Effects of Dynamic Player Behavior in Massively
Multiplayer Online Games

Xinyu Zhuang

May 2007

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Srinivasan Seshan, Chair
David Andersen

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright (© 2007 Xinyu Zhuang

Keywords: game, MMOG, churn, session length, distributed systems

Abstract

Massively-multiplayer online computer games (MMOGSs) are becoming increas-
ingly common. Understanding the dynamic nature of game clients and the players
that control them is critical for designers and implementers of systems and networks
that host MMOGs. In addition, there has been recent interest in building MMOGs
as distributed systems, for example as a peer-to-peer application where game clients
now act as peers. Such distributed game designs must take into account the churn
inherent in MMOG player participation in order to build reliable systems.

This thesis improves the understanding of player dynamics in MMOGS, within
the context distributed games. Specifically, we present the results of a 5-month long
measurement study of World of Warcraft, a leading commercial MMOG. The rate at
which players entered and left a World of Warcraft server were determined, as well
as churn rates pertaining to several locations within the game world. An analysis of
our findings shows that for certain properties such as session length, game clients
exhibit the same kinds of behavior as peer-to-peer filesharing applications, which
is surprising given their different natures. There also exist several good predictors
of session length, some of them related to in-game properties like character level.
Finally, we discuss the implications of our results on the design of distributed games.

iv

Acknowledgments

I would like to thank Srini for being my advisor. He provided me with much
guidance throughout my graduate year, both in terms of the work culminating in this
thesis, and other areas as well. Also I would like to thank both Ashwin and Jeff,
Ashwin for starting me out on this work and research in general, and Jeff for helping
me make sense of what I had found and putting everything together.

vi

Contents

1 Introduction 1
1.1 Massively Multiplayer Online Games 2
1.1.1 Worldof Warcraft 3

1.1.2 SecondLife 3

1.1.3 ScalabilityIssues Lo 3

1.2 Solving Scalability Issues with Distributed Systems 4
1.3 Problems Facing Distributed Games 5
131 PlayerDyn@mios « : s o + s x5 % 51 5 55 s a5 s 8 8 8 58858 ¢35 5

1.4 Thesis Overview and Contributions 6
15 RelatedWork . . . o . v v o s 55 s a2 ¢ 855 § 86 5 858 % 85 ¢ 88 § €8 ¢% s 7
2 World of Warcraft Measurement Study 9
2.1 Worldof Warcraft 9
201 CHaSBEErE . cac smm:a %86 :868:60¢: 6 FF@¢ivs) 5= 9

2.1.2 Factions e e 10

213 GameWorld« 60262 ia5s:m6:m80%@as:s 11

2.2 Measurement Infrastructure oo oo 11
220 LHA . .. e e s o E G s E G 6 W B E B E AN B EE P 11

222 FriendsList e 12

223 WhoQueries 13

2.2.4 SavedVariablesFile 14

225 Managero e 14

226 WIHE a5 56885 185 689 58888 8w 5 PR &

227 XTEST e e 15

228 TmageMagick ¢ ¢ 55 s 8 6 s 0 maw as ¢ 5 e s HE L EE ¢ 16

229 Monkey Script 17
2.2.10 Measurement Interval L Lo o 19
2211 Measurerment Quiages . = o : 5 w19 5 5w 85 ¢ 32 ¥ % o v &% w o v - oo 19

2.3 Long-Term Measurement Experiment 20
231 ObtainingPlayerSef « : « « s 5 2 s u 2 s 2 w2 s a g s 9w mme om o> 21

232 Polling e 23

233 CapturedInformation.. . . o « « s ¢ s s s 55 s 3 0 v 5w s 255 ¢85 w > 23

234 MissingPlayerso oo 24

235 EventLogSchemd s 5 ¢ 8 s ¢ o w s 5 205 26 8 8 8 5 6 # 24

vii

2.3.6 Periodsof Measurement
2.3.7 Accuracy and Errors in Measurement
2.3.8 Timezone of Collected Data
2.4 Location Measurement Experiment
24.1 ChosenLocations
242 PollilE o : s 2 : 285 s w2 cms®ss55 586 88 6ia5 458 L85
2.43 Captured Information oL
244 EventEogSENBME « ¢ o o s « 5 s 55 s 95 5 65 8 56 5 5+ 5 % s s &5k
2.4.5 Periodof Measurement
2.4.6 Accuracy and Errors in Measurement
2.5 Detailed Measurement Experiment
2.5.1 SamplePlayerSet
252 Monitoring e e
253 EventLogSchema,
234 PeripdofMeasurement . « « o o 5 v s 5 0 : 6 8¢ % 559 @89 938 5 8
2.5.5 Accuracy and Errors in Measurement
Results
3.1 Motivation e e e e e e e e e e e e e e e e
3.1.1 PrototypeGame
3.1.2 Framework Requirements
313 P2PFramework
3.1.4 Federated Framework
32 Results. e e
3.2.1 PlayerCount
322 SessionLength
323 Downtime e e e e e e e e e e
324 Availability
3.2.5 Imter-arrival Times
326 ChumRate
3.2.7 ArePlayers Independent?
32.8 LocationChurn
329 SBEYTIMNE : o : v 6 s @ 9 ¢ % 95w 6 smsm s 5 B5 60 s @ 8§ KL 5E S
3.2.10 LocationDensity
B3 DISCUSSION : o 2 < 5 5 5 5 5 8 % 6 § & # 5 5 5 & B8 8 & 8 5 ¥ § 4 B § &6 6@ ¢ @
4 Conclusion
4.1 Future Work L e
Bibliography

viii

35
33
35
36
38
38
38
38
40
47
51
52
54
58
61
63
64
68

71
72

73

List of Figures

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
321
322
3.23
3.24

3.25

CDF of player count for each polling period. 39
Relationship between player count and timeofday. 40
CDF of median session length for eachplayer. 41
Comparison of session length and per-player median session length. 41
Predictability of future sessionlengths. 44
Relationship between player level and session lengths. 44
Relationship between session length and time sessionbegan. 45
CDF of median downtime for each player. 47
Comparison of CDFs of median downtime and session for each player. 48
Comparison of downtime and median downtime. 48
Relationship between downtime and time of day. 50
CDF of node availability over February. 51
CDF of inter-arrival times. 53
CDF of churn rate and source setsize. 55
CDF of ratio of churn rate and source setsize. 56
Median churn rate every 12 hours over February. 56
Relationship between churn and timeofday. 37
CDF of Pearson’s correlation coefficient of each pair of player’s online times. . . 58
Number of partners per player, defined by high correlation. 59
CDF of the % time spent in the same zone for partners vs non-partners. 60
CDFs of location churn of several different in-game locations. 62
CDFs of location churn of several different in-game locations, normalized. 62
CDFs of the staytimes of several different in-game locations. 63
Location density in December versus February, and the difference between the

twomonths. e 65
CDF of mean location density for each location. 66

X

List of Tables

2.
22
2.3
2.4
2.5
2.6
2.7
2.8
29

Long-term experiment event log schema. 24
List of types of the long-term experiment eventlog. PRI 25
Dataset periods for the long-term experiment. 25
List of game locations that were chosen for measurement. 28
List of types of the location experiment eventlog. 31
Dataset period for the location experiment. 31
Detailed experiment event log schema. 33
List of types of the detailed experiment eventlog. 33
Dataset period for the detailed experiment. 34

x1

Xii

Chapter 1

Introduction

Massively-multiplayer online computer games (MMOGs) are becoming increasingly common.
With the advent of fast broadband Internet connectivity, more and more gamers are spending
their time playing games online in virtual worlds. A good example is Blizzard Entertainment’s
World of Warcraft [19].

As people make the foray into virtual worlds, the demands on the systems that support these
worlds increases. Not only do gamers want to play in an MMOG with thousands of other players,
they also want to be active participants. Linden Labs’ Second Life [28] is one MMOG where
players create custom content in a dynamic environment that can change based on their actions.
All this points to the need for infrastructure capable of supporting a large number of players, and
also one where dynamic content is constantly pushed to players over the network.

Distributed systems are a proposed solution to the scalability problem, and there has been
much work in this area recently. While distributed systems have been previously studied in great
detail, the environments in which they have been used are somewhat different from that of a
typical MMOG. It is unknown how the dynamic nature of gameplay affects the performance
of distributed systems, and in particular, whether these dynamic behaviors should influence the
design of systems.

This thesis seeks to address these questions:

1

e What are the dynamics of MMOG clients, and how do these dynamics differ from more

traditional distributed system clients?

e How do we design systems to take into account such dynamic behaviors?

1.1 Massively Multiplayer Online Games

Massively Multiplayer Online Games are computer games where a large number of players in-
teract with each other online in a persistent virtual world. Any game meeting these requirements
is considered an MMOG, and often sub-genres are used to designate particular variations, such
as the Massively Multiplayer Online Role-playing Game (MMORPG). The key features of an
MMOG are the large player base, and the game world where players are able to permanently
modify their character and perhaps other aspects of the world as well. Thus a game with many
players but no sense of permanence (e.g. once a player logs off she loses all the items she col-

lected during the game) is generally not considered an MMOG.

Another important aspect of MMOGs is the lack of a clearly defined end-goal. Unlike other
games where players can win or lose (for example by defeating all the other players in the game),
an MMOG “lasts forever” in that players can never reach a state where they are considered to
have won the game. Thus, the time a player spends in the game (whether in total or for a single
game session) does not depend on how long it takes to win the game, but rather is governed by

how long the player wishes to play.

MMOGs usually contain many computer-controlled elements, such as monsters or non-
player characters that are Al-driven. Maintaining these elements requires computational re-

sources.

1.1.1 World of Warcraft

World of Warcraft [19] is a popular MMOG made by Blizzard Entertainment. As of March 2007,
there were an estimated 8.5 million subscribers to the game [14], with more players joining daily.

To accommodate the large number of players, World of Warcraft uses realms, which are
independent copies of the game world. Players choose a realm in which they wish to play
in, and their character is then bound to that realm. This allows Blizzard to keep a limit on the
number of players per realm, at the cost of preventing players from experiencing a true seamless

virtual world.

1.1.2 Second Life

Second Life [28] by Linden Labs is a unique MMOG that gives users the ability to create and
modify in-game content at a level that is unseen in any other game. The majority of in-game
content is player-created, and all content down to the background music is delivered to the client
on demand. This results in large amounts of data that need to be constantly sent to multiple
clients. Furthermore, the Second Life virtual world is not divided into separate realms as is done
in World of Warcraft. Any two Second Life players logged into the game are in the same huge
world and can interact with one another. Second Life uses large server farms to deal with the
high computational demand on maintaining such a world.

The population count of Second Life as of February 2007 was close to 4 million [25].

1.1.3 Scalability Issues

While most games do not have as large bandwidth requirements as Second Life, the popularity
of the game is a sign that future MMOGs might move towards more dynamic content. Even as of
now, most MMOGs are heavily taxed in terms of bandwidth and computational resources. The

major scalability issues facing MMOGs are:

e Handling large number of client connections.
e Maintaining a large virtual world.

¢ Distributing dynamic content.

The most common approach to problem of scalability is to divide the virtual world into
realms. However, this is generally considered to be a solution to a technical limitation, rather
than having any game-related significance. In many cases (such as with Second Life), there is an
inherent attraction to having a single virtual world, and thus alternate solutions to the scalability

problem are appealing.

1.2 Solving Scalability Issues with Distributed Systems

Several authors have proposed solutions to the scalability problem facing MMOGs. All of these
solutions hinge on the use of distributed hash tables (DHTs) for routing and delivery: The system
described by Knutsson et. al.[26] uses Pastry [31] and Scribe [9], while Colyseus [7] makes use
of Mercury [6]. GauthierDickey [16] describes a generic architecture that suggests the use of a
DHT.

[26] and [16] both discuss the requirement of distributed MMOGs to implement some form
of data storage. Given the importance of permanence in MMOGs, a reliable storage system is
necessary in any framework designed to support MMOGs. While there has not been a lot of work
with regards to permanent distributed data stores specifically for online games, the long line of
work in distributed filesystems is likely to apply to this area. For example, OceanStore [27] is a

distributed object store designed for large deployment scenarios.

4

1.3 Problems Facing Distributed Games

While distributed systems can help solve the scalability issue, they do have problems of their
own that must be addressed. The problems this thesis focuses on are those to do with player
dynamics: the effects of human players on session times, load distribution, and other metrics.

Specifically, moving a game to a fully distributed system entails treating game players as
not mere clients but peers that bear some of the responsibility of keeping the game functioning.
These responsibilities are as outlined above: maintaining the game state and distributing content.
The game player thus has direct influence on the reliability and availability of the system, and
the player’s decisions on when to play the game and how long to play the game affect the overall
performance of the distributed system.

There are of course other challenges that must be overcome when building a distributed game,
with security (i.e. players cheating) being one big issue. Some work has been done in this area

([4], [21]), but we choose not to focus on this problem.

1.3.1 Player Dynamics

An important player dynamic is churn rate. Churn rate is a general term that refers to the rate
at which entities enter or leave some state. The most common measurement of churn as related
to distributed systems is session churn, the rate at which nodes join and part from the system.
Session churn poses a problem for DHTSs because there is usually some overhead involved in
adding or removing a node from the system. Additionally, if some game state is maintained at
nodes, each time a node leaves the system it must pass on this state to someone else. This can
lead to poor performance, and even temporary inability to access data.

Closely related to session churn is peer availability, the fraction of time a node is connected
to the network. [8] argues that building a large-scale, highly-available storage system utilizing
inherently unreliable distributed peers is not possible. If peers have low availability, then the only

way to ensure data is always available is to heavily replicate it, and beyond a certain level peers

5

will not have enough bandwidth to support the level of replication necessary. While the results
mainly apply to distributed storage systems that aim to hold huge amounts of data, it is still true
that a distributed game will need high levels of replication if node availability is low. Session
length and downtime directly affect a node’s availability.

Another form of churn is location churn, which is the rate at which players enter and leave
a logical area of the game world. Location churn and session churn are identical concepts, if
we think of a location as being served by a system of its own. In fact, many existing MMOGs
partition the game world into locations and have each location be handled by a specific server.
Any system which performs such partitioning will be affected by location churn.

Fundamentally, we can explain the different forms of churn a game might face with the
concept of interest churn, which refers to the rate at which a player’s interest in something
changes. For example, session churn is the rate at which a player’s interest in playing the game
changes, and location churn is the rate at which a player’s interest in staying in a particular
location changes. Thus there is a form of churn associated with every object (or collection of
objects) a player could be interested in, and if the system needs to keep track of a player’s interest,
then it will be affected by churn. Obviously, the length of time over which the player is interested
in the object will also affect the system.

Currently, there is little literature on the nature of these player dynamics, whether for dis-
tributed games or for traditional client-server model games. Since there are very few truly dis-
tributed games to begin with, the most appropriate targets for observation are popular existing
MMOGs. Understanding player behavior in such games is crucial if we are to build systems to

eventually replace them.

1.4 Thesis Overview and Contributions

The main contribution of this thesis is an advancement in the understanding of player dynamics

in multiplayer games. Specifically, we conduct an extensive measurement study of a popular

6

MMOG, and present the results obtained in the context of the design of distributed systems for
such games. Our primary focus is on producing a set of recommendations for the design of
distributed game architectures.

The thesis is organized as follows. Chapter 2 provides some additional background about
World of Warcraft, and describes how the experiments were carried out. Chapter 3 presents
the results of the measurement study, providing a motivation for understanding the results, and
ending with a discussion as to the implications of the findings. Chapter 4 summarizes the main

findings and lists future work.

1.5 Related Work

A comprehensive study of player patterns in an MMOG was conducted by Chen er. al.([13],
[12]). This study is somewhat similar to that which is being presented in this thesis. However, the
measurement technique used was markedly different, making use of network-level packet traces
and deriving higher-level characteristics from these traces. The traces were also far shorter, with
each trace being collected over a period of less than a day. In contrast, our measurements were
taken over a few months, and thus will likely expose longer-term characteristics than is found in
the above study.

In contrast, the PlayOn [30] project by Xerox PARC is an on-going census and measurement
study of World of Warcraft, with emphasis on social behavior and interaction [18]. The measure-
ment techniques we made use of were very similar to what the PlayOn project uses. The main
difference however is that the PlayOn project focuses on social aspects of gaming, whereas our
main focus is on the effects of these player behaviors on systems provisioning MMOGs.

Chambers et. al. [10] conducted a measurement study of many online games, focusing in
particular on the first-person-shooter (FPS) game Counter-Strike. While some of the games
that were measured could loosely be considered MMOGs, the majority were online games that

consisted of separate game rounds lasting at most a few hours. For example, in Counter-Strike,

7

a team of players can win a game round by defeating the opposing team. Thus, the session
lengths (the time a player spends connected to a server, not the time spent in a specific game
round) reported in [10] for Counter-Strike are likely to be influenced by the average length of a
game round, since a gamer will probably complete a round before leaving the game. [10] also
describes higher-level characteristics of games such as game popularity, which are not the focus
of this thesis.

Another analysis of the game Counter-Strike is presented by Feng et. al [11]. However, the
paper focused mainly on bandwidth measurements and traffic behavior.

Henderson and Bhatti [23] perform a study on the games Quake and Half Life, both of which
are also FPS games. Their results for session lengths and inter-arrival times differ from ours,
likely due to the difference in game genre as described above.

There has been more work in characterizing churn in peer-to-peer systems. Stutzbach and
Rejaie [34] conducted an in-depth analysis of churn rates in P2P systems, and also provided a
set of guidelines to follow when attempting to measure churn. They claim to be the first study to
focus primarily on churn in P2P networks. The metrics used in this paper heavily influenced our
choice of metrics when measuring player patterns in MMOGs. Sen and Wang [33] provide an
analysis of peer-to-peer traffic, with some information on session lengths. Gummadi et. al. [22]

also provides a characterization of session lengths in the P2P application Kazaa.

Chapter 2

World of Warcraft Measurement Study

It is important to appreciate the nature of dynamic player behavior in massively-multiplayer
online games before attempting to design systems for such games. To this end, an extensive

study of a popular online MMOG was conducted.

2.1 World of Warcraft

World of Warcraft (WoW) is a well-known MMOG that has a very large population of players.
The game is designed on the standard client-server model, with players connecting to various
servers operated by Blizzard. As mentioned previously, players choose a realm that they wish to
create their character on, and that character is then limited to interacting only within that realm.

The realm chosen for the measurement study was Frostmane!.

2.1.1 Characters

Each player (WoW account holder) is able to create up to 10 characters per realm, and up to 50
characters across all realms [20]. A player may only play as one character at any time.

Frostmane is a Player-versus-Player realm. There are several different realm types, where the main distinction

is that game mechanics are somewhat different. For our purposes there is no real difference between the realm types.

B

A character corresponds to an in-game avatar, which possesses a set of attributes as well as

an inventory of equipment. The key attributes that concern us are:

Name. A unique-per-realm identifier of the character.

Race and Class. Specific character types that imbue different abilities and properties to the char-

acter.

Level. A measure of the power a character has; a higher level character is more powerful than a
lower level character. As of the time of writing, levels range from 1 to 70. Characters gain
levels by earning experience points through fighting or completing quests. When enough
experience points are obtained, the character will gain a level. Levels are expected to be

proportional to amount of time spent playing the game.

Due to limitations in the amount of information exposed to clients by the game server, there
is no straightforward way to correlate a character with a particular player (through any unique
identifier such as an IP address or an account number) or vice versa. Therefore it is not possible

to tell whether two characters actually belong to the same player or not.

2.1.2 Factions

There exist two opposing factions in the game, the Alliance and the Horde. Characters are either
in one faction or the other, and the game is structured such that members of opposing factions
will be hostile to one another. A character is also usually unable to understand anything said by
a character of the other faction, and additionally, characters from one faction are only able to
obtain information about characters of the same faction. Also, a player cannot have characters
that are in the same realm but of different factions.

There are no major differences between the factions that would affect our measurements. The

faction chosen for measurement was the Alliance.

10

2.1.3 Game World

The game world is partitioned into zones. In general, movement from one zone to another is
seamless, with a few exceptions. Players have large freedom of movement, and there exist several

forms of transportation that help players move from one zone to another.

2.2 Measurement Infrastructure

World of Warcraft is a commercial, closed source game. As such, it was never designed to be in-
strumented by end-users for purposes such as ours. This made it difficult to build a measurement
infrastructure for the game. However, some key features provided by the WoW client turned out

to make this possible.

2.2.1 Lua

In the interests of allowing end-users to develop their own user interface extensions, WoW im-
plements a user interface scripting environment for which users can write scripts to manipulate
various aspects of the client. The scripting language used is Lua [24], a programming language
that is popularly used as an embedded scripting language, particularly in game engines. WoW
also includes a user interface markup language based on XML that allows users to create their
own user interface elements such as windows and dialog boxes. A collection of scripts and user
interface markups that work together to provide some feature are usually referred to as addons,
or mods (modifications). Addons are loaded when the player logs into a WoW server. Note that
addons are purely client-side scripts; they do not run on the server.

The primary purpose of WoW’s Lua scripting engine is user interface manipulation. The API
exposed to scripts thus consists mostly of interface-related functions. For example, there are
functions that allow scripts to automate player actions like picking up objects or moving things

about in the player’s inventory. There are also a set of functions that are marked as protected,

11

these functions can only be used by addons which are signed by Blizzard. The purpose of this
protection is to prevent third-party addons from accessing certain features such as controlling a
player’s movement in the game, which could be exploited to write scripts that entirely control a

player. Only addons provided by Blizzard are able to do so.

There are also API functions that allow scripts to inspect the state of the game world. Of
particular relevance to our goals are the functions that manipulate and query the friends list, and

the functions that can send and process who queries. These are described shortly.

The API also consists of a set of events that correspond to in-game events. Addons can

register a callback function to be called whenever an event is triggered.

Blizzard does not provide very comprehensive documentation of the WoW API. However,
the online community site WoWWiki [3] contains a fairly complete list of functions and events

in the game. This proved invaluable in implementing the experiments.

2.2.2 Friends List

Every player in the game can keep a friends list, which is a list of other players which the player
considers friends. When player Alice adds player Bob to her friends list, Alice is able to know
whether Bob is online, and what his current level and location are. Specifically, Alice is sent a
notification whenever Bob’s status changes, i.e. whenever he logs on, logs off, changes his level

or changes his location.

The WoW API provides functions to add and remove friends from the friends list (AddFriend,
RemoveFriend), determine the number of friends in the friends list (GetNumFriends), and
obtain the current status information of a friend (GetFriendInfo). Additionally, every time

a friend logs on or off, the FRIENDLIST_UPDATE event is triggered.
One important limitation of the friends list is that it can only contain up to 50 players.

12

2.2.3 'Who Queries

WoW also provides a more generic player querying system, usually referred to as the who com-
mand (or dialog box). Players can construct queries of varying complexity, which are sent to the
WoW server. The server will then reply with a list of player names that match the query. The
query only matches players who are online.

A query consists of the following elements:

Name A string that matches if it occurs anywhere in a player’s name.
Zone Matches all players in the zone with that name.

Race Matches all players with the race of that name.

Class Matches all players with the class of that name.

Guild Matches all players with the guild of that name.

Level Either a single number or a range. If a single number, it matches all players whose level is

that number. If a range, it matches all players whose level is within that range (inclusive).

The query can contain any or none of these elements. Elements are combined via conjunc-
tion; a query for players in zone “Stormwind City” with level range “10-20” will return the play-
ers who are in Stormwind City and have a level between 10 and 20. An empty query matches all
possible players.

The WoW server returns at most 50 player names that match the query, whether or not there
are more matches. When there are more than 50 matches, the exact way the server decides
which subset of player names to return is unknown; it does not seem to be random, nor have any
discernible pattern. In particular, when multiple empty queries are sent over a short period of
time, the results returned by each query are nearly identical. As such, empty queries cannot be
used to effectively obtain a random sample of player names.

A client may not send too many queries at one time. The server throttles the number of

queries it processes per client; if a client sends another query too soon after a previous one, it

13

is ignored. Again, the nature of the throttling is unknown. Generally, it is possible to send one
query every 3 seconds, any rate faster than this results in some queries being lost.

API functions are provided to send who queries (SendWho) and inspect the results (Get NumWhoResults
GetWhoInfo). An event (WHO_LIST_UPDATE) is triggered whenever the results of a query

are returned by the server.

2.2.4 SavedVariables File

The WoW API also provides a feature that allows addons to save some state in between game
sessions. Normally, variables created by addons exist only for as long as the player’s game
session is active; once the player logs out of the server, the Lua engine terminates the addon and
all variables are lost. However, it is possible to register a set of variables whose contents will
be saved just before the game terminates. The values of these variables will then be restored the
next time the same addon is loaded.

WoW implements this feature by writing to disk a file consisting of the serialized contents of
all saved variables. This file is typically referred to as the SavedVariables file, and is actually a
Lua script that when run reinitializes the saved variables to have their previous value.

The SavedVariables feature is the only way a WoW addon is able to effectively write data to
disk. This feature was exploited in our experiments as a crude communication medium between
the measurement addons and management scripts that run external of WoW. In particular, it was
used to transfer information gathered by the measurement addons into an external database for

permanent archival.

2.2.5 Manager

A measurement manager was developed to facilitate the conducting of experiments. The manager
had three main tasks:

1. Launch the WoW client.

14

2. Ensure it successfully connects to the WoW server.

3. Collect the data gathered by the measurement addons and store them in a database.

At the core of the manager is a single Perl script, referred to as the monkey script, which
performed the tasks outlined above. One of the most important tasks of the script was to automate

the process of running WoW and entering the game.

2.2.6 Wine

WoW is a game built for the Microsoft Windows environment. However, we chose to run WoW
in GNU/Linux using the Wine Windows API emulator [2] in order to make use of several features
easily available in our chosen environment. Wine runs WoW very well, and is in fact used by

many WoW players who prefer to play the game in a non-Windows operating system.

2.2.7 XTEST

The use of Wine to run WoW exposed the WoW client as an X Window System (X11) applica-
tion. This allowed us to make use of the X11 XTEST extension library [17], which is a set of
client and server extensions designed to allow the X11 server to be tested with no user interven-

tion.

The XTEST extension provides a set of functions that can be called to insert X11 events into
an X server’s event queue. This creates the illusion (to an X11 client) that a user had performed
the actions that caused the event, for example depressing a key on the keyboard or moving the
mouse. It is thus possible to use the XTEST extension to automate an X11 application, such as

the WoW client.

15

2.2.8 ImageMagick

In order to determine whether or not the WoW client was behaving as expected, a feedback
mechanism was required. Since the client is designed to be an interactive application, the main

form of feedback is via the graphical display output to the X11 server.

ImageMagick [29] is a suite of command-line utilities that allow for the manipulation of
image data. The import program was used to obtain a screenshot of the WoW client, and the
compare program was used to compare the obtained screenshot with a pre-generated reference
screenshot. The extent at which the screenshots differed could then be used to infer whether or

not the WoW client was in the state expected by the script.

While one might expect that two screenshots of the game in the same state (for example,
waiting for the user to login) would end up to be identical, this did not turn out to be true. All of
WoW’s user interface is implemented on top of the OpenGL 3D graphics API. As a result, some
of the colors of interface elements vary due to the presence of variable lighting. Other parts of
the interface might be animated and thus result in a different static image dependent on the time

at which the screenshot was taken.

The ImageMagick compare utility is able to produce a metric indicating the amount of
difference between two images. By varying the threshold of the value that would be used to
consider two screenshots identical, most of the subtle differences in screenshots could be taken
into account. Additionally, the screenshots are restricted to only capturing a small portion of the
screen, usually corresponding to a button or some other user interface element that is known to be
unique to that game state. This was particularly necessary when checking to see if the client was
logged into the game world, as during then the majority of the screen is displaying the dynamic

game world.

16

2.2.9 Monkey Script

The monkey script is a program written in Perl, which makes use of a Perl module implementing

the XTEST extension. An outline of the script’s behavior follows.

Algorithm 1 Monkey script.
loop

if Frostmane WoW realm is online then
Launch WoW client.
Wait for login screen.
Input username and password, log in.
Wait till client has entered game world.
for 2 hours do
Periodically send a “jump” command to prevent client from idling out.
Check to see if the client is still in the game world.
end for
Cause WoW client to quit.
Wait for client to quit cleanly.
Retrieve contents of SavedVariables file, write to database.
end if

end loop

Determining server status

Blizzard publishes an XML file containing the status of every WoW server. This is used to
determine whether or not a server is online. If the server is not online, the monkey script waits

till it is online before attempting to connect.

17

Waiting for client state

The current client state is determined by making use of ImageMagick as described above.

Input to client

Input is sent to the WoW client using the XTEST extension.

Measurement

Once the monkey successfully connects the client to the game world, the actual measurement
addons will run and begin to collect data. The monkey script expects the addons to write events

(different from the WoW API events) to an event log, which is a saved variable.

Anti-idling

If a user does not interact with the WoW client for more than several minutes, the WoW client
disconnects from the game server. It is unclear whether this is enforced by the WoW server, or by
the client. Nevertheless, the feature cannot be disabled. As a result, the monkey script is required
to send some form of input to the client every so often in order to prevent “idling out”. This is
done by sending a jump command (corresponding to a single space character) to the client via

XTEST every 2 minutes.

Quitting

The contents of the event log as written to by the measurement addons is stored in memory. In
order for it to be written to disk, the WoW client must disconnect from the game server. The
monkey script does this every 2 hours to prevent too much data from being stored in memory
before being flushed to disk. It also causes the client to fully quit, instead of merely logging off;

this is purely for convenience and has no effect on the actual automation process.

18

Retrieving Data

The monkey script extracts the contents of the saved event log from the SavedVariables file, and

then inserts each event it finds into an external database.

Event Log

The exact schema of the event log differs from experiment to experiment. These will be discussed

in Sections 2.3, 2.4 and 2.5.

Exception Handling

The WoW client is a complicated piece of software, and it would be difficult to write a program
that was able to react to every state change that might take place. Instead, the monkey script
continually monitors the state of the client during measurement, and once it detects that the
client is in an unknown state (it might have disconnected from the game world for example),
it will immediately terminate the client process, cleanly if possible, and restart the client so as
to resume measurement. In practice, the monkey script is capable of handling most client state

changes.

2.2.10 Measurement Interval

A measurement interval is defined to be the period from the monkey script starting the WoW
client and causing it to enter the game, to the monkey script causing the WoW client to quit. It is

thus a period over which the measurement addons were running continuously without disruption.

2.2.11 Measurement Qutages

There were several sources of outages throughout the measurement period.

As previously mentioned, the WoW client had to be shut down every 2 hours in order to flush

19

the collected measurements to disk. This was a planned outage, and on average each outage

lasted for slightly more than a minute.

Blizzard will occasionally bring some of the WoW servers offline, typically for maintenance
purposes. Such outages typically take place on Tuesday mornings, and last for a few hours.
Originally, this happened every Tuesday, but towards the end of December 2006, changes to the
server infrastructure allowed Blizzard to perform most maintenance online and thus reduced the
occurrences of the outages. The monkey script handled such outages by making sure the server’s
status was online before attempting to connect.

There were also occasional outages due to server-side errors. From the perspective of the
client, these were no different from the maintenance outages described above.

The other major outages were due to patches to the game client. At two points during our
measurement study, patches were released that were incompatible with the Lua measurement
addons. In one case, the patch updated the in-game Lua interpreter to version 5.1, from version
5.0. This caused problems with the addons because they were not written for the newer version
of Lua. In another case, an expansion set (The Burning Crusade) was released, which changed
the set of possible races and increased the highest possible level. This caused problems with
parts of the addons that had to be fixed.

As a result of the outages, the long-term experiment’s dataset is partitioned into 3 periods.

This will be elaborated upon in Section 2.3.

2.3 Long-Term Measurement Experiment

The first experiment that was conducted was the long-term measurement experiment. This ex-
periment monitored the behavior of a set of 1,100 players over 71 days (nearly 3 months). The
main goal of the experiment was to obtain an understanding of the behavior of a large number of

players over a long period of time.

20

2.3.1 Obtaining Player Set

In order to obtain the sample set of players that were to be monitored, a WoW addon (hereafter
referred to as NameGrabbber) was written to collect as many player names as possible from the

game server.

NameGrabber makes use of WoW’s who query system, and sends out a series of who requests
every few minutes during a poll. For each query that is sent out, NameGrabber determines
whether the query was complete (all matching players were returned) by observing the size of
the set of player names returned. If the set size was equal to 50, then there would be a chance
that the actual set of matching players was larger than 50, but the WoW server had truncated the

returned set.

Incomplete queries are handled by performing a partition operation on the query. As de-
scribed in Section 2.2.3, who queries are made up of several elements, each element adding an
additional constraint to the set of players that match the query. A query that is incomplete can
thus be broken down into several new queries, each of which is more constrained than the origi-
nal, and will thus match less players. For example if a query for all players with levels between
10 and 20 is incomplete, it can be partitioned into two queries for players of level between 10
and 15, and players of level between 16 and 20. If all the elements in a query are maximally
constrained (e.g. the level element matches a single level), then new elements can be added to the
query to increase the constraint. An enumeration of all possible races and classes in the games

allows for constraining on those elements.

NameGrabber partitions queries first by level, then race, and finally class. If a query is
maximally constrained on the level, race and class elements, yet it still incompletc, then as a
final attempt NameGrabber partitions such queries by adding a name element that matches any
name containing a particular letter. The set of letters used is: a, €, i, 0, u, t, s, d, r. Note that this
method of partitioning the query yields sub-queries that overlap; many names may contain both

the letter ‘i’ and the letter ‘e’, and as a result will appear in both sub-queries. Also, there might

21

be some names which do not contain the lettefs in the set at all, and would thus be missed; this
however is unlikely since few names contain no vowels. If such queries still fail to be complete,
then NameGrabber just accepts the set of names returned. The zone element was not used in the
partitioning because the set of possible zone names was too large.

NameGrabber initializes each poll by sending 12 queries, one for every 5 levels in the game
(NameGrabber was used before the Burning Crusade expansion, which increased the level range
from 0-60 to 0-70). The queries are sent using the SENDQUERY function, as detailed in Al-
gorithm 2, where PARTITION is a function that partitions queries using the method described

above.

This method for collecting names from WoW server was based on a very similar technique

used in the CensusPlus [1] addon, which gathers player information in order to publish a census.

Algorithm 2 NameGrabber.
function SENDQUERY(q)
Send out query q.
S « set of players returned by server.
if | S| > 50 and q is partitionable then
Q' < PARTITION(q)
for all ¢ € Q' do
return S U SENDQUERY (¢)
end for
else
return S
end if
end function

NameGrabber was used over more than a week to obtain a set of 9,530 names. Out of these,
1,100 were randomly selected to form the final sample set. According to the CensusPlus [1]
census, the server our measurements were conducted on (Frostmane) had a little over 10,000
Alliance faction players, which was slightly more than the amount NameGrabber found. Thus
the set of names our random selection was obtained from was close to the entire population of

the game world.

22

2.3.2 Polling

Players were monitored by polling the WoW server every 5 minutes to determine whether a
player was online, and if so, the player’s level and current location in the game. Polling was

implemented using the friends list.

Algorithm 3 Long-term measurement experiment poll.
Let P be the set of players to be monitored.
B « set of batches obtained from P.
for allb € B do
Clear the friends list.
Add all the players in b to the friends list.
Wait for 5 seconds.
Obtain player information from the friends list.
end for

Algorithm 3 describes the polling process that takes place every 5 minutes. Since the friends
list can contain at most 50 players, the set of players to be monitored (denoted by P in the
algorithm) was partitioned into sets of 50 players, which are referred to as batches. Each batch
was then added to the friends list. Due to limitations in the way the Lua interpreter works, and
also to allow the WoW client time to retrieve friend information from the server, an interval of 5
seconds was allowed to elapse. The status information of each player in the friends list was then
obtained, and written to the event log.

A poll took about 110 seconds, mainly due to the 5 second delay in the polling process. Polls
were spaced 5 minutes apart, as opposed to having them occur immediately after each other, in

order to keep the amount of traffic being sent to the game server from being too large.

2.3.3 Captured Information

Each poll recorded the online status of every player, and for players that were online, they also
recorded down the location and level of the player. The exact time at which the player informa-

tion was obtained was also recorded, and all the information was logged as either an online or

23

offline event.

2.3.4 Missing Players

Occasionally, the measurement addon was unable to add a player to the friends list. Attempting
to do so resulted in the WoW server returning an error message stating that the player was not
found. The most likely reason for this was that the player’s account had been deleted, and thus
the player no longer existed in the game world. Another cause could simply be a case of a server
error, or some server-side reason that is unknown to us. Whenever the measurement addon failed

to add a player to the friends list, it records down an event stating that the player was missing.

2.3.5 Event Log Schema

Field | Description

id | Unique identifier
type | Type of event
player | Player associated with the event
ts | Unix timestamp of event
zone | Location of player in the game

level | Player’s current level

Table 2.1: Long-term experiment event log schema.

The event log schema used by the long-term measurement addon is shown in Table 2.1. The
different types of events are listed in Table 2.2. The plajer field of an event was only used by
ONLINE, OFFLINE and MISSING events, and the zonevand level fields were only used by
ONLINE events.

The START, STOP, POLLSTART and POLLSTOP events were inserted by the measurement

addon when appropriate.

24

Name | Description

START | Start of a measurement interval.
STOP | End of a measurement interval.
POLLSTART | Start of a poll.
POLLSTOP | End of a poll.
ONLINE | Player is online.

OFFLINE | Player is offline.

MISSING | Player is found missing.

Table 2.2: List of types of the long-term experiment event log.

2.3.6 Periods of Measurement

Start Date End Date | Length (days)

Nov 15 2006 | Dec 4 2006 19
Dec 10 2006 | Jan 3 2007 24
Feb 52007 | Mar 5 2007 28

Table 2.3: Dataset periods for the long-term experiment.

The long-term measurement experiment ran from November 15th 2006 to March 6th 2007.
As mentioned previously, unplanned outages resulted in a partitioning of the measurement data.
Table 2.3 lists the start and end dates of the three resulting datasets. As can be seen, each period
was at least 2 weeks, and the longest period was nearly a month. In the results section, we often
refer to the second dataset (Dec 10 2006 to Jan 3 2007) as results for the month of December,
and the last dataset (Feb 5 2007 to Mar 5 2007) as results for the month of February.

The other outages that occurred during the long-term experiment were at most a few hours
long, and so we chose not to use them to further partition the dataset. Instead, post-brocessing

scripts that made use of the raw event data took note each time the interval between a STOP

25

and the next START event was longer than 15 minutes. Whenever this happened, it would be
assumed that the previous poll was not a good indication of the state “just before” the following
poll. For example, if a poll indicates player P is online follows a poll that also indicates player
P is online, but more than 15 minutes elapsed between the polls, then we do not assume P was
online throughout the 15 minutes because P could have left the game and returned within the

time interval.

2.3.7 Accuracy and Errors in Measurement

One of the goals of the long-term experiment was to monitor a large group of players. Due to the
limited ability of the measurement tools available to us (who queries and the friends list), broad-
ness in measurement had to be achieved at the expense of accuracy, particularly in terms of the
timing of events. Since the polling interval was 5 minutes, the time between two measurements
of a single player was also 5 minutes?. Thus the recorded times at which a player entered or left
the game (as determined from the raw online/offline events) had errors of 5 minutes, and as a
result the recorded session times had errors of 10 minutes.

However, the advantage of the long-term experiment is that in monitoring a large number of
players, the results obtained are more likely to reflect the entire population of the game. The
sample size of 1,100 players was nearly 11% of the entire population (as determined by the
CensusPlus census).

An important thing to note is that ultimately the accuracy of this experiment (and of the
others as well) depends solely on the accuracy of the methods provided by the WoW client to
determine player status. If for example the friends list was prone to errors, reporting a player
as being offline when he was really online, then the data presented in this thesis is likely to be
invalid. Since the inner workings of the friends list and the who query system are proprietary and

The time interval was at times less than 5 minutes, particularly in between the last poll conducted before the

client was restarted, and the first poll after the restart. Restarting the client took only a bit more than a minute.

26

not known to us, only careful experimental validation will be able to determine their accuracy,

and this remains important future work.

2.3.8 Timezone of Collected Data

The timestamp collected by the measurement addon was the local time on the client performing
the measurement, not on the server. Additionally, there was no way of determining what the
local timezones of the players being monitored were. While previous Blizzard games had server
names that suggested the geographic location of the server (e.g. US East, US West), the realm
selection page in WoW does not provide such information, instead merely partitioning the set of
realms into continent-wide groups (North America, Europe, Asia).

Furthermore, players are likely to tend to choose realms where their friends are already play-
ing in, regardless of their actual physical location®. Since we have no identifying information for
players beyond their player name, we cannot perform geolocation techniques as was done on IP
addresses in [10]. Thus it was difficult to accurately determine the time of day at the source of
the events that were collected.

WoW does provide an ‘“‘automatic realm selection” feature in the realm selection dialog box,
which chooses a realm for the user based on various unknown parameters. One parameter that we
are sure influences the realm choice is the number of players in each realm; the selection mecha-
nism tends to allocate players less-populated realms, in an attempt to perform load-balancing. If
we assume that the selection mechanism performs some kind of geolocation-type assignment as
well, possibly to improve latencies, then at least some fraction of the players in the game (those
that used the automatic realm selection) would be in the same timezone as the server. The server
was using Central Standard Time (CST).

Analysis of the data however also yields a very obvious diurnal pattern with respect to the

3 As an anecdotal example, several friends of the author play in a realm located in the US, even though they live

in Singapore.

27

number of players found in the server. Figure 3.2 illustrates this, presenting the results using
Eastern Standard Time (EST). The peaks and troughs of the graph match with what would be
expected of player activity; more players at night, less in the day, with the least in the early
morning. Thus, assuming that most players enter the game at night, EST or CST are likely
timezones for the majority of players in the game.

We use EST when discussing the results. Since CST and EST are only an hour apart, the
choice between the two is mostly arbitrary. This applies both to the data gathered in the long-

term experiment as well as in the other experiments.

2.4 Location Measurement Experiment

The location measurement experiment was designed to characterize the nature of player move-
ment within game areas. Several locations (referred to as zones in the game) were chosen and

continually monitored for players entering and leaving each location.

2.4.1 Chosen Locations

Location Description

Stormwind City | Busy central city.
Wetlands Transportation hub.
Stranglethorn Vale | Transportation hub, quest area.
Silithus Remote.
The Barrens Battleground.

Burning Steppes | Remote, along popular travel route.

Table 2.4: List of game locations that were chosen for measurement.

6 different locations in the game were chosen for measurement. They are listed along with a

brief description in Table 2.4. While an attempt was made at choosing locations that possessed

28

certain specific qualities, zones in WoW are typically large areas that contain several different
cities/towns. As such, attempting to classify an entire zone as say a transportation hub is not

entirely accurate.

The rationale behind choosing different locations was to observe the similarities and differ-

ences between the following generic kinds of areas:

Busy City: A location where many players will gather to socialize, purchase or sell items,

and perform other “non-fighting” activities.

Transportation Hub: A location where players will go to in order to travel to other parts of

the world, or arrive at from other parts of the world.

Battleground: A location where players are mainly taking part in large-scale fights.

Remote: A location that players generally do not travel to.

Busy cities are expected to have a large number of players. Transportation hubs will likely
experience high levels of churn, since players arrive at such locations only to leave for other loca-
tions. The same is expected for the Burning Steppes location, because it lies along a frequently-

used travel route.

There was particular difficulty in choosing an appropriate location aé a representation of a
battleground. In WoW, the areas where players commonly fight with each other (i.e. members of
opposing factions) are usually instanced, which means that the server creates a private copy of
the location for each group of players that wishes to enter the location. Thus, if 1000 players are
reported to be in an instanced location, in reality there may be 10 copies of the location, with 100

players in each location. Measuring an instanced location thus yields inaccurate information.

As a result, the location chosen as a battleground was one that contained a particular town
(The Crossroads) that was reported to often have large fights occurring. The town (and the whole
of the location) is controlled by the opposing faction to the one that was being measured; thus

any characters found in the area were likely to be there to engage in fights.

29

2.4.2 Polling

A poll-based monitoring system was used for the location experiment. Polls were conducted

every 2 minutes, and attempted to obtain the details of every player found in the location.

Algorithm 4 Location measurement experiment poll.
Let L be the set of locations to be monitored.
for all/ € L do
q +— a query with the zone element set to [.
P «— SENDQUERY (q)
Record player information found in P.
end for

The polling process used is described by Algorithm 4. The SENDQUERY function as imple-
mented by NameGrabber described in Section 2.3.1 was used to find as many players as possible
within each location. The exact time taken by each poll varied, depending on how many players

there were in each location.

2.4.3 Captured Information

For each player found in a location, the player’s name and level was recorded, along with the
time at which the player was found.

Note that for a player to be found in a location, that player must necessarily be online.

2.4.4 Event Log Schema

The location experiment uses an event log schema identical to the long-term experiment, listed
in Table 2.1. Table 2.5 lists the event types used by the location experiment, which is basically
a subset of those used by the long-term experiment. The START, STOP, POLLSTART and
POLLSTOP are all used in the same was as they were in the long-term experiment, with the
measurement addon inserting them as appropriate. An ONLINE event is inserted for every player

that is found in one of the locations being monitored.

30

Name | Description

START | Start of a measurement interval.
STOP | End of a measurement interval.
POLLSTART | Start of a poll.
POLLSTOP | End of a poll.

ONLINE | Player is in a location being monitored.

Table 2.5: List of types of the location experiment event log.

2.4.5 Period of Measurement

Start Date | End Date | Length (days)

Mar 6 2007 | Mar 27 2007 21

Table 2.6: Dataset period for the location experiment.

The period of measurement for the location experiment is listed in Table 2.6. There were no
noteworthy outages during the entire period, thus we take the data to represent a single contiguous

measurement period.

2.4.6 Accuracy and Errors in Measurement

Since the location experiment uses a polling mechanism, it can only be as precise as the polling
interval of 2 minutes. The same caveats as in the long-term experiment apply.

Players take time to move through the game world. For many players, it takes substantially
more time than 2 minutes to traverse an entire location, i.e. to enter from one end and exit the
other end. Thus the 2 minute polling interval might be sufficiently fine-grained to detect all
players who entered each location. However, if a player enters and leaves a location along the
same border, such behavior will likely be missed by the location experiment. For example,

a player who enters a particular location, changes his mind about being in that location, and

31

immediately leaves the way he came, will not be detected.

2.5 Detailed Measurement Experiment

The large polling interval in the long-term experiment meant that metrics with small values (in the
order of seconds or minutes) could not be collected from the resultant data. Thus, an additional
experiment similar to the long-term experiment was conducted, but with a much finer-grained
level of measurement. This was achieved by compromising the size of the set of players being

monitored.

2.5.1 Sample Player Set

A set of 50 players was obtained via random selection from the set of all players found throughout
the location measurement experiment. This constrained the set of players to only those who
passed through any 1 of the 6 locations at any point during the experiment, but based on the
popularity of the locations, particularly Stormwind City, most game players were likely to have
been detected. In addition, the number of names detected was close to that of the reported number

of players in the game.

2.5.2 Monitoring

Unlike the previous two experiments, the detailed experiment did not use a polling mechanism
to determine player status. Instead, it made use of the in-game friends list, which should report
if a player’s status changes nearly instantaneously.

The measurement addon added the 50 players into the friends list, and recorded an event
each time any player in the list changed status, consisting of the player’s online status, level, and

location in the game.

32

2.5.3 Event Log Schema

Field | Description

id | Unique identifier
type | Type of event
player | Player associated with the event
ts | Unix timestamp of event
online | Player’s online status
zone | Location of player in the game

level | Player’s current level

Table 2.7: Detailed experiment event log schema.

‘Name | Description

START | Start of a measurement interval.
STOP | End of a measurement interval.

STATUSCHANGE | Player’s status has changed.

MISSING | Player is found missing.

Table 2.8: List of types of the detailed experiment event log.

Table 2.7 lists the event log schema for the detailed experiment, and Table 2.8 lists the event
types used. START, STOP and MISSING events are used in the same way as in the long-term
experiment, and the STATUSCHANGE event corresponds to a player’s change of status. Only

STATUSCHANGE events made use of the online, zone and level fields.

2.5.4 Period of Measurement

Table 2.9 lists the period over which the detailed experiment took place. Again, there were no

significant outages and thus the entire period is assumed to be contiguous.

33

Start Date End Date | Length (days)

Mar 27 2007 | Apr 24 2007 28

Table 2.9: Dataset period for the detailed experiment.

2.5.5 Accuracy and Errors in Measurement

The detailed experiment did not use a polling mechanism and should thus have been able to
obtain very accurate measurements of the time a player’s status changed. The exact amount of
error in the measurement is dependent on the friends list, and is thus unknown.

Due to the small sample size of 50, it is difficult to claim that the results from the detailed

experiment are a good representation of the general population.

34

Chapter 3

Results

3.1 Motivation

In order to better understand the significance of the metrics being measured, and the conse-
quences of the results, this section presents a set of hypothetical game frameworks which will be

used to demonstrate the effects of dynamic player behavior.

3.1.1 Prototype Game

Fundamentally, the purpose of a framework is to provide a set of services upon which games can
be developed. For purposes of simplification, we consider the games which will make use of the

hypothetical framework to have the following properties:

e The game world consists of objects which have properties.

Players are objects.

Objects can only interact with other objects that are nearby, given some notion of distance.

Every object has a think function which is executed continuously. The think function may

change the properties of the object or of other objects (i.e. interacting with them).

The game is divided into areas called /ocations.

35

In addition, objects can be classified into four different categories:

Ephemeral An object that exists in the game world for a short period of time.

Persistent Static An object that exists in the game world for a long period of time, and its

properties never change.

Persistent Dynamic An object that exists in the game world for a long period of time, and its

properties may change.

Player-bound An object that exists in the game world only when the player it is associated with

is logged in.

For example, summoned creatures (that disappear after a while) are ephemeral, a mountain is
persistent static, an Al-controlled monster is persistent dynamic, and the player itself is player-
bound. This categorization turns out to be important when considering how objects are managed
by the framework.

For example, persistent static objects can generally be placed as static game data on each
game client. This is commonly done in most MMOGs; World of Warcraft comes with a huge set
of client-side data. In contrast, persistent dynamic objects must be hosted by the game.

A node is a member of the network that makes up the game framework. Nodes can host

multiple objects, and can execute the think functions of those objects.

3.1.2 Framework Requirements

We can describe the services that a framework must provide in terms of three components: the

routing component, the discovery component, and the object management component.

Routing

Frameworks must provide a means for nodes to contact other nodes. These nodes could corre-

spond to players, or to servers. In a client-server framework, the routing component is simply the

36

communication channel between the client and the server. In a peer-to-peer framework, some-

thing like a distributed hash table might be used instead.

Discovery

Objects need to know what are the objects that are nearby, in order to interact with them. The
discovery component allows nodes to determine this information, as well as information on how
to contact the node that the object required is on. Quite often, DHTs can also serve as the

discovery component, as the node just has to lookup the key corresponding to its current location.

Object Management

The most critical task of a framework is to allocate objects to nodes, and make sure objects are
kept within the system. The object management component decides which objects are hosted
on which nodes (an object placement strategy), establishes the rules under which objects may
interact (read/write) other objects, and ensures that all objects in the game are always available

when required.

Effectively, the object management component manages an object store. The availability
requirement is especially important with regards to persistent objects, because the period over
which these objects must be available is long. A distributed object store might require such
objects be replicated in order to increase availability. This leads to additional concerns with
regards to whether the object is static or dynamic; if a dynamic object changes a property, this

must be reflected in all replicas of the object.

It is often beneficial to have the object placement strategy take into account the positions of
the objects in the game world. It is advantageous to place objects that are nearby each other in

the same node, as this reduces communication overhead.

37

3.1.3 P2P Framework

The P2P framework is a fully distributed system where every node corresponds to a player. It
uses a DHT to provide routing and discovery, and objects are evenly distributed amongst nodes
using some selection mechanism. Persistent objects are replicated to increase availability, and 4
when a change is made to a dynamic object, it is reflected amongst all replicas as soon as possible.

Player objects are always hosted on the associated node.

3.1.4 Federated Framework

The federated framework consists of a large collection of server nodes which player clients con-
nect to. Routing between servers is statically assigned, and clients statically determine the server
to connect to based on their current location in the game. Each server corresponds to a location,

and all objects within the location are hosted by the server, including player objects.

3.2 Results

The results of the measurement study are shown here. The main focus is on how the metrics we

measured influence the design of distributed games; as such less emphasis is placed on modeling.

3.2.1 Player Count

One of the most basic metrics of any system is the number of participants at any given time. In
our measurement study, this is referred to as the player count; how many players are online at
some time.

To determine the player count in the long-term experiment, the total number of players found
online at each polling period was determined. The resulting distribution is shown in Figure 3.1.
which has a median of 63 players (5.7%). There were never more than 200 players online at the

same time, which given our sample size of 1,100 players is less than 18%.

38

1
Mer Count —+—
"

0.8 i’w
/
06 4
4
s

0.4

0.3 /
0.2

0.1 f

0 20 40 60 80 100 120 140 160 180 200
Number of Players

Figure 3.1: CDF of player count for each polling period.

This is not unexpected, and is a fairly common property of subscriber sets. Many systems
take advantage of the fact that the number of active subscribers at any time is usually low, and
World of Warcraft is likely to be no exception.

Interestingly, only 993 players in total were recorded to have ever appeared in the game,
about 90% of the total population being monitored.

Player count is expected to vary in a diurnal pattern, with more players logging in at night
after they return from work (or classes). [10] reports such a pattern in player population of
three popular games, as well as a weekly pattern. A plot of player count versus the time of day
the count was obtained yielded the graph in Figure 3.2, which clearly demonstrates time-of-day
effects. Possible day-of-week effects were also investigated, but no substantial patterns were
found, i.e. people log on no more during the weekends than they do during the weekdays, in
contrast to what was stated in [10].

Time-of-day effects were shown to be present in studies of peer-to-peer networks as well.

Summary

The number of active players at any time is low compared to the total number of players in the

system. Player count varies according to time of day in a diurnal pattern, but no weekly patterns

39

120
110 | /

=K /

or \ /

J
80 - .
\ /*’/

\ v
70 - \ rd

J 0N /

40 | X /,//

i
30 | \ rd

20 L L L L L ! L ! L L L
00:00 02:00 04:00 06:00 0800 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time

Player Count

Figure 3.2: Relationship between player count and time of day.

were found.

3.2.2 Session Length

A session is defined as the period between a player logging in and logging out as a particular
character in a particular realm. The session length is then a measure of how long a character is
logged into a realm.

Since a player can spend some time playing as one character and then change to another,
sessions are not equivalent to the period a player spends playing the game. However, since
we are unable to determine the relationship between players and characters, we work with the
assumption that session length is roughly equal to the player’s uptime.

Session length is important in a distributed system because it indicates how long a particular
node is online and able to participate in the system. For example, in the P2P framework, a node
with a very short session length might be unsuitable for hosting a persistent object. Having too
many short-lived nodes would severely impact performance.

Additionally, session length has some ramifications on DHT efficiency. [32] shows that sev-

eral popular DHTs begin to degrade in performance when the median session length gets shorter.

40

Per Player Median ;mn'gth' —

09 y

0.8 -

0.7

0.6

0.5

0.2 /f
01 | -
0
1 10 100 1000

Minutes

Figure 3.3: CDF of median session length for each player.

““Session Length ——
Session Length -------

09 | «
0.8 /
07}

0.6

0.5

04 /

0.3

0.2 v

01

1 10 100 1000 10000
Minutes

Figure 3.4: Comparison of session length and per-player median session length.

41

Figure 3.3 shows the distribution function of median session lengths for each of the 1,100
players monitored in the long-term experiment. The median of the median is 42 minutes.

The distribution function of all session lengths recorded shown in Figure 3.4 is similar in
shape. However, it is far more long-tailed, and beyond the 50th percentile it begins to shift
towards the right. This might suggest that the longer sessions tend to be distributed over all
players; most players will occasionally play the game for a longer period of time, as opposed to
there being a group of players who exclusively play for a long period of time.

The median session length is 50 minutes. There were 4 sessions that lasted longer than a
day!, and 876 that lasted more than 8 hours. In contrast, the player with the longest median
session length had a median session length of around 12 hours, and the next longest median
session length was 7 hours long.

The median of the mean session lengths of each player is 70.7 minutes, and the median
standard deviation is 74.7 minutes. This validates the earlier hypothesis that longer sessions are
distributed over all players; the high standard deviation indicates that players have very short as
well as very long sessions, and a mean larger than the median suggests a skewed distribution.

Different measurement studies of P2P filesharing systems have produced differing results
for median session lengths. These range from a few minutes [22] to close to an hour [32]. An
average session length of 42 minutes falls within this range and is thus probably not that different
from a P2P system. This in an interesting result, because the nature of filesharing applications is
very different from that of an online game; a game player is almost always an active participant
throughout the session, whereas a person downloading a file is likely to leave the filesharing
application running while she does something else.

Results from [34] suggest that session lengths in P2P datasets (specifically BitTorrent) are
not heavy-tailed, but best described by Weibull distributions. Analysis of the session length data
collected by the long-term experiment gives similar results. A Weibull distribution with shape

10ut of the 4, 2 were from the same player, and occurred slightly more than 2 weeks apart. In fact the top 10

longest sessions originated from a set of 5 players.

42

0.84 and scale 4914.4 yields the best fit to our data.

In [32], experiments were conducted on several DHTSs to observe their performance when
sessions lengths were varied. Their results show that most DHT systems can cope relatively well
with median session lengths of around 40 minutes, and thus making use of a DHT to implement

the routing layer of a game engine is likely to be acceptable.

An important implication of the fact that long sessions are more evenly distributed amongst
players is that designs which rely on super-nodes may not perform as well under a game workload
as opposed to say a filesharing workload. For example, consider a system which attempts to place
frequently accessed data on nodes with long session lengths. In a filesharing environment, there
might be users who leave their filesharing application constantly running in the background, and
are thus good candidates for hosting such data, since their session lengths are always long. In a
game, however, players might occasionally have a very long session, and at other time stay in the
game for only a few minutes. Thus, there might not be any node that regularly chalks up long

sessions.

That being said, the players in the tail of Figure 3.3 could be considered as suitable super-
nodes. Additionally, there is some level of predictability in the length of future sessions based
on previous sessions. Figure 3.5 show a plot of the median session lengths of players in the
long-term experiment over the first week of measurement, versus the final median session length
as shown in Figure 3.3. The Kendall’s 7 correlation coefficient is 0.76, which indicates positive
correlation. Thus, a player whose sessions are long on average is likely to continue having long

sessions.

The slope of the linear regression line of Figure 3.5 is 0.575, which suggests that in general

players had shorter sessions overall than they might have had over the first week.

Another parameter that seems to influence session length is the level of the player at the
beginning of the session. Figure 3.6 shows a plot of player level versus session length, and a

linear regression line of the data. The Kendall’s 7 correlation coefficient for this dataset is 0.81,

43

30000 T T T T

T
Correlation +

25000 + ¥ R

20000 + g

15000 ’ 5]

10000

Entire Period Session Lengths(s)

5000
+

- B ! L L
o 5000 10000 15000 20000 25000 30000
First Week Session Lengths (s)

Figure 3.5: Predictability of future session lengths.

5000 T T T

Media‘n Session Lerl\g(h +
Best Fit Line
4500

4000 + b A

3500

T
L

3000

2500

2000

Session Length (s)

1500

,4
1

1000

s00 1t 4

0 10 20 30 40 50 60 70
Level

Figure 3.6: Relationship between player level and session lengths.

44

60

T T T T ;\- T 4500
Median Session Length /
Session Count

- 4000
55 -

\
¢ 3500

50 [A

£ ! X 1
£ S E / &N ' 4
§ \ / AN B
3 W / o \ / 3
2 % \ 4 2500
2 a5 &\ penind / \/ _
jer 0
\ : y

o / ; 4 2000
S ! 4

4\ /) _
w])
i / 1500
k £ 4
Y /
\ v, of
b ow L

35 1 1 ‘\I‘ i 1 1 1 1 1 1 1 1000
00:00 02:00 04:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time Session Began

40

o
06:00

Figure 3.7: Relationship between session length and time session began.

corresponding to a high degree of correlation. Thus, a higher level player is likely to have longer
sessions. If we also consider player level to be an indicator of the age® of the player, then this
suggests a relationship between age and session length as well.

Finally, Figure 3.7 shows a pattern in the variability of the session length depending on the
time of day the session started. In general, the longer sessions all begin in the evening and at
night. Sessions that begin in the early morning tend to be short, particularly from the period from
5-7am. Thus, the length of a session could be predicted based on the time the session is started.
In addition, similar patterns can be observed in the sessions of individual players; players tend
to start long sessions at around the same time each day. This is logical since most people have
regular daily schedules and as such are likely to begin playing the game at roughly the same time
(for example after dinner).

Also in this graph is a plot of the number of sessions observed. A very clear diurnal pattern
is evident, indicating that most sessions begin at night. This agrees with the pattern visible in
Figure 3.2. The general trend emerging from the two graphs is that most players log on at night,
and tend to have longer sessions at night. Conversely less players log on in the period around

noon, and those who do have shorter sessions.

2How long since the player’s character was created, i.e. how long the player has been a player of the game.

45

In light of this trend, the P2P framework will benefit from the large number of long sessions
available during the night. Conversely, it might face difficulties during the day; each node avail-
able during the day would have to host a very large number of objects. Fortunately the low player
count in the day also means that there will be less requests for objects, but nevertheless there is

likely to be a negative impact on gameplay during the day.

Stutzbach and Rejaie [34] describe a pitfall in characterizing churn, where long sessions are
not properly accounted for because of the limited size of the measurement period. For example,
all sessions longer than our measurement period would never be recorded, and all those that
were longer than the time between the start of the session and the end of the measurement period
would similarly be lost. The former is not a problem in our experiments, because sessions are
rarely longer than a day, as compared to our measurement period of several weeks/months. We
investigated the effect of the latter by filtering out all sessions that began after 2 days before the
end of our measurements. Comparing the filtered dataset to the unfiltered one yielded negligible

differences.

Summary

Sessions are generally around 42 minutes long. The range of session lengths for a single player
is large, and the range of session lengths in the system is even larger. The median session length
of 42 minutes is still in the acceptable range of most DHTS, and so using a DHT in a game
framework is viable. There are also several parameters that affect session length, which could
be leveraged to predict the length of a session. The length of sessions per player over the first
week of measurement was positively correlated with the overall session length. Higher level
players will also tend to have longer sessions. Finally, sessions vary according to the time of

day, with longer and more sessions at night than in the day.

46

‘Dentime ——

0.9

0.8

0.7

0.6

0.5 /
0.4

0.2

0.1

1 10 100 1000 10000
Minutes

Figure 3.8: CDF of median downtime for each player.

3.2.3 Downtime

Closely related to the session length is downtime. This is the time between two consecutive
sessions by the same player (i.e. the time spent offline), and it provides an indication of the
time it will take an offline node to return online. If the average downtime for a node in the
P2P framework is long, then the time during which the data hosted on that node is unavailable
is similarly long. Systems where nodes have long downtimes must thus perform more data

replication to ensure a minimum level of availability.

The distribution of median downtimes of each player is shown in Figure 3.8. Figure 3.9
compares median downtimes to median session lengths, and shows that downtimes are longer
than session lengths. This is expected since the average player is likely to spend less time in the

game than out of it.

Surprisingly, the median of the median downtimes is 179.38 minutes, which is nearly 3 hours.
One would imagine this value be much higher, at the very least to accommodate for 7-8 hours of
sleep, not to mention around 8 hours of work. Upon further analysis, the median of the means
is 6.86 hours, and the standard deviations of downtime for each player turn out to be very large,

with a median over all players of around 8.34 hours. This is similar to the values obtained for

47

| Sessiomlength ——
.~ Downtime_~~-=---

0.8 i

0.9

0.7

0.5

04

2T
| A

01 - i %

1 10 100 1000 10000
Minutes

Figure 3.9: Comparison of CDFs of median downtime and session for each player.

0.9 Me dian Downtime _-~-~~-~
08 j
0.7 £
](
06 /
05 % ,’
04 ¥ i
A
0.3 7
P ‘
o
0.2 o
0.1 SR
0 D -
1 10 100 1000 10000
Minutes

Figure 3.10: Comparison of downtime and median downtime.

48

session lengths. Thus, a possible explanation for the low median downtime is that players tend to
have many sessions held close to one another, resulting in many short downtimes, and also a few
sessions held very far apart, resulting in the much larger mean value. The period of downtime
when the player is asleep or at work would then correspond to the fewer longer downtimes, which

also suggests that a player has multiple sessions every night, held close together.

A comparison of downtime versus the per-player median downtime is shown in Figure 3.10.
There are many more incidences of shorter downtimes than there are players with a short median

downtime, which suggests that shorter downtimes are distributed amongst players as well.

The longest observed downtime was about 4 days. It is important to note here that downtime
is taken to be the time in between two consecutive sessions; thus if a player logs out of the
game at some point and does not log back in till after the long-term experiment concluded, the
period from the final logout event to the end of the experiment is not recorded as downtime.
Thus, the method of determining downtime used in this thesis suffers from a bias towards shorter
downtimes, as was previously described in Section 3.2.2 with respect to session lengths. Again,
any significant downtimes that are missing from the results are all extremely long, so long that we
might as well consider the player in question to have permanently left the game. Compensating
for the downtimes that might not have been recorded towards the end of the experiment also

yielded negligible differences.

Short downtimes bode well for systems similar to the P2P framework. Since the time period
over which a node is not accessible is small, persistent objects hosted on player nodes are more
likely to be available. Of course, since session lengths are typically less than an hour, nodes are
still going to be offline most of the time. If however there are many sessions in between which
the downtime is short, then we could characterize those short downtimes as just transient failures

and not actual system leaves. This would then increase the average session length of a player.

The availability of a node, which will be discussed in the next section, focuses on how often

a player is online.

49

Downtime (hr)

-
, P
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time Downtime Began

Figure 3.11: Relationship between downtime and time of day.

The relationship between downtime and the time of day as shown in Figure 3.11 is the inverse
of that in Figures 3.7 and 3.2, as expected. Nodes that leave in the early morning will not return
for several hours, and nodes that leave in the evening will be back in a few hours. Since it appears
the short downtimes are paired with longer sessions, this again suggests that these downtimes are
actually occurring in between two long sessions as a temporary leave. For example, the player
might have to quit the game for a short while so she can have dinner. Due to the anti-idling
feature of the WoW client, she cannot leave her character in the game world while she is away,
and is thus forced to quit the game (or be disconnected from the game).

We can thus envision a feature in the P2P framework that allows players to “leave” the world
without actually disconnecting from the system, thus allowing the player’s client to continue
providing its services as a node during these temporary downtimes. The average session length

of each client will thus increase, improving performance.

Summary

The distribution of downtimes is similar to that of session lengths, with each player having both
very short and very long downtimes. However, downtimes are generally longer than session

times. Time-of-day effects are present in the downtime distribution, with the longest downtimes

50

L Availability ———
0.9

0.7 /
0.6

0.5 /
0.4
ol

0.2

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Figure 3.12: CDF of node availability over February.

occurring in the early morning. Short downtimes at night can be explained as temporary discon-

nections from the system partly arising due to WoW's anti-idling feature.

3.2.4 Availability

Availability is a measure of how often a node is online and available as opposed to offline. The
availabilities of all players in the long-term experiment over the month of February (specifically
from Feb 5 2007 to Mar 5 2007) were determined by finding the ratio between the total amount
of time spent online and the total amount of time elapsed (28 days). The distribution is shown in
Figure 3.12.

The median availability is 0.024, i.e. around 2%, about 30 minutes out of an entire day. The
highest recorded availability was 31.5%.

[22] determined the median availability for peer-to-peer clients was 0.2%. This is only a
lower bound, due to the methods used to characterize availability, and is far lower than our
recorded 2%. Bhagwan ef. al. [5] in contrast reports the availability of peers in the Overnet
filesharing application to have a median of 7%, which is higher than what we have determined.

Thus, the availability characteristics of game players is likely to be different from that of file-

51

sharing networks.

An availability of 2% is not by any means high, and it indicates that the P2P framework must
aggressively replicate persistent objects in order to provide high availability. If we assume that
sessions are independent, then at least 50 replicas of an object are required in order to achieve
100% effective availability. This number increases if sessions are not found to be independent,

which will be discussed later.

Summary

Players generally have very low availability, the average being about 2%. Availability charac-

teristics in MMOGs appear to differ from those of peer-to-peer networks.

3.2.5 Inter-arrival Times

Inter-arrival time is the time between two consecutive login events. This metric is useful in
characterizing how frequently new nodes enter the system. A system where the inter-arrival time
is very short must ensure that any overhead associated with adding new nodes into the system is
low. If not, the system might be overwhelmed by the constant stream of new users. For example,
the P2P framework should use a DHT with a low join overhead if inter-arrival times are short.

An important aspect about inter-arrival times is that they are likely to get shorter when the
population increases. Thus, when measuring inter-arrival times over a large population such as
with the long-term experiment, we are likely to see inter-arrival times on the order of seconds.
However, since the long-term experiment has a polling interval of 5 minutes, it is not suited
for gathering statistics at such a fine granularity. We thus focus on the results obtained by the
detailed experiment instead.

Figure 3.13 shows the distribution of inter-arrival times as gathered from the detailed experi-
ment. The median of the distribution is 1189s, around 20 minutes.

Of interest is the exact nature of the relationship between inter-arrival time and the sample

32

nter-al Tyﬁfﬂ%e

0.9
0.8

/
06 | . - ’

0.5 /

04

0.3

02 /

0.1 4

%

1 10 100 1000 10000 100000
Seconds

Figure 3.13: CDF of inter-arrival times.

size. We derived several alternate inter-arrival distributions for subsets of the 50 players that were
monitored, in hopes that we could observe a pattern between the sample size and the inter-arrival
time. However, no pattern was present. We believe this to be due to the very small sample size
of 50 players that we originally started out with.

As mentioned in [34], inter-arrival times are likely to deviate from an exponential distribution
due to time-of-day effects, which we have already established to be very prominent in our other
measurements. However, attempting to fit the distribution of inter-arrival times to an exponential
distribution yielded a decent fit with the rate parameter A = 0.00049, although further inspection
showed that this fit did not account for the tail of the distribution. Nevertheless, we decided to
work with the assumption that the inter-arrival time distribution we measured was exponential,
and used that to determine a relationship between sample size and inter-arrival time.

If we consider the arrival of a player to be a Poisson process, then the inter-arrival time
distribution is the result of 50 Poisson processes, each having a rate of around 0.00001. Thus,
the mean inter-arrival time of a sample of size n is 1/(0.00001n) = 100000/n.

There were an estimated 10,000 players on the server we monitored. This yields a mean
inter-arrival time of 10 seconds, which is quite small. Thus, systems should take care to ensure

the joining overhead is low.

53

Summary

The distribution of inter-arrival times can be coarsely modeled by an exponential distribution.
This yields an inverse relationship between inter-arrival times and population size, where the

interarrival-time of a population of size n is 100000/n.

3.2.6 Churn Rate

The session churn rate refers to the rate at which login and logout events occur. It reflects the
rate at which nodes enter or exit the system. In our measurements, churn rate is determined by
counting the number of login and logout events that occur over a fixed period of time, referred to
as the bucket.

A high churn rate has the same ramifications as a short inter-arrival time. Systems with high
churn must be able to handle frequent changes to their membership sets. The overhead of adding
and removing nodes should be low, and there should be minimal penalties to the system when
nodes enter or leave. Suppose each time a node enters or leaves the P2P framework, it must
exchange information regarding the objects it is hosting. Then in the face of high churn, a large
amount of bandwidth might be consumed to facilitate this information exchange, causing poor
performance to the rest of the system.

A useful metric to study along with churn rate is the churn source set, the set of players who
cause churn within each bucket. A high churn rate could be caused by many players joining and
leaving the system, or it could also be caused by a single player joining and leaving far more
rapidly. By comparing the size of the churn source set with the number of events, the average
number of events per contributing player can be determined. The effects of a single player
causing most of the churn versus many players contributing to some of it can be different; in
the former case, the guilty node could just be ignored or labeled faulty, resulting in the effective
churn rate to become much lower. We subsequently refer to the ratio of churn over source set

size (events found over players found) as the churn/player ratio.

54

' / Chum ——
0.9 / ource Set Size -
08 /
07 /
0.6 /
05 /

04

0.3

02

0.1 e

1 10 100
Number of Events

Figure 3.14: CDF of churn rate and source set size.

In the long-term experiment, churn rate was determined by taking the total number of login
and logout events occurring within 10 minute buckets.

The distribution of session churn is shown in Figure 3.14, which has a median of 11 events.
The distribution of churn source set size is also shown in the same figure, and it is similar to
that of session churn. This suggests that most login/logout events detected over the 10 minute
bucket were all due to different players, i.e. few players logged in and out (or vice versa) within
10 minutes. The median churn/player ratio was 1 (with a mean of 1.06), further supporting this
argument.

In order to understand how the source set size varies over larger periods of time, the churn/player
ratio was determined over a dataset with 30 minute buckets. This gives us a measure of the aver-
age number of login/logout events per player over 30 minute intervals. The distribution is given
in Figure 3.15, which has a median of 1.2. Thus, high churn is generally caused by a large group
of players.

The median churn rate every 12 hours for the month of February was also determined, and is
plotted against time in Figure 3.16. Using 12 hour bins allows the diurnal nature of churn to be
seen, which is confirmed in the time-of-day graph shown in Figure 3.17.

Some further calculations are necessary to make sense of the churn rate. 11 events every

35

Churn/Player Ratio —+—

Lo T

/“

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

14 15 6 17 1.8 1.9

1.3

1.2

Figure 3.15: CDF of ratio of churn rate and source set size.

Chum Rate =

16

SJUBAT JO JBGUINN

03/03

24/02

17/02

10/02

Time

Figure 3.16: Median churn rate every 12 hours over February.

56

10 minutes gives a churn rate of 1.1 events per minute. Normalizing by the sample size,and

assuming that each event was caused by a unique player, we get that 0.1% of the population

No. of Events

// Churn \\/

| N

4 L s L L L L L ! 1 L 1
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time

Figure 3.17: Relationship between churn and time of day.

either enters or leaves the game every minute.

0.1% does not seem like a large percentage, but recall that the median number of players
online at any time is close to 6% of the total population. That equates to 1.6% of the online
population logging in or out every minute. Note that this does not imply that 6% (0.1% times 60
minutes) of the total population enters or leaves the game every hour; our assumption that each
churn event was caused by a unique player only holds at shorter time-scales such as 10 minutes.

Over an hour, we are likely to see pairs of churn events (a login and a logout) caused by a single

player, since the median session time is less than an hour.

Summary

The churn rate was 11 events every 10 minutes. The size of the set of players causing churn is

about equal to the number of observed events, thus each event is likely to be caused be a different

player.

57

1 T
X
v 08 .
g
o
£ 06 .
3
m N i 4
< 0.4 ”
: a
§ 0.2 | month ------- _
w week --------
0 . o dayl
-1 -0.5 0 0.5 1

corr(player A,player B)

Figure 3.18: CDF of Pearson’s correlation coefficient of each pair of player’s online times.

3.2.7 Are Players Independent?

Peer-to-peer storage systems are very heavily influenced by dependencies between nodes. As-
sumptions are typically made about node independence in order to decide on a suitable level of
replication. For example, CFS [15] creates & replicas of each object, and assumes that the k nodes
the replicas are on will fail independently. Other systems may need make assumptions about the
independence of node arrivals. The object management component of the P2P framework will

definitely be affected by player dependence.

We test whether we can consider the online times of players independent at various time
scales and examine sources of dependence. Figure 3.18 shows a CDF of Pearson’s correlation
coefficient corr(player A, player B) for each pair of players’ online times at various time scales.
Each player’s time series is represented with a 1 when online and 0 otherwise (using 5 minute
buckets, ignoring times when we are missing measurements). We expect strong daily positive
dependence in when players play due to the diurnal effect, as shown by the “day” line. In fact,
there is also daily negative dependence between some pairs of players because players focus their
play times at slightly different times of day. Nonetheless, we see that the correlation between

online times diminishes when we examine longer time scales. Indeed, at the timescale of 1

58

-
-
e
-

0.9

~~

0.8

==F=—o__1

0.7 4
0.6 t=0.25 —— -
t=0.3 -------

Frac. players with < x partners

05 | | 1 |
0 10 20 30 40 50 60 70

partners (corr(A,B) > t)

Figure 3.19: Number of partners per player, defined by high correlation.

month, over 75% of player pairs have correlation coefficients between —0.05 and 0.05 which
suggests that their online times are close to independent.

Nonetheless, Figure 3.18 also demonstrates that a small percentage of player pairs have
higher correlation in their online times even at long time scales. We investigate the cause of
this correlation by examining these player pairs. We define player A and player B to be partners
if the correlation of their online times corr(A,B) > t.

Figure 3.19 shows a CDF of the number of partners per player when looking at a timescale of
1 month for several moderate correlation thresholds ¢. The majority of players have no partners
and most that do have partners only have 1 or 2. Indeed, only 2% of players have partners with
correlation > 0.5, so most partner relationships are fairly weak. There are however 20 to 30
players that are partners with 10 to 30 players. These players tend to play more than others (all
are online at least 14% of the time), but there are more players that play just as much and have
few or no partners.

Overall, these results appear to be consistent with the findings of Chen et al. [12], which
suggest that, at session time scales, most players play solo and the majority of groups are “duos.”
Our results suggest that these relationships persist to longer timescales. To test this hypothe-

sis, we attempt to determine whether this correlation in online times is actually due to “players

59

Frac. (A,B) < x

corr(A,B) < 0.3 ——
Icorr(A,Bl) 0.3 =~

0 20 40 60 80 100
% time player A, player B in same zone

Figure 3.20: CDF of the % time spent in the same zone for partners vs non-partners.

playing together”” or whether the correlation is due to other external factors. We conjecture that
players that are playing together will exhibit locality in the virtual world. That is, they will tend

to play in the same zones at the same time so that they can interact.

Figure 3.20 shows a CDF of the percentage of time, when online simultaneously, that partners
and non-partners are in the same zone, for ¢ = 0.3. We only consider player pairs that were
simultaneously online for at least 1 hour so that we have a sufficient number of samples. If
correlation in online times is due to players playing together, we expect partners to play more
often in the same zone than non-partners. This is what we observe in the figure. However,
partners are only 2 times more likely to play in the same zone than non-partners, on average
(6% vs. 3%). Moreover, Kendall’s 7 correlation coefficient of corr(A,B) and the percentage of
time spent in the same zone is only 0.05, indicating that the relationship between the two, while
positive, is weak. Therefore, there must be external factors beyond players playing together that
cause correlated online times. This conclusion implies that interactivity between two players in
a game is unlikely to be sufficient to predict how strongly their online times will be dependent at

long time scales.

60

Summary

The majority of players’ online times are close to pairwise independent at timescales longer
than 1 week, but show heavy dependency at shorter timescales such as a day. Of those players
that have online times that show moderate positive correlation, most are only correlated with 1
or 2 other players. Some of this correlation is explained by players playing together, but other
external factors also appear to play a part in dependence of online times. Thus, in terms of
replication levels needed to maintain object state, data that needs to be highly available and
highly accessed over a short period of time will need to pay attention to the diurnal effects.
However for less popular data but long-lived data can benefit from the long-term independence

of player availabilities.

The following sections discuss the nature of player behavior with respect to in-game loca-
tions. Most of the results were obtained from the location measurement experiment. There is
a similarity between the behavior of players entering and leaving a location versus entering and
leaving a game, and both have the same effects on systems, just on different levels. Thus much
of what was discussed previously for game-level characteristics applies to location-level charac-

teristics as well.

3.2.8 Location Churn

Location churn is a measure of how frequently players enter and leave a location. High location
churn will cause difficulties to both the P2P and federated frameworks, stressing the discovery
component because the set of nearby objects will continually be changing.

The distribution of location churn for several different locations is shown in Figure 3.21,
on a log-linear scale. Immediately noticeable is the very low churn rate of the remote location
(Silithus), as is expected. Stormwind City has the highest churn rate, significantly more than any

of the other locations.

61

Stormwind

0.9 Wetlands - |
i } o Stranglethorn Vale -
7 The Barrens
0.8 e 7 Silithus
v Burning Steppes
0.7

06 |yt /. /

04 [/
03 | /
0.2 o

0.1

1 10 100 1000
Chumn

Figure 3.21: CDFs of location churn of several different in-game locations.

Stormwind
0.9 . Wetlands
. / Strariglethorn Vale -
/i TheBarrens -
0.8 Z £ Silithus - 1
! _Buming Steppes
0.7 :
0.6
0.5
0.4
0.3
0.2 . 7
0.1 = /
o b . .
0.01 0.1 1 10
Churn

Figure 3.22: CDFs of location churn of several different in-game locations, normalized.

62

Rorui it e Stormwind
09 | . ,c/ 54 Wetlands -
’ g Stranglethorn Vale --

o The Barrens -
0.8 - Silithus -+
7 i Burning Steppes

0.7

0.6

05 [-ié
04 |

- /4 :

0.2

0.1 ot

100 1000 10000 100000 1e+06
Seconds

Figure 3.23: CDFs of the staytimes of several different in-game locations.

Normalizihg the churn rate by the total number of players found in the location yields Fig-
ure 3.22. This graph is markedly different from Figure 3.21, which suggests that location churn
is proportional to the number of players in the location. The normalized churn rate of Burning
Steppes is much higher, which makes sense since it is a remote area along a travel route; not
many players visit the location, and those that do generally pass through very quickly.

Not much else can be made out of the normalized distributions. For a few locations, the
medians seem somewhat close to each other, which might suggest that the average churn rate

only depends on population and not on other characteristics of the location.

3.2.9 Stay Time

The analog of session length with respect to locations is stay time, a measure of how long players
stay within a particular location. The federated framework is affected by stay time, because a
short stay time means that player objects will be hosted by servers for only a short while before
changing hands. This might result in extra overhead. The same applies for any object placement

strategy that favors placing nearby objects on the same node.

Figure 3.23 shows the distribution of stay time for each of the 6 locations monitored in the

63

location measurement experiment, also plotted on a log-linear scale. As is expected, the staytime
for Burning Steppes (along a transport route) is very short. The other interesting finding is that the
remote location Silithus has a staytime similar to that of Stranglethorn Vale, which is (according
to our classification) a transport hub. Additionally, both locations have a longer staytime than
Stormwind City.

A possible explanation for this is that both Silithus and Stranglethorn Vale have high-level
quests, and thus there are people who travel to these locations to perform the quests, which take
a longer period of time. Conversely, many players might visit Stormwind City for a short while
just to stock up on equipment. In the case of Silithus, it is likely that the only people who travel
there are there to perform quests.

These results suggest that it might be possible to predict the time a player will spend in a
particular location based on characteristics of that location. Exactly what these characteristics
are is likely to vary from game to game, and we are unable to draw any further conclusions due

to the coarse-grained nature of the measurement.

3.2.10 Location Density

The density of a location in the game world refers to the number of players within that location.
Dense areas with many players generally require more processing and bandwidth usage, because
there is likely to be more interaction between nodes. A particularly dense location might cause
problems for the federated framework, by overloading the server associated with that location.
It is particularly interesting to observe the stability of location density in the game world.
If dense locations tend to always be dense, then the federated framework can allocate more
resources to those servers managing such locations. Conversely, if density tends to change, then
such an approach would not be very beneficial, and might even negatively affect performance.
We make use of data from the long-term experiment to characterize location density, as op-

posed to from the location experiment, because we wish to characterize a large number of lo-

64

December s
February s
6 Difference +

Player Count
Ratio

2 L L L L
20 40 60 80 100
Location

Figure 3.24: Location density in December versus February, and the difference between the two

months.

cations. In the course of the long-term experiment, players found found to be in a total of 117
different locations. This covered nearly every location in the game world. Location density
was determined by counting the number of players that were in a particular location at each poll.
Note that this is not the total number of players in that location, as was determined by the location

experiment, but rather the number of players out of the sample set of 1,100 players.

Out of the 117 locations found, 33 were locations that were only accessible to players after
the release of the expansion set. Thus, there were no players found in these locations before the
February dataset. In order to differentiate between these new locations and the old ones, they are

grouped together as locations 84-117 in our results.

Figure 3.24 shows the mean location density of the 117 locations for the months of December
and February. Some explanation is necessary to help understand the graph. For each location,
the mean location density was determined for the month of December, and also for the month
of February. These values were then plotted against the locations they corresponded to, with the
values for December negated so they appear below the x-axis. The difference of the two values
was then computed, where a negative difference is indicative of the value for December being

larger. This difference was then normalized by the value for December to yield the percentage

65

LT Mean Density ———

0.9
0.8

0.7 /
06

0.5 /
ol
0.3 /

0.2

0.1

0 1 2 3 4 5 6
Location Density

Figure 3.25: CDF of mean location density for each location.

change in density from December to February, which are plotted as points on the graph.

As can be seen from figure, the percentage change for most locations was negative, which
meant that there were more players in those locations in December than there were in February.
In addition, looking at the densities over February, we can see that a large majority of the players
were spending their time in the new locations (the right portion of the graph). Thus, there was a
definite shift in density over the course of 2 months.

Figure 3.24 also shows that there are in general a few very dense areas, and many more less
dense areas. This was particularly true for December, where we can observe one location with
very high density. This location turned out to be Ironforge, a capital city which also holds the
auction-house, where players may bid and offer items.

The distribution of the mean location density of each location is shown in Figure 3.25. This
clearly confirms the earlier observation of there being a few exceptionally dense areas, as the tail
of the graph is very long.

A heatmap was plotted showing how density changed over the month of February in the
various locations. It is not included in this thesis due to its large size. From the heatmap, it was
observed that density was stable; although the location density varied depending on the number

of players who were online, in general locations with high location densities had values that

66

stayed high throughout the month.

These results indicate that over a moderate time-period (like a month), location densities
tend to be stable, and there are locations in the game which are always crowded. The federated
framework can thus allocate more resources to these areas. In addition, due to the large skew
in location density, it seems that a uniform distribution of servers to locations is sub-optimal.
Instead, many unpopular locations can be handled by a single server, while several servers handle

the most popular parts of the game.

Of course, the change in location densities from December to February does indicate that
popularity can and will shift, particularly due to in-game changes. It is not surprising that players
flocked to the new game locations, and one would expect a game developer to over-provision the

servers handling these locations in expectation of this.

The skew in location density also brings up an important question with regards to the P2P
framework. In general, it can be assumed that if there are more players in a location, then
the amount of interaction in the location increases, and correspondingly the load on the nodes
hosting the location also increases. If the increase is load is linear to the number of nodes, then
the number of nodes needed to maintain the entire game world is independent of the skew in
density. However, if load increases faster than linear, then when location density increases, the
load per node will increase as well. Thus, the presence of very dense game locations might be

detrimental to every player in the game.

Summary

The distribution of location density is very skewed, with some popular locations having very
high densities. Over the short term, location density is stable. However in-game events might

cause densities to shift, and this can happen very drastically.

67

3.3 Discussion

The results presented in this chapter show that MMOG player behavior is somewhat similar to
peer-to-peer user behavior, particularly in terms of session length. However, MMOG players
seem to exhibit lower availability, which can be explained by the need of a player to be an active
participant in the game. In addition, strong diurnal effects affect the dependence between player
availabilities.

In terms of routing and discovery, an MMOG is likely to be similar to a peer-to-peer network.
Thus DHTs and similar structured overlays might be suitable for use in distributed game frame-
works. However, the session length as found by our study is still near the “breaking point” of
many DHTs; thus care must be taken and DHTs that perform better under churn should be chosen
or designed. The object management component of an MMOG framework faces a more difficult
challenge, that of achieving high availability from a system made up of very low availability
nodes with somewhat non-independent availability characteristics.

In light of this, there appear to be several in-game optimizations that can be made to improve
performance. Allowing players to enter a temporary “away” state without disconnecting from
the network can increase session length. Designing game locations to have strong characteristics
(questing areas versus social areas) can aid in predicting session length and thus allow for better
decisions. Other in-game properties such as the player level can also be used to predict session
length.

The most important observation that can be made from the results is that player behavior and
thus game client behavior is closely tied to the player’s interest. A game client is only online
when the player is paying attention to the game; this is partly by design due to WoW’s anti-idling
mechanism, but also due to the fact that players probably find little incentive in leaving their
game client running when they are not playing the game.

Player interest is a scarce resource that is strongly governed by time-of-day effects and other

social factors. It would thus be useful if a distributed game design was able to decouple player

68

interest from client dynamics. An example is the previously mentioned away state that allows
players to spend a short peridd of time focusing their attention on something else without needing
to leave the game. An even better mechanism would be to divide the game client into a service
component and an interface component, where the service component runs continually on the
user’s machine while the interface component is what the player makes use of when she wishes
to actually play the game. The service component is then likely to have much better availability.

Having a service component still does not tackle the issue of incentive. A player has little
incentive to leave the service component running when they are not actively participating in the
game; they gain no utility from doing so, and may experience negative effects from the additional
consumption of bandwidth that is likely to occur. Thus, if a game is to require users to run a
service, it should provide the user with some kind of incentive.

Fortunately, it is extremely easy to provide incentives to gamers. Many players already pay a
monthly subscription fee to access their favorite MMOGs (it costs roughly US$0.50 for one day
of gameplay in WoW). The game developers could thus provide a subsidy to players who leave
the game service running, effectively allowing users to pay for game-time by becoming stable
peers in the distributed system. For games with no subscription fees, an alternative is to provide
players with an in-game benefit, such as units of the game’s currency. This could be applied to
a game such as Second Life. In fact, it is particularly interesting to consider such a scheme in
Second Life, because currency in the game is often used to purchase virtual land area, which
corresponds to space (and processing power) in a Second Life server. Thus, one could imagine
a scheme where players get paid directly from other players for the right to host objects on that

their system.

69

70

Chapter 4

Conclusion

This thesis has presented the results of a measurement study on the massively multiplayer on-
line game World of Warcraft, in the context of designing distributed multiplayer games. The

following conclusions were arrived at:

e Player session lengths were similar to session lengths of peer-to-peer filesharing clients.
Studies of churn rates in P2P networks and the effects thereof are thus useful in the design
of distributed MMOGs. The use of DHTSs in such games is feasible although more re-

silience to churn is still desirable.

e There are several predictors of session length. Session length can be predicted by the
time of day the session begins, the starting level of the player initiating the session, and

length of previous sessions by the same player.

e The biggest challenge faced by a distributed MMOG is object management, i.e. providing
high availability of game objects. In general, players have very low availabilities. This

makes it hard to build a reliable store for persistent objects.

e It is beneficial to decouple player interest from game client (node) behavior. By de-
signing systems such that a player may leave his client connected to the network even

when he is not interested in playing the game allows an increase in availability and general

71

reliability.

4.1 Future Work

The results presented in this thesis are only the first step towards a better understanding of how
MMOG player behavior affects distributed game systems. Very important future work is a study
of how the workload obtained from our measurements behaves on existing distributed systems.
For example, experiments should be conducted on distributed game framework proposals such
as [7] and [16] to see if they perform well under the churn rates we obtained. The same should
be done on various distributed filesystems, as they most closely mirror what a distributed game
object store must provide.

It would also be beneficial to replicate the measurements performed on several different
World of Warcraft servers, to ensure the results are similar across servers. Additionally, measure-
ment of other games (such as Second Life) would allow a better understanding of how differences

in games influence player dynamics.

72

Bibliography

[1]
[2]
[3]
[4]

[5]

(6]

[7]

[8]

World of warcraft census statistics. http://warcraftrealms.com/census.php.
Wine. http://winehg.org/.
Wowwiki. http://www.wowwiki.com/.

Nathaniel E. Baughman and Brian Neil Levine. Cheat-proof playout for centralized and
distributed online games. In INFOCOM, pages 104-113, 2001. URL citeseer.ist.

psu.edu/baughman0lcheatproof . html.

R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proceedings of the
2nd International Workshop on Peer-to-Peer Systems (IPTPS '03), February 2003. URL

citeseer.csail.mit.edu/bhagwan03understanding.html.

A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable Multi-Attribute
Range Queries. In Proceedings of the SIGCOMM Symposium on Communications Archi-
tectures and Protocols, Portland, OR, August 2004.

A. Bharambe, J. Pang, and S. Seshan. A Distributed Architecture for Multiplayer Games.
In Proceedings of the Symposium on Networked Systems Design and Implementation, San

Jose, CA, May 2006.

Charles Blake and Rodrigo Rodrigues. High availability, scalable storage, dynamic peer
networks: Pick two. In Ninth Workshop on Hot Topics in Operating Systems (HotOS-IX),
pages 1-6, Lihue, Hawaii, May 2003.

73

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas
in communications (JSAC), 20(8):1489-1499, 2002. URL citeseer.ist.psu.edu/

castroO2scribe.html.

Chris Chambers, Wu-Chang Feng, Sambit Sahu, and Debanjan Saha. Measurement-based
characterization of a collection of on-line games, 2005. URL http://www.usenix.

org/events/imc05/tech/chambers.html.

Wu chang Feng, Francis Chang, Wu chi Feng, and Jonathan Walpole. Provisioning on-line
games: a traffic analysis of a busy counter-strike server. In IMW '02: Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, bages 151-156, New York, NY, USA,
2002. ACM Press. ISBN 1-58113-603-X. doi: http://doi.acm.org/10.1145/637201.637223.

Kuan-Ta Chen and Chin-Laung Lei. Network game design: Hints and implications of

player interaction. In Proceedings of ACM NetGames 2006, Singapore, Oct 2006.
Kuan-Ta Chen, Polly Huang, and Chin-Laung Lei. Game traffic analysis: An MMORPG
perspective. Computer Networks, 51(3), 2007. Article In Press.

Computer and Video Games. Wow hits 8.5m subscribers. http://www.
computerandvideogames.com/article.php?id=159422.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP '01), Chateau Lake Louise, Banff, Canada, October 2001.

Chris Gauthier Dickey, Daniel Zappala, and Virginia Lo. A fully distributed architecture
for massively multiplayer online games. In NetGames '04: Proceedings of 3rd ACM SIG-
COMM workshop on Network and system support for games, pages 171-171, New York,
NY, USA, 2004. ACM Press. ISBN 1-58113-942-X. doi: http://doi.acm.org/10.1145/
1016540.1016566.

74

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Kieron Drake. Xtest extension protocol. citeseer.ist.psu.edu/230467.html.

Nicolas Ducheneaut, Nicholas Yee, Eric Nickell, and Robert J. Moore. alone to-
gether?”: exploring the social dynamics of massively multiplayer online games. In CHI
'06: Proceedings of the SIGCHI conference on Human Factors in computing systems,
pages 407—416, New York, NY, USA, 2006. ACM Press. ISBN 1595933727. doi: 10.
1145/1124772.1124834(. URL http://portal.acm.org/citation.cfm?id=

1124772.1124834.

Blizzard Entertainment. World of warcraft. http://www.worldofwarcraft.com/,

Blizzard Entertainment. World of warcraft faq. http://www.worldofwarcraft.

com/info/faq/,.

C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low latency and cheat-proof event
ordering for peer-to-peer games. In Proceedings of ACM NOSSDAV, June 2004. URL

citeseer.ist.psu.edu/gauthierdickey04lowlatency.html.

Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M. Levy,
and John Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 314-329, New York, NY, USA, 2003. ACM Press. ISBN 1-
58113-757-5. doi: http://doi.acm.org/10.1145/945445.945475.

Tristan Henderson and Saleem Bhatti. Modelling user behaviour in networked games. In
MULTIMEDIA °01: Proceedings of the ninth ACM international conference on Multime-
dia, pages 212-220, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-394-4. doi:
http://doi.acm.org/10.1145/500141.500175.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Lua —

an extensible extension language. Softw. Pract. Exper., 26(6):635-652, 1996. ISSN 0038-

75

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

0644. doi: http://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6(635::AID-SPE26)3.
0.CO;2-P. Also see http://www.lua.org/.

Second Life Insider. Today in second life - saturday 24 febru-
ary, 2007. http://www.secondlifeinsider.com/2007/02/

25/today-in-second-1life-saturday-24-february-2007/.

B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for massively multiplayer

games, 2004. URL citeseer.ist.psu.edu/knutssonO4peertopeer.html.

John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells, and Ben
Zhao. Oceanstore: An architecture for global-scale persistent storage. In Proceedings of
ACM ASPLOS. ACM, November 2000. URL http://citeseer.ist.psu.edu/

kubiatowicz0OOoceanstore.html.

Linden Labs. Second life. http://secondlife.com/.

ImageMagick Studio LLC. Imagemagick. http://www. imagemagick.org/.
Xerox PARC. Playon project. URL http://blogs.parc.com/playon/.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object ldcation, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware), pages 329-350, 2001. URL citeseer.

ist.psu.edu/article/rowstronOlpastry.html.

Timothy Roscoe Sean Rhea, Dennis Geels and John Kubiatowicz. Handling churn in a dht.
Technical Report UCB/CSD-03-1299, EECS Department, University of California, Berke-
ley, 2003. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/

6360 .html.

Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks. In

IMW °02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment,

76

pages 137-150, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-603-X. doi:
http://doi.acm.org/10.1145/637201.637222.

[34] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In JMC
‘06 Proceedings of the 6th ACM SIGCOMM on Internet measurement, pages 189-202,
New York, NY, USA, 2006. ACM Press. ISBN 1-59593-561-4. doi: http://doi.acm.org/10.

1145/1177080.1177105.

77

