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Abstract

Network monitoring and diagnosis systems are used by 1SPdaity network manage-
ment operations and by popular network applications liker{pe-peer systems for per-
formance optimization. However, the high overhead of soroeitaring and diagnostic
techniques can limit their applicability. This is for exalaphe case for end-to-end avail-
able bandwidth estimation: tools previously developeaf@ilable bandwidth monitoring
and diagnosis often have high overhead and are difficultéo us

This dissertation puts forth the claim that end-to-endlat#ée bandwidth and band-
width bottlenecks can be efficiently and effectively estiedausing packet-train prob-
ing technigues. By using source and sink tree structurdsctracapture network edge
information, and with the support of a properly designed sneament infrastructure,
bandwidth-related measurements can also be scalable amdrgent enough to be used
routinely by both ISPs and regular end users.

These claims are supported by four techniques presenteid issertation: the IGI/PTR
end-to-end available bandwidth measurement technigad?dkthneck bottleneck locating
technique, the BRoute large-scale available bandwidrémice system, and the TAMI
monitoring and diagnostic infrastructure. The IGI/PTRieique implements two available-
bandwidth measurement algorithms, estimating backgriafiic load (IGI) and packet
transmission rate (PTR), respectively. It demonstrataisghd-to-end available bandwidth
can be measured both accurately and efficiently, thus gplfie path-level available-
bandwidth monitoring problem. The Pathneck technique asearefully constructed
packet train to locate bottleneck links, making it easieditgnose available-bandwidth
related problems. Pathneck only needs single-end conmblsaaextremely light-weight.
Those properties make it attractive for both regular neltwisiers and ISP network opera-
tors. The BRoute system uses a hovel concept—source antlexsdsk—to capture end-user
routing structures and network-edge bandwidth infornmatiequipped with path-edge in-
ference algorithms, BRoute can infer the available banthwélall N? paths in anV-node
system with onlyO(N) measurement overhead. That is, BRoute solves the systain-le
available-bandwidth monitoring problem. The TAMI measueat infrastructure intro-
duces measurement scheduling and topology-aware cdjgahith systematically support
all the monitoring and diagnostic techniques that are psegdan this dissertation. TAMI
not only can support network monitoring and diagnosis sbaan effectively improve the
performance of network applications like peer-to-peetesys.
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Chapter 1

Introduction

1.1 Network Monitoring and Diagnosis

A network monitoring and diagnosis system periodicallyores values of network perfor-
mance metrics in order to measure network performancetiig@erformance anomalies,
and determine root causes for the problems, preferablydeitstomers’ performance is
affected. These monitoring and diagnostic capabilitieatical to today’s computer net-
works, since their effectiveness determines the qualitheietwork service delivered to
customers. The most important performance metrics thahargtored include connectiv-
ity, delay, packet loss rate, and available bandwidth. @jadrk connectivity is probably
the most important metric for a network monitoring and diagja system, since the top
priority of a network service is to guarantee that any paierd nodes can communicate
with each other. Due to its importance, all network layetastsg from the physical layer,
provide mechanisms to automatically monitor network catiagy. (2) Network delay
is perhaps the most widely used performance metric in tadagtwork applications. It
is monitored mainly at the end-to-end level using ping. Netwdelay can be used to
directly evaluate network path performance, especialtysfoall data transmissions. (3)
Packet loss rate refers to the probability that a packetdyeigped on a network path. It
is mainly monitored at router interfaces using SNMP pactadistics. For ISPs (Internet
Service Providers), since packet loss rate is a key markatietric, a lot of monitoring
and diagnostic effort is devoted to reducing packet lossapplications, however, packet
loss rate does not always significantly affect the perforreanf data transmissions. For
example, single packet loss has a very limited impact on Batk transmissions that use
state-of-art TCP protocols. (4) Available bandwidth istéweo important performance met-
ric, which directly captures data transmission speed.igh network delay can be used
to evaluate the performance of a network path for small datssmissions, the available
bandwidth metric is needed for larger data transmissiomsveder, available bandwidth
is much less popular than the delay metric due to its high areagent overhead. People
instead use the link load metric, which can be more easilysored (e.g., using SNMP),

1
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to capture available bandwidth information.

Network performance metrics can be measured at either dduak or an end-to-end
level. Link-level information is easy to obtain since mostwiork devices support link-
level performance measurements. For example, link paokstrate and link load can be
measured using the SNMP protocol, and link connectivitylmamonitored using routing
protocol heart-beat messages. The problem with link-levaitoring, however, is that it
is hard to extrapolate end-user performance purely basdidlotevel information. This
is because end users’ data flows often go through multiple’ IsRworks, and it is practi-
cally impossible to obtain link-level information from aliese ISPs. Even if such access
is possible, problems still remain: (a) fine-grain syncliwation of the measurements on
all the links along an end-to-end path is a hard technicablpro, (b) it is often not im-
mediately clear how to assemble the performance informd8ay., path delay variance)
from multiple links to infer that of the whole path; (c) theeshiead of transmitting and
managing each link-level measurement can be prohibitieetduhe large number of end
users and the large number of links that each end-user may use

End-to-end monitoring matches the experience of a realsudata transmission more
closely. Since end-to-end monitoring does not require agtwnternal information, it is
not limited by ISPs’ control over such data and can be easigdiby regular end users
or applications. For the same reason, end-to-end mongteemetimes incurs much less
measurement and management overhead. This is why ISP ketperators also use
end-to-end monitoring techniques such as pairwise pingsanitor their network’s per-
formance, even though they also have access to link-lef@inration. Despite these in-
triguing properties, end-to-end monitoring also has anais/problem: it is often hard
to design a technique to measure end-to-end performancaeer@ly the two most popu-
lar end-to-end monitoring techniques are ping and tracerddoth can be used for delay
and connectivity measurements, and traceroute is alsdgdpu route measurements. It
is much harder to obtain information on other metrics likekes loss rate and available
bandwidth, which is why both are still active research tepic

My thesis research focuses on end-to-end available batidwdnitoring and diag-
nosis. Throughout this dissertation, | will focus on how tficeently measure available
bandwidth and how to locate bandwidth bottlenecks. In tisegéthis chapter, | first de-
fine the available bandwidth metric and explain its impor&anl then present the thesis
statement and technical contributions of this dissematichich is followed by a discus-
sion of related work. I conclude with a roadmap of the disgen.

1.2 Available Bandwidth

We define available bandwidth as the residual bandwidth oataark path that can be
used by a new data flow without disturbing the transmissiootlér flows on that path.
That is, available bandwidth can be calculated as path @gpamus path load. Tech-
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Figure 1.1: Application of end-to-end available bandwilltserver selection.

nically, the termavailable bandwidths defined as follows. Consider an end-to-end path
that hasn links Ly, Lo, ..., L,,. Their capacities ar®;, Bs, ..., B,,, and the traffic loads
on these links ar&’;, Cy, ..., C,,. We define thebottleneck linkas L,(1 < b < n),
where B, = min(By, Bs, ..., B,). Thetight link is defined ad.,(1 < ¢ < n), where

B, — Cy = min(B, — Cy, By — Cs, ..., B, — C,,). The unused bandwidth on the tight link,
B; — C4, is called theavailable bandwidttof the path.

End-to-end available bandwidth information is importamt nany popular applica-
tions. | will use three representative applications tostitate this importance. Figure 1.1
is a typical server-selection application, where an end waats to download a file from
a website. On today’s Internet, it is often the case thatetlaee multiple websites that
provide the same file (e.g., a popular movie file), and the eed needs to choose one of
them. Obviously, the server that has the highest downlgggfieed is the best choice, and
to know that, the end user must have the end-to-end avabhalpl@width information from
each of these websites.

The second type of application is peer-to-peer systemsuasrdted in Figure 1.2. In
such systems, end users collaborate with each other to wapghe overall data trans-
mission performance. Peer-to-peer systems are widely lngdadternet end users since
they can significantly improve end user’s data transmispenfiormance. In these sys-
tems, when a new user (e.g., user F in Figure 1.2) wants totjogrsystem needs to pick
an existing system user (user A-E) to forward data packetsabnew user. Since dif-
ferent users can have dramatically different data trarmomsperformance, the selected
user should have good data forwarding performance towhelsdw user. This selection
procedure also requires the end-to-end available bankdwittirmation.

The third application in Figure 1.3 is on ISP network engriirege In this figure, the
video server provides a video downloading service to itsntd. This server is a cus-
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Figure 1.3: End-to-end available bandwidth diagnosis i h&twork engineering.

tomer of ISP D, which means that all data transmissions fitoenvideo server will first
go through ISP D’s network. To attract customers, ISP D ofiesds to help its customer
to adapt to network performance changes. For example, ISRtiBlly routes the video
server’s traffic through ISP B to the clients connected w8P IA. If ISP B’s network
has problems and degrades the transmission performariR® 8ay want to reroute the
video server’s traffic through ISP C. In this case, ISP D hastend-to-end measurement
techniques since the problem is on a network to which it hagaoess. This application
illustrates that end-to-end available bandwidth diagondstchniques are also important
for ISPs.

Despite the importance of end-to-end available bandwiitimnétwork applications, it
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is not as widely used as the delay metric. One reason is theat dan be used to approx-
imate available bandwidth information in many scenariosither reason is that it is still
hard to obtain end-to-end available bandwidth informatidhere are three major chal-
lenges in such measurements. First, Internet availabléviadih is very dynamic due to
the burstiness of Internet background traffic. Secondkantie delay measurement, which
can be done by just using a small number of packets, estighatmlable bandwidth often
requires a large number of measurement packets in ordetltdalt& network path to ob-
tain the available bandwidth information. The high overheskes available-bandwidth
measurement techniques hard to use in practice. Finadise hre few efficient techniques
that can be used to diagnose available-bandwidth relatddems. For example, there is
no efficient way to identify the link that limits the avail@bandwidth between a pair of
end nodes.

To address these challenges, we need the following capeduil{1) efficient path-level
available bandwidth monitoring and diagnosis capabil(i2y;efficient system wide avail-
able bandwidth monitoring and diagnosis capability; andagBinfrastructure supporting
these techniques and systems. Path-level monitoring dapabimportant because many
network applications, especially those used by regularuseds, only require path-level
performance information. System wide monitoring capabii used to address monitor-
ing problems for large-scale systems (like the peer-to-pgstem in Figure 1.2), which
often require different techniques than those used for-[@a#l monitoring. For both
path-level and system-level monitoring, efficiency is vanportant, because that deter-
mines whether the corresponding techniques can be widely. usfrastructural support
for measurement configurations and managements can samtifidcower the bar for reg-
ular end users to use these techniques. In this dissertate@developed the IGI/PTR and
Pathneck tools to provide path-level monitoring and diaigmoapability; we proposed the
BRoute system to provide system-level monitoring cap@hive designed and developed
the TAMI system to provide infrastructural support for bgisth-level and system-level
monitoring and diagnosis capabilities.

1.3 Thesis Statement

This dissertation puts forth the claim that end-to-end avalable bandwidth and band-
width bottlenecks on individual network paths can be efficiatly and effectively esti-
mated using packet-train probing techniques. Large-scal@available bandwidth can
be estimated efficiently by using the source and sink tree datstructures to capture
network edge information. Also with the support of a properly designed measure-
ment infrastructure, bandwidth-related measurement techniques can be convenient
enough to be used routinely by both ISPs and regular end users
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1.4 Thesis Contributions
This dissertation makes the following technical contridos:

e An end-to-end available-bandwidth measurement techniqueWe designed and
developed an active measurement technique that uses pachstto estimate end-
to-end available bandwidth. This technique significargiyuces measurement over-
head, while maintaining a similar measurement accuracypeoed with other tech-
niques. The implementation of this technique—the IGI/Pa&-tis publicly avail-
able [6] and has served as a benchmark for newly developésl too

¢ An Internet bottleneck link locating technique. We developed a technique that
uses a carefully constructed packet trains to quickly tla¢ bottleneck link of a
network path. Its measurement overhead is several ordensghitude lower than
previously designed techniques. These properties makesgilple to conduct an
Internet-scale study of network bottlenecks for the firsitin the research commu-
nity. Pathneck’s implementation [11] is also open source.

e A thorough understanding of Internet bottleneck properties and their usage.
This dissertation characterizes bottleneck propertiesiiting bottleneck link loca-
tion distribution, end-user access bandwidth distribytmttleneck location persis-
tence, and the relationship between bottleneck link arldities/delay. The under-
standing of these properties helps us improve the perfarenahvarious network
applications including overlay, multihoming, and contdistribution.

e A data structure that captures end-node routing topology. We proposed to use
the source and sink trees to capture end-node routing tgigsland efficiently cover
bandwidth bottlenecks. This concept not only helps desitarge-scale available
bandwidth measurement system, but also motivates a routkusty metric that
can help end users to quantify route sharing.

e A large-scale available-bandwidth inference schemeSimilar to the synthetic co-
ordinate systems developed for network delay inferencelesgned, validated, and
implemented a system that addresses the overhead problamitzble-bandwidth
monitoring in large network systems. It only usesN) overhead to measure the
N? paths in aV-node system.

e A bandwidth-oriented monitoring and diagnostic infrastru cture. This infras-
tructure provides a system support for complicated banithanelated monitoring
and diagnostic operations. Its distinguishing charasties are its topology-aware
capability and its measurement scheduling functionality.
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1.5 Related Work

Previous work on network monitoring and diagnosis can bghbuclassified into two
categories: measurement techniques, and monitoring agaastic systems.

1.5.1 Measurement Techniques

Measurement techniques can be classified based on therparfoe metric they measure.
Since a same metric can be monitored at both the link-lewetla@ end-to-end level, the
corresponding techniques can be further labeled as Ivid-t& end-to-end level monitor-
ing techniques. For example, at link level network conmégtican be monitored using
both physical-layer signals and IP-layer routing protdeedrt-beat messages; while at the
end-to-end level it is monitored using ping or traceroute.

The delay metric is measured using ping at both the link andterend levels. How-
ever, link-level ping can only be done through the router e@nd-line interface, i.e.,
manually, so it can not be used directly by a monitoring syst€hat is a key motivation
for developing link-delaynferenceechniques. One simple method is to ping the two ends
of link, and use the delay difference as an estimation ofittkedelay. Tulip [80] is an ex-
ample of this method. Another method is to apply tomogragbiiques [31], which use
probabilistic models to infer link delay based on multipheleéo-end delay measurements.
At the path-level, besides ping, synthetic coordinateesyist[88, 41] have been developed
for large-scale delay inference. Note that all these tepies measure or infer either just
the propagation delay (e.g., the synthetic coordinateesys) or the sum of propagation
delay and queueing delay. None of them can directly quatigyqueueing delay, which
is an important metric for network congestion and delayarase. So far there have been
no good techniques to quantify queueing delay, either dirikdevel or at the end-to-end
level, although there has been some work toward this go3lJ8p

The packet loss-rate metric at the link-level is measuraéaguSNMP, which uses a
counter to keep track of the total number of lost packets.-terehd packet loss rate is
hard to measure because Internet packet loss is very bukstyasonable estimation of
path loss often requires a large number of sampling packet&jng overhead a major
concern. Sting [102] and Badabing [107] are perhaps the tgbHhknown packet loss-rate
measurement tools. Sting leverages the TCP protocol tdifg@acket losses on both the
forward and reverse paths. It uses the fast retransmissainre of the TCP protocol to
force the packet receiver to acknowledge each data paciathan identifies packet loss
by comparing data-packet sequence numbers and ack-packetrsce numbers. Badabing
estimates path loss rate by measuring both the loss epissgleshcy and the loss episode
duration, which are sampled using two-packet or three-ggaiobings.

Available bandwidth at the link-level is measured usings liapacity and traffic load
information. Internet link capacity is generally known aopr, and the traffic load can be
calculated using the statistics collected by SNMP. At thbnend level, people generally
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Table 1.1: Classification of network monitoring and diagiosystems
Industry (ISP-oriented)| Academia (end-user oriented)

Passive| Sprint’s IPMON [49] OCXMON [84], CoralReef [38], IPMA [62],
SPAND [104, 111]

Active | ATT active measurer AMP [84], Surveyor [115], MINC [86],
ment system [36] Scriptroute [110]

Both | NetScope [47] NAI [84], IEPM [61], NIMI [93]

use tools like iperf [8] or ttcp [116] which use TCP flows’ teanission performance in
order to quantify path available bandwidth. Note thesestankasure TCP achievable
throughput, not the available bandwidth (i.e., the redibaadwidth) as we defined. This
is because TCP achievable throughput is not only deternbgelle available bandwidth
of the path, it is also affected by the level of multiplexingoackground traffic flows and
system configuration parameters such as TCP buffer sizes. digsertation focuses on
end-to-end available bandwidth measurement.

1.5.2 Monitoring and Diagnostic Systems

Monitoring and diagnostic systems provide system supputtagoplication interfaces for
measurement techniques, thus lowering the bar for regpfarcations to use those tech-
niques. Currently, most such systems focus on monitoringeweaving diagnosis to
applications. Table 1.1 classifies the well-known networbnitoring systems accord-
ing to their application environment (ISP-oriented or ersgr oriented) and measurement
techniques (active measurement or passive measurementj.répresentative monitor-
ing systems are NetScope [47], IPMON [49], NIMI [94], andifttoute, each having its
own distinguishing characteristics. NetScope was deeeldgy AT&T. It uses both active
measurement techniques like ping and traceroute, andvpassasurement techniques
like SNMP and Netflow to monitor and diagnose AT&T's backbaoretwork. IPMON,
used in the Sprint backbone network, is a representativiersythat only uses passive
measurements. IPMON mainly uses DAG (Data Acquisition ardédgation) cards [42]
to collect router interface packet traces. Packet tracesiseful for packet-level history
reconstruction to identify performance problems at sniadétgranularities. NIMI is one
of the earliest end-user oriented monitoring systems. dviges a measurement infras-
tructure for end users to install and deploy measuremeis ol to collect measurement
results. Since NIMI is an open platform, it uses many mearaaito protect privacy and to
guarantine the impact of buggy code. Scriptroute is a marentty proposed monitoring
system. It provides both a distributed measurement infrestre for end users to conduct
measurements, and a script language to help develop mesntreechniques. Scriptroute
employs many security features in both its architecturalgieand its script language to
address security and resource abuse that can result frora astasurements. Compared
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with these monitoring systems, the TAMI system that is dbecrin this dissertation pro-
poses two new monitoring functionalities: measuremehedaling and topology aware-
ness.

There are far fewer diagnostic systems than monitoringesyst The representative
diagnostic systems are AS-level route-event diagnosstesys [48] and the Planetseer
system [119]. AS-level route-event diagnostic systemBE3e update messages to iden-
tify which AS triggers a BGP event that affects network t@affsuch diagnostic systems
can only be used by ISPs since they require internal BGP dal@netseer proposes a
framework to diagnose IP-level route events that affect wlemt transmission perfor-
mance. It uses the web-proxy service provided by CoDeen| tblmonitor web clients’
TCP performance. For each performance problem, such a®iplads, Planetseer uses
traceroute to identify its possible causes. It was used teodstrate that route anomalies
are a common cause for TCP performance problems. Compayatiie TAMI system
presented in this dissertation can also diagnose avaitasidwidth related problems us-
ing the Pathneck technique.

1.6 Roadmap of The Dissertation

This dissertation is organized as follows. Chapter 2 shawstb accurately measure end-
to-end available bandwidth. Specifically, it describesdiksign and implementation of
the IGI/PTR tool, which implements two available-bandwidbieasurement algorithms,
estimating background traffic load (IGI) and packet trarssioin rate (PTR), respectively.
It also describes the TCP PaSt algorithm, which demonstitates a packet-train prob-
ing algorithm can be integrated into a real application. gZ&a3 explains how the PTR
technique can be extended to develop the Pathneck toolhwisies carefully constructed
packet trains to efficiently locate Internet bandwidth leoiecks. Based on Pathneck, in
Chapter 4, we present the results of several Internet-stiadges on bottleneck properties,
analyzing Internet bottleneck location distributiongdmtet end-user access bandwidth dis-
tribution, persistence of bottleneck locations, and reteships between bottlenecks and
packet loss and queueing delay. Chapter 5 presents theesandcsink tree structures
that can efficiently capture network-edge information|udeng path-edge bandwidth. In
the same chapter, we also introduce the RSIM metric that camtdy route similari-
ties and infer path edges. Chapter 6 presents the BRouensysthich uses source and
sink trees to solve the overhead problem of large-scaldadlaibandwidth monitoring.
The last part of this dissertation (Chapter 7) describesié#sggn and implementation of
TAMI|—a topology-aware measurement infrastructure. Thectgsion and future work
are presented in Chapter 8.
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Chapter 2

End-to-End Available Bandwidth
Measurement

In this chapter, we present the design, implementationgaatliation of an effective and
efficient end-to-end available bandwidth measurement Welfirst describe a single-hop
gap model that captures the relationship between the thpuigf competing traffic and
the sending rate of a probing packet train on a single-hopaor&t Based on this model,
we present the implementation details of an end-to-endadlaibandwidth measurement
tool that implements the 1GI and the PTR algorithms. We eat@luhis tool from three
aspects: (1) measurement accuracy and measurement aygi@)the impact of probing
packet size and packet-train length on measurement agg@nad (3) multi-hop effects
on measurement accuracy. We also describe how to adaptTi&If&x heavily-loaded
paths and high-speed paths. Finally, we describe an apphocaf the PTR algorithm in
TCP slow-start, where we demonstrate how to integrate th packet-train probing al-
gorithm into an application to improve its transmissionfpanance by obtaining network
performance information.

2.1 Overview of Active Measurement Techniques

Active measurement techniques estimate network metrisebgling probing packets and
observing their transmission properties. For differenfqrenance metrics, the probing
packets can be structured differently. A large number dedéht probing-packet struc-
tures have been used, such as a single packet (used by piricaaabute), packet pair
(used by bprobe [32], Spruce [113], and many others), padigetet (used by Tulip [80]),

packet quartet [91], packet train (used by cprobe [32], IBath[65] and many others),
packet chirp (used by pathChirp [101]), and packet taifgpf{used by nettimer [77] and
STAB [100]). Besides the number of probing packets, thesectsires also use differ-
ent methods to set packet gap values. Packet gap values cathéefixed (as in the

11
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packet trains in Pathload [65]), follow a Poisson distribnt(as in the packet pairs in
Spruce [113]) or an exponential distribution (as in the gackirp in pathChirp [101]), or
follow a TCP algorithm (as in Treno [83] and Sting [102]).

The packet pair is perhaps the most popular structure. Meamnt techniques that
use this structure generally send groups of back-to-backeaps, i.e., packet pairs, to a
destination which echos them back to the sender. The spbheimgeen packet pairs is de-
termined by the bottleneck link capacity and is preservetinkg that have higher avail-
able bandwidth [63]. So by measuring the arriving time défece of the two probing
packets, we can estimate path capacity. This is the key mlemdst active bandwidth
measurement tools. A packet train is an extension of thegtguir structure, and it is of-
ten used for available bandwidth measurement. The diféeresithat packet trains capture
not only path capacity but also traffic load information.

Packet tailgating is probably the most interesting stnctit is designed to avoid the
dependence on ICMP error packets. It is first proposed bynmet{77]. The idea is to
let a small packet that has a large TTL follow a large packat tlas a small TTL so that
the small packet queues behind the large packet. After tige lpacket is dropped, the
small packet can still reach the destination, preserviegittay or rate information of the
large packet. When a train of packet-tailgating pairs islugee sequence of small packets
can be used to estimate the available bandwidth on the lirdeevtine large packets were
dropped. That is the idea used by STAB [100] to obtain linkel@available bandwidth and
then locate bottleneck links.

2.2 Single-Hop Gap Model

The idea behind using active measurement techniques toastavailable bandwidth is
to have the probing host send probing packets in quick ssimesnd to measure how
the packet gaps change (Figure 2.1). As the probing paaketsl through the network,
packets belonging to the competing traffic may be insertédd®n them, thus increasing
the gaps. As a result, the gap values at the destination mayurection of the competing
traffic rate, making it possible to estimate the amount of petimg traffic. In practice,
the way that the competing traffic affects the packet pairigapuch more complex than
what is suggested above. In this section, we describe asimptel that captures more
accurately the relationship between the gap value of a paelkeand the competing traffic
load on a single-hop network.

2.2.1 Single-Hop Gap Model

The 3D graph in Figure 2.2 (the notations are defined in Tallg ¢hows the output
gap valueyp as a function of the queue sizgand the competing traffic throughpiBt..
This model assumes that the routers use fluid FIFO queueth¢hahall probing packets
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Figure 2.1: Interleaving of competing traffic and probinghets.
gz is the initial gap. gp is the probing packet length on the output linko is the gap after
interleaving with the competing trafficB¢ is the competing traffic throughput. Also refer to
Table 2.1 for the symbols’ definition.

Table 2.1: Definition of symbols
gr | theinitial gap, the time between the first bits of P1 and P2 when they ententlter;
it includes P1's transmission delay (the time for a packégplaced on a link) on th
input link
gp | thebottleneck gap the transmission delay of the probing packet on the outplat ik
is also the gap value of two back-to-back probing packethemottleneck link
go | theoutput gap, the time between the first bits of P1 and P2 when they leaveotiter,
i.e., on the bottleneck link
Bo | the bottleneck link capacity
B¢ | the competing traffic throughput for the time interval betwehe arrival of packets PJ1
and P2
Q@ | the queue size when packet P1 arrives at the router
the probing packet length

r | r=gs/g

11%

have the same size. It also assumes that the competing tsafiimstant in the interval
between the arrival of packet P1 and P2; given that thisvates on the order of 1ms,
this is a reasonable assumption. The model has two regiandegcribed below, the key
difference between these two regions is whether or not teptrckets P1 and P2 fall in
the same queueing period. dueueing periods defined to be the time segment during
which the queue is not empty, i.e., two consecutive queup@rgpds are separated by a
time segment in which the queue is empty. For this reasogsettveo regions in the model
are called thd®isjoint Queuing Region (DQRInd theJoint Queuing Region (JQR)

If the queue becomes empty after P1 leaves the router anceld@2aarrives, then, since
B¢ is assumed to be constant in this (short) interval, P2 wid fam empty queue. This
means that the the output gap will be the initial gap minugjtireueing delay for P1, i.e.,

go = g1 — Q/Bo. (2.1)

Under what conditions will the queue be empty when P2 arfivBefore P2 arrives, the
router needs to finish three tasks: processing the q€ay By), processing Ply(), and
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Figure 2.2: Single-hop gap model.

processing the competing traffic that arrives between tbbipg packetsB. - g,/ Bo).
The router hag; time to complete these three operations, so the conditiop/ By +
Be - g1/ Bo + gB < g1, which corresponds to the triangul2QRregion in Figure 2.2. In
this region, the output gag, is independent of the competing traffic throughpdt The
above equation (2.1) is called tB€®R equation.

Under all the other conditions, i.e.,dQR when P2 arrives at the router, the queue will
not be empty. Sincé is constant, this means that P1 and P2 are in the same queueing
period. The output gap consists of two time segments: the torprocess Plyg), and
the time to process the competing traffic that arrives betvtbe two probing packets
(Bc - g1/ Bo). Therefore in this region, the output gap will be

go :gB+Bc~g[/Bo. (22)

That is, in this region, the output gajp, increases linearly with the competing traffic
throughputB.. Equation (2.2) is referred to as thi®Requation.

This model clearly identifies the challenge in using packatspfor estimating the
competing traffic throughput. If the packet pair happensperate in theDQR region of
the bottleneck router, the output gap will bear no relatgmsvith the competing traffic,
and using thdQRequation (since the user does not know which region appligisyield
an incorrect result. Furthermore, the estimate obtainedjussingle packet pair will only
provide the average competing traffic owgr which is a very short period. Since the
competing traffic is likely to fluctuate, one in general wilamt to average the results of
multiple samples, corresponding to independent packes.pBinis of course increases the
chance that some of the samples will fall in @R region.
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2.2.2 1Gland PTR Formulas

Equation (2.2) shows that in tlH&Rregion we can estimate the competing traffic through-
put B¢ based on the initial gagy, the output gago, and the bottleneck gaj;. However,
the single-hop gap model assumes that the competing traflisinooth packet stream. In
practice, the competing traffic flow will be bursty and a senghir of probing packets will
not capture theveragethroughput of the competing traffic. To deal with this prable
people use a packet train [92, 45], i.e., a longer sequeneeenily spaced packets.

The conclusions from the single-hop gap model do not diyexqiply to a packet train.
The main problem is that the “pairs” that make up a packen @aé not independent. For
example, if one packet pair in the train captures a burstcketa from the competing flow,
it is highly likely that adjacent pairs will not see any cortipg traffic and will thus see a
decrease in their packet gap. Intuitively, if we want toraestie the amount of competing
traffic, we should focus on thacreasedyaps in a probing packet train since they capture
the competing traffic, while decreased gaps saw little ororapeting traffic. Note that
this observation only applies when the probing packet tpirates in thdQRregion.

More precisely, assume a probing train in whithprobing gaps are increased,are
unchanged, and/ are decreased. If we now apply equation (2.2) to all the aszd gaps,
we get the following estimate for the competing traffic load:

Bo Eﬁl (9" — g8)
T T E— (2.3)
Zi:l g; + Zi:l 9; + Zi:l 9;

Here, the gap value§™ = {g¢'|i = 1,..., M}, G= = {¢7|i = 1,..., K}, andG~ =
{g9;]i = 1,..., N} denote the gaps that are increased, unchanged, and denesgeec-
tively. In this formula,Bo Zﬁl (g — gp) is the amount of competing traffic that arrive
at router R1 during the probing period. Ideally,”, g + 3.5, g7+ >V, g; is the total
probing time. In practice, we exclude gap values that ineddst or reordered packets, so
in such cases, the denominator may be smaller than the tataing time. This method
of calculating competing traffic load will be used by ti& (Initial Gap Increasing)algo-
rithm in Section 2.3, and it is called th&l formula.

A number methods have been proposed to estimate the agailabhbwidth along a
network path [32, 65]. Using the same notation as used ablogequation they use is

(M+ K+ N)L
2?11 gi+ + leil 9; + sz\il 9;

Here L is the probing packet size. This formula represents theageetransmission rate
of the packet train, measured at the destination. We widl ate this formula in th®TR
(Packet Transmission Rata)gorithm described in Section 2.3, and it is called B¥ER
formula.

(2.4)
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2.3 1Gland PTR Algorithms

The gap model shows that th&l formula only applies in thdQRregion, and we will
show below that th&TRformula is also only valid under similar conditions. Notath
the main parameter that is under our control in the singledap model is the initial gap
valueg;. It has a large impact on the size of tB€R region, and thus on the region in
which the packet train operates. Therefore, the key to anrate available bandwidth
measurement algorithm is to findga value so that the probing packet train operates in
the JQRregion. In this section, we first study the role @f more carefully, we then
describe how to combine the insights gnand thelGl andPTRformulas to develop the
two available bandwidth estimation algorithms.

2.3.1 Impact of Initial Gap

According to the single-hop gap model, if we are in @#@Rregion, the output gap of a
packet pair or train can give us an estimate of the competaifict on the bottleneck link.
However, in theDQRregion, output gap is independent of the competing traffie.algo
see that increasing the initial gap will increase @R area. This argues for using small
initial gaps. In fact, ifg; < gg, i.e., if the initial gap is smaller than the probing packet
transmission delay on the bottleneck link, tA@R area does not even exist. However,
with small initial gaps, such ag < g, we are flooding the bottleneck link, which may
cause packet losses and disrupt traffic.

We use the following experiment to better understand theaahpf the initial probing
gap on the accuracy of th&l andPTRformulas. We send an Iperf TCP competing traffic
flow of 3.6Mbps over a 10Mbps bottleneck link. We then probetetwork using a set
of packet trains; the packet train length is 256 and the piplpiacket size is 750Byte.
We start with an initial probing gap of 0.022ms, which is timadiest gap that we can
get on the testbed, and gradually increase the initial gaguré& 2.3 shows the average
gap difference (averaged output gap minus the averageal geip), the competing traffic
throughput estimated using th@&l formula, and the available bandwidth estimated using
thePTRformula.

We see that for small initial gaps (smaller thgn= 0.6ms, which is the transmission
time on the bottleneck link), we are flooding the network drermeasurements underesti-
mate the competing traffic throughput. Note that for minimaial gaps, thePTRformula
is similar to the formula used to estimate the bottleneck tapacity by tools such as
bprobe [32], and in fact, theTRestimate for small initial gaps is close to 10Mbps, which
is the bottleneck link capacity. When the initial gap reache, the DQR effect starts to
appear. Note that, unless the network is idle, the probimgtarain is still flooding the
bottleneck link. So far, the average output gap at the detstim is larger than the initial
gap. When further increasing the initial probing gap, ateg@uint (0.84ms in the figure),
the output gap equals the initial gap; we call thistilving point At this point, the prob-
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Figure 2.3: Impact of the initial gap on available bandwidtbasurements
The arrows point out the measurements at the turning pdietsmallest initial gap where the
average output gap equals the average initial gap.

ing packets interleave nicely with the competing traffia] #ime average rate of the packet
train equals the available bandwidth on the bottleneck lilmkthis experiment, théGl
estimate for the competing traffic at the turning point ifBaps and thé°>TRestimate for
the available bandwidth is 7.1Mbps; both match the actualpmiing traffic (3.6Mbps)
quite well. As the initial probing gap continues increasitige output gap remains equal
to the initial gap since all the packets on average expegigémesame delay.

We believe that the point where the average output gap etpudis initial gap, i.e., the
turning point shown in Figure 2.3, is the correct point to swea the available bandwidth.
The turning point corresponds to the smallest initial galueravith which the probing
packet train is not flooding the bottleneck link. With regpecthe single-hop gap model
in Figure 2.2 on which théGl formula is based, this initial gap will result in a packet
train that keeps the queue as full as possible without oweiripit; the model shows that
this puts us in thedQRregion. With respect to thBTR formula, the initial gap at the
turning point corresponds to the packet transmission ragrethe packet trains consume
all the available bandwidth without significant interfecerwith the competing traffic. In
other words, the packet train behaves like an aggressiveyddlbehaved (i.e., congestion
controlled) application flow, so its rate is a good estimdténe available bandwidth.
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2.3.2 1Gland PTR Algorithms

The Initial Gap Increasing (IGl)and Packet Transmission Rate (PTRIgorithms dis-
cussed below are based on packet trains that operate atrttiegtypoint. That is, they
send a sequence of packet trains with increasing initiafigap the source to the destina-
tion host. They monitor the difference between the averagece (initial) and destination
(output) gap and they terminate when it becomes zero. Atpbit, the packet train is
operating at the turning point. We then use iG& andPTRformulas to compute the final
measurement.

The pseudocode for tH&I algorithm is shown in Figure 2.4. The available bandwidth
is obtained by subtracting the estimated competing trdffioughput from an estimate
of the bottleneck link capacity. The bottleneck link capacian be measured using, for
example, bprobe [32], nettimer [77], or pathrate [45]. Nibigt errors in the bottleneck
link capacity measurement will affect the accuracy of thailable bandwidth estimate,
since the bottleneck link capacify, is used in the calculation of the bottleneck gap
the competing traffic throughputbw, and the available bandwidthbw. However, the
analysis of the above mentioned tools and our experience et the bottleneck link
capacity measurement is fairly accurate, so in the impléatiem of IGI/PTR, we do not
consider this factor.

ThePTRalgorithm is almost identical to tH&I algorithm. The only difference is that
the last three lines in Figure 2.4 need to be replaced by

ptr = packet_size x 8 x (probe_num — 1) /dst_gap_sum;

These formulas assume that there is no packet loss or packeering.

In both algorithms, to minimize the number of probing phagbs gap_step and
init_gap need to be carefully selected. The first probing usesé@ngap that is as small
as possible. This allows us to estimate the bottleneck lagacity andyz. it then sets
gap_step = gp/8, andinit_gap = gp/2. Another key step in both algorithms is the au-
tomatic discovery of the turning point. This is done in theqadure GAPEQUAL(). It
tests whether the source and destination gaps are “equalhws defined as

|sre_gap_sum — dst_gap_sum)|

< 9.

max(src_gap_sum, dst_gap_sum)

In the experimentsy is set to 0.1. These two steps are a key difference betwdéh
algorithm and other techniques based on Formula (2.4) shee allow us to quickly
find a good initial gap. We evaluate how fast this algorithmvasges in Sections 2.5.1
and 2.6.2.

Besides the initial gap, two other parameters also affexiatturacy of théGl and
PTRalgorithms:

1. Probing packet sizeMeasurements using small probing packets are very sensiti
to interference. The work in [45] also points out significpaost-bottleneck effects
for small packets. This argues for sending larger probiraiets.
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Algorithm IGl:
{

[* initialization */

probe_num = PROBENUM; packet_size = PACKETSIZE;
gB = GET_GB();

init_gap = gp/2; gap-step = gp/8;

src_gap_sum = probe_num x init_gap; dst_gap_sum = 0;

/* look for probing gap value at the turning point */

while (!GAP_EQUAL (dst_gap_sum, src_gap-sum)) {
it_gap += gap_step;
src_gap_sum = probe_num * init_gap;
SEND_PROBING_PACKETS(probe_num, packet_size, init_gap);
dst_gap_sum = GET_DST_-GAPS();

}

/* compute the available bandwidth using 1GI formula */
inc_gap_sum = GET_INCREASED.GAPS();

c.bw = b_bw * inc_gap_sum/dst_gap_sum;

a_bw = b_bw — c_bw;

Figure 2.4: IGI algorithm
SEND_.PROBINGPACKETS() sends outrobe_num packet_size probing packets with the initial
gap set tanit_gap; GET_.DST_GAPS() gets the destination (output) gap values and adas; the
GET.INCREASEDGAPS() returns the sum of the initial gaps that are largem tha bottleneck
gap; c_bw, b_bw, anda_bw denote the competing traffic throughput, the bottleneck tiapacity,
and the available bandwidth, respectively.

2. The number of probing packet#t is well known that the Internet traffic is bursty,
SO a short snapshot cannot capture the average traffic |daak afgues for send-
ing a fairly large number of probing packets. However segdoo many packets
can cause queue overflow and packet losses, increase therndhd network, and
lengthen the time it takes to get an estimate.

Through experiments we found that that the quality of theveges is not very sensitive to
the probing packet size and the number of packets, and tat tha fairly large range of
good values for these two parameters. For example, a 7@0playket size and 60-packet
train work well on the Internet. We discuss the sensitivityitese two parameters in more
detail in Section 2.6.

Finally, we would like to point out the two limitations of th&I/PTR design. One is
that IGI/PTR requires access to both the source and thendésti of a path. That limits its
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applicability since regular end users often only have lacakss. This problem is partially
solved by the Pathneck technique that is presented in thechepter. The other is that

the performance model of IGI/PTR presented in Section 2sRraes that routers use a
FIFO algorithm to schedule packets. This model may not afaplyireless networks and

broadband networks where packets are often scheduled msinglFO algorithms.

2.4 Evaluation Methodology

The evaluation includes three parts:

e In Section 2.5, we compare the performancéGif PTR and Pathload, focusing on
the measurement accuracy and the convergence time.

¢ In Section 2.6, we analyze how the probing packet size anduh#&er of probing
packets (packet train length) affect the measurement acgwfIGl andPTR

¢ In Section 2.7, we study the performancd@f andPTRon a network path where
the tight link is not the same as the bottleneck link. We ateilinto a related issue
about the impact of gap timing errors.

The first two parts are based on Internet measurements; talé&ast part is based on
ns2 simulations, because we need to carefully control timepeting traffic load in the
network.

The Internet measurements are collected from the 13 Irttpatbs listed in Table 2.2.
In this table, CORNELL, CMUJ[1-3], NYU, ETH, NCTU are machma Cornell Univer-
sity, Carnegie Mellon University, New York University, ETEurich (Switzerland), and
National Chiao Tung University (Taiwan), respectively. M8LC[1-2], SV, FC, SWE-
DEN, NL are machines on commercial networks, and they améacin Massachusetts,
Silicon Valley, Foster City, Sweden, and The Netherlandspectively. For each path in
Table 2.2, the first site is the sender, and the second siteigeteiver. The capacities
in the third column denote the bottleneck link capacitiesjclr we will also refer to as
the path capacity The path capacities are measured using bprobe [32], aridTthe are
measured using ping. The path capacities shown in the tableldained by “rounding”
the measured values to the nearest well-known physicathplacity.

To evaluate the accuracy of the different probing algorghon the Internet, we in-
terleave probing experiments with large application dedagfers that show how much
bandwidth is actually available and usable on the netwotk.gdowever, it is sometimes
hard to determine the actual available bandwidth on annetgrath. In practice, most
applications, especially bulk data transfer applicatiars® TCP. Unfortunately, for high
bandwidth paths, TCP is often not able to fully utilize theitable bandwidth. In most
cases the reason was simply that TCP end-to-end flow costliohiting the throughput,
and without root permission, we can not increase the sizeaies buffers. On other paths
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Table 2.2: Internet Paths
ID Path Capacity| RTT (std dev
(sender~receiver) | (Mbps) (ms)
1 | CORNELL— MA 15 27.59 (2.82)
2 SLC1- CMU2 10 59.65 (0.58)
3 NWU— CMU1 100 10.29 (0.94)
4 | CORNELL— CMU1 10 13.43 (0.15)
5 ETH— SWEDEN 10 76.04 (0.35)
6 SLC2— CMU1 100 83.21 (0.41)
7 SLC2— NYU 100 53.52 (0.36)
8 ETH— CMU1 100 125.00 (0.30)
9 ETH— NL 100 28.21 (0.21)
10 SV— NYU 2.5 78.29 (0.21)
11 SLC1- FC 4.5 43.39 (10.10)
12 SLC2- FC 4.5 80.65 (23.60)
13 NCTU— CMU3 100 265.54 (0.41)

we observe a significant amount of packet reordering or uaagx packet losses, both
of which can have a significant impact on TCP performance.

For the above reasons, we use a mixture of techniques to negasu'true” available
bandwidth. When possible, we use a single TCP flow. When smiatlow sizes prevent
us from filling the pipe, we use a number of parallel TCP flowsie humber of flows
is selected on a per path basis. A typical example of how tlketemend throughput
increases with the number of flows is shown in Figure 2.5. THreughput increases
initially and then flattens out. Typically 10 or at most 20 fiware sufficient to fill the
available bandwidth pipe.

Note that this approach provides only a rough idea of the racguof the probing
techniques. A first problem is that the probing and the datasters cannot be run at the
same time, so they see different traffic conditions, and veeilshexpect slightly different
results. Moreover, because of the bandwidth sharing cterstics of TCP, a single TCP
flow is not equivalent with multiple parallel TCP flows. On tbier hand, our approach
does model the way applications will typically use probiogls, so our approach captures
the accuracy that applications will perceive. Our expaxeanith tools such as Remos [43]
shows that applications in general only require rough es@sof path properties.

The implementation of thi&s| andPTRalgorithms needs accurate timestamp measure-
ment. As a result, we would expect the best results with keupport, such as libpcap [9].
However, for most of the end hosts we use for our experimevespnly have guest ac-
counts, so all the Internet measurements are collectedamitber-level implementation.
The probing packets are UDP packets, and timestamps arairadashen the client or
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Figure 2.5: Throughput of parallel TCP flows on the path EFHNWU

server applications sends or receives the UDP packets.

2.5 Measurement Accuracy and Overhead

In this section, we analyze the performancé®if andPTRalgorithms using experiments
on the 13 Internet paths listed in Table 2.2. We also compaieperformance with that of
Pathload. The experiments are conducted as follows. Fdrleéernet path, we measure
the available bandwidth using the following three methods:

1. IGI andPTR we use botHGI andPTRalgorithms to estimate the available band-
width. The probing packet size is set to 700Byte, and theipgopacket number is
60. We discuss why we choose these two values in Section 2.6.

2. Pathload The resolution parameter is set to 2Mbps. The Pathloacemehtatioh
returns a measurement interval that should contain thekbatailable bandwidth.
We use the center of the interval in our analysis.

3. Bulk data transfer We use one or more Iperf TCP flows to probe for the actual
available bandwidth. The transmission time is 20 seconmabitee TCP window size
at both ends is set to 128KB, which is supported on all mashiveehave access to.

We separate the above three measurements by a 5-seconpesieejdo avoid interference
between the measurements. We separate experiments by L€emof idle time. The
measurements run for anywhere from 6 to 40 hours.

http://www.cis.udel.edutdovrolis/pathload..0.2.tar.gz.
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Figure 2.6: Available bandwidth measurement error fi@h PTR and Pathload
Each bar shows the median value, and the line on each bar #he®% and 95% percentile values.

2.5.1 Measurement Accuracy

We use the metric relative measurement error to evaluai@blabandwidth measure-
ment accuracy. It is define as:

la_bwyx — throughputrcpl
Bo

relative_error =

Herea_bwyx can bea_bw;cr, a_bwprgr, anda_bwpanioad, I-€., the available bandwidth esti-
mates generated by the different techniquisyughputrcp is the bulk data transmission
rate, andB, is the bottleneck link capacity.

Figure 2.6 shows the relative measurement errotfGf PTR and Pathload. The
Pathload code used in this experiment does not apply to pathsavailable bandwidth
below 1.5Mbps (it returns the interval [0, link capacityyp we have no Pathload mea-
surements for Path 1. The measurement errors for path lell@eéow 30%, and in most
cases the error is less than 20%. That is, the estimatesqaddiy thelGI/PTR and the
Pathload algorithms match the TCP performance fairly wedk. paths 11-13, the relative
measurement error is much higher. Without the informatromfthe service providers,
it is hard to tell what causes the higher errors. Becausé&m@etmethods have low accu-
racy, we hypothesize that TCP has difficulty using the atsélaandwidth due to bad path
properties. For example, Table 2.2 shows that the RTT veesifor paths 11 and 12 are
large compared with those for the other paths. This may bsethly route flaps, which
may negatively influence TCP’s performance.

Figure 2.7 includes more detailed comparison of the bantivedtimates for six of
the paths. We pick three “good” paths with different pathpamies (paths 1-3, see Table
2.2) and all three of the bad paths (path 11-13). For paths?RPland P3, the graphs
confirm that all three techniques provide good estimatehi@falvailable bandwidth, as
measured by Iperf. Which technique is more accurate depamtize path. For example,
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Figure 2.7: Available bandwidth measurements and the TCi@npeance.
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time value, a number larger than 24 is the time next day.

IGl seems more accurate for P2 and Pathload for P3. One notat@pten is the period
from hour 22 to hour 28 for P1, where botGl and PTR appear to underestimate the
available bandwidth. For this path, the bottleneck link BSL line, which is in general
idle, as is shown by the high available bandwidth. During 28e28 hour interval, the
DSL line is used. Since only one or a few TCP connections aneeathey consume only
part of the available bandwidth. The bulk data transfer, dwat, uses five parallel Iperf
flows and appears to be grabbing bandwidth from the other fléWs illustrates that the
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Table 2.3: Measurement Time
Path ID IGI/PTR(S) Pathload (s) Ratio(};“;ﬂf;‘;)
(5%, median, 95%) | (5%, median, 95%) median
1 (1.60,2.05 6.27) | (14.98,30.56 31.03) 13.22
2 (0.58,0.73 1.56) | (13.67,15.37 31.81) 20.86
3 (0.11,0.11,0.18) | (7.55,13.17 14.91) 99.78
4 (0.49,0.52 0.52) | (11.78,12.26 12.76) 23.48
5 (0.78,0.80,0.83) | (15.58,15.86 16.55) 19.75
6 (0.62,0.80, 1.20) | (49.07,56.18 62.24) 70.08
7 (0.51,0.51,0.67) | (14.01,22.4Q 28.51) 45,94
8 (1.01,1.02 1.27) | (27.57,31.51,47.62) 27.80
9 (0.24,0.30,0.30) | (15.35,16.14 27.66) 65.81
10 (1.27,1.27,1.50) | (20.95,21.04 21.77) 16.50
11 (1.03,1.10 2.03) | (19.97,25.78 38.52) 23.45
12 (2.17,2.32 3.60) | (19.24,21.54 42.00) 9.20
13 (1.10,1.11, 1.13) | (12.24,12.76 47.22) 11.24
Geometric Mean 26.39

“available bandwidth” is not necessarily well-defined amegends on how aggressive the
sender is. Note that this is a somewhat atypical path: on imtstet paths, individual
senders will not be able to affect the bandwidth sharing agyea
For the three paths where the relative measurement errgghis\we see the available
bandwidth estimates produced by all three methods are migblehthan the bandwidth
measured using Iperf. As we already suggested above, thigply means that TCP, as
used by Iperf, is not able to function well because of prolslsoch as window size [103],
loss rate, and variable round trip time [89]. Note that thee¢hbandwidth estimation
techniques provide fairly similar results, except for pRil8, where the Pathload estimates
are extremely high.
In terms the difference between the estimate from@lealgorithm and that from the
PTRalgorithm, for most paths, they are within 10% of each otl@me exception is for
path P2 (Figure 2.7(P2)), where th8l estimates change over a wider range than those
provided by thePTRmethod. We believe this is caused by traffic on links othen tife
bottleneck link. As we will discuss in Section 2.7, tl&l method is more sensitive to
competing traffic from non-bottleneck links than tR€éRmethod.

2.5.2 Convergence Times

So far our measurements have shown that the three algorliaugssimilar accuracy in
terms of predicting available bandwidth. However, i8¢ andPTRmethods, which have
the same measurement time, are much faster than Pathlosdstesvn in Table 2.3. In
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this table, we show the percentile values of the measuretimes at 5%, 50% (median),
and 95% for each path for both th&l/PTRand the Pathload techniques. We see that the
IGI and PTR methods typically take about 1-2 seconds while Pathloadstak least 12
seconds [65]. We also compute the ratio between PathloatGfRITR for each round of
measurements; the median values are listed in the last aabfithe table. The geometric
mean [67] of all ratios shows that th&1/PTR method is on average more than 20 times
faster than Pathload for the 13 paths used in this study.

The long measurement time for Pathload is due to its conuergalgorithm. Pathload
monitors changes in the one-way delay of the probing packetsder to determine the
relationship between probing speed and available banbwidtis can be difficult if prob-
ing packets experience different levels of congestions thn slow down the convergence
process and can result in long probing times as shown in TaBleln contrast, the con-
vergence oflGI/PTRis determined directly by the packet train dispersion atserce
and destination. Moreover, th&l andPTRalgorithms use the bottleneck link capacity,
which is estimated using the same probing procedure, tastidjtLgap andgap_stepso
as to optimize convergence.

2.6 Impact of Probing Configurations

The IGI and PTR algorithms select the appropriate initial gap for the pngbirains by
searching for the turning point, as described in Sectionl®.ghis section, we use Internet
experiments to study the impact of the other two packet tparameters—the probing
packet size and the number of probing packets (packet eagth).

2.6.1 Probing Packet Size

To study the impact of the probing packet size on the measmeatcuracy of thi&s1 and
PTRalgorithms, we conduct experiments on two Internet patisgprobing packet sizes
ranging from 100Byte to 1400Byte. We repeat each individuehsurement 20 times. The
entire experiment takes about one hour. On the assumptintiernet path properties do
not change much on the scale of hours [120], we would expkptedsurements to have
very similar result.

The first Internet path we use is from NWU to CMU. It has a pathecity of 100Mbps.
The measurement results are shown in Figure 2.8(al) andeFg8(bl). Figure 2.8(al)
shows how the available bandwidth measurements changelvétprobing packet size.
The available bandwidth measured using a TCP bulk datafératizased on the method
discussed in Section 2.5) is 64Mbps. The packet sizes thaltiia the closest estimates
are 500Byte and 700Byte. For smaller packet sizes, bothadstiinderestimate the avail-
able bandwidth by a significant margin. For larger probingkeasizes, the two methods
overestimate the available bandwidth by a much smaller amou
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Figure 2.8: Impact of probing packet sizes.
Graphs (al) and (a2) show the final available bandwidth estisn Graphs (b1) and (b2) show the
gap convergence for individual measurements: the x-axigifitial source gap, and the y-axis is
the gap difference, i.e., the destination (output) gapesahinus the source (input) gap value; the
points marked with circles are the turning points where thal fiéstimates are computed.

There are at least two reasons why small probing packet sa&eresult in high errors
in the available bandwidth estimation. First, as illustdain Figure 2.8(b1), at the turning
point the gap value is proportional to the packet size. Theams that with small packet
sizes, we will have small gaps, especially if the availalaledwidth is high, as is the case
for the NWU to CMU path. The resulting probing train is moresiéve to the burstiness
of the competing traffic. The graph for 100Byte probing paskeFigure 2.8(b1) confirms
this: the gap difference does not converge as nicely as & ditb larger probing packets.
The second reason is that the small gap values that occuswidii probing packets are
harder to measure accurately, so measurement errors e @€ result significantly.
Gap values on the order of A8 are hard to generate and measure accurately, especially
for user-level applications.
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It is less clear why with larger probing packets, the avaddiandwidth estimates
further increase and in fact exceed the measured bulk thputgWe conjecture that this
is a result of the aggressiveness of the probing packetftoain Probing flows with larger
packets are more aggressive than probing flows with smaliekgis, so they “observe” a
higher available bandwidth. The packet size distributianirdernet has clusters around
40Byte, 500Byte and 1500Byte [70], so a flow with only 120G8gt 1500Byte packets,
for example, is more aggressive than average. A TCP bulktdatafer is likely to use
mostly maximum sized packets (1500B in this case), but itedyic congestion control
behavior reduces how much bandwidth it can use.

The second experiment is on the path from CORNELL to CMU. Hsallts are sum-
marized in Figures 2.8(a2) and 2.8(b2). The link capacityhefbottleneck link is only
10Mbps, as opposed to 100Mbps for the NWU to CMU path. As altiethe available
bandwidth is significantly lower. The results confirm the megsults of the measure-
ments for the NWU to CMU path. First, the available bandwiedtimates increase with
the packet size. Second, since the available bandwidth ¢hhower, we are seeing fairly
smooth convergence of the gap difference, even for smabipgopacket sizes (Figure
2.8(b2)). Finally, even though we observe nice convergetieeburstiness of the com-
peting traffic does affect the probes with small packets ntloae the probes with larger
packets. For th&GI algorithm, the results with 100Byte probing packet are misps and
have a large variance. Because B algorithm uses the changes in individual gap val-
ues instead of the average packet train rate (as us&I'BY, it is more sensitive to small
changes in gap values, for example as a result of burstyct@ftraffic on non-bottleneck
links. We discuss this point in more detail in Section 2.7.

Our conclusion is that in general, average-sized probimnggta of about 500Byte to
700Byte are likely to yield the most representative avédddandwidth estimate. Smaller
packet sizes may underestimate the available bandwidthraydbe more sensitive to
measurement errors, while larger probing packet sizes wanpredict the available band-
width.

2.6.2 Packet Train Length

The packet train length has a large impact on the cost d?fiRandIGI algorithms, since
it affects both the number of packets that are sent (i.e.|dhxe placed on the network)
and the probing time (i.e., the latency associated with ttobipg operation). Another
important parameter, the number of phases needed to cenverghe best initial gap
value (the turning point), is tied very closely to the padkain length. Intuitively, shorter
packet trains provide less accurate information, so moas@ghmay be needed to converge
on the turning point. For this reason, we will study the patian length and the number
of phases in th&Gl/PTRalgorithm together.

In Section 2.3, we mentioned that trains of 60 packets work. wia this section
we experimentally evaluate how much we can reduce this numultleout a significant
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Figure 2.9: Performance with packet trains of differenglkés

loss in accuracy. We conduct experiments over the same tteonkt paths as in the
previous section, i.e., NWU to CMU and CORNELL to CMU. For legmath, we use
packet trains of different lengths to estimate the avadddaindwidth. The measurements
take about two hours. Since the available bandwidth overitieenet is fairly stable [120],
we do not expect the available bandwidth to change significdaring the 2-hour period.
The measurements with different train lengths are alsoledeed to further reduce any
possible bias towards a specific train length.

Figure 2.9 shows the cumulative distribution function (§DFhe estimated available
bandwidth usindGl (top), and the number of probing phases needed to convergeson
turning point (bottom). The distributions for tHETR measurement are similar and are
not included here. Each graph has five curves, correspomaliinge different packet train
lengths: 8, 16, 24, 32, and 64. First, we observe that shpeeket trains need more
phases to converge, which we had already conjectured reafllee measurements also
show, again not surprisingly, that shorter packet traisslten a wider range of available
bandwidth estimates, as shown by a CDF that is more spreadlbatreason is that the
competing traffic (and thus the available bandwidth) is tyi@nd since a shorter packet
train corresponds to a shorter sampling interval, we armgeewider range of estimates.
Note however that as the packet train length increasesybadt of the packet train length
on the distribution of the bandwidth estimates becomeslemaeé., the estimates converge
on a specific value.

It is interesting to compare the results for the two paths.the NWU to CMU path,
changing the packet train length has a fairly significantastn the distributions for both
the available bandwidth and the phase count. In other wandsgasing the packet train
length helps in providing a more predictable available badth estimate. Using longer
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Figure 2.10: Relative burstiness measurements based gaphelues.
Each bar shows the median value, and the lines on each batisé®#o and 95% percentile values.

trains is also “rewarded” with a reduction in the the numbgrobing phases. In contrast,
for the CORNELL to CMU path the CDF functions for both the dahie bandwidth and
phase count are fairly similar for train lengths of 16 pask&t more. The reason is that
the competing traffic on this path is not as bursty as that efN¥WU to CMU path.

The difference between the two paths raises the questiohafpacket train length we
should use for available bandwidth estimation. Clearlg,rtiost appropriate train length
depends on the path. For the NWU to CMU path, we probably waaldit to use a fairly
large value (32 or 64 packets), while for the CORNELL to CMUlpa train length of 16
packets is sufficient. Since the difference between thespagpears to be caused by the
burstiness of the traffic, we decide to use the changes irgitieepgaps to characterize the
burstiness of the competing traffic. Specifically, we defimex¢lative burstinesss:

N
ﬁ 22 9 — gi1]
N
% 21 gi

whereg;(1 < i < N) are theN gap measurements of a probing train.

Figure 2.10 shows the relative burstiness ofitaBeEmeasurements at the turning point
for the two paths and for the different packet train lengtWs.record the detailed gap val-
ues at the turning point for 65 measurements (around 20%eahtasurements collected).
The relative burstiness for the path from NWU to CMU is sigrafitly higher than that
for the path from CORNELL to CMU. Interesting enough, theutessfor 8-packet probing
trains do not follow this trend. We suspect that eight pagigesimply not long enough to
get a reliable measurement (note the wide spread).

These results suggest that we can reduce the cost of propishgnlamically adjusting
the length of the packet train. For example, we could use &gbdrain of 32 packets

relative_burstiness =

Y



2.7. MULTI-HOP EFFECTS 31

for the first few phases and use the burstiness results of hlwsses to adjust the length
of later packet trains. We decide not to do this because,easethults in Table 2.3 show,
the IGI/PTR algorithm is already quite fast. The distribution of thelirg phase counts
shows that 80% of the measurements only need 4-6 phaseswvergerio the turning
point, so the corresponding probing time is around 4—6 raupdiimes. Dynamically
adjusting the packet train length is thus not likely to havarge impact on the probing
time. Of course, we could make the burstiness informati@ilavle to users so they can
know how variable the available bandwidth is likely to be $bort data transfers.

2.7 Multi-hop Effects

ThelGl andPTRalgorithms are based on the gap model presented in Secforitds
derived for a simple single-hop network, or more generddly,a network in which the
bottleneck link is the tight link and the effect of all othémks can be ignored. In this
section we use simulations to study more general multi-hreworks. Specifically, we
address two questions. First, how should we interpret thdemib the tight link is not
the bottleneck link, and what are the implications for I&¢ andPTRmethod? Second,
how does the competing traffic on links other than the tigtk affect the accuracy of the
algorithms?

2.7.1 Tight Link Is Not the Bottleneck Link

When the tight link and the bottleneck link are differentg tihap model shows that the
IGI algorithm should use th&, and gz values for the tight link when estimating the
available bandwidth. Unfortunately, tools such as bprobly estimate the capacity of
the bottleneck link. This will have an impact on the accuratyhe method. Note that
PTRdoes not use th&, andgp values explicitly, so it will not be affected by this tight
link issue. In the remainder of this section we will use ng2] dimulation to evaluate the
accuracy of both algorithms in this scenario. While simolahas the drawback that it
leaves out many real-world effects, it has the advantagentbaan study topologies that
are difficult or impossible to build.

We use the simulation topology shown in Figure 2.11, usinglia®s, 10Mbps, and
20Mbps for the link capacities X, Y and Z, respectively. Bynbging the competing loads
C1, C2, and C3 we can change the tight link of the path and dlsoge the level of
traffic on links other than the tight link. The probing packete used in the simulation
is 700Byte and the probing packet train length is 60. The aiing traffic consists of
CBR UDP traffic. Note that by picking link capacities that #ag&ly close, the available
bandwidths on different links are likely to be close as wehjch is a challenging case.

In the first set of simulations, we set C2 to 3Mbps and changé&@i 0 to 19Mbps.
When C1 is in the range 0—13Mbps, the bottleneck kriR2, R3> is also the tight link,
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Figure 2.11: Simulation configuration.
Ps and Pd are used for probing. Cls, Cl1d, C2s, C2d, C3s, andr€3ced for the competing
traffic generation.

100Mbps

X
Hx
X
<

i<

I

— real value

L| + PTR measurement

X IGl meausrement with Bo
O IGI measurement with Bt

available bw measurement (Mbps)
PN W A o N ®
T T T

1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
pre-bottleneck competing traffic C1 (Mbps)

o

Figure 2.12: Pre-tight link effect.

but when C1 falls in 13—-19Mbps, the tight link sSR1, R2>. Figure 2.12 presents the
simulation results. We see that when the bottleneck linlgisaéto the tight link ( <
C1 < 13Mbps), thelGI method accurately predicts the available bandwidth, asard.
When <R1, R2> is the tight link, we show théGl estimates based on th&, andgp
values for both the tight (“0” points) and bottleneck linkg”(points). We see that the
results using the tight link values are much closer. Thereasrthe result of interference
from competing traffic on the “non-tight” link, as we discuasmore detail in the next
subsection.

Next we run a similar set of simulations, but we now keep C2dfitee 3Mbps and
change the competing traffic C3 from 0 to 19Mbps. The tight Bwvitches from<R2,
R3> to <R3, R4> when C3 goes above 13Mbps. Figure 2.13 shows that the resalts
similar to those in Figure 2.12: when the tight link is not thatleneck link {3 < C3 <
19Mbps), using theB, andgp values for the tight link gives a more accurate prediction
for the available bandwidth on the path. However, the resutien0 < C3 < 13Mbps
are less clear than for the pre-tight link case in Figure 2nx@will explain it in the next
section.

In Figures 2.12 and 2.13 we also plot the corresponéimi values. ThePTR esti-
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Figure 2.13: Post-tight link effect.

mates are almost identical to th@l estimates that use the, andgg values for the tight
link. The reason is that theTR formula does not explicitly use any information about
the tight link capacity. The fact that tH&l algorithm uses the capacity of the tight link
explicitly is a problem because we only have techniquesdeniifying the link capacity
of the bottleneck link, not the tight link. In practice, thésnot likely to be a problem: we
expect that on many paths, the access link from the cliemar&tto the ISP will be both
the bottleneck and the tight link. Our Internet measuresignection 2.5 confirm this.

2.7.2 Interference from Traffic on “Non-tight” Links

In a multi-hop network, each link will potentially affectetgap value of a packet pair or
packet train, so we have to effectively concatenate maeltipstances of the single-hop
gap model. Such a multi-hop gap model is hard to interpretvéver, it is fairly easy to
see that it is the link with the lowest unused bandwidth,(tkee tight link) that will have
the largest impact on the gap at the destination. The iotuifi as follows. On links that
have a lot of unused bandwidth, the packets of the probingdi@iikely to encounter an
empty queue, i.e., these links will have a limited impacttongap value. Of course, these
links may still have some effect on the gap values, as we aeaiythis section using the
simulation results from the previous section.

The results in Figure 2.12 for < C'1 < 13Mbps show that bothGl andPTRare very
accurate, even when there is significant competing traffia dink preceding the tight
link. Interesting enough, the second set of simulationsvsindifferent result. The results
in Figure 2.13 for0 < C3 < 13Mbps correspond to the case that there is significant
competing traffic on a link following the tight link. We obserthat whilePTRis still
accurate, théGl accuracy suffers.

The different impact omGI of competing traffic in links upstream and downstream of
tight link can be explained as follows. Changes in gap vahefsre the tight link will be
reshapedy the router which the tight link connects with, and the ceting traffic on the
tight link ends up having the dominating impact. In contrasty changes in gap values
that are caused by traffic on links following the tight linkibdirectly affect the available
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Figure 2.15: Combined pre- and post-tight link effectshvlioOMbps pre- and post-tight
link capacities.

bandwidth estimates, so they have a larger impact. Siaté based on more fine-grain
information tharPTR it is more sensitive to this effect.

In Figure 2.14 we show the available bandwidth, as estimbyel@I, when there is
significant competing traffic on both the links before anemathe tight link. The actual
available bandwidth is 7Mbps for all data points. It is detered by link <R2, R3>,
which has 10Mbps capacity and 3Mbps competing traffic (C2)e fiesults confirm the
above observation. Even significant competing traffic etbe tight link has almost no
impact on the accuracy: the curve is basically flat along theagls. Competing traffic
after the tight link does however have an effect and, notr&ingly, its impact increases
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Figure 2.16: Impact of initial gap error

with the level of competing traffic.

Note that the above simulations results are designed tdigigla particularly chal-
lenging case. In practice, it is not common to have links wdpacities and/or available
bandwidths that are this similar. In such cases, the effecbmpeting traffic on other
links is very minimal. For example, we run a set of simulasisimilar to those described
above, but with the<R1, R2> and <R3, R4> set to 100Mbps instead of 20Mbps. The
capacity of<R2, R3> and it competing traffic throughput (C2) keep to be 10Mbps and
3Mbps, respectively, i.e., the available bandwidth id Zfillbps. The results are shown
in Figure 2.15. We see that th€l method gives accurate results—the mean value for
the data points in this figure is 7.24Mbps, and the standavihtien is 0.10Mbps. The
fact thatiGl andPTRtypically produce very similar estimates in our Interngbesments
shows that the results in Figure 2.15 are much more typieal the worst case results in
Figures 2.12 and 2.13.

2.7.3 Impact of Multi-hop Effects on Timing Errors

The above described multi-hop effects also have an impomaplication for the time
errors in the IGI/PTR implementation. There are two typegay measurement errors:
the errors in the initial gap value generated by the soursg had the measurement errors
in the final gap value measured on the destination host.

To illustrate the effect of source gap generation error, s the topology shown in
Figure 2.11, with X, Y, and Z set to 20Mbps, 10Mbps, and 20Mbgspectively. The flow
C2 is the only competing flow and we change its throughputeréimge of 0-9Mbps. For
each experiment, the initial gap;{ is incremented by a random valué¢hat is uniformly
distributed in(—3, 3), i.e.,

g=max(0,g; +¢),—3 <e<f.

We run simulations fofs ranging from 0—2ms, and for eachvalue, we collect results
when C2 changes between 0 and 9Mbps. Figure 2.16 shows tregaebsolute error in
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Figure 2.17: Difference between the fluid model and the stsith model.

theIGl estimate as a function gf. We see that the error is small. Note the turning gap
value for this simulation is 0.3—1.7ms, so the errors irdlicon the initial gap are quite
large. We believe that the reason for the high error tolexasmthe same as the reason for
the low sensitivity oflGI to the pre-tight link traffic. Specifically, the tight link da up
reshaping the gaps according to the competing traffic, the$féct hiding the initial gap
errors. Therefore, measurement errors on the destinatiewsll have a more significant
impact since they will directly change the gap values thatwsed in thdGl andPTR
formulas.

2.8 Improvementfor Heavy-Loaded and High-Speed Paths

After we released its source code [6], IGI/PTR has becomeobrike benchmarks for
newly developed available-bandwidth measurement tokds3ipruce [113]. These work
further confirm the key properties of IGI/PTR like small ma@snent overhead and short
measurement time. However, they also discovered somegmasblFor example, Strauss
et.al. [113] showed that IGI/PTR over-estimates availd@edwidth when path load is
high, and Shriram et.al. [106] pointed out IGI/PTR does notkmvell on high-speed
network paths. In this section, we show that both probleragiae to implementation or
system details, not shortcomings of the algorithm. Spedificthe first problem is due
to the mechanism used to identify the turning point; whilke skecond is due to small-gap
measurement errors. In this section, we present a detaifddreation and describe our
approaches to address these problems.
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2.8.1 Better Estimation of the Turning Point

Liu et.al. [78] pointed out that a possible reason for the sneament error in IGI/PTR
is the divergence from the fluid model used by the IGI/PTR glesind their stochastic
model. Figure 2.17 illustrates this difference. Using tldfimodel, the probing follows
line F A, while in the stochastic model, it should follow cur¥&{. If an implementation
uses linear regression tofer the turning point, there can be a big error. However, the
IGI/PTR implementation does not use this method. Instelagradually increases the
source gap until the measured destination gap “equals”dbece gap. Therefore, the
original IGI/PTR implementation is not affected by the slifgation of the design model.

The measurement errors mentioned in [113] are instead dtwotamplementation
features. One is that we only sample each source gap onceh wiakes measurement
results sensitive to measurement noise. The other is thauthing-point identification
method could be too coarse-grained when the turning-paisitehlarge gap value. In the
original implementation, the turning point is identified evhthe difference between the
source gapd;) and the destination gap) is within 20%, i.e.(g;s — gs) /g4 < 20%. How-
ever, when traffic load is high, 20% of gap difference can loddcge and the probing can
stop prematurely and under-estimate the path load. For@eamsing 500 byte probing
packets on a path with 50Mbps capacity, when the load is 4&\ine turning-point gap
value islms. The smallesy, that satisfies the above 20% requiremert48us (using
94 = 9B + B¢ - g5/ Bo). That corresponds to 16Mbps probing rate, which is fouetrof
the real available bandwidth value.

Filter measurement noise by sampling a same source gap myite times

The first issue is relatively easy to address—we only needlteat a numberk) of mea-
surements for each source-gap value and use the average:adalrce/destination gap
values in the algorithm. To reduce the impact of measuremase, we prefer a large
value. To minimize measurement overhead, however, sinallbetter. As a result, the
choice ofk is a trade-off between measurement accuracy and measureweehead. To
decide the exact value 6f we study the performance of the improved algorithm by chang
ing k's value from 1 to 5. For each value, the experiment was done with different path
load, which was generated using a custom load generatorengaeket inter-arrival times
follow a Poisson distribution. For each path load, we codldclO available bandwidth
measurements, and plotted their average and variancesr{ag - min) in Figure 2.18.
We can see, with different values bf the average (in the top graph) does not change
much, but the variance (in the bottom graph) are dramayichfferent. It is clear that
measurement variances are larger whken 1 or 2 compared with the other cases. Al-
thoughk = 5 is overall the best, its improvements over 3 andk = 4 are minor in most
cases. In our current implementation, we chobse 5. In practice, we suggest settihg
as at least 3.
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Figure 2.18: Impact of repeated measurements

A better turning-point identification formula

As explained above, the original IGI/PTR implementatiotedts the turning point based
on therelative difference between the source and the destination gaps/aldewever,
as we will show below in Claim 2.8.1, this relative differenia gap values transforms to
an constant absolute error in the available bandwidth esitom. Therefore, for smaller
available bandwidth, this constant error results in a larglative measurement error. That
is why we see a large measurement error when path load is high.

Figure 2.19(a) illustrates this insight. In this figure, #haxis is the source gap value,
denoted ag;,, the y-axis is the destination gap value, denoted,ad.ine L1 is the line
gs = g4. Any turning point should be on liné1. Point F' indicates the bottleneck gap
valuegp (see the single-hop gap model in Figure 2.2). &bt the error margin allowed
for the relative difference between source and desting@prvalues, the IGI/PTR probing
stops when(gs — ga)/gs| < €. Since the algorithm starts sampling with small it is
reasonable to assumg > ¢g,. Therefore, when the turning point is detected:

ga < (1+€)gs (2.5)

This condition corresponds to the area below lirgein Figure 2.19(a). Assume we have
two paths with different available bandwidth, and theiming point are pointC and E,
respectively. In the extreme case, the estimated turniing far these two paths could be
at pointA and H ,respectively. Visually, the measurement error for tugmpoint £ is very
large—gy < gg/2, i.e., the corresponding bandwidth over-estimation ig 6@8%.
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Figure 2.19: The performance of using different turningapdetection formula

To reduce the measurement error, we changellineto a parallel line withl.1, as il-
lustrated in Figure 2.19(b). In this figure, the differenetveery; andgy is significantly
reduced. The formula corresponding to the area below/lihean be expressed as

94 < gs + A (2.6)

In Claim 2.8.2 below we will prove that thelative measurement error using this method
is constant. Therefore, we use this formula in our improveion of IGI/PTR imple-
mentation.

Claim 2.8.1 Ignoring measurement noise, the absolute available baditivineasurement
error (é — g%) using Formula (2.5) is constany, is the turning point gap value, andis
probing packet size.

Claim 2.8.2 Ignoring measurement noise, the relative available badthwmeasurement

error (%) using Formula (2.6) is constant.

Proof: Since packet sizé is constant, we only need to prove that the valu§:0:ft gi and
1/91;1/9 are constant. From formula (2.2), i.e4, = g5 + B¢ - 95/ Bo, we know theg,
andg, have the following relationship before reaching the tugnoint
ga=gp+ (1 —a)gs (2.7)
Herea = B4/Bo, and B, is the available bandwidth. Combining formula (2.5) (treat
“<” as “=") with formula (2.7), we can get
1 1

€
— — — = — = constant
Js Yo 9B
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Figure 2.20: Performance of the improved IGI/PTR impleragah
Similarly, combining formula (2.6) with formula (2.7), wee

/gs—1/9o A

= = constant
1/9o g+ A

Improved implementation

Based on the above two claims, we improved the implememtafidGI/PTR as follows.
For each source gap, we probe five times, and use the averag@sroe gaps and desti-
nation gaps in the comparison. The turning-point identificauses formula (2.6), where
A = bus. In Figure 2.20, we compare the performance of this improrgzementation
with that of the original implementation, using three tymédackground traffic: UDP
CBR traffic, TCP flows, and UDP based Poisson traffic. We canises®l three scenar-
ios, the improved implementation has very small measurésreor, which is much better
than the original implementation.

Adjustment to the estimated turning point

To accommodate inevitable measurement noise, when igegfithe turning point, the
source and the destination gap values are allowed to begeesdaf\. Now we estimate the
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Figure 2.21: Adjust the estimated turning point

average difference between the measured turning pointeneal turning point, because
that will allow us to adjust our estimation so that it can belabilistically closer to the
real turning point.

There are two main factors that affect this difference: tbtidhation gap measurement
error, and the source gap sampling interval. Below we canglie destination gap mea-
surement error first, by assuming the sampling interval @arbitrarily small; we then
consider the second factor.

Let us denote the sampling interval @and assume it is very small. In Figure 2.21
(copied from Figure 2.19(b)), if the real turning point &5 without the measurement
error, the probing should stop at poifit(gy = g, — A/a). If g4 has error of3, which is
assumed to follow an uniform distribution ¢r~,~|. Using formula (2.2) and (2.7), we
knowggp + (1 —a)gs + 3 = g + A. So when the probing stopg, = g, + (3 — A)/a. If
~v > A, theng can be larger thath (with probability of (y — A)/27), thusgs > ¢,, that
is, the probing stops too late. For the other cages; g, and the probing stops too early
(with probability of (2y — A)/2v). If v < A, theng, < g, is always true, i.e., the probing
always stops early. Regardless of the value othe average error between andg, is
A/a, since the average ofis 0. Thereforeg, should be adjusted &g, + A/a) (a can be
estimated using the measurement available bandwidthg.fmibans that the white noige
in destination gap measurement does not impact the adjostrhthe turning point.

If the source-gap sampling intervalis not negligible, the probing might not stop at
point H; the estimated turning point can be anywhere betwideandG (9 = gy + 6,
assuming < A). If we assume any point betweeh and G has equal probability to
be the stop point, then in average the probing should stepat= gy + /2, and the
adjustment for the estimated turning point shouldfet (A/a — 6/2)).
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2.8.2 Accommodating High-Speed Network Paths

[106] pointed out that IGI/PTR does not work well on Gigaketwork paths. The reasons
include those that have been discussed in related work [6&k+rrupt coalescence (also
called interrupt throttling) and the system-call overhe&dettimeofday() . [97] has
demonstrated how to conduct available bandwidth measumsrbg identifying the signa-
ture of interrupt coalescence. That technique, howeverdifiiculty in obtaining correct
measurements when background traffic load is high, whersigimature can become ob-
scured.

For IGI/PTR, interrupt coalescence completely disabldsWaich relies on adjacent
packet gap values. PTR can continue to work if it uses longigh@acket train, it needs
to deal with three factors that can affect the measurementacy of PTR:

1. Overhead of thgettimeofday/() system call. Time used for executing this sys-
tem call can be ignored when the packet gap value is largegénd@n a Gigabit
network path, packet gap values often do not satisfy thisirement. To address
this problem, an obvious method is to avoid using this systaliras much as pos-
sible. For example, one can use libpcap to obtain kernekstiameps. However, our
experiments show that this method does not obviously ingtiovestamp measure-
ment accuracy. Another method is to only measure the tinmgstan the two end
packets of the packet train, and then calculate the averagjeepgap values. This
method, however, can not be used to measure destinationlayaaise we often do
not know which packet is the last one due to packet I&ss.

2. Packet buffering in the OS introduces errors in sourgergaasurements. On the
sender side, the sending times are measured gsitigheofday/() immediately
aftersendto() returns. However, the return eéndto()  only indicates the end
of packet buffer copying, which is not necessarily the patieasmission time. For
example, when we send back-to-back 1400B packets from apdl@kerface on
Emulab pc3000 nodésthe average packet gap is measured td bé&us, while the
theoretical value i$1400 x 8/1000) = 11.2us.

3. Source-gap generation error. In IGI/PTR, fine-grantyquacket gaps are generated
using CPU arithmetic instructions executed betweengamdto() system calls.
This is the best method we are aware of that can reliably gememall time in-
tervals on light-loaded hosts. However, if the turningrm@ap value is small, this
method can easily miss the real turning point. A slightlgé&rgap values can sig-
nificantly under-estimate available bandwidth estimatibmis is especially true for

2We have also tried to reduce the number of times involjegiimeofday() by measuring the
timestamp of everyV (say 10) packets. It does not alleviate the problem.

3Dell PowerEdge 2850s with a single 3GHz processor, 2GB of Ramd two 10,000 RPM 146GB SCSI
disks.
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Figure 2.22: PTR measurement of the improve algorithms dops@etwork path

high-speed CPUs whose sophisticated CPU architecturesiitahard to accurately
emulate small time delay using instruction executions.

It is easy to see that the above three factors tend to havenipssct when the path
available bandwidth is relatively small. In the followinge show that, by properly setting
the length of the packet trains, the PTR algorithm can getareably accurate measure-
ments when available bandwidth is less than 800Mbps, wisch significant improve
over the original implementation. The idea is to maintairoastant packet-train length
in time instead of the number of packets. That is, each time thecequwde sends out
a packet train, it changes the number of packatsif the train according to the source
gap value, so that the train always covers the same timevaitér). When the source
gap value increasesy decreases. In this way, we can use long packet trains wisite al
limiting the measurement overhead, which is an importasigaheprinciple of our original
IGI/PTR technique. As shown below in our analysis, compavied using a packet train
that has a constant number of packets, the adaptive algop#rforms better in terms of
measurement accuracy.

Figure 2.22 plots the experimental results when runninggldifferent versions of the
PTR algorithm on a network path with 1Gbps capacity. The fiession uses 30-packet
packet trains, the second version uses 1000-packet paaket,twhile the third version
uses the above adaptive algorithm (wittset asims). Probing packets are all 1400 byte.
Path load is generated using UDP CBR traffic. With each leadPTR measurements are
collected, and we plot the averages in the figure. For thetaagersion, we also plot the
measurement variance (i.e., max-min).
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Comparison of the three versions shows that the adaptiwovers indeed the best
one. Between the 30-packet version and the 1000-packabrethe 30-packet version
tends to have better accuracy when available bandwidth adlesnthan 500Mbps, while
the 1000-packet version is better when the available baittvis larger than 500Mbps.
The adaptive version, however, can combine the better plaatb versions, thus achieving
the best measurement accuracy.

For all three versions, the measurement errors are higindarger available band-
width. This is because the difficulties in timestamp meas@r when the turning-point
gap value is small. For example, with no background traffie, turning-point gap value
should be(1400 * 8/1000) = 11.2us. However, in the first probing phase, the average
source gap i9us(< 11.2us), because of source-gap measurement error. The correspond-
ing destination gap is measuredlalsi.s(> 11.2us), because of the overhead of running
gettimeofday/() for each packet received. Singe< g4, the source gap will be incre-
mented, and eventually results in an under-estimation. &Ve kried several approaches
to alleviate this problem, including using libpcap kerneléstamps, but none was suc-
cessful.

2.8.3 Discussion

In this section, we have demonstrated the techniques thabtgarove the performance of
IGI/PTR on high-load paths and high-speed paths. Howeven with these techniques,
the clock granularity of current Linux systems only allou&/PTR to measure available
bandwidth upto around 800Mbps. That still limits the usa&ad/PTR on high speed
network paths. Due to similar errors in time measureme@®EPITR does not work well
when the host load is high. These problems deserve futueanmas effort.

2.9 An Application of PTR — TCP PaSt

There are two different ways to use the IGI/PTR techniquee @rto directly use it as

a tool to measure end-to-end available bandwidth. Thisdsbst straight-forward and
also the most popular method. The other way is to use its mle@hipulate data packet
transmission within an application to obtain available dyaidlth information automati-

cally. In this section, we present an example of the lattethow where we integrate the
PTR technique into the TCP Slow Start algorithm to improvd”T&artup performance.
In this section, we motivate our design, describe our allgoriin detail, and discuss the
insights of this integration procedure.
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Figure 2.23: Sequence plot for Slow Start (Sack) and Pacatl St
These are from ans2 simulation of a path with a roundtrip time of 80ms, a bottignénk of
5Mbps, and an available bandwidth of 3Mbps. Delayed ACKsdisabled, so there are twice
times as many outgoing data packets as incoming ACKs.

2.9.1 PaStDesign

TCP Slow Start algorithm is used at the startup phase of T&®Rnission to exponentially
increase the window size to identify the right sending ritends either when the conges-
tion window reaches a threshaddthreshat which point TCP converts to a linear increase
of the congestion window, or when packet loss occurs. Thimpeance of Slow Start is
unfortunately very sensitive to the initial valuessthreshlf ssthreshs too low, TCP may
need a very long time to reach the proper window size, whilglas$sthresttan cause sig-
nificant packet losses, resulting in a timeout that can yr&att the flow's performance.
Traffic during Slow Start can be very bursty and can far exdbedavailable bandwidth
of the network path. That may put a heavy load on router qyasssing packet losses
for other flows. Furthermore, steady increases in the baittiwlielay products of network
paths are exacerbating these effects.

To address this problem, we integrate the PTR algorithmTi@® startup algorithm
so that TCP can obtain available bandwidth information, thiud automatically setting a
good initial congestion window value. The TCP startup athon so modified is referred
as TCP Paced Start (PaSt). The idea behind Paced Start iplyotle PTR algorithm to
the packet sequence used by TCP Slow Start to get a reas@stibiate for the available
bandwidth without flooding the path. An advantage of the gi$tiiR for TCP Slow Start
is that TCP startup period only needs to obtain a good appratn. It is sufficient that
the initial value of the congestion window is within a factditwo of the “true” congestion
window, so that TCP can start the congestion avoidance mffisiently.

Figure 2.23(a) shows an example of a sequence number plStdar Start. We have
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disabled delayed ACKs during Slow Start as is done by defaudbme common TCP
implementations, e.g. Linux; the results are similar whefaged ACKs are enabled.
The graph clearly shows that Slow Start already sends a segud packet trains. This
sequence has the property that there is one packet traioyo® trip time, and consecutive
trains grow longer (by a factor of two) and become slower (ttuéhe clocking). We
decided to keep these general properties in Paced Stam, thiay keep the network load
within reasonable bounds. Early trains may have a very ligtantaneous rate, but they
are short; later trains are longer but they have a lower kdgeng the same general packet
sequence as Slow Start also has the benefit that it becomesteasngineer Paced Start
so it can coexist gracefully with Slow Start. It is not too egggive or too “relaxed”, which
might result in dramatic unfairness.

The two main differences between Slow Start and Paced Staitla how a packet
train is sent and (2) how we transition into congestion aana: mode. The self-clocking
nature of Slow Start means that packet transmission iseregyby the arrival of ACK
packets. Specifically, during Slow Start, for every ACK iteeses, the sender increases
the congestion window by one and sends out two packets (faeleets if delayed ACKs
are enabled). The resulting packet train is quite burstythadnter-packet gaps are not
regular because the incoming ACKs may not be evenly spacéd ritakes it difficult
to obtain accurate available bandwidth estimates. To addies problem, Paced Start
does not use self-clocking during startup, but insteadctireontrols the gap between the
packets in a train so that it can set the gap to a specific valdienake the gaps even across
the train. As we discuss in more detail below, the gap valua taain is adjusted based on
the average gap between the ACKs for the previous train (wetuss an approximation
for the inter-packet gaps at the destination). To do thatdavaot transmit the next train
until all the ACKs for the previous train have been received.

Note that this means that Paced Start is less aggressiv&ibarStart. First, in Slow
Start, the length of a packet train (in seconds) is roughlyaétp the length of the previous
ACK train. In contrast, the length of the packet train in RbS¢art is based on the sender’s
estimate on how the available bandwidth of the path compeiteghe rate of the previous
packet train. As a result, Paced Start trains are usuall sioetched out than the corre-
sponding Slow Start trains. Moreover, the spacing betweerPaced Start trains is larger
than that between the Slow Start trains. In Figure 2.23(t$, ¢orresponds to a reduced
slope for the trains and an increased delay between trasgectively. Since Slow Start
is widely considered to be very aggressive, making it leggessive is probably a good
thing.

Another important design issue for Paced Start is how tosttian into congestion
avoidance mode. Slow Start waits for packet loss or untéaiches the statically config-
uredssthreshin contrast, Paced Start iteratively calculates an eséirita the congestion
window of the path and then uses that estimate to transititmdongestion avoidance
mode. This typically takes three or four probing phases @Tas is discussed in Sec-
tion 2.9.2. If packet loss occurs during that period, Padad §ansitions into congestion
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Figure 2.24: The Paced Start (PaSt) algorithm

avoidance mode in exactly the same way as Slow Start does.

2.9.2 PaSt Algorithm

The Paced Start algorithm is shown in the diagram in Figu2d.2t starts with an initial
probing using a packet pair to get an estimate of the pathctgpBg; this provides an
upper bound for the available bandwidth. It then enters thimihoop, which is highlighted
using bold arrows: the sender sends a packet train, waitdlftve ACKs, and compares
the average ACK gap with the average source gap. If the ACKgjapger than the source
gap, it means the sending rate is larger than the availalbléwidth and we increase the
source gap to reduce the rate; otherwise, we decrease tteeggap to speed up. In the
remainder of this section, we describe in detail how we dadhesgap value and how we
terminate Paced Start.
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Figure 2.25: Behavior of different startup scenarios.

Gap Adjustment

Figure 2.25 provides some intuition for how we adjust thegdaStart gap value. The
bold line shows, for a path with a specific RTT (roundtrip t)irtée relationship between
the congestion window (x-axis) and the packet train senditg (1source_gap). The
goal of the TCP startup algorithm is to find the poiawd, sending_rate) on this line
that corresponds to the correct congestion window and sgndite of an ideal, stable,
well-paced TCP flow. Since the “target” window and rate atatesl ¢wnd = RTT x
sending_rate), we need to find only one coordinate.

The traditional Slow Start algorithm searches for the cstiga window by moving
along the x-axisdwnd) without explicitly considering the y-axis¢nding_rate). In con-
trast, Paced Start samples the 2-D space in a more systdasition, allowing it in many
cases to identify the target more quickly. In Figure 2.2% #inea below thé3 line in-
cludes the possible values of the available bandwidth. ©hd arrows show how Paced
Start explores this 2-D space; each arrow represents angrofpcle. Similar to Slow Start,
Paced Start explores along the x-axis by doubling the pdckietlength every roundtrip
time. Simultaneously, it does a binary search of the y-axsfg information about the
change in gap value to decide whether it should increaseavedse the rate. Paced Start
can often find a good approximation for the available bantiwaiter a small number (3
or 4) of cycles, at which point it “jumps” to the target poiag shown in case 1 and case 2.

The binary search proceeds as follows. We first send two tmblack packets; the
gap at the destination will be the valyg. In the next cycle, we set the source gap to
2x g, starting the binary search by testing the rat&@®. Further adjustments of the gap
are made as follows:

1. If g, < g4, We are exploring a point where the Packet Transmission (RA&)
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is higher than the available bandwidth, so we need to recie®TR. In a typical
binary search algorithm, this would be done by taking thedbeighoint between the
previous PTR and the current lower bound on PTR. In Pacet, $taican speed up
the convergence by usiny« g, instead of2 x ¢g,. That allows us to use the most
recent probing results, which are obtained from longer patilain and generally
have lower measurement error.

2. If g, > g4, the PTR is lower than the available rate and we have to rettheqeacket
gap. The new gap is selected so the PTR of the next train id txiee middle point
between the previous PTR and the current upper bound on PTR.

Algorithm Termination

The purpose of the startup algorithm is to identify the “&fgoint, as discussed above.
This can be done by either identifying the target congestiordow or the target rate,
depending on whether we reach the target along the x or y exi8gure 2.25. This
translates into two termination cases for Paced Start:

¢ Identifying the target rate: This happens when the difference between source and
destination gap values shows that the PTR is a good estirhtte available band-
width. As we discuss below, this typically takes 3 or 4 itenas. In this case, we
set the congestion window size @asnd = RTT /g, whereg is the gap value deter-
mined by Paced Start. Then we send a packet train using packets with packet
gapg. That fills the transmission pipe, after which we can switclténgestion
avoidance mode.

¢ Identifying the target congestion window When we observe packet loss in the
train, either through a timeout or duplicate ACKs, we assuradave exceeded the
transmission capacity of the path, as in traditional TCRvShoart. In this case, we
transition into congestion avoidance mode. If there wasiadut, we use Slow Start
to refill the transmission pipe, after settisgthresho half of the last train length.
Otherwise we rely on fast recovery.

How Paced Start terminates depends on many factors, imgjudailable bandwidth,
RTT, router queue buffer size, and cross traffic propertfe®@m our experience, Paced
Start terminates by successfully detecting the availabheltvidth about 80% of the time,
and in the remaining 20% cases, it exits either with a timeotdst retransmit after packet
loss.

Gap Estimation Accuracy

An important question is how many iterations it takes to bt available bandwidth
estimate that is “close enough” for TCP, i.e. within a facibtwo. This means that we
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Table 2.4: Paced Start exiting gap values

case a GPast L
1T | (0751 |3¢5/7 0.9.1.2)
2 [ (0.5,0.75) | F((4/3)95) = (7/3 — 4a/3)g5 (1.0, 1.2)
3 | (0.19,05) | Glgn) = (3 —2a)95 (1.0,2.0)
4 | (0.08,0.19)| G*(g5) = (1 +2(1 — a)(3 —2a))gs (1.0, 2.0)
5 (0,0.08) | 2G3(gp) =2(1+2(1 —a)(1 + (1 —a)2(3 — 2a)))gs | (0.5,00)

need to characterize the accuracy of the available bandwi&timate obtained by Paced
Start.

Figure 2.26 shows the gap values that are used during theybsearch assuming
perfect conditions. The conditions under which a branclakemn are shown below the
arrows while the values above the arrows are the destingtps; the values at the end
of the arrows indicate the source gap for the next step. Freantid@ 2.2, we know if
gs < ga, then the relationship between the source and destinasiprigggiven byg, =
g + (1 —a)gs. We useF(g) = gp + (1 — a)g to denote this relationship. We also use
another functionz(g) = F'(29).

This model allows us to calculate how we narrow down the rarigessible values for
a as we traverse the tree. For example, when during the setamation we probe with a
source gap o2gp, we are testing the poiat= 0.5. If g, < g4, We need to test a smaller
by increasing the gap value 267(g5) (based ory, = G(g3)); otherwise, we want to test
a larger valueq = 0.75, following a binary search) by reducing the gap valuét)g.

Table 2.4 shows the ranges @for the 5 exiting cases shown in Figure 2.26. It also
lists the ratio betweeih/a andgp,s;. This corresponds to the ratio between the real send-
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ing rate and the available bandwidth, i.e. it tells us how Imwe are overshooting the
path available bandwidth when we switch to congestion amid mode. Intuitively, Fig-
ure 2.27 plots the difference betwegf: andgp,s; for a network path with a bottleneck
link capacity of 100 Mbps.

From Table 2.4 and Figure 2.27, we can see thatsfhigh (e.g. cases 1, 2, and 3), we
can quickly zoom in on an estimate that is within a factor ab.tWe still require at least
3 iterations because we want to make sure we have long encaighk 0 the available
bandwidth estimate is accurate enough. This is the caseewsred Start is likely to
perform best relative to Slow Start: Paced Start can coevauickly while Slow Start
will need many iterations before it observes packet loss.

For smallera, more iterations are typically needed, and it becomes nilaely ithat the
search process will first “bump” into the target congestiondew instead of the target
rate. This means that Paced Start does not offer much of dibeinee its behavior is
similar to that of Slow Start — upon packet loss it transiianto congestion avoidance
mode in exactly the same way. In other words, Paced Starfsrpgance is not any worse
than that of Slow Start.

2.9.3 Discussion

Using both testbed emulation and Internet experiments, g ghat PaSt can signifi-
cantly improve TCP throughput by reducing its startup time packet loss. For example,
by implementing the PaSt algorithm in Linux kernel and cormgawith a regular Linux
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which implements the TCP Sack protocol, we show that PaStrearove 90% of the
packet loss during startup for a set of web-page transnmissidile also achieving 10%
average throughput improvement. More evaluation detaitsbe found in [59].

This work demonstrates that to successfully integrate asarement technique into
applications, we need a good understanding of both the mktproperties and the ap-
plication requirements. Understanding the network priogeiallows us to improve the
measurement accuracy (e.g., by adjusting the length ofgpaickins), while understand-
ing the application requirements helps the applicationsuesathe right value efficiently
(e.g., by finding the right tradeoff between accuracy andtwead). In PaSt, for example,
many its properties directly follow from the applicatiore(i TCP) requirements: (1) TCP
is an adaptive protocol and the purpose of the startup pkaseget a reasonable starting
point for the congestion avoidance phase. At the same timeyould like to switch to
congestion avoidance mode quickly, so it is important topkitee overhead (number of
probing packets) low. Given these two requirements, PaStaftithe measurement more
quickly than PTR. (2) Since the congestion control trieg&ck the available bandwidth,
it needs the available bandwidth averaged over a shorwadterherefore PaSt uses trains
up to a roundtrip time in length. (3) TCP is a two-end protoddtat makes it natural to
apply the PTR algorithm. For the ease of deployment, how®a8t measures the packet
train rate at the source (based on ACKSs), i.e. it is a one-@pieimentation.

2.10 Related Work

Bandwidth measurements include path capacity measursraadtpath available band-
width measurements. Surveys on bandwidth measurementigees can be found in
[87, 96]. Capacity measurement techniques can be classifiedsingle-packet meth-
ods and packet-pair methods. Single-packet methods, ékecpar [64], clink [46] and
pchar [79], estimate link capacity by measuring the timéediénce between the round-
trip times to the two ends of an individual link. This meth@djuires a large numbers of
probing packets to filter measurement noise due to fackegilieueing delay. Packet-pair
path capacity measurement tools include NetDyn probes [g0bbe [32], nettimer [77],
pathrate [45], and CapProbe [71]. In practice, interpgepacket-pair measurements is
difficult [92], and accurate measurements generally needecstatistical methods to pick
out the packet pairs that correspond to the real path cgp&at example, nettimer uses
kernel density estimation to filter measurement noisess@ eompares sending rate with
receiving rate to pick out good measurement samples. Ratbrplicitly analyzes the
multi-modal nature of a packet gap distribution. It firstsisdarge number of packet-pair
measurements to identify all clusters, which generalljuide the one corresponding to
the real capacity. It then uses longer and longer packetstiantil the bandwidth distri-
bution becomes unimodal, i.e., converges to the asympdspersion rate. The smallest
cluster that is larger than the unimodal cluster then cpoeds to the real capacity value.
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CapProbe uses one-way delays to identify the packet paitsatle still back-to-back on
the bottleneck link. It is based on the observation that papkirs that are not interfered
by competing traffic will have the smallest sum of one-wayagslfor the two packets in
each pair.

Characterizing end-to-end available bandwidth, howegemore difficult than path
capacity measurement since path available bandwidth imardi property and depends
on many factors. Its dynamic nature means that practicalad@ bandwidth measure-
ments represent an average over some time interval. Theyefttive measurement tech-
niques often use packet trains, i.e., longer sequencesaékefg An early example is
the PBM (Packet Bunch Mode) method [92]. It extends the pgeée technique by us-
ing different-size groups of back-to-back packets. If evsiin a network implement fair
gueueing, bandwidth indicated by back-to-back packetgsad an accurate estimate for
the “fair share” of the bottleneck link’s bandwidth [72]. éiner early example, cprobe
[32], sends a short sequence of echo packets between twg Bysassuming that “almost-
fair” queueing occurs during the short packet sequenc@bepprovides an estimate for
the available bandwidth along the path between the hosts.

Research on available bandwidth measurement made significagress since the
year 2000, when several effective techniques were proposgdding IGI/PTR. TOPP [85]
proposes a theoretical model on how background traffic |dehges the transmission
rate of probing packets. Our techniqgue—IGI/PTR—Ieveragets results. Pathload [65]
measures one-way delay of the probing packets in packeistrdf the probing rate is
higher than the available bandwidth, delay values of th&ipgpackets will have an in-
creasing trend, and pathload can adjust the probing ratigtustclose enough to the real
available bandwidth. PathChirp [101] uses packet chirgsadso uses one-way delay to
identify the packet gap value corresponding to the realavia bandwidth. Spruce [113]
is the only technique that uses packet pairs instead of pakas for available band-
width measurement. Its idea is to use a relatively large rarmobpacket pairs with their
packet gap values following a Poisson distribution to cagphackground traffic through-
put. Spruce has better measurement accuracy than Patimdd@HPTR [113], but its
measurement time, which is around one minutes, is relgtigap. For all four techniques
(five algorithms), we use Table 2.5 to summarize their déifieles and commonalities. For
differences, we use two criteria to distinguish these tephes:

1. What to measureWe can directly measure the transmissiate of a packet train
to estimate the available bandwidth, as is done in pathCRigbhload, and PTR.
Alternatively, we can measure the amount of competing traffi the bottleneck
link to indirectly estimate the residual bandwidth. Thigd@ne by measuring the
changes in the probing packgdp, as is done in Spruce and IGI.

2. How to measure All tools use packet pairs, either sent individually or afsain,
but they differ in how the packet pair gaps are controlledhi® sender. Pathload,
IGI, and PTR use packet trains with uniform intervals. Intcast, in pathChirp and
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Table 2.5: Comparison of current available bandwidth mesaseant algorithms

how to measure
non-uniform uniform
probing probing difference common
what to | a_bw (rate)| pathChirp | Pathload, PTR | not needB | timer problem
measure c_bw (gap) Spruce IGI needB | two-end control
difference | long interval| small interval

(a_bw: available bandwidthy_bw: background traffic throughpus; bottleneck link
capacity)

Spruce, the packet intervals are statistically constdjdtaus the packet train or the
sequence of packet pairs is non-uniform.

Different categories have different properties and cousetly, they have different advan-
tages and disadvantages:

1. AssumptionTechniques that measure background traffic to estimat&abl@aband-
width need to know path capacity. Spruce assumes it is knoviaile 1GI esti-
mates it using existing probing techniques. The problerasany error in the path
capacity estimate directly impacts the available bandwideasurement accuracy.
Rate-based techniques do not have this problem.

2. Measurement intervaHow the probing trains are constructed affects the avegagin
interval that is used for the available bandwidth estimake uniform probing tech-
niques generally use short packet trains, so they get avediashort-term snapshot
of network performance. Since they measure the availalvidviath averaged over
a very short time interval, the estimates will change guyickhen the background
traffic is very bursty. In contrast, non-uniform probinghagues use statistical
sampling over a longer period thus, for example, averageheueffects of bursty
traffic.

Besides the above differences, all these available banldwdasurement techniques also
share some problems:

1. System related timer problemll techniques rely on the correctness and accuracy
of the system timer and the network packet delivery mode}:earors that the send-
ing and receiving systems introduce in the timing of the p&hkvill reduce the
accuracy of the tools. The timing accuracy becomes morerlirapioas the available
bandwidth increases. This could be a serious problem onhighyspeed network,
not only because of the limits of timer resolution, but alsocduse they use different
packet delivery mechanisms (e.g. batching). Note thatigcies that use the tim-
ing of individual packet gaps are more sensitive to thisatffean techniques that
measure packet train rates.
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2. Two-end control. All current techniques need two-end control, which sigaifiity
hinders deployment. Control at the destination is neededd¢arately measure the
packet gap or packet train rate.

Since available bandwidth is a very dynamic metric, it ignfimportant to know the
variance of path available bandwidth. Pathvar [66] is amdgeroposed technique to
quantify this metric. Its idea is similar to the turning-poin IGI/PTR. That is, it also
compares sending rates with arriving rates. For a statyosaailable-bandwidth process,
a packet train with a fixed sending rate has a constant pritlyaddi having a destination
arriving rate higher than the sending rate. So by sendingge laumber of trains and
then estimating the corresponding probability, the distiibn of the original process can
be derived. The variance can then be easily calculated lmas#te distribution. Pathvar
has two working modes. The non-parametric mode keeps aujystobing rate until a
specific probability is reached; while in the parametric moa Gaussian distribution is
assumed, and only two probing rates are needed to infer tha arel variance.

In this chapter, we used a fluid model to illustrate the ins@fiGI/PTR design. A
more realistic model is presented by Liu et.al.[78], who as#ochastic model to study
the properties of packet dispersions on both single-hoparés and multi-hop networks.
For single-hope networks, they show that the asymptoticageeof the output packet-
pair dispersions is a closed-form function of the input dispon, if assuming cross-traffic
stationarity and ASTA sampling. On multi-hop networks,ytislow that bursty cross
traffic can cause negative bias (asymptotic underestimatm most existing available
bandwidth techniques. To mitigate this deviation, a measent technique should use
large probing packet and long probing packet trains.

2.11 Summary

In this chapter, we show that available bandwidth measuneisea solvable problem.
We presented and evaluated two measurement algorithmasPTR), we also demon-
strated their applicability. The main results from this ptest are as follows. First, we
designed the IGI/PTR tool based on a turning-point ideat iBhasing packet-train prob-
ing, accurate end-to-end available bandwidth measurematitained when its sending
rate equals its arriving rate. Second, we showed that, congpaith Pathload, IGI/PTR
has a similar measurement accuracy (over 70%), but has a smaller measurement
overhead and uses a much less measurement time. That BTE5i$ both effective and
efficient. Third, using packet trains to measure availalaledwidth, packet size should
not be too small—500-byte to 700-byte packets are emplyitalst; packet train length
should be neither too short nor too long, packet trains witt6Q@ packets are appropriate
for IGI/PTR. Fourth, on multi-hop network paths, the paght-link effect is the major
factor that introduces errors in IGI/PTR’s measurementthFPTR can be improved to
work reasonably well on Gigabit network paths. Finally, PA®& only can be used as
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a stand-alone bandwidth measurement tool, it also can leegaated into existing ap-
plications or protocols to improve their performance byvmlong network performance
information.



Chapter 3

Locating Bandwidth Bottlenecks

The IGI/PTR tool shows that we can use the packet-train pgptechnique to efficiently
and effectively measure end-to-end available bandwidththis chapter, we show that
packet-train probing can also be used to locate bottlenekg.I The location of bottleneck
links is important diagnostic information for both ISPs aedular end users. For ISP
network operators, given the location of a bottleneck lihkey can either fix the problem
or redirect their customers’ traffic to avoid the bottlenéok. Regular end users can use
multihoming or overlay routing techniques to avoid the leoteck link, thus improving
the performance of their data transmissions.

However, obtaining bottleneck link location informaticequires link-level available
bandwidth for all links along a network path, which is muchidea to obtain than end-
to-end available bandwidth. Network operators only haweess to the performance in-
formation of links on their network, which may not includesthottleneck link. Even if
the bottleneck is in their network, they might not be abledtrh it since SNMP is often
configured to provide 5-minute load average informationtesoporary load spikes can
be hidden. For end users, it is even harder since they haveaessto any link-level
information. Several techniques have been proposed tatdbeelink that has the small-
est capacity or available bandwidth, but they either reguery long measurement time
(e.g., pathchar [64]), or use a large amount of probing padleeg., BFind [26]), which
significantly limits their usage in practice.

In this chapter, we present an active bottleneck locatiogrigue—Pathneck. It is
based on insights obtained from the PTR available bandvestimation algorithm. Path-
neck allows end users to efficiently and effectively locaittlbneck links on the Internet.
The key idea is to combine measurement packets and loadtpanka single probing
packet train.Load packets emulate the behavior of regular data traffitewheasurement
packets trigger router responses to obtain location inftion. Pathneck relies on the
fact that load packets interleave with competing traffic lo@ links along the path, thus
changing the length of the packet train. By measuring thegésusing the measurement
packets, the position of congested links can be inferred immportant characteristics of

57
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Pathneck are that it is extremely light-weight and only reggisingle-end control. In this
chapter, we first describe the Pathneck design (Section &) then evaluate the tech-
nique using both Internet experiments and Emulab testbadagions (Section 3.2 and
3.3).

3.1 Design of Pathneck

The goal of Pathneck design is to develop a light-weightglsiend-control bottleneck
detection tool. In this section, we first present the conoépecursive Packet Trains and
then describe the detailed locating algorithm.

3.1.1 Recursive Packet Train

As defined in Chapter 1, tH®ttleneck linkof a network path is the link with the smallest
available bandwidth, i.e. the link that determines the tmdnd throughput on the path.
Note in this definition, a bottleneck link is not necessatilg one that has the smallest
capacity. In this chapter, we will also use the tecthoke link which refers to any link
that has a lower available bandwidth than the partial patmfthe source to that link. The
upstream router for the choke link is called ttteoke pointor choke router The formal
definitions of choke link and choke point are as follows. Lstassume an end-to-end
path from sourc& = R, to destinationD = R, through routers?;, R», ..., R,,_1. Link

L; = (R;, R;+1) has available bandwidth;(0 < ¢ < n). Using this notation, we define
the set ofchoke linksas:

CHOKEL = {Lk‘aj, 0< j <n, k= argminoSiSin}
and the corresponding setdioke pointgor choke routergsare
CHOKER ={Ry|Ly € CHOKEFE,0 < k <n}

Clearly, choke links will have less available bandwidth &sget closer to the destination,
so the last choke link on the path will be thettleneck lintor the primary choke link. The
second to last choke link is called tsecondary choke linkand the third to last one is
called thetertiary choke link etc.

In order to identify the bottleneck location, we need to nueaghe train length on
eachlink. This information can be obtained with a novel packeirirdesign, called a
Recursive Packet Train. Figure 3.1 shows an example of arBigelPacket Train (RPT);
every box is a UDP packet and the number in the box is its TTluexalThe probing
packet train is composed of two types of packets: measurgpaekets and load packets.
Measurement packetge standard traceroute packets, i.e. they are 60 byte UCKe(sa
with properly filled-in payload fields. The figure shows 30 si@w@ment packets at each
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Figure 3.1: Recursive Packet Train (RPT).

end of the packet train, which allows us to measure netwatkspaith up to 30 hops; more
measurement packets should be used for longer paths. ThedlUés of the measurement
packets change linearly, as shown in the figlu@ad packetsre used to generate a packet
train with a measurable length. As with the IGI/PTR tool [SBjad packets should be
large packets that represent an average traffic load. WeQ@sbyde packets as suggested
in [58]. The number of packets in the packet train determthesamount of background
traffic that the train can interact with, so it pays off to uskidy long train. In practice,
we set it empirically in the range of 30 to 100.

The probing source sends the RPT packets in a back-to-bsitiofa When they arrive
at the first router, the first and the last packets of the trapire, since their TTL values
are 1. As aresult, the packets are dropped and the routes s#adCMP packets back to
the source [24]. The other packets in the train are forwatdede next router, after their
TTL values are decremented. Due to the way the TTL valuesatiia the RPT, the above
process is repeated on each subsequent router. The namesivet is used to highlight
the repetitive nature of this process.

At the source, we can uslee time gap between the two ICMP packets from each router
to estimate the packet train length on the incoming link at tlouter. The reason is that
the ICMP packets are generated when the head and tail paufkidts train are dropped.
Note that the measurement packets are much smaller thaotéthéehgth of the train, so
the change in packet train length due to the loss of measuntgraekets can be neglected.
For example, in our default configuration, each measurepacket accounts for only
0.2% the packet train length. The time difference betweerathival at the source of the
two ICMP packets from the same router is calledplaeket gap

The ICMP_TIMESTAMPOption

The ICMP_TIMESTAMPIs an option that allows end users to request timestamp from
routers. That is, upon receiving an ICMP packets with thisoopset, a router will reply
with an ICMP packet with a timestamp. The timestamp is a 32ibmber represent-
ing milliseconds elapsed since midnight of Universal Timigne ICMP protocol (RFC
792) defines three timestamps: the Originate TimestamiR¢oeive Timestamp, and the
Transmit Timestamp. The Originate Timestamp is the timestreder last touched the
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packet before sending it, the Receive Timestamp is the timaesthoer first touched it
on receipt, and the Transmit Timestamp is the time the edasetouched the packet on
sending it. Currently, only one timestamp is used (eitherRieceive Timestamp or the
Transmit Timestamp, depending on the vendor), the otheat@set to the same value.

We can usé¢CMP_TIMESTAMPMackets as measurement packets to query router times-
tamps and calculate the gap values. Using this method, dagsare not subject to reverse
path congestion anymore, so this approach has the potenpedvide more accurate gap
measurements. However, we decitg#to pursue this approach for the following reasons.
First, although it has been shown that over 90% of Internatiers respond to this ICMP
option [28], on only 37% of end-to-end paths, all routerspgurpthis option. Although
we can still measure gap values for those routers that doupptost this option, so long
as the TTL values in the ICMP packets are properly set, tlsigltgin two different types
of gap values which are hard to compare. This is becauseeuttiék locally measured
gap values that are at the microsecond level, the timestémpsrouters are at the level
of milliseconds, and can hide small gap value changes. SetobalCMP_TIMESTAMP
packets need to use router IP addresses as destination iy rputer timestamps, so
the forwarding routes used for the measurement packetd beudlifferent from those of
the load packets due to reasons like ECMP (Equal Cost Malipkh) routing.

3.1.2 The Pathneck Algorithm

RPT allows us to estimate the probing packet train lengthami éink along a path. The
gap sequences obtained from a set of probing packet traithien be used to identify the
location of the bottleneck link. Pathneck detects the bo#tk link in three steps:

e Step 1: Labeling of gap sequenced-or each probing train, Pathneck labels the
routers where the gap value increases significantly as datedchoke points.

e Step 2: Averaging across gap sequenceRouters that are frequently labeled as
candidate choke points by the probing trains in the set amtified as actual choke
points.

e Step 3:Ranking choke point$athneck ranks the choke points with respect to their
packet train transmission rate.

The remainder of this section describes in detail the algms used in each of the three
steps.
Labeling of Gap Sequences

Under ideal circumstances, gap values only increase (ivadable bandwidth on a link
is not sufficient to sustain the rate of the incoming packanhjror stay the same (if the
link has enough bandwidth for the incoming packet train}, ibshould never decrease.
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Figure 3.2: Hill and valley points.

In reality, the burstiness of competing traffic and reversth gffects add noise to the gap
sequence, so we pre-process the data before identifyirdjdate choke points. We first
remove any data for routers from which we did not receive bOMP packets. If we miss
data for over half the routers, we discard the entire sequeliée then fix thehill and
valleypoints where the gap value decreases in the gap sequenaexBig). A hill point

is defined a®, in a three-point group, p2, p3) with gap values satisfying; < g» > gs.

A valley point is defined in a similar way with; > ¢g» < g3. Since in both cases, the
decrease is short-term (one sample), we assume it is caysaoide and we replace
with the closest neighboring gap value.

We now describe the core part of the labeling algorithm. Teaiis to match the gap
sequence to a step function (Figure 3.3), where each stegsponds to a candidate choke
point. Given a gap sequence witn gap values, we want to identify the step function that
is the best fit, where “best” is defined as the step functiomfimich the sum of absolute
difference between the gap sequence and the step functiossaa! the points is minimal.
We require the step function to have clearly defined stepsail steps must be larger than
a threshold {tep) to filter out measurement noise. We use 10@roseconds (us) as the
threshold. This value is relatively small compared withgbke sources of error (to be
discussed in Section 3.1.3), but we want to be conservatiwkentifying candidate choke
points.

We use the following dynamic programming algorithm to idignthe step function.
Assume we have a gap subsequence between laowl hopj: g;,...,9; (i < j), and
let us definexvg(i, j] = > 7_, gx/(j — i + 1), and the distance sum of the subsequence
asdist_sumli, j] = S1_ |avgli, 5] — gx|. Letopt[i,, 1] denote the minimal sum of the
distance sums for the segments between hapd ;j (including hop: andj), given that
there are at moststeps. The key observation is that, given the optimal smiitef a subse-
guence, the splitting of any shorter internal subsequeealsaied by two existing splitting
points must be an optimal splitting for this internal suhssece. Thereforept|i, j, (| can
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Figure 3.3: Matching the gap sequence to a step function.

be recursively defined as the follows:

i 1] = dist_sumli, j] [=0&i <y,
PR EZ man{optli, j,1 — 1), 0pt2[i, 5.1} 1> 0&i < j.

opt2[i, 3, 1| = min{optli, k,l;| + optlk + 1,5, —1; — 1] :i <k < 35,0 <1 <,
|LS[i, k, ] — FS[k+1,75,1 —1; — 1]| > step}

Here LS[i, k, [;] denotes the last step value of the optimal step functiomditthe gap
subsequence betweeandk with at most/; steps, and”S[k + 1, j,[ —[; — 1] denotes the
first step value of the optimal step function fitting the gapssquence betweént- 1 and
j with at mostl — [; — 1 steps.

The algorithm begins with= 0 and then iteratively improves the solution by exploring
larger values of. Every timeopt2[i, j, 1] is used to assign the value fopt[i, j, 1], a new
splitting pointk is created. The splitting point is recorded in a Sét[:, j, [], which is the
set of optimal splitting points for the subsequence betwestd; using at most splitting
points. The algorithm returnSP[0, len — 1, len — 1] as the set of optimal splitting points
for the entire gap sequence. The time complexity of this ritlgm is O(len®), which
is acceptable considering the small valuel@i on the Internet. Since our goal is to
detect the primary choke point, our implementation onlymes the top three choke points
with the largest three steps. If the algorithm does not findaled\splitting point, i.e.
SP[0,len — 1,len — 1] = (), it simply returns the source as the candidate choke point.

Averaging Across Gap Sequences

To filter out effects caused by bursty traffic on the forward esverse paths, Pathneck uses
results from multiple probing trains (e.g. 6 to 10 probingiris) to computeonfidence
information for each candidate choke point. To avoid coigiuswe will use the term
probingfor a single RPT run and the terpmobing setfor a group of probings (generally
10 probings). The outcome of Pathneck is the summary resudt probing set.

For the optimal splitting of a gap sequence, let the sequehseep values bev;(0 <
i < M), whereM is the total number of candidate choke points. The confidémca
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candidate choke point(1 < i < M) is computed as

1 1

SU; SU;—1

1

SU;—1

conf; =

Intuitively, the confidence denotes the percentage of aviglbandwidth change implied
by the gap value change. For the special case where the ssueterned as the candidate
choke point, we set its confidence value to 1.

Next, for each candidate choke point in the probing set weutate d_rate as the
frequency with which the candidate choke point appearsemtiobing set withcon f >
0.1. Finally, we select those choke points with-ate > 0.5. Therefore the final choke
points for a path are the candidates that appear with highfictemce in at least half of the
probings in the probing setln Section 3.2.3, we quantify the sensitivity of Pathnezk t
these parameters.

Ranking Choke Points

For each path, we rank the choke points based on their avgegealue in the probing
set. The packet train transmission ratds R = ts/g, wherets is the total size for all
the packets in the train angdis the gap value. That is, the larger the gap value, the more
the packet train was stretched out by the link, suggestirogvar available bandwidth on
the corresponding link. As a result, we identify the chokenpwith the largest gap value
as the bottleneck of the path. Note that since we cannotadht packet train structure
at each hop, the RPT does rattually measure the available bandwidth on each link,
SO in some cases, Pathneck could select the wrong choke gihie bottleneck. For
example, on a path where the “true” bottleneck is early inghth, the rate of the packet
train leaving the bottleneck can be higher than the avalabhdwidth on the bottleneck
link. As a result, a downstream link with slightly higher daale bandwidth could also
be identified as a choke point and our ranking algorithm wilitakenly select it as the
bottleneck.

Note that our method of calculating the packet train trassion rateR is similar to
that used by cprobe [32]. The difference is that cprobe egémavailable bandwidth,
while Pathneck estimates the location of the bottlenedk liBstimating available band-
width in fact requires careful control of the inter-packepdor the train [85, 58] which
neither tool provides.

While Pathneck does not measure available bandwidth, wasmthe average per-hop
gap values to provide a rough upper or lower bound for thelaai bandwidth of each
link. We consider three cases:

e Case 1:Forachoke link, i.e. its gap increases, we know that thdaiaibandwidth
is less than the packet train rate. That is, the fateomputed above is an upper
bound for the available bandwidth on the link.
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e Case 2:For links that maintain their gap relative to the previoudkJithe available
bandwidth is higher than the packet train r&teand we use? as a lower bound for
the link available bandwidth.

e Case 3:Some links may see a decrease in gap value. This decreasdabpr due
to temporary queuing caused by traffic burstiness, and dicgpto the packet train
model discussed in [58], we cannot say anything about thisal@bandwidth.

Considering that the data is noisy and that link availabledadth is a dynamic property,
these bounds should be viewed as very rough estimates. Wel@ra more detailed
analysis for the bandwidth bounds on the bottleneck linkentf®n 3.3.

3.1.3 Pathneck Properties

Pathneck meets the design goals we identified earlier insgion. Pathneck does not
need cooperation of the destination, so it can be widely byeggular users. Pathneck
also has low overhead. Each measurement typically uses 8 pyabing trains of 60
to 100 load packets each. This is a very low overhead comparesisting tools such
as pathchar [64] and BFind [26]. Finally, Pathneck is fastr &ach probing train, it
takes about one roundtrip time to get the result. Howevandke sure we receive all the
returned ICMP packets, Pathneck generally waits for 3 s#xen the longest roundtrip
time we have observed on the Internet — after sending outrtien train, and then exits.
Even in this case, a single probing takes less than 5 secbmaddition, since each packet
train probes all links, we get a consistent set of measurendiis, for example, allows
Pathneck to identify multiple choke points and rank them.teNwowever that Pathneck
is biased towards early choke points— once a choke pointrftasdased the length of the
packet train, Pathneck may no longer be able to “see” doeastrlinks with higher or
slightly lower available bandwidth.

A number of factors could influence the accuracy of Pathn&aist, we have to con-
sider the ICMP packet generation time on routers. This timdifferent for different
routers and possibly for different packets on the same rodts a result, the measured
gap value for a router will not exactly match the packet ttamgth at that router. Fortu-
nately, measurements in [52] and [28] show that the ICMP giag&neration time is pretty
small; in most cases it is between 160and 50Q:.s. We will see later that over 95% of the
gap changes of detected choke points in our measuremerigsgeethan 500s. There-
fore, while large differences in ICMP generation time cdedcfindividual probings, they
are unlikely to significantly affect Pathneck bottleneckui¢s.

Second, as ICMP packets travel to the source, they may experiqueueing delay
caused by reverse path traffic. Since this delay can be eliftdor different packets, it is
a source of measurement error. We are not aware of any warkaiseguantified reverse
path effects. In our algorithm, we try to reduce the impachaf factor by filtering out the
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measurement outliers. Note that if we had access to thendéisti, we might be able to
estimate the impact of reverse path queueing.

Third, packet loss can reduce Pathneck’s effectivenessd Ipacket loss can affect
RPT’s ability to interleave with background traffic thus pisy affecting the correctness
of the result. Lost measurement packets are detected bgdpstmeasurements. Note
that it is unlikely that Pathneck would lose significant nwrsof load packets without
a similar loss of measurement packets. Considering the tobability of packet loss in
general [80], we do not believe packet loss will affect Pattkresults.

Fourth, multi-path routing, which is sometimes used fordidmlancing, could also
affect Pathneck. If a router forwards packets in the paaien tto different next-hop
routers, the gap measurements will become invalid. Pakhoac usually detect such
cases by checking the source IP address of the ICMP respdnseg measurements, we
do not use the gap values in such cases.

Pathneck also has some deployment limitations. First, #pdoggment of MPLS can
significantly impact Pathneck measurement capabilitiesesMPLS can hide IP-level
routes and make Pathneck only be able to detect AS-levééhettks. Second, we discov-
ered that network firewalls often only forward 60 byte UDPksds that strictly conform
to the packet payload format used by standard Unix tracelioytlementation, while they
drop any other UDP probing packets, including the load padkeour RPT. If the sender
is behind such a firewall, Pathneck will not work. Similaifythe destination is behind
a firewall, no measurements for links behind the firewall carobtained by Pathneck.
Third, even without any firewalls, Pathneck may not be ablméasure the packet train
length on the last link, because the ICMP packets sent byekgmnétion host cannot be
used. In theory, the destination should generate a “degtmport unreachable” ICMP
message for each packet in the train. However, due to ICMHimaiting, the destination
network system will typically only generate ICMP packetssome of the probing pack-
ets, which often does not include the tail packet. Even if@NIIP packet is generated
for both the head and tail packets, thecumulatedCMP generation time for the whole
packet train makes the returned interval worthless. Ofsmuf we have the cooperation
of the destination, we can get a valid gap measurement fdagitdop by using a valid
port number, thus avoiding the ICMP responses for the loallgia. Below we provide a
modification to the packet train to alleviate this problem.

3.1.4 Pathneck-dst—Covering The Last Hop

The last-hop problem of the Pathneck tool significantly istpats utility, especially on
commercial networks where bottlenecks are often on thehlgist To alleviate this prob-
lem, we modified the structure of the probing packet traine idea (suggested by Tom
Killian from AT&T Labs—Research) is to use ICMP ECHO packietstead of UDP pack-
ets as the measurement packets for the last hop. For exahmfegcket train in Figure 3.4
is used to measure a 15-hop path. If the destination regi#iset ICMP ECHO packet,
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Figure 3.4: The probing packet train used by Pathneck-dst

we can obtain the gap value on the last hop. In order to knowevtiee ICMP packets
should be inserted in the probing packet train, Pathneckigss traceroute to get the
path length. Of course, this modification does not work if ad Bost does not respond
to ICMP ECHO packets. In the next chapter, we will show thdeast 40% of Internet
end nodes in our experiments respond to ICMP ECHO packetsftire, Pathneck-dst is
a significant improvement in terms of measuring the last hop.

To distinguish this modified Pathneck from the original iepkentation, we will re-
fer this new version as “Pathneck-dst”, while using “Patikidor the original imple-
mentation. Because Pathneck-dst was developed later #thndek, some experiments
presented later in the dissertation use the original implaation.

3.2 Evaluation of Bottleneck Locating Accuracy

We use both Internet paths and the Emulab testbed [5] to &ealathneck. Internet
experiments are necessary to study Pathneck with reabatkground traffic, while the
Emulab testbed provides a fully controlled environment élaws us to evaluate Pathneck
with known traffic loads. Besides the detection accuracyalse examine the accuracy
of the Pathneck bandwidth bounds and the sensitivity of etk to its configuration
parameters.

3.2.1 Internet Validation

For a thorough evaluation of Pathneck on Internet paths, sddwneed to know the actual
available bandwidth on all the links of a network path. Tmrmation is impossible
to obtain for most operational networks. The Abilene bacidydhowever, publishes its
backbone topology and traffic load (5-minute SNMP stat$fit], so we decided to probe
Abilene paths.

We used two sources in the experiment: a host at the Uniyaersitah and a host at
Carnegie Mellon University. Based on Abilene’s backborpotogy, we chose 22 probing
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Table 3.1: Bottlenecks detected on Abilene paths.
Probe d_rate Bottleneck AS path
destination| (Utah/CMU) | router IP (AS1-A52)t
calren2 0.71/0.70 137.145.202.126 2150-2150
princetori | 0.64/0.67 198.32.42.209 | 10466-10466
sox 0.62/0.56 199.77.194.41 | 10490-10490
ogigp 0.71/0.72 205.124.237.10 | 210-4600 (Utah)
198.32.8.13 11537-4600 (CMU)
1 AS1 is bottleneck router's AS#452 is its post-hop router’'s AS#.
§ calren =www.calren2.net , princeton =www.princeton.edu
§ SOX =www.sox.net , ogig =www.ogig.net

destinations for each probing source, making sure that eate 11 major routers on
the Abilene backbone is included in at least one probing.dathm each probing source,
every destination is probed 100 times, with a 2-secondvatdretween two consecutive
probings. To avoid interference, the experiments conduat&tah and at CMU were run
at different times.

Usingconf > 0.1 andd_rate > 0.5, only 5 non-first-hop bottleneck links were de-
tected on the Abilene paths (Table 3.1). This is not sumpgisince Abilene paths are
known to be over-provisioned, and we selected paths withyrhaps inside the Abilene
core. Thel_rate values for the 100 probes originating from Utah and CMU arg gen-
ilar, possibly because they observed similar congestiowlitions. By examining the IP
addresses, we found that in 3 of the 4 casesw.ogig.net is the exception), both the
Utah and CMU based probings are passing through the samersatk link close to the
destination; an explanation is that these bottlenecksamestable, possibly because they
are constrained by link capacity. Unfortunately, all thbe¢tlenecks are outside Abilene,
so we do not have the load data.

For the path tavww.ogig.net , the bottleneck links appear to be two different peer-
ing links going to AS4600. For the path from CMU tavw.ogig.net , the outgoing
link of the bottleneck router 198.32.163.13 is an OC-3 liBlased on the link capacities
and SNMP data, we are sure that the OC-3 link is indeed th&ehettk. The SNMP data
for the Utah links was not available, so we could not validateresults for the path from
Utah towww.ogig.net

3.2.2 Testbed Validation

The detailed properties of Pathneck were studied using theldb testbed. Since Path-
neck is a path-oriented measurement tool, we used a linpalogy (Figure 7.5). Nodes
0 and 9 are the probing source and destination, while nodarg-intermediate routers.
The link delays are roughly set based on a traceroute measatdrom a CMU host to
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Figure 3.5: Testbed configuration.
Hop 0 is the probing source, hop 9 is the probing destinatitops 1 - 8 are intermediate routers.
The blank boxes are used for background traffic generatidre dashed lines show the default
background traffic flow directions.X” and “Y™” are the two links whose capacity will change for
different scenarios.

www.yahoo.com . The link capacities are configured using the Dummynet [¢kpge.

The capacities for links andY” depend on the scenarios. Note that all the testbed nodes
are PCs, not routers, so their properties such as the ICMErggmn time are different
from those of routers. As a result, the testbed experimemtsod consider some of the
router related factors.

The dashed arrows in Figure 7.5 represent background traffie background traffic
is generated based on two real packet traces, cidfledtraceandheavy-trace Thelight-
traceis a sampled trace (using prefix filters on the source andrddin IP addresses)
collected in front of a corporate network. The traffic loadie@a from around 500Kbps
to 6Mbps, with a median load of 2Mbps. Theavy-tracels a sampled trace from an
outgoing link of a data center connected to a tier-1 ISP. Tdféd load varies from 4Mbps
to 36Mbps, with a median load of 8Mbps. We also use a simple tiBific generator
whose instantaneous load follows an exponential disiohutWe will refer to the load
from this generator asxponential-load By assigning different traces to different links,
we can set up different evaluation scenarios. Since all éic&dround traffic flows used in
the testbed evaluation are very bursty, they result in veajlenging scenarios.

Table 3.2 lists the configurations of five scenarios thatallg to analyze all the im-
portant properties of Pathneck. For each scenario, we ubadtk to send 100 probing
trains. Since these scenario are used for validation, we us# the results for which we
received all ICMP packets, so the percentage of valid pglamower than usual. During
the probings, we collected detailed load data on each obilters allowing us to compare
the probing results with the actual link load. We look at iRattk performance for both
probing sets (i.e. result for 10 consecutive probings asrted by Pathneck) and individ-
ual probings. For probing sets, we use.f > 0.1 andd_rate > 0.5 to identify choke
points. The real background traffic load is computed as tleeage load for the interval
that includes the 10 probes, which is around 60 secondsnBividual probings, we only
useconf > 0.1 for filtering, and the load is computed using as20packet trace centered
around the probing packets, i.e. we use the instantaneads lo
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Table 3.2: The testbed validation experiments

#| X | Y | Trace Comments

1| 50| 20 | light-traceon all Capacity-determined bottleneck

2 | 50 | 50 | 35Mbps exponential-loadon Y, light- | Load-determined bottleneck
trace otherwise

3| 20 | 20 | heavy-traceonY’, light-trace otherwise | Two-bottleneck case

4 | 20 | 20 | heavy-traceon X, light-trace otherwise | Two-bottleneck case

5| 50 | 20 | 30%exponential-loacbn both directions| The impact of reverse traffic

Experiment 1 — Capacity-determined Bottleneck

In this experiment, we set the capacitiesxondY to 50Mbps and 20Mbps, and ulsght-
trace on all the links; the starting times within the trace are @nty selected. All 100
probings detect hop 6 (i.e. linkK) as the bottleneck. All other candidate choke points are
filtered out because of a low confidence value @®.f < 0.1). Obviously, the detection
results for the probing sets are also 100% accurate.

This experiment represents the easiest scenario for R&thne. the bottleneck is
determined by the link capacity, and the background tradficat heavy enough to affect
the bottleneck location. This is however an important sdenan the Internet. A large
fraction of the Internet paths fall into this category besmonly a limited number of link
capacities are widely used and the capacity differencesttehe large.

Experiment 2 — Load-determined Bottleneck

Besides capacity, the other factor that affects the batkmposition is the link load. In
this experiment, we set the capacities of batrandY to 50Mbps. We use the 35Mbps
exponential-loadn Y and thelight-trace on other links, so the difference in traffic load
on X andY determines the bottleneck. Out of 100 probings, 23 had todmadied due to
ICMP packet loss. Using the remaining 77 cases, the proleitsgdvays correctly identify
Y as the bottleneck link. Of the individual probings, 69 prajs correctly detect” as the
top choke link, 2 probings pick linkR7, R8) (i.e. the link afterY’) as the top choke link
andY is detected as the secondary choke link. 6 probings missetilébpttleneck. In
summary, the accuracy for individual probings is 89.6%.

Comparing the Impact of Capacity and Load

To better understand the impact of link capacity and loadeiteianining the bottleneck,
we conducted two sets of simplified experiments using cordiguns similar to those used
in experiments 1 and 2. Figure 3.6 shows the gap measureaatfunction of the hop
count @ axis). In the left figure, we fix the capacity &f to 50Mbps and change the
capacity ofY” from 21Mbps to 30Mbps with a step size of 1Mbps; no backgrawaific
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change cap of link Y: 21-30Mbps, with no load change load on link Y (50Mbps): 20-29Mbps
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Figure 3.6: Comparing the gap sequences for capacity @eff)load-determined (right)
bottlenecks.

is added on any link. In the right figure, we set the capacdfdmth X andY to 50Mbps.
We apply different CBR loads tb" (ranging from 29Mbps to 20Mbps) while there is no
load on the other links. For each configuration, we execu@aarébings. The two figures
plot the median gap value for each hop; for most points, th&@percentile interval is
under 20Qs.

In both configurations, the bottleneck available bandwatithnges in exactly the same
way, i.e. it increases from 21Mbps to 30Mbps. However, the sgguences are quite
different. The gap increases in the left figure are reguldrraatch the capacity changes,
since the length of the packet train is strictly set by th& tapacity. In the right figure,
the gaps at the destination are less regular and smallesifi6phy, they do not reflect the
available bandwidth on the link (i.e. the packet train radgeeds the available bandwidth).
The reason is that the back-to-back probing packets compefarly with the background
traffic and they can miss some of the background traffic thatilshbe captured. This
observation is consistent with the principle behind TOP$] ghd IGI/PTR [58], which
states that the probing rate should be set properly to aetyrmeasure the available
bandwidth. This explains why Pathneck’s packet train rateeadestination provides only
an upper bound on the available bandwidth. Figure 3.6 shbatstihe upper bound will
be tighter for capacity-determined bottlenecks than fadidetermined bottlenecks. The
fact that the gap changes in the right figure are less redudarthat in the left figure also
confirms that capacity-determined bottlenecks are easidetect than load-determined
bottlenecks.
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Figure 3.7: Cumulative distribution of bandwidth diffecenin experiment 3.

Experiments 3 & 4 — Two Bottlenecks

In these two experiments, we set the capacities of AodmdY to 20Mbps, so we have two
low capacity links and the bottleneck location will be detared by load. In experiment

3, we use théeavy-tracdor Y and theight-tracefor other links. The probing set results
are always correct, i.eY is detected as the bottleneck. When we look at the 86 valid
individual probings, we find thaX is the real bottleneck in 7 cases; in each case Pathneck
successfully identifieX as theonly choke link, and thus the bottleneck. In the remaining
79 casesY is the real bottleneck. Pathneck correctly identifiegn 65 probings. In the
other 14 probings, Pathneck identifi&sas the only choke link, i.e. Pathneck missed the
real bottleneck linky. The raw packet traces show that in these 14 incorrect ctses,
bandwidth difference betweel andY is very small. This is confirmed by Figure 3.7,
which shows the cumulative distribution of the availabladaidth difference betweeN
andY for the 14 wrong cases (the dashed curve), and for all 86 ¢#sesolid curve).
The result shows that if two links have similar available dhaidth, Pathneck has a bias
towards the first link. This is because the probing packét tras already been stretched
by the first choke linkX, so the second choke lirtk can be hidden.

As a comparison, we apply theavy-tracdo both X andY in experiment 4. 67 out of
the 77 valid probings correctly identifif as the bottleneck; 2 probings correctly identify
Y as the bottleneck; and 8 probings miss the real bottlenakkliand identify.X as the
only bottleneck. Again, if multiple links have similar alatle bandwidth, we observe the
same bias towards the early link.

Experiment 5 — Reverse Path Queuing

To study the effect of reverse path queuing, we set the cigsoif X andY to 50Mbps
and 20Mbps, and applgxponential-loadn both directions on all links (except the two
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Table 3.3: The number of times of each hop being a candidateeghoint.

Router 1 2|13 4] 5 6 7
conf > 0.1 24118 5(21|20| 75| 34
d_rate > 0.5 6| 00| 2| 0|85 36

edge links). The average load on each link is set to 30% ofittkechpacity. We had 98
valid probings. The second row in Table 3.3 lists the numlidinees that each hop is
detected as a candidate choke point (i.e. withf > 0.1). We observe that each hop
becomes a candidate choke point in some probings, so rgvatiséraffic does affect the
detection accuracy of RPTSs.

However, the use of probing sets reduces the impact of reyeth traffic. We ana-
lyzed the 98 valid probings as 89 sets of 10 consecutive pgsbeéach. The last row of
Table 3.3 shows how often links are identified as choke p@ihisite > 0.5) by a probing
set. The real bottleneck, hop 6, is most frequently ideutifie the actual bottleneck (last
choke point), although in some cases, the next hop (i.e. hgoalso a choke point and is
thus selected as the bottleneck. This is a result of revettetmaffic. Normally, the train
length on hop 7 should be the same as on hop 6. However, ifseyeth traffic reduces
the gap between the hop 6 ICMP packets, or increases the gapdrethe hop 7 ICMP
packets, it will appear as if the train length has increasetleop 7 will be labeled as a
choke point. We hope to tune the detection algorithm to redine impact of this factor as
part of future work.

3.2.3 Impact of Configuration Parameters

The Pathneck algorithms described in Section 3.1.2 use ttwafiguration parameters:
the threshold used to pick candidate choke poistep(= 100us), the confidence value
(conf = 0.1), and the detection raté_tate = 0.5). We now investigate the sensitivity of
Pathneck to the value of these parameters.

To show how the 10@s threshold for the step size affects the algorithm, we catedl
the cumulative distribution function for the step sizestfo choke points detected in the
“GE” set of Internet measurements (see Table 3.4, we use @&tihations selected from
BGP tables). Figure 3.8 shows that over 90% of the choke pbimte gap increases larger
than 100@s, while fewer than 1% of the choke points have gap increasesmar10Q:s.
Clearly, changing the step threshold to a larger value (B@f):s) will not change our
results significantly.

To understand the impact oebn f andd_rate, we re-ran the Pathneck detection algo-
rithm by varyingcon f from 0.05 to 0.3 andi_rate from 0.5 to 1. Figure 3.9 plots the
percentage of paths with at least one choke point that satisbth thecon f andd_rate
thresholds. The result shows that, as we increas¢ andd_rate, fewer paths have iden-
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Table 3.4: Probing sources from PlanetLab (PL) and RON.
GE CR oV MH

ID Probing AS Location Upstream Testbed | BW

Source Number Provider(s)
1 ashburn 7911 DC 2914 PL v v
2 bkly-cs 25 CA 2150,3356,11423,16631 PL va 4 va va
3 columbia 14 NY 6395 PL VA VA
4 diku 1835 Denmark 2603 PL VA VA
5 emulab 17055 uT 210 - va va
6 frankfurt 3356 Germany 1239, 7018 PL VA VA
7 grouse 71 GA 1239, 7018 PL VA VA
8 gs274 9 PA 5050 - VA VA
9 bkly-intel 7018 CA 1239 PL VA VA
10 | jhu 5723 MD 7018 PL v v v
11 nbgisp 18473 OR 3356 PL VA VA
12 princeton 88 NJ 7018 PL VA Vv VA v
13 | purdue 17 IN 19782 PL v N v
14 | rpi 91 NY 6395 PL v v v
15 | uga 3479 GA 16631 PL v N v
16 umass 1249 MA 2914 PL VA 4 VA
17 unm 3388 NM 1239 PL VA 4 VA
18 utah 17055 uT 210 PL va va
19 uw-cs 73 WA 101 PL va 4 va
20 mit-pl 3 MA 1 PL v va
21 cornell 26 NY 6395 PL VA
22 depaul 20130 CH 6325, 16631 PL va
23 umd 27 MD 10086 PL va
24 dartmouth 10755 NH 13674 PL va
25 kaist 1781 Korea 9318 PL VA
26 cam-uk 786 UK 8918 PL VA
27 ucsc 5739 CA 2152 PL VA
28 ku 2496 KS 11317 PL VA
29 snu-kr 9488 Korea 4766 PL VA
30 bu 111 MA 209 PL VA
31 northwestern 103 CH 6325 PL VA
32 cmu 9 PA 5050 PL VA
33 stanford 32 CA 16631 PL VA
34 wustl 2552 MO 2914 PL VA
35 msu 237 MI 3561 PL va
36 uky 10437 KY 209 PL va
37 ac-uk 786 UK 3356 PL va
38 umich 237 MI 3561 PL va
39 mazul 3356 MA 7018 RON va
40 aros 6521 uT 701 RON v va 4 va
41 jfkl 3549 NY 1239, 7018 RON v va 4 va
42 nortel 11085 Canada 14177 RON Vv VA Vv v
43 nyu 12 NY 6517, 7018 RON Vv VA v VA
44 vineyard 10781 MA 209, 6347 RON VA v VA
45 | intel 7018 CA 1239 RON v N v
46 cornell 26 NY 6395 RON Vv v
47 lulea 2831 Sweden 1653 RON Vv v
48 anal 3549 CA 1239, 7018 RON Vv v
49 ccicom 13649 uT 3356, 19092 RON Vv v
50 ucsd 7377 CA 2152 RON Vv v
51 ar 3323 Greece 5408 RON VA
52 utah 17055 uT 210 RON 4
BW: used for bandwidth accuracy analysis in Section 3.3; @ed for the analysis in Section 3.2.3 and 4.1;
CR: used for correlation analysis in Section 4.4; OV: usedferlay analysis in Sectio??;
MH: used for multihoming analysis in Secti@?; “~": probing hosts obtained privately.

tifiable choke points. This is exactly what we would expectthvidigher values foron f
andd_rate, it becomes more difficult for a link to be consistently idéatl as a choke
link. The fact that the results are much less sensitivé tate thancon f shows that most
of the choke point locations are fairly stable within a prapset (short time duration).

The available bandwidth of the links on a path and the locatioboth choke points
and the bottleneck are dynamic properties. The Pathneting¢rains effectively sample
these properties, but the results are subject to noise.rd-§9@ shows the tradeoffs in-
volved in using these samples to estimate the choke poiatitots. Using high values for
conf andd_rate will result in a small number of stable choke points, whilengdower
values will also identify more transient choke points. @eéhe right choice will depend



74 CHAPTER 3. LOCATING BANDWIDTH BOTTLENECKS

0.7

0.6

0.5

0.4

CDF

0.3

0.2

0.1

0 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
gap difference (us)

Figure 3.8: Distribution of step size on the choke point.

0.9~
0.8+
0.7+
0.6 -

0.5

fraction of paths detected

0.6

) 0.05
0.7 0.15 0.1
0.8 0.2 .

0.9
d_rate value 1 03 0-25

conf value

Figure 3.9: Sensitivity of Pathneck to the values@i f andd_rate.

on how the data is used. We see that for our choicevof andd_rate values, 0.1 and

0.5, Pathneck can clearly identify one or more choke poinlimost 80% of the paths we
probed. The graph suggests that our selection of thresholdssponds to a fairly liberal
notion of choke point.
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3.3 Tightness of Bottleneck-Link Bandwidth Bounds

A number of groups have shown that packet trains can be usestitoate the available
bandwidth of a network path [85, 58, 65]. However, the sota®to carefully control the
inter-packet gap, and since Pathneck sends the probin@isdukck-to-back, it cannot, in
general, measure the available bandwidth of a path. Instésadkscribed in Section 3.1.2,
the packet train rate at the bottleneck link can provide ghaipper bound for the available
bandwidth. In this section, we compare the upper bound oitaéa bandwidth on the
bottleneck link reported by Pathneck with end-to-end add bandwidth measurements
obtained using IGI/PTR [58] and Pathload [65].

Since both IGI/PTR and Pathload need two-end control, we @8eRON nodes for
our experiments — anal, aros, ccicom, cornell, jfk1, luteatel, nyu, ucsd, utah (see the
“BW” column in Table 3.4); this results in 90 network paths fmr experiment. On each
RON path, we obtain 10 Pathneck probings, 5 IGI/PTR measem&snand 1 Pathload
measuremeht The estimation for the upper bound in Pathneck was done llsvéo
If a bottleneck can be detected from the 10 probings, we usemnt&dian packet train
transmission rate on that bottleneck. Otherwise, we usdatigest gap value in each
probing to calculate the packet train rate and use the medianrate of the 10 probings
as the upper bound.

Figure 3.10 compares the average of the available bandwgttimates provided by
IGI, PTR, and Pathload:(axis) with the upper bound for the available bandwidth paled
by Pathnecky axis). The measurements are roughly clustered in thres.aféar low
bandwidth paths (bottom left corner), Pathneck providesréy/ftight upper bound for the
available bandwidth on the bottleneck link, as measureddyPTR, and Pathload. In
the upper left region, there are 9 low bandwidth paths foicWithe upper bound provided
by Pathneck is significantly higher than the available badtiwmeasured by IGI, PTR,
and Pathload. Analysis shows that the bottleneck link idakelink, which is not visible
to Pathneck. Instead, Pathneck identifies an earlier litkghvhas a higher bandwidth, as
the bottleneck.

The third cluster corresponds to high bandwidth paths (upgkt corner). Since the
current available bandwidth tools have a relative measen¢error around 30% [58], we
show the two 30% error margins as dotted lines in Figure 3\@.consider the upper
bound for the available bandwidth provided by Pathneck teabe if it falls within these
error bounds. We find that most upper bounds are valid. Onbt& ploints fall outside of
the region defined by the two 30% lines. Further analysis shibat the data point above
the region corresponds to a path with a bottleneck on thditdstsimilar to the cases
mentioned above. The four data points below the region lgelorpaths with the same
source node (lulea). We have not been able to determine vehidkhneck bound is too
low.

We force Pathload to stop after 10 fleets of probing. If Pattiloas not converged, we use the average
of the last 3 probings as the available bandwidth estimate.
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Figure 3.10: Comparison between the bandwidth from Pathwéb the available band-
width measurement from IGI/PTR and Pathload.

3.4 Related Work

Ideally, if we have SNMP load data for all links along a netkpath, it is trivial to identify
the link that has the smallest available bandwidth. Howesgeh information is seldom
publicly accessible. Even if it is, SNMP data is generallyyaollected for 5-minute in-
tervals, so it may not correctly reflect the situation at $emdlme granularities. For this
reason, all current bottleneck locating tools use activasueement techniques. These
include Cartouche [54], STAB [100], BFind [26], and Pathcfgt]. Among them, Car-
touche is the closest to the Pathneck tool. Cartouche usask&tptrain that combines
packets of different sizes to measure the bandwidth for agynent of the network path.
The bottleneck location is deduced from its measuremeunttee STAB also uses two dif-
ferent sizes probing packets, but instead of letting sniedl gackets expire like Pathneck,
it expires the large packets. Both Cartouche and STAB regwp-end control, while
Pathneck only needs single-end control. Also Pathneckstemdse less probing packets
than these two techniques.

BFind only needs single-end control. It detects the bogtbnposition by injecting
a steady UDP flow into the network path, and by gradually iasirey its throughput to
amplify the congestion at the bottleneck router. At the séime, it uses traceroute to
monitor the RTT changes to all the routers on the path, thtecteg the position of the
most congested link. Concerns about the overhead gendnated UDP flow force BFind
to only look for bottlenecks with available bandwidths aédethan 50Mbps. Moreover,
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considering its measurement time, its overhead is faigyhhwhich is undesirable for a
general-purpose probing tool.

Pathchar estimates the capacity of each link on a netwolk fatan be used to locate
the link that has the smallest capacity, which may or may edhle bottleneck link (the
link that has the smallest available bandwidth) as we defified main idea of pathchar is
to measure the link-level packet transmission time. Thdoise by taking the difference
between the RTTs from the source to two adjacent routersltéodut measurement noise
due to factors such as queueing delay, pathchar needs tadargk number of probing
packets, identifying the smallest RTT values for the fin&daiation. As a result, pathchar
also has a large probing overhead.

3.5 Summary

This chapter presented the Pathneck tool that can locatenbttbottlenecks. Pathneck
uses a novel packet train structure—Recursive Packet-Firassociate link available
bandwidth with link location information. Its overhead sveral magnitudes lower than
previously proposed bottleneck locating tools. Using botarnet experiments and Emu-
lab testbed emulations, we showed that Pathneck can aelyuidentify bottleneck links
on 80% of the paths we measured. The paths where Pathnecls magikes gener-
ally have an ealier link that has an available bandwidth Isintd that of the bottleneck
link. Using the RON testbed, we also showed that the bottletiak available-bandwith
upper-bounds provided by Pathneck are fairly tight and @anoded for applications that
only need rough estimations for path available bandwidth.
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Chapter 4

Internet Bottleneck Properties

Equipped with the light-weight Pathneck tool, and in cofiediion with our colleagues,
we have studied several bottleneck properties at the letescale [56, 55, 57]. In [56],

we studied bottleneck popularity, bottleneck inference how to avoid bottlenecks. In
[55], we looked at bottleneck persistence, bottlenecktehusy, relationships between
bottleneck links and link loss/delay, and the correlatietween bottleneck links and link-
level performance metrics. In [57], we studied bottlenemdation distribution, Internet

end-user access-bandwidth distribution, and analyzeddistnibuted systems like CDN

(Content Distribution Network) can be used to avoid botleks and improve end users’
access bandwidth. To the best of my knowledge, this is thiediitsleneck property study
at an Internet scale.

In this chapter, | present the results from the four mosgims$ul studies—the bottle-
neck link location distribution, Internet end-user aceleasdwidth distribution, the per-
sistence of Internet bottlenecks, and the relationshipvdet bottleneck links and link
loss/delay. The insights from these studies not only greaiprove our understanding of
Internet bottlenecks, they also help us improve the peréoica of network applications.
To demonstrate this point, in the last part of this chaptéedcribe how we use bottleneck
information to improve the performance of a content disttiiin system, and to obtain a
transmission time distribution for web sites.

4.1 Distribution of Bottleneck Locations

The common intuition about Internet bottlenecks is thattnobshem are on the Internet
edge, but this intuition has not been tested due to the laek @ffficient tool. In this sec-
tion, we use Pathneck to quantitatively evaluate this apsom Below we first describe
the data sets we collected for our analysis, and then préiserocation distribution of
Internet bottlenecks.

79
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Table 4.1: Measurement source nodes

| ID | Location|| ID | Location|| ID | Location| ID | Location |
S01 | US-NE || S06 | US-SE || S11 | US-NM || S15 | Europe
S02 | US-SM || 507 | US-SW || S12 | US-NE | S16 | Europe
S03 | US-SW || S08 | US-MM || S13 | US-NM || S17 | Europe
S04 | US-MW || S09 | US-NE || S14 | US-NE | S18 | East-Asia
S05 | US-SM || S10 | US-NW
NE: northeast, NW: northwest, SE: southeast, SW: southwest
ME: middle-east, MW: middle-west, MM: middle-middle

4.1.1 Data Collection

We use three data sets in this chapter. The first is the dateoBetted in December
2003 using the “GE” source nodes listed in Table 3.4, whiams@gis of 25 nodes from
PlanetLab [12] and RON [15]. For this data set, each nodequt@D00 destinations
which are diversely distributed over a BGP table. For outleoéck location analysis, we
only use the paths where bottlenecks are on the source sdethie first half of a path.
We ignore the other paths because the Pathneck tool usetldct¢his data set could not
measure the last hop of Internet paths. This data set isidh#BtSrcdata set.

The second data set was collected in February 2005 usingithadtk-dst tool, which
can measure the last hop of Internet paths. To achieve améttscale, we select one
IP address as the measurement destination from each of Bikepk6fixes extracted from
a BGP table. Ideally, the destination should correspondtordine host that replies to
ping packets. However it is difficult to identify online heswithout probing them. In
our study, we partially alleviate this problem by pickingdBdresses from three pools of
existing data sets collected by a Tier-1 ISP: Netflow trackent IP addresses of some
Web sites, and the IP addresses of a large set of local DN&rserwhat is, for each
prefix, whenever possible, we use one of the IP addressedliimss three sources in that
prefix; otherwise, we randomly pick an IP address from thefiyr In this way, we were
able to find reachable destination in 67,983 of the total 1p&{ixes. We used a single
source node at CMU to probe these reachable destinatiamse 8ie measurements share
a source, we only use those paths where bottlenecks are dastieation side, i.e., where
bottleneck is at the later half of a path. This data set iedatheBtDstdata set.

The third data set was collected in September 2004 using A8unement sources (see
Table 4.1) within a single Tier-1 ISP. Fourteen of these sesiare in the US, three are in
Europe, and one is in East-Asia. All the sources directlyneahto a large Tier-1 ISP via
100Mbps Ethernet links. Since these 18 measurement soareativersely distributed,
compared with theBtDst data set, they provide a broader view of bottleneck location
and bandwidth distributions. The measurement destingfimnthis data set are selected
using a method similar to that used for tBtDstdata set. The difference is that we use a



4.1. DISTRIBUTION OF BOTTLENECK LOCATIONS 81

I inside src AS
[ Joutside src AS| |

o
w

percentage

o
N

o
s

— ‘
1 2 3 4 5 6 7 8 9 10 11
distance of bottlenecks to source

(a) source-side bottleneck distribution in tBtSrcdata set

0.5

I inside dst AS

04 [ TJoutside dst AS| |

o
w

percentage

o
N

o
s

] . 1 ! L I
1 2 3 4 5 6 7 8 9 10 11
distance of bottlenecks to destination

(b) destination-side bottleneck distribution in tBEstdata set

N
o

percentage
N
o

0 -
0 5 10 15 20
distance to destination

(c) bottleneck location distribution in tH8P data set

Figure 4.1: Bottleneck location Distribution

different BGP table, which gave us 164,130 IP addresses wiw8v,271 are reachable.
In this data set, we consider the bottlenecks on all the 6 fKpdete paths. Since we know
the measurement sources are well provisioned and the ssugedinks are very unlikely
to be bottlenecks, this data set also captures the destinsitie bottleneck distribution.
We call this data set thSP data set.

4.1.2 Bottleneck Location Distribution

Figure 4.1 plots the bottleneck link distributions from thliee data sets. In each figure,
the x-axis is the hop distance from bottleneck links to the eodes (source nodes in the
BtSrcdata set, destination nodes in the other two), while theig-isxthe percentage of
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bottlenecks for each hop distance. For BtSrcand theBtDstdata sets, we also distin-
guish bottleneck links inside the end ASes (indicated uiegdark bars) from those that
are not (indicated using the lighter bars).

Figure 4.1(a) shows that 79% of the source-side bottlenaksvithin the first four
hops, and 74% are within source local ASes. However, nogeahalysis is limited to
25 source nodes. Figure 4.1(b) shows that 96% of destiratdmbottlenecks are on
the last four hops and 75% are inside local destination ASasce theBtDst data set
includes measurements from over 67K paths, we believe thelusion from this figure
are representative for the Internet. Figure 4.1(c) confimsesults from th&tDstdata
set: in thelSP data set, 86% of destinations have bottlenecks on the lagpd, 5% on
the last two hops, and 42.7% on the last hop. Although the eusnibom different data
sets are not exactly the same, they are consistent in the #satsnost bottlenecks are on
Internet edge. That is, they confirm people’s intuition thatst of Internet bottlenecks are
on Internet edge. For simplicity, since ti&P data set has the largest scale, in the rest of
this dissertation, we only refer to the results from thisadsdt, e.g., “86% of bottlenecks
are within 4 hops from end nodes”.

Note that this analysis did not look at how often bottlenearieson peering links, which
is claimed to be another common location for bottleneck$. [Z&e reason is mainly the
difficulty in identifying the exact locations of inter-ASnlks, as explained in [56].

4.2 Access-Link Bandwidth Distribution

Given that most Internet bottlenecks are on Internet ethgehandwidth distribution from
these bottlenecks reflects the condition of Internet emt-ascess speed, which is an-
other important Internet property un-revealed so far. WethslSP data set to study this
property. Note that an analysis based on this data set caragedsince we probed one
destination per prefix. An implied assumption is that défarprefixes have a similar den-
sity of real end hosts, which is probably not true. Howevéreg the large number of
hosts in the Internet, this is the best approach we can tHink o

In the ISP data set, since each destination is measured by 18 diffecemtes, we
select a bandwidth measurement for each destination thmbst representative among
those from all 18 sources to use in the following study. Thigdane by splitting the 18
bandwidth measurements into several groups, and by takégéedian value of the largest
group as the representative bandwidth. The group is defiaedeafollows. LetG be a
group, andc be a bandwidth value; € G iff Jy,y € G, |(z — y)/y| < 0.3.

Figure 4.2 plots the distribution of the representativeilatse bandwidths for the
67,271 destinations for which Pathneck can measure thédgst We observe that 40%
of destinations have bottleneck bandwidth less than 2.2yB@% are less than 4.2Mbps,
and 63% are less than 10Mbps. These results show that sapatity links still dominate
Internet end-user connections, which are very likely duentall-capacity last-mile links
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such as DSL, cable-modem, and dial-up links.
For the destinations with bottleneck bandwidth larger th@Mbps, the bottleneck
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bandwidth is almost uniformly distribute in the range of jifps, 50Mbps]. The distribu-
tion curve in Figure 4.2 ends at 55.2Mbps. This is a bias thtoed by our measurement
infrastructure. The sending rates from our measurementssware generally less than
60Mbps, which determines the maximum bottleneck bandwtitkib we can detect. For
destinations with bottleneck bandwidth higher than 10Mibgh-bandwidth bottlenecks
are more likely to be determined by link load instead of b¥ liapacity, and bottlenecks
more frequently appear in the middle of paths. This obsemad illustrated in Figure 4.3,
where we split the 67,271 destinations into different ggobpsed on bottleneck band-
width, and plot the distribution of bottleneck locations &ach group. The curve marked
with “i” represents the group of destinations which have bottlebandwidth in the range
of [i x 10Mbps, (i + 1) x 10Mbps). We can see that while groups~ 3 have distributions
very similar with that shown in Figure 4.1(c), groups 4 andré eearly different. For
example, 62% of destinations in group 5 have bottlenecksattesover 4 hops away from
the destinations, where different measurement sourcesaaigher probability of having
different routes and thus different bottlenecks.

4.3 Persistence of Bottleneck Links

By “bottleneck persistence”, we mean the fraction of timatttine bottleneck is on the
same link. Because the bottleneck location of a path is idsd with its route, in
this section, we first look at route persistences beforeudsing bottleneck persistences.
Below we first describe our experimental methodology and Wweveollect the data.

4.3.1 Experimental Methodology and Data Collection

We study bottleneck persistence from both spatial and teahperspectives. For the spa-
tial analysis, we conducteddday periodic probingThat is, we selected a set of 960 desti-
nations and probed each of them once per day from a CMU ho38fdays. That provides
us 38 sets of probing results for each destination. Here thaber of destinations—960—
is determined by the length of the probing period (1 day) dedrheasurement time of
Pathneck (90 seconds per destination). This set of dat&dthsoughout this section.

For the temporal analysis, we conducted two more expersnémj 4-hour periodic
probing where we select a set of 160 destinations from those usdeifi-tlay periodic
probing and probe each of them from a CMU host every four hfmir$48 hours, obtain-
ing 37 sets of probing results for each destination; and {2pur periodic probingwhere
we select a set of 40 destinations from those used in the Agsoiodic probing and probe
each of them from a CMU host every hour for 30 hours, thus abtgi30 sets of probing
results for each destination. These two data sets are oatyinsSection 4.3.4.
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Table 4.2: Determining co-located routers

Heuristic # IP pairs
Same DNS name 42
Alias 53
CMU or PSC 16
Same location in DNS name 572
Digits in DNS name filtered 190
Real change 1722

4.3.2 Route Persistence

In the 1-day periodic probing data set, we observe quite alRevevel route changes:
among the 6,868 unique IP addresses observed in this da2a3&t of them are associated
with hops whose IP address changes, i.e., the route appearange. This shows that we
must consider route persistence in the bottleneck pensistenalysis. Intuitively, Internet
routes have different persistence properties at diffegeartularity, so in the following, we
investigate route persistence at both the location leveltaa AS level. At thdocation
level we consider hops with IP addresses that belong to the samer rar co-located
routers as the same hop. We will explain what we mean by th@ésauter” or “co-
located router” below. Location-level analysis can helpeduce the impact of “false”
route changes. At thAS level we consider all hops in the same AS as the same AS-
level hop; this is done by mapping the IP address of each hap &5 number using the
mapping provided by [81].

Location-Level Route

At the location level, the IP addresses associated withaheegouter are identified using
two heuristics. First, we check the DNS names. That is, welvesach IP address into
its DNS name and compare the DNS names. If two IP addréa$ésve the same hop
position (b) for the same source-destination pair gojlare resolved to the same DNS
name, they are considered to be associated with the sanes.rdde found that 5,410 out
of the 6,868 IP addresses could be resolved to DNS names,2apdi# of IP addresses
resolve to identical DNS names (refer to Table 4.2). Secaedook for IP aliases. For
the unresolved IP addresses, we use Ally [109] to deteceraliases. We found that 53
IP pairs are aliases.

The IP addresses associated with co-located routers arfiele by applying the fol-
lowing heuristics sequentially.

1. CMU or PSC Because all our measurements are conducted from a CMUthest,
always pass through PS@\w.psc.edu ) before entering other networks, so we
consider all those routers within CMU or PSC as co-located.
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2. Same location in DNS nameéAs pointed out in [121], the DNS names used by
some ISPs (e.g., theip.att.net for AT&T and the*.sprintlink.net
for Sprint) include location information, which allows us identify those routers
that are at the same geographical position.

3. Digits in DNS name filtered/Ne remove the digits from DNS names. If the remain-
ing portion of the DNS names become identical, we considemtto be co-located.

These three heuristics allow us to identify 16, 572, and 1&€spf co-located routers,
respectively. Note that heuristics (2) and (3) are not perfstale information in DNS
can cause mistakes in heuristic (2), while heuristic (3pisipletely based on our limited
knowledge of how ISPs assign DNS names to their IP addresaksough we think

the impact from these errors is small, better tools are re¢aleédentify co-located IP
addresses.

At the location level, we consider a route change only whencttrresponding hops
do not belong to the same or a co-located routers. Table #\&ssthat 1,722 pairs of IP
addresses are associated with hops that experience rautgesh Given this definition for
location-level route change, we defin@arsistent probing sets a probing set where the
route remains the same during the 10 probings.
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Route Persistence Results on Both Location Level and AS Lelve

Figure 4.4 shows the route persistence results for the Jpdagdic probing, at both the
location and AS level. The top graph plots the cumulativérithistion of the number of
probing sets that are not persistent. As expected, AS-teweds are more persistent than
location-level routes. Some location-level routes chaiagey frequently. For example,
about 5% of the source-destination pairs have more thanut5o{®B8) probing sets that
are not persistent at the location level. However overa#, tast majority of the routes
are fairly persistent in the short term: at the location Ies@% of the source-destination
pairs have perfect persistence (i.e., all probing setserggtent), while 80% have at most
one probing set that is not persistent. The correspondingefggfor AS level are 85% and
97%, respectively.

The bottom graph in Figure 4.4 illustrates long-term rowgesstence by plotting the
distribution of the number of different location-level aA&-level routes that a source-
destination pair uses. We observe that only about 6% of thecealestination pairs use
one location-level route, while about 6% of the sourceidatibn pairs have more than 10
location-level routes (for 380 probings). The long-termteopersistence at the location
level is quite poor. However, at the AS level, not surprigmthe routes are much more
persistent: 94% of the source-destination pairs have faveer5 different AS-level routes.

We have seen that most of the source-destination pairs use threm one route. For
our bottleneck persistence analysis, we need to know iketieen dominant route for a
source-destination pair. Here, tdeminant routds defined as the route that is used by
the highest number of persistent probing sets in all 38 pigpBets for the same source-
destination pair. Figure 4.5 shows the distribution of tbenchant route for each source-
destination pair, i.e., the number of persistent probirg &t use the dominant route. We
can see that, at the location level, only around 15% of thecgedestination pairs have a
route with a frequency of 20 or more (out of 38), i.e., the “dioamt” routes are usually
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not very dominant. At the AS level, for about 30% of the sotdlestination pairs, the
dominant route is used by less than 20 (out of 38) probing 3#iis is consistent with the
observation in [121] that a total of about 1/3 of Internettesuare short lived (i.e., exist
for less than one day).

4.3.3 Bottleneck Spatial Persistence

We study spatial bottleneck persistence from two pointsi@fvy the route view and the
end-to-end view. The route-view analysis provides thel@wick persistence results ex-
cluding the effect of route changes, while end-to-end view &ll us the bottleneck per-
sistence seen by a user, including the effect of route cl&anglkee comparison between
these two views will also illustrate the impact of route ahp@s In each view, the analysis
is conducted at both the location and the AS level. A botd&nepersistent at the location
level if the bottleneck routers on different routes for theng source-destination pair are
the same or co-located. A bottleneck is persistent at theetd If the bottleneck routers
on different routes for the same source-destination padamigeto the same AS.

Route View

In the route view, bottleneck persistence is computed devisl We first classify all
persistent probing sets to the same destination into diftegroups based on the route that
each probing set follows. In each group, for every bottl&meater detected, we count the
number of persistent probing sets in which it appears)( and the number of persistent
probing sets in which it appears as a bottlenéek)( Then the bottleneck persistence is
defined a%ot/cnt. To avoid the bias due to smalbt, we only consider those bottlenecks
wherecnt > 10. The number “10” is selected based on Figure 4.5, which shbeis
over 80% (95%) of the source-destination pairs have a damnoate at the location level
(AS level) with a frequency higher than 10; also, picking ayéat number will quickly
reduce the number of source-destination pairs that candebin®ur analysis. Therefore,
10 is a good trade-off between a reasonably largeand having a large percentage of
source-destination pairs to be used in the analysis.

In Figure 4.6, the two bottom curves (labeled with “routew/ieplot the cumulative
distribution of the bottleneck persistence. We can seeahbbth the location level and AS
level, around 50% of bottlenecks have persistence larger @7, and over 25% of them
have perfect persistence. This shows that most of the hetiles are reasonably persistent
in the route view. Note that the location-level curve and A&level curve are almost
identical. This seems to contradict the intuition that leoicks should be more persistent
at the AS level. Note however that for a source-destinatain pnt in the AS level can
be larger than that for the location level, so we cannot tdiy@ompare the persistence at
these two levels.
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Figure 4.6: Persistence of bottlenecks.

End-To-End View

In this view, we consider bottleneck persistence in termsonfrce-destination pairs, re-
gardless of the route taken. We compute bottleneck pemsistef end-to-end view in a
way similar with that of route view. The two top curves (ladzkiwith “e2e view”) in
Figure 4.6 show the results for end-to-end bottleneck ptensce. Again, the results for
location level and AS level are very similar. However, thesgstence in the end-to-end
view is much lower than that in the route view — only 30% of lestecks have persistence
larger than 0.7. This degradation from that in the route vikwtrates the impact of route
changes on bottleneck persistence.

Relationship With Gap Values

For those bottlenecks with high persistence, we find that téved to have large gap val-
ues in the Pathneck measurements. This is confirmed in Fiydrevhere we plot the
relationship between the bottleneck gap values and thesigtence values in both the
route view and end-to-end view. We split the bottlenecks éin@ included in Figure 4.6
into 4 groups based on their persistence value: 1, [0.79058, 0.75), and [0, 0.5), and
then plot the cumulative distribution for the average lemitick gap values in each group.
We observe a clear relationship between large gap valuekighgbersistence in both the
route view (top figure) and end-to-end view (bottom figurd)e Teason is, as discussed in
[56], that a larger gap value corresponds to smaller availabndwidth, and the smaller
the available bandwidth, the less likely it is that therel Wwé a hop with a similar level
of available bandwidth on the path between a source-déstmpair, so the bottleneck is
more persistent.
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4.3.4 Bottleneck Temporal Persistence

So far our analysis has focused on the 1-day periodic praieisigits, which provide only

a coarse-grained view of bottleneck persistence. The 4w 1-hour periodic probings
described early in this section allow us to investigate tstesm bottleneck persistence.
Although these two sets of experiments only cover a smallbarof source-destination
pairs, it is interesting to compare their results with thiosine 1-day periodic probings.

Figure 4.8 compares location-level route persistence dvéour, 4-hour, and 1-day

time periods. In the top graph, theaxis for the 1-hour and 4-hour curves are scaled by
38/30 and 38/37 to get a fair comparison with the 1 day curee.the 4-hour and 1-day
periodic probings, the number of probing sets that are nsigtent are very similar, while
those for 1-hour periodic probing show a slightly highergeetage of probing sets that are
not persistent. This seems to imply that there are a quitevasi®rt-term route changes
that can be caught by 1-hour periodic probings but not by dr-periodic probings. The
bottom figure shows that the number of different routes fatag-periodic probings is
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Figure 4.9: Distribution of the dominant route at the locatievel.

significantly larger than those for 4-hour and 1-hour padgatobings. We think this is
mainly because the 1-day periodic probings cover a mucleloperiod.

Figure 4.9 plots the distribution of the dominant route & lifcation level. Clearly,
in the 4-hour and 1-hour periodic probings, the dominantaewover more persistent
probing sets than for the 1-day periodic probings — in theodrhand 1-hour periodic
probings, 75% and 45% of the source-destination pairs hage 20 persistent probing
sets that use the dominant routes, while only around 20%eo$dlirce-destination pairs
in the 1-day periodic probings use the dominant routes. Nuwéethe 4-hour periodic
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Figure 4.10: Persistence of the bottlenecks with differeaasurement periods at the lo-
cation level.

probing results have the largest dominant route coveragpossible reason is that the
1-day periodic probings last much longer and allow us to ndesenore route changes,
while the 1-hour periodic probings can catch more shortitesute changes. The same
explanation can also explain the difference in bottlenexkigtence plotted in Figure 4.10,
which compares the location-level bottleneck persistdocdaifferent probing periods.
Again, we see that the 1-day and 1-hour curves are closerctoaher in both the route
view and the end-to-end view, while the 4-hour curves stanmddastinctly, with higher
persistence. This is because the 4-hour periodic probiags the best dominant route
coverage, so route changes have the least impact.

4.3.5 Discussion

The analysis in this section shows that 20% — 30% of the natkes have perfect per-
sistence. As expected, bottlenecks at the AS level are nessispent than bottlenecks at
the location level. Long-term Internet routes are not vezgsistent, which has a signifi-
cant impact on the bottleneck persistence. That is, peoiilesach different conclusions

about bottleneck persistence depending on whether or e hanges are taken into
account. We also confirm that bottlenecks with small avélalandwidth tend to be more
persistent. Finally, we show that bottleneck persistee@dso sensitive to the length of
the time period over which it is defined, and the worst pegsist results seem to occur
for medium time periods. Note that these results are basedearsurements from 960 or
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Table 4.3: Different types of paths in the 954 paths probed
No loss| Loss| Total
No bottleneck] 139 121 | 260
Bottleneck 312 382 | 694
Total 451 | 503 | 954

fewer paths, which is a relatively small number of paths carag@ to the number of paths
that are used in the previous study. In future work, we hopléviate this limitation by
using more measurement machines.

4.4 Relationship with Link Loss and Delay

In this section, we investigate whether there is a cleatioglahip between bottleneck
and link loss and delay. Since network traffic congestion oeyse queueing and packet
loss, we expect to see that bottleneck links are more likeegxperience packet loss and
gueueing delay. On the other hand, capacity determinetebhettks may not experience
packet loss. Therefore, the relationship between bottlepesition and loss position may
help us to distinguish load-determined and capacity-detexd bottlenecks.

4.4.1 Data Collection

In this study, we use Tulip [80] to detect the packet losstpmsiand to estimate the link
gueueing delay. We probed 954 destinations from a CMU hoet. efch destination,
we did one set of Pathneck probings, i.e., 10 RPT probingdraollowed by a Tulip
loss probingand a Tulip queuing probing. Both types of Tulip probings are fagured
to conduct 500 measurements for each router along the p2th2r each router along
the path, Tulip provides both the round trip loss rate and/éod path loss rate. Because
Pathneck can only measure forward path bottlenecks, weaamlgider the forward path
loss rate. Table 4.3 classifies the paths based on whethert evencan detect loss and
bottleneck points on a path.

4.4.2 Relationship with Link Loss

Let us first look at how the positions of the bottleneck and losints relate to each other.
In Figure 4.11, we plot the distances between loss and hettlepoints for the 382 paths
where we observe both a bottleneck and loss points. In thédape, thex-axis is the
normalized position of a bottleneck point — the normalizedipon of a hop is defined to
be the ratio between the hop index (the source node has index1he length of the whole
path. They-axis is the relative distance from the closest loss poittidab bottleneck point.
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Figure 4.11: Distances between loss and bottleneck points.

If there is a loss point with equal distance on each side, wehath, one with a positive
distance, and the other with a negative distance. Posistartte means that the loss point
has a larger hop index, i.e., it is downstream from the ho#t& point; negative distance
means that the loss point is earlier in the path than thedratk point. The bottom figure
presents the data from the loss point of view, and the distenmomputed from the closest
bottleneck point. Figure 4.11 clearly shows that there aveef bottleneck points in the
middle of the path, while a fair number of loss points appethiw the normalized hop
range [0.3, 0.9]. On the other hand, there are fewer losspimithe beginning of the path.

Figure 4.12 shows the cumulative distribution of the diseafrom the closest loss
point to each bottleneck points, using the same method asislea in the top graph of
Figure 4.11. We observe that over 30% of bottleneck poirsts bave packet loss, while
around 60% of bottleneck points have a loss point no morefraps away. This distance
distribution skews to the positive side due to the bottl&raastering at the beginning of
the path, as shown in Figure 4.11.

4.4.3 Relationship with Link Delay

Besides packet loss, queueing delay is another metricshisquently used as an indica-
tion of congestion. Tulip provides queueing delay measergsas the difference between
the median RTT and the minimum RTT from the probing sourcertmuger. Note that the
gueueing delay computed this way corresponds to the cuiveitfieueing delay from the
probing source to a router, including delay in both the fodsvand return path. The 500
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Figure 4.13: Bottlenecks vs. queueing delay

measurements for each router in our experiment can provie@smnable estimate for this
gueueing delay. Based on these measurements, we |look alatienship between the
bottlenecks and the corresponding queueing delays.

Figure 4.13 shows the cumulative distribution of the quegelelays for bottleneck
and non-bottleneck links. In our experiment, we observeugung delays as large as
900ms, but we only plot up to50ms in the figure. As expected, we tend to observe
longer queueing delays at bottleneck points than at notkebetk points: fewer than 5%
of the non-bottleneck links have a queue delay larger thas, while around 15% of the
bottleneck links have a queue delay larger theus. We also observe the same relationship
between the loss points and their queueing delays, i.e emgetd observe longer queueing
delay at the loss points. Note that these results are sglinpinary since it is unclear to
what degree the tulip delay measurements (in terms of RTaydalriance) can be used to
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quantify link queueing delay.

4.5 Applications of Bottleneck Properties

The studies presented in the previous four sections significimproved our understand-
ing about Internet bottlenecks, the insights also help ysawve the performance of some
important applications. First, the results in Figure 4.8gast that an end node may expe-
rience different bottlenecks for paths connecting witlfieddnt peer nodes, so a distributed
system like a CDN may be able to help the end node avoid thet Wotdeneck. Second,
with the end-user access-bandwidth distribution, a webh obtain its transmission-
time distribution. In this section, | will present detailadalyses about these two applica-
tions.

4.5.1 Improving End-User Access Bandwidth Using CDN

In this section, we study how Internet bottleneck propsrtian be used to improve the
performance of content distribution networks (CDNSs). Ttheal of a content distribution
network is to replicate data in a set of servers distributeerdely over the Internet so that
a client request can be redirected to the server that isstlosehe client and hopefully
can achieve the best performance. During the redirectiongaiure, most CDNs focus
on reducing the network delay; few have looked at bandwidftigpmance due to the
difficulty of obtaining bandwidth estimation. Thereforbete is not a good understanding
on how well a CDN can improve bandwidth performance of endsugen the other hand,
the results in Figure 4.3 suggest that an end-node may experidifferent bottlenecks
for paths connecting with different servers. This implikattit is possible for a CDN
to also improve clients’ bandwidth performance. In thistieeg we quantify the extent
of such improvement by viewing the system composed of thesoreanent nodes listed
in Table 4.1 as a CDN. In the following, we first describe thainection algorithm, we
then present the analysis results. The analysis is baseued8R data set described in
Section 4.1.1.

The Greedy Algorithm

To optimize client performance using replicas, we need tmwkhow many replicas we
should use and where they should be deployed. The goal iththaelected set of replicas
should have performance very close to that achieved by wdingplicas. A naive way
is to consider all the possible combinations of replicategnvselecting the optimal one.
Given that there are'® — 1 (i.e., 262,143) different combinations for 18 replicasd an
each replica measures over 160K destinations, the timeabfi@ing all combinations is
prohibitively high. Therefore, we use a greedy algorithrhijch is based on a similar idea
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as the greedy algorithm used by Qiu et.al. [98]. This algamionly needs polynomial
processing time, but can find a sub-optimal solution vergeltw the optimal one. We
now explain how to apply this algorithm on theP data set.

The intuition behind the greedy algorithm is to always pitk best replica among the
available replicas. In this algorithm, the “best” is quéiatl using a metric callecharginal
utility. This metric is computed as follows. Assume that at sometpsome replicas
have already been selected. The best bandwidth from amerggtacted replica to each
destination is given bybw;|0 < i < N}, whereN ~ 160K is the number of destinations,
andbw; is the largest bandwidth that is measured by one of the sephtready selected to
destination. Let{sbw;|0 <i < N} be the sorted version gbw; }. We can now compute

bw_sum as:
99

bw_sum = Z SbWindea (k)
k=0
where
index(k) = Nx(ktl) 1
101

There are two details that need to be explained in the abavpuetation. First, we
cannot simply add all the individual measurements whenutationg bw_sum. This is
because by definition, a destination is not necessarilyheghby all the measurement
sources, so introducing a new replica could bring in measeants to new destinations,
thus changing the value @f. Therefore, we cannot simply add &ll; since the results
would be incomparable. In our analysis, we add 100 valugsattgaevenly distributed
on the CDF curve. Here, the number “100” is empirically seld@as a reasonably large
value to split the curve. Second, we split the curve into I&jnsents using 100 splitting
points, and only use the values of these 100 splitting poiftet is, we do not use the
two end values—sbw, and sbwy_1, whose small/large values are very probably due to
measurement error.

Suppose a new replicd is added, manyw,; can change, and we compute a new
bw_sum 4. The marginal utility ofA is then computed as:

|bw_sum — bw_sum 4]

marginal _utility =
bw_sum

With this definition, the replica selected in each step isinethat has the largest marginal
utility. For the first step, the replica selected is simply time that has the largegt_sum.

In the end, the algorithm generateeeglica selection sequence

U1, Vg, ..., V18

wherev; € {501,502, ..., 518}. To selectn(< 18) replicas, we can simply use the first
m replicas in this sequence. This greedy algorithm has pohyaloprocessing time, but
only gives a sub-optimal solution, although it is very cles@eptimal [57].
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Figure 4.14: Bandwidth optimization for well provisioneedtinations.

Bandwidth Improvement Using CDN

Using the greedy algorithm, we did two studies based on tRed&a set. In the first
study, we only use the 23,447 destinations where Pathneckeasure the last hop, and
the bottleneck bandwidth is higher than 40Mbps. In the seécae increase the scale by
including more measurement results.

The results of the first study are shown in Figure 4.14, thebmmmarked on the
curves are the the numbers of replicas. It shows the cumeldistribution of path band-
width upper-bounds with varying numbers of replicas. We saa that the bandwidth
improvement from replicas is indeed significant. For exawith a single replica, there
are only 26% paths that have bandwidth higher than 54Mbp#ewiith all 18 replicas,
the percentage increases to 65%.

An obvious problem for the first study is that it only coversward 16% of the paths
that we measured, thus the results could be biased. Thereferdid the second and
more general study, where we use join nodes instead of reihdgon in our study. Join
nodes are defined as follows. For those unreachable destisatve only have partial
path information. Ideally, the partial paths would connet measurement sources to a
commonjoin nodethat is the last traced hop from each source, so the join naoels
in for the destination in a consistent way. Unfortunatelictsa join node may not exist,
either because there may not be a node shared by all the 18 st sources to a given
destination or the shared hop may not be the last traced fwoghis reason, we relax the
constraints for the join node: the join node only needs tohaesd by 14 measurement
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Figure 4.15: Bandwidth optimization for all valid destirats.

sources, and it need only be within three hops from the lasett hop. Here “14” is simply
a reasonably large number that we choose. This allows uske tha best of the available
data while still having comparable data. Specifically, #illews us to include over 141K
destinations (86% of the total) in our analysis, among wHicho are real destinations,
and 53% are join nodes. We refer to these 141K destinational@sdestinations

Now we apply the greedy algorithm on all the valid destinagidout exclude last-mile
bottlenecks. In other words, we do a “what if” experimenttiedy what would happen if
last-mile links were upgraded. That is, for those destomastiwhere Pathneck can measure
the last hop, we remove the last two hops; this is based ondgereation in Figure 4.1(c)
that 75% paths have bottlenecks on the last two hops. Forttlersy) we use the raw
measurement results. Figure 4.15 includes the results fnengreedy algorithm when
considering all destinations. Table 4.4 lists the replalaction sequence from the greedy
algorithm, and the marginal utility from each replica. Wexcee that the bandwidth
improvement spreads almost uniformly in the large rangel{p&) 50Mbps]. If using
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Table 4.4: Replica selection sequence

selectseq| 1 2 3 4 5 6 7 8 9
node id S03 S17 S04 S16 S12 S15 S01 S05 $18
location SW Eu MW Eu NE Eu NE SM As

select seq| 10 11 12 13 14 15 16 17 18
node id S07 S13 S10 S08 S14 S11 S02 S09 $06
location SW NM NW MM NE NM SM NE SE
NE: northeast, NW: northwest, SE: southeast, SW: southwest

ME: middle-east, MW: middle-west, MM: middle-middle

Eu: Europe, As: East-Asia

5% as the threshold for marginal utility, only the first twglieas selected significantly
contribute to the bandwidth performance improvement. Ajsographic diversity does
not play an important role.

4 5.2 Distribution of Web Data Transmission Time

Pathneck measurements provide both bandwidth and delaymafion. That makes it

possible to study the distribution of data transmissioreiraf network services like web
services. This is because end-to-end data transmissi@s tare determined by delay,
available bandwidth, and data size altogether, and a webkrsegin easily know their data
size distribution. In this section, we use the bandwidthtiedlelay information provided

by Pathneck to study how well replicated hosting can be us@aprove a web server’s

data transmission times. Below we first provide a simplifi€@PTmodel to characterize
data transmission time as a function of available bandwaikttay, and data size. We then
look at the transmission-time distribution for differeraitd sizes with different number of
replicas.

Simplified TCP Throughput Model

Simply speaking, TCP data transmission includes two phadew-start and congestion
avoidance [63]. During slow-start, the sending rate doaibleery roundtrip time, because
the congestion window exponentially increases. Duringyestion avoidance, the sending
rate and the congestion window only increase linearly. &he® algorithms, together
with the packet loss rate, can be used to derive an accurd®etAiGughput model [89].
However, we can not use this model since we do not know thegbda&s rate, which is
very expensive to measure. Instead, we build a simplified tfh@fughput model that only
uses bandwidth and RTT information.
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Our TCP throughput model is as follows. Let the path undes®red have available
bandwidthabw (Bps) and roundtrip timett (second). Assume that the sender’s TCP con-
gestion window starts from 2 packets and that each packeb@®®bytes. The congestion
window doubles every RTT until it is about to exceed the badtwdelay product of the
path. After that, the sender sends data at a constant ratecofThis transmission algo-
rithm is sketched in the code segment shown below. It conspibie total transmission
time (t,,:;) fOr z bytes of data along a path.

cwin = 2 * 1500;
tss =0, tca=0;

while (x > cwin && cwin < abw * rtt) {

X -= Cwin;
cwin *= 2;
t ss += rtt;

}

if (x> 0) tca=x/ abw;

t total = t ss + t ca;

wheret_ss andt_ca are the transmission time spent in the slow-start phasehandan-
gestion avoidance phase, respectively. We say the datntission isrtt-determinedf
t_ca = 0. We can easily derive the maximum rtt-determined data size a

2 |_l0g2 (abu}*r’tt/1500)J +1 % 1500(byt6)

In the following, we call this size thslow-start size Clearly, when the data is less than
the slow-start size, it is rtt-determined.

This model ignores many important parameters that cantafi€® throughput, in-
cluding packet loss rate and TCP timeout. However, the mamd this analysis is not
to compute an exact number, but rather to provide a guidelnthe range of data sizes
where RTT should be used as the optimization metric in raplmsting.

Slow-Start Sizes and Transmission Times

Using the above model, we compute the slow-start sizes 8271 destinations in the
ISP data set for which Pathneck can obtain complete measurentégtire 4.16 plots the
distributions of slow-start sizes for the paths startirapfreach replica. Different replicas
have fairly different performance; differences are asdaag 30%. Overall, at least 70%
of paths have slow-start sizes larger than 10KB, 40% latggr 100KB, and around 10%
larger 1IMB. Given that web pages are generally less than 1@K8clear that their trans-
mission performance is dominant by RTT and replica placestesuld minimize RTT. For
data sizes larger than 1MB, replica deployment should focusnproving bandwidth.
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Figure 4.16: Cumulative distribution of the slow-startesiz

To obtain concrete transmission times for different datasiwe use our TCP through-
put model to compute data transmission time on each pathofor data sizes: 10KB,
100KB, 1MB, and 10MB. We then use the greedy algorithm torojzie data transmission
times. The four subgraphs in Figure 4.17 illustrate thedmaission-time distributions for
each data size using different number of replicas. Thesesgare plotted the same way
as that used in Figure 4.14. If we focus on the 80 percentileegavhen all 18 replicas
are used, we can see the transmission times for 10KB, 100KIB, &nd 10MB are 0.4
second, 1.1 second, 6.4 second, and 59.2 second, respediivese results are very use-
ful for Internet-scale network applications to obtain atuitive understanding about their
data transmission performance.

4.5.3 More Applications

Besides the applications on CDNs and web data transmissasna collaboration with
Zhuoging Morley Mao, we also studied how well overlay rogtand multihoming can be
used to avoid bottlenecks and improve end-user data trasgmiperformance [56]. We
found that both methods are effective in avoiding bottlésedn our experiments, 53%
of overlay paths and 78% of multihoming paths were able taawpend-user bandwidth
performance.
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Figure 4.17: Transmission times for different data sizes

4.6 Related Work

Due to lack of efficient bottleneck locating techniquesyé¢hleas not been a lot of work
on characterizing Internet bottlenecks. To the best of mavkedge, the only previous
study is from [26], which shows that Internet bottlenecles miostly on edge and peering
links. That conclusion, however, is limited by the scaletsfexperiments. Our Pathneck
based study overcomes this limitation by looking at bottsdnproperties at an Internet
scale. Furthermore, our study is more extensive by lookingae important bottleneck
properties.

The other group of related work is on the persistence of hetigpath properties, such
as route, delay, loss rate, and throughput. Labovitz ¢74).75, 76] showed that a large
fraction of IP prefixes had persistent routes from many oladgem points, despite the
large volume of BGP updates. Rexford et.al. [99] discovehed the small number of
popular destinations responsible for the bulk of Internaffic had very persistent BGP



104 CHAPTER 4. INTERNET BOTTLENECK PROPERTIES

routes. Zhang et.al. [121, 120] showed that Internet roapeear to be very persistent al-
though some routes exhibited substantially more changesdthers; packet loss rate and
end-to-end throughput were considerably less stationalhough none of these stud-

ies are directly on bottleneck link persistence, theirghts are helpful in our persistence
analysis.

4.7 Summary

This chapter presented an Internet-scale measuremegtatuabttleneck properties. We
showed that (1) over 86% of Internet bottlenecks are withimogs from end nodes, i.e.,
they are mostly on network edges; (2) low-speed links stiththate Internet end-user
access links, with 40% of end users having access bandvasi$ithan 2.2Mbps; (3) bot-
tlenecks are not very persistent—only 20%—-30% of the sedestination pairs in our ex-
periments have perfect bottleneck persistence; (4) Ingitles have close relationship with
packet loss—60% of the bottlenecks in our measurementseaorelated with a lossy
link no more than 2 hops away; the relationship betweendmwtiks and link queueing
delay is much weaker, with only 14% of correlation. We alsmdastrated that Pathneck
can help improve the performance of popular applicatidtes@DN, and help web servers
obtain their transmission-time distribution.



Chapter 5

Source and Sink Trees

IGI/PTR and Pathneck provide the techniques to measureéceadd available bandwidth
and to locate path bottleneck links. A common characterigtithese two techniques is
their relatively small measurement overhead. However paoed with ping or traceroute,
they are still expensive. For example, IGI/PTR is one of the-®-end available band-
width measurement tools that have the smallest overhead, giill uses around 100KB
probing packets per path. Consequently, for large-scalgadle bandwidth monitoring,
i.e., measuring th&/? paths in aV-node system whefV is very large (hundreds or thou-
sands), overhead remains a problem. For example, meallitige end-to-end paths
in an 150-node system will require over 2GB of probing paskethich is a significant
network load.

To address this problem, we use a key insight from our Intdvo#leneck property
study—over 86% of Internet bottlenecks are on Internet e@jeen this fact, if we can
measure the edge bandwidth of a network system, we can cdeege percentage of
the bottlenecks that determine the path available bantvatiany network system. The
remaining problem is then how to efficiently measure andasgmt bandwidth information
for the Internet edge. We use a novel structure of end-uséese-source and sink trees
to achieve that goal.

It is well known that the Internet is composed of a large nundfenetworks con-
trolled by different ISPs. Internet routes are determingeach ISP independently, and
the overall connectivity topology looks much like a randoragh with no simple pattern.
However, if we only focus on the routes used by a single end tisgy have a very clear
tree structure. We call them the source and sink trees ofrtiauser. This structure not
only makes the notion of “Internet edge” concrete, it alsovies valuable information
on path sharing. This is because each tree branch is useeé leythuser to communicate
with a large number of other nodes, and the corresponditig gae all affected by the per-
formance of that tree branch. This type of sharing is the kay we will take advantage
of to reduce the overhead for large-scale available barthwigasurement.

In this chapter, we first define the source and sink trees atlBstevel (Section 5.1)

105
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and AS-level (Section 5.2), showing that AS-level source sink trees closely approx-
imate real tree structures (Section 5.3). We also show kieasize of most trees are rel-
atively small, and can thus be measured efficiently (Se&idih We then study how we
can group destination nodes that share a tree branch usift3tM metric (Section 5.5).

5.1 IP-Level Source and Sink Trees

The IP-level source tree of an end node refers to the graplpased by all the upstream
routes it uses, and its IP-level sink tree refers to the gcapimposed by all the downstream
routes it uses. Due to the scale of Internet, it is not necgssaonsider a complete tree
that is composed by the full routes, since our goal is to acapbetwork-edge informa-
tion. Therefore, we only consider the firgt (for upstream routes) and the last (for
downstream routes) links of a complete IP-level path, andallthese two partial paths
the source-segmerandsink-segmentrespectively. We also use the teend-segmenb
indicate either a source-segment or sink-segment.

The exact values off and N are determined by applications, and different branches
can have different’ or N values. For end-to-end available bandwidth inferencegtse
a clear tradeoff between increasing the number of bottleneovered by using a large
E or N value and increasing tree-measurement overhead. In 8ekttlp we have seen
that around 86% of bottlenecks are within four hops from thé Bodes. That implies
that we need to focus on the top-four-layer trees, sinceeasing the tree depth will not
significantly increase the number of bottlenecks coverdterdfore, we will usey = 4
and N = 4 for end-to-end available bandwidth inference. With thigsfaguration, the
terms source-segment and sink-segment are defined asdoll@t/the path from node
tod be Path(s,d) = (ro = s,71,79, ..., 7, = d), herer;(1 <i < n — 1) are routers on the
path. Then the source-segmentfafth(s, d) is

STCngt(S, d) = (T07 r1,72,7T3, T4)
and the sink-segment @fath(s, d) is
sinkSgmt(d, s) = (Tn—4,Tn—3, "n—2, Tn—1,Tn)

Figure 5.1 illustrates the IP-level source trees for endesagd, b, and the IP-level sink
trees for end nodesy, d,. The dashed lines indicate the omitted central parts of the
paths. Here we havercSgmt(ag,co) = (ao, a1, as,ag,a19) and sinkSgmit(cy,ap) =

(Cg, Cy4, C2, Cq, C()), etc.

Given the IP-level source and sink trees, the intuition dfieng large-scale available
bandwidth measurement overhead is as follows. If bottlenhace all on end-segments,
we only need to consider the available bandwidth of soueggrents and sink-segments,
while ignoring links within the “Internet Core” as illusted in Figure 5.1. This is an
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Figure 5.1: IP-level source and sink trees

important observation, since for a large system, many pathshare a same end-segment.
For example,Path(ag, o) and Path(by, co) share sink-segmeltts, ¢y, ca, ¢1,¢o). This
means that the measurement overhead is proportional tauthber of end-segments, not
the number of paths. As we will discuss later in this this ¢bgpnternet end nodes have
on average only about ten end-segments, so the overheadas 10 the number of system
nodes.

5.2 AS-Level Source and Sink Trees

IP-level source and sink trees can efficiently capture h&keedge route and bandwidth
information, but to fully take advantage of the tree struesywe also need AS-level infor-
mation. This is because end-to-end routes are determigethter by intra-AS routes and
inter-AS routes. Intra-AS routes are generally some tymhoftest-path routes within the
corresponding AS, while inter-AS routes are determinedngyBGP protocol, which is

based on AS. Therefore, to integrate the AS-level routeimétion, we also define source
and sink trees at the AS-level. In practice, AS-level soame sink trees have three ad-
vantages over IP-level trees. First, AS-level routes haentshown to have some useful
properties like valley-free, shortest-path routing, aiedirig structure. These properties
can simplify the design of tree-based algorithms, as detratesl in the BRoute system.
Second, AS-level routes hide many factors that affect 8tHeoutes, like load balance

routing which generally happens within ASes. Thereforelé&&! routes tend to be more
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Figure 5.2: Maximal uphill/downhill path

stable than IP-level routes, and require less monitorifggtah the long term. Finally, and
perhaps mostimportantly, as we will demonstrate in Se&i8nAS-level source and sink
trees also have a very clear tree-like structure. That mAls&ekevel trees a perfect ab-
straction for IP-level trees, thus effectively reducing tree size to cover the same scope
of route.

AS-level source and sink trees are defined based on two iangqtoperties of Inter-
net ASes: the valley-free property of AS paths and the figediassification of Internet
ASes. On today’s Internet, depending on how BGP (Border v&ateProtocol) routes
are exchanged between two ASes, AS relationships can bsifedsinto four types:
customer-to-provider, provider-to-customer, peeringj aibling relationships (see Gao
[50] for details). The first two relationships are asymneetwhile the latter two are sym-
metric. An important property of AS relationships is traley-freerule: after traversing a
provider-to-customer or peering edge, an AS path can nagrisa a customer-to-provider
or peering edge. Consequently, an AS path can be split intgphitl and a downhill path.
An uphill path is a sequence of edges that are not provideusbomer edges, while a
downhill path is a sequence of edges that are not custorqanetader edges. Theax-
imal uphill/downhill pathis the longest uphill/downhill path in an AS path. Note that,
unlike the definition from Gao [50], we allow uphill/downhpaths to include peering
edges. This increases the chances that two trees have a teABNO

A number of algorithms [50, 114, 29, 82] have been proposaufeéo AS relationships
using BGP tables. In particular, Subramanian et.al. [11&4sfies ASes into five tiers.
Tier-1 includes ASes belonging to global ISPs, while tien&dudes ASes from local ISPs.
Intuitively, if two connected ASes belong to different 8gthey are supposed to have a
provider-to-customer or customer-to-provider relattipsotherwise, they should have a
peering or sibling relationship. To be consistent with th#ey-free rule, we say that an
AS with a smaller (larger) tier number is inhggher (lower) tier than an AS with a larger
(smaller) tier number. An end-to-end path needs to first dallufpom low-tier ASes to
high-tier ASes, then downhill until reaching the destioat{Figure 5.2).

Formally, letTier (u;) denote the tier number of Ag. then an AS pathug, u1, ..., u,)
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is said to be valley-free iff there existj (0 < i < j < n) satisfying:
Tier(ug) > ... > Tier(u—1) > Tier(u;) = ... = Tier(u;) < Tier(uj+1) < ... < Tier(uy,)

The maximal uphill path is thefu, us, ..., u;), and the maximal downhill path {&;, w41, ..., uy).
The AS(es) in the highest i€, ..., u; } are calledop-AS(es)In Figure 5.2, uy, us, us)
is the maximal uphill path{us, us, u4, us) is the maximal downhill path, anfli,, us} are
the top-ASes. The above formula allows an AS path to includéipte peering links.
While this rarely happens, it allows us to resolve one typeradr from theAS-Hierarchy
data set (described in the next section), where two ASes euthomer-to-provider or
provider-to-customer relationship may have a same tieroarm

AS-level source and sink trees are defined using the maxipfmal and downhill paths.
Specifically, theAS-level source trefr a nodes refers to the grapkrcT'ree(s) = (V, E),
whereV = {w;} includes all the ASes that appear in one of the maximal uplilhs
starting froms, andE£ = {(u;, u;)|u; € V,u; € V} includes the directional links among
the ASes inV/, i.e. (u;, u;) € E iff it appears in one of the maximal uphill paths starting
from s. AS-level sink trees defined in the same way, except using maximal downhillgpath
Below we show that AS-level source and sink trees closelyamate tree structures in
practice.

5.3 Tree Structure

In this section, we look at how closely the source and sin&str@pproximate real tree
structures. This is an important property because it allasvio clearly group end nodes
based on the tree branches they use. As shown in the nexecluapthe BRoute system,
the tree property also helps simplify some algorithm desB@ow we first describe the
data sets that are used in our analysis.

5.3.1 Route Data Sets

We use five data sets in our analysis. B®BP data set includes the BGP routing tables
downloaded from the following sites on 01/04/2005: Uniitgref Oregon Route Views
Project [23], RIPE RIS (Routing Information Service) PatjiL6] X, and the public route
servers listed in Table 5.1 which are available from [18]e3&BGP tables include views
from 190 vantage points, which allow us to conduct a relatigeneral study of AS-
level source/sink tree properties. Note that the souraethéoabove BGP tables are often
peered with multiple ASes, so they include views from allstndSes. We separate the
BGP tables based on peering addresses because an end negglgenly has the view
from one AS.

1Specifically, we use ripe00.net — ripe12.net, except ripegigand ripe09.net, which were not available
at the time of our downloading.
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Table 5.1: Route servers

route-server.as5388.net route-server.ip.tiscali.net
route-server.as6667.net route-server.mainz-kom.negt
route-server.belwue.de route-server.opentransit.net
route-server.colt.net route-server.savvis.net
route-server.east.allstream.nabuteserver.sunrise.ch
route-server.eu.gblx.net route-server.wcg.net
route-server.gblx.net route-views.ab.bb.telus.com
route-server.gt.ca route-views.bmcag.net
route-server.he.net route-views.on.bb.telus.com
route-server.host.net route-views.optus.net.au
route-server.ip.att.net tpr-route-server.saix.net

The Rocketfueblata set is mainly used for IP-level analysis of end-segsmaft use
the traceroute data collected on 12/20/2002 by the Roadgtfoject [109, 17], where 30
Planetlab nodes are used to probe over 120K destinatidhss destination set is derived
from the prefixes in a BGP table that day. Since it covers thieeeimternet, the inferred
AS-level source trees from this data set are complete.

ThePlanetlabdata set is collected by the authors using 160 Planetlatsnedeh from
a different physical location. It includes traceroute feBom each node to all the other
nodes and it is used to characterize AS-level sink tree ptiege This data set is part of
the measurements conducted for the analysis in Section 6.4.

The AS-Hierarchydata set is from [2]. We downloaded two snapshots to match our
route data sets: one on 01/09/280&hich is used for mappinRocketfuetata set; the
other on 02/10/2004, which is the latest snapshot availabkit is used for mappingGP
andPlanetlabdata sets. These data uses the heuristic proposed by Sulsaragal. [114]
to assign tier numbers to all the ASes in the BGP tables us#tkicomputation. As an
example, the 02/10/2004 data set identifies 22 tier-1 ASES ti2r-2 ASes, 1391 tier-3
ASes, 1421 tier-4 ASes, and 13872 tier-5 ASes.

ThelP-to-ASdata set is downloaded from [7]. Its IP-to-AS mapping is ot#d using
a dynamic algorithm, which is shown to be better than resddtained directly from BGP
tables [81].

Three perspectives of these data sets need to clarify. , Fgte neither theAS-
Hierarchynor thelP-to-ASdata set are perfect, they do provide very good coverage. For
example, Figure 5.3 shows the results for Recketfuetlata set. In this figure, “no tier”
indicates the percentage of paths for which at least one dwad oot be mapped onto a tier

°The original data set covers three days and uses 33 nodesniWase the data from one of the days,
and we discarded the data for 3 nodes because they couldingligtraceroute results for a large portion
of destinations.

3Among the available data sets, it is the closest taRbeketfuetiata set in terms of measurement time.
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Figure 5.3: Classification of the AS paths in Recketfuetlata set
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Figure 5.4: Example of multi-tier AS relationship

number, either because its IP address could not be mappe@o®S, or because its AS
does not have a tier number. The “invalid as-path” bars sth@\percentage of AS paths
that are not valley-free. On average, only 3% of the pathHsrfahese categories, while
for each node fewer than 5% of the paths belong to these twegaaes. We will exclude
these paths from our analysis, which we believe should remigé our conclusions.

Second, these data sets were collected at different timi@s.ig not an issue if they
are used independently. Actually, evaluations using dette cllected at different times
can make our analysis results more general. However, theedifference could introduce
errors when we need to use the mapping data #e&sHierarchyand IP-to-AS with the
route data setBGP, RocketfuehndPlanetlah) together. We are currently unable to de-
termine whether these errors have positive or negativestmpaour analyses, due to the
lack of synchronized data sets.

Finally, we only have complete route information for 30 emmdles (from theRocket-
fuel data set), while we have complete AS-level route infornmatar 190 vantage points.
Since tree-property analysis requires a complete set o€ iaformation for a end node,
the following analysis will mainly focus on AS-level souraed sink trees.

5.3.2 Tree Proximity Metric

An AS-level source or sink tree is not necessarily a realdreeto two reasons. First, ASes
in the same tier can have a peering or a sibling relations¥tigere data can flow in either
direction; that can result in a loop in the AS-level souritéd$ree. Second, customer-to-
provider or provider-to-customer relationship can crosstipie tiers. An example from
theRocketfuetlata set is shown in Figure 5.4; we see that tier-3 AS1153Tezmuh tier-1
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Figure 5.5: The tree proximities of the AS-level sourcédsnees from thdBGP data set

AS7018 either directly or through tier-2 AS201. Obvioushg corresponding AS-level
source tree is not a tree since AS7018 has two parents.

In the following, we use thdree-proximity metricto study how closely AS-level
source/sink trees approximate real tree structures. FeeXS source trees it is defined
as follows, the definition for AS-level sink trees is simil&or both theBGPand theRock-
etfueldata set, we first extract all maximal uphill paths for eadwpoint. A view point
is either a peering point (iBGP data set) or a measurement source nod&(oketfuel
data set). We count the number of prefixes covered by eachhmaauphill path, and use
that number as the popularity measure of the correspondaxgmal uphill path. We then
construct a tree by adding the maximal uphill paths seqakytstarting from the most
popular one. If adding a new maximal uphill path introduces-tree links, i.e., gives a
node a second parent, we discard that maximal uphill patha vesult, the prefixes cov-
ered by that discarded maximal uphill path will not be coddrg the resulting tree. The
tree proximityof the corresponding AS-level source tree is defined as theeptage of
prefixes covered by the resulting tree. While this greedyhogtloes not guarantee that
we cover the largest number of prefixes, we believe it pravaleeasonable estimate on
how well an AS-level source tree approximates a real tree.
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Figure 5.6: The tree proximities of the AS-level sourcesrigem theRocketfuetata set

5.3.3 Analysis Results

Using theBGP data set, we can build an AS-level source tree for each of #eview
points. The distribution of the tree proximities is shownaes solid curve in Figure 5.5.
About 90% of the points have a proximity over 0.95, and oveén3fe above 0.88. This
shows that the AS-level source trees are indeed very closeatdree structures. This
conclusion is consistent with the finding by Battista ef29], who noticed that a set of
AS relationships can be found to perfectly match the pavimlh of BGP routes from a
single vantage point.

We also built AS-level sink trees using tB&P data set. We identified the prefixes
that are covered by at least 150 view points, i.e., for whiehcan get over 150 maximal
downhill paths. We picked the number “150” because it car giva large number of trees.
We tried a number of different values and they lead to the seonelusion. The dashed
curve in Figure 5.5 shows the distribution of the tree pratas for the 87,877 AS-level
sink trees which have over 150 maximal downhill paths. Agam see the results support
the argument that AS-level sink trees closely approximes trees. The results are in
fact slightly better than for source trees, which could besalt of the limited number of
downstream routes used for the AS-level sink-tree contstruic

We repeated the AS-level source trees analysis foRtheketfuetlata sef. Figure 5.6
plots the tree proximities for the 30 AS-level source trédk. see that 2 trees are below
0.9, 7 are falling between 0.9 and 0.95, and all the other 23e&8 source trees have
tree proximities over 0.95. While fairly good, these resalte worse than the results from
the BGP data set. We identify several reasons for this. First ofralljtihomed hosts
can easily create violations in the tree structure becdwesedan use arbitrary policies to
select an interface. We manually confirm that node 6, 17,3.912d 24 are all multihomed
hosts. Second, traceroute results are subject to measutreoige since the measurements
were conducted over 6-hour period [109], in which routeda@cbhange, thus introducing
inconsistency such as an extra parent for an AS in the AS-$exece tree. ThBGPdata

4The analysis on AS-level sink trees is not repeated sincenlyehave data from 30 nodes, i.e., at most
30 downstream routes for each destination.
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set does not have this problem since BGP table provides aAfHlevel route snapshot,
Furthermore, Internet exchange points can introduce &®&w®s that are not present in
BGP routes. These exchange points could easily become i@npaxent for some ASes.

5.3.4 Discussion

We have shown that both AS-level source and sink trees gl@gairoximate real tree
structures. Earlier in this section, we identified two pbkescauses for violations of the
tree property. We found that the second cause, i.e. the@nezftmultiple paths to reach a
higher tier AS, was by far the most common reason for disogrdimaximum uphill path
during tree construction. We speculate that these vialatawe caused by load-balancing-
related routing policies such as MOAS (Multiple Origin ASA (Selected Announced
Prefixes), etc. The fact that the first cause seldom occarsthere are few loops in the AS-
level source/sink tree, implies that the ASes in the sammecéie be “ranked”, as implied
by Battista et.al. [29]. That is, if two peering ASes are ia #ame tier, although data can
flow in both directions, the data transmission is always ia dinection for a specific end
node. Thatis, from the view of a single end node, a peeringbng relationship actually
behaves like a customer-to-provider or provider-to-congtorelationship.

An important implication of this observation is that, once ave obtained the maxi-
mal uphill paths, the tier numbers from [2] are no longer meed he AS-level source/sink
tree constructed using the maximal uphill/downhill patksedmines the relationships for
the ASes in the tree. As a result, errors from &®-Hierarchydata set, if any, only
affect the AS-level source/sink tree construction wheranrot correctly determine the
top-AS(es) for a path. Given that over 90% of Internet patnsetop-AS(es) at tier-1 or
tier-2 (see Section 5.4), which are relatively stable, wigehe that the estimation error
introduced by this data set is very limited.

5.4 Tree Sampling

We have seen two ways of constructing AS-level source/sist—using BGP tables
and using traceroute—as we demonstrated usindtPE and theRocketfuedata sets,
respectively. While using BGP is very easy, this type of datgenerally not readily
available to end nodes; moreover, it cannot be used for x&-&nk trees. On the other
hand, having each system node use traceroute to probe theletgérnet, as done in the
Rocketfueproject, is expensive. Fortunately, this is not necessarthis section, we first
show that 70% of IP-level sink trees have less than 10 brandhe first show that AS-
level source trees are in general small. We cannot do a sistildy on AS-level sink trees
because we have insufficient data to build complete AS-lkewl trees, but we speculate
the conclusions from AS-level source trees also apply tolev8} sink trees. We then
present some preliminary results on how to place tracedan@marks that will support
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Figure 5.7: IP-level sink-tree size distribution in tAanetlabdata set.

efficient sampling of the AS-level source tree.

Figure 5.7 shows that the distribution of the number of trebhes for the 210 IP-
level sink trees measured using RlAanetlabnodes. The bold solid line shows the distri-
bution for the 4-layer trees, which is our standard definitdd/e can see, 70% of sink trees
have less than 10 branches, which shows that most of IPdevetrees indeed have very
limited size. There are a few trees that have over 100 diffdseanches. This is due to the
set of Internet2 Planetlab nodes which are deployed vesebldo Internet2 peering link.
In practice, these types of nodes are much less likely to bewsTtiered by an end user
or application. This figure also illustrates the changesmithe tree include more layers
of nodes. Clearly, with more layers included in a tree, tiveitebe more branches. For
example, for 8-layer sink trees, over 70% of them have mare #0 branches.

Figure 5.8 plots the size distribution of AS-level sourceet in theBGP data set,
measured as the number of distinct ASes in the tree. We sephmatrees into three
groups based on the tier number of their root ASes. Tier-4ian® are grouped with tier-
3 because there are only 6 and 5 AS-level source trees withAi®an tier-4 and tier-5.
Intuitively, the higher the tier (lower tier number) of theot AS, the smaller the size of the
AS-level source tree. This is confirmed by Figure 5.8: thelé&&| source trees with root
AS in tier-3/4/5 are significantly larger than those in tieor tier-2. Even for tier-3/4/5,
however, the largest AS-level source tree has fewer tharA823® and some are as small
as 50 ASes, which can happen, for example, if the root AS ety connected to a tier-1
AS. We conclude that AS-level source trees are indeed gun&d sThis observation was
confirmed using th®ocketfuetiata set, where the tree size varies from 50 to 200.

The limited AS-level source tree size gives us the oppotyuioi measure it using a
small number of traceroutes. Intuitively, if routes to diffnt prefixes could share the
same maximal uphill path, only one of these routes needs tmdsesured to cover all
these prefixes. Since the size of AS-level source tree isddna small number of tracer-
outes should suffice. A good algorithm for the selection atllaark locations is left for
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future work. Instead, we present some measurements thatprimsight in the number
of traceroute landmarks that are needed to provide goodageef the AS-level source
tree. We do this by presenting the results for two simplecsiele algorithms: random and
tier-based.

In our first study, we randomly chose 100-1000 AS paths froohdaGP table to
construct a sampled AS-level source tree. Figure 5.9 shbevsdverage for different
numbers of paths used. In this figure, the x-axis is the péagenprefixes covered by
the sampled tree, while the y-axis shows the number of tleshtive at least that much
coverage. We see that 100 traceroutes can cover at leastfAb¥ mrefixes for all trees,
while 300 traceroutes will allow most of trees cover over 99Pthe prefixes.

Another approach is to place landmarks strategically. éRbcketfuedata set, we
find that over 90% paths have top-AS(es) at tier-1 or tier-2ardvimportantly, there are
only 22 tier-1 ASes and 215 tier-2 ASes in the 02/10/284Hierarchydata set. The
implication is that if we deploy one traceroute landmark acle of these 237 ASes, the
measured tree can cover at least 90% of the original AS-&uaice tree. In practice, one
AS can map to multiple different prefixes; in that case we oanlgf pick one of the paths
with the shortest prefix length, hoping that this prefix isth@st stable one.

Figure 5.10 plots the sampling performance forBt&P data set, using the 237 tracer-
oute landmarks selected above as traceroute destinaiMesnly plot the AS-level source
trees with root ASes in tier-3/4/5. Those from tier-1/2 ayedred because their AS-level
source trees are completely covered. We can see that, aimed§ sampled trees, only 2
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have coverage less than 80%, 5 between 80% and 90%, the @thkicdver over 90% of
the trees. This shows the effectiveness of the tier-badedtsm of traceroute landmarks.
These results suggest that by extending this algorithmdadie a set of carefully selected
tier-3 and tier-4 landmarks, it should be possible to gey gexod coverage of the AS-level
trees with a reasonable number of landmarks, e.g. less 0@ 1

5.5 Tree-Branch Inference

The tree structure of end-user routes implies that we cahlsptrnet destinations into
different groups, with the destinations in each group siupa tree branch. To take ad-
vantage of this sharing, we need a mechanism to idewtifich destinations belong to a
same group. The RSIM metric that we will present in this sgcts one of the possible
mechanisms. RSIM is a metric that quantifies route simi&wiof end nodes. Here route
similarity is defined as the overlap of two end-to-end rodtesveen two nodes and an
arbitrary third node. That is, we regard routes as a propdrgnd nodes, and route sim-
ilarity captures the similarity of this property for difiemt end nodes. Ideally, we expect
to see that any two end nodes with a RSIM value larger thamioettiresholdl’ H zs;
share a large portion of their routes with any other end nedgA), making it sufficient
for them to also share one dfs source or sink tree branches.

In the rest of this section, we first define the RSIM metric, disduss RSIM’s proper-
ties including destination sensitivity, measurabilitydesymmetry. We then demonstrate
how to use the RSIM metric to group end nodes.

5.5.1 The RSIM Metric

In the remainder of this section, the term “route simildritgfers specifically to RSIM,
and is defined as follows. Ld?(s,d) denote the IP level route from nodeto noded;

L(s,d) denote the number of links oR(s,d); Total(s1, s2,d) = L(s1,d) + L(s2,d);

andCommon(sy, s9, d) denote the total number of links that are shared¥y,, d) and
P(sq9,d). Let SET denote a set of Internet destinations (see Figure 5.11),ttheeroute
similarity betweenrs; ands, relativeto SET is defined as:

2% C d
RSIM(sy, 50, SET) — 2utespr 2* Common(s,, sy, d) (5.1)
Y aespr Lotal(sy, 5o, d)

Note this definition uses upstream routes frejrands,, RSIM can be similarly defined
using downstream routes. Intuitively, this definition ecaps the percentage of links shared
by the two routes(s;, d) and P(s», d). In this definition, whert E'T is obvious, we sim-
plify RSIM sy, sy, SET) @asRSIM(sy, s2). Itis easy to see tha@SIM (s, se, SET) €

[0, 1] for any sy, so, andSET. The largerRSI1M sy, s2, SET) is, the more similar the
routes ofs; and s, are. Figure 5.12 shows an example an RSIM computation. Here
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we haveSET = {d}, Common(sy, se,{d}) = 4,Total(sy, s9,{d}) = 9+ 8 = 17, so
RSIM (s1,59,{d}) =2%4/17 = 8/17.

5.5.2 RSIM Properties

We analyze the following properties of RSIM to show that ihigseful metric:

¢ Destination Sensitivityhow sensitive is the RSIM value to the choice of destina-
tions;

e Measurability:how many measurements are required to compute the valud®f,RS

e Symmetrywhat is the difference between the upstream route simjlartl down-
stream route similarity?

We will use two data sets described in Section 5.3 in theslysesm One is th&®ocketfuel
data set. In this data set, because the destination IP ag@drase randomly selected, they
do not necessarily correspond to online hosts, so for matheafestinations the traceroute
measurements are not complete. To avoid the impact of inienutes on our analysis,
we only consider the 5386 destinations which can be reached least 28 source nodes
using traceroute. The second data set isRlametlabdata set, which we collected using
160 Planetlab nodes, each from a different site. This ddtpregides us a route matrix,
where we have routes in both directions for all pairs of nodHsis is the largest route
matrix we are aware of, and it is very useful for charactagzhe symmetry property of
RSIM.

Destination Sensitivity

Since RSIM is a function of the destination $8t'7", the value of RSIM can be different
for different destination sets. However, for many applaas it is preferable that RSIM is
largely independent of the £'T" parameter, i.e., itis a fundamental property that only seed
to be measured once. This property is very important forecedumeasurement overhead.
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Figure 5.13: Destination-sensitivity of RSIM

In this section, we first focus on the case wh&iET includes only a single destination.
The case wher8 E'T" includes multiple destinations are discussed in Sectibr25.

We use theRocketfuelata set to study destination sensitivity. We first S&t7" to
include the 5386 reachable destinations in Racketfueldata set, and compute RSIM
values for all the 435 30 x 29/2) pairs of source nodes. We will use these RSIM
values as benchmark values since they are from the largsshalton set possible. The
distribution of these RSIM values has a sharp peak aroundSpécifically, 85% of the
435 pairs have RSIM values between 0.65 and 0.8. This congariger observations
that in 2002, most Planetlab nodes had very little divernsitiow they connected to the
Internet (most used Abilene). However, there is some diyerthe RSIM values range
from 0.1 to 0.8.

To study the destination sensitivity of RSIM for node paiighwdifferent RSIM val-
ues, we selected seven source-node pairs with RSIM valugghip evenly distributed
in the range [0.1, 0.8]. We calculate their RSIM valuesdachof the 5386 individual
destinations for which they have complete route data. Tkas#arity values are plot-
ted in Figure 5.13. Each curve plots the cumulative distitloufor the RSIM values of
one source-node pair relative to each individual destinmatirhe numbers marked on the
curves are the benchmark RSIM values. The seven curves calagsfied into three
groups:

1. The first group only includes the rightmost curve. Thisveurorresponds to a pair
of source nodes with the highest benchmark RSIM value ().Z6®ng the seven
pairs, i.e., their routes are very similar. The similarigyues of this source-node pair
for individual destinations are distributed in a fairly dhmagion—90% of them are
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Figure 5.14: Measurability of RSIM

in [0.65, 0.85]. That shows that the similarity between fyag of source nodes is
not very sensitive to the destination selected.

2. The middle three curves make up the second group. Thethbesrk RSIM values
are 0.467, 0.585, and 0.630, respectively, and they represarce-node pairs with
average similarity values. Clearly, the RSIM values foriwiabial destinations in
this group are more diverse than in the first group. The IoB8%b of similarity
values are significantly lower than the other 70% of the \alt#owever, the highest
70% of similarity values cluster within a small region witl2Qvidth.

3. The three leftmost curves represent the third group, evtier node pairs have low
similarity—0.180, 0.259, and 0.356. The similarity valugsthese source-node
pairs with respect to individual destinations is almostrdyelistribute in a large
range with 0.4-0.6 width. That means that their RSIM valuescaite sensitive to
the SET parameter.

The above results show that the larger the benchmark RSINeval the less sensitive
the RSIM values are to the chosen destination. Specifidallyyode pairs with properties
similar to the rightmost curve, the RSIM values are not sesesto the specific single-
destination set.

Measurability

In this subsection, we show that measuring route similamtly needs a small number
of traceroute measurements. We again useRbeketfueldata set to demonstrate this
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property. In this data set, we use different numbedsof randomly (uniform) selected
destinations to compute route similaritig § / M) for each of the 435 source-node pairs.
We then compare them with their benchmark valueS {)/,) which is based on all 5386
reachable destinations as discussed in Section 5.5.2 pamglute the relative difference as
(RSIM,—RSIM,)/RSIM,. Figure 5.14 plots the distributions of the relative diffieces
from all 435 source-node pairs. The x-axis is the number ofe® used in computing
RSIM,. The bars are plotted using thexplot function of Matlab, where each bar
corresponds to one distribution of the relative differefmeall 435 source-node pairs.
The middle boxes have three lines corresponding to the |quartile, median, and upper
guartile values, and the whispers are lines extending frach end of the box to show the
extent of the rest of the data. We can see that the relatiferelifce betwee® S7M, and
RSTM, quickly drops as more destinations are used. Qngel0, the median difference
stays roughly constant at about 5%, although the varianceedses. This result shows
that only 10-20 routes are needed to compute the value of R&ithe Rocketfuetata
set.

In the above analysis, for each source-node pair and eachernwhdestinations, the
similarity value is calculated using one instance of a ranigoselected destination set.
These values may be different for different randomly sel@destination sets. To quantify
the impact of this randomness, for each source-node pasgeleet 1000 different random
10-destination sets and compare their RSIM values. For sagite-node pair, we then
record the difference between the 95 percentile similasdtye and the 5 percentile sim-
ilarity value, and use that as a variance measure for diffesndom 10-destination sets.
Figure 5.15 plots the cumulative distribution of this vaga for all 435 source-node pairs.
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Figure 5.16: Symmetry of RSIM

We see that the variance for 93% of pairs is less than 0.2 hakismall. This tells us that
the choice of the randomly selected destination sets dadsawe a significant impact on
the RSIM values.

An important implication of the results in Figure 5.14 and%is that RSIM is not
sensitive to the choice of destination set wit&iT" includes ten or more “random” des-
tinations. The reason is as follows. Although RSIM can bey \ifferent for different
individual destinations, as illustrated in Figure 5.18), & more different destinations can
fairly well “cover” the distribution curve by including mosnportant points. Therefore,
even with different destination sets, since they are froemgame distribution, which is
determined by the node pair, they should converge to the salae.

So far, the results in this section were obtained using sotween 30 source nodes
and 5386 destination nodes. We have done a similar analyisig all 120K destinations,
i.e., including the incomplete route data. The results wiaiobd are similar. Even so, the
data set used here only covers a limited fraction of nodefernternet, and whether or
not our conclusion in this section can be extended to theevimbérnet should be validated
using larger and more diverse data sets.

Symmetry

It is well known that Internet routes are asymmetric [82]t \we find that RSIM values
computed using upstream routes and those using downstmagsrare very similar. In
this sense, RSIM is symmetric, i.e., it captures the sintylaf both upstream and down-
stream routes. In this section, we use fanetlabdata set to show this property.

For each node pair among the 160 nodes, we calculate thég souilarity using both
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upstream routesHS1M,,) and downstream route®R(1M,.,,). We then compute the
difference a§ RSI M jon — RSIM,,). Figure 5.16 plots the distribution of this difference
for the 14,412 pairs which have at least 10 complete traten@sults to compute both
RSIM,, andRSI Mg,.». We can see that 84% of the pairs have difference within alsmal
range of [-0.1, 0.1], which shows th&SIM,,, and RSI M., are indeed very similar.
That means that, if two nodes have a high probability shaairigrge portion of their
upstream routes toward a destination, they will also havglaprobability sharing a large
portion of their downstream routes from that destination.

The implication of this property is two-fold. First, RSIM m&urements do not neces-
sarily need upstream routes. If only downstream routeswaiéahle, we can still compute
RSIM. This property will be used in Section 5.5.3 to get adasgmple set for our anal-
ysis. Second and more importantly, this property allowsousifier both source and sink
segments. For example,df ands, have similar routes, they will both have similar sink
segments for their routes towards a third node, and havéesisturce segments for those
routes from a third node. The details are discussed in theseexion.

5.5.3 Tree-Branch Inference

The RSIM metric can be used in at least two scenarios. On oné, fiacan be used to
group end nodes that have similar routes. Such groups ngtcanl be used to identify
tree-branch sharing as discussed at the beginning of tbigsgit also can be used by
web sites or peer-to-peer systems for performance optimaizaBased on the clustering
information, for example, a web site can optimize for eaalstdr instead of each client,
thus significantly reducing management overhead. On ther didind, RSIM also can be
used to select a set of end nodes whose routes are very difigith each other. End
nodes selected in this way can serve as vantage points faumsaent systems like the
traceroute landmarks that we will discuss in the next chrapte

In this section, we focus on the first type of applicatiores, igrouping end nodes that
have similar routes. We study this problem in the contextnaf-segment inference. That
is, we want to group end nodes based on the probability thaetvd nodes in the group
share end-segment for a large number of sources and theatests. Below we first look
at if there exists a RSIM value that allows us to group end aobl¢e then present a case
study on how often end nodes can be grouped in real netwot&rags

RSIM Threshold

Ideally, we would like to have the following two claims:

Claim 1: 3T Hgsra, ¥ s1, S2, their upstream routes towards any nadshare
sink segment iffRSTM (s1, $2) > THrsra-

Claim 2: 3T Hgsium, Y dy, do, their downstream routes from any nodehare
source segment ifRSIM (dy,dy) > THgsin-
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Figure 5.17: End-segment sharing probability.

We call a pair of nodereighbordf their RSIM value is larger thafl’ Hzs;,,. Intuitively,

if a pair of nodess; ands, are neighbors, and the bottleneckdtf,, d) and P(s», d) are
on their sink segments, we then can use the bandwidth mebfsame P(s;, d) as that of
P(sy,d), because they are very likely to share the bottleneck.

Of course, it is unrealistic to expect that we will be able talfa threshold™ H zs; s
that gives 100% sharing of the remote end segments. Insteadow look at whether
a thresholdl' Hrs;)s exists that indicates a high probability of end-segmentisga We
use thePlanetlabdata set for this study. We first take the 14,412 node pairsiwimave at
least 20 complete traceroute results, compute their RSIMegausing these routes, then
group them into nine groupg;(¢ = 1..9) based on their RSIM valueg; = {(s,d)|i %
0.1 < RSIM(s,d) < (i+1)%0.1}(1 < i < 9). For each node pair in each group, we
calculate the probability of sharing source segments arldssgments. Figure 5.17 plots
the cumulative distribution of source/sink-segment stgaprobabilities for each group. In
this figure,gy is grouped intgjs because there are only 6 pairsgin The top graph plots
the sharing probability for source segments, and the bogg@ph plots the results for the
sink segment.gs stands out distinctively with the best prediction accuragymost all
node pairs in this group have a sharing probability highant®.8. Although not perfect,
we think we can use the value 0.8 f6iH{ z575,. That shows that RSIM can be used for
end-segment inference with a high inference accuracy.
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Figure 5.18: Probability of having a neighbor.

Probability of Sharing End Segments

The above results suggest that it will be useful for neighlborshare bandwidth informa-
tion. Whether this is feasible depends on how likely it igthaode can find a neighbor.
This is a very difficult question, but we can use RecketfueandPlanetlabdata set to
gain some insights. We use tRecketfuetlata set as an example of a system that includes
nodes from all over the Internet, while we use Bianetlabdata set to get the view for a
real deployed system.

For theRocketfueldata set, we use downstream routes to compute route simesari
for the 5386 reachable destinations. The reason that weassealtions instead of sources
is to obtain a large scale analysis. The symmetry properBSIM demonstrated in Sec-
tion 5.5.2 allows us to compute RSIM values using downstreaites. For thélanetlab
data set, route similarities are computed for the 160 nodagywpstream routes. Fig-
ure 5.18 plots the distribution of node pairs in each groupthls figure, node pairs are
again grouped as we did in Figure 5.17 (except thatnd g, are combined withy;); the
x-axis is the smallest RSIM value in each group. The dashecahows the result for the
Rocketfuetiata set. We see that 63% of end nodes can find at least ondaeigé., their
RSIM value is larger than 0.8. TH&lanetlabdata set has significantly fewer end nodes,
so only 10% of end nodes can find a neighbor.

It is worthwhile to mention that in both of these analysestit@tions are selected from
different prefixes, while in reality, many system nodes came from common prefixes.
In this sense, the results presented in Figure 5.18 providssimistic view.
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5.5.4 Discussion

We are not aware of any metrics designed to quantify routdagiity. Related work such
as [33] and [53] has studied how to use relay nodes to increase diversity for link or
router fault tolerance, and their route diversity results/rbe used to measure route simi-
larity. However, our work has a completely different focusee-are interested in segment
route similarity, which can not be directly quantified usiogite diversity. Sometimes IP
prefixes are also used to estimate route similarity. Thisaged on the observation that
if two nodes have IP addresses from a common prefix, they sfiare routes. This ap-
proach has three limitations. First, a common IP prefix isanstfficient condition for
route similarity. Nodes from the same prefix, especiallysthtsom a large prefix, do not
necessary share routes. Second, a common IP prefix is noggssaeg condition for simi-
lar route, either. For example, from tRecketfuetlata set used in [109], we find that node
planet2.cs.ucsb.edu and nodeplanetlabl.cs.ucla.edu have very similar
routes although they belong to completely different prefe81.179.0.0/16 (AS52) and
128.111.0.0/16 (AS131). Finally, the IP prefix does quadntifyroute similarity, thus it is
hard to compare the similarities of different pairs of nodes

One interesting point is that the definition of RSIM remotedgembles the synthetic
coordinate systems proposed by GNP [88] or Vivaldi [41]. Ermample, in RSIM, the
10-20 traceroute destinations can be regarded as the laksintae routes between the
landmarks and an end node can be looked as its coordinatei@formula (5.1) listed in
Section 5.5.1 can be used as the distance formula. HoweS#y] B not a real coordinate
system because its coordinates are not distance valuestiiguing piece of future work
is to explore whether we can extend the RSIM metric to constrweal coordinate system
for route similarity.

RSIM can be used for end-segment inference which is closédyed to the goal of the
BRoute system that will be described in the next chapter. Role, each node collects
AS-level source tree and sink tree information to infer eagnsents, which are further
used to infer path bottlenecks and available bandwidth® difierence between RSIM
and BRoute is that RSIM is a general metric that can be usedfteyaht applications,
while BRoute focuses on path bandwidth inference by onlyadtarizing routes of each
individual node, i.e., BRoute does not directly quantifg 8imilarity of routes from two
different nodes. However, BRoute is a much more structuo&dien that is not sensitive
to system node distribution, while using RSIM for end-segtmeference depends on the
chances that system nodes can find neighbors.

5.6 Summary

In this chapter, we studied source and sink tree structuresth the AS-level and the
IP-level. We showed that AS-level source and sink treesetjogpproximate real tree
structures—around 90% of them have tree-approximity ov@5.0These trees also have
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limited size: AS-level trees in our study have 50-400 tredasp and IP-level trees have
10-20 different branches. That shows the source and siekstreicture is an effective

method to capture network-edge information. To group datitn nodes that have a high
probability of sharing tree branches, we proposed the RSé#im We showed that RSIM

can be measured using a small number of random tracerountég, Gaptures the similar-

ity of both upstream routes and downstream routes. Wherg U81M for end-segment

inference, we showed that if a pair of nodes have an RSIM \ahger than 0.8, they have
a high probability of sharing the edges of their routes wittagbitrary third node.



Chapter 6

Large-Scale Available Bandwidth
Estimation

We have seen that RSIM can be used to infer the end-segmehbysegpath and to reduce
the overhead of large-scale available bandwidth monigorifihe problem with RSIM,
however, is that it is an un-structured solution and itsa@ffeness is closely tied to the
specific end-node composition of a system, which deterntimegrobability that an end
node can find a neighbor. In this chapter, we propose the BRsygtem that provides a
more structured solution and does not have this limitafidie key idea is to use AS-level
source and sink trees to infer the two edges of an arbitradyterend path, by leveraging
previous work on AS relationships. In the rest of this chgpte first introduce the BRoute
design (Section 6.1). We then show how AS-level source amktsees can be used to
identify end segments (Section 6.2), and how to measursegihent available bandwidth
(Section 6.3). The overall path available-bandwidth iefee accuracy is evaluated in
Section 6.4. We discuss system overhead and security iss8estion 6.5.

6.1 BRoute System Design

6.1.1 Motivation

The design of BRoute is motivated by GNP [88] and similar domate systems [41, 40,
105, 95] that use geometrical spaces to model Internet @edd propagation delays.
These systems assign a set of coordinates from a geomedpaeé to each node in a
system, and use the Euclidean distance between two node®asraate for their Internet
delay. The coordinates are calculated based on measurewfetite end-to-end delay
from end nodes to a small set of “landmarks”. Two intriguimgperties distinguish such
systems: (1) scalability—the system overhead is lineahn thie number of nodes in the
system, and (2) since any node can estimate the latency &etwe nodes based on their

129
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coordinates, only minimal interaction between nodes igireq. These two properties are
exactly the goals that BRoute achieves for bandwidth esima

Using coordinate models for estimating latency is intaiyveasy to understand. In-
ternet propagation delay is determined by the physicalttenfydata transmission links,
which are laid on the surface of the earth. Since the earfais a geometrical space,
it is not hard to understand why latency can fit into a georo&tispace. However, this
argument does not work for bandwidth. Internet path aviglalndwidth is determined
by the bottleneck link, and there appears to be no reason Wwhguld fit a geometrical
space. In fact, since path available bandwidth is deteraysone link, we would expect
it to be harder to predict than latency and potentially venysitive to even small changes
in the route. This is somewhat similar to the loss monitopngblem discussed by Chen
et.al. [34]. As a result, while routing may not be importamcoordinate-based latency
estimation, we believe it must be considered when estigd@mdwidth.

6.1.2 BRoute Intuition

The BRoute system uses the source and sink trees that wesskstin the previous chap-
ter, based on two important observations. First, mostdrwttks are on end-segments, and
we only need to obtain available bandwidth information fottbend-segments of a path
to estimate path available bandwidth. Second, the sizewteamand sink trees is small
for the first 4 layers. That is, relatively few routes exisanthe source and destination
compared with the core of the Internet, thus simplifyingghablem of determining which
end-segments a path takes, and which bottleneck it enasurifbese two observations
lead to the two key operations in BRoute. First, each nodeaslboth routing and bot-
tleneck information for the source and sink trees to whidh #ttached, using traceroute
and Pathneck [56], respectively. This information can bblipbed, similar to a set of
coordinates. Second, in order to estimate the availabldviath between a source node
and a sink node, a third node would collect the tree inforameior the source and sink and
use it to determine the route taken by the end segments, ariétely bottleneck location
and available bandwidth.

Besides the source and sink trees, a key problem that BReetisrio solve is match-
ing the source-segment and the sink-segment of a path withi@ct measurement, i.e.
identifying the dashed lines in the left graph of Figure 6BRoute does this using AS-
level path information. Intuitively, for a pair of nodesndd, if we know all the upstream
AS paths froms (called the AS-level source tree ercI'ree(s)) and all the downstream
AS paths toward (called the AS-level sink tree ainkTree(d)), thenPath(s, d) should
pass one of their shared ASes. For example, the right grapigafe 6.1 illustrates the
upstream AS paths fromy, and the downstream AS paths towagd Assume thatd7 is
the only shared AS then this means that p@thh(ag, co) must pass through7, and we
can useA7 to identify srcSgmt(ag, co) andsink.Sgmt(cy, ag). We will call the AS that is
shared and on the actual path the common-AS. Of course,whketgpically be multiple
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Figure 6.1: Source/sink-segments and AS level sourcefsel

shared ASes betweencTree(s) andsinkTree(d), we will discuss in Section 6.2.1 how
to uniquely determine the common-AS.

6.1.3 BRoute Architecture

As a system, BRoute includes three components: system itoaieeroute landmarks, and
information exchange point. System nodes are Internetshfmtewhich we want to es-
timate available bandwidth; they are responsible for ctilig their AS-level source/sink
trees, and end-segment available bandwidth informatiosaceFoute landmarks are a set
of nodes deployed in specific ASes; they are used by systerasntedbuild AS-level
source/sink trees and to infer end-segments. An informa&ichange point collects mea-
surement data from system nodes and carries out bandwidtteéien operations. It could
be a simple central server, or a more sophisticated diséibpublish-subscribe system.
For simplicity we will assume it is a central server, and dalhe central manager

BRoute leverages two existing techniques: bottleneckctiete [56] and AS relation-
ship inference [50, 114, 29, 82]. Bottleneck detection isdu measure end-segment
bandwidth, and AS relationship information is used to irffex end-segments of a path.
Operations of BRoute can be split into the pre-processiagesand the query stage, as
illustrated in Figure 6.2:
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Figure 6.2: BRoute System Architecture

e Pre-processing:In this stage, each system node conducts a set of tracer@aate m
surements to the traceroute landmarks. At the same tinoertate landmarks also
conduct traceroutes toward system nodes. The system nedeusies the tracer-
oute information to construct AS-level source and sinkdrédext the system node
identifies its source-segments and sink-segments and ataselk to collect band-
width information for each end-segment. This informatienaported to the central
manager.

e Query: Any node can query BRoute for an estimate of the availablel\waith
between two system nodes—to d. The central manager will first identify the
common-AS betweenrcT'ree(s) and sinkTree(d). The common-AS is used to
identify the end-segments-cSgmt(s,d) and sinkSgmt(d, s) of Path(s,d), and
the central manager then returns the smaller of the avaitabidwidths fogrcSgmt (s, d)
andsinkSgmt(d, s) as the response to the query.

A distinguishing characteristic of BRoute is that it usesla®| source/sink tree computa-
tion to replace most of end-node network measurementssthfigsg the system overhead
from expensive network measurement to cheap and scalalaledomputation

6.2 End-Segment Inference

In this section, we explain the two key operations of BRouew to pick the common-
AS, and how to use the common-AS to identify the source-segared sink-segment of a
path. For each operation, we first define the algorithm, aed évaluate its performance.
We keep using the five data sets described in Section 5.2da@hluations.

6.2.1 Selecting the Common-AS
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Algorithm 1 CommonAS
1: if AS(s) = AS(d) then
2. returnAS(s) as the common-AS;
3: end if

4: SET « srcTree(s) N sinkTree(d);

5. if SET = NULL then
SET «— srcTree(s) U sinkTree(d);
7: end if

@

8: if {AS(s), AS(d)} C SET then
9:  return bothAS(s) and AS(d) as the common-AS;

10: else ifAS(s) € SET or AS(d) € SET then
11:  returnAS(s) or AS(d) as the common-AS;

12: else

13: remove all the ASes which have at least one ancestor AS (irereitrcI'ree(s) or
sinkTree(d)) also inSET;

14: forall A€ SET do

15: p(A) « ent(A, s)/total(s) + ent(A,d)/total(d);

16: end for

17:  return theA which has the largest(A);

18: end if

Algorithm

Typically, an AS-level source tree and an AS-level sink skare multiple ASes, and we
need to choose one of them as the common-AS. Our selectidrothet shown in Algo-
rithm 1. s andd denote the two end nodes, add'(s) and AS(d) denote the ASesandd
belong to, respectively. On line 1&t( A, s) denotes the number of upstream/downstream
AS paths froms that pass ASA in srcT'ree(s), while total(s) denotes the total number of
AS paths insrcT'ree(s). ent(A, d) andtotal(d) are defined similarly.

The heart of the algorithm is on lines 13-17. The first stepaiseld on the fact that
most AS level routes follow the shortest AS path [82]. As ailieshe algorithm searches
for the shared ASes that are closest to the root ASes indvoifiree(s) andsinkTree(d)
(line 13). It does this by eliminating from the set of shareSe& G ET) all ASes which
have a shared AS on the same AS-level source or sink treefbcéoger to the root AS. In
other words, if in an AS-level source/sink tree, both A@nd its child ASB are inSET,
the AS path should only pastsince that produces a shorter AS path/&is dropped. In
the second step, if the resulting set of shared ASes stilhhdsple candidates, we pick
the one that has the highest probability to appeaPam(s, d) based on the(.) value
(line 14-17).
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There are several border cases where one or both root ASessiraed AS. They
include: (1) nodes andd are in a same AS (line 1-3); (2) bothS(s) and AS(d) are
shared ASes (line 8-9); and (3) eithdiS(s) or AS(d), but not both, is a shared AS
(line 10-11). For these cases, the algorithm return theA&ges) as the common-AS. In
particular, case (2) returns two ASes as the common-ASes.

The last border case is whélZT' is empty (line 5). In practice, BRoute uses measure-
ments for a limited number of traceroute landmarks to costhe AS-level source/sink
trees. Although we will show that this method can cover moSe# in an AS-level
source/sink tree, some unpopular ASes could be missingaaral result, we may not
find a shared AS. For this case, we consider all the ASes intbetls as shared (line 6).
Similarly, ent(.) andtotal(.) are in practice computed based on measurement, so their ab-
solute values may differ from those derived from a complege.tWe quantify the impact
of this sampling in Section 6.4.

Evaluation

Given the data we have, we can use two methods to validateiftigol. The first method
is to build both AS-level source and sink trees as describesection 5.3 and to apply
Algorithm 1. This is the most direct method and we will usenibur case study in Sec-
tion 6.4. This method however has the drawback that it isdaselimited downstream
data, the AS-level sink trees can be incomplete. In this@eeie use a different method:
we evaluate the algorithm using thecT'ree(d) to replace the incompletenkTree(d).
The basis for this method is the observation that the ASHkeges are only used to de-
termine the end-segments of a path (we do not need the ASpat itself), and the
AS-level source tree may be a good enough approximationeoABlevel sink tree for
this restricted goal. This in fact turns out to be the cas&eashow below. This approach
has the advantage that we have much larger data set to wdrk wit

Using theBGP data set, we first construct an AS-level source tree for eachage
point, we then infer the common-AS for each pair of vantagatgpand we finally com-
pare the result with the actual AS paths in BGP tables. To rsakewe have the correct
path, we exclude those AS paths whose last AS is not the ASeod¢istination vantage
point. For the resulting 15,383 valid AS paths, the comm@&@aigorithm selects the
wrong common-AS for only 514 paths, i.e. the success rat&%. %or the 14,869 cor-
rectly inferred common-ASes, only 15 are not top AS, whichfems our intuition that
the common-AS inferred by Algorithm 1 is typically a top-A$ere the maximal uphill
and downhill paths meet.

Top-AS Symmetry

The high accuracy of common-AS inference shows that we caéeeith replace the AS-
level sink tree of the destination with its AS-level souroeetin Algorithm 1. This has
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an interesting implication: it does not matter which nodthes source or the destination,
or, in other words, the common-AS is the same in both dirasti®ince the common-AS
is almost always a top-AS, it is also “symmetric”: for two msd andd, Path(s,d) and
Path(d, s) share at least one top-AS.

This observation can indeed be confirmed by our data. In tief 48,383 AS paths we
picked above, there are 3503 pairs of AS paths that conneabddes in both directions.
Among them, 2693 (77%) pairs have symmetric AS paths, whimhowisly also share
top-ASes. In the remaining 810 pairs, 486 of them share at lmae top-AS. Overall,
the top-AS symmetry property applies to 91% pairs. A simaliaalysis of thePlanetlab
data set yields very similar resuls: 67% of the node pairg lsg;mmetric AS paths, while
92% of the pairs have a symmetric top-AS. Note that this tedags not contradict the
observation made by Mao et.al. [82] that a large percentég&aths are asymmetric,
since we focus on the top-AS only.

It is important to point out that while the top-AS symmetryoperty provides an-
other method for identifying common-AS, AS-level sink tiaéormation is still needed
by BRoute to obtain sink-segment information.

6.2.2 End-Segment Mapping

Given that the AS-level source and sink trees closely fobawee structure, the common-
AS can be easily used to identify a unique branch in both thde&&l source and sink
trees. We now look at how well this tree branch can be usedtermee IP-level end-
segment of the path. Our analysis focuses on source-segimerduse we have complete
data for them.

Ideally, for any ASA € srcT'ree(s), we would like to see that all upstream paths from
s that passA share a same source-segmerif this is the case, we say is mappedntoe,
and every timed is identified as the common-AS, we know the source-segmehegfath
ise. In practice, upstream paths fronthat passi could go through many different source-
segments, due to reasons such as load-balance routing thamihg. To quantify the
differences among the source-segments that an AS can mapnantiefine theoverage
of source-segments as follows. Suppose A% mapped td:(k > 1) source-segments
e1, e, ..., €, €ach of which covers(e;)(1 < i < k) paths that pasd. The coverage of
e; is then defined as(e;)/ Ele n(e;). If we haven(e;) > n(es) > ... > n(ey), thene;
is called the top-1 source-segmentande, are called the top-2 source-segments, etc. In
BRoute, we use 0.9 as our target coverage, i.e., if the taa#ce-segment; has coverage
over 0.9, we sayl is mapped onte;.

We use theRocketfueldata set to analyze how many end-segments are needed to
achieve 0.9 coverage. For the 30 AS-level source trees foaitt this data set, there
are totally 1687 ASes (a same AS in two different trees arentealtwice). Figure 6.3
shows the percentages of ASes (y-axis) that achieve valevets of coverage (x-axis)
from top-1 and top-2 source-segments. Of the 1687 ASes, &fdhapped onto a single
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Figure 6.3: Coverage of top-1 and top-2 source-segments

source-segment (i.e. coverage of 1), while 586 (from 17%&)raee mapped onto multiple
source-segments. Among these 586 ASes, using the 0.9 gevimashold, 348 can be
covered using the top-1 source-segment, so in total (11048+=31449) (85%) ASes can
be mapped onto an unique source-segment. If we allow an A® tmwered using the
top-2 source-segments, only 2% (17 ASes) can not be covieeed8% of the ASes can
be mapped onto top-2 source-segments. We conclude that @aam\Be mapped onto at
most two source-segments in most times.

Detailed checking shows that among the 586 ASes that are edappto multiple
source-segments, 302 (51%) map to source-segments whosw@s are in the same
AS. We speculate that this use of multiple source-segmsiatise to load-balance routing.
More work is needed to determine why the other 284 ASes ustepieutource-segments.
So far we have focused on the common case when the commonrA$&th is not one of
the two root ASes. If one or both root ASes are returned as arcmvAS, the algorithm
for selecting the source-segment or sink-segment stilliegpThe hard cases are when
the source and sink node are in the same AS, or when the soustekonode are in a
tier-1 AS; more research is need to deal with these two cases.

Using thePlanetlabdata set, for which we can get a large number of downstream
routes for each node, we also looked at the sink-segmentenégs. We found that the
above conclusion for source-segments also applies tossgkient. Among the 99 nodes
that have at least 100 complete downstream routes, 69 (70#@snhave at least 90%
of the ASes in their AS-level sink tree mapped onto top-1-segment, while 95 (96%)
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nodes have at least 90% of their ASes mapped onto top-2 sgkents.

With these results of end-segment uniqueness, an AS in alevebsource/sink tree
should be mapped onto top-1 or top-2 end-segments. In thedise, we return the avail-
able bandwidth of the top-1 end-segment. In the latter caseteturn the average of
the available bandwidth of the two top-2 end-segments irp#tk bandwidth estimation.
This method should work well if the reason for having top-8-segments is load-balance
routing, since the traffic load on both end-segments isyikebe similar.

6.3 End-Segment Bandwidth Measurement

BRoute uses Pathneck to measure end-segment bandwidtired$en is that Pathneck
can both pinpoint the location bottleneck and provide ugpdower bounds for links on
the path. For example, Pathneck provides an upper boundhéoavailable bandwidth
on the bottleneck link; this upper bound is in general qugétt[56]. It can similarly
provide useful bounds for links upstream from the bottlénddowever, an unfortunate
feature of Pathneck is that it provides little informatidooat the links past the bottleneck
link. Specifically, Pathneck can only provide a lower bouadthe available bandwidth
on those links and that bound can be very loose.

These Pathneck properties have the following implicatifmmsthe measurement of
end-segment bandwidths in BRoute. If the bottleneck is ersthurce-segment (or in the
core), Pathneck can provide a (tight) upper bound for theceasegment but only a (loose)
lower bound for the sink-segment. If the bottleneck is ondin&-segment, Pathneck can
provide a (tight) upper bound for both the source and sinknggg. In other words, any
node can easily measure the available bandwidth on its s@agments. However, to
measure the sink-segment bandwidth, nodes need help frotheamode, ideally a node
with high upstream bandwidth.

BRoute can collect end-segment bandwidths in two modes:tpgeeer or infrastruc-
ture. In the peer-to-peer mode, end-segment bandwidth eesumed by system nodes
themselves in a cooperative fashion. That is, each systel® dooose a subset of other
system nodes as peers to conduct Pathneck measurementsonathto cover all its end-
segments. If we use sampling set to denote the set of path&ich Wathneck measure-
ments are conducted, it should cover all the source-segnaartt sink-segments in the
system to be useful. Theoretically, selecting the sam@etgcan be transformed to the
classical graph problem on edge covering, which is NP-rz@#l [

We use a simple greedy heuristic to find this set. For each nad¢he system, we
countits number of un-measured source-segments (simkesgg) asrcCnt(s) (sinkCnt(s)).
We then pick the pattrath(s, d) that has the largestrcCnt(s) x sinkCnt(d)) value, put
it in the sampling set, and labetcSgmt(s,d) and sinkSgmt(d, s) as measured. This
process is repeated until all end-segments in the systemmeasured. The intuition be-
hind the algorithm is as follows. If a node has a large numib@nd-segments, they are
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shared by fewer number of paths, and are thus less likely tmbered by many paths, so
they should be given a higher priority for being picked fax #ampling set. By picking the
path that has the largegtrcCnt(s) x sinkCnt(d)) value, we achieve exactly that. In the
case study presented in Section 6.4, this algorithm findswpleag set that only includes
7% of all paths, which shows it is indeed effective.

The peer-to-peer operation has the advantage that the dthdweasurement over-
head is shared by all system nodes, so the system scalesllyatdowever, the cost is that
it requires interactions between system nodes. This intresl complexity in a number of
ways. First, as new nodes join and leave (including fail)js mecessary to continuously
determine what node pairs need to perform measurementshé@mesue is that some (or
even many) system nodes in the system may not have suffi@amstiream bandwidth to
accurately measure the available bandwidth on sink-segnoérother system nodes, as
was explained earlier in the section. This can significaintlyact the accuracy of BRoute.

The solution for these problems is to use a measuremensinicaure in the form
of bandwidth landmarks that cooperate with system nodesetsnre end-segment band-
width. The bandwidth landmarks can share the same set ofgathysachines with the
traceroute landmarks. In this infrastructure mode, a systede uses its AS-level source
tree to pick a subset of bandwidth landmarks to measure dissegment bandwidth. The
system node will use Pathneck to measure source-segmeivrioiiim, using the bandwidth
landmarks as destinations. Similarly, the bandwidth lazuks, at the request of the sys-
tem, will measure the sink-segment bandwidth using theegystode as Pathneck’s des-
tination. The infrastructure mode completely removesesyishode dependences, which
makes the system robust to individual node failures. Naod¢ ith order to be effective,
bandwidth landmarks should have high upstream bandwiditlihat in general during
measurements, the sink-segment of the system node wilkdeattieneck.

The problem with using bandwidth landmarks is of course ¢aah bandwidth land-
mark can only support a limited number of system nodes, smtineber of bandwidth
landmarks will have to grow with the number of system nodes.example, assume each
system node has on average 10 sink-segments and assumeadihrnidwneasured once
per hour. By default, each Pathneck measurement needs @@E&@kets, or 30K byte,
so each system node contributes rate of only about 670 bitiseeasurement overhead.
This means that a bandwidth landmark with a dedicated latexonnection of 100 Mbps
should be able to support at least 100K system nodes.

6.4 Overall Inference Accuracy

In the previous sections we describe each step in the BRantAidth estimation process
and evaluated it in isolation. While the error introducecdeach step is relatively small,
these errors can accumulate, so it is necessary to evahafeetformance of the entire
system in terms of its end-to-end accuracy. We decided t@mase study on Planetlab,
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Figure 6.4: Common-AS and end-segment inference accunabgiPlanetlab case study.

using the peer-to-peer mode operation for BRoute. Usingd®liab does have some known
disadvantages: (1) Planetlab nodes are generally wellexded, and may not be represen-
tative for regular network users; (2) Planetlab nodes cae kary high load, which can
impact bandwidth measurement accuracy. Even so, Planstigbfar the best evaluation
testbed available due to the scale requirement of BRoutidrsection, we first describe
our experimental methodology, we then present the resulthé end-segment inference
and the bandwidth estimation accuracy.

6.4.1 Data Collection and End-Segment Inference

On Planetlab, we select one node from 160 different sitexch EB@de runs traceroute
to all the other 159 nodes and the 237 tier-1 and tier-2 toaterlandmarks selected in
Section 5.4, and uses the information to build the AS-lewalse and sink trees. Finally,
each node conducted Pathneck measurements to all the &@eotles in the system to
measure path bandwidth.

Using the traceroute data, we repeat the analysis desdaril&ettions 6.2.1 and 6.2.2
to study the common-AS and end-segment inference accufaeydifference is that we
use both AS-level source tree and AS-level sink tree in tfezémce, i.e., we strictly follow
Algorithm 1. Here AS-level source trees are constructedgiie traceroute results from
Planetlab nodes to the traceroute landmarks, while AS-temk trees are built using the
downstream routes from the other system nodes.
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Figure 6.4 summarizes the inference results. Each poimisnfigure corresponds to
a Planetlab node. That is, we group the paths that share ithe Saurce node, and then
compute the percentage of paths for which the common-AS athkdegments are inferred
correctly. The solid curve plots the distribution of the coon-AS inference accuracy. We
can see it is much worse than those presented in Section GlZlreason turns out to be
very simple: because of the limited amount traceroute médion (160 nodes is not a lot),
the AS-level sink trees are incomplete, so the common-AS8rdalgn sometimes can not
find a shared AS. If we ignore these cases, the inferenceamcimproves significantly,
as shown by the curve marked with “x”: 80% of sources have com#S inference
accuracy of over 0.7. This level of accuracy is still worsarthihe results presented in
Section 6.2.1. The reason is that the) values used in the common-AS algorithm are
based on limited data, so they are inaccurate, and agaiimihed number of nodes used
in the study negatively impacts accuracy. These resultgesighat, in peer-to-peer mode,
the accuracy of BRoute will increase with the size of theayst

The dashed and dash-dot curves plot the distributions ointleeence accuracy for
source-segments and sink-segments, respectively. Weeeahat the end-segment infer-
ence is much more accurate than the common-AS inferencle,anound 50% and 70%
of paths having inference accuracy of over 0.9. This is ngirssing since different ASes
could map to the same end-segment, so an incorrect commonft&®nce does not nec-
essarily result in a wrong end-segment inference.

6.4.2 Bandwidth Inference

Next we used the peer-to-peer mode to estimate end-segraedivimlth. To estimate
bandwidth inference accuracy, we divide the data into a §agpet and an evaluation
set. We use the algorithm described in Section 6.3 to sddlectampling set. The algo-
rithm identifies a sampling set with 753 paths, which are 7¢hef10,779 paths for which
we have enough route data to identify both source- and sgkasnts. With the path
bandwidth inferred using end-segment bandwidth, we coenffam with the real Path-
neck measurements that are not in the sampling set. Theaagcisrmeasured in terms
of their relative difference( BW,, rerred — BWinecasured)/ BWimeasurea- Figure 6.5 plots the
distribution of the relative differences for all paths iretavaluation set. We can see that
30% of the estimates are higher than the measured values thieilother 70% are lower;
this is mainly due to the fact that we only have lower boundstliese paths. Overall,
around 80% of the paths have less than 50% of difference. i@emsy that bandwidth
measurement generally have a 30% of measurement errorji@lanetlab nodes’ high
load can interfere with bandwidth measurement, which weebelhave negative impact
on our evaluations, we regard 50% of estimation error as mising result in terms of
inference accuracy.
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Figure 6.5: End-to-end bandwidth inference accuracy

6.4.3 Discussion

The results in this section highlight several aspects ofReute system that need im-
provements. First, we need to improve BRoute end-segmésreince accuracy, for ex-
ample, by integrating the latest AS path and relationshiprémce techniques, such as
developed by Mao et.al. [82]. Second, we need to explore gathable bandwidth mea-
surement techniques based on bandwidth landmarks, whashder access to both end
points, for example, by combining IGI/PTR with Pathneck.irthwe need to develop
algorithms to select traceroute landmark locations forlé&®l tree construction. Finally,
it would be useful to understand the interaction and codjmerbetween multiple BRoute
systems, which might help multiple applications to papiate and potentially collaborate
with each other.

6.5 System Issues

As a large scale network system involving many nodes, BRoaggls to address many
practical system issues. In this section we briefly discugsdystem aspects: system
overhead and system security.
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6.5.1 System Overhead

The system overhead of BRoute is determined by two factbesoverhead of each mea-
surement instance, and the frequency of information ugd&tere one instance includes
the measurements for both AS-level source/sink tree anesegohent available band-
width. In reality, application query introduces anotheehead factor, we do not consider
it since it is application specific.

The AS-level source/sink trees are constructed based dnateroute measurements
to/from a number of traceroute landmarks. Based on therpirgdiry results in Section 5.4,
we estimate that each system node will need to execute no tnane1000 traceroute
probes; the same number of probes are needed from tracéaodi@arks to the system
node. This overhead is very small. It has been shown thatt@miapd traceroute tool such
as that used by Spring et.al. [108] can finish 120K tracesouté hours, which translates
to 3 minutes for 1000 traceroute probes. The amount of pgopackets is around 3M
byte (assuming each path has 25 hop, each hop is measure{l. twic

The AS-level source trees could also be built using local B&lite. The sizes of
local BGP tables seem to be generally less than 10MB, whitblésable since it only
involves local communication. Note that even if we use BA#Rem for AS-level source
tree construction, traceroute is still needed to obtaid€iel) end-segment information,
but fewer traceroute probes are needed in this case sinéetevel source tree provides
an upper bound for the number of end-segments.

The overhead for end-segment bandwidth measurementoisaally small. For the
Rocketfuetiata set, we found the median number of source-segmentsusdi 0. Given
that the Pathneck measurement overhead is 30K byte (50pki/t&0pkt), the total avail-
able bandwidth measurement overhead for one node is 30@Kftaytipstream measure-
ments. Similar overhead is expected for downstream measuns.

For long term system monitoring, the overhead is also adtetly the system infor-
mation update frequency. This parameter is ultimatelyrdgteed by how quickly AS
paths and end-segment bandwidths change. The end-segraigibie bandwidth change
frequency is determined by traffic load, which has been shimashange fairly quickly
[90]. For this reason, end-segment available bandwidibrimétion needs to be updated
frequently, for example, once per hour. The exact frequeshould be set by the system
node.

For AS paths, recent results from Zhang et.al [99] have shihahthe BGP routes
associated with most traffic are reasonably stable. Now akeddwhether AS-level source
trees also have this level of stability. We downloaded B@Gietafrom Route Views Project
and RIPE RIS Project on different dates, and compared theim tiwve BGP tables on
01/10/2005. The change metric is defined as the percentageiifes whose maximal
uphill path has changed. Figure 6.6 summarizes the resiilt® top graph plots the
long-term change results: we compare the BGP tables on n2@04 (mm=03, ..., 12)
with those on 01/10/2005. The x-axis indicates the mon#hythxis is the percentage of
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Figure 6.6: AS-level source tree changes with time

prefixes whose maximal uphill path changed, and each tessagtesponds to one peering
point. While some peering points experience 40-80% of ceanigpost are less than 15%,
which we think is reasonably small considering the long timterval. The bottom graph
focuses on the short-term change: we compare the BGP tablgés/dd/2005 (dd=01, ...,
09) with those on 01/10/2005. Not surprisingly, the changessignificantly less—on
each day, at most 4 points have a change larger than 4%, ahe althers are below 4%.
We conclude that in general it is safe to update the AS-lemeice tree once a day. We
expect AS-level sink trees to have similar stability.

One case that is not considered in this section is dynamitngenabled by some
multihoming devices. Unlike static multihoming, where tegiare pre-configured and do
not change frequently, these devices dynamically chantefdawvarding path based on
real-time measurement. A final point is that, since measen¢srare under the control of
the system nodes, not all nodes have to use the same systamepars. For example,
system nodes that have historically seen more frequené mubandwidth changes can
run the measurements more frequently. Similarly, systedes@an adjust the length of
their end-segments, depending on the bottlenecks they\abs€inally, all the routing
and bandwidth information can easily be shared by systeresiogdthe same AS, thus
providing another opportunity to reduce overhead.
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6.5.2 System Security

Like all systems running on the Internet, BRoute is also exttibjo attacks. A detailed
discussion on how to deal with attacks is beyond the scopki®fiissertation. Here we
only discuss attacks related to malicious system nodes.iftiudes two types of attacks:
false traceroute measurements and false end-segmentidéimdveasurements. The first
attack only has local impact: it only affects the estimategphths involving the malicious
node.

The second attack has a more severe impact when BRoute regana-segment
bandwidth in a peer-to-peer fashion. In the peer-to-peedand a node reports false
Pathneck measurement, it not only affects its source-segbandwidth, but it also af-
fects the sink-segment bandwidth of the destination nodeeSsink-segment bandwidth
results are shared, this false information can quickly pgape to other paths. One method
to deal with this type of abuse is to select a sampling set thatheach sink-segment is
covered at least twice. That allows BRoute to double cheelbmdwidth measurement
of each sink-segment. If the estimates from one node arestenty different from those
of other nodes, it can be labeled as suspicious. Of coursajiaious node can make de-
tection very difficult by only falsifying a small number of bdwidth measurements. The
cleanest solution is to use (trusted) bandwidth landmaksliscussed in Section 6.3. In
infrastructure mode, falsified information from a malicsouode will only affect the paths
involving that node.

6.6 Summary

In this chapter, we presented the design and the systemeuithie of BRoute—a large
scale available-bandwidth inference system. We desctibedwo key operations used
by the BRoute system: how to select the common-AS and howadhescommon-AS to
identify end segments. We showed that in 97% of cases we eatifigithe common-AS
correctly, and in 98% of cases a common-AS can be mapped bntost two different
end segments, with 85% of cases mapping to an unique end segiitee overall end-
to-end available bandwidth estimation accuracy is evatliah Planetlab, where we show
that 80% of inferences have inference error within 50%. Téiative high error rate is
due to the fact that we can not get enough number of tracetantemarks, and due to
the difficulties of obtaining accurate bandwidth infornoation the high-loaded Planetlab
nodes. For this reason, we regard the performance of BRewgr@uraging.



Chapter 7

Topology-Aware Measurement
Infrastructure

Compared with popular active measurement techniques iilge gr traceroute, available
bandwidth measurement techniques (like IGI/PTR) and sys{tike BRoute) are harder
to use. First, they often require the cooperation of nomll@nd nodes. For example,
the IGI/PTR tool requires access to both the source and ttend&on of a path, and the
BRoute system needs a diverse set of vantage points to servacaroute landmarks.
However, regular end users often do not have such accesendgevailable bandwidth
measurement techniques are often more sensitive to coafiignirdetails than ping or
traceroute, and correctly setting the configuration pataraeequires good understanding
of the technical details, which in many cases is not trivighird, available bandwidth
measurement techniques generally use packet trains. \Welbtoordinated, packet trains
used by different end users can interfere with each otheirdratiuce measurement errors.
To address these issues, we developed the Topology-Awaasuvkment Infrastructure
(TAMI).

Compared with existing measurement infrastructures li¥e¢IN118], NIMI [94] and
Scriptroute [110], TAMI has two distinguishing characstics—measurement scheduling
functionality and topology-awareness. The measureméetikding functionality controls
the execution times of measurement requests. It can paeallsynchronize, and serial-
ize measurements from different vantage points, both toongoverall system response
times and to avoid measurement interferences. Topologyevess refers to the capabil-
ity of TAMI in supporting tree-related operations that ased by the BRoute system, such
as measuring the source and sink trees of an end node, 1degtifie common-AS of two
AS-level source or sink trees, etc.

We use the term “topology-awareness” instead of the mom@fspeerm “tree-awareness”
because TAMI may eventually also support other topologsiteel measurement tech-
niques such as tomography. Topology-awareness is impgddaadvanced network ap-
plications that need measurements from a set of networlspatle call such measure-

145
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mentstopology-aware measuremertiecause to correctly select these paths and avoid
measurement interferences we need network topology kulgeleTwo typical examples
of topology-aware measurements are source and sink tresune@aents and tomography
measurements. Source and sink trees are the key data stguoged in the Doubletree
algorithm [44] and the BRoute system (Chapter 6). The Dolreke algorithm takes ad-
vantage of the tree structure to reduce measurement ovkrheatwork topology discov-
ery, while the BRoute system uses source and sink trees toielzpttleneck sharing for
large-scale available bandwidth estimation. As showir,l#tes tree view of end nodes is
also an effective way of diagnosing routing events. Tomplyd31] infers link-level per-
formance information by correlating multiple path-levedasurements. It is an important
active measurement technique for end-users to obtaindwved-performance data.

At the system level, TAMI also provides the following bengfi{1) it can reduce the
burden on application developers by allowing them to foausjaplication specific tasks,
(2) it can improve applications’ performance by providinghly efficient measurement
modules, (3) it can better utilize network resources byislganeasurement data, and (4) it
can encourage innovation by providing applications a ptatfto quickly try new methods
using complex network performance data.

In this chapter, we first describe the architectural desigmAdI. We then present
the implementation and performance evaluation of the TAjtam. We will use three
applications to demonstrate TAMI’s functionalities.

7.1 TAMI Architecture

To explain the TAMI architecture, we first describe the TAMIhttional modules and
their interactions. We then present three important deslgrices that affect the TAMI
implementation for different application scenarios. We tisree representative deploy-
ment architectures to illustrate their impact. For namiogvenience, starting from this
section, we also refer to vantage points as agents.

7.1.1 TAMI Functional Modules

Figure 7.1 illustrates the TAMI functional modules and theteractions. The three key
modules are the topology, scheduling, and agent-manademmfules, which together
enable the topology-aware measurements. It is these thodelas that distinguish TAMI
from other measurement infrastructures.

The topology module maintains the topology informationta hetwork, and coordi-
nates path-level measurements for topology-aware measuaterequests. For example,
for a sink tree measurement request, the topology modulesgléct a set of agents, and
submit the measurement request to the scheduling modulee the measurements are
done, it will organize the measurement results in a tree staature. In some cases, this
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Figure 7.1: TAMI functional modules
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module also provides guidance to the scheduling moduleeX¥ample, to avoid measure-
ment interference or overloading a network link in a mulitipmeasurement.

The scheduling module decides the execution order of all TAldasurements. It has
the following four capabilities. First, it synchronizegtimeasurements on different paths
that are used to satisfy a same request, so that the measuiréate can be correlated.
Second, it serializes the measurements from differentiggnpoints to a same destination
to avoid measurement interferences. Third, it parallslibeasurements to reduce system
response time. Finally, when there are multiple requestisarsystem, it guarantees fair-
ness. The scheduling module achieves these capabilitiestityolling both the clients
(through the client-control module) and the agents (thhotige agent-management and
the agent-control modules).

The agent-management module deals with agent specifieniatorn, specifically, the
membership of active agents. In a deployed system, if thera &arge number of agents,
keeping track of the status of agents could be cumbersomeraydneed a separate
functional module to take care of it. When the number of agéntsmall, the agent-
management module can be combined with the scheduling modul

The functionality of the other modules is similar to thosedisx more traditional mea-
surement infrastructures like NIMI [94]. The agent-cohtrad the client-control mod-
ules manage low-level measurement operations based omth®Iicmessages from the
scheduling module. The measurement module simply implémwequired measurement
techniques, and conducts the measurements when needed.

Application requests enter TAMI through either the topglogodule or the schedul-
ing module, depending on whether topology information isde®l. When the request
needs the topology information, such as a tree measureingimbuld be submitted to the
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topology module. Otherwise, if the request only needs nreasent scheduling support,
such as a full-mesh delay measurement among the agentsultidte directly sent to the
scheduling module.

7.1.2 TAMI Deployment Architectures

The functional modules in Figure 7.1 illustrate the necgs$anctionality that TAMI
should have, but it does not specify how the functional mesishould be mapped to real
system software components. This mapping is what we cali¢ipdoyment architecture
The important factors that affect the deployment architecinclude:

e Centralized v.s. distributed. Some TAMI modules like the agent-control and the
measurement modules obviously should be distributed omagleats. Other mod-
ules, like the topology and the scheduling modules, can lpeimented either in
a centralized controller, or in the distributed agents. hBogntralized design and
distributed design have their advantages and disadvantayeentralized design
simplifies scheduling operations, and provides a platfamnaggregate and share
data; while a distributed design scales better and has igespoint failure. The
optimal design depends on the application scenario.

e Trust model. The trust model refers to the relationship of the nodeseanstfstem,
for example, whether or not they belong to the same orgaaizand the level of
trust among them. It determines the level of security thateisded in the corre-
sponding system design. Obviously, the trust model is giptiGation specific. For
example, a TAMI system used by a private network can assumach stronger
trust model than that used on Internet.

e Relationship between application and TAMI. TAMI as an infrastructure can be
implemented either inside or outside an application. Winepléemented inside an
application, TAMI functional modules are also componeritthe application and
they can be easily customized, thus having much more flekibdeactions with the
application. On the other hand, if implemented outside fiieation, the applica-
tion interface is an important implementation considerator TAMI.

To illustrate the impact of these three factors, we predeeet TAMI deployment ar-
chitectures for three representative application scesarP2P, ISP, and Public-Service
(see Figure 7.2). The P2P scenario (in Figure 7.2(a)) reptesighly distributed envi-
ronments, where peers have complete control over theinmisa In the corresponding
deployment architecture, all TAMI functional modules argiemented inside the peers.
The scheduling modules on different agents use distribuessaging protocols like gos-
sip or epidemic protocols to manage the agents. In thistaathre, the agent-management
module can be integrated into the scheduling module sirm@ytcontrols one agent; the
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Figure 7.2: Deployment Architecture. The acronyms arertdk@m Figure 7.1.

client-control module is not needed either, because TAMh@emented inside the appli-
cations. The trust model in this scenario is that of P2P apptins.

The ISP scenario (in Figure 7.2(b)) represents a more dzefiaenvironment. An ISP
generally needs a complete picture of the network status, ahcentralized deployment
architecture is the natural choice. In such a scenario, dnéage points are purely used
for measurement, therefore they are kept as simple as p@ssith only the measurement
and the agent-control modules installed on them. The otlogiufes are maintained in the
central controller. In this scenario, applications canigbtly integrated into the central
controller, so the client-control module may not be needésb since both the agents and
the central controller are deployed and used by the samaiaegen, we can use a trust
module appropriate for that organization.

The Public-Service scenario (in Figure 7.2(c)) represtdr@slassic client-server sce-
narios. This scenario supports external applications, taedclient-control module is
needed to provide an application interface. Functioralith the topology module can
be split into both the central controller and the client. dilstof the splitting depend on
the application. One example is to let the central contraitg@lement topology construct-
ing and storing functions, while the client implements tpemtions thatisethe topology
information. Finally, since external applications cantctoithe measurement operations,
security is a major challenge.

The TAMI prototype described in the next section is basechenRublic-Service de-
ployment architecture, mainly because it matches besttwémetworks we have access
to.
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Figure 7.3: TAMI prototype system structure

7.2 TAMI System Implementation

Figure 7.3 shows the system structure of our TAMI prototypplementation. To distin-
guish this implementation with the general architectusedésed in the previous section,
we use the termTAMI systeriito refer to our TAMI prototype implementation, while us-
ing “TAMI” to refer to the general architecture. As explained abovétfe Public-Service
scenario, the TAMI system needs to be deployed on threaelifféypes of network nodes,
which we will refer to asclient, masterandagent We now discuss the details of these
system components, focusing on the features related téoigppa@aware measurement.

7.2.1 Client Interfaces

Client interfaces of the TAMI system allows clients to cahtheir measurements through
a set of configuration options. The four most important opicontrol measurement
techniques, measurement destinations, measuremens agiethimeasurement scheduling.
Their values are listed in Table 7.1. In this table, all theapzeters are self-explanatory
except for the scheduling parameters, which will be dised$s Section 7.2.4.

The TAMI system provides three client interfaces: web ifaee, command-line in-
terface, and programming interface. The web interface asiged mainly to help new
users learn how to use the TAMI system without having to ihatay TAMI software. It
is a CGI wrapper for the command-line interface, and it orygegpts a subset of system
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Table 7.1: Client Request Parameters
Measurement techniques

PING measures path delay using ping
TRACEROUTE | measures path route using traceroute
IGI/PTR measures path available bandwidth using IGI/PTR

PATHNECK locates path bottleneck using Pathneck
Measurement destinations

(default) when no destination is specified, client itself is the measient
destination

(explicit) client can specify a destination list

Measurement agents

(explicit) explicitly specifies measurement agents

AUTO_AGENT | the master automatically selects a diverse set of agents/& the
source/sink tree of specified destinations. This is theuliefaode.
ALL _AGENT uses all available agents

ANY _AGENT | uses an arbitrary agent to measure the specified destisation

Measurement scheduling

PM_SYN measurements from different agents to a common destina¢ed
to be serialized

PM_SPLIT split all destinations “evenly” among agents to achievesthallest
measurement time

PM_RAN different agents measure the same set of destinations mdama
order

parameters to limit the load on the web server. The commiaeditterface consists of
a set of executables that can be invoked from a command laeprovides access to all
features provided by the TAMI system. The programming fata is a library that allows
applications to use the TAMI system directly.

7.2.2 Measurement Module Implementation

There are two ways to integrate the measurement technigtethie TAMI system. One
is to embed the implementation code in the TAMI system; tyyscially requires rewrit-
ing some of the codes. The other method is to directly involistiag implementations
through system-call interfaces suchsgstem() . Using the second method, new tools
can be easily added, but the existing implementations mapee@asily controllable by
the TAMI system. For example, the standard traceroute caseral probe packets faster
than one packet per second, and it can be very slow when a dnés not respond. Also,
existing implementations may not export fault signals, mgkt hard for the TAMI sys-
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tem to handle exceptions. As a result, we choose to use thenkthod in our prototype
implementation.

The TAMI system currently implements four measurementnagkes: ping, tracer-
oute, Pathneck, and IGI/PTR. Among them, ping and tracerarg well understood, and
their implementations are fairly simple. Pathneck [56]al@s Internet path bandwidth
bottlenecks; IGI/PTR [58] measures available bandwidihgisvo techniques, estimat-
ing background traffic (IGI) and packet transmission rafER}, respectively. Since Path-
neck and IGI/PTR were designed and implemented by oursetwess easy to adopt their
implementations into the TAMI system. An important pointlist our implementation
supports both user-level and kernel-level (using libpdepgstamps. Kernel-level times-
tamps are needed to improve measurement accuracy on hiead hosts such as some
Planetlab nodes.

7.2.3 Topology-Aware Functionality

As described at the beginning of this chapter, TAMI topolagyare functionality is used
to collect network topology information that is useful fagrtain applications. For ex-
ample, for network connectivity monitoring, this can simpk the link-level topology of
the whole network; for tomography techniques, this can bet @fsend-to-end paths that
share a common link. In our TAMI prototype system, since waufoon supporting the
BRoute system, topology information refers to the sourakthe sink trees as defined in
Chapter 5.

In the TAMI system, the tree operations are implemented th biee master and the
client. The master focuses on tree-construction operstianluding (1) selecting a set of
agents that are diversely distributed on the Internet tisfga tree measurement request;
(2) IP-level source and sink tree measurements, which aeenagal by combining tracer-
oute results measured either by client or by the agentstedlbg the master; (3) AS-level
source and sink tree data, which can be inferred using I€l-tese data. The client fo-
cuses on the operations thagethe trees, for example, measuring tree-branch available
bandwidth using Pathneck.

7.2.4 Measurement Scheduling Algorithms

The TAMI system implements three different scheduling athms: PM-SYN, PM-SPLIT,
and PM-RAN.

e PM-SYN serializes measurements towards a common desimarthis, for exam-
ple, supports source and sink tree measurements.

e PM-SPLIT is used when a large number of destinations need todasured exactly
once, but which agent measures which destination is notritapb This scheduling
algorithm makes full use of all the available agents to firitslh measurements as
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quickly as possible. This can, for example, be useful wheasueng the last-hop
bandwidth for a set of nodes.

e PM-RAN is a “best-effort” scheduling algorithm where neithmeasurement order
nor measurement completeness is important.

As will demonstrated in Section 7.4, PM-SYN can help appiwes to effectively avoid
measurement interference. It can also parallelize meamunes from multiple clients.
Therefore, PM-SYN is the most important scheduling algonitand the focus of the fol-
lowing analysis. While we do not use PM-SPLIT and PM-RAN ie #pplications dis-
cussed in Section 7.4, they are supported for two reasomst, #iey are needed for the
TAMI system administration and debugging. For example, RAN is very useful for
quickly checking the status of each agent. Second, theyiggdwo candidates to com-
pare with PM-SYN as an effort to better understand the sdimeglaverhead, and also to
study the extensibility of the scheduling data structures.

Despite targeting different application scenarios, trseseeduling algorithms all share
the following three features: (1) efficient, i.e., finishiclggnt requests in the shortest pos-
sible time; (2) fair, i.e., no performance bias among midtipeasurement clients; and (3)
fault-tolerant, i.e., they accommodate agent failuredyiting both software failures (e.qg.,
agent software crashes) and hardware failures (e.qg., qdlyient node goes down). Be-
low we describe these three algorithms in more detail, fiogusn efficiency and fairness;
fault-tolerance is discussed in Section 7.2.5.

PM-SYN

PM-SYN uses two data structures to implement its functitieal an AVL tree and a 2D
linked list (see Figure 7.4). The AVL tree is used to storedaBtination IP addresses that
are currently being measured by some agent, so as to avoisumneeaent interference.
That is, if a destination is already in the AVL tree, the cepending measurement will
not be scheduled. The 2D linked list maintains the workingtrenships between client
requests and active agents. The crossing points (n Figure 7.4) identify whether an
agent should work on a client request. For example, crogsng c,a, means that client
request; needs agent, to conduct measurement for it—we say agens “linked” with
clientc,. Each client request has a list (pointeddbient.ca) of crossing points to identify
all the agents that need to work for it; and each agent als@h&s$ of crossing points
(pointed byagent.ca) to identify its client requests. For each client request, uge as
many linked agents as possible to conduct measurementsalhgbao as to reduce overall
measurement time.

To achieve client fairness, every agent iterates throulghalclients it is linked with,
using the structuregent.w_ca. For example, after agent finishes one measurement for
client ¢y, it will work for client c3, even if there are other destinations need to be mea-
sured forc,. To guarantee measurement completeness, we keep track oieidisurement



154 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE

c3.bit_ma; .
Bl I1|D 1 1 p C3.dst_1
I|D|I| 1|1 H ‘
I I I|1I|1
agent al agent a2 agent a3
si|ei| si|ei| si|ei|
w_ca | ca w_ca | ca w_ca | ca
[ /[\ /[\ /[\
client ¢l
ca clal = cla2 = cla3
— bit_map
dst_i \
client c2
ca c2a2 =1 c2a3
bit_map
dst_i
client c3
ca c3al c3a2 c3a3
bit_map
dst_i ety [
 For matrix in the upper—left conner: |

| T: initial state, B: busy, D: done !

Figure 7.4: Data structure used for scheduling

progress of each client using a bit-map. For the PM-SYN dlgar, since one destination
needs to be measured by multiple agents, its implementatea a multi-line bit-map,
where the rows correspond to agents and columns correspalestinations. For exam-
ple, the 3x5 matrix in the top-left corner of Figure 7.4 is biemap for clientc;. Using a
bit-map allows us to measure any destination at any postsitée so as to achieve better
parallelism.

PM-SPLIT

The PM-SPLIT algorithm has more relaxed scheduling comgfiaand its goal is to finish
a client request in the shortest time possible. Since eagtindéon needs to be measured
only once, a simple method is to split all destinations eyaniong all active agents, send
a sublist to each agent in a single message, and then waitdasumement results. This
way, the master, unlike the PM-SYN case, does not have to is@brnequest message
for each destination, thus avoiding the correspondinglmaest. However, in this method,
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slow agents can become a performance bottleneck. For tesmewe limit the schedul-
ing granularity asnaz (10, client.dst_num/agent_num), whereclient.dst_num is the
total number of destinations need to measure in the requbagg “10” is an empirically
selected upperbound on the number of destinations the nwastdorward to an agent in
a single message. This approach reduces the overhead tilhdetseving a high level of
parallelism and also being resilient to slow agents.

The PM-SPLIT implementation uses the same 2D linked lisa datucture as PM-
SYN, except that its bit-map is a single line since each dastn only needs to be mea-
sured once. We useient.dst_i to point to the first destination that has not been measured.
By carefully manipulating the bit order, we can ensure aditoations beforelient.dst_i
are in non-idle status, so that an idle agent only needs tbfgten client.dst_i to search
for the next set of destinations to measure, and each aggnnheads to remember the
starting point ¢.s:) and ending pointd_.ez) in the bit-map.

PM-RAN

PM-RAN scheduling is managed by the agents. That is, measmerequests in PM-

RAN mode are directly forwarded to agents. Each agent mam&queue of the mea-
surement requests received from the master, and the tasksdared by their submission
times. With these queues, agents can conduct measurendepeimdently without wait-

ing for instructions from the master. In Section 7.3.4, wk s@e that PM-RAN incurs the

smallest management overhead.

7.2.5 Agent Management

In distributed systems, software and hardware failurea a@mmon phenomenon. For ex-
ample, on PlanetLab, the MTTF of links has been shown to b&€odrs, and the MTTR
from these failures is 2.69 hours [51]. Here, we are mosthceoned about agent failures.
TAMI agent management module detects agent failures usiokes-level disconnection
signals and by using a keep-alive protocol.

Socket Signals

All communication in the TAMI system is based on TCP. As a liesoftware crashes on
one end will generate socket-level disconnect signals as&iGPIPE at the other end
of the connection. When receiving such a signal, the TAMteyssoftware cleans up the
corresponding data structures, updates system statughemeither exits (for the client)
or remains active (for the master and the agents). For agigsmeans that they enter
an idle state and periodically try to connect to the mastex (P address of the master is
fixed). When the master comes back, all agents will autoralatipoin the system, thus
avoiding having to restart each agent, which could be timeseming. When an agent
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working on a PM-SPLIT request crashes, we need to move theeasured destination
elements into the later part of the bit-map, i.e., behilidnt.dst_i (see Figure 7.4). This
iS necessary to ensure measurement completeness.

Since there could be a large number of agents in the systemegea mechanism to
automatically restart them. In the TAMI system, we use a ¢obnto periodically check
whether the agent software is still running, restart iti§ihot. Since the cron job is started
by the OS at boot time, this automatically deals with the aHdsagent crash due to OS
rebooting.

Keep-Alive Protocol

When disconnection is due to network problems, as explaimetkection 5.12-5.16 of
[112], it is possible that no error signal is generated ohegiendpoint of the connection.
We address this issue using an application-level keeg-g@letocol between the master
and agents. The master maintains a timer for each active:,agehevery agent also keeps
a timer for the master. The master and agents periodicatljange keep-alive messages
to refresh these timers. An expired timer is treated as adisection. That is, we assume
the corresponding peer has crashed when a timer expiredwiincarry out the same
operations used to deal with socket signals.

7.2.6 Other System Features

We briefly discuss several other important features of thiglllgystem—security, periodic
measurement support, and caching.

Security

Given that the TAMI system controls a large number of ageatisey security concern
is that the agents can be exploited to launch DDoS attacke. TAMI system tries to
address this problem in two ways. First, we expose the agariitle as possible. Clients
are only allowed to connect to the master, thus there is amyservice point that needs to
be protected. When communication between agents and<lgimevitable, for example
during IGI/PTR measurement, we always let agents initlaecbnnection, so that agents
do not need to open any listening port for outsiders. Secthscheduling algorithm
implemented in the TAMI system ensures that there is at mostagent measuring a
destination at any given time. This method, however, doésaddress the case where
the attack target does not correspond to the destinatiorddifeases. As Spring et.al.
[110] pointed out, with a sophisticated understanding @afvoek topology and routing,
distributed systems like the TAMI system can still be useddoerate heavy traffic load
on some network node or link. To deal with this issue, we tarméchanisms like limiting
the measurement frequency of clients and user-behavigirigg
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Periodic Measurement Support

An important function of the TAMI system is to support netwononitoring and diagno-
sis, which often require repeatedly measuring the sameaan&tre TAMI system supports
this directly: a client does not need to repeatedly submésueement request. It can just
submit a request once and include a measurement frequeneylAM| system automat-
ically launches the measurement at the corresponding &intesends back measurement
results. This feature not only makes measurement managesasier, it also makes it
possible to continue the measurement if end users lose retwonectivity. Obtaining
network monitoring results is especially important durihgse periods for diagnostic pur-
poses.

Caching

In some application scenarios like Planetlab projects ynead users may want to measure
the same metric at the same or similar times. To avoid rechindeasurements and also
to reduce response time, the TAMI system uses MYSQL to stibrinex measurement
results. If a client request specifies an acceptable cantes the TAMI system will use
cached measurement results for that time period, if ther@ay, to satisfy the request.

7.3 Performance Evaluation

The TAMI system achieves good user-perceived performamoeigh fast measurement
setup and measurement scheduling. To set up measurememgsthes TAMI system,
a client only needs to submit its measurement request usiffgRaconnection, instead
of using the time-consuming ssh command line. For exampderandomly selected 46
Planetlab nodes to issue assh -l <user> <host> Is ” command, the median
response time is 3.3 seconds, which is much larger than it rieeded by the TAMI
system. In this section, we study the TAMI system scheduergormance.

The performance metric that we use in this sectioreiponse timet(.,), which
is defined as the average time used by the TAMI system on onsuregaent. For ex-
ample, if a request needs to measiigdestinations from allv, agents, i.e., a total of
(Ng * N,) measurements, and the TAMI system ugesme to finish the request, then
tresp = 1T'/(Ng * N,). Note that unlike the traditional definition, our definitinbased on
individual measurement, not a measurement request. Timairdy for the convenience of
comparing with the reaheasurement timevhich is the time used by an agent for an indi-
vidual measurement. The measurement times for the toofaidsewell understood since
they are typically studied when the tool is proposed, e.g§] #nd [56] for IGI/PTR and
Pathneck respectively. In this section, we will evaluatéorss aspects of TAMI's response
time. Note that for tree-related applications, we mainlsecabout TAMI's performance
on large-scale and measurements of bandwidth and botkigmeperties.



158 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE

master
____nNnl_n2_n3 n4 n5 _n6 n7_n8 _n9 nl0

' clients R O H
o nl1ll | LI n2C
[

% n21l | L1 n30C

Figure 7.5: Emulab testbed topology

For repeatability, we use Emulab [5] for the experimentsia section. Performance
results for the TAMI system running on the Internet are pnese in Section 7.4.2. Us-
ing Emulab, we first conduct a typical run using the PM-SY Noailipm to obtain some
basic measurement times and response times for the TAM@rsyE$ection 7.3.2). We
then look at the relationship between the number of agerdstaresponse time (Sec-
tion 7.3.3). This is followed by a performance comparisorhaf scheduling algorithms
(Section 7.3.4). Finally, we look at the fairness of the TAdyistem when serving multiple
clients (Section 7.3.5). For all the experiments in thigise¢ we use user-level times-
tamps unless stated otherwise. We first describe the testindidjuration.

7.3.1 Emulab Testbed Setup

Figure 7.5 shows the topology of the Emulab testbed usedsrs#dttion. All links have
50Mbps capacity and 5ms delay. The 50 nodes are used as goltadens; runs as the
mastern; — ny andng — n1o are clients, and the other 40 nodes are agents. The overall
configuration should be viewed as an example of a reasonalge ket of hodes with
Internet-like delays. We do not claim this topology is regamatative of the Internet as

a whole, but we do believe it is sufficient to provide usefdights into how the TAMI
system properties affect response times.

7.3.2 Performance of PM-SYN

In this section, we use the PM-SYN algorithm to obtain somsebae performance re-
sults: the actual measurement time of each measuremenideehthe agent utilization,
and the response time of the TAMI system when all agents dieedt For single-end
probing techniques, i.e., ping, traceroute, and Pathneeksubmit one PM-SYN mea-
surement request that uses all 40 agents to measure a 5@tliRatien list, which cor-
responds to all the nodes in the testbed. For the two-endatdethnique (IGI/PTR),
we usen, to submit a PM-SYN measurement request that uses all 40sagenteasure
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Figure 7.6: Measurement time of each measurement techimdibe TAMI system, using
user-level timestamps

the available bandwidth for paths between the agents andlidr@. The upstream and
downstream paths are measured separately; these are naarkgdup” and “igi-down”,
respectively. For every technique, we repeat the expetinmng both user-level times-
tamps and kernel-level timestamps.

Figure 7.6 plotsthe medians and variances for the actual measurement tineesio
measurement technique; the results presented use usktiteestamps but the results
for kernel-level timestamps are similar. The median valresalso listed in the “Real
Time” column of Table 7.2. This data provides the perfornreabenchmarks for each
measurement technique. Note that the actual measuremmast éire closely related to the
RTTs of the paths being measured, e.g. changes in the RTdglisdfect the measurement
times. Also, these results are for the case when all destitsatespond to probing packets.
If a destination does not reply to probing packets, TAMI agemill wait until a timeout
occurs, which will also affect the results.

Table 7.2 presents three different views of the PM-SYN perénce results. The
“Real Time” column lists the median of actual measuremenes, which are copied from
Figure 7.6. The “Resp. Time” column lists the response timésle the “Speed-Up” col-
umn is the ratio of the previous two columns. Finally, the &gldle” column is the me-
dian idle time intervals for all agents. We did not computesAgldle time for igi-up and
igi-down because each agent is only involved once in eaclsunement. From this table,
we can draw two conclusions. First, Agent-ldle times forgoame both around 0.33-0.35
seconds. We believe this reflects TAMI-system overheadusecthe real measurement
times of ping are much smaller the Agent-ldle times. Agelié-times for traceroute are

1The graphs were generated using bloplot ~ function of Matlab, where one bar corresponds to one
measurement type. The middle boxes have three lines comdsp to the lower quartile, median, and
upper quartile values, and the whiskers are lines exterfdimyg each end of the box to show the extent of
the rest of the data.
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Table 7.2: Performance of PM-SYN (unit: second)

Real Time| Resp. Time| Speed-Up| Agent Idle
ping 0.063 0.014 4.5 0.354
ping.b 0.063 0.015 4.2 0.348
traceroute 0.640 0.034 18.8 0.338
traceroute.n  0.640 0.034 18.8 0.338
pathneck 2411 0.130 18.5 0.985
pathneck.b 2.402 0.131 18.3 0.990
igi-up 0.750 1.015 0.7 —
igi-up.b 0.753 1.074 0.7 —
igi-down 0.901 1.610 0.6 —
igi-down.b 0.934 1.365 0.7 —

[.b means using kernel-level timestamps.]

also around 0.33 seconds, although their real measurerniers are larger than those
of ping. However, Pathneck has much larger Agent-ldle tinfdss is because its larger
measurement time results in longer waiting times for dasitims to free up. Comparing
the Agent-ldle times for ping, traceroute and Pathneck, aresee that when real mea-
surement time is small enough, Agent-ldle time is deterahimethe system overhead and
is not sensitive to the real measurement time. Second, Ai@la@ing the measurements,
the TAMI system significantly improves the response timee $peed-up is at least 4 (for
ping), and can go as high as 19 (for traceroute). Note that ndthe techniques achieve
a 40 times of speed-up, as one might expect given that therdGaagents running in
parallel. This is mainly due to TAMI-system overhead as tde by the “Agent Idle”
column. Not surprisingly, the smaller the real measureniemg, the larger impact the
system overhead has.

7.3.3 Impact of Multiple Agents

Next, we study how the number of agents affects the respamge tn this experiment,
we submit requests from only one client node, but the numbagents used to conduct
measurements changes from 1 to 40. We use ping and Pathndokthe experiment,
due to their wildly different measurement times (see Tab®).7The same experiment
is repeated using both PM-SYN and PM-SPLIT. For each cordigan, we repeat the
experiment five times.

The experimental results are shown in Figure 7.7, where we sloth response times
and the corresponding benchmark values. The points lapétadx” the median values
of the five experiments, and the bars show the maximum andmimivalues. The bench-
mark values (the unlabeled curve) are compute@,as,_with_1_agent/N,)—we expect
to see the response time reducing proportionally as weaserthe number of agents.
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Figure 7.7: Comparing the TAMI system performance withet#it number of agents,
under both PM-SYN and PM-SPLIT

The left two figures show the results using the PM-SYN schadualgorithm. We can
make several interesting observations. First, with onlyagent, the response time of ping
measurement under PM-SYN is 0.58 seconds, which is mucérlrgn the real measure-
ment time listed in Table 7.2. This is a result of the systemribgad. The fact that it is
larger than the 0.35 seconds listed in Table 7.2 "Agent Id@umn tells us that the sys-
tem overhead has a higher impact when there are fewer agatdend, as the number of
agents increases, the response times of both ping and Ektvhen using the PM-SYN
algorithm decrease proportionally. This shows that bothsystem overhead (for ping)
and the measurement time (for Pathneck) experienced by s#rd nan be reduced pro-
portionally as the number of agents increases. Third, whemtimber of available agents
is over 10, the response times, for both ping and Pathneelsignificantly less than the
benchmark values. This is because system concurrency tabefully exploited when
there is enough parallelism. For example, with a large nurabagents working simulta-
neously, downstream and upstream communications can happeltaneously; the local
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Figure 7.8: Comparing the TAMI system performance under $¥N, PM-SPLIT and
PM-RAN

processing of master and agents and their communicationalsa execute in parallel.
These results show that the TAMI system is very efficient éogé-scale measurements,
which is the target application domain for the TAMI system.

When using the PM-SPLIT algorithm (the right two graphs)eapected, the curve
for Pathneck is very similar with that for the PM-SYN algbrit. The curve for ping,
however, has a different shape—its response time stopsuimgrafter there are more than
two agents. This is the combined effect of the small real mmegsent time of ping and
the implementation of PM-SPLIT. In PM-SPLIT, we assign atstrten destinations to an
agent at a time, and the agent sends back measurement fesalishsingledestination.
Due to the small measurement time for each destination, #etenis kept busy by the
measurement results sent back by the first two agents. Thk iethat, before the third
agent is assigned any destination, the first two agents Hes&ds finished their work.
Hence most of the time only two agents are working in parall course, this is not a
problem if the measurement time is as large as in Pathnedk pfdblem is of course easy
to fix, e.g. by batching more results.

7.3.4 Comparison of Different Scheduling Algorithms

This experiment is designed to compare the TAMI system perdnce with different
scheduling algorithms. The experimental configurationinslar to the one used in Sec-
tion 7.3.2. The difference is that we use only five agents soawefully utilize the agents
with the PM-SPLIT algorithm. Figure 7.8 plots the responses using different config-
urations. We see that PM-SYN always has the largest respimnsewhile PM-RAN has
the smallest. The reason is fairly intuitive: PM-SYN neeanlavoid destination conflicts,
which can force agents to wait for each other. PM-SPLIT dasshave this problem
since each destination in PM-SPLIT only needs to be measumed. Compared with
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Figure 7.9: Fairness of the PM-SYN scheduling algorithm

PM-SPLIT, PM-RAN incurs minimal management overhead inrttaster, which further
reduces the response time.

7.3.5 Fairness Among Clients

To study the fairness of the TAMI system, we repeat the sarper@rent that was con-
ducted in Section 7.3.2, except that we have five differeaahthodes submitting the same
measurement request.

Figure 7.9 plots the experimental results. The first bar ahegoup is the benchmark
value, which corresponds to five times the response timeuneasn Section 7.3.2. It is
presented for comparison purposes, since with five cliageeasting service simultane-
ously, the response times are expected to increase by addéitee. The other five bars are
the response times measured from each individual cliemtP&thneck, the performances
of individual clients are apparently better than the beratkwalues. This is because with
more clients, the PM-SYN algorithm has a higher probabdit§inding a non-conflicting
task for an idle agent, thus reducing agent idle time. Fog gind traceroute, however,
individual client’s performance is very similar or slightivorse than the benchmark value.
This is because the performance of these two types of tegbsiig limited by the TAMI
system overhead instead of the measurement overhead hemasi$ no free processing
power that can be exploited by multiple clients. Overalt,d three measurement tech-
niques, the performance of the five clients are very simaaich confirms that the TAMI
system is indeed fair when serving multiple clients.

7.3.6 Summary

In this section, we have quantitatively analyzed TAMI systesponse time under various
conditions, the actual measurement times of all implentemteasurement techniques, and
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Figure 7.10: Join-performance difference from ESM-bw aSd/Ertt on a single client

the system overhead of different scheduling algorithms siived that for the scenarios
that we focused on, i.e., for large-scale measurements amdiladth measurements, the
TAMI system is effective in achieving small response timdtudiy utilizing measurement
resources, and remains fair when serving multiple clieBesides, we also learned that
(1) system scheduling overhead is an important factor t@tta system response time,
especially when the real measurement time is small; ang/§2¢ parallelism can be lim-
ited by the complicated interactions among measurememhead, scheduling overhead,
and scheduling communication patterns.

7.4 Applications

As a measurement infrastructure, the ultimate goal of thellTéystem is to support net-
work applications by providing easy and real-time accesspology-aware measurement
data. In this section, we describe three applications thatbenefit from the TAMI sys-
tem: bandwidth resource discovery for P2P applicatiorssbesl performance monitoring,
and route-event diagnosis. Since the results presentddsirsection were collected on
Planetlab, we use kernel-level timestamps for the measmtn

7.4.1 Bandwidth Resource Discovery for P2P Applications

The BRoute system makes it possible for us to quickly infef-enend available band-
width between two end nodes once we have the topology ande&détanch bandwidth
information of their source and sink trees, as provided lyliMI system. That can help
peer-to-peer applications to discover and adapt to bartbwlthnges by optimizing over-
lay routing. In this section, we use ESM (End System Multicag [35] as an example to
demonstrate this capability.
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Figure 7.11: Performance difference from ESM-bw and ESi\Mlrtall clients

ESM is a peer-to-peer multicast system that uses a self-ged#ata forwarding pro-
tocol to transmit data among peers. In ESM, when a new nodes,jdhe system must
choose a peer in the system that will function as its parehe doal is to pick the peer
with the highest available upstream bandwidth. This rexguiinformation about the avail-
able bandwidth between the new node and all existing peerartunately, obtaining this
information is expensive due to the high overhead of avelalandwidth measurement
techniques. Therefore, ESM instead uses delay measuremoesetlect the initial parent
for a new node during the join procedure. Once a new node,jdimgll keep probing
other peers for both bandwidth and delay information andckwid a better parent if there
is one. We will call this the “ESM-rtt” version of ESM.

The TAMI system makes it practical to use available bandwidtselect the first par-
ent. With the programming interface provided by the TAMItgys, we modified ESM
such that, before starting the join procedure, a new nodeolitins its source and sink
tree structures, using ten TAMI-selected agents. It aldaind bandwidth information
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for the branches in the source and sink trees. In this waynveheew node joins, all
current peers should already have information on sourcesankdtrees and tree-branch
available bandwidth, which can be sent to the new node. \Wetpeers’ source trees and
its own sink tree, the new node can calculate the availabte\with from other peers
to itself, using the algorithms proposed in BRoute (see @hreg). The peer that has the
largest available bandwidth is selected as the parent.riibdified ESM is denoted as the
“ESM-bw” version of ESM.

Using 45 Planetlab nodes, we did experiments using ESM-tWEBM-rtt, respec-
tively. In these experiments, we only focus on the join penfance since only the join
procedure of ESM uses the TAMI system. To emulate real woeldvark connection
speeds, we intentionally selected ten nodes that had lassliibps available bandwidth.
The multicast source was on one well provisioned node, sgnadiit a data stream in
a pre-configured 420Kbps rate. The other 44 nodes were gl@md joined the system
sequentially.

We use Figure 7.10 to illustrate how ESM-bw improves thegrerance for an indi-
vidual client. The x-axis is the running time (ignoring thmé¢ used to measure source
and sink trees), and the y-axis is the data stream recenatggat the client. The data
points marked with A" are from ESM-bw, and those marked witky”™ are from ESM-rtt.
Disconnected points correspond to parent changes, ieendWw node switches to a new
parent, hoping to improve its performance. We see that E&Mdn immediately find a
good parent, while ESM-rtt experienced several parentgésover the first 100 seconds
before identifying a good parent.

Figure 7.11 quantitatively compares the performance of EH8NVand ESM-rtt for all
clients, using the cumulative distributions of three nestrithe join time (graph (a)), the
number of parent changes during the join time (graph (b),the relative receiving-rate
during the join time (graph (c)). Here the join time is defiredthe time to reach 90%
of source sending rate (420Kbps); and the relative recgikate is defined as the ratio
between the average data stream receiving-rate of a chertha source sending-rate. We
can see that 90% of ESM-bw clients have join times less thae&8nds, while over 50%
ESM-rtt clients have join times over 60 seconds. The sniglés time is 6 seconds, as
we sampled the performance every 6 seconds. The longelinogfor ESM-rtt clients is
because they could not find a good parent quickly—over 60%earhtexperienced at least
four parent changes (see graph (b)). Parent changes diadfettt the relative receiving-
rate during the join time, as shown in Figure 7.11(c), 70% 8#VErtt clients have rela-
tive receiving-rates less than 0.5, while over 80% of ESMdhents can achive relative
receiving-rates that are over 0.8. Overall, we concludettir@ TAMI system can indeed
significantly improve ESM clients’ performance by providibandwidth information.

Detailed analysis shows that the main reason why ESM-bvoped better than ESM-
rtt in this experiment is the existence of a significant numdfeslow clients. The slow
clients generally do not perform well as parents, and thelaydis poorly correlated with
bandwidth. Without these slow clients, ESM-rtt performsyweell, as confirmed by our
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experiment on another set of Planetlab nodes. Also notenmtbaxclude ESM-bw’s tree
measurement time (around 60 seconds) from the join timegiatialysis. For this reason,
the comparison may not be completely fair, although thissuesament time can be hidden
if tree measurement is run as a background service on clogtgan

From the architecture perspective, we have treated ESM peetlients of our TAMI
system. At first, since ESM is a peer-to-peer applicatioomaty appear that the P2P
architecture illustrated in Figure 7.2(a) is a better fitislib actually not the case, because
sink tree measurement needdigerseset of agents that have significantly different views
of Internet routing, and these agents should have enoudreapsbandwidth. ESM peers
may not have sufficient diversity and bandwidth to functisretiective agents, especially
during the startup phase of the system.

7.4.2 Testbed Performance Monitoring

The TAMI system is deployed on Planetlab, making it easy tmitoo Planetlab’s per-
formance. Compared with other monitoring efforts, such as1@n [3], Iperf bandwidth
monitoring [14], and pairwise delay monitoring [13], a thgfuishing characteristic of
the TAMI system is that it significantly improves the avallabandwidth monitoring ca-
pability on Planetlab by supporting the tree operationslusethe BRoute system. As
demonstrated in Chapter 6, for a case study using 160 Pddnsdldes, 80% of end-to-end
available bandwidth estimates using BRoute had an erroessf than 50%. The TAMI
support also makes the BRoute system very efficient. To dstraia this capability, we
write a simple client-side code (around 30 lines) using tke tibrary interface provided
by the TAMI system, and run it on each Planetlab node. Th#tésPlanetlab node is both
an agent and a client for the TAMI system. This client-siddecgends requests to the
system to measure both its source tree and its sink tree. Whas the tree data, it sends
them to a central storage node, where full mesh bandwidthaat be calculated. We ran
this code on 190 Planetlab nodes, and it only took 652 sedorfassh.

Besides the above available bandwidth monitoring, we atswlacted other types of
monitoring tasks using the TAMI system and obtained soménpirgary yet interesting
results. For example, using TAMI's PM-SYN algorithm, fullesh ping measurements
become very easy—only one request message is enough. Fig@elots the perfor-
mance of TAMI in measuring full-mesh end-to-end delay fob Planetlab nodes. In this
figure, the x-axis shows the time used by TAMI, in log scale; left y-axis, correspond-
ing to the dot points, is the number of measurements finishedé¢h one-second interval,
and the right y-axis, corresponding to the curve, is thegreage of measurements that
have been finished for the request. Although the total tineel us 1855 seconds (around
31 minutes), corresponding to a response time of 42ms, 98ftealsurements are fin-
ished within 424 seconds, the rest 1431 seconds are duewside nodes. In a similar
way, we also conducted a full-mesh traceroute measuremsinig TAMI, where the total
measurement time is 7794 seconds, and 98% finished withis@&shds.
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Figure 7.12: Performance of? ping measurement on Planetlab

7.4.3 Route-Event Monitoring and Diagnosis

Route-event diagnosis is another important applicatiahd¢an be supported by the TAMI
system. Route event refers to network anomalies that caetserk connectivity prob-
lems. Typical examples include broken links, route loops, &s mentioned earlier, there
have been some route-event diagnostic systems [48, 119hnAnon property of these
systems is that they use passive monitoring methods toifgentite events. For example,
the AS-level route-event diagnosis system presented ihUyg@& BGP update messages,
and the Planetseer system [119] monitors the TCP perforenaiha web-proxy’s clients
to identify possible route problems on the paths betweemwti® proxy and the clients.
Based on the TAMI system, we propose to use active method®taton IP-level route
performance. This method uses IP-level source and sin& toggrovide a complete view
of end-node routes, and then focuses on monitoring the toedstect route events. This
way, we monitor all routes that may be used by the end nodégstahose currently used
for data transmission.

The implementation of our system has three characteristast, we use IP-level
source and sink trees to monitor end-users’ routes. Foheaerconsideration, we only
focus on the first few layers of the IP-level trees. This mdtisonot only efficient in
reducing monitoring load, it also tends to be effective lnsearoute events often occur
in small ISPs which are close to end users (i.e., we assumiIS§Ra have more limited
management resource or capability to maintain their ndtsjoiSecond, we focus on two
types of route eventsdeterministicandpartial route events. Deterministic events refer
to those route events that are persistent during a mongtanberval. The rest are partial
events. For example, a broken link is a typical example cdraeinistic route events, while
route loop can be either deterministic or partial. Packss$ loan also cause connectivity
problem which may appear as partial route event. Therefseealso consider packet
loss as a route event in our diagnostic system. Third, wewgearteasurement tools for
route-event diagnosis—ping and traceroute. Ping uses fewar probing packets, while
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traceroute can obtain information for each hop.

Below we first present an empirical study on the number ofe@vients that can be
measured in networks. We then describe the diagnosis sl&da# route event. We finally
explain the design and implementation details of the rewtmt diagnostic system.

Observations of The Two Types of Route Events

To understand how frequently deterministic and partiate@vents occur in networks, we
collect IP-level sink-tree measurements for 135 Planettades using the TAMI system.
We found that only 23 nodes did not experience any connécfivbblem. Among the
other nodes, 29 nodes experienced at least one packetvieists €8 nodes experienced
only deterministic events, 38 more observed both detestiinand partially events, and
75 nodes experienced only partial events. These resulis thlad route events are not rare
on today’s network.

The root causes of these route events are generally hareéntifid Our diagnostic
system can only provide possible explanations or auxiliafgrmation to simplify the
diagnostic operations of human operators. Sometimes, ta eMent detected this way
is not a real event, but a measurement artifact. An exampleeisncomplete traceroute
due to routers that are pre-configured not to respond to ICkdBipg packets. Since
these routers do forward real data packets, they do not cause events for real user
traffic. Another example is routing policies that can geteeféake” route events. In our
measurements, we found that the IP-level sink tree of phdepa-2.hpl.hp.com
has a router where 16 other nodes’ traceroutes toward tligt stop at that router, while
other 117 nodes can pass it successfully and reach that ndeewere later told that
that this node has a routing policy that only allows node#$ Witernet2 access to reach
it. Obviously, to figure out such a policy, one would need donkaowledge to develop
highly customized algorithms. For example, in this example would need ways to
differentiate Internet2 nodes with the others. Next, wecdbe a detailed case study on
how we used IP-level sink-tree information provided by tAeMT system to diagnose a
route event.

Detailed Case Study of A Route Event

Around 00:30am EDT on 08/10/2005, we found that www.emulatowas inaccessible
from one of our home machines but it was accessible from wsityeffice machines. The
home machine uses a commercial DSL service for Internesacde figure out the prob-
lem, we used the TAMI system to launch a sink-tree measurefoemvww.emulab.net
(with IP address 155.98.32.70) from all the 200 Planetlatesavhere the TAMI system
was deployed at that moment. This request took 4.5 minu#&sg@conds) to finish. Based
on the route data, we plotted the AS-level sink tree for thatidation in Figure 7.13. In
this figure, the labels on the links have the forny?”, whered is the total number of
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Figure 7.13: AS-level sink tree of www.emulab.net at 00r24a8/10/2005

traceroutes that pass that link, amds the number of traceroutes that can reach the des-
tination. Note that, due to the definition of AS-level tregs {echnical definition can be
found in Section 4.1 of [60]), the total number of ingressémautes into an AS can be less
than the egress traceroutes from that AS. An example is ABBRigure 7.13, which has
four more egress traceroutes than ingress traceroutes)dethe AS tree branch for these
four traceroutes start from AS6395.

From Figure 7.13, we see that only AS11537 (Abilene Netwbdd good reachability
to the destination, while measurement packets from othesABostly disappeared after
entering AS210. That implies something was wrong with AS216uting, specifically
with paths from non-Internet2 networks. We also looked at ItP-level sink tree and
found that there was a routing-loop between two routersiwits210. At that moment,
we thought AS210 was doing network maintenance and the gmolVas going to be
temporary.

At 11:59am EDT the same day, we found that the problem stitipeed. We con-
ducted another sink-tree measurement using the TAMI sy6tém 153 Planetlab agents),
and found that although the sink tree is slightly differehg problem remained the same
(see Figure 7.14). For the 22 traceroutes entering AS210 fron-Internet2 ASes, 21 of
them did not reach the destination. After this measuremeatiealized something was
wrong in AS210, and confirmed with Emulab staff that AS210 fading problems with
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Figure 7.14: AS-level sink tree of www.emulab.net at 11r§9a8/10/2005

commercial ISPs.

This is an excellent example of detecting a partial routeevéclearly demonstrates
the benefit of IP-level sink-tree measurements in routedesiagnosis—with measure-
ments from only one or a few agents, it is often not possibfarpoint the problem.

An Example Route-Event Diagnosis System

We now describe a route monitoring and diagnostic systenis dystem is designed as
a client software of the TAMI system. That is, it uses the TA®Yktem to measure IP-
level sink trees but maintains all information on the clisitte. Figure 7.15 shows how
the system works. Roughly speaking, this system includegtbomponents: bootstrap,
monitoring, and diagnosis. The bootstrap component lizéa the system by obtaining
benchmark route information for each end node in the sysieemonitoring component
periodically updates the benchmark information; whiledregnosis component launches
measurements for specific route changes to find out the pessabises of the events.
Below we describe each component in more details.

The bootstrap component has three responsibilities: {tlaliming the system by pro-
viding a complete set of route information from each end n¢&eperiodically updating
these route information, and (3) measuring the sink treeerfd nodes. The complete set
of route information is used for constructing IP-level strées, based on which monitor-
ing can be done more efficiently by only measuring each traedtrjust once. Since route
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Figure 7.15: Node connectivity diagnostic framework

information can become stale, these trees need to be upsiaiedically by re-measuring
all the routes. The update period depends on applicatianmegents. Our system uses a
five-hour update period, which is sufficient for experiméptapose.

When measuring IP-level sink trees, we also need to spdwfdepth of the tree. This
is an important parameter that not only affects tree siagsalso determines the scope of
route problems the system can monitor and diagnose. Owerdwsystem builds four-level
trees, since they are the most critical part of the networlapplications like the BRoute
system. This parameter can of course be customized foreliff@pplications. The tracer-
oute data used for IP-level sink-tree constructions aresdiad into three categories ac-
cording to the type of information they can provide for trearithes. The first category
includes those complete routes that can reach the destind&oute data in this category
are directly used for sink-tree constructions. The secaidgory includes a particular
type of incomplete routes whose last hop is within the shele-that is already constructed
using the first category of route data. Route data in thisgcayecan still be used if they
introduce a new sink-tree branch. The third category iresuttie incomplete routes whose
last hop is not in the sink tree. The third category is notwidef our monitoring purpose
since they can’t observe any events in the tree. Note thatl#ssification can change
when routes change, and they need to be updated during edateygeriod. For all routes
in the first and second categories, the system further casguty measurements towards
the destination, in preparation of the monitoring operatio

The second component of the system is the monitoring conmori® reduce over-
head, monitoring measurement for each destination are dsing ping—each selected
agent does three consecutive ping measurements towardedtieation. If all ping mea-
surements reach the destination, we claim there is no rogiet® Otherwise, the di-
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agnostic component—the third component in this system-+visked. The diagnostic
component works as follows.

1.

It first checks if there is at least one ping packet readhesléstination. If yes, we
claim it is only aloss eventand finish the diagnostic procedure.

Otherwise, if none of the three ping packets reach thédin, it could be a poten-
tial disconnectivity problem. We then launch three trao&ganeasurements toward
the destination to obtain more detailed route informatibowa the path. If at least
one traceroute successfully reaches the destination, pa@tra good-traceroute-
bad-ping eventin our experiments, we saw such events but we are unabl@laiex
the real root cause.

If none of the three traceroutes can reach the destinat®have a high confidence
in claiming a diconnectivity event. We then check the cotimigg from other agents
to see the scope of the disconnectivity event. This is whezdree information is
used. The simpler case is when traceroute measurementsigiige the tree, we
can not further diagnose the event since it is outside thpesob our diagnostic
capability. In this case, we reporbaeak-outside-tree event

If the traceroute measurement stops within the tree, Wé&mow which branch the
event is on. We can then use other agents that also travextskréinch to double-
check the event. If all other agents can not reach the déstmaeither, we then
report adeterministic dicconnectivity everdtherwise, we report partial discon-

nectivity event

Note using the traceroute results in this diagnostic proedve can also diagnose the
route-loop evenais demonstrated in the previous subsection. Although lustriated in
Figure 7.15, our system will also report this type of event.

We ran the system for 42 hours using 136 Planetlab nodes tsatEss. During this
period, 88 nodes experienced at least one route event. Artmen88 nodes, 31 nodes
experienced only one type of events, 35 experienced twatypevent, 16, 5, and 1 nodes
experienced three, four, and five types events respectildgket loss seems to be the
most popular type of events—78 nodes experienced such;dhenbext type is break-
outside-tree type of events, with 58 nodes experiencinthé;third is good-traceroute-
bad-ping, with 22 nodes experiencing it; while we saw noedabp event. Also, when
a destination experienced multiple same-type eventsg tisnts are often due to a same
problematic router. For example, 41 nodes saw at least fackgi-loss events, among
them, 21 nodes’ packet-loss events were due to problemsamam®uter. We also looked
at the events from the source trees of these 136 nodes. Bkegptwere only 46 nodes
experiencing route events, the other results are similtdr thbse from the sink trees. For
example, packet loss is still the dominant popular event-efahe 46 nodes experienced
such events.
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7.5 Related Work

Based on their application scenarios, existing networksuesament infrastructures can be
separated into two groups. One group includes those desglopISPs, like IPMON [49]
and NetScope[47]; they rely on passive measurements amng fat network internals.
The other group includes those designed by the networkisgareh community, they
mostly rely on end-system based active measurements and ttend-to-end perfor-
mance. Representative systems in the second group inchuke[18], Scriptroute [110],
NIMI [94], and ANEMOS [25]. These systems are general infratures that offer func-
tions such as automated deployment, privacy protectiahsanurity. TAMI also belongs
to the second category, and shares many of the features abtiwe systems. However,
TAMI's focus is on supporting topology-aware measureméntsollecting and maintain-
ing topology information and scheduling capabilities.

We mentioned that TAMI can be used as a data sharing platféms. feature is also
discussed in ATMEN [73], which proposed a communication emordination architec-
ture across multiple administrative entities to achievaous goals including reuse of
measurement data. SIMR [27] also proposed an infrastreittushare measurement data
collected by different research groups. Since it relies)dareal data sources, it needs to
address issues like data format compatibility, privacyg s@curity, many of which TAMI
does not have to consider.

An important design goal of TAMI is to facilitate network ewtediagnosis by sim-
plifying complicated measurements. It potentially can becuto automate the diagnosis
operations in systems like PlanetSeer [119], which caslaveb proxy logs with Internet
traceroute data to detect changes in end-to-end perfoenanc

While most end-system based monitoring systems, incluthiegTAMI system, rely
heavily on active measurements, several groups are alsorigxpthe use of passive mea-
surements. One example is NETI [69], whose monitoring d&®/include collecting data
from regular end users by monitoring traffic on their systems

The TAMI system currently implements four probing techm@gu ping, traceroute,
IGI/PTR, and Pathneck. While ping is implemented mainlydealuation purposes, the
other three tools are useful because they help collectégyand bandwidth information
of source and sink trees, which is our focus. Of course, thillTgystem can also inte-
grate other measurement techniques such as those esgjrpatimcapacity [32, 45, 77],
available bandwidth [32, 65, 101, 113], and path loss [102,187].

7.6 Summary

In this chapter, we described the design and implementafiaiTAMI prototype system.
We evaluated the performance the TAMI system on Emulab, aad three representative
applications to demonstrate TAMI’s functionality. We shemthat TAMI's scheduling
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functionality significantly reduces measurement resptings and its topology-awareness
greatly simplifies network monitoring and diagnosis. Udimge applications, we demon-
strated the benefit that the TAMI system can provide. Spedificthey exemplify ap-
plications that require a global view of network performamaformation (the diagnosis
application), fast measurement speed (the diagnosis anchtimitoring applications), a
convenient application interface (ESM and the monitoripgle&ation), and the ability to
obtain available bandwidth for large-scale systems (ES#1the monitoring application).



176 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE



Chapter 8

Conclusion and Future Work

Available bandwidth is an important metric for network moning and diagnosis due to
its role in quantifying data transmission performance. sTdissertation studied how to
estimate available bandwidth and locate bandwidth batlkrinks, and how to provide
systematic support for these measurement operations.ifispky we developed tech-
niques to estimate end-to-end available bandwidth andddzandwidth bottlenecks. We
also studied the general properties of Internet bottlesieleisight into bottleneck proper-
ties helped us solve the problem of estimating availabledtdth for large-scale network
systems. We proposed a monitoring and diagnostic platfbahgupports all the above
bandwidth measurement operations. In this chapter, wepfioside a detailed description
of each contribution of this dissertation, and then diséutse work that can build on the
results of this dissertation.

8.1 Contributions

8.1.1 Adaptive Packet-Train Probing for Path Available Bardwidth

As a first step towards estimating end-to-end available wadtd, we have designed a
single-hop model to study the detailed interaction betwgebing packets and back-
ground traffic packets. We found that the arriving rate ofiheket-train at the destination
is a function of its sending rate at the source and backgrawaffic load, and that the
path available bandwidth corresponds to the smallest sgmdie where the arriving rate
equals the sending rate. That smallest sending rate is whaialled the turning point.
Based on this insight, we developed the IGI/PTR measuretaehtwhich adaptively ad-
justs a packet-train’s sending rate to identify the turrpognt. We have shown that this
tool has a similar measurement accuracy (over 70%) as aibbks like Pathload, but has
a much smaller measurement overhead (50-300KB) and measuatréme (4-6 seconds).
That makes IGI/PTR very attractive to network applications

We also studied the various factors that affect the measmeaccuracy of IGI/PTR.

177
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We found that (1) probing packet size can not be too smallalee small packets are
subject to measurement noise; however, once they are dagdarge, say 500 bytes,
measurement accuracy is no longer sensitive to packet @z&Julti-hop effects are an
important factor that can introduce measurement errortiNobp effects can be classified
into pre-tight-link effect and post-tight-link effect. Weeund that it is the post-tight-link
effect that introduces most of the multi-hop measurememtr&r because pre-tight-link
effect can be mostly smoothed by the background traffic otighe¢link, thus having very
small impact on measurement accuracy. For the same reassrenly generated probing
packet-trains do not significantly affect measurement i@y either.

Finally, to demonstrate the applicability of the idea of atilee packet-train probing,
we integrated the PTR algorithm into TCP, and designed a nef® Startup algorithm—
TCP Paced Start (PaSt). We showed that this algorithm camfisantly reduce TCP
startup time and avoid most of packet losses during startup.

8.1.2 Locating Bottleneck Link Using Packet-Train Probing

Our technique for locating bottlenecks—Pathneck—is actliextension of the packet-
train probing technique used for PTR. By appending smalchufully-configured mea-
surement packets at the head and the tail of the PTR packetvra create the ability to
associate bandwidth information with link location infation. The two most intriguing
properties of Pathneck is that it only needs single-endrobanhd that it is extremely light-
weight: it uses upto ten packet trains to finish the measungmaich is several orders of
magnitude lower than other bottleneck locating tools. gs&iath Internet experiments and
testbed emulations, we showed that the location accuraay Rathneck is over 70%. The
main reason that Pathneck makes mistakes is the existemacknéfthat has very similar
available bandwidth with that of the real bottleneck linke \AIso evaluated the tightness
of the path available-bandwidth bound measured from PakinExperiments on RON
showed that the bound is actually fairly tight. Therfore;, &pplications that do not re-
quire precise values of available bandwidth but have omlglsiend access, Pathneck is a
good option.

8.1.3 Internet Bottleneck Properties

The single-end control and small overhead properties dP#ikneck tool make it possible
for the first time to conduct an Internet-scale measurenmadyof bottleneck properties.
Our measurement study used around 100 measurement saoroeR®ON, Planetlab, and
an Tier-1 ISP, and selected destinations based on global tBk®&s to cover the whole
Internet. We found that (1) over 86% of Internet bottleneaies within four hops from

end nodes, which validates the popular assumption thatkettéoottlenecks are mostly
on Internet edges. (2) Internet end-user access links #éirda@ninated by slow links,

with 40% of which slower than 2.2Mbps. (3) Internet bottlekéocations are not very
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persistent because of route changes and path load dynabegending on whether we
focus on link-level or AS-level bottlenecks, only 20% to 3@%bottlenecks are perfectly
presistent. (4) Bottleneck links, link loss and link delag all considered as signals of
path congestion, but only bottleneck links and packet lasshe correlated (for 60% of
cases), while the correlation probability between bo#tlinks and high-queueing delay
links is very low (only upto 14%).

8.1.4 Source and Sink Trees and The RSIM Metric

To address the problem of large-scale available bandwistilnation, we proposed the
source-tree and sink-tree structures, at both the IP-Evelthe AS-level, to capture the
topology information of end nodes. Source and sink treesamngposed by all the up-
stream and downstream routes that an end-node uses. Wexisadiee traceroute and
BGP data to show that the tree structures are indeed verg tboeeal trees, and if we
only focus on the first four layers—where most bandwidth Iboticks locate—the tree
sizes are also limited: over 90% have only 10-20 differeahbhes. This tree concept not
only helps us develop a large-scale available bandwiddraénice system, it is also very
important in route-event diagnosis and multi-path routing

Similar to the idea of source and sink trees, we also proptsedRSIM metric to
guantify route similarity between an arbitrary pair of eratias. RSIM can be measured
using only a small number of random traceroutes, and it captthe similarity of both
upstream and downstream routes. We show that RSIM can Hg aasd for path-edge
inference.

8.1.5 Large-Scale Available Bandwidth Inference

Based on the insight that most Internet bottlenecks are tmret edges, and equipped
with the source and sink trees, we developed the BRoutermystdich can infer the
available bandwidth of allV? paths in aN-node system with only@(N)) overhead.
The key operations of the BRoute system are to label the n@sches with bandwidth
information, and then infer which two branches (one fromgbarce node’s source tree,
the other from the destination node’s sink tree) are usethtoreal end-to-end path. The
first operation is currently done using Pathneck, whosddratk information can help
us decide if the bandwidth information should be used foisth#ce tree or the sink tree.
For the second operation, we developed an inference digobased on AS-level source
and sink trees, where we first identify the common-AS wheeeetid-to-end path has the
highest probability to pass, we then map the common-AS tdRHevel tree branches.
Planetlab experiments showed that this algorithm has ov&s 8f inference accuracy.
Overall, available bandwidth inference accuracy is ové630r 80% of the paths in our
case study.
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8.1.6 Topology-Aware and Measurement Scheduling

To lower the bar of using the techniques that we have devdlopeluding IGI/PTR, Path-
neck, and BRoute, we developed the TAMI system to systeaiBtisupport these avail-
able bandwidth measurement operations. We identified twanitant features that are
needed by such an infrastructure but are not supported birexmeasurement systems—
the topology-awareness and the measurement schedulingoiiality. For BRoute, the
topology-awareness is responsible for obtaining the trtemation of end nodes, while
the measurement scheduling functionality is importantafayiding packet-train probing
interference. These two features can both be used for gpipiications. For example, the
topology-awareness is critical for tomography, and thesueament scheduling function-
ality is important for systems to support multiple applicas whose measurements may
interfere with each other. We showed that the TAMI systemloamnised to improve the
joining performance of End System Multicasting, largels@vailable-bandwidth moni-
toring, and route-event diagnosis.

8.2 Future Work

At least four areas of research can leverage on the restittisidissertation: improving the
current systems, available bandwidth measurement inrdiffeenvironments, supporting
new applications, and next-generation network architeatesign.

8.2.1 Improving The Current Systems

Quite a few features of the monitoring and diagnosis work@néed in this dissertation can
be improved. First, we can improve the BRoute availabledibadith inference accuracy
by using both IGI/PTR and Pathneck for tree-branch bandwadtimation. That is, we
can use IGI/PTR to obtain a more accurate estimation for paahable bandwidth, while
using Pathneck to tell if the path available bandwidth stidnd used for source-segment
or sink-segment. Second, the evaluations of the BRoutersyahd the RSIM metric are
still limited by the diversity of the end nodes that we haveess to. When more vantage
points are available, it is necessary to do larger-scalkiatians than those presented in
this dissertation. Third, this dissertation only presentiiagnosis system for route events,
which are easier than diagnosing available-bandwidtheélavents. Part of the reason
is that we have very limited experience in network operatiand very limited network
internal information to study available-bandwidth rethevents. With more experience
and information, we expect to be able to identify more eveotsexample, network path
congestion. Although Pathneck is developed towards thed god we have shown that
Internet bottlenecks have a close relationship with paldsst, we were not able to make
claims in terms of diagnosis because we did not have netwekrial information to con-
firm the congestion events that we identified. When such inédion is available, it will
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be very interesting and important to study how well congestivents can be identified.
Fourth, some bottleneck properties need to be explorededeEpr example, the analysis
on the relationship between bottleneck link and link detastill premature, partly due to
the difficulty of obtaining a good estimation of link delaywill be interesting to explore
other data sets or experimental methods to get a betterstadding of this problem.

8.2.2 Available Bandwidth Measurement in Different Environments

The discussion of this dissertation has three importantragsons about the measurement
environment: (1) we only consider wired network, where lialpacity is constant, and the
dominant factor affecting available bandwidth is backgwbtraffic; (2) network routers
use FIFO packet scheduling algorithm, where all packets gfa®ugh a same queue in
the order of their entering time; and (3) we have dedicategsmement end hosts, which
have low CPU load, and the packet timestamp measurementigrayis only determined
by OS and is predictable. In practice, it is not rare that sofrieese assumptions can not
be satisfied, and we need more research work to understandohaecurately measure
available bandwidth in those environments.

For example, wireless networks directly break assumptipaiid often do not follow
assumption (2). On wireless networks, link capacity can yreathically adjusted, and
both environment noise and access-point distance canakededa transmission rate. Fur-
thermore, wireless networks often use either DCF (DistebiCoordination Function) or
PCF (Point Coordination Function) protocols for packetestthing, neither of which is
FIFO. That means we probably need a completely new set ofitgebs to address avail-
able bandwidth estimation problem on wireless networkstisg from the very definition
of “available bandwidth”.

Assumption (3) can also be violated if a measurement agités not the only code
running on an end host. A typical example is the Planetlalespdhich are shared by a
large number of projects. Under this condition, the padket$tamps measured by an ap-
plication can have a big difference with the real sendingoeiving times on the network
interface cards. That is one of the major barriers for usikigtieg available bandwidth
measurement techniques on Planetlab. A possible sol@itonuse some filtering method
to identify and discard those measurements using incaireestamps.

8.2.3 New Applications of Available Bandwidth

In this dissertation, we have explored several types ofiegipbns that require available
bandwidth information. These include TCP startup, End &ysMulticasting, overlay
routing, and multihoming. There are certainly more appicces worth studying. Two
important emerging applications are VoIP and IPTV. VolPftem designed in a way that
voice traffic share the same link with other IP traffic (e.gejwiraffic). It is preferable to
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maximize the utilization of access-link capacity so thatedraffic only uses the band-
width it is supposed to, which is often fairly small (e.g. Kbps). Achieving that requires
an accurate information of the access link capacity so tieatam know exactly the amount
of bandwidth that can be used for best-effort IP traffic. Tisabandwidth information is
critical for the packet scheduling in VoIP devices. For IR®dch channel generally oc-
cupies several Mbps of bandwidth, to support multi-chatP€V, available bandwidth is
again very important for various scheduling and monitoopgrations.

8.2.4 Implications for Next-Generation Network Architecture

Our research experience has shown that it is hard to mohegdnternet, and a fundamen-
tal reason is that the current Internet architecture doekanee a good set of performance
monitoring capabilities. That is, today’s networks do ne¢jg track of some types of key
information, or do not provide information in the best wayr Example, router queue-
ing delay is a fundamental network performance metric. H@reeven with a decade
of research and engineering effort, there is no good way taimlbouter queueing delay
information on today’s Internet. Technically, this is ndtad problem—a router simply
needs to time special packets when they enter and leaveaa.réith this capability, many
heavy-weight active measurement techniques can be implechasing light-weight ping-
like measurements. Another example is the timestampswedusy routers when they are
qgueried byICMP_TIMESTAMPpackets. Although the ICMP protocol defines three dif-
ferent timestamps, router vendors only use one of thosestangs. That forces people to
spend time and energy to design techniques like cing [28]dasure metrics like ICMP
generation delays. Also these timestamps are in millisgiowhich is not precise enough
for applications that need micro-second information. Thiedtexample is the router IP
addresses that are obtained from traceroute measurentaunts. IP address is often an
interface IP address instead of the loopback address obtlterr A consequence of this
implementation is that traceroutes from different end sisesult in different IP addresses,
referred as IP aliases, for the same router. That makesyithaed to correlate route data
measured from different vantage points. Although techesgike Ally [109] have been
developed to solve this issue, they are subject to pradtioghtions and do not always
work.

Note that implementing these features is not a hard probl&he key challenge is
providing such functionalities while respecting otherhatectural requirements such as
scalability and security. The reason is that these featuoe®nly give end users more
methods to obtain network internal information, but theyoaprovide malicious users
more power to abuse network systems. Therefore, we musdesrkese features not just
from a performance perspective, but from a higher architattevel.

In this context, interesting future work is to (1) identifyetfundamental performance
metrics that are needed for next-generation networks aplitapons, and (2) design and
develop techniques to measure these metrics, and explengotdsible mechanisms and
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protocols that are needed to maintain, update, and digtribis information in a secure
and efficient way. During this process, one will want to lobkther new network architec-
ture research proposals, such as the 100x100 project fOEIND (Future Internet Net-
work Design) initiative [20], and the GENI (Global Envirommt for Networking Investi-
gations) initiative [21], to understand how the design fit$he larger picture. This effort
hopefully can identify the general principles that can bedu® guide the design and de-
velopment of performance monitoring and diagnostic coneptsifor the next-generation
network architectures.

8.3 Closing Remarks

Available bandwidth measurement has been shown to be abdelpeoblem. However
related techniques have not been widely used or integrateghopular applications. One
reason is that Internet bottlenecks are still on the edgeJink capacity seems to be al-
ready a good metric to get a rough idea about the performandata transmissions. At
the same time, link capacity information is often pre-kn@ma does not require measure-
ment. The second reason is that, as our measurements shmmemtdaternet end-user ac-
cess links are still dominated by slow links, which have enjted dynamics in terms of
available bandwidth change. Both factors contribute tortigression that available band-
width is not important. However, | believe this situationleioon be different, with the
deployment of high-bandwidth applications like IPTV. | aooking forward to see more
and more network applications to integrate available badithwmeasurement techniques
to obtain network performance information and to improveirttadaptability. For the
same reason, | believe the techniques presented in thext@disen on available-bandwidth
monitoring and diagnosis have a bright future.
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