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Abstract

Being able to animate a human character in a way that does not require the exper-
tise of a professional animator can be useful in many different applications: children
would be able to animate stories, witnesses would be able to visually describe an acci-
dent to lawyers, football fans would be able to re-produce their favorite football plays.
These applications and others like them have motivated this thesis: it focuses on the
development of methods that given a sketch of the desired motion, can interactively
create a physically realistic motion that matches that sketch.

This problem is very hard to solve in part because human-like characters are
high-dimensional and therefore the space of their motions also appears to be high-
dimensional. However, the high dimensionality of the problem is an artifact of the
problem representation because most dynamic human motions are intrinsically low-
dimensional with legs and arms operating in a coordinated way. For example, six to
eight dimensions are enough to represent a human jump that looks quite similar to the
original high-dimensional version.

In this thesis, we experiment with two different approaches that use this obser-
vation to build a compact (reduced-space) representation of the motion based on
available motion capture data. In the first part of the thesis we build a continuous
low-dimensional representation of the desired motion. By confining the solution to
a smaller search space, we are able to synthesize physically realistic motion for a
human character that matches a rough sketch provided by the user.

In the second part of the thesis, we build a discrete reduced-space representation
of the desired motion. This representation can be viewed as a combination of the
motion graph and interpolation techniques. The final motion is an interpolation of k
time-scaled paths through the motion graph. We assess its physical correctness using
our analysis of the physical correctness of interpolated motions. The optimization
in the discrete space supports interactive frame rates and allows for the synthesis of
less dynamic motions and motions that are sequences of different behaviors. We also
demonstrate how to search a motion graph of a reasonable size for an optimal (or
nearly-optimal) solution.

For both, the continuous and discrete optimization approaches the synthesized
motion is likely to contain natural coordination patterns because the solution is con-
strained to a much smaller search space computed based on motion capture data. This
objective is difficult to describe mathematically and is often not achieved when opti-
mizing in the full search space. In the last chapter of the thesis, we compare the two
approaches and provide some intuition as to when one is more applicable than the
another.
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Chapter 1

Introduction

Intuitive interfaces for animating human characters would allow children to tell stories,
sport fans to visually describe a football play or witnesses to describe an accident to
lawyers. In games, intuitive interfaces would allow a motion of the character through
a complex environment to be specified by simply sketching a path. These applications
and others like them motivate our work. We would like to enable naive users to create
animations of complex characters, such as humans, in an easy and intuitive way. We
therefore focus on interfaces that require users to provide only a small amount of informa-
tion to describe the desired motion. That information should be specified in an intuitive
way that does not require learning complicated animation systems such as those used by
professional animators. For example, a human animation might be created by posing an
articulated doll or sketching a path of the character (Figure 1.1). The doll interface might
allow children to use animation as an expressive tool for storytelling. The sketch interface
might be useful for guiding characters in strategy games.

Given a sketch of the desired motion, our system should interactively create a motion
that matches that sketch. Figures 1.2– 1.3 shows a few examples. Our techniques should
satisfy the following three requirements:

• Synthesize a physically realistic and natural looking motion.
• Animate a character with a plausible number of degrees of freedom for a human.
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• Match a rough sketch from the user.

In addition, we would also like our techniques to satisfy the following three properties:

• Support an interactive interface where the user refines the motion after viewing it.
This requirement implies that the motion should be synthesized within a few min-
utes.

• Support less dynamic and more stylized motions.
• Support complex motions that involve more than one behavior (for example, a walk

with few jumps).

Figure 1.1: (a) The Doll Interface created at Princeton University. This interface allows
novice users to easily pose a wooden doll in any configuration. Two cameras are then used
to capture the 3D pose of the doll [1]; (b) Another intuitive interface would be to have
the user specify the sketch of the path of the character through a complex environment or
specify just the start and end of the path.

This problem is very hard to solve in part because it is very high dimensional. About
60 degrees of freedom are required to represent the pose of a humanlike character at each
point in time (Figure 1.5). For an animation with T frames this results in 60T unknown
variables each of which is a continuous variable defined on an interval of the real line.

As we discuss in this thesis, the high dimensionality of the problem is, however, an
artifact of the problem representation. Most dynamic human motions are intrinsically
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Figure 1.2: Synthesizing a vertical jump with a 360o turn. (First row) Sketch of the desired
motion created by linearly interpolating start and end poses provided by the user. (Second
row) Synthesized, physically correct motion.

low dimensional with legs and arms operating in a coordinated way as we will show in
Chapter 3. For example, six to eight dimensions are enough to represent a human jump that
looks quite similar to the original high-dimensional version. In this thesis, we experiment
with two different approaches that exploit this observation to build a compact (reduced-
space) representation of the motion based on available motion capture data. In Chapter 3
we build a continuous low-dimensional representation of the desired motion. In Chapter 4
we build a discrete reduced-space representation of the desired motion. We outline these
two approaches in the next two sections of this chapter. Throughout the rest of the thesis
we will refer to the them as the “continuous optimization approach” and the “discrete
optimization approach.”

1.1 Continuous low-dimensional subspace

Continuous optimization [74] is a common technique for finding a motion when only a
rough sketch is provided. The user specifies a set of constraints (such as pose) and an
objective function. The optimization problem is then to minimize the objective function
while satisfying user-specified and physics constraints (which preserve the physical valid-
ity of the motion). Optimization-based techniques rely on physical laws to constrain the
search to the appropriate part of the state space.

Constrained optimization has been extensively explored as a technique for charac-
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Figure 1.3: (Left image) User specified the sketch of the path the character needs to follow;
(Right image) Synthesized motion.

ter animation. The optimization problem is usually represented in a continuous domain,
where the variables (or unknowns) of the optimization can take on any values from inter-
vals of the real line. For complex articulated characters such as humans, the optimization
problem is hard to solve for three reasons:

1. A large number of unknowns are required to realistically represent human characters
and as a result the search space is high dimensional.

2. A highly non-linear optimization function and constraints are generally required to
represent the physics of the character resulting in a complex landscape for the opti-
mization function and constraints. Most methods used to solve continuous optimiza-
tion problems make use of first and second derivatives of the objective function and
constraints and are therefore highly sensitive to the landscape of the optimization
function and the constraints.

3. Defining an objective function that reliably results in natural human motion for many
different human behaviors is difficult, particularly for less dynamic behaviors where
the physical constraints do not restrict the motion significantly.

We address these problems by confining the solution of the optimization problem to a
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Figure 1.4: (Left image) User specified the sketch of the path the character needs to follow
and two constraints—the character needs to pick up a bottle from the first table and put it
on the second table; (Right image) Synthesized motion.

low-dimensional space that captures the type of behavior desired by the user. For example,
if the user wants to generate a jumping motion, the subspace should be general enough to
generate jumping motions of various heights and lengths. We find this space by running
Principal Component Analysis (PCA) on a collection of poses from a few motions selected
from an existing motion capture database that are similar to the behavior desired by the
user. Each frame of the desired motion is then represented as a linear combination of six to
ten basis vectors computed by PCA. Optimization is used to find the linear coefficients that
relate these vectors and produce the desired motion. The optimization problem is solved
in the space of a lower dimensionality, but the linear coefficients specify a physically valid
motion for the full 60 DOF character.

By representing the problem in a low-dimensional space, we reduce the complexity
of the optimization problem. As a result, we are able to generate motion for complex
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Figure 1.5: Degrees of freedom of the character.

characters, such as humans, with physics constraints imposed and using highly non-linear
optimization functions, such as the sum of squared torques. The solution also contains
natural coordination patterns because they are enforced by the low-dimensional space.
This objective is difficult to describe mathematically and it is often not achieved when
optimizing in the full-dimensional space.

Although optimization in the lower-dimensional space makes the problem tractable,
constraints such as foot contact cannot always be satisfied exactly in this space. We solve
this problem by using inverse kinematics to meet the constraints exactly while including
a term in the optimization function that keeps the motion close to the low-dimensional
basis. The optimizer then solves for a motion that is very close to the low-dimensional
space, satisfies all the user-specified and physics constraints and minimizes such criteria
as energy expenditure. We demonstrate the power of this approach through a number of
different examples (Figure 1.6) and compare them to ground truth motion capture data.

All three of the properties we listed as required in the problem statement are satisfied
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Figure 1.6: Synthesized motions: walking, running, jumping between stepping stones and
a back flip.

with this approach: it generates a physically realistic motion for a human character and
the motion matches the rough sketch provided by the user. However, not all the properties
listed as desired are satisfied. The algorithm runs at interactive frame-rates only for very
short motions. The running time of the algorithm is somewhere from three minutes to an
hour depending primarily on the length of the motion and some other parameters. Because
the motion is computed by minimizing a physics-based objective function (such as energy)
this approach is most suitable for dynamic motions. The lower-dimensional space limits
the solution to behaviors similar to the one that was used to compute it. Therefore motions
of only a single behavior can be computed in each low-dimensional space.

1.2 Discrete low-dimensional subspace

Motion graphs are another common way to solve for a desired motion based only on a
rough sketch [41, 6, 33, 38, 6, 7]. Given a database of human motions, a motion graph
is constructed by finding natural transitions between different poses in the database. A
motion can then be generated simply by traversing a path through the graph. Figure 1.7
gives an example of a simple motion graph constructed from two walking motions and
also shows an example of a path through the motion graph. A path through the graph can
be formally defined as an ordered sequence of poses, where any two consecutive poses are
connected by an edge in the graph.

Discrete search techniques can be used to search a motion graph for a motion that
satisfies user-specified constraints. Because the solution is constrained to a sequence of
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Figure 1.7: (a) Simple motion graph for two walking motions. States A1 and B1 are similar
and therefore two transitions are added to the motion graph: a transition from state A1 to
state B2 and a transition from B1 to state A2; Transitions are shown by dashed arrows.
(b) The motion is generated by traversing the path through the motion graph shown in (a).
The X axis represents the time of the synthesized motion and the Y axis represents an
index of the frames of the motions in the database.

motion segments from the motion capture database, a motion graph provides a compact
representation of a human motion. This representation, however, is quite restrictive. For
example, it would be impossible to synthesize a motion for picking up a cup from a table
that is 1.0 meter high if the database contains only motions for picking up a cup from
tables that are 0.5 and 1.5 meters high.

To relax this restriction, we instead consider a more general discrete low-dimensional
representation of the data. The new motion is an interpolation of two or more motions,
where each motion is generated by traversing a path through the motion graph. More
formally, each pose of the new motion, Pnew(t), is represented as an interpolation of k

poses from the motion capture database:
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Pnew(t) = P1(t)w1 + P2(t)w2 + . . . + Pk(t)wk. (1.1)

where, Pi(t) are poses from the motion capture database and wi are weights that interpolate
these poses. Any two consecutive poses in each Pi(t) must be connected by an edge in the
motion graph. In other words, each Pi(t) is a path through the motion graph. Interpolation
weights can be constant or can be a function of time. In our implementation we want to
synthesize motions of multiple behaviors and therefore we allow weights to change with
time. We also allow for time-scaling of these paths which is often required to synchronize
interpolated motions. This representation, therefore, can be viewed as a combination of
motion graph and interpolation techniques. The final motion is an interpolation of k time-
scaled paths through the motion graph. Figure 1.8 shows an example of two paths through
the motion graph that are interpolated to create the desired motion.

Why is this a good representation?

• Because the new motion is computed by interpolating existing poses from the mo-
tion capture database, it is likely to be natural looking. Interpolation is a very simple
and yet a very powerful technique for generating motions that are variations of mo-
tions in the database. Interpolation has been shown to produces surprisingly natural
results. In Chapter 5 we analyze interpolated motion for physical correctness and
show that interpolation produces motions that are close to physically correct in many
cases. This makes interpolation a good technique for creating new human motions
that are close to physically correct.

• The search space is greatly reduced from the full 60 dof search space. If we were
to discretize each of the 60 degrees of freedom of the character into 100 values, we
would have 10060 possible poses for this character. Many of these poses, however,
are not natural. The motion capture database at Carnegie Mellon University [2]
(which is considered quite big) contains only about 5 ∗ 105 poses (assuming that
each motion is sampled at 30 frames per second) and even then many of these poses
are quite similar despite an attempt to put a wide variety of human motions into the
database. By representing a new motion as an interpolation of existing poses, we
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Figure 1.8: A database consisting of five motions: three walks and two jumps. For this
example, we assume that k = 2 in equation 1.1. The resulting motion is an interpolation of
two paths through the motion graph, P1(t) and P2(t). The orange curve represents P1(t)

and the purple curve represents P2(t). The X axis represents the time of the synthesized
motion and the Y axis represents an index of the frames of the motions in the database.
P1(t) and P2(t) can transition from one motion to another independently of each other as
each is just following a path through the motion graph.

greatly reduce the number of possible poses, and also explore a higher percentage
of natural looking poses.

• This representation is more general than motion graphs because it can generate vari-
ations of motions in the motion capture database. It is more general than existing
interpolation techniques because it can generate complex motions that involve more
than one behavior and does not require motions to be preprocessed a priori into short
clips of similar structure.

This representation is less general than the continuous space described in the previ-
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ous section because it is restricted to interpolation of sample points used to construct
the space (see Chapter 6 for a more detailed comparison of discrete and continuous
spaces). It is, however, more compact than the continuous space because it encodes
the dynamics of the motions.

• We can use discrete search techniques to solve this problem. Because optimization
in a discrete domain does not require derivatives of the constraints or the optimiza-
tion function it is less sensitive to the landscape of the optimization function than
continuous optimization. Discrete optimization can, therefore, more gracefully han-
dle highly non-linear objective functions and constraints. Discrete search finds a
global minima (or a close approximation to it) and as a result will not get stuck in
bad local minima as continuous search on a 60 dimensional space often does. On
the other hand, the global characteristic of discrete search restricts the size of the
search space that can be efficiently searched. We greatly decrease the size of the
search space by representing the unknowns as an interpolation of existing poses, by
compressing the motion graph into a practically equivalent but much smaller graph
and by developing an informative heuristic function that focuses the search efforts
only on relevant parts of the graph.

To assess the physical correctness of the resulting motion, we analyze the physical
correctness of interpolated motions in Chapter 5 [63]. This analysis studies the interpo-
lated motion in terms of a number of basic physical properties: (1) linear and angular
momentum during flight; (2) foot contact, static balance and friction with the ground dur-
ing stance; (3) continuity of position and velocity between phases. The analysis shows that
with a few simple modifications to the straightforward interpolation technique proposed
by others, we can prove that these physical properties are satisfied for a wide range of
different kinds of motions. The interpolated motion will satisfy these physical properties
if the motions used for interpolation do not include significant rotation during the flight
phase (runs, forward and vertical jumps, for example), rotate around approximately the
same principal axis by approximately the same amount (jumps with turns, for example) or
have no flight phase (walks or kicks, for example). In Chapter 4 we show how this analysis
applies to the framework of interpolation described by equation 1.1.
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As with continuous optimization, optimization in our discrete space also satisfies the
three required properties: it generates a physically realistic motion for a human character
and the motion matches the rough sketch provided by the user. In contrast to optimization
in the continuous space however, discrete optimization also satisfies the other three desired
properties: it works at interactive frame rates, it supports less-dynamic or more stylized
motions, and it can generate motions that consist of multiple behaviors. Our experiments
show that it usually takes between few seconds to few minutes for the discrete optimization
to generate a solution. Its runtime depends on the length of the desired motion and the
size of the database. The discrete optimization method has other disadvantages when
compared to continuous optimization however. When generating a short, single-behavior
motion, discrete optimization lacks the generative power of the continuous optimization
method: the latter is capable of generating motions whose frames are more than just the
interpolation of existing frames in the motion capture database.

Figure 1.9 offers a graphical explanation of the differences between the two meth-
ods. The continuous optimization approach constructs a low-dimensional space by treat-
ing poses in the sample motions as independent samples. It only considers correlations
between joint angles in the same pose and not how they change with time. This corre-
sponds to Figure 1.9(a). The discrete optimization approach, on the other hand, considers
not only how the joint angles relate to each other within the same pose but also how they
change with time. The poses that it considers are the interpolations of the motion graph
poses, the transitions that it considers are the interpolations of the motion graph transi-
tions. This is graphically shown in Figure 1.9(c). As a result, the space constructed by
the continuous optimization approach contains more novel motions but is also larger and,
consequently, harder to optimize in than the space constructed by the discrete optimization
approach. We provide more detailed comparison of two spaces in Chapter 6.

The continuous and discrete approaches are two points in the spectrum of all possi-
ble approaches. Figure 1.9(b) shows that we might consider developing a method that
compromises between our two proposed methods by taking into account the dynamics of
the joint angles in a short-term window in time. Figures 1.9(d-f) suggest that it might be
useful to consider splitting joint angles within the same pose into two or more sets, for
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example, lower body and upper body joint angles (see for example work of Ikemoto and
Forsyth [25]). The spaces for each set can then be constructed independently and the full
body motion is the result of combining the searches in each of the spaces.

The structure of the thesis document is as follows. The next chapter reviews the related
work. Chapter 3 provides the details of our continuous optimization algorithm and Chap-
ter 4 provides the details of our discrete optimization algorithm. Chapter 5 provides the
details of the analysis of the physical correctness of interpolated motion. Chapter 6 dis-
cusses in detail the differences between our two methods and concludes with a summary
of the contributions of the thesis.
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Figure 1.9: A graphical representation of the differences in how the spaces are constructed
by the two approaches. The continuous optimization approach considers correlations be-
tween joint angles only within the same pose (the graph in (a)). The discrete optimization
approach considers the relationship between angles within the same pose and how they
change with time (the graph in (c)). The graphs in (b,d-f) suggest other alternatives. The
methods in (b) and (e) would analyze correlations between joint angles in poses that are
within a short-term window in time. The methods portrayed in (c-e) would analyze upper
and lower body joints separately.
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Chapter 2

Related work

We first review the prior research in continuous constrained optimization used for the syn-
thesis of a human character animation. This research is related to our continuous represen-
tation (Chapter 3). We then review the prior work in the interpolation of human motions
and in motion graphs. This work is relevant to our discrete optimization approach (Chapter
4) and to the analysis of physical correctness of interpolated motions (Chapter 5).

2.1 Continuous constrained optimization

Constrained optimization techniques were first introduced to the graphics community by
Witkin and Kass [74]. They demonstrated the viability of this approach with a jumping
Luxo lamp; its motion was quite compelling as it crouched in anticipation of a jump and
compressed to absorb the impact. The user specified the start pose, end pose, and a physi-
cally based objective function; the optimizer computed the details of the motion. Despite
this promising beginning, optimization has proven difficult for complex articulated char-
acters, and subsequent research has focused on ways to make the approach viable for these
more complex systems. Although no systematic studies have yet been published, the prob-
lem appears to be made more difficult by higher degree-of-freedom systems, physics con-
straints, torque-based optimization functions, and longer animations while domain knowl-
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edge in the form of existing control laws, motion data, or a close initial guess make the
problem more tractable.

One way to keep the problem tractable is to reduce the number of degrees of freedom.
Popović and his colleagues [54] developed a interactive system that gave the user fine
control over the motion of a single rigid body. Their system was able to produce a won-
derful example of a hat spinning as it was tossed onto a hat rack. A number of researchers
have shown that the freefall portion of a dive can be efficiently optimized for a simplified
character [44, 10, 4]. Huang and his colleagues [23] computed the motion of characters of
similar complexity performing such actions as weight lifting and pushups.

Simplifying a complex character also simplifies the problem: Popović and Witkin [55]
showed that significant changes to motion capture data can be made by manually reducing
the character to the degrees of freedom most important for the task. The optimized motion
was then mapped back up to the full character. Our continuous optimization approach [64]
is similar in that we also perform the optimization in a lower degree of freedom space, but
we find that representation automatically and the motion we compute is physically correct
for the full 60 DOF character.

Human motion with many degrees of freedom can be optimized when the animator
provides closely spaced keyframes without exact timing information [45]. A related prob-
lem is dynamic filtering where an existing motion is optimized to make it physically real-
istic. In this formulation, the original motion can be thought of as a very closely spaced set
of keyframes that function as soft constraints [11, 75, 53]. Short segments of motion can
be computed for characters with many degrees of freedom as Rose and his colleagues [61]
demonstrated when they computed optimal transitions between human motion segments
that began and ended with different but similar poses.

Physics constraints and an optimization function based on torque often make the prob-
lem more difficult to optimize. In contrast, purely kinematic techniques give the anima-
tor interactive control for making significant changes to the motion [17, 40]. Simplified
physical constraints also create tractable problems. Liu and Popović [43] show that some
dynamic effects can be preserved by enforcing patterns of linear and angular momentum
that do not require the computation of such dynamic parameters as contact forces and joint
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torques.

If the dynamics of the system can be made more efficient, the search process also
becomes more efficient. Fang and Pollard [13] derived an algorithm for efficiently com-
puting first derivatives of a broad range of physics constraints. Because their system never
computed torques, they used a sum of weighted, squared accelerations as an optimization
function. They synthesized swinging and leaping motions for characters having from 7
to 22 degrees of freedom. Grzeszczuk and his colleagues [19] developed a neural net-
work approximation of dynamics for a number of systems and used that approximation in
the optimization step to reduce the computational cost of the gradient search. Outside of
character animation, reduced order models of dynamics have been explored extensively in
computer graphics and other fields (e.g., [51] [26] [35]), including for their use in speed-
ing up optimization (e.g., [57]). In our work, we do not simplify our representation of
the dynamics of the system (inverse dynamics calculations are performed in the high-
dimensional space); instead we reduce the dimensionality of the configuration space of
the character that is explored during optimization.

Work in biomechanics and robotics (Pandy and Anderson [5, 47], Hardt [21]) can solve
the optimization problem in a high-dimensional space when computing short motion seg-
ments of a single behavior (for example one walk cycle). These systems usually pro-
gram the behavior specific details into the system, such as the fact that the legs and arms
move together during a jump. In our work we solve the optimization problem in a low-
dimensional space which is also designed for a particular single behavior, but we find this
space automatically from examples of motion capture data.

In work done in parallel with our continuous optimization approach, Sulej-
manpašić [68] showed that adaptation of ballistic motions with full physics is possible for
high DOF characters if careful attention is paid to details such as proper variable scaling
and initialization. Sulejmanpašić also explored using PCA on one or two captured motions
to reduce the dimensionality of the search space, but did not find it to be effective, in part
because reducing dimensionality below 16 DOF made it difficult to satisfy constraints dur-
ing optimization. In our continuous optimization approach, we show that by constructing
a basis set from multiple examples of a behavior and by adding inverse kinematics (IK) to
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the optimization process, a smaller number of DOF can be used successfully even without
a good initial guess. We speculate that our use of PCA was successful while theirs was not
because we used several examples of the desired behavior to create the basis while they
used only one.

Finally, we note that many researchers in computer graphics, robotics, computer vi-
sion, machine learning and biomechanics have also explored the use of dimensionality
reduction techniques to aid in clustering, modelling, and other processing of motion (see,
e.g., [27] [65] [12] [8] [41]).

2.2 Interpolation

Interpolation is a very simple and yet a very powerful technique for generating motions that
are variations of motions in the database. Perlin [52] proposed one of the first systems that
included interpolation. He used blending operations on a set of base motions to create new
motions and transitions between them. Wiley and Hahn [73] and Guo and Roberge [20]
used linear interpolation on a set of hand-selected example motions to produce modified
motions within that set. For example, Wiley and Hahn were able to interpolate among a set
of reaching and pointing motions to have the character point to other places in the space.
The set of example motions was quite small in this work as motion capture data was not
yet easy to obtain.

Rose and his colleagues [60] implemented a very impressive system that used radial
basis functions to represent motions for interpolation. The motions included a set of walks
and runs of varying speed and emotion. The key events in the motions were selected by
hand so that the motions could be appropriately aligned in time for interpolation.

Kovar and Gleicher [32] added a search technique for identifying a set of motions with
similar time events that could then be interpolated. They also presented techniques for
automatically registering the motions for interpolation [31].

Linear interpolation has been used extensively for creating transitions between mo-
tions [72, 60, 52]. Transitions are created by blending portions of two motions with a
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weight that changes over time.

Abe and his colleagues [3] used optimization to synthesize a family of highly dynamic
motions based on a given motion capture clip and then used interpolation to create inter-
mediate motions. They observed that the space of motions does not need to be sampled
very densely for the interpolation to produce good results.

All of these methods require a set of carefully crafted example motions of the same
behavior before interpolation. Our discrete search method also relies on interpolation to
synthesize variations of existing motions, but it does not require carefully crafted example
motions — it operates on the whole motion capture database. We also synthesize complex
multi-behavior motions rather than interpolating just single behaviors.

In most of the previous work, the weights that interpolate motions were found based
on user-specified parameters such as kick position, speed of the motions or their style. For
example, given a user-specified kick position, these methods would select a few motions
with similar kick positions and then compute weights that interpolate these motions based
on the difference between the kick positions in these motions and the desired kick position.
For our problem we need to compute a motion that follows user sketch, satisfies a set of
user specified constraints and minimizes some objective function (such as minimizing
energy). We also want this motion to be close to physically correct. Because current
interpolation approaches do not do any optimization (or search) it is not clear how to
extend them to solve this problem. Also, none of these methods consider the physical
correctness of the interpolated motion.

2.3 Motion Graphs

In contrast to interpolation approaches that are good at synthesizing short motions, motion
graphs are good at synthesizing long, multi-behavior motions and they do not require
motions to be split into similar structure motion clips. It is also possible to search motion
graphs for solutions that optimize some objective functions and satisfy user constraints.

Inspired by the technique of Schödl and his colleagues [66] that allowed a long video to
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be synthesized from a short clip, motion graphs were developed simultaneously by several
research groups in 2002 and extended in subsequent years.

Motion graph related approaches can be roughly divided into on-line and off-line ap-
proaches. In on-line approaches the motion is generated in response to current user input
(from a joystick, for example). These algorithms therefore do not need to worry about
synthesizing long motions that minimize an objective function and therefore they perform
only a very local search or no search at all—just pick an action from the current state that
matches user input the best. This is different from off-line search techniques where we
know the full motion specification beforehand and are interested in finding a solution that
matches this specification and minimizes some objective criteria – energy for example.
Our work falls into the category of off-line techniques.

A number of on-line approaches were created in the past few years. Lee and his col-
leagues [38] use a local search algorithm to generate motions at interactive rates for three
different user interfaces. Sung and his colleagues [69] use local search to generate mo-
tions for crowds. Gleicher and his colleagues [18] use a semi-automatic process to split a
corpus of motion capture data into a set of short clips that can be concatenated to create
a continuous stream of motions to synthesize motions for virtual environments. Mnardais
and his colleagues [46] present a real-time synchronization algorithm which in real time
automatically (based on contacts and priorities) detects which motions are incompatible
for blending.

Several on-line approaches are closely related to our work — they also combine motion
graph and interpolation techniques. Park and his colleagues [49, 48] manually preprocess
motion into short segments, arrange segments with similar structure into nodes in a graph.
They blend segments at each node and use local search to generate locomotion in real-
time. The graph construction was later automated by Kwon and his colleagues [34] for
locomotive motions. They proposed an automatic way for cutting motions into segments
and for grouping similar segments into nodes. In 2006, Shin and Oh [24] extended these
techniques to include more behaviors. They use a method similar to the one proposed
by [18] to semi-automatically build a fat graph in which a node corresponds to a pose and
its incoming and outgoing edges represent motion segments starting from and ending at
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similar poses. A group of similar motion segments leaving particular node are parameter-
ized and blended using traditional motion blending techniques.

The main difference from our work is that these techniques are tailored for interactive
joystick-like control—they do not do any search, they follow the graph based on current
user input (joystick for example) and interpolate motion segments leaving the current node.
Because there is no search, these methods are fast enough for continuous interactive con-
trol with a joystick. Our method is good for an optimal motion synthesis based on a sketch.
It is slower, but can compute a motion that matches a user sketch, satisfies user constraints
and minimizes an objective function. Also, the previous approaches build the graph with
contrived structure (edges correspond to similar motion segments) in a semi-automatic
way. Our method works on standard motion graphs. Also, we do not parameterize similar
motions to compute weights for interpolation. Weights are found as part of the search
process.

Therefore our method falls into the category of off-line search techniques. If the user
specification for the entire motion is known before the search starts then a motion graph
can be searched for a complete motion using global search techniques. A number of sub-
optimal algorithms were developed to search motion graphs for solutions at interactive
frame rates. Kovar and his colleagues [33] employed a branch and bound algorithm to
get an avatar to follow a sketched path. Arikan and Forsyth [6] created a hierarchy of
graphs and employed a randomized search algorithm for the synthesis of a new motion
subject to user-specified constraints. Pullen and Bregler [56] segmented motion data into
small pieces and rearranged them to match user-specified keyframes. In 2003, Arikan and
his colleagues [7] presented a new search approach based on dynamic programming that
supports user-specified annotations of the motion. Choi and his colleagues [9] presented
a scheme for planning natural-looking locomotion of a biped figure based on a combi-
nation of probabilistic path planning and hierarchical displacement mapping. Sung and
his colleagues [70] used probabilistic roadmaps and displacement mapping to synthesize
motion for crowds. Li and his colleagues [41] created a two level statistical model to pro-
duce a dance motion with variations in the details. Srinivasan and his colleagues [67]
pre-compute a mobility map that for every state in the motion graph encodes all locations
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the character can move to within a fixed number of “smooth” actions. At run-time they
perform a local greedy search for the best alternative based on the current goal.

To guarantee fast performance these approaches do not find optimal solutions but in-
stead use sub-optimal search techniques. To find an optimal solution at interactive frame
rates, Lau and Kuffner [37] manually created an abstracted behavior-based motion graph
with a very small number of nodes so that it can be searched efficiently. In later work [36]
they show how to pre-compute search trees for this behavior-based motion graph and use
them to make the search run even faster. This, later approach gives up optimality but for the
examples they presented in the paper the cost of the resulting solution is very close to an
optimal one. Lee and Lee [39] present a pre-computation method to compute a policy that,
for each possible control input and avatar state, indicates how the avatar should move. This
approach allows avatars to be animated and controlled interactively with minimal run-time
cost at the expense of memory and limitations in the possible control inputs.

In our work we compress the motion graph into an almost identical but much smaller
graph and develop informative heuristic functions that allow us to search the motion graph
as well as the interpolated motion graph for motions that are close to optimal. In the
results section of Chapter 4 we show the importance of finding nearly optimal solutions—
they are usually much more natural than sub-optimal ones because they avoid dithering
and inefficient motion strategies common in suboptimal solutions.

Also, the previously developed off-line based motion graph approaches essentially can
only re-sequence existing motion segments based on user-specified constraints. They can
not synthesize a motion that is a variation of existing motions. This restriction makes it
difficult to satisfy user constraints exactly. For example, it would be impossible to synthe-
size a motion for picking up an object from a table of a particular height if the database
does not contain a motion for exactly that height. In our discrete optimization approach
we overcome this problem by introducing an interpolated motion graph and showing how
to search it efficiently.
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Chapter 3

Motion synthesis in a continuous space

In this chapter we show how to build a continuous low-dimensional representation of a
human motion and use it to synthesize the desired motion. Continuous optimization [74]
has been a popular approach for finding a human motion when only a rough sketch is
provided. The optimization problem, however, is hard to solve in part because of its high-
dimensionality and difficulty in defining a good objective function that would result in
a natural looking motion. The algorithm described in this chapter tries to address these
issues. It is based on two observations. First, many dynamic human motions can be
adequately represented with only five to ten degrees of freedom. Second, motions with
similar behavior can be used to construct a low-dimensional space that can represent well
other examples of the same behavior. The algorithm therefore constrains the optimization
to this low-dimensional space. This makes the job of the optimizer much easier, and the
solution becomes more likely to be a naturally looking motion.

Fifty to sixty dimensions are often used to represent a high quality human motion.
For many behaviors, however, the movements of the joints are highly correlated. For
example, during a walk cycle, the arms, legs and torso tend to move in a similar oscillatory
pattern. As a result, the dimensionality of motions can be greatly reduced by applying a
simple dimensionality reduction technique such as PCA (Principal Components Analysis)
to poses taken from human motion sequences. Figure 3.1 shows the average squared angle
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error between a number of motions and their projections onto optimal low-dimensional
linear subspaces obtained using PCA. For the common human behaviors that we have
tested, the error becomes small for representations with more than five to ten dimensions.

Figure 3.2 compares the error of representing forward jump motions in six different
low-dimensional spaces. The error is averaged over twenty different jumping motions of
varying height and length. The low-dimensional space computed from the motion that
is being represented, (a), naturally provides the best representation. During the synthesis
process, however, the desired motion is not known and thus this space cannot be computed.
The low-dimensional space constructed from the motions of the same behavior (whether it
is just three similar motions as in (b) or a set of twenty motions as in (c)) can represent the
motion quite well with seven dimensions. The low-dimensional space computed from one
example of a given behavior, (d), requires higher dimensionality because it does not have
enough generality to represent other motions well. When we incorporate motions with
different behaviors, the required dimensionality of the space increases. A general mix of
150 motions, (e), however, provides a better representation than a behavior-specific rep-
resentation for the wrong behavior, (f). Figure 3.2 illustrates the results of dimensionality
reduction for forward jumping, but we have obtained similar results for other behaviors
such as running and walking.

A seven-dimensional space constructed from several motions of the same behavior
generally represents the desired motion well. When visual artifacts remain in this rep-
resentation, they are usually the result of contacts. For example, during the initiation of
a forward jump, both feet are planted on the ground which constrains the relationship
between the hip, knee, and ankle angles. This constraint may not be represented with suf-
ficient accuracy in the low-dimensional space even though that space does model the basic
fore/aft swinging of the arms and legs. We incorporate inverse kinematics as part of our
optimization approach to reduce artifacts caused by this limitation (Section 3.1.2).

In Section 3.2, we demonstrate that a low-dimensional space constructed from a few
motions of a particular behavior, such as spaces (b) and (c), can be used to synthesize
physically realistic, natural-looking motions of same behavior but with quite different pa-
rameters (e.g., length, height or degree of turn for jumping or step length for running).

24



Figure 3.1: Error between the original motion and the corresponding k-dimensional rep-
resentation for a number of behaviors: running, walking, jumping, climbing, stretching,
boxing, drinking, playing football, lifting objects, sitting down and getting up. The error
was averaged over ten to twenty motions within each behavior. Each motion was repre-
sented as a collection of poses. The k-dimensional representation was computed by first
using PCA to compute principal components for the set of full-dimensional poses and then
projecting each full-dimensional pose onto the k components with the most variation in the
data. The error is a squared error between the angles of the full-dimensional motion and
its k-dimensional representation averaged over all joint angles and all poses in the motion.
The curve color gives an approximate measure of the visual quality: red color indicates
motions with large visual artifacts; blue color indicates motions that look very similar to
the full-dimensional motion except for some sliding of the feet; and green color indicates
motions that look nearly indistinguishable from the full-dimensional motion.
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Figure 3.2: Motion representation error of a full-dimensional motion in a k-dimensional
space averaged over twenty different jumping motions of varying height and length. For
each of the motions, the k-dimensional space is spanned by k principal components that
are computed from: (a) the motion that is being represented, (b) three jumping motions that
are visually similar to the motion being represented, (c) a set of twenty jumping motions,
(d) a single mid-range jumping motion, (e) a mix of 150 behaviors (walking, running,
jumping, climbing, punching, dribbling a basketball, lifting, drinking and other common
human activities) and (f) twenty running motions. The sets of motions used for construct-
ing spaces (c-f) are the same for each of the twenty motions. As in Figure 3.1, each curve
is colored to indicate the visual quality.
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Figure 3.3: Synthesizing a vertical jump with a 360o turn. (Top row) Motion capture
data used to compute the low-dimensional space for the optimization: a forward jump,
a forward jump with a 90o turn, and a vertical jump with a 180o turn. (Second row)
Initial guess. Constraints were set on the first and the last pose of the motion and on the
position of the feet during the stance phases. The duration of each stance phase and the
desired height of the jump were also specified. (Third row) Synthesized motion. (Last
row) Motion capture data of a similar motion for comparison.

A low-dimensional space constructed from one example of a particular behavior, such as
space (d), may produce unnatural motions. A low-dimensional space constructed from
motions with different behaviors (such as spaces (e) and (f) in Figure 3.2) requires solv-
ing an optimization problem of higher dimensionality which in our experience does not
produce reliable results. In a higher-dimensional space, the problem is harder to solve and
more dependent on having an optimization criterion which defines natural human motions,
something that is difficult to define mathematically.

The next Section, 3.1, provides the details of the optimization problem in the continu-
ous low-dimensional space. Section 3.2 describe the experimental results and Section 3.3
summarizes our approach.
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3.1 Low-dimensional Optimization

To use this system, the user specifies a rough sketch of the desired motion, Ms, and the
constraints that should be enforced. The user also selects the motions used to define the
low-dimensional space for the desired motion. Constrained optimization is then used to
automatically find a motion that minimizes some objective function subject to satisfying
the user-specified and physics constraints (Figure 3.3).

We formulate the optimization problem by solving for the joint angles and the root
position of the character’s motion M(t) as opposed to solving for a force/torque function
T (t) where T (t) = {τ1(t) . . . τn(t)} and τi(t) is the torque applied to joint i at time t.
Inverse dynamics equations are used to compute the force/torque function T (t) at any
given time t. A number of constraints must be set on the force/torque function to preserve
physical validity. The constraints are enforced at discrete times. The motion may be
physically infeasible in between these points, but these constraints are enough to generate
visually pleasing motion.

Because the unknown of the optimization problem, M(t), is expressed in a low-
dimensional space, it is easy to make this formulation of the optimization problem low-
dimensional. Computing a reasonable initial guess for a motion M(t) from a user sketch
is also easier than computing a reasonable initial guess for the force/torque function T (t).
Finally, inverse dynamics is usually easier to solve than forward dynamics [Featherstone
1987, page 79].

3.1.1 Low-dimensional Problem Representation

Each motion M consists of a sequence of frames M(t) = {p(t), Q(t)}, where Q(t) =

{q1(t) . . . qn(t)} are the angles of all of the joints (including the root orientation) and p(t)

is the position of the root segment. Q(t) is a point in an n-dimensional space. Let us
consider a d-dimensional linear subspace of the original space that is spanned by unit
length orthogonal vectors, B1 . . . Bd, with origin Qm = (1/T )

∑T
i=1 Q(ti), where T is the

number of time samples. Then, we can approximate Q(t) by a linear combination of the
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basis vectors B1 . . . Bd using only d scalar coefficients A1(t) . . . Ad(t), as:

Q′(t) = Qm + B1A1(t) + B2A2(t) + . . . + BdAd(t). (3.1)

PCA is a technique that finds B1 . . . Bd so that the error E =
∑T

i=1 (Q(ti)−Q′(ti))
2 is

minimized [28].

Given motions MB1 . . . MBK , selected by a user, we use PCA to find the d-dimensional
subspace, L, that represents them with the smallest error E. If we now use Equation 3.1
for the representation of M(t), then the unknowns of the optimization are root position
p(t), the mean of the joint angles Qm, and the coefficients A1(t) . . . Ad(t). We follow a
standard approach of representing each Ai(t) and p(t) using cubic B-splines. The root
position p(t) is only unknown during the stance phase; during the flight phase the position
of the center of mass (COM) of the character can be computed from the lift-off velocity,
and p(t) can then be computed from the COM position and the angles of the character.

The lower-dimensional space reduces the complexity of the optimization problem con-
siderably. Let K be the number of control points in a B-spline curve used to approximate
p(t) and either qi(t) or Ai(t). The full space has about (n+3)K unknowns (where n ≈ 60

for a human character), while the reduced dimensional space has (d+3)K +n unknowns,
with 7 < d < 9 for the examples in this work. Therefore, the number of unknowns is
reduced by a factor of six to seven, which in our experience results in significantly faster
and more consistent convergence of the optimization problem. In many cases, the mean of
the joint angles, Qm, can also be computed from example motions and excluded from the
optimization function, further reducing the number of the unknowns. However, we kept
Qm as an unknown in the examples reported here.

Because we include root orientation in the dimensionality reduction analysis, we first
preprocess all the motions by rotating them so that the character faces the positive Z di-
rection on the first frame of the motion. Keeping the root orientation in the basis worked
well in the examples we tried, but for some motions with significant change in orienta-
tion it may be better to treat root orientation as an additional variable and add 3K extra
parameters to the optimization problem.
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To estimate the dimensionality, d, of the linear subspace L we use a standard heuristic
[15]. We choose the smallest d such that:

Er =

∑d
i=1 λi∑n
i=1 λi

≥ 0.9 (3.2)

where λi, i = 1 . . . n, are the eigenvalues computed by PCA and sorted in decreasing order.
Because the variance along the i-th principal component is given by the i-th eigenvalue,
Er is an indicator of how much information is retained when all data is represented in the
optimal d-dimensional linear subspace.

3.1.2 Inverse Kinematics for Limbs in Contact

In a low-dimensional space, the constraints that relate two or more points on the character’s
body may not be satisfied exactly. Consider, for example, the contact constraints on the
character’s feet during the double support phase of a jump. The low-dimensional space
may not include a pose that would exactly satisfy constraints for both feet (or the pose may
be unnatural). We address these problems by using inverse kinematics (IK) to transform
the degrees of freedom in the optimization to a set that can be independently specified
while maintaining constraints. IK is used to represent the angles for the arms or legs that
are in contact with the environment. Intuitively, this allows the optimizer to satisfy contact
constraints exactly by allowing the resulting motion to move slightly outside the space
specified by the basis.

Consider a human arm consisting of three limb segments: upper arm, lower arm and
hand. It can be represented by a seven DOF kinematic chain with one spherical (three
DOF) joint at the shoulder, one at the wrist, and one revolute (one DOF) joint at the elbow.
When an arm is in contact with the environment, the position and the orientation of the
hand segment is fixed and the location of the shoulder joint is known. There is then a one
DOF redundancy in the seven DOF kinematic chain representing the arm. As was pointed
out by Korein and Badler [30] and later by Lee and Shin [40], this redundancy is in the
“elbow circle” of the arm; the elbow can rotate even when the hand is in contact and the
position of the shoulder joint is fixed. In this case all seven angles for the arm linkage can
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be analytically expressed through only one parameter, P , representing the elbow rotation
(see [71] for details).

Let Qu(t) = {q1(t)...qk(t)} be all the angles of the character joints excluding the joints
that belong to the arms and legs that are in contact with the environment. As before, we
represent these angles using a d-dimensional representation:

Qu(t) = Qm + B1A1(t) + B2A2(t) + . . . + BdAd(t) (3.3)

We represent the angles for all limbs (e.g., arms and legs) that are in contact with an
environment, Qk(t) = {qk+1(t)...qn(t)} using IK:

Qk(t) = F (P1(t), ..., Pr(t)) (3.4)

where r is the number of limbs in contact, F is the IK function and P1(t)...Pr(t) are free
parameters that define angles for the limbs in contact. Because there are four limbs (two
arms and two legs), we are adding at most 4K unknowns to the optimization problem.
When we use IK to compute some of the joint angles, those joint angles are no longer
constrained to the low-dimensional space. To compensate for this, we add an additional
term to the optimization function that favors poses in the low-dimensional space (see Sec-
tion 3.1.4).

The model we use of the human leg (upper leg, lower leg, foot and toe segments) is
similar in degrees of freedom to that of the arm except for the addition of the toe joint. If
both toe and foot segments are constrained then the orientation of the foot segment needed
for IK is known. If only the toe segment is constrained, then the angle between the toe
and the foot segments is treated as part of Qu(t) and the foot segment orientation can be
computed from this angle and the contact information given for the toe segment.

3.1.3 Constraints

This system includes two types of constraints: user-defined constraints that allow the user
to control the resulting motion and constraints that ensure physical validity of the motion.
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The most common user-specified constraints are pose constraints, contact constraints,
and time constraints. We used pose constraints to fix initial, final, and key postures, such as
a particular pose during the aerial phase of a back flip. The constraint poses are specified
in the full-dimensional space and then projected onto the low-dimensional space. We used
contact constraints to specify foot configurations for ground contact, and time constraints
were used to specify the durations of various phases of the motion. Some high-level user
controls, such as height or length of a jump, speed of a walk or height of a back flip were
also provided. If time was not provided and could not be computed from other constraints
(e.g. height of a jump), then it was set as an additional variable in the optimization.

Constraints on the physical validity of the motion are added automatically by the sys-
tem and are designed to preserve physical validity of the motion. They include joint angle
limits, torque limits, and constraints on aggregate force. Joint angle limits are straightfor-
ward. (The limits were estimated based on a large motion capture database.) Aggregate
force constraints are set as in Fang and Pollard [13], and include constraints for conser-
vation of momentum during flight, as well as constraints on ground contact forces. For
torque constraints, inverse dynamics allows us to compute torques for the character with a
single point of contact with the environment. When a closed loop is formed by two or more
simultaneous contacts, however, the problem is undetermined. We use the approximation
method proposed by Ko and Badler [29].

During the implementation we found it beneficial to run the optimization problem in
two steps: first, we solve a simpler problem with no constraints on torque limits and ag-
gregate forces; second, we solve a full problem with those constraints added. The solution
from the first optimization provided a good initial guess for the second optimization, mak-
ing it easier to solve.

3.1.4 Objective Function

In our implementation, the objective function, G(M), is a weighted sum of three compo-
nents:
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G(M) = wT GT (M) + wAGA(M) + wP GP (M) (3.5)

The component GT (M) minimizes the sum of squared torques:

GT (M) =

∫ n∑
i=1

(τ 2
i (t))dt (3.6)

The component GA(M) ensures smoothness of the joint angle trajectories and root trajec-
tory over time. It minimizes the sum of squared joint accelerations and sum of squared
root accelerations:

GA(M) =

∫
(p̈2(t) +

n∑
i=1

q̈2
i (t))dt (3.7)

The component GP (M) ensures that the resulting motion has correlations between the
angles and a distribution of poses around the mean pose similar to the ones found in the
motions used to construct the basis. When we run PCA on motions MB1 . . . MBK , se-
lected by the user, we obtain both the principal components of the d-dimensional linear
subspace L, as well as the variance of the data points in these motions along the principal
components, given by corresponding eigenvalues. The GP (M) component penalizes the
deviation of coefficients from zero in inverse proportion to the standard deviation along
the corresponding principal component:

GP (M) =

∫ d∑
i=1

(A2
i (t)/λi)dt (3.8)

From our experience, increasing the weight of the GT (M) component results in a
more realistic motion, but the optimization problem takes longer to converge. Increasing
the weight of the GA(M) component results in a faster convergence of the optimization
problem, but the motion may not be energy efficient and as a result may not look as good.
Increasing the weight of the GP (M) component results in a solution that more closely
resembles the basis motions. Decreasing the weight, on the other hand, usually results in a
solution that minimizes the sums of squared torques and accelerations better. The solution,
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however, may often look unrealistic (see Section 3.2). Optimizing in a low-dimensional
space as well as using the GP (M) term results in natural coordination patterns.

3.1.5 Implementation Details

In our implementation we used a sequential quadratic programming package, SNOPT [16],
a commercially available library that solves general nonlinear constrained optimization
problems. We also used a modeling language, AMPL [14], that allows the user to easily
formulate linear and nonlinear optimization problems in mathematical terms and automat-
ically generates code appropriate for various solvers.

AMPL uses automatic differentiation to compute derivatives for the optimization func-
tion and the constraints. Automatic differentiation takes as input a section of code that
computes the value of a function and outputs a new piece of code that computes analytical
derivatives for that function. Unlike numerical differentiation methods, automatic differ-
entiation is based on the chain rule computation of derivatives and is therefore considered
an analytical differentiation method. It yields exact derivatives within machine accuracy.

3.2 Experimental Results

In this section we analyze the performance of the algorithm and show a number of motions
generated for a human character with 60 degrees of freedom using our approach. For each
example, a user specified the start and end poses for the motion, the contact information
and the timing for the stance and flight phases. The user also selected a few motions from
the database that contained similar behaviors to the desired motion. Our system then auto-
matically found a motion that minimized the optimization function G(M) (Equation 3.5)
and satisfied the user-specified and the physics constraints. For all examples, the initial
guess was a linear interpolation of the parameters (angles, position, IK parameters) for the
starting and ending poses.

Each optimization took from three to sixty minutes to converge. The timing depends
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on many parameters: the length of the motion, the dimensionality of the low-dimensional
space, the weight of the energy component of the optimization function, GT (M), and
the intrinsic parameters set for the optimizer (e.g., the number of major iterations, which
we set to 1500). For example, when the problem was represented in a seven-dimensional
space all the jumping motions took less than ten minutes to converge with equal weight set
for both energy and smoothness components of the optimization function. Each jump was
about two seconds in length. All the experiments were run on a 3GHz Pentium 4 computer
with 1GB of RAM. The videos for most experiments is available in the following website:
http : //graphics.cs.cmu.edu/projects/lowd optimization/

The bias toward “realistically” looking motions. We found that optimizing in a
low-dimensional space as well as adding the GP (M) component to the optimization func-
tion biases the solution towards natural-looking motions. Optimizations run in higher-
dimensional spaces with the weight on the GP (M) component set to zero usually result
in a solution that minimizes the sum of squared torques and accelerations (GT (M) and
GA(M) components) better, but has unnatural visual artifacts.

We generated the same forward jump three times: first, by representing the problem
in a six-dimensional space with non-zero weight on the GP (M) component; second, by
representing the problem in a twenty-dimensional space with the same weight on GP (M)

component; third, by representing the problem in the same twenty-dimensional space with
zero weight on GP (M) component. The solution that we obtained in the first and the
second cases was natural looking, although running the optimization in higher dimensions
was less reliable in general. The solution in the third case did not look natural, despite the
fact that it was more optimal with respect to the GT (M) component. We observed similar
results for other experiments.

The generality of the low-dimensional space. The same low-dimensional subspace
can be used to synthesize a variety of motions. To demonstrate this, we used three different
jumps to find a basis: a forward jump, a forward jump with a 90o turn and a vertical jump
with 180o turn (Figure 3.3). We then synthesized a number of different jumps using that
basis, varying the length of the jump and the size of the turn. The synthesized motion of
the arms and legs is natural, and as the length of the jump increases it appears as if the
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character tries harder. We were also able to synthesize a high vertical jump with a 360o

turn (Figure 3.3) although the basis only contained a low vertical jump with a 180o turn. In
a separate set of experiments, we also combined twenty forward jumps (the same jumps as
were used in Figure 3.2) to compute a basis. According to equation 3.2 the dimensionality
of the basis was eight. Jumps with varying height and length could also be synthesized in
this space.

If the basis does not adequately represent the desired motion, the optimizer will pro-
duce a result that looks unnatural or violates the physics constraints. For example, we
synthesized a long jump using a basis computed from a very short jump. The resulting
motion looked physically realistic, but the arm motion was restricted in an unnatural way
because the low-dimensional space did not allow sufficient arm motion. Synthesizing a
jump using a basis computed from twenty running motions converged to an even more
oddly looking motion - the arms and legs of the character coordinated in the similar pat-
tern, as they would for a run.

Other motions. We demonstrate the generality of this approach by synthesizing addi-
tional behaviors: running, running across stones, walking, and an acrobatic back flip.

Running (Figure 3.4). We used eight forward running motions and one motion of run-
ning across stepping stones to find the basis. We then synthesized three running motions
with different step lengths, three motions that ran across stepping stones with varying
placement and speeds and one running motion with a jump over water.

Walking (Figure 3.5). We used seven forward walking motions and one walking motion
with the step over an obstacle to compute the basis. We synthesized three walks with
different step lengths, including an exaggerated walk with a very large step length. We
also synthesized two motions that stepped over obstacles of different heights.

Acrobatic Back Flip (Figure 3.6). We used one acrobatic back flip motion to compute
the basis and synthesized two back flips of different distances and heights.

User Control. The optimizer finds a motion that minimizes a given objective criterion
and is physically valid. Specifying additional constraints on the motion allows finer control
over the details of the motion. We synthesized a back flip with straight legs in the middle
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Figure 3.4: A forward run and a run across stepping stones.

Figure 3.5: A normal walk, a walk with an exaggerated step length, and motion capture
data of a walk with an exaggerated step length for comparison.

Figure 3.6: A back flip and motion capture data for comparison.
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of the flip by specifying a middle pose for the flip. We synthesized a run with a jump over
water where the user controls the spread of the legs by adding a straddle pose in the middle
of the jump. We also modified the style of the run over stepping stones by specifying two
additional poses to generate a run where the feet are raised higher.

3.3 Discussion

The key insights of the continuous optimization technique we have presented in this chap-
ter are that optimization of human motion can occur much more effectively in a lower-
dimensional space and that such a space can be easily created from motion capture clips
of similar behaviors. The low-dimensional space allows us to generate natural-looking and
physically valid motion for characters that have 60 degrees of freedom and only a rough
sketch as the initial guess. This approach has proven to be effective for a wide variety
of different human motions, both highly dynamic (back flip) and less dynamic (walking).
The approach is quite robust to the choice of motion clips that are used to form the lower-
dimensional space as long as they are not overly restrictive (e.g., a basis from just a single
motion) and are similar behaviors to the desired behavior. It provides good control for
the user, allowing him or her to specify the location of the footfalls for a path of stepping
stones or to specify an intermediate pose for the flight phase of a back flip.

Solving the optimization problem in an appropriate lower-dimensional space makes it
not only more likely that the optimizer will converge to a feasible solution but also more
likely that it will converge to a solution that matches the strategy a human would have used
to perform that task. This feature of our approach reduces the burden on the user because
fewer constraints are required to guide the optimizer. To generate a walk motion, for
example, Hardt and his colleagues had to specify symmetry and anti-symmetry constraints
for human joint angles and contact forces [22]. The in- and out-of-phase motion of the
walk was captured by our basis automatically, allowing us to generate a walk without
explicitly specifying these constraints.

In the examples presented here, the user selected the motions for the basis. This task
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was not burdensome and only required a few minutes of browsing a reasonably sized
database (such as the publicly available database at mocap.cs.cmu.edu). However, it
should be possible to search a database automatically for appropriate motions based on
the constraints on the desired motion provided by the user. Liu and Popović [43] solved a
related problem; their system searched a motion capture database for transition poses that
separated constrained and unconstrained phases. They used the following training param-
eters: flight distance, flight height, previous flight distance, takeoff angle, landing angle,
spin angle, foot speed at takeoff and landing, and the average horizontal speed. We believe
that a similar technique could be used to search the database for the motions required to
find the low-dimensional space. We have implemented a simpler algorithm that looks only
at contact information and the overall direction of the motion to select motions from the
database. We found that even this very simple approach generally selected appropriate
motions.
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Chapter 4

Motion synthesis in a discrete space

In this chapter, we explore a discrete representation of human motion. As with the con-
tinuous approach discussed in the previous chapter, the key insight is to restrict the search
space. The full search space for a human character with 60 degrees of freedom has 10060

possible poses if we discretize each degree of freedom of the character into 100 values.
The majority of these poses, however, are not natural. Instead, we would like to find a
representation of human motion that is compact and contains a high percentage of nat-
ural poses and natural velocities while avoiding unnatural poses. At the same time, the
representation should be general enough to represent a variety of human motions.

Motion graphs provide one compact representation of human motion [41, 6, 33, 38,
6, 7]. Given a database of human motions, a motion graph is constructed by finding sim-
ilar poses and creating transitions between these poses. The transitions are associated
with probabilities: the transitions between more similar poses receive higher probability
values, and the transitions between less similar poses receive lower probability values.
Figure 4.1(a) gives an example of a motion graph constructed from two walking mo-
tions. A new motion can be generated simply by traversing a path through the graph
(Figure 4.1(b)). A path through the graph can be formally defined as an ordered sequence
of poses, where any two consecutive poses are connected by an edge in the graph. Dis-
crete search techniques can be used to search the motion graph for a path that satisfies
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Figure 4.1: (a) Simple motion graph for two walking motions. States A1 and B1 are
similar and therefore two transitions are added to the motion graph: a transition from state
A1 to state B2 and a transition from B1 to state A2; (b) The curve represents a motion
that is generated by traversing a path through the motion graph shown in (a). The X axis
represents the time of the synthesized motion and the Y axis represents an index of the
frames of the motions in the database.

42



Figure 4.2: The database consists of five motions: three walks and two jumps. For this
example we assume that k = 2 in equation 4.1. The resulting motion is an interpolation of
two paths through the motion graph, P1(t) and P2(t). The orange curve represents P1(t)

and the purple curve represents P2(t). The X axis represents the time of the synthesized
motion and the Y axis represents an index of the frames of the motions in the database.
P1(t) and P2(t) can transition from one motion to another independently of each other as
each is just following a path through the motion graph.

user-specified constraints. Because the solution is constrained to a sequence of poses from
a motion capture database, the motion graph provides a reduced-space representation of
human motion. No unnatural poses will appear in the final motion because each pose
appears in the original database. This representation, however, is quite restrictive. For
example, it would be impossible to synthesize a motion for sitting down on a medium
height chair if the database contains only motions for sitting down on low and high chairs.
Because it is impossible to capture all possible variations of even a single behavior this
will be a problem for databases of any size.

To relax this restriction, we instead consider a more general discrete representation of

43



the data. The new motion is an interpolation of two or more motions, where each motion
is generated by traversing a path through the motion graph. More formally, each pose of
the new motion, Pnew(t), is represented as an interpolation of k poses from the motion
capture database:

Pnew(t) = P1(t)w1 + P2(t)w2 + . . . + Pk(t)wk. (4.1)

where Pi(t) are poses from the motion capture database, wi are weights that interpolate
these poses, and any two consecutive poses in each Pi(t) are connected by an edge in the
motion graph. In other words, each Pi(t) is a path through the motion graph. We also allow
for time scaling of these paths which is often required to synchronize interpolated motions.
This representation, therefore, can be viewed as a combination of motion graph and inter-
polation techniques: the final motion is an interpolation of k time-scaled paths through the
motion graph. Figure 4.2 shows an example of interpolating two paths through the motion
graph. Weights, w1...wk can be constant or can be a function of time. A single constant
weight has been shown to work well when interpolating motions that consist of only one
behavior. In our implementation we want to synthesize motions of multiple behaviors and
therefore we allow weights to change with time (see Section 4.3.1 for details).

Because the new motion is computed by interpolating existing poses from the motion
capture database, it is likely to be natural looking. In Chapter 5, we analyze interpolated
motions for physical correctness and show that interpolation produces motions that are
close to physically correct in many cases. These properties make interpolation a good
candidate to represent human motions that are close to physically correct.

To find a motion described by equation 4.1 we construct a graph that supports interpo-
lation of motion paths and search it for the user-specified motion. We call this graph an
interpolated motion graph. To simplify the explanation, we divide equation 4.1 into two
cases: (1) k = 1—no interpolation; (2) k > 1—with interpolation. For k = 1 the con-
struction of the search graph is similar to how it was done previously [41, 6, 33, 38, 6, 7]:
we first construct a standard motion graph, MG, from the motions in the database; we next
construct a full search graph, SG, by unrolling graph MG into the environment. During
the unrolling step, each state int in graph MG is augmented with the global position and
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orientation of the root causing the size of the graph to grow by the number of possible
positions and orientations of the character in the environment. This step is required so that
we can search for motions that satisfy user-specified global position constraints and avoid
obstacles. For k > 1 the process is similar. We first construct a motion graph that supports
interpolation which we call IMG—interpolated motion graph. We next construct a full
search graph, ISG, by unrolling graph IMG into the environment.

We explain our algorithms first for k = 1 using graphs MG and SG and then extend
them to k > 1 for graphs IMG and ISG. In the actual implementation we do not need to
construct graph SG, it is defined here to simplify the explanation. Section 4.2 describes
the details of the construction of all four graphs.

We are interested in finding a globally optimal solution or a close approximation to it.
In contrast to locally optimal and greedy solutions, globally near-optimal solutions will
not get stuck in a bad local minima and will avoid the dithering and inefficient patterns of
motion that sub-optimal solutions often have (see experimental results Section 4.4). On
the other hand, the global characteristic reduces the size of the search space that can be
efficiently searched. Although unrolled graphs SG and ISG are much smaller than the
full search space for a character with 60 degrees of freedom, they are still very large and
are impossible to search for an optimal or nearly-optimal solution at interactive frame rates
(within few minutes). Section 4.3 analyzes the size of these graphs for one example. Even
graph SG is too large to be searched efficiently for an optimal or nearly-optimal solution
for a database consisting of approximately 10000 poses (motions are sampled into poses
at 30 frames per second). All existing approaches in the literature either find a solution
using a greedy approach with no guarantee on sub-optimality of the solution or search a
manually constructed graph with a small number of states.

In Section 4.3, we present two techniques that allow us to reduce the size of the search
space sufficiently that a solution can be found at interactive frame rates—our experiments
show that it usually takes between few seconds to few minutes for the discrete optimization
to generate a solution. The first technique greatly reduces the size of graphs MG and
IMG by culling states and transitions that are redundant and/or clearly sub-optimal and
will never be chosen to appear in an optimal solution. The second technique reduces the
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portion of graphs SG and ISG that are explored by search. It computes an informative
heuristic function that guides the search toward states that are more likely to appear in
an optimal solution. All experimental results presented in this thesis are for k = 1 (no
interpolation) and for k = 2 (interpolation of two paths).

In the next section we define the unknowns, constraints and objective function for
our optimization problem. In section 4.2, we explain how the graphs are constructed. In
Section 4.3, we present the methods for reducing the size of the graphs and searching them
efficiently. We conclude with experimental results in Section 4.4.

4.1 Optimization problem setup

We assume that a user provides a sketch of the desired motion. The sketch includes a
roughly sketched 2D path that the character should follow in the environment and a set of
constraints. For example, the user may want the character to start from position A, pick up
an object from a table at position B, jump over a river at position C and arrive at position
D (Figure 4.3a). This motion has 4 constraints: (1) start at position A; (2) pick an object
from the table at position B; (3) jump over river at position C and (4) arrive at position D.
If the user does not specify the path, then we compute it automatically as a shortest path
in the ground plane that passes through all user-specified constraints and avoids obstacles
(Figure 4.3b).

Unknowns: The unknowns of the optimization problem are the variables from equa-
tion 4.1. In our implementation k is set either to one (no interpolation) or two (interpola-
tion of two paths). For k = 1 path P1(t) is the only unknown. For k = 2 the unknowns
are P1(t), P2(t), w1(t). w2(t) is computed as 1− w1(t) .

Constraints: In our implementation, both a user-specified 2D path of the character
and other user constraints are implemented as hard constraints and are not part of the
optimization function. When the user specifies a path, the root of the character in the
generated motion is constrained to stay inside a 2D corridor around that path. The corridor
is created automatically based on the user-specified path. In our experiments we generally
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Figure 4.3: (a) User sketch. The character starts at position A, picks up an object from a
table at position B, jumps over a river at position C and arrives at position D. (b) User
specified only start and end positions. The system automatically creates a sketch of the
2D path from start to goal while avoiding obstacles and adds three constraints: (1) start at
“start state”; (2) jump over river; (3) arrive at “goal state.”

set the width of the corridor to 0.5 meters. While staying inside the corridor, the generated
motion must also not violate the environmental constraints. For example, the character
must avoid walls whenever they are inside the corridor and jump or step over water and
ditches. The motion must also satisfy other user-specified constraints to within a small
error tolerance.

Objective function: The objective function for discrete optimization is very similar
to the one for continuous optimization and includes a weighted average of two terms. The
first term minimizes the sum of squared torques (an approximation of the energy needed
to compute the motion). The torques are computed by inverse dynamics. The second term
maximizes the sum of probabilities of transitions associated with edges in graphs MG and
IMG and thus maximizes the smoothness of the motion.

4.2 Graph Construction

A standard motion graph MG is constructed as a pre-processing step (Sections 4.2.1 and
4.2.2) much as it was done in previous motion graph implementations. We construct graph
IMG by extending graph MG to support interpolation. Graph IMG, can also be con-
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structed as a pre-processing step for k ≤ 2. For larger k, this graph will be very large
because of the combinatorics of combining k motions, and therefore will need to be con-
structed at runtime on as needed basis (Sections 4.2.1 and 4.2.2 provide the details). As
in the previous work on motion graphs, only the position and orientation of the character
relative to the previous frame is stored with each state in graphs MG and IMG. To be
able to find motions that satisfy user-specified position constraints and avoid obstacles, we
unroll graphs MG and IMG into the environment. The corresponding unrolled graphs,
SG and ISG, are very large because an individual pose now appears many times in the
graph, once for each reachable position and orientation. These graphs, therefore, should
be constructed at a runtime on as needed basis. Usually only a small portion of the graph
is explored by the search at a runtime before an optimal or near-optimal solution is found
(see Section 4.4).

In Sections 4.2.1-4.2.2, we explain what defines a state in each graph and which states
are connected by transitions. In Section 4.2.3 we describe the search algorithm we use
to search graphs SG and ISG for the desired motion. To simplify the explanation of the
construction of graphs IMG and ISG, we assume that k is equal to two in equation 4.1.
Extension for k > 2 is trivial from an algorithmic point of view but very costly in terms of
the size of the graph and the search time required.

We assume that we have a database of motions. Each motion is sampled into an ordered
sequence of poses. We use a right handed coordinate system XY Z with the X and Z axes
spanning the ground plane and the Y axis pointing up. Each pose is represented by (1)
Q, the absolute values of all joint angles plus an absolute rotation of root of the character
around the X and Z axes, (2)Pvertical, the absolute position of the root of the character
along the vertical axis, (3)RPplane, the relative position of the root on ground plane and
(4) RQyaw, the relative rotation of the root around the vertical axis. All relative values are
computed relative to the previous pose in the motion and the values for the first pose are
set to zero.
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4.2.1 State definition

Graph MG: Each state in graph MG is defined as S = (PoseIndex), where PoseIndex

is an index of the pose in the motion capture database.

Graph IMG: Similarly, each state in graph IMG is defined as S =

(PoseIndex1, PoseIndex2, w1), where PoseIndex1 and PoseIndex2 are the in-
dices of the two poses from the motion database to be interpolated and w1 is the
interpolation weight from the equation 4.1 (we assume that weight w2 = 1 − w1 because
k = 2). We only want to interpolate poses with the same contact state. Therefore, poses
PoseIndex1 and PoseIndex2 in a given state S are required to have the same contacts
(for example, both have only the left foot on the ground).

Graph SG: Graph SG is computed by unrolling graph MG into the environment. There-
fore, each state in graph SG is a state in graph MG with two additional variables represent-
ing the global position and orientation of the character. S = (PoseIndex, Pplane, Qyaw),
where Pplane is the global position of the character in the ground plane (X and Z values)
and Qyaw is the global orientation of the character about the vertical axis. Global positions
Pplane and Pyaw are computed by integrating the relative ones.

Graph ISG: Similarly to graph SG, graph ISG is computed by unrolling graph IMG

into the environment. Therefore, each state in graph ISG is a state in graph IMG with
two additional variables representing the global position and orientation of the character.
S = (PoseIndex1, PoseIndex2, w1, Pplane, Qyaw), where Pplane is the global position of
the character in the ground plane (X and Z values) and Qyaw is the global orientation of
the character about the vertical axis. Global positions Pplane and Pyaw are computed by
integrating the interpolated relative ones.

4.2.2 Transitions

Graph MG: Transitions in graph MG are constructed by identifying similar poses in the
motions and connecting them with edges in the motion graph as was done by Lee and his
colleagues in [38]. They only allowed transitions at poses where the contact of the char-
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acter with the environment changed. This drastically reduces the number of transitions in
the motion graph and makes the graphs smaller and faster to search. But, this simplifica-
tion may also remove many good transitions that occur in the middle of contact phases.
In contrast, we allow transitions inside of contact phases but use a pruning technique that
is lossless for many domains. Section 4.3.1 provides the details. To compute similarity
between two states we use the same similarity function as Lee and his colleagues [38].
Two poses are similar if the similarity between them is within an error threshold. We ex-
perimentally picked our threshold to have a small perceptual error during transitions. The
transitions in graph MG are associated with probabilities: the transitions between more
similar poses receive higher probability values, and the transitions between less similar
poses receive lower probability values.

We found that a single threshold for picking good transitions often does not work
well. A low threshold results in most transitions occurring within a single behavior (walks
for example) and very few transitions between motions of different behaviors (walks and
jumps for example). A high threshold, on the other hand, results in many low quality
transitions within a single behavior even though these transitions are not needed. We
allowed higher threshold for transitions between different behaviors and lower threshold
for transitions within the same behavior. An automatic method for computing a motion
graph with “good” connectivity would be very helpful.

Graph IMG: Given state A defined by (PoseIndexA
1 , PoseIndexA

2 , wA
1 ) we need

to compute the set of successor states—the states that can be reached from state
A via a single transition in the graph IMG. Consider state B defined by
(PoseIndexB

1 , PoseIndexB
2 , wB

1 ). State B is a successor of state A if and only
if PoseIndexB

1 is a successor of PoseIndexA
1 and PoseIndexB

2 is a successor of
PoseIndexA

2 in the motion graph MG (Figure 4.4).

We can think of constructing graph IMG for k = 2 as taking a “product” of two,
identical, motion graphs. Figure 4.5 gives a detailed example of the construction. Graph
MG is shown on left. Graph IMG is gradually constructed on the right. In Figure 4.5(a)
two copies of graph MG are shown on the left. One state from IMG is shown on the right.
It is defined as interpolation of two poses—one from the first MG and one from the second
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Figure 4.4: States A and B are connected by an edge in graph IMG (thick arrow) only
if PoseA

1 is connected to PoseB
1 and PoseA

2 is connected to PoseB
2 in the original motion

graph, MG (thin arrows).

MG. In this example state A from IMG is computed by interpolating poses A1 and A2. In
Figures 4.5(b)-(c) to compute transitions leaving state A we take all possible combination
of transitions that leave poses A1 and A2 (shown in orange on the left). Figure 4.5(d)
shows a segment of graph IMG starting at state A. In this example we assume that the
interpolation weight w is constant throughout the graph.

We also need to allow the paths which are being interpolated to be scaled in time so
that their contact changes can be synchronized. For example, a short jump and a long jump
have different time durations and therefore we need to align their contact changes before
interpolation. We defer the discussion of how we do time scaling until Section 4.3.1.

The maximum number of states in graph IMG is NkW , where N is the number of
poses in the motion capture database and W is the number of possible weight values. In
our implementation k = 2 and therefore we were able to pre-compute and store graph
IMG in memory. For larger k, this graph will need to be constructed at a runtime on as
needed basis.

Graph SG: The successor states for a state in graph SG are computed by following the
transitions in graph MG and computing the global root position and orientation of the
character from the relative ones stored in MG.

Graph ISG: The successor states for a state in graph ISG are computed in a similar
fashion from graph IMG. The only difference is that we now also need to interpolate the
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Figure 4.5: Example of construction of graph IMG.
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relative positions and orientations to compute the global ones.

In both search graphs, SG and ISG, each transition is associated with a cost. This local
cost is derived according to our objective function defined in Section 4.1. It is a weighted
average of two terms: the first term minimizes the sum of squared torques (computed using
inverse dynamics) and the second term maximizes the sum of probabilities of transitions
associated with edges in graphs MG and IMG and thus maximizes the smoothness of the
motion.

4.2.3 Search

We use A∗ search, and in particular its anytime extension ARA∗ [42], to find a sequence
of motion graph poses that result in the desired motion. A∗ is a well-known and well-
studied search algorithm for efficiently finding an optimal solution [50]. For a given graph
and heuristics, A∗ computes the minimum number of states in the graph to guarantee the
optimality of a solution [62]. The algorithm takes a graph as input, where each edge has a
strictly positive cost, a start state, sstart, and a goal state, sgoal. It then searches the graph
for a path from sstart to sgoal that minimizes the cumulative cost of the transitions in the
path. A∗ uses a problem-specific heuristic function to focus its search on the states that
are more likely to appear on the optimal path because they have low estimated cost. For
each state s in the graph, the heuristic function must return a non-negative value h(s) that
estimates the cost of a path from s to sgoal. To guarantee the optimality of the solution
and that each state is expanded only once, the heuristic function must satisfy the triangle
inequality: for any pair of states s, s′ such that s′ is a successor of s, h(s) ≤ c(s, s′)+h(s′)

and for s = sgoal, h(s) = 0, where c(s, s′) is the cost of a transition between states s and
s′. In most cases, if the heuristic function is admissible (i.e., does not overestimate the
minimum distance to the goal), the triangle inequality holds.

The heuristic can tremendously speed up the search, especially if it is informative.
Moreover, the anytime extension of A∗, ARA∗ search [42], trades solution quality for
search time by using an inflated heuristic (h-values multiplied by ε > 1). The inflated
heuristic often results in a speedup of several orders of magnitude but the solution is no
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longer guaranteed to be optimal. The cost of the solution, however, is guaranteed to be
no more than ε times the cost of an optimal solution. ARA∗ finds the best solution it can
within a specified time window. It starts by finding a suboptimal solution quickly using a
large ε and then gradually decreases ε and recomputes the solution until it runs out of time
or finds a provably optimal solution. The algorithm reuses previous search results when ε

is decreased.

In Sections 4.3.2 and 4.3.3, we describe the heuristic function we use and in the experi-
mental results Section 4.4 we show that this heuristic function together with the technique
that reduces the size of the motion graph (see Section 4.3.1) makes it possible to find
solutions at interactive frame rates.

4.3 Reducing the search space

Although graphs SG and ISG are much smaller than the full search space for a 60 dof
character, they are still very large and are impossible to search at interactive frame rates.
For example, suppose we have a database of a few behaviors: walks, jumps, and picking
an object. The database has about N = 10000 poses (motions are sampled into poses at
30 frames per second). As was explained in Section 4.2.1, each state in the ISG graph
is defined by S = (PoseIndex1, PoseIndex2, w1, Pplane, Qyaw) when k = 2. If we
discretize w1 into 10 values, Pplane into 1000 by 1000 values and Qyaw into 1000 values, we
will have NumStates = (10000)210003∗10 = 1018 possible states. Because we constrain
the character to stay inside the corridor around the user-specified path, the number of
possible states will be smaller. Assuming that only 1% of positions/orientation values will
be allowed as a result of this restriction the maximum number of states will be 100 time
smaller than before: NumStates = 1016. The complexity of A* algorithm is O(E +

SlogS), where E is the number of edges in the graph. With S = 1016, the graph cannot
be searched at interactive frame rates. Even with k = 1 (no interpolation) the maximum
number of states is S = 1011 which is still too large to search for an optimal or close to
optimal solution at interactive frame rates. All existing approaches in the literature either
find a solution using a greedy approach with no guarantee on sub-optimality of the solution
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or search a manually constructed graph with a small number of states.

To address this problem, we developed two techniques that significantly decrease the
number of states the search will have to visit to find a solution. The first technique, de-
scribed in Section 4.3.1, greatly reduces the size of the motion graph MG by culling states
and transitions that are redundant and/or clearly sub-optimal and will not appear in an op-
timal solution. It then builds the reduced graph IMG from the reduced graph MG. The
second technique, described in Sections 4.3.2 and 4.3.3, reduces the portion of graphs SG

and ISG that are explored by search by computing an informative heuristic function that
guides the search toward the states that are more likely to appear in an optimal solution.
We describe this technique first for graph SG in Section 4.3.2 and then extend it to graph
ISG in Section 4.3.3. In the experimental section we show that the combination of these
techniques makes it possible to find an optimal or a close to an optimal solution for a
reasonable size database at interactive frame rates for k = 1 and k = 2.

4.3.1 Culling unnecessary states and transitions

Culling of states and transitions is easier to explain if we first describe a hypothetical graph
MG∗ which could be constructed from graph MG. The graph MG∗ is fully equivalent
to graph MG, meaning that every path in MG is a valid path in MG∗ and vice versa
but MG∗ contains only selected states from MG and all other states become part of the
transitions in between those selected states in MG∗. Formally, the states and transitions in
graph MG∗ are defined as follows:

• States in graph MG∗: We define a “contact change” state as a state that starts a
new contact phase in the motion graph (states A, B, C and D in Figure 4.6). The
states in MG∗ are the “contact change” states in graph MG.

To determine the “contact change” states we process all motions in the motion cap-
ture database by separating them into phases based on contact with environment (see
Figure 4.7 for an example). We use the same technique as Lee and his colleagues
in [38] to detect contacts.
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• Transitions in graph MG∗: A transition between states S1 and S2 in graph MG∗

is a path between corresponding states in graph MG such that all states on this
path except for S2 have the same contact. We call such paths “single contact” paths.
There can be multiple “single contact” paths in graph MG that connect two “contact
change” states (see states A and D in Figure 4.6(a) for example). There can even
be infinitely many “single contact” paths between a pair of states if the graph has
cycles. Consequently, there can be infinitely many transitions between a pair of
states in graph MG∗. Figure 4.6(b) shows an example of graph MG∗.

In the next section, we will explain how to cull redundant transitions from graph MG∗

and then explain how it can be done directly in graph MG without explicitly constructing
graph MG∗. Then we explain how to cull redundant states from MG∗, also without ex-
plicitly constructing it. After culling both states and transitions, we obtain a much more
compact version of graph MG—MGcompact. In the last section we compute a compact
version of graph IMG from graph MGcompact.

Culling transitions: Graph MG∗ can have infinitely many transitions between any two
“contact change” states. Only one of these transitions is optimal with respect to our opti-
mization function, however, and the rest can be culled without affecting the optimality of
the solution in most cases. We pre-compute just one optimal “single contact” path between
any two “contact change” states because when unrolled into the environment, all “single
contact” paths between a pair of states end with the character at exactly the same place in
the environment. For “single contact” paths between states S1 and S2, the global position
and orientation of the root of the character at state S2 is solely defined by the global posi-
tion and orientation of the root at state S1 and is independent of the actual path from S1 to
S2. The point of contact with the environment for state S2 is defined by state S1 (because
we are considering “single contact” paths), whereas all the joint angles are defined by the
state S2 (see Figure 4.8(a)). The contact position and orientation and the values of the joint
angles uniquely determine the global position and orientation of the root of the character
for state S2.

We consider a flight phase also as a contact phase (with zero contacts). All in flight
“single contact” paths between two states, S1—lift-off and S2—landing, also end at ex-
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Figure 4.6: (a) Motion graph MG. States A, B, C and D (shown in red) are “contact
change” states. The character enters and exits a contact phase through a “contact change”.
For example, if the character enters state A (that initiates a right leg support phase) it can
exit only through state B or state D. (b) A hypothetical graph MG∗ constructed from
graph MG. (c) Compact motion graph MGcompact for the motion graph shown in (a).
It only contains “contact change” states. A transition between any two states in graph
MGcompact represents an optimal path in graph MG.
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Figure 4.7: (a) A character leaves from point A and arrives at point C after jumping over
a river at point B; (b) The motion can be split into phases based on contact information.

Figure 4.8: (a) For “single contact” paths between a pair of states S1 and S2, the global
position and orientation of the root of the character at state S2 is uniquely determined
by contact position and orientation at state S1 and the values of the joint angles at state
S2. (b) The position of the center of mass at landing (state S2) is uniquely defined by
the intersection of the flight trajectory and the center of mass of the character at state S2.
The trajectory of the center of mass for the root of the character is defined by the lift-off
velocity from state S1.
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actly the same place in the environment. The trajectory of the center of mass for the root
of the character is defined by the lift-off velocity from state S1. The position of the center
of mass at landing (state S2) is uniquely defined by the intersection of the flight trajectory
and the center of mass of the character in state S2 (see Figure 4.8(b)).

Because all unrolled, “single contact” paths between two states S1 and S2 end with
the character at exactly the same place with respect to state S1, we can just compute one
optimal “single contact path” from S1 to S2 prior to runtime and cull the other less op-
timal paths. We call the graph that remains after culling MGcompact. MGcompact has the
same states as MG∗ but any two states in graph MGcompact are connected by at most one
transition.

MGcompact can be computed directly from MG by searching for an optimal “single
contact” path between each pair of “contact change” states in graph MG. The transition
is not created if such a path does not exist. Figure 4.6(c) shows an example of a compact
motion graph.

Our assumption that MGcompact is equivalent to the full MG will fail if the user spec-
ification requires controlling the details of the motion inside a “single contact” path. This
situation might arise because of environmental constraints, user constraints or an optimiza-
tion function.

The optimal “single contact” path between two states may violate environmental con-
straints when another less optimal path between the same two states might not (Figure 4.9).
We seldom saw this problem in our experiments probably because if the optimal path vi-
olates environmental constraints then all other paths between the two contact states are
also likely to. The start and end states of the optimal path differ by a single change in
contact and so the root positions of the two states are quite close (except for flight phase).
Neither state violates the environmental constraints (or this part of the graph would not be
searched at run-time), so it is unlikely that while the optimal path violates a constraint, an-
other path between the two states does not. If this problem were to occur in some domain,
the search could switch from the compact motion graph to the original one if it detects that
the optimal path violated constraints.
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A user may also specify a constraint on a frame of the motion that is inside a “single
contact” path. Specifying a wave while standing would be an example of such a motion.
In our work, and in other previous work, user constraints generally change the contact
information (picking a cup or stepping onto a stone for example) and therefore occur at
“contact change” states. If the constraint does occur inside a “single contact” phase, the
search can switch to the original motion graph in the vicinity of that constraint. Alterna-
tively, MGcompact could be constructed with actions other than contact changes as the start
and end points of “single contact” paths.

The optimization function we use in this thesis (see Section 4.1) allows us to compute
optimal paths prior to runtime because it is independent of the particular problem the user
specifies. Many functions have this property: minimizing energy (while satisfying user
constraints), minimizing sum of squared accelerations, maximizing smoothness, minimiz-
ing the total distance traversed from start to goal, minimizing total time of the motion,
satisfying specified annotations (for example behaviors or styles as in [7]) and many other
functions. If the optimization function depends on what the user specifies, however, we
then either need to have that function during pre-computation or approximate it with an-
other function that is dependent on the user problem only at “contact change” states. For
example, instead of minimizing the distance between every frame of the motion and the
user-specified curve, we can minimize the distance only between the “contact change”
states and the curve.

Therefore, for many problem specifications we can pre-compute optimal paths between
“contact change” states for a given motion graph. This computation is efficient because it
occurs in graph MG which is much smaller than the unrolled graph SG. In experimental
Section 4.4 we show that graph MGcompact has many fewer states and transitions than
graph MG and therefore is much faster to search.

This preprocessing step is not the same as just removing all the transitions from the mo-
tion graph except for the ones in between “contact change” states, as others have done [38].
With that approach there would be no path between states A and D in Figure 4.6(a) even
though one exists in the original motion graph. The preprocessing presented here retains
many more transitions which is important for finding transitions between different behav-
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Figure 4.9: States, A and D, do not intersect the obstacle. An optimal path (shown in red)
intersects the obstacle. Another path from A to D (shown in black) does not intersect the
obstacle. This case is unlikely because states A and D share a common foot contact and
therefore their root positions are close to each other. From our experiments this practically
never happens.

iors such as a walk and a jump.

Culling states: A lot of redundant data is usually included in a motion graph, in order to
capture natural transitions between behaviors. For example, to include natural transitions
between walking and jumping, we had to include many similar walking segments leading
to those transitions to jumping. As a result, each state in the compact motion graph may
have many outgoing transitions that are very similar. For example, a state A in Figure 4.10
has three successors: S1, S2 and S3, that are similar to each other. Because the states are
similar, all three transitions will end at the approximately the same position in the world
when graph MGcompact is unrolled into the environment to create graph SG. We can cull
the redundant states by merging all three states S1, S2 and S3 into one and keeping only
the lowest cost transition.

When two or more states are merged to form a new state, we define successors of
that state to be the union of the successors of the merged states. Similarly, we define the
predecessors to be the union of the predecessors of the merged states. After we merge all
possible states we will have redundant transitions between many of them. For example
in Figure 4.10, transitions t1, t2 and t3 become redundant after states S1, S2 and S3 are
merged. We keep just the lowest cost transition. We merge states in the order of their
similarity: the most similar states are merged first and less similar states that still fall
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Figure 4.10: (a) States S1, S2 and S3 are similar to each other. As a result, optimal tran-
sitions t1, t2 and t3 are also very similar and all end with character at approximately the
same position. (b) We can remove this redundancy if we merge similar states S1, S2 and
S3 into one state M and only keep the lowest cost transition.

below the threshold for the similarity error are merged later.

The similarity threshold for merging could be the same value that we used to identify
similar states while constructing the motion graph, but we observed that that threshold left
too many similar transitions in the graph. We therefore increased the threshold by a factor
of 1.5 to 2. During motion graph construction, the threshold must be low enough that
we do not introduce any perceptible errors in the transitions between states. For merging,
however, a higher threshold is appropriate because it just removes flexibility in the motion
graph without introducing perceptible error.

Building graph IMGcompact: The graph IMGcompact can be computed from graph
MGcompact in almost the same way graph IMG was computed from graph MG. Each
state in graph IMGcompact is defined as S = (A, C,w1), where A and C are the indices of
two poses in MGcompact with the same contact. w1 is the interpolation weight from equa-
tion 4.1. State S2 = (B, D, w2) is a successor of state S1 = (A, C,w1) if and only if pose
B is a successor of pose A and pose D is a successor of pose D in the graph MGcompact.
We also require that the interpolation weight changes gradually. So w1 must be close to
w2 (we discretize the weight into 10 values from 0 to 1). Figure 4.11 shows an example of
this graph.
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Figure 4.11: Two identical versions of graph MGcompact are shown on the left. A small
segment of graph IMGcompact starting from the state S1 = (A, C,w1) is shown on the
right.

The transition between any two states S1 and S2 in graph IMGcompact is actually a
sequence of poses, where each pose is an interpolation of corresponding poses in the tran-
sitions from A to B and from C to D. Figure 4.12 shows an example. The interpolation
uses a constant weight w1 throughout the transition. The durations of the transitions from
A to B and from C to D may differ. We assume a uniform time scaling with the time of
the interpolated segment computed according to the following equation:

T =
√

T 2
1 w + T 2

2 (1− w) (4.2)

T1 and T2 are the time durations of the first and second segments being interpolated.

We have also made two other changes to the standard interpolation scheme: (1) during
flight we interpolate the center of mass positions (instead of the root positions) and all the
joint angles; (2) during ground contact we interpolate the positions of the feet, the center of
mass positions and all non-redundant degrees of freedom to prevent the feet from sliding
on the ground. Chapter 5 describes it in more details.
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Figure 4.12: (a)Two identical versions of graph MGcompact. (b) IMGcompact. The tran-
sition between states S1 and S2 in graph IMGcompact is an interpolation of a path from A

to B and a path from B to D in graph MGcompact. These two paths are shown by thick
arrows in (a). (c) Shows these two paths in more detail. Circles represent frames. Because
the paths can be of different length we need to scale them in time.
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Uniform time scaling and the interpolation scheme described above, will ensure that
many transitions will be physically correct. As will be shown in Chapter 5, interpolation
of two physically valid motion segments often produces a motion segment that is close to
physically correct. We can also use the results from our analysis in Chapter 5 to quickly
check whether the interpolation of the two motion segments that correspond to the transi-
tions from A to B and from C to D will produce a physically valid motion. The transition
from S1 to S2 is removed from graph IMGcompact if it is found to be physically incorrect.
Instead of using the analysis in Chapter 5 to check each transition for physical correctness,
we can also just use inverse dynamics to check that the transition approximately satisfies
all the necessary physical properties. The main benefit of the analysis is that it ensures that
most of the transitions will generally be found physically correct.

After IMGcompact is constructed we can also make a pass over its states and check
for significant discontinuities in joint angles and joint angle velocities and root velocities.
These discontinuities could occur due to slightly different interpolation schemes during
flight and contact phases, substantial changes in time scaling between incoming and out-
going transitions, the interpolation of motions that involve a simultaneous translation and
rotation, but of a different degree (described in Chapter 5). In practice, however, the last
case can be prevented by not allowing for such transitions on the first place, while other
cases do not seem to produce a visually perceivable error.

4.3.2 Deriving informative lower bounds (heuristics) for graph MG

The techniques we described in the previous sections substantially decrease the size of
the motion graph MG. For example, in our experiments, the size decreases from 12, 000

nodes and 250, 000 transitions in graph MG to 300 nodes and 60, 000 transitions in graph
MGcompact. But the search space is still very large because we unroll this motion graph into
the environment in order to satisfy user-specified position constraints and avoid obstacles.

We use an A∗ search algorithm to find an optimal path in the graph SG. The number
of states that an A∗ search explores depends on the quality of the heuristic function—the
lower bounds on cost-to-goal values. Informative lower bounds can drastically reduce the
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Figure 4.13: This figure shows maximum size of the full search graph, ISG (we assume a
constant weight w in this example, otherwise the size would be multiplied by the number
of weight values). It is the product of the number of states in the motion graph MGcompact

(N = 300 in this example) and the number of possible positions and orientations of the
character in the world. If we discretize root position in ground plane (XZ) and orientation
about vertical axis (Y ) into 1000 values we have V = 10003 = 109 possible values.

search space exploration. In this section, we present a method for computing such bounds
and in the experimental results (Section 4.4) we show that this heuristic function usually
speeds up the search by several orders of magnitude and is often the determining factor
for whether a solution can be found. We first show how to compute the heuristic for graph
MG and then extend it to graph IMG.

The maximum size of the unrolled graph, SG, is defined by the product of two num-
bers: (1) the number of states in the motion graph MGcompact—N and (2) the number of
possible positions and orientations of the character in the world—V . N is approximately
100 to a 1000 and V is approximately 109. Individually N and V are not too large, but
the product of the two is. For interpolated motion graph, ISG, the product becomes even
larger because the number of states in graph IMGcompact is on the order of N2 (see Fig-
ure 4.13). This motivates our heuristic function. We find one heuristic function based only
on the character’s location in the world and the second heuristic function based only on
the motion graph and then combine the two to obtain an informative heuristic function.

Each state in graph SG is defined as S = (PoseIndex, Pplane, Qyaw), where
PoseIndex is an index of the pose in the motion capture database, Pplane is the global

66



position of the character in the ground plane (X and Z values) and Qyaw is the global
orientation of the character about the vertical axis. The heuristic function is an estimate of
the cost of getting to the goal state G from state S = (PoseIndex, Pplane, Qyaw). Our first
heuristic function, H2D, is based only on the character location in the world (Pplane). It
ignores other parameters of the state—PoseIndex and Qyaw. If the character could walk
along any path, then H2D would provide a perfect heuristic. However, what the character
can do depends not only on the character’s position in the world, Pplane, but also on the
character’s state in the motion graph, PoseIndex, and its orientation, Qyaw. For example,
if on the way from state S to the goal the character needs to jump across an obstacle and
it is very difficult to reach a jumping motion from state S, then the cost-to-goal at state S

should be very large. H2D will grossly underestimates this cost and the A∗ search would
needlessly explore this part of the space. The second heuristic function, Hmg, addresses
this problem by computing a cost based on PoseIndex while ignoring Pplane and Qyaw.
Hmg takes into account the capabilities of the character that are encoded in the motion
graph.

Computing these heuristic functions involves searching a much smaller space than the
full search space. Hmg can be pre-computed for a given motion graph as it does not depend
on the specific user problem. H2D depends on the user sketch and therefore cannot be pre-
computed. However, it is fast to compute because it only requires search in a 2D space and
it needs to be computed only once before the full search starts. We prove that the heuristic
function that results from combining H2D and Hmg satisfies the required admissibility and
consistency properties at the end of this section. We now describe how to compute H2D

and Hmg and how to combine the two.

The heuristic function based on the character location in the world (H2D):
H2D(S, G) is an estimate of the cost of getting to the goal state G from state S =

(PoseIndex, Pplane, Qyaw) based only on Pplane information, the environment constraints
and the user-specified 2D path of the character. When computing H2D(S), we optimisti-
cally assume that the path to the goal is independent of PoseIndex and Qyaw.

We first compute the distance from the location of the character at state S to the goal lo-
cation, d(Pplane). This distance is computed as the shortest path in 2D from Pplane = (x, z)
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Figure 4.14: (a) H2D(S, G) is the shortest path from the position of the character at state S

to the goal. (b) If the user wants the character to stay close to a specified path, the shortest
path is constrained to stay inside the tunnel.

(the coordinates of the character at state S) to the (x, z) coordinates of the goal taking into
account obstacles in the environment (Figure 4.14(a)). We use a single 2D Dijkstra’s
search to obtain such path from every cell to the goal right before the full search starts.
In our implementation, when computing the H2D function, the environment is discretized
into 0.2 by 0.2 meter cells. During the full search, the root position of the character was
discretized into 0.02 by 0.02 meter cells. If we want the character to stay close to a user-
specified path, we define a corridor around the path and the distance is computed based
only on the x, z cells that fall within the corridor (Figure 4.14(b)). H2D(S, G) is computed
as the product of d(Pplane) and cmin, where cmin is the minimum cost of travelling one unit
of distance. For example, when the minimization function is the sum of squared accelera-
tions, we estimate cmin as the minimum acceleration required to traverse one meter based
on the motion graph data.

The heuristic function based on motion graph state (Hmg): The user provides a set
of constraints. For example, the user may want the character to start from position A,
pick up an object from a table at position B, jump over a river at position C and arrive
at position D (Figure 4.15). This motion has four constraints: (1) start at position A; (2)
pick an object from the table at position B; (3) jump over river at position C and (4) arrive
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Figure 4.15: User sketch. The character starts at position A, picks up an object from a
table at position B, jumps over a river at position C and arrives at position D.

at position D. For each of these constraints, we compute the minimum cost of passing it
based on the available paths in the motion graph and use it as the heuristic Hmg.

We currently support two types of constraints: picking and jumping. The framework
we use for these constraints should generalize to other types of constraints such as kicking,
sitting on a chair, and stepping onto obstacles of different height. For each type of the
constraint Hmg(S, C) is computed as the minimum cost of getting to the pose in the motion
graph that satisfies constraint C from the state S:

• Picking: For the picking constraint, Hmg(S, C) represents the minimal cost of a
path in the motion graph from state S to a state that represents the picking up of
an object. We can automatically identify poses in the motion graph that represent
picking up an object based on contact information. Each “picking” pose is defined
by two parameters: height and reach (Figure 4.16). Height defines how high the
object is located with respect to the ground. Reach defines how far the character
reaches out to pick up the object (distance between the root and the hand projected
onto ground).

For each state in the motion graph, MG, we compute a table (Figure 4.17). Each

69



Figure 4.16: We identify states where objects are picked up in the motion graph. Each
such pose is parameterized by two parameters: height and reach.

entry in the table represents the minimal cost of getting to a “picking” pose where
height and reach are in the given range. This pre-computation is independent of the
user-specified problem and therefore needs to be computed only once for a given
motion graph. For each entry in the table and each state in MG, we search graph
MG to compute the cost for that entry. MG is quite small and therefore this pre-
computation is reasonably fast.

• Jumping: For the jumping constraint, Hmg(S, C) represents the minimal cost of a
path in the motion graph from state S to any state that initiates a flight phase. As with
picking, we can use contact info to automatically identify poses in the motion graph
that start a flight phase. Each such “jumping” pose is defined by two parameters:
height and length, where height defines the highest point of the flight phase of the
jump with respect to the ground and length defines the distance traveled during the
flight phase of the jump. For each state in the motion graph we compute a table
similar to the one for picking (Figure 4.17), where each entry in the table represents
the minimal cost of getting to a “jumping” pose with height and length parameters
in the given range.

Combining the two heuristics: While H2D(S, G) is an estimate of the cost of getting to
the goal, Hmg(S, C) is an estimate of the cost of satisfying a particular constraint. Because
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Figure 4.17: For each state in the motion graph we pre-compute this table. Each entry in
the table represents the minimal cost of getting to a “picking” state where the height and
reach parameters are within the given range.

the goal is usually much further away from state S than the constraint, H2D(S, G) will
usually be much larger than Hmg(S, C) (Figure 4.18). To get a tighter estimate on the
cost, we estimate the cost of satisfying the next constraint and then getting to the goal
from the constraint location: Hmg(S, C) + H2D(C, G), where H2D(C, G) is the cost of
getting to the goal from the constraint location.

Just as in the example in Figure 4.15, there may be multiple constraints. Suppose there
are n constraints that still remain to be satisfied at state S. For each of the remaining
constraints ci we can then compute the heuristic as Hmg(S, Ci) + H2d(Ci, G). We thus
obtain n heuristic values based on the motion graph. In addition, we have an H2d-heuristic
for state S, the cost of going directly to the goal. These heuristic values can be combined
together via a single max operator to select the most informative heuristic value:

H(S) = max(H2d(S, G), Hmg(S, C1) + H2d(C1, G), ..., Hmg(S, Cn) + H2d(Cn, G))

(4.3)

Figure 4.19 shows an example of heuristic function for a problem where the character
needs to get from A to D along the sketched path, pick up a cup at point B and jump over
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Figure 4.18: H2D will often be much larger than Hmg because it estimates the cost of
getting all the way to the goal. We need to add another term to Hmg that estimates the cost
of getting from constraint location to the goal.

Figure 4.19: Heuristic function for state S. The character needs to get from A to D

along the sketched path, pick up a cup at point B and jump over river at point C. The
three heuristic functions shown in the figure are computed—(a),(b) and (c)—and combined
together using max operator.
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river at point C. Three heuristic functions shown in the figure are computed and combined
together using max operator.

Proof that the heuristic function is correct: It can be shown that the resulting heuristic
function satisfies the consistency requirement (i.e., the triangle inequality). This property
is required to guarantee the optimality of the solution returned by A∗. The proof that
h-values are consistent takes an arbitrary state S and its arbitrary successor state S ′ and
shows that H(S) ≤ c(S, S ′) + H(S ′). Let us define state S as (PoseIndex, Pplane, Qyaw)

and state S ′ as (PoseIndex′, P ′
plane, Q

′
yaw). The proof proceeds as follows.

First, let us introduce the function H i
mg(S) defined as Hmg(S, Ci) + H2d(Ci, G) if the

constraint Ci has not been satisfied at S yet and as H2d(S, G) otherwise. It should be clear
that H(S) = max(H2d(S, G), H1

mg(S), . . . , Hn
mg(S)).

For the sake of a simpler proof we will now prove the consistency using the latter
definition of H(S) function.

We first note that the maximum of two or more consistent heuristic functions is also a
consistent heuristic function (see ?? for example). We therefore only need to prove that
H2d(S, G) and H i

mg(S) for any constraint i are consistent functions.

Let us first prove that H2d(S, G) is a consistent function. We need to show that
H2d(S, G) ≤ c(S, S ′) + H2d(S

′, G). According to the definition of H2d function:
H2d(S, G) = d(Pplane) ∗ cmin and H2d(S

′, G) = d(P ′
plane) ∗ cmin. We thus need to

show that d(Pplane) ∗ cmin ≤ c(S, S ′) + d(P ′
plane) ∗ cmin. Let δ denote the distance

between Pplane and P ′
plane. Then c(S, S ′) ≤ δ ∗ cmin. We thus need to show that

d(Pplane) ∗ cmin ≤ δ ∗ cmin + d(P ′
plane) ∗ cmin. Dividing the inequality by cmin we ob-

tain d(Pplane) ≤ δ + d(P ′
plane). This inequality holds because the shortest distance to the

goal from Pplane is at most the the length of the path from Pplane to the goal via the point
P ′

plane.

Let us now prove that H i
mg(S) is also a consistent function. We need to show that

H i
mg(S) ≤ c(S, S ′) + H i

mg(S
′). Suppose first the constraint Ci has already been satisfied

at S. Then the inequality reduces to H2d(S, G) ≤ c(S, S ′) + H2d(S
′, G) and we have

already shown it to hold.
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Suppose now the constraint Ci has not been satisfied at S ′ (and consequently at S). We
then need to show that Hmg(S, Ci) + H2d(Ci, G) ≤ c(S, S ′) + Hmg(S

′, Ci) + H2d(Ci, G).
Let δ denote the cost of getting from PoseIndex to PoseIndex′ in the graph MG. The
least cost of satisfying the constraint Ci from PoseIndex, given by Hmg(S, Ci), is at most
the cost of satisfying this constraint from PoseIndex while passing PoseIndex′ on the
way. That is, Hmg(S, Ci) ≤ δ + Hmg(S

′, Ci). Since δ ≤ c(S, S ′), it then follows that
Hmg(S, Ci) ≤ c(S, S ′) + Hmg(S

′, Ci). After adding H2d(Ci, G) on both sides this is the
desired inequality.

Let us now consider the last situation: when the constraint is satisfied at S ′, while it is
not at S. Then we need to show that Hmg(S, Ci) + H2d(Ci, G) ≤ c(S, S ′) + H2d(S

′, G).
In order to satisfy the constraint at state S ′, the character must be at the required location.
Thus, H2d(S

′, G) = H2d(Ci, G). Subtracting this term on both sides of inequality, we get
Hmg(S, Ci) ≤ c(S, S ′). And this inequality is guaranteed to hold because Hmg(S, Ci) is
the least cost of satisfying the constraint from PoseIndex in graph MG, while c(S, S ′)

is the cost of satisfying the constraint while taking into account other variables in S in
addition.

4.3.3 Deriving informative lower bounds (heuristics) for graph IMG

In this section we show how to extend the heuristic function described in the previous
section to graph ISG. In graph ISG, S = (PoseIndex1, PoseIndex2, Pplane, Qyaw, w1),
where PoseIndex1 and PoseIndex2 are two poses of the character being interpolated,
Pplane is the the character’s global root position in the XZ plane, Qyaw is the the character’s
global root orientation around Y axis and w1 is the interpolation weight. As with graph
SG, we find one heuristic function, H2D, based only on the character location in the world
and a second heuristic function, Hmg, based only on the motion graph, IMG.

The computation of the H2D heuristic is exactly the same as for graph SG because we
store the interpolated root position, Pplane, for each state in graph ISG. The computation
of Hmg is also very similar except that it is now performed on graph IMG instead of MG.
We describe how to compute Hmg for the picking constraint. The heuristic functions for
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jumping constraint can be computed similarly.

• Picking: We first identify each state in the graph IMG that represents picking
up an object, a “picking” state, p = (PoseIndex1, PoseIndex2, w1) where both
poses, PoseIndex1 and PoseIndex2 are states where an object can be picked up.
This state can achieve a height and reach value that is an interpolation of poses
PoseIndex1 and PoseIndex2 with weight w1. For each state in graph IMG, we
then compute a table as for graph MG (Figure 4.17).

This pre-computation is independent of the user-specified problem and therefore can
be computed once for a given graph IMG. To compute this table, we need to search
graph IMG. For k = 2 the pre-computation is relatively fast but the computations
and memory required for this table grows exponentially as k grows. For k = 2 the
table fits into the memory. For larger k, it may need to be stored on a hard drive and
memory management techniques may be required.

The advantage of the Hmg heuristic function is that it takes into account the capabilities
of the character encoded in the motion graph. For graph ISG, however, the Hmg heuristic
function also helps to synchronize the contact patterns of the two paths being interpolated.
For example, to reach a “picking” state P from state A the system needs to interpolate
two sequences of “contact change” states which both should end at a “picking” state and
should also be synchronized in contact pattern (see Figure 4.20). In our experiments about
95% of the states in graph MG can reach a “picking” state. But, because of the need to
synchronize contacts for interpolated paths, only about 20% of the states in graph IMG

can reach a “picking” state. The Hmg heuristic guides the search toward the states that can

actually reach a “picking” state and avoids exploring those that cannot.

4.4 Experimental results

This section evaluates the effectiveness of our approach with a number of different exper-
iments. The motions illustrating most of the experiments are available on the web:
www.cs.cmu.edu/∼alla/thesis/
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Figure 4.20:

4.4.1 Examples of motions

To illustrate the effectiveness of our approach, we generated a variety of different exam-
ples. For each experiment, the user specified a 2D path in the environment that the char-
acter should follow. The width of the corridor around the path was set to 0.5 meters. In
some experiments, the user also specified additional constraints such as jumps and contact
with environment at specified locations.

The examples include walking along curves of different curvature, picking and placing
an object in various locations, jumping over stones with variable spacing, forward jumps
of different lengths, vertical jumps with different amounts of rotation and forward walks
of different step lengths. Figures 4.21– 4.24 show images for some of the results. It took
less than 3 minutes to compute a close to an optimal solutions for all examples. The first,
sub-optimal solution is usually found in just a few seconds.

4.4.2 The benefit of interpolation

The first experiment shows why interpolation in conjunction with motion graphs allows us
to satisfy user-specified constraints within a small error tolerance. We used the following
three test problems: (1) a character needs to start at position A and pick up a small object
at position B (see Figure 4.25a); (2) a character needs to start at position A and pick up a
small object at position B but now we also constrain the root position of the character to
position C while picking a small object (see Figure 4.25b); (3) a character needs to start
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Figure 4.21: Left: the user sketched the path the character should follow; Right: synthe-
sized motion.

Figure 4.22: Left: the user sketched the path the character should follow; Right: synthe-
sized motion.
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Figure 4.23: Left: the user sketched the path the character should follow; Right: synthe-
sized motion.

Figure 4.24: Left: the user sketched the path the character should follow and two
constraints—the character needed to pick up a bottle from the first table and put it on
the second table; Right: synthesized motion.
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Figure 4.25: Test problems: (a) A character needs to start at position A and pick up a
small object at position B. We sample the location of constraint B; (b) A character needs
to start at position A and pick up a small object at position B but now we also constrain the
root position of the character to position C while picking a small object. We sample the
location of constraint B; (c) A character needs to start at position A and walk to position
B with one walk cycle. We sample the location of constraint B; (d) Error tolerances from
smallest to largest in centimeters: 2.5, 5 and 10.
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at position A and walk to position B with one walk cycle (see Figure 4.25c).

We ran many experiments for each problem by sampling the locations of constraint
B (179 samples for first two problems and 10 samples for third problem). Tables 4.1
summarize the results for each problem for k = 1 and for k = 2. The results show
that with interpolation (k = 2) the system consistently finds solutions for small error
tolerances. Without interpolation (k = 1), we need to set the error tolerances to much
higher values to get consistent results. Figure 4.25d compares the tolerances visually.

We also computed the average cost (sum of squared torques) of the solutions for the
second problem. Only experiments that succeeded were included in the computation of the
average cost. The average solution cost is about 1.35 times higher without interpolation,
especially for small tolerances. Without interpolation the search has much less freedom to
satisfy the constraints. Therefore even if the search is able to find the solution, this solution
is more likely to contain dithering and inefficient motion patterns that result in the higher
solution cost (see website for examples of motions).

4.4.3 Interpolated motion graphs versus warping

The examples in this section show the advantage of our interpolated motion graphs ap-
proach over the alternative approach of first finding an approximate solution for k = 1 and
then warping this solution to satisfy the user-specified constraints. Interpolation usually
produces solutions with better, more optimal strategies and is also more robust (do not
need to tweak the threshold as will be explained next).

The example in Figure 4.26 shows a situation where the solution that satisfies all user-
specified constraints does exist for k = 1. In this example the character needs to get over
three columns. The strategy found for k = 2 is more optimal than the one for k = 1.
For k = 2, the character walks from the first to the second column and jumps from the
second to the third column. For k = 1, on the other hand, the character jumps between
each column. Because the optimal strategy for k = 1 is different than the one for k = 2 it
would be impossible to warp the solution for k = 1 into the one for k = 2.

The example in Figure 4.27 shows a situation where the solution that satisfies all user-
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error tol=2.5 cm error tol=5 cm error tol=10 cm

% succeeded for k = 1 31% 70% 99%

% succeeded for k = 2 99% 100% 100%

error tol=2.5 cm error tol=5 cm error tol=10 cm

% succeeded for k = 1 16% 45% 87%

% succeeded for k = 2 96% 99.5% 100%

error tol=2.5 cm error tol=5 cm error tol=10 cm

% succeeded for k = 1 40% 75% 100%

% succeeded for k = 2 100% 100% 100%

Table 4.1: Three tables showing the success rate for each of the three test problems. Top
table (first problem): we have uniformly sampled 179 locations in 3D where the character
must pickup a small object (see Figure 4.25a). Middle table (second problem): again,
we have uniformly sampled 179 locations in 3D where the character must pickup a small
object (see Figure 4.25b). Bottom table (third problem): we have uniformly sampled the
location of the goal along the X axis (Figure 4.25c); because the walk is constrained to
one walk cycle, this resulted in walks with different step lengths. Each table entry shows
the percent of the experiments that succeeded—the search found a solution within two
minutes and within the specified error tolerance around the small object location. The first
row is for no interpolation (k = 1) and the second row is for interpolation with k = 2. We
repeat the experiment for three different error tolerances (see Figure 4.25d).
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specified constraints within the user-specified tolerance does not exist for k = 1. In this
example the character needs to follow the curve within the user-specified tolerance (rep-
resented as a corridor around the curve). For k = 2, the solution exists and the character
can track the curve very well. Because the solution does not exist for k = 1 we need to
increase the corridor width around the curve to find a solution for k = 1. In the resulting
solution, however, the character takes only five steps, whereas for k = 2 she takes six
steps. It is therefore unclear how to warp this solution to satisfy the tolerance constraints.
As in the previous example, this is a different strategy for the solution and it would not be
possible to warp the solution for k = 1 to the solution for k = 2.

It is also often hard to decide by how much to increase the tolerance. Increasing tol-
erance too much may result in a solution that would be impossible to warp. For example,
we often cannot find any solution for k = 1 for jumping across arbitrary placed columns.
If we increase the width of the column too much the character walks across the columns
instead of jumping but to satisfy the original column width the character actually needs to
jump. In this case the algorithm can not find any solution at all for k = 1 because it is
impossible to warp a walk into a jump.

In general, often there is no solution for k = 1 that satisfies user constraints within the
user-specified tolerance. Increasing the tolerance allows a solution to be found. But then,
the found solution often follows a different, less optimal strategy than the k = 2 solution
and therefore cannot be warped to match.

4.4.4 The benefit of optimality

In this experiment we show that globally near-optimal solutions avoid the dithering and
inefficient patterns of motion that sub-optimal solutions often have. We show how the cost
of the solution changes as its optimality increases during our search. Tables 4.2 show the
results for three motions: a walk from start to goal; a walk from start to goal that requires
crossing three rivers of different width; a walk to a place where the character needs to pick
up an object. As the optimality of the solution increases the character finds more efficient
motion patterns (see website for examples of motions).
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Figure 4.26: (a) User sketch. (b) The optimal solution for k = 2. (c) The optimal solution
for k = 1. For k = 2, the character walks across the first column and jumps across the
second column. For k = 1, the character jumps between each pair of columns. Because
the optimal strategy for k = 1 is different than the one for k = 2, it is impossible to warp
the solution for k = 1 into the solution for k = 2.
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Figure 4.27: (a) User sketch. (b) The solution with interpolation, k = 2. The character
can track the curve, using a very small corridor width around the curve. (c) The blue curve
shows the trajectory of the root for the best solution with k = 1. In order to find any
solution for k = 1, we needed to increase the corridor width around the curve. (d) The
found solution for k = 1. The character takes five steps, whereas for k = 2 she takes six
steps. It is therefore impossible to warp the solution for k = 1 into the one for k = 2.
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Search Time (secs) Solution Cost Optimality Bound (ε)

0.67 2,700,000 10.0

3.42 1,800,000 2.0

50.00 1,600,000 1.0

Search Time (secs) Solution Cost Optimality Bound (ε)

0.016 10,700,000 10.0

0.032 8,200,000 2.0

0.844 6,250,000 1.0

Search Time (secs) Solution Cost Optimality Bound (ε)

0.70 1,200,000 10.0

9.10 650,000 2.0

20.10 550,000 1.0

Table 4.2: Top table (motion 1): walk from start to goal; the first solution is very
suboptimal—the character makes two really large steps to reach the goal position (Fig-
ure 4.28a); the second solution is better—the character makes smaller steps but the walk is
a bit unnatural because the steps are of different length (Figure 4.28b); the final solution is
optimal and looks natural (Figure 4.28c). Middle table (motion 2): walk with jumps over
three rivers; the first solution is suboptimal—the character makes inefficient two legged
jumps to cross all three rivers; the second solution is more natural, the character now uses
a one-legged jump to cross the rivers; in the optimal solution the character does not jump
but steps over the last (the smallest) river. Bottom table (motion 3): the character starts on
the small rectangle and needs to walk toward and pick a small object shown by a sphere in
Figure 4.29; the first solution is very suboptimal, the character bends way too far to pick
up a small object (Figure 4.29a); the second solution is better but the character is reach-
ing from the side which in the absence of constraints appears unnatural(Figure 4.29b); the
final solution is optimal and looks natural (Figure 4.29c).
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Figure 4.28: (a) The first, sub-optimal solution. (b) A better solution, but still not optimal
because of variation in step length. (c) A final, optimal solution.
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Figure 4.29: The character starts on the small rectangle and needs to walk toward and pick
a small object shown by a sphere. One frame from each motion showing the character’s
pose when she touches the object. (a) The first solution is very suboptimal, the character
bends way too far to pick up a small object; (b) The second solution is better but the
character is reaching from the side which in the absence of constraints appears unnatural;
(c) Final solution looks natural.

4.4.5 The discrete versus continuous approach

In this experiment we compare our discrete and continuous optimization approaches. We
use discrete optimization to synthesize motions that are similar to these we have already
synthesized using continuous optimization. The generated motions for all experiments can
be found on the website.

To synthesize jumping motions we had to use more example motions to compute a
motion graph for discrete approach than we used to construct a basis needed to synthesize
the same examples for continuous approach. For continuous approach we could synthesize
various jumps from a basis constructed from just three jumps: a forward jump, a forward
jump with a 90 degree turn and a vertical jump with a 180 degree turn. We need to
add more jumps to the discrete space because the solution is restricted to interpolation of
existing examples. We discuss it in more details in Chapter 6.

Using discrete optimization, we synthesized vertical jumps with various amounts of
rotation—from 0 to 360 degrees. We used three motions to compute the discrete space: a
vertical jump of 0 degrees, a vertical jump of 90 degrees and a vertical jump of 360 degrees.
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Figure 4.30: Short forward jump. Top: a solution produced using our continuous optimiza-
tion approach. Bottom: a solution produced using our discrete optimization approach.

Figure 4.31: Long forward jump. Top: a solution produced using our continuous optimiza-
tion approach. Bottom: a solution produced using our discrete optimization approach.

We also synthesized forward jumps of various length—from 0.2 to 1.5 meters using three
motions to compute the discrete space: a forward jump of 0.2 meters, a forward jump of 1
meter and a forward jump of 1.5 meters.

We also synthesized forward walks of different step length—from very small to ex-
aggerated. We used the same seven forward walking motions with different step length
to compute the discrete space as we used to compute a basis for the continuous space in
Chapter 3.

Figures 4.30– 4.32 compare discrete and continues solutions for the two jumping mo-
tions and the walking motion. Movies that can be found on the website give a better
comparison than still images. Both approaches generate natural looking motions.

The continuous space can generalize quite well beyond the sample motions (Sec-
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Figure 4.32: One cycle of forward walk. Top: a solution produced using our continu-
ous optimization approach. Bottom: a solution produced using our discrete optimization
approach.

tion 3.2). To assess how well the discrete space can extrapolate beyond the sample points,
we tried to compute a vertical jump of 360 degrees in a discrete space computed from three
vertical jumps: one of 90, one of 180 and one of 200 degrees. The resulting motion did not
look natural because it required too much extrapolation. On the other hand, a 250 degree
jump could be synthesized successfully. In general, only small amount of extrapolation
seems to be visually acceptable. We repeated the extrapolation experiments for forward
jumps and obtained a similar result.

The time it takes to synthesize motions in discrete space is much less than in continuous
space. It took less than a second to synthesize jumping motions and less than 5 seconds to
synthesize walking motions described in this section. Section 6.1 provides a more detailed
comparison of our continuous and discrete optimization approaches.

4.4.6 The benefit of motion graph compression

In this experiment, we evaluate the effect of the motion graph compression. Table 4.3
shows general statistics for three different databases: (1) walking and jumping motions; (2)
walking and picking motions; (3) just walking motions. For each database, we computed
the number of states and transitions in the motion graph before compression, after the first
compression step (merging transitions) and after the second compression step (merging
states). The table also gives the time required to compress the graph (a pre-computation
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Before Merging After merging transitions After merging states Compression Time

DB 1 states=12,000 states=700 states=305 60 min
trans=250,000 trans=60,000 trans=15,000

DB 2 states=6,500 states=430, states=200 30 min
trans=70,000 trans=15,000 trans=2,200

DB 3 states=2,000 states=173 states=100 2 min
trans=25,000 trans=3,700 trans=1,000

Table 4.3: Compression for three motion graphs. The first graph is computed from walk-
ing and jumping motions. The second graph is computed from walking and picking mo-
tions and the third one is computed from just walking motions.

step performed only once for each database). Compression techniques reduce the size of
the graph by a factor of 20 to 40. For example, after the first compression step the number
of states in the first database is reduced by a factor of 17 and the number of transitions by a
factor of 4. After the second compression step the number of states is reduced by a factor
of 39 and the number of transitions by a factor of 16.

4.4.7 The benefit of the heuristic function

We also evaluated the effectiveness of our heuristic function. The results shown in Ta-
ble 4.4. We compare four heuristics: (1) the Euclidean distance to the goal; (2) only the
H2D component of our objective function; (3)only Hmg component of our objective func-
tion; (4) the combined heuristic function with both H2D and Hmg components. The results
demonstrate that our heuristic function is essential for making search efficient and often
makes the difference between finding a good solution and not finding one at all. The table
also shows that both components of the heuristic function are important for getting good
results—leaving just one component and disabling the other makes the search substantially
less efficient.
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ε Euclidean distance H2D Hmg Hcombined

time exp solved time exp solved time exp solved time exp solved

10.0 8.0 185,813 100% 8.1 160,718 100% 11.6 72,004 100% 0.8 9,332 100%

3.0 17.1 481,321 100% 16.8 406,149 100% 15.1 103,000 100% 1.6 16,068 100%

1.0 100.2 1,832,347 20% 97.8 1,748,620 20% 48.1 270,812 80% 49.5 275,712 80%

Table 4.4: Evaluation of the heuristic function. Each column shows the runtime of the
search in seconds and the number of states expanded by it for different heuristic functions.
The first column is for the Euclidean distance to the goal. The second column uses only
the H2D component of our objective function. The third column uses only Hmg component
of our objective function. The last column shows the results for the combined heuristic
function. The first row shows search efforts to obtain a solution whose cost is at most 10
times the optimal one. The sub-optimality bound for the second row is 3. The solution in
the last row is optimal.

4.5 Discussion

In this chapter, we built a discrete reduced-space representation of human motion. This
representation can be viewed as a combination of a motion graph and interpolation tech-
niques. The motion that can be generated with this representation is an interpolation of
k time-scaled paths through the motion graph. Finding a solution in this smaller search
space is much easier than finding a solution in the full search space. In addition, the syn-
thesized motion is likely to contain natural coordination patterns. This objective is difficult
to describe mathematically and is therefore hard to achieve when searching the full search
space. We have shown that the optimization in this discrete space supports interactive
frame rates and allows for the synthesis of less dynamic motions and longer motions that
are composed of different behaviors. It takes less than 3 minutes to compute a close to an
optimal 10 sec long motion and the first sub-optimal solution is usually found in just a few
seconds.

The quality of the results largely depend on the quality of the motion database used to
construct a motion graph. For example, if the database contains only a motion of sitting
on a tall chair then we cannot synthesize a motion for sitting on a medium or a low height
chair because there are no two motions whose interpolation would give us the desired
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motion.

We also found that it is important that the resulting motion graph has a “good” con-
nectivity. For example, if it is impossible to reach a “picking” state from other states in
the motion graph then we cannot synthesize motions that satisfy picking constraints. Our
experiments show that to obtain good results it is important that many states in the motion
graph can quickly reach a constraint state (such as “picking” state) and many states can be
quickly reached from constraint states. An automatic technique for evaluating the connec-
tivity of a motion graph would be very helpful. In their work, Reitsma and Pollard [58]
evaluated the quality of a motion graph for navigational tasks. Extending this evaluation
to our domain would be useful.

Better automatic methods for constructing motion graphs with “good” connectivity
would also be very helpful. We found that a single threshold for picking good transitions
often does not work well. A low threshold results in most transitions occurring within a
single behavior (walks for example) and very few transitions between motions of different
behaviors (walks and jumps for example). A high threshold, on the other hand, results in
many low quality transitions within a single behavior even though these transitions are not
needed.

We compute motions that minimize sum of squared torques as an objective function
while satisfying user constraints. Our objective function together with the requirement
that we interpolate motion segments with the same contact seems to work well to pick
and synchronize motion segments that when interpolated result in natural motions. For
example, two walk segments with both arms to the side are more likely to be picked by
the search for interpolation than segments with one arm waving because the latter requires
more energy (unless the constraints specifically require waving).

Our experimental results show that our approach works well for a database with 12,000
frames (motions are sampled at 30 frames a second). Scaling our approach to the larger
databases, however, will require additional work. We plan to experiment with automatic
clustering of motions into behaviors and only interpolating motions within the same class
to further reduce the size of the problem.
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All of our results are for k = 1 (no interpolation) and k = 2 (interpolation of two
paths). In all of our experiments, k = 2 was sufficient to find a solution that met the users
constraints and produced natural looking motion. Some problems, however, may require
k > 2 in order to satisfy the constraints. We plan to try to scale our approach to k = 3.
If this proves to be infeasible, we can also try an iterative approach: first compute the
best possible solution for k = 2; then compute another solution for k = 2 which, when
interpolated with the solution we already have, produces a better result; continue in this
manner until no further improvement is possible. This iterative, greedy, approach did not
work for k = 1, but if k = 2 is sufficient to land the right strategy then small refinements
should work well in a greedy fashion.

Our approach can currently find a close to an optimal solution for motions that are ap-
proximately 10 seconds long. Scaling our approach to longer motions is part of the future
work. As the length of the desired motion increases, the complexity of the search greatly
increases. Suppose the final motion consists of P contact phases. We can decrease the
complexity of the search by limiting the number of contact phases in the final solution
that will involve interpolation. For example, only five out of P contact phases of the final
motion will be computed by interpolating motion graph segments and the other will be
original segments from the motion graph. Interpolation is most often required whenever
the motion needs to satisfy user-specified constraints (such as pick position or curvature)
and is generally not necessary when the character is moving in free space. Deciding when
to allow interpolation and when not to in advance would be difficult. To satisfy a picking
constraint for example, we may need to interpolate few steps before the picking to position
the character in front of the object. We can limit interpolation by adding one more vari-
able to each state in the graph that counts the number of motion segments that have been
interpolated so far. We can then limit this variable during the search and therefore control
the maximum number of segments interpolated in the solution. Interpolating only when it
is real benefit should greatly reduce the complexity of the search.
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Chapter 5

Analysis of the physical correctness of
interpolated motion

Over the past ten years, interpolation of motion capture data has been shown to be a very
powerful technique for generating high quality and natural looking motion. This tech-
nique is successful in part because the naturalness of the original motions is not destroyed
by the relatively small changes made in the process of interpolation. However, larger
changes may also produce natural looking motion if interpolation is performed within a
well-defined class of behaviors such as kicking [32] or walking [60] where significant
events such as foot contact can be aligned.

For these larger changes, in particular, it is not immediately obvious why interpolation
should produce such good results. For example, straightforward linear interpolation could
well introduce visually apparent errors in the physics of the motion. In this chapter of
the thesis, we analyze the physical correctness of motions created by interpolating a few,
presumably physically correct, human motions.

We analyze the interpolated motion in terms of a number of basic physical properties:
(1) linear and angular momentum during flight; (2) foot contact, static balance and friction
with the ground during stance; (3) continuity of position and velocity between phases. We
assume that the motions used for interpolation are physically correct themselves, have the
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same skeleton, can be aligned in time by picking corresponding key events and that linear
interpolation is used to interpolate parameters of motions between these key events.

Our analysis shows that with a few simple modifications to the straightforward inter-
polation technique proposed by others, we can prove that these physical properties are
satisfied for a wide range of different kinds of motions. The interpolated motion will
satisfy these physical properties if the motions used for interpolation do not include sig-
nificant rotation during the flight phase (runs, forward and vertical jumps, for example),
rotate around approximately the same principal axis by approximately the same amount
(jumps with turns, for example) or have no flight phase (walks or kicks, for example).

The analysis presented in this chapter should at least partially resolve a concern that
has been raised about interpolation–that it is not a suitable technique for highly dynamic
motions because the physics of the resulting motion is incorrect. While the main contri-
bution of this work lies in its analysis, the few simple modifications to the interpolation
scheme that we describe can also significantly improve the visual quality of certain classes
of interpolated motions while guaranteeing their physical correctness. We also use the
analysis presented in this chapter to assess the physical correctness of the interpolated mo-
tion computed using our discrete optimization approach (as was described in Chapter 4).

5.1 Problem Description

The interpolation problem is defined as follows: Given k human motions M1, M2,...,Mk

compute motion M by interpolating the parameters of these example motions. Each mo-
tion is defined as a sequence of frames M(t) = {Proot(t), Q(t)}, where Proot(t) is the
position of the root segment of the character, Q(t) = {q1(t)...qn(t)} is the orientation of
the root and the relative angles of the character’s joints and t = 0..T is the time of a par-
ticular frame. In this work we use Euler angles to represent rotations although most of the
analysis is independent of the rotation representation.

Same as in the previous chapters, we use a right handed coordinate system for all
motions, with the X and Z axes spanning the ground plane and the Y axis pointing up.
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Positive rotation is assumed to be counterclockwise about the axis of rotation.

Using a technique proposed by a number of other researchers (including Rose and
his colleagues [60]), we compute motion M by interpolating the root positions and all the
joint angles of the example motions. The example motions must be scaled in time, or time-
warped, to align key events such as foot contacts. We use a time-warping scheme similar
to the one proposed by Rose and his colleagues [60]. We assume that a set of matching key
frames for the input motions is provided (either by the user or computed automatically)
and that the motion segments between these key frames can be scaled uniformly.

In our work, as in most other approaches to interpolation, we automatically locate
these key frames at changes in the contact with the environment because the physical laws
governing the motion change with contact. Motions M1, M2,...,Mk are split into phases
based on these key frames and the corresponding phases are interpolated. For example,
a jumping motion would consist of three phases: lift-off, flight and landing. Additional
key frames can be added during long contact phases to better align the motions without
violating the assumptions behind our analysis.

We compute each phase of motion M by interpolating corresponding phases of mo-
tions M1, M2,...,Mk with a constant set of weights, w1, w2,...,wk:

M = w1M1 + w2M2 + ... + wkMk (5.1)

where
∑k

i=1 wi = 1. The analysis in this work assumes that the weights sum to one
so our results are limited to interpolation and do not generalize to extrapolation. The
analysis is presented for interpolation of only two motions, M1 and M2 but generalizes
to the interpolation of k motions because equation 5.1 can be recursively computed by
interpolating two motions at a time. The weights for each interpolation sum to one and the
final interpolation produces a motion with the weighting given in equation 5.1.

Consider a particular phase Φ. At each time t of that phase we compute motion
M(t, w) as follows:

M(t, w) =

{
Proot(t) = wP1root(t1) + (1− w)P2root(t2)

Qi = wQ1i(t1) + (1− w)Q2i(t2), for i = 1..n
(5.2)

where w = 0..1 is the interpolation weight, T1, T2 and T are the time of phase Φ in motions
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M1, M2 and M respectively, and t1 = tT1/T and t2 = tT2/T are time indices into motions
M1 and M2.

We analyze the physical correctness of motions computed by linear interpolation of
two motions with a constant weight w. This analysis includes: (1) the flight phases of
the motion, (2) the contact phases and (3) the transitions between the flight and contact
phases. During flight the only force acting on the character is gravity. During contact the
feet of the character should not slide, contact forces should not require an unreasonably
high coefficient of friction, and when the character is in static balance, the center of mass
of the character should fall within the support polygon of the feet. The transition between
contact and flight phases must maintain continuity (for example, the velocity and position
at the end of the flight phase should match that at the beginning of the contact phase).
In the next three sections, we present our analysis and suggest some improvements over
existing interpolation schemes.

5.2 Analysis of the flight phase

In this section we analyze the linear and angular momentum of the interpolated motion
during flight. We verify that during flight the net external force acting on the character is
gravity and that for a restricted model of the character angular momentum is conserved.

5.2.1 Linear momentum during flight

Because the net external force acting on the character during flight is gravity, the trajectory
of the center of mass should be a parabola:

Rcom(t) = R0com + V0comt + 0.5Gt2 (5.3)

where R0com and V0com are position and velocity of the center of mass of the character at
the start of the flight phase and G = (0,−9.8, 0) is the acceleration due to gravity.

Figure 5.1 shows the Z component of the trajectory of the center of mass when a
forward jump with no turn and a forward jump with a 360 degree turn are interpolated
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Figure 5.1: The Z component of the trajectory of the center of mass for: (a) a forward
jump with no turn (motion M1); (b) a forward jump with 360 degree turn (motion M2);
(c) the motion that results from interpolating motions M1 and M2. Vertical bars are used
to indicate the beginning and ending of the flight phase for each motion. The trajectory of
the center of mass of the interpolated motion during flight is not a straight line as it should
be.

using equation 5.2. Because gravity only acts in the vertical, Y , direction, the Z compo-
nent should be a straight line during flight but it is not. The trajectory appears to contain
additional forces that act on the character during flight.

As the example in Figure 5.1 shows, linear interpolation of the root position and the
joint angles of the character can result in a non-linear trajectory for the center of mass. A
simple fix is to interpolate the center of mass trajectories instead of the root positions. The
root position can then be computed from the new center of mass position and joint angles
(see Appendix A). The interpolation equation is now:

M(t, w) =


Pcom(t) = wP1com(t1) + (1− w)P2com(t2)

Qi(t) = wQ1i(t1) + (1− w)Q2i(t2), for i = 1..n

Proot(t) = F (Pcom(t), Q(t))

(5.4)

where F is the function that computes the root position from the center of mass and the
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joint angles. With this small change, we can now prove that the net external force acting
on the character during flight is gravity. According to Newton’s second law:

dP

dt
= Fnet = m̄G (5.5)

where P is the total linear momentum of the character, Fnet is the net external force act-
ing on the character, m̄ is the total mass of the character and G = (0,−9.8, 0) is the
acceleration due to gravity.

Proof: Linear momentum of the articulated character P = m̄Vcom. Taking the deriva-
tive of P with respect to time:

dP (t)
dt

= m̄Acom(t)

= m̄(wA1com(t1)(
T1

T
)2 + (1− w)A2com(t2)(

T2

T
)2)

= w(T1

T
)2m̄A1com(t1) + (1− w)(T2

T
)2m̄A2com(t2)

= w(T1

T
)2m̄G + (1− w)(T2

T
)2m̄G

= m̄G(w(T1

T
)2 + (1− w)(T2

T
)2)

= m̄G

(5.6)

The transition from the first to the second line is obtained by taking second derivative
of the position of the center of mass in equation 5.4 with respect to time (see Appendix
B). The transition from the second to the third line is obtained by rearranging terms in
the equation. The transition from the third to the fourth line is obtained by substituting
m̄A1com(t1) = m̄G and m̄A2com(t2) = m̄G. This substitution is valid because we assume
that motions M1 and M2 are physically correct. The transition from the fourth to the fifth
line is obtained by rearranging terms in the equation. The transition from the fifth to the
sixth line is obtained by substituting:

T =
√

T 2
1 w + T 2

2 (1− w) (5.7)

This equation defines the choice of the time, T , which will ensure that gravity is correct
during flight.

In the literature, the time of an interpolated motion has generally been computed as:
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Figure 5.2: Example from figure 5.1 but with the flight phase of the interpolated motion
computed by interpolating the center of mass positions of the input motions instead of the
root positions and with the time of the flight phase computed as T =

√
T 2

1 w + T 2
2 (1− w).

T = wT1 + (1− w)T2. But setting time in this way results in scaling gravity by:

wT 2
1 + (1− w)T 2

2

(wT1 + (1− w)T2)2
(5.8)

In many cases this error will be small and will not be noticeable. Reitsma and Pollard [59]
determined that if gravity is between −9.0m/s2 and −12.7m/s2 the error is not visible to
the human observer.

Figure 5.2 shows the example from Figure 5.1 with the interpolated motion during the
flight phase computed according to equation 5.4 and with time T =

√
T 2

1 w + T 2
2 (1− w).

The Z component of the trajectory of the center of mass during flight is now a straight
line.

The difference between the interpolation schemes in equation 5.2 and equation 5.4
becomes most apparent when interpolating dissimilar motions (as in the example in Fig-
ure 5.1) or motions that involve significant movement of the root of the character with
respect to the center of mass during flight. In our experiments, we found that for many
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Figure 5.3: Interpolating a very small forward jump, 0.4 meters, (motion M1) and a very
large forward jump, 2.5 meters, (motion M2). The Z component of the center of mass is
shown for motion M1, motion M2 and two interpolated motions, one computed by inter-
polating root positions and one computed by interpolating the center of mass positions.
The two trajectories for the Z component of the center of mass are very similar.

motions linear interpolation of the root resulted in an almost linear interpolation of the
center of mass. See Figure 5.3 for an example.

The pelvis is often chosen as the root of the character. Because it is generally very close
to the center of mass of the entire body, it often moves similarly. Figure 5.4 compares the
position of the center of mass to the position of the root for the three motions used in
Figures 5.1 and 5.3. For the forward jumps, the root moves similarly to the center of mass
but for the jump with a 360 degree turn, the root moves along a different trajectory. As
a result, interpolating the root positions of two forward jumps produces a natural looking
motion and interpolating the root positions of a forward jump and a forward jump with a
turn produces an unnatural looking result.
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Figure 5.4: Comparing the center of mass trajectory to the root trajectory for three differ-
ent jumps. Z components are shown. Left: small forward jump, middle: large forward
jump, right: forward jump with 360 degree turn. These jumps were used to compute the
interpolated motions in figures 5.1 and 5.3.

5.2.2 Angular momentum during flight

Because the only force acting on the system during flight is gravity, and gravity acts at the
center of mass, the angular momentum of the system about the center of mass should be
constant during flight. In general, angular momentum will not be constant for a motion
computed by interpolating two arbitrary motions. For example, the upper row in Figure 5.5
shows an interpolation between a forward jump and a vertical jump with a 360 degree turn.
The angular momentum of the interpolated motion is not constant during flight.

However, even relatively large fluctuations in angular momentum are often unnoticed
by the viewer if they do not create large changes in angular velocities. Because angular
momentum, H , is equal to the product between inertia of the body and angular velocity
(H = IΩ), large changes in angular momentum result in small changes in angular velocity
if the corresponding inertia is also large. For example, in Figure 5.5 (upper row, rightmost
image) angular momentum changes significantly around the X axis but the motion still
appears natural. The change in angular momentum is hard to detect because the inertia
around the X axis is large (because the longitudinal axis of the body is perpendicular to
the X axis) and the resulting change in angular velocity is small.

Although the angular momentum is not necessarily preserved when interpolating two
arbitrary motions it is possible to show that for a single rigid body, angular momentum
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is conserved during flight if both motions rotate around the same principal axis or one or
both contain no rotation. In many common motions, visible rotation (with large angu-
lar velocity) during flight is either absent (for example, a short forward jump or run) or
happens around only one principal axis (for example, a longer forward jump, a flip or a
vertical jump with a turn). Approximating the character with a single rigid body is not
an accurate model for most motions but this proof still provides some insight into when
angular momentum will be preserved.

Proof: If a rigid body rotates around a principal axis then the angular momentum, H ,
is equal to the product of inertia of the body I , and the angular velocity of the body, Ω

around the axis of rotation. Let H1 = I1Ω1 and H2 = I2Ω2 be the angular momentum for
the first and second motions respectively. If we interpolate the center of mass positions
and the rotation angles, the angular momentum of the interpolated motion is

H = I3Ω = I3(wΩ1
T1

T
+ (1− w)Ω2

T2

T
) = constant (5.9)

The angular momentum H is constant because I3, Ω1 and Ω2 are constant during flight.

The bottom row of Figure 5.5 shows the angular momentum for a motion computed by
interpolating two forward jumps. Because both jumps involve a rotation around the same
axis the angular momentum in the resulting motion remains relatively constant during
flight.

5.3 Analysis of the contact phase

In this section, we analyze the physical correctness of the motion while one or both feet
are in contact with the environment. The following conditions should hold for the motion
to be physically valid: (1) the feet of the character should not slide; (2) when the character
is in static balance its center of mass should fall within the support polygon of the feet;
(3) the contact forces that correspond to the motion should not require an unreasonably
high coefficient of friction. We now analyze each of these requirements.
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Figure 5.5: Upper row, from left to right: Angular momentum curves for a forward jump,
a vertical jump with a 360 degree turn about the vertical axis and a motion computed by
interpolating those motions. Lower row, from left to right: Angular momentum curves for
a small forward jump, a very large forward jump and a motion computed by interpolating
those motions. X , Y and Z components of angular momentum are shown for each graph.
The shaded area represents the flight phase.
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Figure 5.6: (a)Two poses of a simplified character that have the same contact are interpo-
lated with weight w = 0.5. The resulting pose penetrates the ground. (b) The redundant
degrees of freedom of each leg can be intuitively parameterized by one parameter, Φ, that
represents the “knee circle” of the leg.

5.3.1 Non-sliding Foot Contact

We assume that when one or both feet of the character are in contact with the ground, the
position of the feet should not move (the character does not slip). This condition, however,
does not hold for either the center of mass or root interpolation schemes presented above.
Consider the example in Figure 5.6(a): two poses of a simplified character that have the
same contact point are interpolated with weight w = 0.5 resulting in a foot position below
the ground.

Other researchers have addressed this problem by rooting the character at a foot that
is in contact. This solution works well when there is only one foot in contact but may
result in sliding of the other foot if it is also in contact. In general, preserving the contact
positions of both feet and computing joint angles via interpolation is not possible because
the system is over-constrained. A common solution is to to eliminate foot sliding in the
interpolated motion with a post processing step (see, for example [40] and [60]). This
additional editing would be hard to analyze for physical validity.

An alternative solution that preserves physics is to interpolate only the non-redundant
degrees of freedom (dofs) of the character and the constraints. As we discussed in Chap-
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ter 3, each constraint reduces the number of available dofs. Thus, if the character originally
had n + 3 dofs (n rotational and 3 translational), then when both feet are in contact, the
number of degrees of freedom is reduced by 12. Korein and Badler [30] and later Lee
and Shin [40] showed that the degrees of freedom of a leg in contact with the ground can
be controlled by just one parameter, Φ, assuming that the hip position of the leg is also
known. Intuitively, that parameter represents the “knee circle” of the leg (Figure 5.6(b)).
Thus, when both legs are in contact the non-redundant degrees of freedom of the character
are (1) root position; (2) all the joint angles of the character except the legs; and (3) two
“knee circle” parameters, one for each leg. We can now interpolate these non-redundant
degrees of freedom and the constraints that include the positions and orientations of both
feet and the feet will not slide.

Because there is no real advantage in interpolating the root as opposed to interpolating
the center of mass on the ground, we can interpolate the center of mass as we did for the
flight phase:

M(t, w) =


Pcom(t) = wP1com(t1) + (1− w)P2com(t2)

Qnri(t) = wQnr1i(t1) + (1− w)Qnr2i(t2)

Cj(t) = wC1j(t1) + (1− w)C2j(t2)

Proot(t) = F2(Pcom(t), Qnr(t), C(t))

(5.10)

where Qnri are the non-redundant dofs of the character not including the root, Cj are
constraints such as feet positions and orientations, and F2 is the function that computes
the root position of the character from the center of mass position, non-redundant dofs
and the constraints (see Appendix C for details). To preserve continuity of the motion, we
use equation 5.10 independent of whether one foot or both feet are in contact. With this
interpolation scheme, the feet will not slide during contact and we can prove that the static
balance condition holds and that the ground reaction forces are within the friction cone.

5.3.2 Static Balance

Static balance exists when the projection of the center of mass of the character onto the
ground is within the support polygon of the feet. We do not assume that input motions
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are statically balanced but we show that if they are, the interpolated motion is as well. We
assume that M1 and M2 have the same support polygon.

The position of the center of mass of the interpolated motion at time t is equal to the
interpolation of the center of mass of motion M1 at time t1 and of center of mass of motion
M2 at time t2 (equation 5.10). Therefore, the center of mass of the interpolated motion,
Pcom, will lie on a segment connecting points P1com and P2com. The projection of Pcom

onto a plane of contact will also lie on a segment connecting the projections of P1com and
P2com. Let us call these projections P g

com, P g
1com and P g

2com, then:

P g
com(t) = wP g

1com(t1) + (1− w)P g
2com(t2) (5.11)

Because P g
1com and P g

2com lie within the support polygon of the feet, P g
com will also lie

within the support polygon assuming the support polygon is convex and 0 ≤ w ≤ 1.

5.3.3 Friction cone

For the motion to be physically valid, ground contact should not require an unreasonably
high coefficient of friction. We use a Coulomb friction model to analyze the ground con-
tact. If contacting surfaces do not move with respect to each other (static friction) the ratio
of the absolute values of the tangential component of the ground reaction force, F grf

t ,
and the normal component of the ground reaction force, F grf

n , should be smaller than the
coefficient of static friction:

F grf
t (t)

F grf
n (t)

< µs (5.12)

Geometrically this constraint means that the ground reaction force must fall within a fric-
tion cone oriented along the contact normal (Figure 5.7).

Assuming a single support polygon, Newton’s second law says that the ground reaction
force, F grf (t) is

F grf (t) = m̄Acom(t)− m̄G (5.13)

where m̄ is the total mass of the system, Acom(t) is the acceleration of the center of mass
of the system and G = (0,−9.8, 0) is the acceleration due to gravity. The ground reaction
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Figure 5.7: (a) The ground reaction force must fall within a friction cone oriented along
the contact normal. (b) The tangential, F grf

t , and the normal, F grf
n , components of the

ground reaction force.

force of the interpolated motion computed according to equation 5.10 is an interpolation
of the ground reaction forces of motions M1 and M2 (see Appendix D for the proof):

F grf (t) = wF grf
1 (t1)

(
T1

T

)2

+ (1− w)F grf
2 (t2)

(
T2

T

)2

(5.14)

The proof requires that we set the time T of the contact phase as

T =
√

T 2
1 w + T 2

2 (1− w)

, which is the same formula we used for the flight phase. Now we need to show that
equation 5.12 holds for the interpolated motion. From equation 5.14, we know that the
tangential and normal components of the ground reaction force can be computed by inter-
polating the corresponding components of motions M1 and M2:

F grf
t (t)

F grf
n (t)

=
wF grf

t1 (t1)(
T1

T
)2 + (1− w)F grf

t2 (t2)(
T2

T
)2

wF grf
n1 (t1)(

T1

T
)2 + (1− w)F grf

n2 (t2)(
T2

T
)2

(5.15)

To show that equation 5.12 holds for the interpolated motion we first show that for any
positive numbers a,b,c and d, if a

b
< µ and c

d
< µ then a+c

b+d
< µ (see Appendix E for the

proof). From this result, and because we know that equation 5.12 holds for motions M1

and M2 we can conclude that equation 5.12 holds for the interpolated motion.
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Figure 5.8: Interpolation between a long forward jump and a forward jump with a 360
degree turn (weight w = 0.75). Motions are shown schematically: the center of mass is
projected onto the ground; the arrows represent the facing direction of the character.

5.4 Transition between phases

We have analyzed the motion of the character during flight and contact phases indepen-
dently so we also need to analyze the continuity of the motion across the transition between
phases. The continuity of the position of the center of mass follows trivially from the fact
that it is computed by interpolating the center of mass of motions M1 and M2 which are
themselves assumed to be continuous. The velocity of the center of mass may be discon-
tinuous during the transition because different time scalings are applied to adjacent phases.
We have found, however, that this discontinuity is not noticeable in practice.

Motions with rotation during the flight phase, however, may have significant discon-
tinuities at the transition between flight and stance phases because the orientation of the
interpolated motion may not match that of the original motions after the flight phase. For
example, consider the interpolation of a long forward jump with a forward jump with a
360 degree turn (schematically shown in Figure 5.8). In the original motions the character
lands facing the positive Z axis but in the interpolated motion, the character lands facing
the positive X axis (rotated 90 degrees clockwise about vertical). Both the original interpo-
lation scheme (equation 5.2) and the modified scheme (equation 5.10) will have problems
with this transition. The resulting motion will have either significant foot sliding because
the motion of the root does not match the motion of the joint angles or a discontinuity in
the joint angles.
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To reduce these problems, the subsequent motion of the root (or center of mass) in the
original motions can be rotated to align them with the interpolated motion at the end of
the flight phase. This operation brings the root motion into alignment with the character’s
facing direction and joint movements but it may introduce a discontinuity in the velocity of
the center of mass. For example, in Figure 5.8, the landing velocity of the center of mass
for the interpolated motion will be rotated instantaneously by 90 degrees in the transition to
the stance phase. The discontinuity will be small when the required rotations are small or
the ground plane components of the velocity at landing, Vlanding, are small. The problem
will be worse for motions with more complicated rotations such as forward or twisting
flips.

5.5 Summary of Analysis

We have made three changes to the interpolation scheme of equation 5.2: (1) during flight
we interpolate the center of mass positions instead of the root positions; (2) during ground
contact we interpolate the positions of the feet, the center of mass positions and all non-
redundant degrees of freedom to prevent the feet from sliding on the ground; (3) the timing
of each phase is computed as T =

√
T 2

1 w + T 2
2 (1− w). With these changes, we can prove

the following properties about the physical correctness of the interpolated motion:

• The net force acting on the character during flight will be equal to gravity.

• During contact, the feet of the character will not slide.

• If the character is balanced in the original motions, it will also be balanced in the
interpolated motion.

• If the ground reaction force in both original motions is within the friction cone, it
will also be within the friction cone for the interpolated motion.

• If we interpolate two motions that do not have visible rotation during the flight
phases (for example, runs, short forward jumps and vertical jumps) or motions that
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rotate about approximately the same principal axis (for example, flips and longer
forward jumps), the angular momentum in the interpolated motion will be close to
constant during flight. This analysis of angular momentum holds when the character
can be reasonably approximated by a rigid body during flight.

• If we interpolate two motions that either (1) do not have visible rotation during their
flight phases or (2) rotate by approximately the same angle about the vertical axis
in both original motions or (3) occur mostly in the vertical direction (for example,
a vertical jump), then the continuity of the velocity of the center of mass will be
preserved during the transition from flight to contact (ignoring the discontinuity due
to differences in time scaling of two phases).

5.6 Experimental results

Our experimental results consist of two parts. We first demonstrate that a variety of dynam-
ical and non-dynamical motions can be successfully interpolated to generate realistic look-
ing motions. The motions are generated by interpolating the trajectories of the center of
mass and joint angles during the flight phases and during the stance phases placing the root
at one of the feet in contact and interpolating the root and joint angles. The motions are also
aligned as described in Section 5.4. The motions are all included in the video that can be
found at the following website http://graphics.cs.cmu.edu/projects/interpolation analysis/.

We performed the following experiments: (1) the interpolation of two forward jumps
of very different lengths with no rotation; (2) the interpolation of two forward jumps of
different lengths, each with a 90 degree turn; (3) the interpolation of two vertical jumps of
different heights and different amounts of rotation; (4) the interpolation of two motions in
which the actor stepped over obstacles of different heights; (5) the interpolation of running
and a running jump. In each of these experiments, the original motions had the properties
required to guarantee the physical correctness of the interpolated motions according to our
analysis. The interpolated motions did indeed look visually realistic.

We also compare linear interpolation using root positions during flight with interpo-
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lation using the position of the center of mass. We interpolated root and center of mass
for a forward jump with no turn and forward jump with 360 degree turn (the example in
Figure 5.1). This interpolation results in unnatural motion during the flight phase if the
root is interpolated and natural looking motion if the center of mass is interpolated.

Interpolation of either the center of mass position or of the root position may cause the
feet to slide or penetrate the ground. We demonstrated this by interpolating motions of a
person sitting down on two seats of different heights. Interpolating root position results
in significant sliding of the feet. Even simply placing the root at one foot of the character
significantly reduces the problem although the second foot still moves slightly with respect
to the ground.

Our last experiment demonstrated that if two motions with different amounts of rota-
tion are interpolated there may be a visible discontinuity in the velocity of center of mass
at landing (Section 5.4). This phenomena is demonstrated on the interpolation of a forward
jump and a vertical jump with a 360 degrees turn. The resulting motion is quite unnatural.

5.7 Discussion

We, like others who have experimented with interpolation, have observed that the matching
of key events is crucial for good results. Some key events such as foot contact are relatively
easy to detect automatically. Others such as oscillations in arm swing, are more difficult
to detect and match accurately. However, if two jumps are interpolated, one with a double
arm swing during the landing phase and one with a single arm swing, the resulting motion
will not be natural. Problems such as this will have to be addressed in an automatic fashion
to make interpolation useful in situations where the details of the original motions are not
a good match.

The analysis presented here only looked at physical correctness. It will not catch un-
natural motions like the ones described in the previous paragraph or intersections of the
segments of the body that will sometimes arise when two natural motions are interpo-
lated. Those errors will have to be detected and fixed using editing techniques which may
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themselves introduce errors in the physical correctness of the motion.

In our analysis we assumed a time warping based on a set of matching keys. A method
for performing dynamic time warping is presented in [31]. While our analysis cannot
be directly applied to this approach because it violates our assumption of uniform time-
scaling, it might be possible to extend the analysis.

In our work we have studied most of the main physical properties. There are, however,
other physical properties that we haven’t looked at, such as, for example, the fact that the
center of pressure should fall within the support polygon of the feet.

The results presented here lead to a number of interesting further questions. First, in
situations in which the interpolated motion is not going to be physically correct, we need
better guidelines on how much error is acceptable. Reitsma and Pollard took a step in that
direction [59] and observed that errors in horizontal velocity were easier to detect than er-
rors in vertical velocity but we need a much more complete understanding of what errors
will be perceptible and which will not be noticed. For example, the angular momentum
of the interpolated motion is not conserved during flight in the general case. From our
experiments, however, even relatively large fluctuations in angular momentum are not no-
ticed by the viewer if they do not result in large changes in angular velocities. A deeper
understanding of this observation might be useful in developing better guidelines for in-
terpolation. Similarly, it would be useful to have a guideline for when the discontinuity in
the transitions from flight to stance will be visible.

5.8 Appendix A

Given the position of the center of mass of the character, Pcom, and the values of all joint
angles, Qi, i = 1..n, we compute the position of the root of the character, Proot as follows:
(1) for the given Qi compute the center of mass of the character, P 0

com assuming that
the root is at the origin; this calculation gives us the relative position of the root of the
character with respect to the center of mass of the character; (2) compute root position:
Proot = Pcom − P 0

com.
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5.9 Appendix B

The velocity of center of mass is computed by taking the derivative of the position of the
center of mass in equation 5.4 with respect to time. Similarly, acceleration of center of
mass is computed by taking the derivative of the velocity:

Vcom(t) = dPcom(t)
dt

= d(wP1com(t1)+(1−w)P2com(t2))
dt

= wV1com(t1)T1
T + (1− w)V2com(t2)T2

T

(5.16)

Acom(t) = dVcom(t)
dt

= d(wV1com(t1)
T1
T

+(1−w)V2com(t2)
T2
T

)

dt

= wA1com(t1)(T1
T )2 + (1− w)A2com(t2)(T2

T )2
(5.17)

where w = 0..1 is the interpolation weight, T1, T2 and T are the overall time of phase Φ in
motions M1, M2 and M . t1 = tT1/T and t2 = tT2/T are scaled time indices into motions
M1 and M2.

5.10 Appendix C

To obtain the root position given the center of mass position, the values of all non-
redundant dofs and the values of constraints, such as feet position and orientation, we
first note that the center of mass of the character can be decomposed into the summa-
tion of three quantities: the center of mass for the upper body, Pupcom, for the left leg,
Pllcom and for the right leg, Prlcom. The center of mass of the entire body, Pcom, is then
Pcom = PupcomMupcom + PllcomMllcom + PrlcomMrlcom. In this derivation we assume both
legs are in contact but when only one leg is in contact the derivation is very similar. The
position of the center of mass of the upper body can be re-expressed in terms of the root
position (an unknown) and the center of mass of the upper body assuming the root is at the
origin (see Appendix A):

Pcom = (Proot + P 0
upcom)Mupcom + PllcomMllcom + PrlcomMrlcom (5.18)
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The position of the center of mass for a leg can be expressed in terms of the position
of the root, the position of a knee joint and the position of the foot joint. For example, for
the left leg

Pllcom = 2Proot + 2/3 (Plknee − Proot) + 1/2 (Plfoot − Plknee) + Plfcom (5.19)

where Plknee is the position of the left knee joint, Plfoot is the position of the left foot
joint and Plfcom is the position of the center of mass of the left foot. Plknee in its turn can
re-expressed as a function Proot as was shown in [30], leaving us with Proot as the only
unknown in equation 5.18. Solving the equation for Proot (either analytically if possible
or numerically if not) will give us the desired result.

5.11 Appendix D

It can be shown that ground reaction force of an interpolated motion computed according
to equation 5.10 is a time-scaled interpolation of the ground reaction forces of motions M1

and M2 if we compute time T for that contact phase as T =
√

T 2
1 w + T 2

2 (1− w):

F grf (t) = F grf
1 (t1)(

T1

T
)2w + F grf

2 (t2)(
T2

T
)2(1− w) (5.20)

Proof: Assuming a single support polygon, by Newton’s second law the ground reac-
tion force, F grf (t) is

F grf (t) = m̄Acom(t)− m̄G (5.21)

where m̄ is the total mass of the system, Acom(t) is the acceleration of the center of mass
of the system and G = (0,−9.8, 0) is an acceleration due to gravity. Substituting equa-
tion 5.17 into 5.21 yields:

F grf (t) = m̄A1com(t1)(
T1

T
)2w + m̄A2com(t2)(

T2

T
)2(1− w)− m̄G (5.22)

From Newton’s second law m̄A1com(t1) = F grf
1 (t1) + m̄G and m̄A2com(t2) =

F grf
2 (t2) + m̄G. Substituting this into the equation above:
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F grf (t) = (F grf
1 (t1) + m̄G)(T1

T )2w+

(F grf
2 (t2) + m̄G)(T2

T )2(1− w)− m̄G
(5.23)

Rearranging the terms we have:

F grf (t) = F grf
1 (t1)(T1

T )2w + F grf
2 (t2)(T2

T )2(1− w)+

m̄G(T 2
1 w+T 2

2 (1−w)
T 2 )− m̄G

(5.24)

Because T =
√

T 2
1 w + T 2

2 (1− w), the ground reaction force for the interpolated mo-
tion is the interpolation of ground reaction forces from first and second motions:

F grf (t) = F grf
1 (t1)(

T1

T
)2w + F grf

2 (t2)(
T2

T
)2(1− w) (5.25)

5.12 Appendix E

It is easy to show that for any positive numbers a,b,c and d, if a
b

< µ and c
d

< µ then
a+c
b+d

< µ.

Adding equations a < µb and c < µd together we have: (a + c) < µ(b + d). Now
rearranging terms yields: a+c

b+d
< µ
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Chapter 6

Summary and discussion

In this thesis, we experimented with optimization in two different subspaces: a low-
dimensional continuous subspace (Chapter 3) and a compact discrete subspace (Chap-
ter 4). We have shown that the optimization problem becomes much easier to solve when
the solution is restricted to one of these compact subspaces. This chapter concludes the
thesis with a comparison of the two approaches and a summary of our contributions.

6.1 Comparison of the two optimization approaches

We compare the continuous and discrete optimization approaches on three different axes:
search space complexity, generality, and physical correctness.

6.1.1 Complexity of the search space

The continuous space is usually much more complex than the discrete space. In our experi-
ments, it takes five to ten dimensions to represent motions of one behavior. For example, to
adequately represent forward walking with different step length behavior, the continuous
optimization approach needs seven dimensions. The optimizer takes about 20 minutes to
generate a 2 meter walk (about 1.5 second time duration) in this 7-dimensional space. The
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discrete approach, on the other hand, needs only eight motions (less than 3 seconds each)
to construct a motion graph that represents a the same walking behavior. After compres-
sion, the corresponding compact motion graph has about 15 states, and the search explores
a few thousand states (with interpolation and global position). The discrete approach re-
quires less than 5 seconds to generate an optimal 2 meter walk.

These run-times are typical for the two approaches when generating short single-
behavior motions and the ratio of the run-time is about 250:1. Furthermore, the solution
found by the continuous optimization is a local minimum within a low-dimensional sub-
space which is not guaranteed to be a global minima, while the discrete optimization finds
a global minimum within the database. However in our experiments, the local minimum
found in the low-dimensional continuous space is usually a natural-looking motion despite
not necessarily being a global optima.

If we need to generate a motion involving more than one behavior, then the continuous
space can no longer be limited to 7-9 dimensions. As shown in Figure 3.2, the required
dimensionality grows as the number of the behaviors increases. Dimensionalities greater
than 15 usually prevent the optimizer from converging within reasonable time (approxi-
mately 5 hours) or results in an unnatural looking motion. A similar problem arises when
synthesizing very long motions with a single behavior. The number of unknowns in the so-
lution becomes too large and the optimizer does not converge within a reasonable amount
of time. The number of behaviors and the duration of the desired motion also affects the
complexity of the search in the discrete motion but it can handle these complexities better.
As was shown in Section 4.4, discrete optimization can generate motions that are 10 sec-
onds long and involve multiple behaviors (in our experiments all the solutions are found
in less than 3 minutes).

6.1.2 Generality

The continuous space is more general than the discrete space. As was shown in Section 3.2,
the continuous subspace allows the optimizer to generalize well beyond the sample mo-
tions. For example, we can synthesize a vertical jump with a 360 degree turn in a subspace
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constructed from the examples of three vertical jumps, one of 90 degrees, one of 180 de-
grees and one of 200 degrees. We can also synthesize many different jumps of varying
length and amount of turn from examples of just three jumps: a forward jump, a forward
jump with a 90 degree turn and a vertical jump with a 180 degree turn. Because of its
generality, optimization in the continuous space can handle a dense set of constraints and
can satisfy them exactly.

The discrete space is less general than the continuous space because a solution in the
discrete space is constrained to the interpolation of sample points. We can extrapolate
only slightly beyond these sample points because substantial extrapolation results in an
unnatural solution. For example, a vertical jump with a 360 degree turn synthesized from
the same examples of three vertical jumps (90, 180 and 200 degrees) does not look natural.
On the other hand, a 250 degree jump can be synthesized successfully. The same holds
for forward jumps. In general, only a small amount of extrapolation is visually acceptable
(see website for examples).

In order to make the discrete space as general as the continuous space, we need to add
more samples. For example, if we add two more vertical jumps—one with a 360 degree
turn and one with a 0 degree turn—to the sample set of three vertical jumps described
above, then we can synthesize natural looking vertical jumps of all rotations between 0
and 360 degrees using discrete optimization. Our experiments show that given enough ex-
amples we can construct a discrete space that is capable of synthesizing the same examples
that we synthesized with continuous optimization (see website for examples).

6.1.3 Physical correctness

The continuous space is not limited to just physically correct motions. To ensure that
the resulting motion is physically correct, we add a physics constraint to the optimization
function. Maintaining the physics constraint and minimizing a physic-based criterion such
as energy makes it possible to synthesize motions that are quite different from the sample
motions. On the other hand, these constraints make the optimization problem much harder
to solve because they make the search space more complex.
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Figure 6.1: Center of mass of an extrapolated motion, COMinterp, can move outside of
the support polygon. The shaded rectangle represents the support polygon for the motions
that are being extrapolated.

The graph that we construct for the discrete space represents only motions that are
close to physically correct (as we have shown in Section 4.3.1) and therefore we do not
need to maintain physics constraints during search just simply minimize energy. If we add
extrapolation to the discrete optimization, however, we can no longer guarantee physical
correctness because many of the physical properties that we have proven for interpolated
motions will not hold for extrapolated motions. For example, even if the center of mass
of a character was inside the polygon of support for two source motions, the extrapolated
center of mass may move outside the support polygon (see Figure 6.1). Our experiments
indicate that only a small amount of extrapolation can occur before the motion becomes
unnatural. Continuous optimization, on the other hand, can produce motions that are a
significant extrapolations of the sample motions and are still physically valid.

In conclusion, the discrete space is more compact than the continuous space because it
only contains physically correct and natural looking motions. On the other hand, it is less
general than the continuous space because it is restricted to interpolation of the sample
points used to construct the space.
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6.2 Contributions

The main contribution of this thesis is the development of two methods that support in-
tuitive interfaces for animating human characters. Our methods allow the synthesis of
physically realistic motions for complex characters such as humans based on only a rough
sketch of the desired motion. We hope in the near future to use these methods to create a
system that would allow naive users to animate complex characters, such as humans, in an
easy and intuitive way.

We have developed two different approaches that both build a compact (reduced-space)
representation of the motion based on available motion capture data. Finding a solution
in this smaller search space is much easier than finding a solution in the full search space.
In addition, the synthesized motion is likely to contain natural coordination patterns. This
objective is difficult to describe mathematically and is therefore hard to achieve when
searching the full search space.

In the first approach we have shown how to build a continuous low-dimensional repre-
sentation of the desired motion. With this approach, we were able to synthesize physically
realistic motions for a human character that matched rough sketches provided by a user.
This work was presented at the ACM SIGGRAPH 2004 conference [64]. In the second
approach, we have shown how to build a discrete reduced-space representation of the de-
sired motion. This representation can be viewed as a combination of motion graph and
interpolation techniques. The motion that can be generated with this representation is
an interpolation of k time-scaled paths through the motion graph. We have shown that
the optimization in discrete space supports interactive frame rates (less than 3 minutes to
compute a close to an optimal 10 sec long motion) and allows for the synthesis of less
dynamic motions and longer motions that are composed of different behaviors.

Another contribution of this thesis is that we have demonstrated that it is possible to
search a motion graph using a globally optimal search algorithm, A*. Two contributions
made this possible: compression of the motion graph into a practically equivalent but much
smaller graph and a search heuristic that guides search well for many human motions. We
have demonstrated that the global search is effective by creating long example motions
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and showing that the optimal and near-optimal solutions avoid the dithering and inefficient
patterns of motion seen in many motion graph implementations.

Finally, we have provided an analysis of the physical correctness of motions created by
interpolating a few, presumably physically correct, human motions. We have analyzed the
interpolated motion in terms of a number of basic physical properties: (1) linear and angu-
lar momentum during flight; (2) foot contact, static balance and friction with the ground
during stance; (3) continuity of position and velocity between phases. We assumed that the
motions used for interpolation are physically correct themselves, have the same skeleton,
can be aligned in time by picking corresponding key events and that linear interpolation is
used to interpolate parameters of motions between these key events. Our analysis shows
that with a few simple modifications to the straightforward interpolation technique pro-
posed by others, we can prove that these physical properties are satisfied for a wide range
of different kinds of motions. The interpolated motion will satisfy these physical prop-
erties if the motions used for interpolation do not include significant rotation during the
flight phase (runs, forward and vertical jumps, for example), rotate around approximately
the same principal axis by approximately the same amount (jumps with turns, for example)
or have no flight phase (walks or kicks, for example). This work was presented at the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation 2005 conference [63].
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