
All-Norms and All-Lp-Norms Approximation
Algorithms

Daniel Golovin1 Anupam Gupta2 Amit Kumar3

Kanat Tangwongsan4

September 20, 2007
CMU-CS-07-153

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by NSF ITR grants CCR-
0122581 (The Aladdin Center) and IIS-0121678

2Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by an NSF CAREER award
CCF-0448095, and by an Alfred P. Sloan Fellowship.

3Department of Computer Science & Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India - 110016. Part of this
work was done while the author was at Max-Planck-Institut für Informatik, Saarbrücken, Germany.

4Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by NSF CAREER award CCF-
0448095, and by an Alfred P. Sloan Fellowship.

Keywords: set-cover problems, approximation algorithms, combinatorial optimization, sampling minkowski
norms

Abstract

In many optimization problems, a solution can be viewed as ascribing a “cost” to each client and the goal is to
optimize some aggregation of the per-client costs. We often optimize some Lp-norm (or some other symmetric
convex function or norm) of the vector of costs—though different applications may suggest different norms to
use. Ideally, we could obtain a solution that optimized several norms simultaneously.

In this paper, we examine approximation algorithms that simultaneously perform well on all norms, or on all
Lp norms. A natural problem to consider in this framework is the set-cover problem: suppose we pick sets
S1, S2, . . . , St (in that order), and define the cover time of element e to be Ce = min{i | e ∈ Si}, the index of
the first set that covers e. Minimizing the maximum cover time ‖C‖∞ gives us the classical MIN SET COVER,
for which the greedy algorithm is an O(log n) approximation (which is best possible). Minimizing the average
(or total) cover time

∑
e Ce = ‖C‖1 gives the MIN-SUM SET COVER problem, for which the greedy algorithm

gives a 4-approximation (which also is tight). This leads us to a natural question:

How well does the greedy algorithm perform for the Lp Set Cover problem, where the objective
function is ‖C‖p = (

∑
e Cp

e)1/p for 1 ≤ p ≤ ∞?

We give tight results for this problem: the greedy algorithm simultaneously gives an O(p)-approximation for
Lp-Set-Cover for all values of 1 ≤ p < ∞ (even for the weighted version). There are simple examples where
this is tight for all values of p. In fact, we also show that for every fixed value of p, no efficient algorithm can
obtain an approximation guarantee better than Ω(p) under suitable complexity assumptions. We show how to use
our analysis techniques to give similar results for the more general submodular set cover, and prove some results
for the so-called pipelined set cover problem.

We then go on to examine approximation algorithms in the “all-norms” and the “all-Lp-norms” frameworks more
broadly, and present algorithms and structural results for other problems such as k-facility-location, TSP, and av-
erage flow-time minimization, extending and unifying previously known results.

1 Introduction
When the solution to an optimization problem affects multiple people or organizations, there is often a trade-off
between various efficiency and fairness measures. Typically, there is an abstract “cost” associated with each
participant and the objective function is some aggregation of the individual costs. The method of aggregation
represents our relative priorities concerning efficiency and fairness. E.g., in k-median, given demand points
D ⊆ V in a metric space (V, d), we must select k facilities to open: the cost associated with each participant
d ∈ D is its distance to the nearest open facility. Each solution thus induces a cost vector C ∈ R|D|

+ , and the
objective is to minimize ‖C‖1 =

∑
d∈D Cd, the sum of the participant costs: hence this method of aggregation

favors global efficiency over fairness. Another extreme is k-center, where we minimize the fairer objective
function ‖C‖∞, the maximum participant cost. Other examples where such trade-offs appear include

• Sequencing problems: C measures the “time” of service for each participant, for example the cover times
of the elements in a set cover instance, or the times to reach the vertices in a TSP instance.
• Scheduling problems: C could be the load of the machines or the flow-times of the individual jobs.
• Allocation problems: C measures the quality of service of each participant, for example congestion or

dilation in routing problems, and distances in facility location problems.

In general, there are many aggregation functions we might wish to consider. However, if we are feeling partic-
ularly ambitious, we might ask if we can efficiently find solutions that simultaneously approximate the optimal
solutions for each member of a large class of aggregation functions. Formally, we are given a minimization prob-
lem and a class of aggregation functions F . For each f ∈ F let C∗

f be the feasible vector minimizing f(·). Then
for as small an α as possible, we want to find a feasible cost vector C such that f(C) ≤ α · f(C∗

f) for all f ∈ F .
Such a vector C is a simultaneous α approximation for F .

In this paper, we will consider two classes of aggregation functions: the class of Minkowski Lp norms {Lp | p ∈
R≥1} ∪ {L∞} (i.e., All Lp Norm results), and the class of all symmetric norms (i.e., AllNorm results). The Lp

norm of C, which is ‖C‖p := (
∑

i C
p
i)

1/p for a real value 1 ≤ p < ∞ and maxi Ci for p = ∞, provides a
nicely parameterized way of quantifying the efficiency/fairness trade-off.

These questions were investigated by Kleinberg et al. [KRT01] in their study of fair resource allocation algo-
rithms. Their notion of a fair allocation was one which came close to the max-min fair solution. They considered
routing and load balancing problems in this setting. Kumar and Kleinberg [KK00] used a stronger notion of
fairness: for cost-minimization problems, a cost vector C was α-fair (the precise term used was different) if for
every i ≤ n and c ∈ R, if there was a feasible solution in which i clients incurred cost at most c, then any set
of i clients incurred a cost of at most α · x in our cost vector C. This happens to be the same notion as that of
submajorization of vectors [HLP88], which is even stronger than simultaneously approximating all symmetric
norms. Kumar and Kleinberg [KK00] considered scheduling, facility location and bandwidth allocation problems
under this framework. Goel et al. [GMP01] obtained poly-logarithmic-fair algorithms (in this stronger notion of
fairness) for routing and bandwidth allocation, and Goel and Meyerson [GM06] showed how to obtain the small-
est such α for a variety of problems through linear programming techniques. (For the comprehensive treatment
of inequalities, submajorization and AllNorm approximation, one can refer to the book by Hardy et al. [HLP88];
less ambitious readers may want to refer to the book by Steele [Ste04].)

1.1 Overview of Our Results.

Set Cover Problems: In our framework, a set cover instance consists of a ground set U of n elements, a
collection F of subsets of U , and a cost function c : F → R+. An algorithm picks sets S1, S2, . . . , St (in that
order) so that their union ∪iSi is U . On this ordering, let ci be the cost of the set Si; i.e., ci = c(Si). Informally,
we may think of Si as corresponding to an action ai that covers the elements of Si, and ci is the time required to
execute ai. Let the cover index of an element e ∈ U be defined as index (e) = min{i : e ∈ Si}; i.e., the position

1

of the first set that contains e. The cover time of an element e ∈ U is defined to be the time required to cover e if
we execute actions in this order. Formally, the cover time of an element e ∈ U is time(e) =

∑index(e)
i=1 ci; note

that for the case of unit costs, the cover index and cover time are the same. Given the sequence of sets that the
algorithm picks, we obtain a cover time vector C ∈ Rn

+, where Ce is the cover time of the element e ∈ U . The
the Lp set cover (Lp SC) problem is then to find the ordering that minimizes ‖C‖p. It is easy to see that using the
L1 norm and unit costs we obtain the MIN-SUM SET COVER problem [FLT04], whereas using the L∞ norm we
obtain the classical set cover problem [Chv79, Lov75, Joh74].

We show that the greedy algorithm achieves an O(log n) approximation in the AllNorm model, and that its
approximation ratio of Θ(p) is in fact simultaneously optimal for all Lp norms. Specifically, we show that the
classical greedy algorithm achieves an O(p) approximation ratio for all p = p(n). Moreover, even if we focus
on any fixed value of p, we show that it is impossible to approximate the Lp SC problem better than Ω(p) unless
NP ⊆ DTIME(nO(log log n)). This lower bound holds for all functions p(n) such that 1 ≤ p(n) ≤ 1−ε

2 ln(n)
for all n. We also show that the greedy algorithm achieves an O(p) approximation in the Lp Submodular Set
Cover problem, which is a generalization of Lp SC in which an arbitrary submodular function on sets of actions
encodes how many elements have been covered.

To the best of our knowledge, there has not been any prior work on All Lp Norm approximation for Set Covering
problems seeking to minimize all ‖C‖p; of course, there is much work for special values of p. For the classical
MINIMUM SET COVER problem (minimize ‖C‖∞), an O(log n) approximation is known both by greedy and
by LP rounding [Joh74, Lov75, Chv79, Sla97, Sri99]. Moreover, one cannot get an (1 − ε) ln n-approximation
unless NP ⊆ DTIME(nO(log log n)) [Fei98]. For the MIN-SUM SET COVER problem (minimize ‖C‖1), we
know that greedy is an optimal 4-approximation [FLT04] (see also [BNBH+98, CFK03]).

Pipelined Set Cover: This problem was studied in the All Lp Norm framework by Munagala et al. [MBMW05],
and seeks to minimize ‖R‖p where Ri is the number of uncovered elements before the ith set is chosen. To put
this in context, the L1 norm for this problem is the MIN-SUM SET COVER problem, and the L∞ norm is just |U |.
Munagala et al. show that the output of the greedy algorithm is simultaneously a 91/p-approximation for the Lp

norm, and also gives a local-search algorithm that is a 41/p approximation. We show how our proof ideas from
MIN-SUM SET COVER give an O(1 + p)1/p-approximation guarantee for the greedy algorithm for this problem;
while worse than the previous known guarantee, it extends to the case of non-uniform costs where no guarantee
was known for the greedy algorithm.

Structural Results and Norm Sampling: We give a structural result concerning the performance of the greedy
algorithm which we have found useful and which may be of independent interest. We also consider the problem
of finding a good representative set for the class of all Lp norms with p ∈ R≥1 ∪ {∞}—namely a set S ⊂
R≥1 ∪ {∞} such that an simultaneous α-approximation for all Lp norms with p ∈ S implies a simultaneous
O(α)-approximation for all Lp norms with p ∈ R≥1 ∪ {∞}. This leads us to a notion of norm sampling, and we
give tight bounds for the size of S necessary and sufficient to well represent (various subsets of) the Lp norms, as
well as explicit constructions of such sets.

Facility Location Problems: We return to the example at the beginning of the introduction, where we seek
to open k facilities to minimize ‖C‖p, where C is the vector of assignment costs of demands. It is known that
one can get O(1)-approximation algorithm for all norms provided we open O(k log n) facilities [KK00, GM06],
and such a O(log n) blow-up in the number of open facilities cannot be avoided [KK00]. In contrast, we use
the above norm-sampling ideas to give an O(1)-approximation algorithm for all Lp norms with integer values
of p provided we open O(k

√
log n) facilities, and show that opening Ω(k · (logk n)1/3) facilities is sometimes

required.

2

Results via Partial Covering: For sequencing problems such as TSP, where the cost vector is the time to reach
each of the n vertices in some graph, or sequencing versions of covering problems (of which Lp set cover is a
good example), we show how to use partial covering results to generate AllNorm approximations. For example,
we give an AllNorm 16-approximation result for the TSP by drawing on the elegant techniques of Blum et
al. [BCC+94] and the large body of subsequent and related work. To extend the result to other problems (like
vertex cover and Multicut on trees), we use results from the well-studied area of partial covering problems, and
the papers of [GKS04, KPS06] in particular.

Flow-Time Scheduling: Some scheduling problems naturally lend themselves to a job-centric perspective. We
consider scheduling jobs on parallel machines and look at the vector of flow times for each job: given ε-factor
extra speed for each machine, we get an O(1/εO(1))- approximation algorithms for all norms. This extends
previous work of Chekuri et al. [CGKK04] (who proved the result for all Lp norms), Bansal and Pruhs [BP03]
(who gave an All Lp Norm result for a single machine). Related work includes results in the machine-centric
model (see, e.g., [AERW04, GM06, AT04, AE05]).

1.2 Preliminaries and Notation

A norm ‖·‖ on vectors of length n is a function from Rn → R that satisfies the following: ‖α X‖ = |α| ‖X‖ for
any α ∈ R and X ∈ Rn, and secondly ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ for X, Y ∈ Rn. The Minkowski Lp norm of X
is ‖X‖p = (

∑
i X

p
i)1/p for a real value 1 ≤ p < ∞; the L∞ norm is just ‖X‖∞ = maxi Xi. It is well-known

that for all X ∈ Rn and p < q, ‖X‖p ≥ ‖X‖q [HLP88].

All of the problems we consider in this paper have the property that a solution to the problem induces a vector
of length n; thus, for each instance I of such a problem, we have a set V (I) consisting of all vectors that are
induced by some feasible solution to the instance. For a norm ‖·‖, let ‖X‖ denote the norm of the vector X . For
a vector X ∈ V (I), let ‖X‖p denote the Lp norm (

∑
i X

p
i)1/p of the vector X . We state two well-known facts

for easy reference: the latter follows directly from the convexity of xp.

Fact 1.1 (The Generalized AM-GM Inequality [Ste04]) 1
pA + p−1

p B ≥ A1/pB(p−1)/p

Fact 1.2 (The Discrete Differential) Let p ≥ 1. If the real numbers a, b, and c satisfy c = a − b ≥ 0, then
ap − bp ≤ c · p · ap−1.

2 The Lp Set Cover Problem

2.1 An Upper Bound for the Greedy Algorithm

In this section, we show that the greedy algorithm gives an O(p) approximation to the Lp SC problem. Consider
the familiar setup. We have a universe U of n elements and a family F of subsets of U . The greedy algorithm
picks sets S1, S2, . . . , St from F so that the union ∪iSi is U . Let ci be the cost of the set Si. Let si be the
cumulative cost of the first i sets picked by the greedy algorithm. That is, s0 = 0 and si+1 = si + ci+1. Let
Xi = Sj\(∪j<iSj) be the set of elements with cover index i. Let Ri = U −

⋃i−1
j=1 Xi be the elements uncovered

just before the ith set is picked. We use S∗i , c∗i , s∗i , X∗
i and R∗

i to denote the analogous quantities for the optimal
algorithm.

For a fixed value of p, the cost of the greedy algorithm (denoted by greedy) can be written in terms of the values
Xi and Ri as follows:

greedy =
(∑

i>0 sp
i |Xi|

)1/p (2.1)

=
(∑

i>0(s
p
i − sp

i−1)|Ri|
)1/p

, (2.2)

3

where the second expression follows from the fact that |Ri+1| = |Ri| − |Xi|. The cost of the optimal algorithm
can be expressed in a similar fashion.

The following lemma upper bounds the cost of greedy by a somewhat exotic expression, which will later turn out
to be crucial to our analysis.

Lemma 2.1 (Upper-bound on Greedy Cost)

greedyp ≤ (greedy′)p =def ∑
i>0

(
p · ci

|Ri|
|Xi|

)p
· |Xi|.

Proof: Let Ai =
(
p · ci

|Ri|
|Xi|

)p
· |Xi| be the ith term in the summation above. Taking the ith terms in the

expressions (2.1) and (2.2) measuring the cost of the greedy algorithm, and raising them to the pth powers, define
Bi = (sp

i − sp
i−1) |Ri| and Ci = sp

i |Xi|. It follows from Fact 1.1 that

1
p Ai + p−1

p Ci ≥ A
1/p
i C

(p−1)/p
i = p · ci · sp−1

i |Ri| ≥ Bi.

The last inequality follows from Fact 1.2 and the observation that ci = si − si−1. Now, rearranging terms, we
have that Ai ≥ p Bi− (p−1) Ci; summing this over all i and noting that

∑
i Bi =

∑
i Ci = greedyp, we get that∑

i

(
p · ci

|Ri|
|Xi|

)p
· |Xi| =

∑
i Ai ≥ p

∑
i Bi − (p− 1)

∑
i Ci = greedyp,

which completes the proof. �

Given this upper bound on the cost of the greedy algorithm, we now compare this to the optimal Lp SC cost. The
basic structure of the remainder of the proof is similar that given by Feige et al. [FLT04] for the L1 case.

Theorem 2.2 (Lp Approximation Guarantee) The greedy algorithm gives a p · (1 + p)1/p(1 + 1/p) ≤ 4p-
approximation for the Lp SC problem.

Proof: Recall that greedy and opt denote the cost of the greedy algorithm and the optimal algorithm, respec-
tively. We represent opt graphically as in Figure 1 (left). The horizontal axis is divided into n equal columns,
corresponding to the elements of the universe U . The elements are arranged from left to right in the order that the
optimal algorithm covers them. The column corresponding to the element x has height (s∗index∗(x))

p. Thus the
area under the curve is clearly equal to optp.

As Lemma 2.1 shows, greedyp can be upper-bounded by the expression (greedy′)p that we derived. The right
panel of Figure 1 models the quantity (greedy′)p. The diagram has n columns corresponding to the elements of
U appearing from left to right in the order that the greedy algorithm covers them. For each element of Xi, its
corresponding column has height [p · ci|Ri|/|Xi|]p.

We will now show that the area of the (greedy′)p curve is at most pp(1 + p)(1 + 1/p)p times the area of the optp

curve. To prove this, we scale the (greedy′)p curve down by [p(1+1/p)]p vertically and by 1+p horizontally, and
place this scaled curve so that its bottom-right is aligned with the bottom-right of the optp curve. Now consider
a point q = (x, y) on the original (greedy′)p curve. Suppose the point q corresponds to an element of Xi, so
y ≤ [p · ci|Ri|/|Xi|]p. Also the distance to q from the right side is at most |Ri|. Therefore, the height of the

point q after scaling, which we denote by h, is at most
(

1
1+1/p ·

|Ri|
|Xi|/ci

)p
, and the distance from the right (after

scaling), denoted by r, is at most |Ri|/(1 + p).

In order to show that the point q (after scaling) lies within the optp curve, it suffices to show that when the optimal
algorithm’s cover time is h1/p, at least r points remain uncovered. Consider the set Ri. Within this set, the greedy
algorithm covers the most elements per unit increase in cover time. Therefore, the number of elements from Ri

4

Elements of U

s∗
1

p

s∗
2

p

s∗
3

p

s∗
4

p

Area = optp.

Elements of U

Area = (greedy′)p.

Figure 1: Graphical representations of the cost of the optimal algorithm (left) and an upper bound of the cost of
the greedy algorithm (right).

that the optimal algorithm can cover in time h1/p is at most
(

1
1+1/p ·

|Ri|
|Xi|/ci

)
|Xi|
ci
≤ 1

1+1/p |Ri|, and so at least
1

1+p |Ri| elements remain uncovered at time h1/p. Since |Ri|/(1 + p) ≥ r, this implies that q (after scaling) lies
within the optp curve, and hence the scaled-down version of the (greedy′)p curve is completely contained within
the optp curve. Quantitatively, this implies that greedyp ≤ (1 + p)[p(1 + 1/p)]p optp, completing the proof. �

Having shown that the greedy algorithm gives an O(p) approximation for any fixed p, it is not hard to give an
example for which the greedy algorithm is an Ω(p) approximation; the proof appears in the appendix.

Theorem 2.3 (Tight Example for Greedy) There is a set system on which greedy yields an Ω(p) approximation.

2.2 A Matching Hardness Result for Lp Set Cover

In this section, we show that the greedy algorithm achieves is the best possible approximation factor up to constant
factors; indeed, we show that even if we fix a value of p, there is no polynomial-time algorithm approximating
Lp set cover problem better than Ω(p) unless NP ⊆ DTIME(nO(log log n)). We first prove a technical lemma.

Lemma 2.4 Let #OPT (I) denote the number of sets an optimal algorithm (for the classical min set cover) needs
to cover the set-cover instance I . Let ε > e2. Let t : N→ R+ be a non-decreasing function such that 1 ≤ t(n) ≤
logε n for all n. If there exists an efficient algorithm A such that for all n > 0, for all instance I with n elements,
A covers at least n · (1− ε−t(n)) elements with t(n) ·#OPT (I) sets, then NP ⊆ DTIME(nO(log log n)).

Proof: Feige [Fei98] proved that a polynomial time (1 − δ) ln n approximation algorithm for set cover, for any
δ > 0, implies NP ⊆ DTIME(nO(log log n)). We obtain such an approximation algorithm assuming there is an
algorithm A satisfying the properties of the lemma.

Let I be a set cover instance on n elements. Define f(n) = n · ε−t(bnc). Define the sequence of real numbers
n0 = n and ni+1 = f(ni). We solve the instance as follows.

There will be several epochs. Beginning with epoch zero, suppose that at the start of epoch i there are
xi ≤ bnic elements that are uncovered. Take the residual instance (i.e. the remaining elements and
sets), add bni − xic new elements, and enlarge all the remaining sets to cover all the new elements
(in addition to whatever they covered before). Run A on this instance until at most bni+1c elements
remain, then begin the next epoch.

Note that the number of sets in an optimal solution does not increase as the algorithm progresses. Thus, in epoch
i at most t(bnic)#OPT (I) sets are chosen. Let T be the smallest integer for which nT < 1. It is easy to see

5

that T must exist. Note that nT ≥ 1/n since t(n) ≤ logε n and nT−1 ≥ 1. Also, the definition of ni implies∑T
i=0 t(bnic) ≤ logε(n0/nT) ≤ 2 logε n. Since we have used at most #OPT (I) ·

∑T
i=0 t(bnic) sets, and ε > e2

we obtain a (1− δ) ln n approximation for some δ > 0, which concludes the proof. �

Lemma 2.5 Suppose δ > 0, and p(n) = ω(1) is non-decreasing and 1 ≤ p(n) ≤ (1
2 − δ) ln n for all n. Then

the Lp set-cover problem is Ω(p)-hard to approximate unless NP ⊆ DTIME(nO(log log n)).

Proof: Assume NP * DTIME(nO(log log n)). Let p (the norm parameter) be given, fix ε > e2, and let
t(n) = p(n). (Note that since t(n) must be less than logε n, and ε > e2, we need the upper bound of (1

2 − δ) ln n
on p(n).) As a direct consequence of Lemma 2.4 and our complexity assumption, we know that for all efficient
algorithm A, there exists n > 0 such that there exists an instance I of size n such that using t(n) · #OPT (I)
sets, A has at least n · ε−t(n) elements remaining.

Let A be any polynomial-time algorithm for solving Lp set cover. Fix n and such an instance I . Let opt
denote the Lp cost of any optimal algorithm on the instance I , and let alg denote the Lp cost of the algorithm
A. As before, let Xi denote the elements with cover index i and let Ri denote the elements with cover index
i or greater A’s solution, and let X∗

i and R∗
i denote the analogous sets for the optimal solution. We know that

optp =
∑k

i=1 ip|X∗
i | ≤ n · [#OPT (I)]p, because the classical solution is also a solution of the Lp version. On

the other hand, algp ≥ sp · |Rs| for all s > 0. In particular, with s = p ·#OPT (I) and our lower bound on |Rs|
from Lemma 2.4, we conclude

algp ≥ (#OPT (I) · p)p · n

εp

Therefore, alg/opt ≥ ((p/ε)p)
1
p = p/ε = Ω(p). �

Lemma 2.6 For p(n) = O(1), it is impossible to approximate Lp set cover better than Ω(p) unless P = NP.

Proof: Feige et al. [FLT04] shows that, for all c0, ε > 0, there are set cover instances such that it is NP-hard to
distinguish between the following two cases: (1) There is a set cover of size t, or (2) For all integers x such that
1 ≤ x ≤ c0t, every collection of x sets leaves at least a fraction of (1− 1/t)x − ε of the elements uncovered.

It follows that if we guess t, any algorithm that leaves fewer than ((1− 1/t)x − ε) n elements uncovered after
buying x sets, for any x ∈ [1, c0t], allows us to solve an NP-Complete problem. Thus unless P = NP, every
polynomial time algorithm run on these instances has at least ((1− 1/t)x − ε) n elements uncovered after buying
x sets, for any x ∈ [1, c0t].

Now fix p and a polynomial time algorithm A and let algp be the pth power its cost for the Lp set-cover problem.
Let optp denote the corresponding quantity for the optimal solution. Let g(x) := xp − (x − 1)p. Recall algp =∑

x |Rx| · g(x), where Rx is the set of elements with cover index at least x. Suppose that there is a set cover
of size t. In that case it is not too hard to show that optp ≤

∑t
x=1

(
n
t

)
xp, since after buying x sets the optimal

solution covers at least n
t x elements. Thus optp ≤ n · tp. On the other hand:

algp =
∑

x≥1 |Rx| · g(x) ≥
∑c0·t

x=1 ((1− 1/t)x − ε) n · g(x) ≈ n
∑c0·t

x=1

(
e−x/t − ε

)
· g(x)dx

Note that t = ω(1), so (1 − 1/t)x ≈ e−x/t is an arbitrarily accurate approximation. If we can set c0 > (p + 1)
and ε ≤ e−(p+1)/2 it is not too hard to show algp = Ω(ntp

(p
e

)p), simply by considering the contribution of∑(p+1)·t
x=pt

(
e−x/t − ε

)
n · g(x) to algp. Thus algp/optp = Ω(

(p
e

)p), and we obtain a gap of alg/opt = Ω(p) for
all constant p. �

Combining Lemma 2.5 and Lemma 2.6 immediately yields the following theorem.

Theorem 2.7 Unless NP ⊆ DTIME(nO(log log n)), for all δ > 0 and p = p(n) such that 1 ≤ p(n) ≤
(1
2 − δ) ln(n), it is impossible to approximate Lp set cover better than Ω(p).

6

Remark. Note that our Ω(p) hardness result does not apply when p = ω(log n) because the log(n)-norm
provides a constant factor approximation for the q-norm for all q > log(n). Thus, any α-approximation algorithm
for the p = 1

2 log n case outputs solutions which are simultaneously O(α)-approximations for all norms in
{Lp | 1

2 log n ≤ p ≤ ∞} ∪ {L∞}.

2.3 Extending to Lp Submodular Set Cover

We now consider a generalization of the Lp set cover problem. Our setting now assumes a (monotone) submod-
ular function f : 2V → R+, where m = |V |. Recall that f is a monotone submodular function if and only if
(1) f(S) ≤ f(T) for all S ⊆ T ⊆ V , and (2) f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T) for all S, T ⊆ V . For a
submodular function f , we define a discrete differential as fX(Y) = f(X ∪ Y)− f(X).

The cost of each v ∈ V is given by the function c : V → R+. An algorithm picks a permutation x1, x2, . . . , xm

of elements of V . We let x̂i = {xj : j = 1, . . . , i}. Analogously to the definitions of |Xi| and |Ri| in previous
sections, we define X̃i = f(x̂i)− f(x̂i−1) and R̃i = f(V)− f(x̂i−1).

For a fixed p, the Lp submodular set-cover problem seeks an arrangement x1, . . . , xm that minimizes the follow-
ing cost function:

cost =
(∑m

i=1 sp
i X̃i

)1/p
, (2.3)

where si =
∑i

j=1 ci. Equivalently, one can express the cost (2.3) in terms of R̃i as cost = (
∑m

i=1(s
p
i −

sp
i−1)R̃i)1/p. One can again use the greedy algorithm: at each step choosing v ∈ V to maximize fx̂i−1

(v)/c(v).
It is well-known that this algorithm yields an O(log n) approximation for the L∞ version [NW81].

Let greedy denote the cost of the greedy algorithm. The quantities X̃i, R̃i, si, xi, x̂i correspond those of the
greedy algorithm. Similarly, let opt denote the cost of the optimal algorithm, and let X̃∗

i , R̃∗
i , s∗i , x∗i , x̂∗i be the

corresponding quantities for the optimal algorithm. The proof for the submodular case is similar in spirit to the
proof for the Lp SC case. The same analysis in Lemma 2.1 gives the following lemma:

Lemma 2.8 (Bound on Submodular-Greedy Cost) greedyp ≤ (greedy′)p =def ∑m
i=1

(
p · c(xi) R̃i

X̃i

)p
· X̃i.

The proof is supplied in the appendix for completeness. In order to use the argument of Theorem 2.2, in the
following lemma we bound the performance of the optimal algorithm relative to the greedy algorithm.

Lemma 2.9 Let i ∈ [m]. Let t be the number of elements the optimal algorithm picks before the cost (s∗t) exceeds
1

1+1/p ·
R̃i

X̃i/c(xi)
. Then, fx̂i

(x̂∗t) ≤ R̃i
1+1/p

Proof: Since the greedy algorithm always picks the element that maximizes the ratio between the increase in f
and the cost, we know that fx̂i

({x∗j})/c(x∗j) ≤ X̃i/c(xi) for all j = 1, 2, . . . , t. It follows that

fx̂i
(x̂∗t) = f(x̂i ∪ x̂∗t)− f(x̂i) =

∑t
j=1

[
f(x̂i ∪ x̂∗j)− f(x̂i ∪ x̂∗j−1)

]
=
∑t

j=1 fx̂i∪x̂∗j−1
(x∗j)

≤
∑t

j=1 fx̂i
(x∗j) ≤

X̃i
c(xi)
· 1

1+1/p ·
R̃i

X̃i/c(xi)
= R̃i

1+1/p ,

which proves the lemma. �

With all the ingredients we developed so far, we apply the argument of the proof of Theorem 2.2 and obtain the
following result, the complete proof of which is given the appendix.

Theorem 2.10 (Submodular Lp Approximation Guarantee) The greedy algorithm gives a p · (1 + p)1/p(1 +
1/p) ≤ 4p-approximation for the submodular Lp SC problem.

7

2.4 The Pipelined Set Cover Problem

Closely related to the Lp set cover problem is the Lp pipelined set cover problem. In Lp-pipelined set cover, the
cost function can be expressed in terms of the quantities we previously defined as the following:

cost =
(∑

i≥0 ci|Ri|p
)1/p

This formulation follows Munagala et al. [MBMW05] but incorporates the notion of cost for each set. 1 Note
that when p = 1, this cost function is the same that of the Lp case (and the min sum set cover problem). For
this problem, we use the technique in the proof of Theorem 2.2 to argue that the greedy algorithm achieves the
following approximation ratio; note that no approximation guarantee was given for the general costs case in
previous work [MBMW05]. In the interest of space, the proof is given in the appendix.

Theorem 2.11 (Pipelined Set-Cover Approxmation Guarantee) The (same) greedy algorithm gives a (1 +
1/p) · (1 + p)1/p-approximation for the Lp pipelined set-cover problem.

2.5 A structural lemma for the Greedy Algorithm

We prove a structural lemma for the greedy algorithm, which may be of independent interest. Borrowing notations
from previous sections, the lemma assumes all sets have unit costs.

Lemma 2.12 (Set Cover Structure Theorem) Consider the run of the greedy algorithm at time k, and suppose
|Rk| ∈ (n

2i ,
n

2i−1] for some integer i. Fix any increasing function of x, denoted by F (x), and let α be a parameter
which is Θ(log F (log n)). Then one of the following holds:

(i) At time τ = k
α·i , there are at least F (i)·n

2i remaining elements in R∗
τ .

(ii) At time τ ′ = k
α , there are at least n

2i+1 remaining elements in R∗
τ ′ .

We postpone the proof the appendix. In the full version of the paper we show how to use the structural lemma to
show that the greedy algorithm is an O(p log log n) approximation (a result which is subsumed by Theorem 2.2),
and how to show an O(log log n)2-AllNorm approximation for Pipelined Set Cover.

3 All Lp Norm Approximations via Sampling Minkowski Norms
We now ask the following question: Is there a small “basis” set of Lp norms that “approximate” all other
Lp norms? Formally, given two vectors X and Y of length n each, is there a set S of indices such that if
‖X‖p ≤ ‖Y ‖p for all p ∈ S, then the same inequality holds (up to a constant approximation) for all Lp norms?
Given such a set S, we can imagine finding a solution for each Lp with p ∈ S, and then “composing” them
together to get solution that is good for all Lp norms. In this section, we will show that there is indeed such a set
S of size O(log n); if we are interested in maintaining Lp norms only for integer p, then we can get a set of size
O(
√

log n). Moreover, we show that both these bounds are tight.

Definition 3.1 (α-Sampling) For a domain D ⊆ R≥1 ∪ {∞}, a set S ⊆ D is an α-sampling of D of order n if
for all pairs of non-negative vectors X, Y ∈ Rn

≥0

‖X‖p ≤ ‖Y ‖p for all p ∈ S ⇒ ‖X‖p ≤ α · ‖Y ‖p for all p ∈ D.

Such samplings prove useful in the All Lp Norm framework in the following way.

1This expression, in fact, differs from that defined by Munagala et al. [MBMW05]: their objective raises ci to the pth power. However,
this only changes the quantity minimized in the greedy step, and hence we use this expression for convenience.

8

Theorem 3.2 Given a minimization problem whose objective function is the Lp norm of some cost vector, and
an α-sampling S of D ⊆ R≥1 ∪ {∞}, then a cost vector C that is a simultaneous β-approximation for the class
{Lp | p ∈ S} is a simultaneous αβ-approximation for the class {Lp | p ∈ D}.

We prove the following tight bounds on the size of O(1)-samplings.

Theorem 3.3 (Tight Bounds on O(1)-Samplings) There exists an O(1)-sampling of the domain Dreals = R≥1∪
{∞} of order n with size |S| = O(log n), and an O(1)-sampling of the domain Dints = Z≥1 ∪ {∞} of order n
with size O(

√
log n). Moreover, one cannot obtain smaller O(1)-samplings for either of these domains.

Due to lack of space, the proofs appear in the appendix. Both the upper bounds are fairly straightforward.
However, proving lower bounds is more interesting: if we wanted approximate distance preservation (i.e., for
every X ∈ Rn and every p, there is a norm ‖ · ‖q in our sample such that ‖X‖q ≈ ‖X‖p), it would be easy to see
that Ω(log n) norms are required. Our lower bound proofs require more work because the notion of α-sampling
is weaker than the notion of distance-preservation.

3.1 All Lp Norm Approximations for Facility Location Problems

In this section, we show how the how O(1)-samplings immediately give algorithms for the All Lp Norm k-facility
location problems. As mentioned in the introduction, we can imagine an abstract facility location problem where
given a metric space (V, d) with demand points D ⊆ V , we open a set of at most k facilities F ⊆ V and assign
each demand to a facility. This naturally gives a vector C of assignment costs for the demands with each solution:
the k-median problem now minimizes ‖C‖1, the k-means problem looks at ‖C‖2, and the k-center problem at
‖C‖∞, etc. The following theorem shows how to get an All Lp Norm approximation to such problems.

Theorem 3.4 There exists a set F of O(k log n) facilities F such that Costp(F) ≤ O(1) · Costp(optp(k)) for
all p ≥ 1. If we want this to hold for all Lp norms for integer values of p only, then we need only O(k

√
log n)

facilities. Moreover, we can find these facilities in polynomial time in both cases.

The proof is immediate from Theorems 3.2 and 3.3, and the fact that for any 1 ≤ p < ∞, one can use existing
techniques to get an O(1)-approximation algorithm for minimizing the `p norm ‖C‖p. Indeed, all the approxima-
tion algorithms for the k-median problem cited above have the following additional property—if the underlying
space only satisfies a λ-relaxed triangle-inequality (i.e., the distances satisfy d(x, y) ≤ λ · (d(x, z) + d(y, z)
for the parameter λ ≥ 1), then these algorithms give an O(λ)-approximation algorithm for the k-median prob-
lem. The problem of minimizing the (pth power of) the `p norm of assignment cost can be thought of as the
k-median problem where distance between two points x and y is given by d(x, y)p. Now these distances satisfy
the λ = 2p-relaxed triangle-inequality, and hence we get an [O(2p)]1/p-approximation algorithm for the `p norm.

Kumar and Kleinberg showed that we need to open Ω(k log n) facilities to get an O(1)-AllNorm-approximation.
That proof does not work for the All Lp Norm case; however, we can show the following result.

Theorem 3.5 Given a parameter α, there exists a metric space over n demand points such that if there is a set
of facilities F satisfying

Costp(F) ≤ α · optp(k), for all integer p ≥ 1,

then

|F | ≥ Ω
(

k
(

log n
log(αk)

) 1
3

)
.

In fact, the lower bound holds even for Lp norms with integer p.

It is an interesting open problem if we can open o(k log n) facilities and still be O(1)-competitive against all Lp

norms.

9

4 AllNorm Approximation Algorithms
In the previous sections, we were interested in All Lp Norm approximations, and situations where focusing on Lp

norms (instead of all symmetric norms) would give more nuanced results. In this section, we give results for the
AllNorm case.

For a vector X , define
←−
X as the vector obtained by sorting the coordinates of X in descending order. Given

vectors X and Y of length n each, we say that X is α-submajorized by Y (written as X ≺α Y) if for all i ∈ [n],∑
j≤i

←−
X j ≤ α

∑
j≤i

←−
Y j (i.e., the partial sums of

←−
X are at most α times the partial sums in

←−
Y). Intuitively,

this means that the k unhappiest elements in X are together at most α times worse off than the k unhappiest
elements of Y : we will want to find solutions X which are α-submajorized by any other solution Y (for small
α). The following result is well-known. (One can prove a converse of the above theorem holds true as well; see,
e.g., [GM06] for a discussion.)

Theorem 4.1 Let X and Y be two vectors of equal length, such that X is α-submajorized by Y . Then f(X) ≤
f(α · Y) for all real symmetric convex functions. In particular, if f is a symmetric norm, then f(X) ≤ α f(Y).

4.1 AllNorm Approximation from Partial Covering Algorithms

We now show how solutions for “partial covering” problems can be used to prove submajorization results; these
submajorization results immediately lead to AllNorm approximations for these problems by Theorem 4.1. An
example of a partial covering problem is the k-MST problem, where we seek a tree of minimum cost that spans
at least k nodes; another example is the k-vertex cover problem, where we seek a set of nodes of minimum
size/cost that covers at least k edges. In this paper, we show how an O(1)-approximation to the k-MST problem
naturally gives an O(1)-submajorization result, and sketch how the same ideas can be extended to other partial
cover problems. (The proofs appear in the Appendix C.)

Theorem 4.2 For a TSP instance on a graph G = (V,E), given a tour π, let ti be the time at which the
salesperson reaches vertex vi, and let Tπ = (t1, t2, . . . , tn) be the vector of these arrival times sorted in ascending
order. Then there is a solution where the arrival time vector is α-submajorized by the corresponding vector in
any other solution, where α ≤ 16.

The ideas behind this theorem can be used to show that Set Cover problem admits an O(log n)-AllNorm approx-
imation, Vertex Cover admits an 8-AllNorm approximation, etc. Let us sketch the idea for Vertex Cover: we
first use the fact that k-vertex cover admits a 2-approximation [BB98, Hoc98, BY01, GKS04]. This gives us an
algorithm that given a budget B, finds a solution of cost 2B in poly-time which covers at least as many edges as
any other solution of cost B. Setting the value of B to be successive powers of 2, we can argue that if any other
algorithm covers k elements with cost at most 2i−1, then we would have covered at least k elements with cost at
most 4 · 2i; this gives us an 8-submajorization. See the papers [GKS04, KPS06] for results on partial covering
problems (all of which can be similarly extended).

4.2 AllNorm Algorithms for Flow Time on Parallel Machines

Finally, we consider the problem of scheduling jobs on parallel machines: given a scheduleA, the vector of inter-
est is the vector FA of flow times, where the flow time is the difference between its completion time and release
date—hence, the `1 norm of this vector is the problem of minimizing the average flow time on parallel machines:
see, [CKZ01] and the references therein for several polynomial-time logarithmic-approximation algorithms.

It is known that for any scheduleA, the All Lp Norm-guarantee αALN (FA) is unbounded even if there is only one
machine [BP04]: hence results have been given in the resource augmentation framework by giving our machines
(1 + ε)-speed. In particular, Bansal and Pruhs [BP04], and Chekuri et al. [CGKK04] gave results showing that

10

given any constant ε > 0, we can get an O(1
εO(1))-approximation algorithm for all `p norms. In this paper, we

show that one can extend their results to a submajorization, and hence AllNorm result.

Theorem 4.3 There exists a schedule A such that FA β-submajorizes FB for all schedules B, where β is a
constant (depending only on ε).

While we defer the proof to Appendix C.3, let us mention that the techniques we use are fairly natural, and might
be of interest to translate other All Lp Norm results to the more general AllNorm setting.

References
[AE05] Yossi Azar and Amir Epstein. Convex programming for scheduling unrelated parallel machines. In STOC’05:

Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 331–337, New York, 2005.
ACM.

[AERW04] Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-norm approximation algorithms. J.
Algorithms, 52(2):120–133, 2004.

[AT04] Yossi Azar and Shai Taub. All-norm approximation for scheduling on identical machines. In Algorithm
theory—SWAT 2004, volume 3111 of Lecture Notes in Comput. Sci., pages 298–310. Springer, Berlin, 2004.

[BB98] Nader H. Bshouty and Lynn Burroughs. Massaging a linear programming solution to give a 2-approximation
for a generalization of the vertex cover problem. In STACS 98 (Paris, 1998), volume 1373 of Lecture Notes
in Comput. Sci., pages 298–308. Springer, Berlin, 1998.

[BCC+94] Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan, and Madhu Sudan.
The minimum latency problem. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 163–171. ACM Press, 1994.

[BNBH+98] Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami Tamir. On chromatic
sums and distributed resource allocation. Inform. and Comput., 140(2):183–202, 1998.

[BP03] Nikhil Bansal and Kirk Pruhs. Server scheduling in the Lp norm: a rising tide lifts all boat. In Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 242–250, New York, 2003. ACM.

[BP04] Nikhil Bansal and Kirk Pruhs. Server scheduling in the weighted lp norm. In LATIN 2004: Theoretical
informatics, volume 2976 of Lecture Notes in Comput. Sci., pages 434–443. Springer, Berlin, 2004.

[BY01] Reuven Bar-Yehuda. Using homogeneous weights for approximating the partial cover problem. J. Algorithms,
39(2):137–144, 2001.

[CFK03] Edith Cohen, Amos Fiat, and Haim Kaplan. Efficient sequences of trials. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pages 737–746, New York,
2003. ACM.

[CGKK04] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor scheduling to minimize
flow time with ε resource augmentation. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pages 363–372, New York, 2004. ACM.

[CGRT03] Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees and minimizing latency
tours. In Proceedings of the 44th Symposium on the Foundations of Computer Science (FOCS), pages 36–45,
2003.

[Chv79] V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235, 1979.

[CKZ01] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow time. In Proceed-
ings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pages 84–93 (electronic), New
York, 2001. ACM.

11

[Fei98] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.

[FLT04] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorithmica, 40(4):219–
234, 2004.

[Gar05] Naveen Garg. Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages
396–402, 2005.

[GKS04] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial covering prob-
lems. J. Algorithms, 53(1):55–84, 2004.

[GM06] Ashish Goel and Adam Meyerson. Simultaneous optimization via approximate majorization for concave
profits or convex costs. Algorithmica, 44(4):301–323, 2006.

[GMP01] Ashish Goel, Adam Meyerson, and Serge Plotkin. Combining fairness with throughput: online routing with
multiple objectives. J. Comput. System Sci., 63(1):62–79, 2001.

[HLP88] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, 1988. Reprint of the 1952 edition.

[Hoc98] Dorit S. Hochbaum. The t-vertex cover problem: extending the half integrality framework with budget
constraints. In Approximation algorithms for combinatorial optimization (Aalborg, 1998), volume 1444 of
Lecture Notes in Comput. Sci., pages 111–122. Springer, Berlin, 1998.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci., 9:256–278,
1974.

[KK00] Amit Kumar and Jon Kleinberg. Fairness measures for resource allocation. In 41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000), pages 75–85. IEEE Comput. Soc. Press, Los
Alamitos, CA, 2000.

[KPS06] Jochen Könemann, Ojas Parekh, and Danny Segev. A unified approach to approximating partial covering
problems. In Algorithms—ESA ’06 (Zurich), page to appear. Springer, Berlin, 2006.

[KRT01] Jon Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and load balancing. J. Comput. System Sci.,
63(1):2–20, 2001. Special issue on internet algorithms.

[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math., 13(4):383–390, 1975.

[MBMW05] Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. The pipelined set cover problem.
In Database theory—ICDT 2005, volume 3363 of Lecture Notes in Comput. Sci., pages 83–98. Springer,
Berlin, 2005.

[NW81] G. L. Nemhauser and L. A. Wolsey. Maximizing submodular set functions: formulations and analysis of
algorithms. In Studies on graphs and discrete programming (Brussels, 1979), volume 11 of Ann. Discrete
Math., pages 279–301. North-Holland, Amsterdam, 1981.

[Sla97] Petr Slavı́k. A tight analysis of the greedy algorithm for set cover. J. Algorithms, 25(2):237–254, 1997.

[Sri99] Aravind Srinivasan. Improved approximation guarantees for packing and covering integer programs. SIAM
J. Comput., 29(2):648–670, 1999.

[Ste04] J. Michael Steele. The Cauchy-Schwarz master class. MAA Problem Books Series. Mathematical Association
of America, Washington, DC, 2004. An introduction to the art of mathematical inequalities.

12

A Proofs from Section 2

We provide an example for which the greedy algorithm is an Ω(p) approximation.

Theorem A.1 (Lower Bound for Greedy) There is a set system on which greedy yields an Ω(p) approximation.

A1

A2

B1 B2

Figure 2: An example that greedy gives an Ω(p) approximation.

Proof: Consider a set system with 2 · 2n elements. The elements are arranged in two rows, each with 2n

elements. There are two types of sets A and B. As shown in Figure 2, A1 and A2 cover the top and the bottom
rows, respectively. For i = 1, 2, . . . , n + 1, each Bi covers 2n−i+1 elements with the exception of Bn+1 which
covers 2 elements. These Bi’s are arranged from left to right as shown in the figure.

Let p be given. For sufficiently large n, the optimal algorithm picks A1 and A2, which incur a cost of [2n(1 +
2p)]1/p. It is easy to see that the greedy algorithm (out of back luck) may pick all the Bi’s. Therefore,

(greedy/opt)p =
∑n

i=1 ip · 2n+1−i + (n + 1)p · 2n+1−n

2n(1 + 2p)
≥ 2

1 + 2p

n+1∑
i=1

ip

2i

≥ 1
2p

pp

2p
= pp · 2−p−1.

We conclude that greedy/opt = Ω(p). �

A.1 Submodular Set-Cover

We prove Lemma 2.8 here for completeness:

Lemma A.2 (Upper-bound on Submodular-Greedy Cost)

greedyp ≤ (greedy′)p def=
m∑

i=1

(
p · c(xi)

R̃i

X̃i

)p

· X̃i.

Proof: Let Ai =
(
p · c(xi) R̃i

X̃i

)p
· X̃i be the ith term in the summation above. Taking the ith terms of the

summation in the definition of greedy’s cost, and raising them to the pth powers, define Bi = (sp
i − sp

i−1) R̃i and
Ci = sp

i X̃i. It follows from Fact 1.1 that

1
p

Ai +
p− 1

p
Ci ≥ A

1/p
i C

(p−1)/p
i = p · c(xi) · sp−1

i R̃i ≥ Bi.

The last inequality follows from Fact 1.2 and the observation that c(xi) = si− si−1. Now, rearranging terms, we
get that Ai ≥ p Bi − (p− 1) Ci; summing this over all i and noting that

∑
i Bi =

∑
i Ci = greedyp, we get that

∑
i

(
p · c(π(i))

R̃A
i

X̃A
i

)p

· X̃A
i =

∑
i

Ai ≥ p
∑

i

Bi − (p− 1)
∑

i

Ci = greedyp,

13

which completes the proof. �

Now we prove Theorem 2.10.

Theorem A.3 (Submodular Lp Approximation Guarantee) The greedy algorithm gives a p · (1 + p)1/p(1 +
1/p) ≤ 4p-approximation for the submodular Lp SC problem.

Proof: The proof is similar in spirit to the proof of Theorem 2.2. We recall that greedy and opt denote the costs
of greedy and the optimal algorithm, respectively. The diagram below, which we call the optp curve, graphically
represents the cost of the optimal algorithm.

f (x̂∗

1
) f (x̂∗

2
) f (x̂∗

3
) f (V)· · ·

s∗
1

p

s∗
2

p

s∗
3

p

s∗
4

p

Area = optp.

Figure 3: The optp curve representing the cost of the optimal algorithm.

We also model the cost of the greedy solution graphically. The figure below has m (unequal) columns corre-
sponding to each element of the universe V . The i-th group has height [p · c(xi)R̃i/X̃i]p. The area under this
curve is (greedy′)p.

f (x̂1) f (x̂2) f (x̂3) f (V)· · ·

Area = (greedy′)p ≥ greedyp.

Figure 4: The greedy′p curve, which upper bounds the cost of the greedy solution.

We will now show that the area of the greedy curve is at most pp(1 + p)(1 + 1/p)p times the area of the optimal
curve. To prove this, we scale the greedy curve down by [p(1 + 1/p)]p vertically and by 1 + p horizontally.
Then, we place this scaled curve so that its bottom-right is aligned with the bottom-right of the optp curve.
Consider a point q = (x, y) on the original greedy′p curve. Suppose the point q corresponds to the element xi, so
y ≤ [p · c(xi)R̃i/X̃i]p. Also the distance to q from the right side is at most R̃i. Therefore, the height of the point

14

q after scaling, which we denote by h, is at most(
1

1 + 1/p
· R̃i

X̃i/c(xi)

)p

,

and the distance from the right (after scaling), denoted by r, is at most R̃i/(1 + p).

To show that a point q of the scaled price curve lies within the optp curve, we use the result of Lemma 2.9 and
note that

R̃∗
t = f(V)− f(x̂∗t) = fx̂i

(V)− [f(x̂∗t)− f(x̂i)]
≥ fx̂i

(V)− [f(x̂∗t ∪ x̂i)− f(x̂i)]
= fx̂i

(V)− fx̂i
(x̂∗t)

≥ R̃i −
1

1 + 1/p
R̃i =

R̃i

1 + p
.

Since R̃i/(1 + p) ≥ r, this implies that q (after scaling) lies within the optp curve, and hence the scaled-down
version of the greedy curve is completely contained within the optimal curve. Quantitatively, this implies that
greedyp ≤ (1 + p)[p(1 + 1/p)]p optp, which completes the proof. �

A.2 Pipelined Set-Cover

Theorem A.4 (Pipelined Set-Cover Approxmation Guarantee) The (same) greedy algorithm gives a (1+1/p)·
(1 + p)1/p-approximation for the Lp pipelined set-cover problem.

Proof: The proof is similar to our Lp set cover proof. Consider Figure 5, which we call the histogram. The
vertical axis represents the cover time. The horizontal axis consists of np columns, exactly |R∗

i |p − |R∗
i+1|p of

which have height si. The columns are arranged in an increasing order of height, as shown in the figure. Note
also that there are |R∗

i | columns with height at least i. By definition, the area under this curve represents the cost
of the optimal algorithm.

s1

s2

s3

sn

...

|R∗
1|p

|R∗
2|p

Figure 5: Histogram for the pipelined set cover problem.

We now construct a price curve, which represents the cost of the greedy algorithm. The price diagram has a similar
horizontal structure as the histogram: it has np columns with exactly |Ri|p − |Ri+1|p columns in group i. These

15

columns are ordered from left to right in an increasing order of i. The i-th group has height pi = si·|Ri|p
|Ri|p−|Ri+1|p . It

can be easily shown that pi ≤ si · |Ri|/|Xi| and
∑

pi is the cost of the greedy algorithm.

To finish the proof, we will scale down the price curve and show that it can fit inside the histogram. Let γ =
1/(p+1). Scale the price curve down by γ horizontally and (1−γ)p vertically. We will fit the scaled price curve
by aligning it to the bottom-right of the histogram. Consider a point p in the i-th part of the price function. If p
has height h originally, then h ≤ pi ≤ si|Ri|/|Xi|. In the scaled version, this corresponds to the time t = γ · h
in the optimal algorithm. In the scaled version also, the point p is at most (1− γ)p|Ri| from the right.

It is a property of the greedy algorithm that it covers the most fraction of Ri (using Xi); therefore, at time t = γ ·h,
the optimal algorithm could have covered—among the elements of Ri—at most |Xi| · γ|Ri|/|Xi| = γ|Ri|
elements. Since the horizontal axis is the p-power of the number of remaining elements, the distance from the
right in the histogram at height t is at least (1 − γ)p|Ri|p, which shows that p lies within the histogram. Hence,
the approximation ratio is ([1− γ]pγ)−1/p =

(
1 + 1

p

)
(1 + p)1/p. �

A.3 Proof of the Set-Cover Structural Lemma

Lemma A.5 (Set Cover Structure Theorem) Consider the run of the greedy algorithm at time k, and suppose
|Rk| ∈ (n

2i ,
n

2i−1] for some integer i. Fix any increasing function of x, denoted by F (x), and let α be a parameter
which is Θ(log F (log n)). Then one of the following holds:

(i) At time τ = k
α·i , there are at least F (i)·n

2i remaining elements in R∗
τ .

(ii) At time τ ′ = k
α , there are at least n

2i+1 remaining elements in R∗
τ ′ .

Proof: The proof proceeds by assuming that neither of the two events happen, and yield a contradiction by
inferring that |Rk| ≤ n

2i .

First, observe that the elements in U\R∗
τ are covered by τ sets in the optimal solution. Hence, if we run the greedy

algorithm until we pick τ ′ = i · τ sets, Fact C.1 implies that we will have covered at least (|U \R∗
τ |)× (1− 2−i)

elements from U . Hence the set Rτ ′ must have at most |R∗
τ | + 2−i|U \ R∗

τ |. By the assumption of the proof,
|R∗

τ | ≤
F (i)·n

2i . Also, |U \R∗
τ | ≤ |U | = n, and hence the number of elements in Rτ ′ satisfies

|Rτ ′ | ≤ F (i)·n
2i + n

2i = (F (i)+1)·n
2i

Similarly, we know that the optimal solution covers the elements of U−R∗
τ ′ , (and hence the elements of Rτ ′−R∗

τ ′)
using τ ′ sets. Hence, applying Fact C.1 α − 1 times, we get that by time α · τ ′ = k, greedy would have at most
|R∗

τ ′ |+ |Rτ ′ −R∗
τ ′ |2−α+1 ≤ |R∗

τ ′ |+ |Rτ ′ |2−α+1 elements remaining, and thus the number of elements in Rk is
at most

n

2i+1
+

(F (i) + 1) · n
2i

× 1
2α−1

≤ n

2i

(
1
2

+
2(F (i) + 1)

2α

)
. (A.4)

Setting α = Θ(1) + log F (log n) would make 2α ≥ 4(F (log n) + 1) ≥ 4(F (i) + 1) and the expression in (A.4)
at most n/2i, which would contradict the choice of i, completing the proof. �

B Proofs from Section 3

B.1 Proofs on Sampling Lp Norms

Theorem B.1 Given a minimization problem whose objective function is the Lp norm of some cost vector, and
an α-sampling S of D ⊆ R≥1 ∪ {∞}, then a cost vector C that is a simultaneous β-approximation for the class
{Lp | p ∈ S} is a simultaneous αβ-approximation for the class {Lp | p ∈ D}.

16

Proof: Let C be the cost vector induced by our β-approximation for the class {Lp | p ∈ S}, and let C∗
p be the

optimal feasible vector for the Lp norm. Fix any q ∈ D and note that for all p ∈ S, ‖C‖p ≤ β·‖C∗
p‖p ≤ β·‖C∗

q‖p,
since C∗

p is superior to C∗
q with respect to ‖·‖p. Using the α-sampling property with X = 1

βC and Y = C∗
q

yields ‖ 1
βC‖q ≤ α‖C∗

q‖q. Thus ‖C‖q ≤ αβ‖C∗
q‖q. �

To prove the result on O(1)-samplings, let us first give an upper bound on the size.

Theorem B.2 (Upper Bound) There exists an O(1)-sampling Sreals of the domain Dreals = R≥1∪{∞} of order
n with size |S| = O(log n). Moreover, there is an O(1)-sampling Sints of the domain Dints of order n with size
O(
√

log n).

Proof: Note that for all p, q such that 1 ≤ p ≤ q

‖X‖q ≤ ‖X‖p ≤ n
(1

p
− 1

q
)‖X‖q (B.5)

and n1/ log n = O(1). With these facts in mind, we define Sreals := { ln(n)
k | 1 ≤ k ≤ ln(n)} and Sints :=

{1, 2, . . . ,
√

ln(n)} ∪ { ln(n)
k | 1 ≤ k ≤

√
ln(n)}. We now prove that Sreals is an e-sampling of Dreals. (We

omit the proof for Sints, which is nearly identical). Fix q ≥ 1, and note that there exists p ∈ Sreals such that
0 ≤ 1

p −
1
q ≤

1
ln(n) . Specifically, if q ≥ ln(n), then use p = ln(n), and if q ∈

[
ln(n)

k , ln(n)
k−1

]
for some k ∈

{2, 3, . . . , ln(n)}, then use p = ln(n)
k . Now fix any X, Y ∈ Rn

≥0 such that ‖X‖p ≤ ‖Y ‖p. Since ‖X‖q ≤ ‖X‖p
and ‖Y ‖p ≤ n

(1
p
− 1

q
)‖Y ‖q ≤ e · ‖Y ‖q by equation (B.5), we conclude that ‖X‖q ≤ e · ‖Y ‖q. �

We now prove lower bounds on the size of O(1)-samplings. Suppose we wanted that for every vector X and
every value p, there is a norm ‖ · ‖q in our sample such that ‖X‖q ≈ ‖X‖p, it is easy to see that Ω(log n) norms
are required. The lower bound proofs are more complicated because the notion of α-sampling is weaker than the
notion of distance-preservation.

Theorem B.3 (Lower Bound) Every O(1)-sampling of D = R≥1 ∪ {∞} of order n has size |S| = Ω(log n).
Moreover, every O(1)-sampling of D = Z≥1 ∪ {∞} of order n has size |S| = Ω(

√
log n).

The proof of Theorem B.3 requires the following technical lemma.

Lemma B.4 For all a, b such that 1 ≤ a < b ≤ 2a, there exist X, Y ∈ Rn
≥0 such that for all p ∈ R≥0 ∪ {∞} −

(a, b), ‖X‖p ≤ ‖Y ‖p and there exists q ∈ (a, b) such that ‖X‖q = Ω(n
1
12
· b−a

ab) · ‖Y ‖q.

Proof: Let D := R≥0 ∪ {∞}. We exhibit vectors X, Y such that ‖X‖p = O(‖Y ‖p) for all p ∈ D − (a, b),
and a value q ∈ (a, b) such that (‖X‖q)q ≥ n(b−a)/12a(‖Y ‖q)q. Given such a pair of vectors, we can scale X
down by O(1) to obtain X ′, Y such that ‖X ′‖p ≤ ‖Y ‖p for all p ∈ D − (a, b), and since q ≤ b, ‖X ′‖q ≥
Ω(n(b−a)/12aq)‖Y ‖q ≥ Ω(n(b−a)/12ab)‖Y ‖q.

To define the vectors, we will need to define some values. First, fix a, b such that 1 ≤ a < b ≤ 2a. Let b = a+∆.

δ := ∆/a b = a + ∆ = a(1 + δ)

r := 1
a −

∆
4a2 = 1

a(1− δ/4) s := 1
a −

3∆
4a2 = 1

a(1− 3δ/4)

q := a + ∆
2 = a(1 + δ/2) 1

q ≈
1
a −

∆
2a2

The vectors are as follows: X = (X1, . . . , Xn) is defined by Xk = k−s for 1 ≤ k ≤ τ , where τ is to be
determined later, and Xk = 0 otherwise. Y = (Y1, . . . , Yn) is defined by Yk = k−r for 1 ≤ k ≤ n. Note

1/b < s < 1/q < r < 1/a

17

First, we set τ to ensure ‖X‖p = O(‖Y ‖p) for all p ∈ [1, a]. Since ps, pr < 1

‖X‖pp =
τ∑

k=1

k−ps ≈ τ1−ps

1− ps

‖Y ‖pp =
n∑

k=1

k−pr ≈ n1−pr

1− pr

Thus if

τ = min
p∈[1,a]

(1− ps

1− pr
· n1−pr

) 1
1−ps

then ‖X‖p = O(‖Y ‖p) for all p ∈ [1, a]. Since s < r, 1−ps
1−pr ≥ 1. As for the exponent of n, (1− pr)/(1− ps) is

minimized in the range [1, a] at p = a and we conclude that

τ ≥ n(1−ar)/(1−as) = n1/3

(since 1− ar = δ/4 and 1− as = 3δ/4).

Next, we check that ‖X‖p = O(‖Y ‖p) for all p ∈ [b,∞). In this case, ps ≥ bs > 1, and similarly pr > 1.

‖X‖pp =
τ∑

k=1

k−ps ≈ 1
ps− 1

‖Y ‖pp =
n∑

k=1

k−pr ≈ 1
pr − 1

So we must prove that ‖X‖p/‖Y ‖p ≈ pr−1
ps−1 = O(1) for all p ≥ b. It is easy to see that this is the case, since it is

upper bounded by max{ br−1
bs−1 , r/s}. Clearly, r/s < b/a ≤ 2, and br−1

bs−1 ≈
3δ/4
δ/4 = 3.

Now, we are ready to compute ‖X‖qq/‖Y ‖qq. Note s < 1/q < r, and thus qs < 1 < qr

‖X‖qq =
τ∑

k=1

k−qs ≈ τ1−qs

1− qs

‖Y ‖qq =
n∑

k=1

k−qr ≈ 1
qr − 1

‖X‖qq
‖Y ‖qq

≈ qr − 1
1− qs

· τ1−qs ≈ δ/2
δ/4
· τ δ/4 = 2τ∆/4a > n∆/12a = n(b−a)/12a

Taking the qth root and noting that n(b−a)/12aq ≥ n(b−a)/12ab completes the proof. �

We can now prove the lower bound for integer norms.

Theorem B.5 (Lower Bound for Integer Norms) Every O(1)-sampling of D = Z≥1∪{∞} of order n has size
|S| = Ω(

√
log n).

Proof: Suppose S is an α-sampling, and let
√

lnn ≤ a < b ≤ 2
√

lnn. By Lemma B.4, there exist X, Y ∈ Rn
≥0

such that for all p ∈ Z≥0 ∪ {∞} − (a, b), ‖X‖p ≤ ‖Y ‖p and there exists q ∈ (a, b) such that ‖X‖q =
cn

1
12
· b−a

ab · ‖Y ‖q for some constant c. Thus, cn
1
12
· b−a

ab ≤ α implies (b − a) ln n ≤ 12ab ln(α/c), and thus
b − a ≤ 48 ln(α/c). It follows that every subinterval of [

√
lnn, 2

√
lnn] of length greater than 48 ln(α/c) must

have an element of S in it, and thus |S ∩ [
√

lnn, 2
√

lnn]| ≥
√

ln n
48 ln(α/c) − 1 = Ω(

√
lnn). �

18

Theorem B.6 (Lower Bound for General Lp Norms) Every O(1)-sampling of D = R≥1∪{∞} of order n has
size |S| = Ω(log n).

Proof: Let S be an O(1)-sampling of D = R≥1 ∪ {∞} of order n. We prove that S must contain Ω(log n)
values in the interval [1, 2]. More precisely, we show that S must contain a point in every interval [a, b] with
(b− a) < c/ log n for some constant c depending on α, where 1 ≤ a < b ≤ 2.

By Lemma B.4, for all 1 ≤ a < b ≤ 2, there exist X, Y ∈ Rn
≥0 such that for all p ∈ R≥0∪{∞}−(a, b), ‖X‖p ≤

‖Y ‖p and there exists q ∈ (a, b) such that ‖X‖q = Ω(n
1
12
· b−a

ab) · ‖Y ‖q. Since a, b ≤ 2, ‖X‖q = Ω(n
b−a
48) · ‖Y ‖q.

Suppose S is an α-sampling, and ‖X‖q = c · n
b−a
48 · ‖Y ‖q. Then c · n

b−a
48 ≤ α, and thus b − a ≤ 48 ln(α/c)

ln n . It
follows that every subinterval of [1, 2] of length greater than 48 ln(α/c)

ln n must have an element of S in it, and thus
|S ∩ [1, 2]| ≥ ln n

48 ln(α/c) − 1 = Ω(lnn). �

B.2 Proofs For Facility Location Problems

Proof of Theorem 3.5: Fix the parameter α. The metric space contains a special point, the origin O. The metric
space has r groups Gi, each group Gi has k clusters, and each cluster in Gi has Ni points. (We will refer to a
generic cluster in Gi as Ci.) The points within each cluster are at distance zero from each other, points in a cluster
Ci are at distance Di from the origin O, and points in two different clusters Ci and Cj are at distance Di + Dj

from each other. (I.e., distance between any two points in different clusters is the sum of their distances to O).

It remains to set the parameters r, Ni and Di. It is useful to think of N1 � N2 � · · · � Nr and D1 � · · · �
Dr). The goal is to show that any solution optp(k + 1) (where p is an integer between 1 and r) must open one
facility inside each cluster in Gp. (Note the slight change from k to k + 1.) Moreover, if we do not open a
facility in some cluster of Gp, the cost incurred will be enormous. Hence, if F is a set of facilities satisfying
Costp(F) ≤ α · optp(k + 1) for all values of p, then F must have a facility inside each cluster and so |F | ≥ kr.

More formally, we wish to set parameters such that for every integer p, 1 ≤ p ≤ r, the following inequality holds:

Np ·Dp
p ≥ αp · k ·

∑
i:1≤i≤r,i6=p NiD

p
i . (B.6)

Indeed, if F is a set of facilities as in the statement of the theorem, then the left hand side of the inequality is a
lower bound on Costp(F)p if there is a cluster Cp in Gp such that F does not contain a facility inside Cp. The
right hand side is an upper bound on (α · optp(k + 1))p, because the Lp-norm cost of a solution which opens a
facility at O and one at each cluster in Gp is at most the pth root of k ·

∑
i:1≤i≤r,i6=p NiD

p
i . So if our parameters

satisfy (B.6) and F does not open a facility in Cp, we get Costp(F) ≥ α ·optp(k), which violates our assumption
about F .

The rest of the proof is just finding the right values for Ni and Di. Let ∆ .= α · k, and define Di = ∆di and
Ni = ∆ni , where di = 2(i − 1)y, ni = x − (i2 − 1)y, and x and y are parameters such that di and ni are
positive for i = 1, . . . , p. It is routine to check that the inequalities in (B.6) are satisfied if we take y ≥ r—the
key observation is that NiD

p
i is maximized for i = p, and forms a geometric series for i = 1, . . . , p − 1 and for

i = p + 1, . . . , r. Finally, we can set y = r, x = r3; the resulting number of nodes is about N1 which is ∆r3
.

Thus, r is Ω
(

log n
log(αk)

) 1
3 . �

C Proofs from Section 4

C.1 AllNorm Approximation for Set Cover

We shall show that the greedy algorithm has many nice properties. Let us develop some notation first. Let O
be some algorithm for set cover and O1, O2, . . . denote the sets chosen by O; let O be the resulting vector of

19

coverage times. Let A be the greedy algorithm, A1, A2, . . . denote the sets chosen by A, and A be the coverage
times for A. (Hence the element ej ∈ U is covered at time Oj and Aj in O and A respectively.) We shall use
the term “time t” (in O or A) to denote the instant at which exactly t sets have been chosen in the corresponding
algorithm. We shall say that an element is waiting, uncovered or remaining at an instant (in O or A) if it has not
been covered yet. We shall use the following easy to prove (and well-known) fact about the greedy algorithm
[NW81].

Fact C.1 Suppose there is a subset F ⊆ U of elements which are all waiting at time t in A. (Note that there
might be other elements from U \F waiting at time t as well.) If there are ` sets which can cover all the elements
in F , then the sets At+1, . . . , At+` chosen by the greedy algorithm cover at least |F |/2 elements from U (which
do not necessarily belong to F).

One can improve the constant 1/2 in the above statement, but this will suffice for our analysis. We use the above
fact to prove the following simple result.

Theorem C.2 (AllNorm Set Cover) The AllNorm approximation ratio of the greedy algorithm is αAN (A) =
O(log n).

Proof: Consider the solution A for greedy and the solution O for any other algorithm O, and
←−
A and

←−
O be these

vectors sorted in non-ascending order. If the kth coordinate of
←−
O is t, then at least n− k + 1 elements of U are

covered by t sets. Using Fact C.1, we can infer that the greedy algorithm will cover at least n − k + 1 elements
of U in at most t log(n− k + 1) ≤ t log n sets, and hence the kth coordinate of

←−
A is at most t log n. Using this,

we can easily infer that A is log n-submajorized by O. Finally, using Theorem 4.1 we get that the performance
of A under any symmetric norm is at most log n times the performance of any other algorithm O. �

C.2 AllNorm Algorithms from Partial Covering Results

In this section, we will show how solutions for so-called “partial covering” problems can be used to prove sub-
majorization results; by Theorem 4.1, these submajorization results immediately lead to AllNorm approximations
for these problems. A partial covering problem is one like k-MST where we have to find a good tree that spans
at least k nodes, or k-vertex cover where we find a set of nodes that covers at least k edges. In the following, we
will show how an O(1)-approximation to the k-MST problem naturally gives an O(1)-submajorization result;
we will then sketch how the same ideas can be extended to other partial cover problems.

AllNorm TSP. Consider the TSP problem on a graph G = (V,E). Given a tour π, let ti be the time at which the
salesperson reaches vertex vi; let Tπ = (t1, t2, . . . , tn) be the vector of these service times sorted in ascending
order.

Theorem C.3 There is a solution for the TSP problem where the vector of arrival times at each vertex is α-
submajorized by the corresponding vector in any other solution, where α ≤ 16.

This theorem can be derived from the well-known simple and elegant techniques of Blum et al. [BCC+94], and
we give the proof here only for completeness.

Proof: Consider the scheme of Blum et al. [BCC+94], which does the following. For each i = 0, 1, 2, . . ., it
wants to find a set of unvisited vertices of maximum size that can be reached with a tour (that returns to the
starting point) of length at most 2i. (The actions done for any fixed value of i are said to occur in phase-i.) Since
this is an NP-hard problem, we find a tour τi of length c2i (for some suitable constant c) which visits as many
previously-unvisited vertices as the best walk of length at most 2i. (Note that we want a tour that returns to the
origin, whereas we compare ourselves to a walk that need not do so.) We then perform the tour τi, increment i
and iterate until there are no more vertices to visit. For any tour π, we show the above tour α-submajorizes π.

20

The crucial claim is that if the kth vertex vπ(k) in π is visited at time in (2i−1, 2i], then we visit the kth vertex in
our algorithm at or before phase-i. Indeed, suppose we have visited only k′ < k vertices by phase-i − 1. The
unvisited vertices vπ(1), vπ(2), . . . , vπ(k) (of which there are at least k − k′) can be visited by a walk of length at
most 2i, and hence the tour τi we find must visit at least k − k′ vertices, causing at least k vertices to be visited
by the end of phase-i. The total cost incurred by the end of phase-i is

∑
j≤i c2

i < 2c 2i. Hence the kth-smallest
visit time in π is at least 2i−1, whereas the kth-smallest visit time in our tour is at most 2c 2i = 4c 2i−1, giving us
α = 4c. Below, we give a subroutine with c = 4, hence giving us α = 4c = 16.

Finally, it remains to show how find the claimed approximate tour τi with c = 4: we use an algorithm of
Garg [Gar05] for the k-MST problem, which given a number k, finds a tree Tk spanning k vertices, whose cost
is within a factor of 2 of optimum. If we run this algorithm for each value of k, take the highest value of k for
which the cost of Tk does not exceed 2i+1, and output an Euler tour of this tree Tk∗ , we will have a tour τi of
length at most 4 · 2i that visits k∗ nodes (i.e., c = 4). We claim that the number of nodes visited by any walk
of length at most 2i is at most k∗: indeed, if any walk of length 2i could visit k∗ + 1 nodes, this walk would be
a valid (k∗ + 1)-MST solution of cost 2i, and the 2-approximate (k∗ + 1)-MST algorithm would have given a
solution of cost at most 2i+1, contradicting the choice of k∗. �

Applying Theorem 4.1, we see that we get a solution vector Tπ such that αAN (Tπ) is a constant. The constant 16
is not the best constant possible (see Chaudhuri et al. [CGRT03] and the references therein); indeed, this proof is
given more as a “proof of concept”, and we defer the optimizations to the final version.

Extensions to other Partial Covering Problems. To use a similar idea for, say, vertex cover, we first use the
fact that k-vertex cover admits a 2-approximation [BB98, Hoc98, BY01, GKS04]. This gives us an algorithm
that given a budget B, finds a solution of cost 2B in poly-time which covers at least as many edges as any other
solution of cost B. Setting the value of B to be successive powers of 2, we can use an argument identical to the one
above to show that if any other algorithm covers k elements with cost at most 2i−1, then we would have covered
at least k elements with cost at most 4 · 2i; this gives us an 8-submajorization. See the papers [GKS04, KPS06]
for results on partial covering problems (all of which can be similarly extended).

C.3 AllNorm Algorithms for Flow Time on Parallel Machines

In this section, we consider the problem of scheduling jobs over parallel machines. We are given a set of m
identical machines. Jobs arrive over time. Let ri denote the release date of job Ji and pi its processing require-
ment. A schedule A specifies for each machine i and time t, the job which gets processed on this machine at
time t. Given a schedule, define the flow-time of a job as the difference between its completion time and release
date. With each schedule A, we associate the vector FA of flow-times of jobs sorted in ascending order. The `1

norm of this vector is the well-known problem of minimizing the average flow time on parallel machines. Several
polynomial-time logarithmic-approximation algorithms for this problem are known (see, e.g., [CKZ01] and the
references therein).

However, it is known that for any scheduleA, αALN (FA) is unbounded even if there is only one machine [BP04].
As is standard in such situations, we address this problem by giving our machines (1 + ε)-speed where ε is an
arbitrary small constant. Bansal and Pruhs [BP04] showed that in the case of single machine, given any constant
ε > 0, we can get an O(1

εO(1))-approximation algorithm for all `p norms. Chekuri et al. [CGKK04] extended this
result to multiple identical machines. We now prove this result for all norms.

For the rest of the discussion, A shall be used to denote schedules where speed of each machine is 1 + ε, while
B will denote schedules where speed of each machine is 1. We prove the following theorem.

Theorem C.4 There exists a schedule A such that FA β-submajorizes FB for all schedules B, where β is a
constant (depending only on ε).

21

Note that such a theorem clearly implies that αAN (FA) is a constant. First, let us mention the basic fact we use
to prove this result.

Fact C.5 A vector A β-submajorizes a vector B if and only if∑
i(Ai − z)+ ≤

∑
i(βBi − z)+

holds for all values of z. Here, (x)+ is defined as max{0, x}.

Proof of Theorem C.4: Consider the arguments in the paper of Bansal and Pruhs [BP04], and in the paper of
Chekuri et al [CGKK04]. They both define the age of a job Ji at time t to be (t− ri), where ri is the release time
of the job. If pi is the processing time of the job, then for a fixed parameter α a job is called mature if its age is
at least α pi, and immature otherwise.

The arguments in both papers go as follows: consider any other schedule B. Given any time t, each job Ji that is
in A’s queue, but not in B’s queue is either immature, or it can be mapped to a job in B’s queue that has an age
of at least ε′(t− ri). Furthermore, this map is at most 2/ε′′ to 1: i.e., at most 2/ε′′ jobs in the algorithm’s queue
can be mapped to a job in OPT’s queue.

Let us call this map ft. It will be convenient to view this as a single (partial) map that takes two arguments, a job
Ji and a time t, and maps the tuple (Ji, t) to a tuple (J(i,t)∗ , t); here the job J(i,t)∗ lies in B’s queue also at time
t, provided the job Ji is in A’s queue at time t, and is immature. (Furthermore, this map f is at most 2/ε′′-to-1.

Let FA = (a1, a2, . . . , an) be the vector of flow times of vectors according to the algorithm A sorted in non-
increasing order; let the jobs be renumbered so that Ji is the job with flow time ai. Let B be any vector of flow
times (sorted in non-increasing order). Define FB = (b1, . . . , bn) similarly. We will use Fact C.5 to prove the
submajorization result.

Let us fix a value of z, and look at any job that contributes to
∑

i(ai − z)+. Each time slot (Ji, t) of this
contribution is either mature or it is not. Note that the fact that this slot is contributing implies that (t− ri) > z.
If it is mature, then (Ji, t) 7→ (J(i,t)∗ , t) such that the age of J(i,t)∗ at time t is at least ε′(t − ri) > ε′ z. And
hence the slot (J(i,t)∗ , t) would contribute to the sum

∑
i((1/ε′)bi − z)+. However, since the map is 2/ε′′ to 1,

the contribution should be scaled down by a factor of at most ε′′/2, and thus the contributions of the mature slots
to
∑

i(ai − z)+ is at most

(2/ε′′)×
∑

i((1/ε′)bi − z)+ ≤
∑

i (((2/(ε′ × ε′′))× bi − z)+ . (C.7)

On the other hand, if the slot (Ji, t) contributes to
∑

i(ai − z)+ but is not mature, then z < (t − ri) ≤ αpi.
Hence the contribution of the immature slots to

∑
i(ai − z)+ is

∑
i(α pi − z)+. However, since the flow time of

each job Ji in B is at least pi, it follows that the contribution for the immature jobs is bounded by
∑

i(α bi− z)+.
Combining these two expressions together, we get that∑

i(ai − z)+ ≤
∑

i(β bi − z)+,

where β = (2/(ε′ε′′) + α). �

22

	Introduction
	Overview of Our Results.
	Preliminaries and Notation

	The Lp Set Cover Problem
	An Upper Bound for the Greedy Algorithm
	A Matching Hardness Result for Lp Set Cover
	Extending to Lp Submodular Set Cover
	The Pipelined Set Cover Problem
	A structural lemma for the Greedy Algorithm

	All Lp Norm Approximations via Sampling Minkowski Norms
	All Lp Norm Approximations for Facility Location Problems

	AllNorm Approximation Algorithms
	AllNorm Approximation from Partial Covering Algorithms
	AllNorm Algorithms for Flow Time on Parallel Machines

	Proofs from [Section]sec:set-cover
	Submodular Set-Cover
	Pipelined Set-Cover
	Proof of the Set-Cover Structural Lemma

	Proofs from [Section]sec:sample-norms
	Proofs on Sampling Lp Norms
	Proofs For Facility Location Problems

	Proofs from Section 4
	AllNorm Approximation for Set Cover
	AllNorm Algorithms from Partial Covering Results
	AllNorm Algorithms for Flow Time on Parallel Machines

