) ∧ (r2 < v4 + 1)

If the decision procedure for integer linear arithmetic determines that P is satisfiable, then we get a proof of
unsatisfiability for CX = D by looking at the assignments to r1, r2. If P is unsatisfiable, it means that the
system CX = D is satisfiable.

We formalize the idea below. Suppose the sizes of C,X,D in the system of LDEs CX = D are
m× n, n× 1,m× 1, respectively. The formula P contains:
- m rational variables r1, . . . , rm such that R = [r1, . . . , rm]
- n integer variables v1, . . . , vn to express that each element of RC is integral.
- One integer variable vn+1 to express the constraint RD is not an integer by using two strict inequalities

Let (RC)i denote the ith element in the row vector RC. Then we have

P :=
n∧

i=1

vi = (RC)i ∧ (vn+1 < RD) ∧ (RD < vn+1 + 1)

The formula P is given to a SMT solver. If P is satisfiable, we get the required proof of unsatisfiability R.
Otherwise, we know that the given system of LDEs is satisfiable.
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The proof of unsatisfiability for a system of linear modular equations can be computed in a similar
manner as well (using definition 3).

As shown by experimental results in Section 7, the black-box use of SMT solver Yices to obtain proofs
of unsatisfiability is not efficient (as compared to the use of HNF). The main reason for this seems to be the
structure of P . Even though the encoding used to obtain P is natural, it is difficult for algorithms used in
Yices to decide P .
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