Improving Mobile Database Access
Over Wide-Area Networks Without
Degrading Consistency

Niraj Tolia*, M. Satyanarayanan, and Adam Wolbach

January 2007
CMU-CS-07-100

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

*Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

This research was supported by the National Science Foundation (NSF) under grant number CCR-0205266. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or Carnegie Mellon University. All unidentified trademarks mentioned in the
paper are properties of their respective owners.

Keywords: Content Addressable Storage, Mobile Databases, Wide Area Networks, Replicas,
Bandwidth Optimization

Abstract

We report on the design, implementation, and validation of a system called Cedar that enables mo-
bile database access with good performance over low-bandwidth networks. This is accomplished
without degrading consistency. Cedar exploits the disk storage and processing power of a mobile
client to compensate for weak connectivity. Its central organizing principle is that even a stale
client replica can be used to reduce data transmission volume from a database server. The reduc-
tion is achieved by using content addressable storage to discover and elide commonality between
client and server results. This organizing principle allows Cedar to use an optimistic approach to
solving the difficult problem of database replica control. For read-write workloads, our experi-
ments show that Cedar improves throughput by 39% to as much as 224% while reducing response
time by 28% to as much as 79%.

1 Introduction

Relational databases lie at the core of many business processes such as inventory control, order
entry, customer relationship management, asset tracking, and resource scheduling. A key contrib-
utor to this success is a database’s ability to provide a consistent view of shared data across many
geographically dispersed users, even in the face of highly concurrent updates at fine granularity.
Transactional semantics form an essential part of this consistency model.

Preserving consistency with acceptable performance under conditions of weak connectivity is
a difficult challenge. Indeed, it has been widely accepted since the early days of mobile computing
that shared data access involves a fundamental tradeoff between consistency, good performance,
and tolerance of poor network quality [12]. This has led to a variety of approaches (discussed in
Section 7) that relax consistency. However, failing to preserve consistency undermines the very
attribute that makes databases so attractive for many applications.

In this paper, we describe a new approach to mobile database access that avoids the need to
compromise consistency. In other words, we show how to achieve good client performance under
conditions of weak connectivity without degrading consistency. Our critical insight is that the disk
storage and processing power of a mobile client can be used to compensate for weak connectivity.
We report on the detailed design, implementation, and experimental validation of this approach in
a system called Cedar.

Cedar uses a simple client-server design in which a central server holds the master copy of the
database. Cedar’s organizing principle is that even a stale client replica can be used to reduce data
transmission volume. It accomplishes this through the use of content addressable storage. The
volume reduction is greatest when the client replica and the master copy are identical. However,
even a grossly divergent replica will not hurt consistency; at worst, it will hurt performance. This
organizing principle allows Cedar to use an optimistic approach to solving the difficult problem
of database replica control. At infrequent intervals when a client has excellent connectivity to the
server (which may occur hours or days apart), its replica is refreshed from the master copy. Cedar
primarily targets laptop-class machines as mobile clients, but we also explore Cedar’s applicability
to PDA-class mobile clients. Since laptop disk sizes can be 100GB or more today, replicating
the entire database is often feasible. For databases that are too large, Cedar provides support for
creating a useful partial replica.

A select query on a Cedar client is first executed on the local replica to obtain a tentative
result. Using cryptographic hashing, the client constructs a compact summary of the tentative
result and sends it to the server along with the query. The query is re-executed at the server to
obtain the authoritative result. The server then constructs a compact summary of the difference
between the tentative and authoritative results and sends it back to the client. If the client and
server are in sync, there will be no difference between the results. The further out of sync they
are, the larger the difference in results. However, the difference is never larger than the size of the
result that would be generated without Cedar. By applying the difference to the tentative result,
the client reconstructs the authoritative result and returns it as the response to the select query.
Since applications never see tentative results, they perceive exactly the same database behavior that
they would without Cedar. update queries are routed directly to the server without special client
handling.

Cedar’s design and implementation pay careful attention to practical considerations. First,
Cedar is completely transparent to client applications and hence requires no changes to them. Sec-
ond, databases from different vendors can be used at the server and client. This simplifies interop-
erability, and allows client and server software to be independently optimized for their respective
hardware resources and workloads. Third, we do not require source code access to any database.

2 Background

In this section we examine the characteristics of networks that Cedar targets and the reasons for
their increasing popularity. We also briefly discuss two key technologies on which Cedar is built,
content addressable storage and standardized database access APIs.

2.1 Wireless Wide-Area Networks

Millions of users today own personal computing devices that can access, query, and update data
stores and databases over wireless networks. The increasing availability of wide-area connectivity
options such as cellular GPRS/EDGE, EVDO, and WiMax has encouraged the notion of access
to data anywhere and anytime [34]. However, many of these wireless technologies exhibit high
variability in peak theoretical throughput, as shown in Table 1. End-to-end latency is also highly
variable. To make matters worse, recent studies have shown that achievable throughput is often
only 25-65% of the theoretical maximum [16, 18], and that large drops in throughput are seen
during peak usage periods [40].

Wireless Technology | Peak Theoretical Throughput
GPRS | 30 - 89 Kbit/s
GPRS/EDGE | 56 — 384 Kbit/s
CDMA (1xRTT) | 144 Kbit/s (downlink)
64 Kbit/s (uplink)
EVDO (Rev. 0) | 2,500 Kbit/s (downlink)
154 Kbit/s (uplink)
EVDO (Rev. A) | 3,100 Kbit/s (downlink)
1,800 Kbit/s (uplink)
WiMax (802.16) | 500 Kbit/s - 2,000 Kbit/s
(per connection)

Table 1: Wireless WAN Technologies Prevalent in 2006—07

Wireless Wide-Area Network (WWAN) technologies remain important for the foreseeable fu-
ture in spite of the growing popularity of WiFi (802.11) technology. First, WiFi coverage is limited
to compact areas where dense base station infrastructure can be economically sustained. In con-
trast, WWAN technologies require much less dense infrastructure that can often be piggybacked
on existing cell phone infrastructure. Hence, they are economically sustainable over much larger
geographic areas. Second, organizational and business considerations may preclude use of WiFi.

For example, a user may not subscribe to the wireless service provider of a hotspot. As another
example, corporate security guidelines may prohibit a salesman from using the WiFi coverage
available at a customer site; hence unplanned use of WiFi might not be possible. Third, existing
WiFi infrastructure may be damaged or unusable in situations such as disaster recovery and mil-
itary operations. Rapid setup of new wireless infrastructure is feasible only if it is sparse. This
typically implies reliance on WWAN technologies.

2.2 Content Addressable Storage

Cedar improves performance by discovering commonality across tentative and authoritative database
results. Since these results can be large, eliding commonality can lead to a win on slow networks.
Based on its success in networking [49], distributed file systems [37, 52, 53] and enterprise-scale
storage systems [23, 41] we use Content Addressable Storage (CAS) induced by cryptographic
hashing to discover commonality. As explained in Section 3.2.1, we have customized this tech-
nique to deliver satisfactory results in our context.

Like previous CAS-based efforts, we assume that real-world data is collision-resistant with re-
spect the cryptographic hash function being used. In other words, it is computationally intractable
to find two inputs that hash to the same output [36]. Trusting in collision-resistance, CAS-based
systems treat the hash of a data item as its unique identifier or tag. Data then becomes content-
addressable, with tags serving as codewords for the much larger data items in network transmis-
sion.

Although concerns have been expressed about the collision-resistance assumption of CAS [28],
the rebuttal by Black [10] is compelling. If Cedar’s hash function (SHA-1 [45] today) is broken,
replacing it would be simple since Cedar only uses hashing on volatile data and never on permanent
storage. While a much stronger function such as SHA-256 [46] would increase computational
effort at the client and server, the new hashes would still be much smaller than the data items they
represent.

2.3 Database Access APIs

Remote database access is widely supported today through Java Database Connectivity (JDBC)
and its wire protocol antecedent, Open Database Connectivity (ODBC). JDBC defines a Java API
that enables vendor-independent access to databases. In other words, an application written to that
API can be confident of working with any database that supports JDBC. Each vendor provides
a client component called a JDBC driver that is typically implemented as a dynamically linked
library layered on top of the TCP socket interface. The wire protocol between the JDBC driver
and its database is vendor-specific, and typically embodies proprietary optimizations for efficiency.

3 Design and Implementation

As Cedar’s focus is on improving performance without compromising consistency, it assumes that
at least weak or limited connectivity is available. It is not targeted towards environments where

Time

>

it Query Redun
Query
Excc
e 7 >
Client Replica Query * AResult
CASLocaI Result

Query Exec. and
Result Comparison
Database Server >
(Master Copy) §

L) Database Server
Client Server (Master Copy)

(a) Architecture (b) Protocol

Part (a) of this figure shows how we transparently interpose Cedar into an existing client-server system
that uses JDBC. The colored boxes represent Cedar components. Part (b) maps this architecture to
the protocol executed for a select query.

Figure 1: Proxy-Based Cedar Implementation

database access is required while disconnected. Cedar’s central organizing principle, as stated
earlier in Section 1, is that even a stale client replica can be used to reduce data transmission
volume. There is no expectation that a tentative result from a client replica will be correct, only
that it will be “close” to the authoritative result at the server. Thus, the output of a client replica
is never accepted without first checking with the server. This “check-on-use” or detection-based
approach to replica control was originally developed in the context of distributed file systems such
as AFS-1 [29]. We rejected a “notify-on-change” or avoidance-based approach even though it
has been shown to have superior performance in AFS-2 and its successors. There were multiple
reasons for this decision. First, it reduces wasteful invalidation traffic to a weakly-connected client
in situations where most of the invalidations are due to irrelevant update activity. Second, we
were concerned about the performance issues that may arise on a busy database server that has to
actively track state on a large number of clients. Finally, it simplifies the implementation at both
the client and the server

Cedar is implemented in Java, and runs on Linux as well as Windows. It should also work
on any other operating system that supports Java. In the next four sections, we examine specific
aspects of Cedar’s design. Section 3.1 discusses how Cedar is made transparent to both applications
and databases. Section 3.2 describe how Cedar detects commonality across results and constructs
compact result summaries. Section 3.3 describes Cedar’s support for creating partial replicas.
Section 3.4 discusses how stale client replicas can be refreshed.

3.1 Proxy-based Transparency

A key factor influencing our design was the need for Cedar to be completely transparent to both
applications and databases. This lowers the barrier for adoption of Cedar, and broadens its applica-
bility. We use a proxy-based design to meet this goal. Our task is simplified by the fact that Cedar
is a pure performance enhancement, and not a functionality or usability enhancement.

3.1.1 Application Transparency

Cedar does not require access to application source code. Instead, we leverage the fact that most
applications that access databases are written to a standardized API. This compact API (JDBC in
our implementation) is a convenient interposition point for new code. Figure 1(a) shows how we
interpose Cedar. On the application end, the native database driver is replaced by Cedar’s drop-in
replacement driver that implements the same API. The driver forwards all API calls to a co-located
proxy.

Figure 1(b) shows how these components interact when executing a select query. The proxy
first executes the query on the client replica and generates a compact CAS description of the result.
It then forwards the original query and the CAS description to the database server. Note that
while one could combine Cedar’s database driver and proxy for performance reasons, separating
them allows the proxy to be shared by different applications. While Cedar currently interposes
on the JDBC interface, it can also support ODBC-based C, C++, and C# applications by using an
ODBC-to-JDBC bridge.

3.1.2 Database Transparency

As Figure 1(b) shows, the client’s query and CAS description is received by a corresponding server
proxy. The server proxy could either be co-located with the server or placed on a separate machine.
The only restriction is that it should be well connected to the server. This proxy re-executes the
query on the server and generates a CAS description of the result. It then compares the client’s and
server’s descriptions of the results, eliminates commonality, and only sends back the differences.
Note that the database server is totally unaware of the client replica — it is only the server proxy
that is aware.

On both the client and the database server, we chose not to incorporate Cedar’s functionality
directly into the database. Instead, Cedar itself uses the JDBC API to access both the server and
client databases. This design choice to allow Cedar to be completely independent of the underlying
database has a number of advantages. First, the increased diversity in choice can be very useful
when a mobile client lacks sufficient resources to run a heavyweight database server. In such
situations, a lightweight or embedded database (such as HSQLDB or SQLite) could be used on the
mobile client while a production database such as MySQL or Oracle could be used on the server.
Second, it makes a database’s physical layout completely transparent to Cedar. Thus, a centralized
database in a data center can be easily replicated for scalability reasons without modifying Cedar.

3.1.3 Adaptive Interpositioning

Although a Cedar client is optimized for weakly-connected operation, it may sometimes experience
good connectivity. In that situation, its low-bandwidth optimizations may be counter-productive.
For example, as shown in Figure 1 (b), the latency added by executing the query twice may exceed
the savings from reduced data transmission volume. There may also be situations in which a
mobile client is so resource-poor that our approach of using its disk storage and processing power
to compensate for weak connectivity is infeasible.

Cedar therefore adapts its behavior to available bandwidth. When the client proxy detects a
fast network, it stops handling new queries. The Cedar JDBC driver then transparently switches to
direct use of the server proxy. This eliminates the computational overhead of using CAS and the
cost of an extra hop through the client proxy. Transactions that are currently in progress through
the proxy are completed without disruption. If, at a later point in time, the client proxy detects
unfavorable network conditions, it is once again transparently interposed into the query handling
path. Bandwidth monitoring is done by the client proxy using packet-pair based IGI/PTR [30]. Our
experiments indicate that relatively coarse bandwidth estimation is adequate for triggering proxy
state changes.

While we could have also bypassed the server proxy, this would require dynamic substitution
of the native JDBC driver for Cedar’s JDBC driver. It would be difficult to implement this in a
manner that does not disrupt queries in progress. To preserve transparency, we have chosen to
forgo this optimization. Fortunately, the measurements shown in Section 5 indicate that server
proxy overhead is low.

We are also in the process of implementing adaptation with respect to the staleness of the
client replica. A very stale replica is likely to produce tentative results that have little commonality
with authoritative results. In that situation, it is better to stop using the client replica until it can
be brought in sync with the server. Our implementation approach is to have the client proxy
track the savings from eliding commonality. When the savings are consistently below a threshold,
the interposition of the client proxy is removed. Queries then go directly to the server proxy, as
described above.

3.2 Commonality Detection
3.2.1 Exploiting Structure in Data

Rabin fingerprinting is an excellent tool for detecting commonality across opaque objects [14,
42]. An attractive property of this tool is that it finds commonality even after in-place updates,
insertions, and deletions are performed on an object. Unfortunately, the data boundaries found
by Rabin fingerprinting rarely aligns with natural boundaries in structured data. This makes it
less attractive for database output, which is typically organized by rows and columns. Simple
reordering of rows, as might occur from a SORT BY clause in a SQL statement, can degrade the
ability of Rabin fingerprinting to find commonality.

Cedar therefore uses an approach that has worked better than Rabin fingerprinting for us in
the past: we use the end of each row in a database result as a natural chunk boundary [51]. It is
important to note that Cedar’s use of tabular structure in results only involves shallow interpretation
of Java’s result set data type. There is no deeper semantic interpretation such as understanding data
type values, result schema, or integrity constraints.

3.2.2 Generating Compact CAS Descriptions

As Figure 2 shows, Cedar finds commonality by hashing at two granularities: the entire result and
each individual row. For large results, the hash per row can add up to a sizable CAS description. We

Row 1 —>» Hash;

Entire Result Row 2 > Hash,
Hash —

Row N —>» Hashy

Figure 2: Hashing in Cedar

therefore use a simple but effective approach to reducing the per-row contribution. Our approach
recognizes that the entire result hash is sufficient to ensure correctness. Since the sole purpose of
a per-row hash is to support comparisons at fine granularity, a subset of the bits in that hash is
adequate to serve as a strong hint of similarity. Hence, the CAS description of a result only uses
the lower n bits of each per-row hash. When two per-row hashes match, the server assumes that
the corresponding row already exists in the tentative result. If this is an erroneous assumption it
will be detected in the final step of the comparison process.

After the comparison of tentative and authoritative results is complete, the server sends the
client truncated hashes for the common rows found, data for the rows known to be missing on the
client, and an untruncated hash of the authoritative result. The client reconstructs its version of the
authoritative result and verifies that its entire hash matches that sent by the server. In the rare event
that there is a mismatch, the authoritative result is fetched verbatim from the server.

A low value of n increases the probability of a collision, and hence many verbatim fetches. On
the other hand, a large value of n renders a CAS description less compact. Given a hash of length
n bits, the probability p of a collision amongst m other hashes is

p = 1—Pr {No Collision}
)
= 11—
2n
Cedar currently uses a value of n = 32 bits. As only result hashes from the same query are
compared, we expect m to be small. However, even with m = 10, 000, the probability of seeing a
collision and having to refetch verbatim results from the server would only be p = 2.3 x 107°. It

should be noted that we have never encountered a collision during the development and evaluation
of Cedar.

3.3 Creating Partial Client Replicas

Some mobile clients may be too resource-poor to support a full database replica. Even when
resources are adequate, there may be privacy, security, or regulatory concerns that restrict copying
an entire database to an easily-compromised mobile client. These considerations lead to the need
for creating partial client replicas. Cedar’s challenge is to help create a partial replica that is
customized for a mobile user. Fortunately, there are many business and social practices that are
likely to result in temporal locality in the query stream at a Cedar client. A partial replica that is
tuned to this locality will help Cedar achieve good performance.

USERS (nickname, fullname, password, zip)
(a) Schema of table named USERS

<attr table="USERS" predicate="zip >= 15222 AND zip <= 15295"/>
(b) Hoard attribute

A hoard attribute is expressed in a notation that is almost identical to the predicate of a WHERE clause
in a SELECT query. The hoard attribute in (b) would cache all rows of the table specified in (a) whose
zip codes lie between 15222 and 15295.

Figure 3: Syntax of Hoard Attributes

INSERT INTO users VALUES ("jd.nick", "John Doe", "jd_password",
15213)

(a) Original query from log

INSERT INTO users VALUES ("string", "string", "string", number)
(b) Abstracted query produced

Figure 4: Query Abstraction by SLM

For example, consider a company that assigns a specific geographic territory or a specific set
of customers to each of its salesmen. The query stream generated by a salesman’s mobile client is
likely to be confined to his unique territory or unique set of customers. Although the company’s
customer database may be enormous, only a small subset of it is likely to be relevant to that sales-
man. Similar reasoning applies to an insurance adjuster who is visiting the homes of customers
affected by a natural disaster. There is typically a step in the workflow of claim handling that
assigns a specific adjuster to each claim. These assignments are typically made at the granularity
of many hours, possibly a whole day. For the entire duration of that period, an adjuster is likely to
only generate queries that pertain to his assignments.

Our solution is inspired by Coda’s use of hoarding to support disconnected operation [32].
Cedar faces a simpler problem than Coda because its hoarding does not have to be perfect. If a
partial replica cannot produce the correct response to a query, the only consequence in Cedar is
bad performance. No disruptive error handling is needed relative to availability or consistency.

3.3.1 Hoard Granularity

Previous implementations of hoarding have typically operated at the granularity of individual ob-
jects, such as files or mail messages. In contrast, Cedar hoards data at the granularity of tables
and table fragments. Cedar’s approach is based on the long-established concepts of horizontal
fragmentation [15] and vertical fragmentation [39], as shown in Figure 5. Horizontal partitioning
preserves the database schema. It is likely to be most useful in situations that exploit temporal
locality, such as the sales and insurance examples mentioned earlier. Hoarding in Cedar is done
through horizontal fragmentation. If a query references a table that is not hoarded on a mobile
client, Cedar forwards that query directly to the database server.

Original Table

ID Name Address Zip Email
1 John Doe 412 Avenue 15213 jd2@eg.com
2 Richard Roe 396 Road 15217 rr@eg.com
3 Mary Major 821 Lane 15232 mm@eg.com
4 John Stiles 701 Street 94105 js@eg.com
5 Jane Doe 212 Way 94112 jd@eg.com

Horizonal Partitioning

ID Name Address Zip Email
1 John Doe 412 Avenue 15213 jd2@eg.com
2 Richard Roe 396 Road 15217 rr@eg.com
3 Mary Major 821 Lane 15232 mm@eg.com
ID Name Address Zip Email
4 John Stiles 701 Street 94105 js@eg.com
5 Jane Doe 212 Way 94112 jd@eg.com

Vertical Partitioning

ID Name Address ID Zip Email
1 John Doe 412 Avenue 1 15213 jd2@eg.com
2 Richard Roe 396 Road 2 15217 rr@eg.com
3 Mary Major 821 Lane 3 15232 mm@eg.com
4 John Stiles 701 Street 4 94105 js@eg.com
5 Jane Doe 212 Way 5 94112 jd@eg.com

Figure 5: Horizontal and Vertical Partitioning

3.3.2 Database Hoard Profiles

Hoarding at a Cedar client is controlled by a database hoard profile that expresses hoard intentions
within the framework of a database schema. A database hoard profile is an XML file that contains
a list of weighted hoard attributes. Each hoard attribute specifies a single database relation and a
predicate. Cedar uses these predicates to horizontally partition a relation. A database hoard profile
may be manually created by a user. However, it is much more likely to be created by a database
administrator or by using the tool described in Section 3.3.3.

Figure 3 illustrates the syntax of hoard profiles. Each hoard attribute is associated with a
weight that indicates its importance. Cedar uses this weight to prioritize what should be hoarded
on a mobile client that has limited storage. As tentative results are always verified with the server,
supporting external referential constraints, such as foreign keys, is not required for correctness.
However, if needed, extending hoard profiles to use referential cache constraints [4] should be
simple.

3.3.3 Tools for Hoarding

To specify hoard attributes, a user needs to be aware of the SQL queries that she is likely to
generate while weakly connected. It is often the case that a user does not directly specify SQL
queries, but indirectly generates them through an application. To help the user in these situations,
we have developed a tool called SQL Log Miner (SLM). This tool analyzes query logs to aid in
the creation of database hoard profiles. It first abstracts queries into templates by removing unique
user input, as illustrated in Figure 4. It then analyzes the abstracted log to determine unique queries
and outputs them in frequency sorted order. SLM is also able to use a database’s EXPLAIN feature
to display queries that generate the largest results.

Total Unique Unique

Application Queries Queries %
AUCTION 115,760 41 0.04 %
BBOARD 131,062 59 0.05%

datapository.net | 9,395,117 278 0.003 %

Table 2: Unique Queries Within Workloads

We used SLM to analyze database logs from a number of applications traces including an auc-
tion benchmark [6], a bulletin board benchmark [6], and datapository.net, a web-enabled
database used for network trace analysis by the academic community. As Table 2 shows, the num-
ber of unique queries was very small relative to the large number of queries. The data in Table 2
suggests that it may be tractable to extend SLM to automate hoard profile creation. Contextual
information [43] and data mining [56] may be additional sources of input for this automation task.

3.4 Refreshing Stale Client Replicas

Cedar offers two mechanisms for bringing a client replica in sync with the database server. If a
client has excellent connectivity, a new replica can be created or a stale replica updated by simply
restoring a database dump created using the client’s hoard profile. Although this is bandwidth-
intensive, it tends to be faster and is our preferred approach.

To handle extended periods of weak connectivity, Cedar also provides a log-based refresh
mechanism. The database server continuously maintains a timestamped update log. Since log-
ging is a lightweight operation, it typically has less than a 1% impact on performance [38]. When
a client detects available bandwidth, it can obtain the log from the server and apply all the up-
dates since the last refresh. Bandwidth detection mechanisms can ensure that the log fetch does
not impact foreground workloads. The server allocates a finite amount of storage for its log, and
recycles this storage as needed. It is the responsibility of clients to obtain log entries before they
are recycled. Once a log entry is recycled, any client that needs it has to restore its entire replica
using the method described in the previous paragraph.

10

datapository.net

Background Load

Generator
Emulated
WAN

PDA-class
Machine

Figure 6: Experimental Setup

4 Evaluation Approach and Setup

How much of a performance win can Cedar provide? The answer clearly depends on the work-
load, the network quality, and on the commonality between the client replica and the server. For
resource-poor clients, it can also depend on the computational power of the client. To obtain a
quantitative understanding of this relationship, we have conducted experiments using both micro-
and macro-benchmarks. This section presents our experimental setup. Our benchmarks and results
follow in Sections 5 and 6.

The experimental setup used to evaluate Cedar is shown in Figure 6. The database server and
the background load generator were 3.2 GHz Pentium 4s (with Hyper-Threading) with 4 and 2
GB of RAM respectively. The laptop was a Thinkpad T41p with a 1.7 GHz Pentium M processor
and 1 GB of RAM. The PDA-class machine (henceforth referred to as just PDA) was a 1997-era
Thinkpad 560X with a 233 MHz Pentium MMX processor and 64 MB of RAM.

All the machines ran the Fedora Core 5 Linux distribution with the 2.6.18-1 SMP kernel. We
used Sun’s Java 1.5 as Cedar’s runtime environment. The database server and the client replica
used the open source MySQL database. The server proxy was located on the same machine as the
database server.

We use the approach described in Section 3.2.1 to detect and elide commonality between re-
sults. As CAS has been shown to be better than compression [37], we do not consider the latter in
our evaluation.

As shown in Figure 6, we used both real and emulated networks to evaluate Cedar’s perfor-
mance. For the real Wireless WAN, we used a Novatel Wireless (Merlin S720) PCMCIA card to
connect the laptop directly to the database server over a Sprint EVDO (Rev. A) network link. While
the theoretical throughput for this network is 3,100 Kbit/s down and 1,800 Kbit/s up, Sprint adver-
tises 450-800 Kbit/s down and 300—400 Kbit/s up. To verify this, we used Iperf [31] and ping to
measure the bandwidth and round trip latency between the EVDO-enabled laptop and the database
server. The network was probed every 10 minutes over an ~13 hour period. The throughput was
averaged over a 20 second transfer and the round-trip latency over 25 pings. The measurements,
presented in Figure 7, showed an average download and upload bandwidth of 535 and 94 Kbit/s

11

600 71 250

500 ¢ { 200

I i DOL fload
L3 HE ENCY “=r=bmnenr
400 4 o i Uploaé -

1 150
300

i 1 100
200 | :

Throughput (Kbit/s)
Round-Trip Latency (ms)

100 |+ 1%

0 1 1 ¥ 1 1 1 1 1 0
18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00
Time
The error bars for the latency measurements indicate the maximum and minimum observed values.
Four outliers (5X—30X of the mean) were removed from the ping data.

Figure 7: EVDO Network Throughput and Latency

and an average round-trip latency of 112 ms.

Based on these measurements and the theoretical ratings of other wireless technologies shown
in Table 1, we decided to evaluate Cedar with emulated networks of 100 Kbit/s (representative of
CDMA 1xRTT), 500 Kbit/s and 1 Mbit/s (representative of EVDO), and 2 Mbit/s (representative
of WiMax). On each network, we experimented with round-trip times of 33, 66, and 100 ms. The
emulated WAN was implemented as a NetEm bridge [27]. As our focus was on the performance
of the mobile client, there were no constraints on the network link between the database and the
background load generator.

5 Microbenchmarks

We used sensitivity analysis to explore how Cedar performs with different hit rates on the client
replica. We executed a number of single-query microbenchmarks where we varied both the amount
of data selected by the query and the fraction of the result data that was available on the mobile
client. The queries in each microbenchmark fetched approximately 0.5, 1, and 5 MB of data. For
each of the microbenchmarks, the fraction of data present on the mobile client was varied between
0% and 100%. For example, in the 60% case, the client replica was explicitly populated with 60%
of the data that would be selected by the micro-benchmark’s query. The two extreme hit-ratios of
100% and 0% give an indication of best-case performance and the system overhead. To provide a
baseline for comparison, we also ran the benchmarks with MySQL’s native JDBC driver.

5.1 Results

In the interests of brevity, we only present details of a subset of the microbenchmark results and
summarize the rest. For the microbenchmark that fetched approximately 1 MB of data, Figure 8
presents the query completion time and the amount of data downloaded by the mobile client. The

12

12 1
10 B & 0.8
= -.,.\‘ g .‘..‘
z 8 . MySQL 2 N MySQL
<] —— Cedar e = 0.6 S, Cedar e
~ ., st -,
@ . S 04 o,
E 4 R 'z_u s ...
R = | S,
s | e - o o2 T -
0 ‘ ‘ ‘ ‘ - e, “ 0 ‘ ‘ ‘ ‘ ""'-. "‘-..A
o 20 40 60 80 100 (o] 20 40 60 80 100
Commonality (%) Commonality (%)
(a) Query Latency (b) Data Transferred

The microbenchmark was executed on the laptop. Results are the mean of three trials. The maximum
standard deviation for data transferred was 2% of the corresponding mean. There was no significant
standard deviation for the query execution time.

Figure 8: 1 MB Microbenchmark: 1 Mbit/s and 100ms Network

0.5
Cedar without Adaptation
Cedar with Adaptation -]

04 L MySQL e
)
2
S 0.3 _/—_—\\/\/\————-
(&)
(]
©
<] 0.2 +
£ o
= B e U e SN e PR - Sad

0.1 |

0 L L L L J
o] 20 40 60 80 100

Commonality (%)

The microbenchmark was executed on the laptop. Results are the mean of three trials and had no
significant standard deviation.

Figure 9: 1 MB Microbenchmark Query Latency: Gigabit

results show that Cedar’s performance is almost a linear function of the amount of data found on
the client replica. Cedar’s overhead is noticeable only when the degree of commonality falls below
5-10%. Irrespective of whether the laptop or PDA was used, the same trends were observed for all
the other microbenchmarks and network configurations.

Apart from the networks described in Section 4, we also ran the microbenchmarks over a
Gigabit Ethernet link. While Cedar is not geared towards extremely fast networks, this allowed us
to evaluate Cedar’s adaptability in a high bandwidth setting. As shown in Figure 9, Cedar, without
adaptation, can be an order of magnitude slower than MySQL. Our analysis showed that the most
significant cause for this slowdown was the extra software hops through Cedar’s client and server
proxy. A smaller, but nevertheless noticeable, fraction of the overhead was the computation cost of
CAS. As described in Section 3.1.3, whenever the client detects a fast network, it will bypass the
local proxy and switch to directly contacting the server-side proxy. This adaptation gets Cedar’s
overhead down to within 5X of the native performance. While still relatively high, the absolute

13

Interaction Type Percentage

Create New Customer 1%
Change Payment Method 5%
Create Order 50%

Order Status 5%

View New Products 7%
View Product Detail 30%
Change Item 2%

Table 3: Default Mix of Client Interactions

difference is within 0.1 seconds of native performance. Tuning our unoptimized prototype should
further improve Cedar’s performance.

6 The MobileSales Benchmark

We are not aware of any widely used benchmark for evaluating mobile access to databases. We
have therefore created MobileSales, a new benchmark based on the recently announced TPC-
App [54] benchmark from the Transaction Processing Performance Council. While TPC-App is
targeted towards an application server environment, we believe that a modified version of this
benchmark is also applicable to the mobile scenario.

The TPC-App benchmark consists of an online distributor that allows clients to interact with a
sales system. The workload consists of a set of interactions: clients can add new customers, create
new orders, change payment types, check on the status of previous orders, view new products the
distributor might have recently added, look at detailed descriptions of products, and make changes
to the product catalog. Each client’s test run is defined by a time period that specifies the length of
benchmark execution and a mix that specifies the probability of each interaction type. The default
mix is shown in Table 3. There is no think time between interactions. The benchmark dataset can
be scaled with respect to the number of customers. The dataset size is defined by (0.8 x .S + 2006)
MB where S is the scale factor.

While the focus of TPC-App is to test application server performance, we believe that the
benchmark’s workload is representative of a number of mobile use scenarios including traveling
salesmen, insurance adjusters, and customer relation management (CRM) applications. Mobile-
Sales therefore retains the same workload (dataset, queries, and interaction types) but, unlike TPC-
App, allows mobile clients to directly access the database instead of being mediated through the
application server. This is not uncommon today and is recommended for enterprise applications
on mobile clients [58].

The performance of an individual mobile client is measured in terms of throughput (total num-
ber of interactions) and latency (average interaction completion time). MobileSales can also ex-
ecute clients on separate load generator machines. Apart from modeling concurrent database ac-
cess, updates made by these load clients ensure that the client replica diverges from the server as
the benchmark progresses.

14

800 - m
2~ EMySQL mCedar EMySQL m Cedar
o Higher is better 2 6.0 1 Lower is better
G 600 =
(3]
8 S 4.0
5 3
o
z 2.0 -
E
o
= 200
EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s
Kbit's Kbit/s 33ms 66ms 100ms 100ms Kbit's Kbit/s 33ms 66ms 100ms 100ms
100 ms 100 ms 100 ms 100 ms
(a) Throughput: Unloaded Server (b) Latency: Unloaded Server
@ 800 1 ? B MySQL M Ced
c EMySQL B Cedar o y edar
=4 i Higher is better $ 6.0 1 Lower is better
G 600 - ~
5 2
4.0
= []
£ 400 | g
S |
s o]
o 7 [
. 200
EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s
Kbit/s Kbit/s 33ms 66ms 100ms 100ms Kbit/s Kbit/s 33ms 66ms 100ms 100ms
100 ms 100 ms 100 ms 100 ms
(c) Throughput: Server Load = 50 (d) Latency: Server Load = 50

All results are the mean of three trials. The maximum standard deviation for throughput and latency
was 6% and 7% respectively of the corresponding mean.

Figure 10: Mobile Sales - Laptop with Full Hoard Profile
6.1 Benchmark Setup

For our experiments, we set the scale factor S to 50. This generates a dataset large enough for
simultaneous access by 50 clients. While the raw data size is 2 GB, it occupies 6.1 GB on disk due
the addition of indexes and other MySQL metadata.

Each test run executed for five minutes using the default mix of client interactions shown in
Table 3. This mix has a 42:58 read:write ratio. The high write ratio biases the results against Cedar
as updates are not optimized. A higher read ratio would only increase Cedar’s benefits.

During different benchmark runs, we set the number of load clients to either 0, 10, 30, or 50.
In the interests of space, we only present the results for the unloaded server (0 load clients) and 50
clients. The results with 10 and 30 clients fall in between the 0 and 50 clients cases. The baseline
for comparison is direct database access via MySQL’s native JDBC driver. Relative to the baseline,
improvement is defined as

Resultcegar — Result native

Improvement =
b ReSUZtNative

We also evaluated the performance of mobile clients with two different hoard profiles. The first
profile, named Full Hoard, selected the entire database for replication. The second profile, named
Partial Hoard, only selected half of the product catalog (a predominantly read-only portion of the

15

800 -

P EMySQL B Cedar - Partial Hoard 0 EMySQL B Cedar - Partial Hoard
5 Higher is better @ 6.0 Lower is better
£ 600 2
g)
[] €40 4
o Q B
400 g
o
4 (]
= 200 - £20 I
- S
) o]
[t >
0 i < 00 ,
EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s
Kbit/s Kbit/s 33ms 66ms 100ms 100ms Kbit/s Kbit/s 33ms 66ms 100ms 100ms
100 ms 100 ms 100 ms 100 ms
(a) Throughput: Unloaded Server (b) Latency: Unloaded Server
800 - . 0 EMySQL B Cedar - Partial Hoard
] -
g (] MySQLH_l Ced_ar Partial Hoard $6.0 Lower is better
2 igher is better K2
0 600 - >
© Q
g €40
£400 4 5
. -1
o o
Z 200 | §20]
3 o
) >
R <00
EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s
Kbit/s Kbit/s 33ms 66ms 100ms 100ms Kbit/s Kbit/s 33ms 66ms 100ms 100ms
100 ms 100 ms 100 ms 100 ms
Throughput: Server Load = 50 Latency: Server Load = 50

All results are the mean of three trials. The maximum standard deviation for both throughput and
latency was 8% of the corresponding mean.

Figure 11: Mobile Sales - Laptop with Partial Hoard Profile

database) and did not include customer or order information.

6.2 Laptop: Full Hoard Results

Figure 10 presents the results of the MobileSales benchmark with the Full hoard profile. We first
examine the unloaded server case where the laptop is the only client accessing the database. The
results, presented in Figures 10 (a) and (b), show that the throughput improvements due to Cedar
range from 36% in the high bandwidth case of 2 Mbit/s to as much as 374% in the low bandwidth
case of 100 Kbit/s. The average interaction latency shows similar improvements, ranging from
a 26% reduction at 2 Mbit/s to a 79% reduction at 100 Kbit/s. The results from the emulated
networks match the real EVDO network where Cedar shows a 46% improvement in throughput and
a 30% reduction in the average interaction latency. As latency on the 1 Mbit/s network increases,
throughput drops for both MySQL and Cedar. This occurs because neither system can fill the
bandwidth-delay product.

Figures 10 (c) and (d) show that even when the number of load clients is increased to 50, Cedar
retains its performance advantage. MySQL’s performance shows very little change when compared
to an unloaded server. As the database is not the bottleneck, the impact on both MySQL’s through-

16

400 ~

@ EMySQL mCedar & EMySQL @ Cedar
o Higher is better o 6.0 Lower is better
% 300 2
S >
- Q
8 €40
£ 200 2
; 4
-]
4 (]
| 2.0
E 100 o
<) [
[l >
0 <001
EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s
Kbit/s Kbit/s 33ms 66ms 100ms 100ms Kbit/s Kbit/s 33ms 66ms 100ms 100ms
100 ms 100 ms 100 ms 100 ms
(a) Throughput: Unloaded Server (b) Latency: Unloaded Server
400 —_
@ @ MySQL m Cedar o EMySQL m Cedar
5 Higher is better @ 6.0 1 Lower is better
%300 | 2
g 5
2 £ 4.0 -
£200 A %
; -
(-]
=z o |
= 100 220
- =
P g
0 < 0.0
EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s EVDO 100 500 1 Mbit/s 1 Mbit/s 1 Mbit/s 2 Mbit/s
Kbit/s Kbit/s 33ms 66ms 100ms 100ms Kbit/s Kbit/s 33ms 66ms 100ms 100ms
100 ms 100 ms 100 ms 100 ms
(c) Throughput: Server Load = 50 (d) Latency: Server Load = 50

All results are the mean of three trials. The maximum standard deviation for throughput and latency
was 11% and 15% respectively of the corresponding mean.

Figure 12: Mobile Sales - PDA with Full Hoard Profile

put and average interaction latency is less than 8%. Cedar, when compared to the unloaded server,
does show a more noticeable drop. As updates made by the load clients increase the divergence
between the client replica and the server, Cedar has to fetch more data over the low bandwidth
network. Compared to the unloaded server, Cedar experiences a 3% to 35% drop in throughput
and a 3% to 55% increase in latency. However, it still performs significantly better than MySQL
in all experimental configurations. The throughput improvements range from 39% at 2 Mbit/s to
224% at 100 Kbit/s and latency reductions range from 28% at 2 Mbit/s to 70% at 100 Kbit/s.

6.3 Laptop: Partial Hoard Results

Figure 11 presents the results of the MobileSales benchmark with the Partial Hoard profile. As
the hoard profile has no impact on MySQL, its results are unchanged from Section 6.2. While the
performance gains due to Cedar drop when compared to the Full hoard profile, they are still sub-
stantial. For an unloaded server, as seen in Figures 11 (a) and (b), Cedar can deliver a throughput
improvement ranging from 9% at EVDO to 91% at 100 Kbit/s and an average interaction latency
reduction ranging from 9% at EVDO to 48% at 100 Kbit/s. Even for the faster 1 and 2 Mbit/s
networks, Cedar’s throughput and latency improvements are in the range of 17-31% and 14-24%.

17

Figures 11 (c) and (d) show that as Cedar’s throughput drops when compared to an unloaded
server, the improvement relative to MySQL now ranges from a throughput increase of 15% at
1 Mbit/s with 33ms to 43% at 500 Kbit/s. The corresponding reduction in average interaction
latency ranges from 12% at 1 Mbit/s with 66ms to 30% at 500 Kbit/s. The only exception is
the EVDO network where Cedar’s throughput is 14% lower than MySQL. We suspect that this
was a temporary network phenomena as these EVDO results exhibited the greatest variance in the
experiments.

6.4 PDA: Full Hoard Results

Figure 12 presents the results from running MobileSales on the PDA with the Full hoard profile.
We see that, even with an extremely resource-limited client, Cedar can still deliver a significant
performance improvement. With the EVDO network and an unloaded server, we see a 23% im-
provement in throughput and 18% reduction in latency. For the 100 Kbit/s network, we see a 205%
improvement in throughput and 70% reduction in latency for an unloaded server and a 116% im-
provement in throughput and 54% reduction in latency with 50 load clients.

The gains from using Cedar tail off at the higher bandwidths with equivalent performance in
most cases. However, Cedar actually performed slightly worse than MySQL on a 1 Mbit/s with
33ms network. Comparing it to MySQL’s throughput, we see a drop of 8% with an unloaded
database server and a drop of 17% with 50 load clients. A similar drop is seen with 50 load clients
on a 1 Mbit/s with 66ms network. This performance drop arose because the 233 MHz CPU became
a bottleneck when large amounts of data needed to be hashed. This is exactly the scenario where
the adaptation technique proposed in Section 3.1.3 would be useful. Tuning Cedar for PDAs should
further decrease this overhead.

6.5 PDA: Partial Hoard Results

Switching the PDA from the Full hoard profile to the Partial hoard profile showed the same be-
havior as with the laptop. We therefore omit a detailed description of these results in the interests
of space. Overall, Cedar delivered equivalent or better performance that MySQL in almost all of
the network configurations. The only exceptions were the two 1 Mbit/s network configurations
highlighted in Section 6.4. In these cases, relative to MySQL, Cedar’s worst case overhead for
throughput and latency was 11% and 12% respectively.

6.6 Summary

Our results from the MobileSales benchmark demonstrate that Cedar can significantly improve
performance in low-bandwidth conditions. We view these results as especially encouraging as
they were achieved without any compromise in consistency and without any modifications to the
application or database. Also, as described in Section 6.1, these results arise from a write-intensive
workload that is biased against Cedar. We predict that Cedar would perform even better for work-
loads with a greater percentage of reads. Further, while Cedar is primarily targeted towards laptop-
class clients, our results indicate that even resource-limited PDA-class machines can benefit.

18

7 Related Work

Our work has been strongly influenced by previous work that also aims at improving performance
over WANs. In this section, we describe these systems and highlight Cedar’s similarities and
differences. In particular, we discuss systems that relax consistency for improved performance,
mobile database systems, and other systems that use hash-based techniques.

7.1 Relaxing Consistency

While the benefits of caching data in mobile systems has long been known [17], most systems
weaken traditional consistency semantics for performance reasons. Weakly-Consistent replication
in Bayou [50] was proposed for collaborative systems. Alonso et al. [2] proposed guasi-copies
for database systems to improve performance by relaxing consistency when clients participate
in caching data. The Mariposa [47] distributed data manager showed how consistent, although
potentially stale, views can be seen across a network of machines. Gray et al. [25] proposed a
two-tier replication scheme that allows for tentative update transactions on the mobile client that
are later committed to the master copy.

Like Cedar, a number of systems have advocated middle-tier database caching where parts of
the database are replicated at the edge for web-based applications [3, 4, 5, 33]. These systems,
based on an avoidance-based approach, require tight integration with the database to ensure timely
propagation of updates and are targeted towards workloads that do not require strict consistency.

Gao et al. [24] propose using a distributed object replication architecture where the data store’s
consistency requirements are adapted on a per-application basis. These solutions require sub-
stantial developer resources and detailed understanding of the application being modified. While
systems that attempt to automate the partitioning and replication of an application’s database ex-
ist [48], they do not provide full transaction semantics.

An obvious disadvantage of these systems is that they provide a different consistency or trans-
actional model than what developers and users have grown to expect. Tentative transactions in-
crease the probability of conflicts and require additional application complexity or user interaction
for conflict resolution. In contrast, Cedar’s focus is on maintaining the transactional and consis-
tency semantics provided by the underlying database. While this design decision prevents discon-
nected operation, we believe that this is an acceptable tradeoff for an important class of real-world
usage scenarios.

7.2 Mobile Database Systems

Barbara and Imielinski [9] suggest informing clients of changes made to a centralized database by
broadcasting Invalidation Reports (IRs) at periodic intervals. However, as IRs are a push-based
system, they are only effective if a large number of clients are interested in the same data. While
hybrid push-pull systems have been proposed [1], in the absence of locality, they still degenerate
into a pull-based behavior. IRs also add significant latency to queries as each mobile client has to
wait for the periodic IR broadcast before it can verify data freshness. For a complete survey of

19

previous work on IRs and the mobile databases described above in Section 7.1, we refer the reader
to Barbara [8].

Some systems [8, 57] allow clients to obtain an exclusive copy of the section of the database
it is accessing. This can significantly degrade performance for other clients when mobile clients
are weakly connected. By recognizing that the local database replica could be stale, Cedar instead
ensures that there is no strong dependency between the main database server and the mobile client.

Cedar’s hoard profiles also bear some similarity to clustering attributes [7] and client pro-
files [13]. However, while all three are used to express preferences for database content, they
have very different functions. Clustering attributes define a database server’s storage layout for
improved access by mobile clients while client profiles are used to indicate freshness and latency
requirements for systems that relax consistency.

7.3 Hash-based Systems

Successful use of CAS span a wide range of storage systems. Examples include peer-to-peer
backup of personal computing files [20], storage-efficient archiving of data [11, 41], remote file
synchronization [55], DHT-based storage systems [21, 22], and file similarity detection [35].

Spring and Wetherall [49] apply similar principles at the network level. Using synchronized
caches at both ends of a network link, duplicated data is replaced by smaller tokens for transmission
and then restored at the remote end. This and other hash-based systems such as the CASPER [52]
and LBEFS [37] file systems, and Layer-2 bandwidth optimizers such as Riverbed and Peribit use
Rabin fingerprinting [42] to discover spans of commonality in data. This approach is especially
useful when data items are modified in-place through insertions, deletions, and updates. How-
ever, as shown previously [51], using structural information found in query results can lead to a
significant performance improvement than Rabin fingerprinting-based approaches.

8 Future Work and Conclusion

Cedar has shown the benefits of using client replicas. However, hoarding data on a mobile client
can have privacy, security, and regulatory concerns as the loss or theft of a mobile device can
expose confidential data. While vertical fragmentation, described in Section 3.3.1, can be used to
elide sensitive database fields, it can also lead to a performance loss if queries frequently reference
those fields. Another possible alternative for data protection is to encrypt sensitive data. Encryption
could be implemented in a number of ways, including at the storage layer [44], within the client
replica [26], or even within the client proxy [19]. We are currently evaluating these choices in
order to minimize encryption’s impact on resource-limited clients.

We have not considered Cedar’s impact on power consumption. While reducing network trans-
mission has been shown to save power, there is a tradeoff as Cedar uses computational cycles to
achieve the reduction. A careful investigation is needed to determine how power should be factored
into Cedar’s adaptation mechanisms.

In summary, this paper presents the design and implementation of Cedar, a system that enables
mobile database access with good performance while preserving consistency. Cedar leverages a

20

mobile client’s storage and computational resources to compensate for weak connectivity. Our
results demonstrate that Cedar has low overhead and can significantly improve performance for its
intended usage environment.

Acknowledgments

We are grateful to Dave Andersen and Amit Manjhi for providing database server logs, Stratos
Papadomanolakis and Amol Deshpande for their feedback on the MobileSales application, and
Jan Harkes for their help in resurrecting the PDA-class machines. We are also thankful to include
Dave Andersen, Jason Ganetsky, Adam Goode, Andres Lagar-Cavilla, Stratos Papadomanolakis,
Joshua Rice, Ajay Surie, and Eno Thereska for their feedback.

References

[1] Swarup Acharya, Michael Franklin, and Stanley Zdonik. Balancing push and pull for data
broadcast. In SIGMOD °97: Proceedings of the 1997 ACM SIGMOD International Confer-
ence on Management of Data, pages 183—-194, May 1997.

[2] Rafael Alonso, Daniel Barbara, and Hector Garcia-Molina. Data caching issues in an infor-
mation retrieval system. ACM Transaction on Database Systems, 15(3):359-384, 1990.

[3] Mehmet Altinel, Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Bruce G.
Lindsay, Honguk Woo, and Larry Brown. Dbcache: Database caching for web application
servers. In Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, pages 612-612, 2002.

[4] Mehmet Altinel, Christof Bornhovd, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh,
and Berthold Reinwald. Cache tables: Paving the way for an adaptive database cache. In

Proceedings of 29th International Conference on Very Large Data Bases, pages 718-729,
Berlin, Germany, 2003.

[5] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. Dbproxy: A dynamic
data cache for web applications. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), March 2003.

[6] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan Cox, Sameh Elnikety, Romer
Gil, Julie Marguerite, Karthick Rajamani, and Willy Zwaenepoe. Specification and im-
plementation of dynamic web site benchmarks. In Proceedings of the Fifth Annual IEEE
International Workshop on Workload Characterization (WWC-5), pages 3—13, Austin, TX,
November 2002.

[7] B. R. Badrinath and Shirish H. Phatak. On clustering in database servers for supporting
mobile clients. Cluster Computing, 1(2):149-159, 1998.

21

[8] Daniel Barbard. Mobile computing and databases - a survey. IEEE Transactions on Knowl-
edge and Data Engineering, 11(1):108-117, 1999.

[9] Daniel Barbara and Tomasz Imielinski. Sleepers and workaholics: Caching strategies in mo-
bile environments. In SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, pages 1-12, 1994.

[10] J. Black. Compare-by-hash: A reasoned analysis. In Proc. 2006 USENIX Annual Technical
Conference, pages 85-90, Boston, MA, May 2006.

[11] William J. Bolosky, Scott Corbin, David Goebel, , and John R. Douceur. Single instance
storage in windows 2000. In Proceedings of the 4th USENIX Windows Systems Symposium,
pages 13-24, Seattle, WA, August 2000.

[12] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing, 5(4):46-55,
2001.

[13] Laura Bright and Louiqga Raschid. Using latency-recency profiles for data delivery on the
web. In Proceedings of 28th International Conference on Very Large Data Bases, pages
550-561, Hong Kong, China, August 2002.

[14] Andrei Broder, Steven Glassman, Mark Manasse, and Geoffrey Zweig. Syntactic clustering
of the web. In Proceedings of the 6th International WWW Conference, pages 1157-1166,
Santa Clara, CA, April 1997.

[15] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal data partitioning in database
design. In SIGMOD ’82: Proceedings of the 1982 ACM SIGMOD International Conference
on Management of Data, pages 128—136, June 1982.

[16] Rajiv Chakravorty, Suman Banerjee, Pablo Rodriguez, Julian Chesterfield, and Ian Pratt. Per-
formance optimizations for wireless wide-area networks: Comparative study and experimen-
tal evaluation. In MobiCom ’04: Proceedings of the 10th Annual International Conference
on Mobile Computing and Networking, pages 159—-173, 2004.

[17] Boris Y. Chan, Antonio Si, and Hong V. Leong. A framework for cache management for
mobile databases: Design and evaluation. Distributed and Parallel Databases, 10(1):23-57,
2001.

[18] Mun Choon Chan and Ramachandran Ramjee. Tcp/ip performance over 3g wireless links
with rate and delay variation. Wireless Networks, 11(1-2):81-97, 2005.

[19] Mark D. Corner and Brian D. Noble. Protecting applications with transient authentication.
In MobiSys *03: Proceedings of the Ist international conference on Mobile systems, applica-
tions and services, pages 57-70, 2003.

[20] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making backup cheap
and easy. In OSDI: Symposium on Operating Systems Design and Implementation, 2002.

22

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP "01), Chateau Lake Louise, Banff, Canada, October 2001.

P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility. In
HotOS VIII, pages 75-80, Schloss Elmau, Germany, May 2001.

EMCCentera03. EMC Centera Content Addressed Storage System. EMC Corporation, 2003.
http://www.emc.com/.

Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application specific
data replication for edge services. In WWW °03: Proceedings of the Twelfth International
Conference on World Wide Web, pages 449-460, 2003.

Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of replication and a
solution. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, pages 173-182, June 1996.

Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over encrypted
data in the database-service-provider model. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 216-227, 2002.

Stephen Hemminger. Netem - emulating real networks in the lab. In Proceedings of the 2005
Linux Conference Australia, Canberra, Australia, April 2005.

Val Henson. An analysis of compare-by-hash. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS IX), pages 13—18, May 2003.

J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M.J. West. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1), February 1988.

Ningning Hu and Peter Steenkise. Evaluation and characterization of available bandwidth
probing techniques. IEEE Journal on Selected Areas in Communications (J-SAC), 21(6):
879-894, August 2003.

Ipert. The tcp/udp bandwidth measurement tool. http://dast.nlanr.net/
Projects/Iperf/.

James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system.
ACM Transactions on Computing Systems, 10(1):3-25, 1992.

Per-Ake Larson, Jonathan Goldstein, and J ingren Zhou. Transparent mid-tier database
caching in sql server. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pages 661-661, 2003.

23

http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

George Lawton. What lies ahead for cellular technology? IEEE Computer, 38(6):14—17,
2005.

U. Manber. Finding similar files in a large file system. In Proceedings of the USENIX Winter
1994 Technical Conference, pages 1-10, San Fransisco, CA, 17-21 1994.

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Inc., 2001.

A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network file system. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles, Chateau Lake
Louise, Banff, Canada, October 2001.

MySQL 5.0 Reference Manual. MySQL AB, October 2006.

Shamkant B. Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical partitioning
algorithms for database design. ACM Transactions on Database Systems, 9(4):680-710,
1984.

Timo Ojala, Jani Korhonen, Tiia Sutinen, Pekka Parhi, and Lauri Aalto. Mobile kirpit:
A case study in wireless personal area networking. In MUM ’04: Proceedings of the 3rd
International Conference on Mobile and Ubiquitous Multimedia, pages 149-156, 2004.

Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In Proceedings
of the FAST 2002 Conference on File and Storage Technologies, 2002.

Michael Rabin. Fingerprinting by random polynomials. In Harvard University Center for
Research in Computing Technology Technical Report TR-15-81, 1981.

Murali Rangan, Ed Swierk, and Douglas B. Terry. Contextual replication for mobile users. In
Proceedings of the International Conference on Mobile Business (ICMB’05), pages 457—463,
Synday, Australia, July 2005.

Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan. A framework for evaluating storage
system security. In Proceedings of the FAST '02 Conference on File and Storage Technolo-
gies, pages 15-30, Monterey, CA, January 2002.

Secure Hash Standard (SHS). Technical Report FIPS PUB 180-1, NIST, 1995.
Secure Hash Standard (SHS). Technical Report FIPS PUB 180-2, NIST, August 2002.

Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael Stonebraker, and Andrew Yu.
Data replication in mariposa. In ICDE ’96: Proceedings of the Twelfth International Confer-
ence on Data Engineering, pages 485—494, New Orleans, LA, February 1996.

Swaminathan Sivasubramanian, Gustavo Alonso, Guillaume Pierre, and Maarten van Steen.
Globedb: Autonomic data replication for web applications. In WWW °05: Proceedings of the
14th International World-Wide Web conference, May 2005.

24

[49] Neil T. Spring and David Wetherall. A protocol-independent technique for eliminating re-

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

dundant network traffic. In Proceedings of ACM SIGCOMM, August 2000.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and
Carl H. Hauser. Managing update conflicts in bayou, a weakly connected replicated storage
system. In SOSP ’95: Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, pages 172—182, December 1995.

Niraj Tolia and M. Satyanarayanan. No-compromise caching of dynamic content from rela-
tional databases. Technical Report CMU-CS-06-146, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, August 2006.

Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan, Brad Karp, Adrian Perrig, and
Thomas Bressoud. Opportunistic use of content addressable storage for distributed file sys-
tems. In Proceedings of the 2003 USENIX Annual Technical Conference, pages 127-140,
San Antonio, TX, June 2003.

Niraj Tolia, Jan Harkes, Michael Kozuch, and Mahadev Satyanarayanan. Integrating portable
and distributed storage. In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies, San Francisco, CA, March 31 - April 2, 2004.

TPC Benchmark App (Application Server): Specification. Transaction Processing Perfor-
mance Council, San Francisco, CA, 1.1.1 edition, August 2005.

A. Tridgell and P. Mackerras. The rsync algorithm. Technical Report TR-CS-96-05, Depart-
ment of Computer Science, The Australian National University, Canberra, Australia, 1996.

Qingsong Yao, Aijun An, and Xiangji Huang. Finding and analyzing database user sessions.
In 10th International Conference Database Systems for Advanced Applications, pages 851—
862, Beijing, China, April 2005.

Markos Zaharioudakis, Michael J. Carey, and Michael J. Franklin. Adaptive, fine-grained
sharing in a client-server oodbms: a callback-based approach. ACM Transactions onn
Database Systems, 22(4):570-627, 1997.

Bruce Zenel and Andrew Toy. Enterprise-grade wireless. ACM Queue, 3(4):30-37, 2005.

25

	1 Introduction
	2 Background
	2.1 Wireless Wide-Area Networks
	2.2 Content Addressable Storage
	2.3 Database Access APIs

	3 Design and Implementation
	3.1 Proxy-based Transparency
	3.1.1 Application Transparency
	3.1.2 Database Transparency
	3.1.3 Adaptive Interpositioning

	3.2 Commonality Detection
	3.2.1 Exploiting Structure in Data
	3.2.2 Generating Compact CAS Descriptions

	3.3 Creating Partial Client Replicas
	3.3.1 Hoard Granularity
	3.3.2 Database Hoard Profiles
	3.3.3 Tools for Hoarding

	3.4 Refreshing Stale Client Replicas

	4 Evaluation Approach and Setup
	5 Microbenchmarks
	5.1 Results

	6 The MobileSales Benchmark
	6.1 Benchmark Setup
	6.2 Laptop: Full Hoard Results
	6.3 Laptop: Partial Hoard Results
	6.4 PDA: Full Hoard Results
	6.5 PDA: Partial Hoard Results
	6.6 Summary

	7 Related Work
	7.1 Relaxing Consistency
	7.2 Mobile Database Systems
	7.3 Hash-based Systems

	8 Future Work and Conclusion

