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Abstract

Network monitoring and diagnosis systems are used by ISPs for daily network manage-
ment operations and by popular network applications like peer-to-peer systems for per-
formance optimization. However, the high overhead of some monitoring and diagnostic
techniques can limit their applicability. This is for example the case for end-to-end avail-
able bandwidth estimation: tools previously developed foravailable bandwidth monitoring
and diagnosis often have high overhead and are difficult to use.

This dissertation puts forth the claim that end-to-end available bandwidth and band-
width bottlenecks can be efficiently and effectively estimated using packet-train prob-
ing techniques. By using source and sink tree structures that can capture network edge
information, and with the support of a properly designed measurement infrastructure,
bandwidth-related measurements can also be scalable and convenient enough to be used
routinely by both ISPs and regular end users.

These claims are supported by four techniques presented in this dissertation: the IGI/PTR
end-to-end available bandwidth measurement technique, the Pathneck bottleneck locating
technique, the BRoute large-scale available bandwidth inference system, and the TAMI
monitoring and diagnostic infrastructure. The IGI/PTR technique implements two available-
bandwidth measurement algorithms, estimating backgroundtraffic load (IGI) and packet
transmission rate (PTR), respectively. It demonstrates that end-to-end available bandwidth
can be measured both accurately and efficiently, thus solving the path-level available-
bandwidth monitoring problem. The Pathneck technique usesa carefully constructed
packet train to locate bottleneck links, making it easier todiagnose available-bandwidth
related problems. Pathneck only needs single-end control and is extremely light-weight.
Those properties make it attractive for both regular network users and ISP network opera-
tors. The BRoute system uses a novel concept—source and sinktrees—to capture end-user
routing structures and network-edge bandwidth information. Equipped with path-edge in-
ference algorithms, BRoute can infer the available bandwidth of allN2 paths in anN-node
system with onlyO(N) measurement overhead. That is, BRoute solves the system-level
available-bandwidth monitoring problem. The TAMI measurement infrastructure intro-
duces measurement scheduling and topology-aware capabilities to systematically support
all the monitoring and diagnostic techniques that are proposed in this dissertation. TAMI
not only can support network monitoring and diagnosis, it also can effectively improve the
performance of network applications like peer-to-peer systems.
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Chapter 1

Introduction

1.1 Network Monitoring and Diagnosis

A network monitoring and diagnosis system periodically records values of network perfor-
mance metrics in order to measure network performance, identify performance anomalies,
and determine root causes for the problems, preferably before customers’ performance is
affected. These monitoring and diagnostic capabilities are critical to today’s computer net-
works, since their effectiveness determines the quality ofthe network service delivered to
customers. The most important performance metrics that aremonitored include connectiv-
ity, delay, packet loss rate, and available bandwidth. (1) Network connectivity is probably
the most important metric for a network monitoring and diagnosis system, since the top
priority of a network service is to guarantee that any pair ofend nodes can communicate
with each other. Due to its importance, all network layers, starting from the physical layer,
provide mechanisms to automatically monitor network connectivity. (2) Network delay
is perhaps the most widely used performance metric in today’s network applications. It
is monitored mainly at the end-to-end level using ping. Network delay can be used to
directly evaluate network path performance, especially for small data transmissions. (3)
Packet loss rate refers to the probability that a packet getsdropped on a network path. It
is mainly monitored at router interfaces using SNMP packet statistics. For ISPs (Internet
Service Providers), since packet loss rate is a key marketing metric, a lot of monitoring
and diagnostic effort is devoted to reducing packet loss. For applications, however, packet
loss rate does not always significantly affect the performance of data transmissions. For
example, single packet loss has a very limited impact on bulkdata transmissions that use
state-of-art TCP protocols. (4) Available bandwidth is another important performance met-
ric, which directly captures data transmission speed. Although network delay can be used
to evaluate the performance of a network path for small data transmissions, the available
bandwidth metric is needed for larger data transmissions. However, available bandwidth
is much less popular than the delay metric due to its high measurement overhead. People
instead use the link load metric, which can be more easily measured (e.g., using SNMP),

1
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to capture available bandwidth information.
Network performance metrics can be measured at either a linklevel or an end-to-end

level. Link-level information is easy to obtain since most network devices support link-
level performance measurements. For example, link packet loss rate and link load can be
measured using the SNMP protocol, and link connectivity canbe monitored using routing
protocol heart-beat messages. The problem with link-levelmonitoring, however, is that it
is hard to extrapolate end-user performance purely based onlink-level information. This
is because end users’ data flows often go through multiple ISPs’ networks, and it is practi-
cally impossible to obtain link-level information from allthese ISPs. Even if such access
is possible, problems still remain: (a) fine-grain synchronization of the measurements on
all the links along an end-to-end path is a hard technical problem, (b) it is often not im-
mediately clear how to assemble the performance information (e.g., path delay variance)
from multiple links to infer that of the whole path; (c) the overhead of transmitting and
managing each link-level measurement can be prohibitive due to the large number of end
users and the large number of links that each end-user may use.

End-to-end monitoring matches the experience of a real user’s data transmission more
closely. Since end-to-end monitoring does not require network internal information, it is
not limited by ISPs’ control over such data and can be easily used by regular end users
or applications. For the same reason, end-to-end monitoring sometimes incurs much less
measurement and management overhead. This is why ISP network operators also use
end-to-end monitoring techniques such as pairwise pings, to monitor their network’s per-
formance, even though they also have access to link-level information. Despite these in-
triguing properties, end-to-end monitoring also has an obvious problem: it is often hard
to design a technique to measure end-to-end performance. Currently the two most popu-
lar end-to-end monitoring techniques are ping and traceroute. Both can be used for delay
and connectivity measurements, and traceroute is also popular for route measurements. It
is much harder to obtain information on other metrics like packet loss rate and available
bandwidth, which is why both are still active research topics.

My thesis research focuses on end-to-end available bandwidth monitoring and diag-
nosis. Throughout this dissertation, I will focus on how to efficiently measure available
bandwidth and how to locate bandwidth bottlenecks. In the rest of this chapter, I first de-
fine the available bandwidth metric and explain its importance. I then present the thesis
statement and technical contributions of this dissertation, which is followed by a discus-
sion of related work. I conclude with a roadmap of the dissertation.

1.2 Available Bandwidth

We define available bandwidth as the residual bandwidth on a network path that can be
used by a new data flow without disturbing the transmission ofother flows on that path.
That is, available bandwidth can be calculated as path capacity minus path load. Tech-
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Figure 1.1: Application of end-to-end available bandwidthin server selection.

nically, the termavailable bandwidthis defined as follows. Consider an end-to-end path
that hasn links L1, L2, ..., Ln. Their capacities areB1, B2, ..., Bn, and the traffic loads
on these links areC1, C2, ..., Cn. We define thebottleneck linkas Lb(1 ≤ b ≤ n),
whereBb = min(B1, B2, ..., Bn). The tight link is defined asLt(1 ≤ t ≤ n), where
Bt−Ct = min(B1−C1, B2−C2, ..., Bn−Cn). The unused bandwidth on the tight link,
Bt − Ct, is called theavailable bandwidthof the path.

End-to-end available bandwidth information is important for many popular applica-
tions. I will use three representative applications to illustrate this importance. Figure 1.1
is a typical server-selection application, where an end user wants to download a file from
a website. On today’s Internet, it is often the case that there are multiple websites that
provide the same file (e.g., a popular movie file), and the end user needs to choose one of
them. Obviously, the server that has the highest downloading speed is the best choice, and
to know that, the end user must have the end-to-end availablebandwidth information from
each of these websites.

The second type of application is peer-to-peer systems as illustrated in Figure 1.2. In
such systems, end users collaborate with each other to improve the overall data trans-
mission performance. Peer-to-peer systems are widely usedby Internet end users since
they can significantly improve end user’s data transmissionperformance. In these sys-
tems, when a new user (e.g., user F in Figure 1.2) wants to join, the system needs to pick
an existing system user (user A-E) to forward data packets tothat new user. Since dif-
ferent users can have dramatically different data transmission performance, the selected
user should have good data forwarding performance towards the new user. This selection
procedure also requires the end-to-end available bandwidth information.

The third application in Figure 1.3 is on ISP network engineering. In this figure, the
video server provides a video downloading service to its clients. This server is a cus-
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Figure 1.2: Application of end-to-end available bandwidthin P2P systems.
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Figure 1.3: End-to-end available bandwidth diagnosis in ISP network engineering.

tomer of ISP D, which means that all data transmissions from the video server will first
go through ISP D’s network. To attract customers, ISP D oftenneeds to help its customer
to adapt to network performance changes. For example, ISP D initially routes the video
server’s traffic through ISP B to the clients connected with ISP A. If ISP B’s network
has problems and degrades the transmission performance, ISP D may want to reroute the
video server’s traffic through ISP C. In this case, ISP D has touse end-to-end measurement
techniques since the problem is on a network to which it has noaccess. This application
illustrates that end-to-end available bandwidth diagnostic techniques are also important
for ISPs.

Despite the importance of end-to-end available bandwidth for network applications, it
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is not as widely used as the delay metric. One reason is that delay can be used to approx-
imate available bandwidth information in many scenarios; another reason is that it is still
hard to obtain end-to-end available bandwidth information. There are three major chal-
lenges in such measurements. First, Internet available bandwidth is very dynamic due to
the burstiness of Internet background traffic. Second, unlike the delay measurement, which
can be done by just using a small number of packets, estimating available bandwidth often
requires a large number of measurement packets in order to “fill” the network path to ob-
tain the available bandwidth information. The high overhead makes available-bandwidth
measurement techniques hard to use in practice. Finally, there are few efficient techniques
that can be used to diagnose available-bandwidth related problems. For example, there is
no efficient way to identify the link that limits the available bandwidth between a pair of
end nodes.

To address these challenges, we need the following capabilities: (1) efficient path-level
available bandwidth monitoring and diagnosis capability;(2) efficient system wide avail-
able bandwidth monitoring and diagnosis capability; and (3) an infrastructure supporting
these techniques and systems. Path-level monitoring capability is important because many
network applications, especially those used by regular endusers, only require path-level
performance information. System wide monitoring capability is used to address monitor-
ing problems for large-scale systems (like the peer-to-peer system in Figure 1.2), which
often require different techniques than those used for path-level monitoring. For both
path-level and system-level monitoring, efficiency is veryimportant, because that deter-
mines whether the corresponding techniques can be widely used. Infrastructural support
for measurement configurations and managements can significantly lower the bar for reg-
ular end users to use these techniques. In this dissertation, we developed the IGI/PTR and
Pathneck tools to provide path-level monitoring and diagnosis capability; we proposed the
BRoute system to provide system-level monitoring capability; we designed and developed
the TAMI system to provide infrastructural support for bothpath-level and system-level
monitoring and diagnosis capabilities.

1.3 Thesis Statement

This dissertation puts forth the claim that end-to-end available bandwidth and band-
width bottlenecks on individual network paths can be efficiently and effectively esti-
mated using packet-train probing techniques. Large-scaleavailable bandwidth can
be estimated efficiently by using the source and sink tree data structures to capture
network edge information. Also with the support of a properly designed measure-
ment infrastructure, bandwidth-related measurement techniques can be convenient
enough to be used routinely by both ISPs and regular end users.
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1.4 Thesis Contributions

This dissertation makes the following technical contributions:

• An end-to-end available-bandwidth measurement technique. We designed and
developed an active measurement technique that uses packettrains to estimate end-
to-end available bandwidth. This technique significantly reduces measurement over-
head, while maintaining a similar measurement accuracy compared with other tech-
niques. The implementation of this technique—the IGI/PTR tool—is publicly avail-
able [6] and has served as a benchmark for newly developed tools.

• An Internet bottleneck link locating technique. We developed a technique that
uses a carefully constructed packet trains to quickly locate the bottleneck link of a
network path. Its measurement overhead is several orders ofmagnitude lower than
previously designed techniques. These properties make it possible to conduct an
Internet-scale study of network bottlenecks for the first time in the research commu-
nity. Pathneck’s implementation [11] is also open source.

• A thorough understanding of Internet bottleneck properties and their usage.
This dissertation characterizes bottleneck properties including bottleneck link loca-
tion distribution, end-user access bandwidth distribution, bottleneck location persis-
tence, and the relationship between bottleneck link and link loss/delay. The under-
standing of these properties helps us improve the performance of various network
applications including overlay, multihoming, and contentdistribution.

• A data structure that captures end-node routing topology.We proposed to use
the source and sink trees to capture end-node routing topologies and efficiently cover
bandwidth bottlenecks. This concept not only helps design alarge-scale available
bandwidth measurement system, but also motivates a route-similarity metric that
can help end users to quantify route sharing.

• A large-scale available-bandwidth inference scheme.Similar to the synthetic co-
ordinate systems developed for network delay inference, wedesigned, validated, and
implemented a system that addresses the overhead problem ofavailable-bandwidth
monitoring in large network systems. It only usesO(N) overhead to measure the
N2 paths in aN-node system.

• A bandwidth-oriented monitoring and diagnostic infrastru cture. This infras-
tructure provides a system support for complicated bandwidth-related monitoring
and diagnostic operations. Its distinguishing characteristics are its topology-aware
capability and its measurement scheduling functionality.
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1.5 Related Work

Previous work on network monitoring and diagnosis can be roughly classified into two
categories: measurement techniques, and monitoring and diagnostic systems.

1.5.1 Measurement Techniques

Measurement techniques can be classified based on the performance metric they measure.
Since a same metric can be monitored at both the link-level and the end-to-end level, the
corresponding techniques can be further labeled as link-level or end-to-end level monitor-
ing techniques. For example, at link level network connectivity can be monitored using
both physical-layer signals and IP-layer routing protocolheart-beat messages; while at the
end-to-end level it is monitored using ping or traceroute.

The delay metric is measured using ping at both the link and end-to-end levels. How-
ever, link-level ping can only be done through the router command-line interface, i.e.,
manually, so it can not be used directly by a monitoring system. That is a key motivation
for developing link-delayinferencetechniques. One simple method is to ping the two ends
of link, and use the delay difference as an estimation of the link delay. Tulip [80] is an ex-
ample of this method. Another method is to apply tomography techniques [31], which use
probabilistic models to infer link delay based on multiple end-to-end delay measurements.
At the path-level, besides ping, synthetic coordinate systems [88, 41] have been developed
for large-scale delay inference. Note that all these techniques measure or infer either just
the propagation delay (e.g., the synthetic coordinate systems) or the sum of propagation
delay and queueing delay. None of them can directly quantifythe queueing delay, which
is an important metric for network congestion and delay variance. So far there have been
no good techniques to quantify queueing delay, either at thelink-level or at the end-to-end
level, although there has been some work toward this goal [80][37].

The packet loss-rate metric at the link-level is measured using SNMP, which uses a
counter to keep track of the total number of lost packets. End-to-end packet loss rate is
hard to measure because Internet packet loss is very bursty.A reasonable estimation of
path loss often requires a large number of sampling packets,making overhead a major
concern. Sting [102] and Badabing [107] are perhaps the two best known packet loss-rate
measurement tools. Sting leverages the TCP protocol to identify packet losses on both the
forward and reverse paths. It uses the fast retransmission feature of the TCP protocol to
force the packet receiver to acknowledge each data packet, and then identifies packet loss
by comparing data-packet sequence numbers and ack-packet sequence numbers. Badabing
estimates path loss rate by measuring both the loss episode frequency and the loss episode
duration, which are sampled using two-packet or three-packet probings.

Available bandwidth at the link-level is measured using link capacity and traffic load
information. Internet link capacity is generally known a priori, and the traffic load can be
calculated using the statistics collected by SNMP. At the end-to-end level, people generally
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Table 1.1: Classification of network monitoring and diagnostic systems
Industry (ISP-oriented) Academia (end-user oriented)

Passive Sprint’s IPMON [49] OCXMON [84], CoralReef [38], IPMA [62],
SPAND [104, 111]

Active ATT active measure-
ment system [36]

AMP [84], Surveyor [115], MINC [86],
Scriptroute [110]

Both NetScope [47] NAI [84], IEPM [61], NIMI [93]

use tools like iperf [8] or ttcp [116] which use TCP flows’ transmission performance in
order to quantify path available bandwidth. Note these tools measure TCP achievable
throughput, not the available bandwidth (i.e., the residual bandwidth) as we defined. This
is because TCP achievable throughput is not only determinedby the available bandwidth
of the path, it is also affected by the level of multiplexing of background traffic flows and
system configuration parameters such as TCP buffer sizes. This dissertation focuses on
end-to-end available bandwidth measurement.

1.5.2 Monitoring and Diagnostic Systems

Monitoring and diagnostic systems provide system support and application interfaces for
measurement techniques, thus lowering the bar for regular applications to use those tech-
niques. Currently, most such systems focus on monitoring while leaving diagnosis to
applications. Table 1.1 classifies the well-known network monitoring systems accord-
ing to their application environment (ISP-oriented or end-user oriented) and measurement
techniques (active measurement or passive measurement). Four representative monitor-
ing systems are NetScope [47], IPMON [49], NIMI [94], and Scriptroute, each having its
own distinguishing characteristics. NetScope was developed by AT&T. It uses both active
measurement techniques like ping and traceroute, and passive measurement techniques
like SNMP and Netflow to monitor and diagnose AT&T’s backbonenetwork. IPMON,
used in the Sprint backbone network, is a representative system that only uses passive
measurements. IPMON mainly uses DAG (Data Acquisition and Generation) cards [42]
to collect router interface packet traces. Packet traces are useful for packet-level history
reconstruction to identify performance problems at small time granularities. NIMI is one
of the earliest end-user oriented monitoring systems. It provides a measurement infras-
tructure for end users to install and deploy measurement tools and to collect measurement
results. Since NIMI is an open platform, it uses many mechanisms to protect privacy and to
quarantine the impact of buggy code. Scriptroute is a more recently proposed monitoring
system. It provides both a distributed measurement infrastructure for end users to conduct
measurements, and a script language to help develop measurement techniques. Scriptroute
employs many security features in both its architectural design and its script language to
address security and resource abuse that can result from active measurements. Compared
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with these monitoring systems, the TAMI system that is described in this dissertation pro-
poses two new monitoring functionalities: measurement-scheduling and topology aware-
ness.

There are far fewer diagnostic systems than monitoring systems. The representative
diagnostic systems are AS-level route-event diagnostic systems [48] and the Planetseer
system [119]. AS-level route-event diagnostic systems useBGP update messages to iden-
tify which AS triggers a BGP event that affects network traffic. Such diagnostic systems
can only be used by ISPs since they require internal BGP data.Planetseer proposes a
framework to diagnose IP-level route events that affect webclient transmission perfor-
mance. It uses the web-proxy service provided by CoDeen [117] to monitor web clients’
TCP performance. For each performance problem, such as packet loss, Planetseer uses
traceroute to identify its possible causes. It was used to demonstrate that route anomalies
are a common cause for TCP performance problems. Comparatively, the TAMI system
presented in this dissertation can also diagnose available-bandwidth related problems us-
ing the Pathneck technique.

1.6 Roadmap of The Dissertation

This dissertation is organized as follows. Chapter 2 shows how to accurately measure end-
to-end available bandwidth. Specifically, it describes thedesign and implementation of
the IGI/PTR tool, which implements two available-bandwidth measurement algorithms,
estimating background traffic load (IGI) and packet transmission rate (PTR), respectively.
It also describes the TCP PaSt algorithm, which demonstrates how a packet-train prob-
ing algorithm can be integrated into a real application. Chapter 3 explains how the PTR
technique can be extended to develop the Pathneck tool, which uses carefully constructed
packet trains to efficiently locate Internet bandwidth bottlenecks. Based on Pathneck, in
Chapter 4, we present the results of several Internet-scalestudies on bottleneck properties,
analyzing Internet bottleneck location distribution, Internet end-user access bandwidth dis-
tribution, persistence of bottleneck locations, and relationships between bottlenecks and
packet loss and queueing delay. Chapter 5 presents the source and sink tree structures
that can efficiently capture network-edge information, including path-edge bandwidth. In
the same chapter, we also introduce the RSIM metric that can quantify route similari-
ties and infer path edges. Chapter 6 presents the BRoute system, which uses source and
sink trees to solve the overhead problem of large-scale available-bandwidth monitoring.
The last part of this dissertation (Chapter 7) describes thedesign and implementation of
TAMI—a topology-aware measurement infrastructure. The conclusion and future work
are presented in Chapter 8.



10 CHAPTER 1. INTRODUCTION



Chapter 2

End-to-End Available Bandwidth
Measurement

In this chapter, we present the design, implementation, andevaluation of an effective and
efficient end-to-end available bandwidth measurement tool. We first describe a single-hop
gap model that captures the relationship between the throughput of competing traffic and
the sending rate of a probing packet train on a single-hop network. Based on this model,
we present the implementation details of an end-to-end available bandwidth measurement
tool that implements the IGI and the PTR algorithms. We evaluate this tool from three
aspects: (1) measurement accuracy and measurement overhead, (2) the impact of probing
packet size and packet-train length on measurement accuracy, and (3) multi-hop effects
on measurement accuracy. We also describe how to adapt IGI/PTR for heavily-loaded
paths and high-speed paths. Finally, we describe an application of the PTR algorithm in
TCP slow-start, where we demonstrate how to integrate the PTR packet-train probing al-
gorithm into an application to improve its transmission performance by obtaining network
performance information.

2.1 Overview of Active Measurement Techniques

Active measurement techniques estimate network metrics bysending probing packets and
observing their transmission properties. For different performance metrics, the probing
packets can be structured differently. A large number of different probing-packet struc-
tures have been used, such as a single packet (used by ping andtraceroute), packet pair
(used by bprobe [32], Spruce [113], and many others), packettripplet (used by Tulip [80]),
packet quartet [91], packet train (used by cprobe [32], Pathload [65] and many others),
packet chirp (used by pathChirp [101]), and packet tailgating (used by nettimer [77] and
STAB [100]). Besides the number of probing packets, these structures also use differ-
ent methods to set packet gap values. Packet gap values can beeither fixed (as in the

11
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packet trains in Pathload [65]), follow a Poisson distribution (as in the packet pairs in
Spruce [113]) or an exponential distribution (as in the packet chirp in pathChirp [101]), or
follow a TCP algorithm (as in Treno [83] and Sting [102]).

The packet pair is perhaps the most popular structure. Measurement techniques that
use this structure generally send groups of back-to-back packets, i.e., packet pairs, to a
destination which echos them back to the sender. The spacingbetween packet pairs is de-
termined by the bottleneck link capacity and is preserved bylinks that have higher avail-
able bandwidth [63]. So by measuring the arriving time difference of the two probing
packets, we can estimate path capacity. This is the key idea for most active bandwidth
measurement tools. A packet train is an extension of the packet-pair structure, and it is of-
ten used for available bandwidth measurement. The difference is that packet trains capture
not only path capacity but also traffic load information.

Packet tailgating is probably the most interesting structure. It is designed to avoid the
dependence on ICMP error packets. It is first proposed by nettimer [77]. The idea is to
let a small packet that has a large TTL follow a large packet that has a small TTL so that
the small packet queues behind the large packet. After the large packet is dropped, the
small packet can still reach the destination, preserving the delay or rate information of the
large packet. When a train of packet-tailgating pairs is used, the sequence of small packets
can be used to estimate the available bandwidth on the link where the large packets were
dropped. That is the idea used by STAB [100] to obtain link-level available bandwidth and
then locate bottleneck links.

2.2 Single-Hop Gap Model

The idea behind using active measurement techniques to estimate available bandwidth is
to have the probing host send probing packets in quick succession and to measure how
the packet gaps change (Figure 2.1). As the probing packets travel through the network,
packets belonging to the competing traffic may be inserted between them, thus increasing
the gaps. As a result, the gap values at the destination may bea function of the competing
traffic rate, making it possible to estimate the amount of competing traffic. In practice,
the way that the competing traffic affects the packet pair gapis much more complex than
what is suggested above. In this section, we describe a simple model that captures more
accurately the relationship between the gap value of a packet pair and the competing traffic
load on a single-hop network.

2.2.1 Single-Hop Gap Model

The 3D graph in Figure 2.2 (the notations are defined in Table 2.1) shows the output
gap valuegO as a function of the queue sizeQ and the competing traffic throughputBC .
This model assumes that the routers use fluid FIFO queueing and that all probing packets
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Figure 2.1: Interleaving of competing traffic and probing packets.
gI is the initial gap. gB is the probing packet length on the output link.gO is the gap after
interleaving with the competing traffic.BC is the competing traffic throughput. Also refer to
Table 2.1 for the symbols’ definition.

Table 2.1: Definition of symbols
gI the initial gap , the time between the first bits of P1 and P2 when they enter therouter;

it includes P1’s transmission delay (the time for a packet tobe placed on a link) on the
input link

gB thebottleneck gap, the transmission delay of the probing packet on the output link; it
is also the gap value of two back-to-back probing packets on the bottleneck link

gO theoutput gap, the time between the first bits of P1 and P2 when they leave therouter,
i.e., on the bottleneck link

BO the bottleneck link capacity
BC the competing traffic throughput for the time interval between the arrival of packets P1

and P2
Q the queue size when packet P1 arrives at the router
L the probing packet length
r r = gB/gI

have the same size. It also assumes that the competing trafficis constant in the interval
between the arrival of packet P1 and P2; given that this interval is on the order of 1ms,
this is a reasonable assumption. The model has two regions. As described below, the key
difference between these two regions is whether or not the two packets P1 and P2 fall in
the same queueing period. Aqueueing periodis defined to be the time segment during
which the queue is not empty, i.e., two consecutive queueingperiods are separated by a
time segment in which the queue is empty. For this reason, these two regions in the model
are called theDisjoint Queuing Region (DQR)and theJoint Queuing Region (JQR).

If the queue becomes empty after P1 leaves the router and before P2 arrives, then, since
BC is assumed to be constant in this (short) interval, P2 will find an empty queue. This
means that the the output gap will be the initial gap minus thequeueing delay for P1, i.e.,

gO = gI −Q/BO. (2.1)

Under what conditions will the queue be empty when P2 arrives? Before P2 arrives, the
router needs to finish three tasks: processing the queueQ (Q/BO), processing P1 (gB), and
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Figure 2.2: Single-hop gap model.

processing the competing traffic that arrives between the probing packets (BC · gI/BO).
The router hasgI time to complete these three operations, so the condition isQ/BO +
BC · gI/BO + gB < gI , which corresponds to the triangularDQRregion in Figure 2.2. In
this region, the output gapgO is independent of the competing traffic throughputBC . The
above equation (2.1) is called theDQRequation.

Under all the other conditions, i.e., inJQR, when P2 arrives at the router, the queue will
not be empty. SinceBC is constant, this means that P1 and P2 are in the same queueing
period. The output gap consists of two time segments: the time to process P1 (gB), and
the time to process the competing traffic that arrives between the two probing packets
(BC · gI/BO). Therefore in this region, the output gap will be

gO = gB + BC · gI/BO. (2.2)

That is, in this region, the output gapgO increases linearly with the competing traffic
throughputBC . Equation (2.2) is referred to as theJQRequation.

This model clearly identifies the challenge in using packet pairs for estimating the
competing traffic throughput. If the packet pair happens to operate in theDQR region of
the bottleneck router, the output gap will bear no relationship with the competing traffic,
and using theJQRequation (since the user does not know which region applies)will yield
an incorrect result. Furthermore, the estimate obtained using a single packet pair will only
provide the average competing traffic overgI , which is a very short period. Since the
competing traffic is likely to fluctuate, one in general will want to average the results of
multiple samples, corresponding to independent packet pairs. This of course increases the
chance that some of the samples will fall in theDQRregion.
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2.2.2 IGI and PTR Formulas

Equation (2.2) shows that in theJQRregion we can estimate the competing traffic through-
putBC based on the initial gapgI , the output gapgO, and the bottleneck gapgB. However,
the single-hop gap model assumes that the competing traffic is a smooth packet stream. In
practice, the competing traffic flow will be bursty and a single pair of probing packets will
not capture theaveragethroughput of the competing traffic. To deal with this problem,
people use a packet train [92, 45], i.e., a longer sequence ofevenly spaced packets.

The conclusions from the single-hop gap model do not directly apply to a packet train.
The main problem is that the “pairs” that make up a packet train are not independent. For
example, if one packet pair in the train captures a burst of packets from the competing flow,
it is highly likely that adjacent pairs will not see any competing traffic and will thus see a
decrease in their packet gap. Intuitively, if we want to estimate the amount of competing
traffic, we should focus on theincreasedgaps in a probing packet train since they capture
the competing traffic, while decreased gaps saw little or no competing traffic. Note that
this observation only applies when the probing packet trainoperates in theJQRregion.

More precisely, assume a probing train in whichM probing gaps are increased,K are
unchanged, andN are decreased. If we now apply equation (2.2) to all the increased gaps,
we get the following estimate for the competing traffic load:

BO

∑M
i=1 (g+

i − gB)
∑M

i=1 g+
i +

∑K
i=1 g=

i +
∑N

i=1 g−
i

. (2.3)

Here, the gap valuesG+ = {g+
i |i = 1, ..., M}, G= = {g=

i |i = 1, ..., K}, andG− =
{g−

i |i = 1, ..., N} denote the gaps that are increased, unchanged, and decreased, respec-
tively. In this formula,BO

∑M
i=1 (g+

i − gB) is the amount of competing traffic that arrive
at router R1 during the probing period. Ideally,

∑M
i=1 g+

i +
∑K

i=1 g=
i +

∑N
i=1 g−

i is the total
probing time. In practice, we exclude gap values that involve lost or reordered packets, so
in such cases, the denominator may be smaller than the total probing time. This method
of calculating competing traffic load will be used by theIGI (Initial Gap Increasing)algo-
rithm in Section 2.3, and it is called theIGI formula.

A number methods have been proposed to estimate the available bandwidth along a
network path [32, 65]. Using the same notation as used above,the equation they use is

(M + K + N)L
∑M

i=1 g+
i +

∑K
i=1 g=

i +
∑N

i=1 g−
i

. (2.4)

HereL is the probing packet size. This formula represents the average transmission rate
of the packet train, measured at the destination. We will also use this formula in thePTR
(Packet Transmission Rate)algorithm described in Section 2.3, and it is called thePTR
formula.
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2.3 IGI and PTR Algorithms

The gap model shows that theIGI formula only applies in theJQRregion, and we will
show below that thePTR formula is also only valid under similar conditions. Note that
the main parameter that is under our control in the single-hop gap model is the initial gap
valuegI . It has a large impact on the size of theDQR region, and thus on the region in
which the packet train operates. Therefore, the key to an accurate available bandwidth
measurement algorithm is to find agI value so that the probing packet train operates in
the JQR region. In this section, we first study the role ofgI more carefully, we then
describe how to combine the insights ongI and theIGI andPTRformulas to develop the
two available bandwidth estimation algorithms.

2.3.1 Impact of Initial Gap

According to the single-hop gap model, if we are in theJQRregion, the output gap of a
packet pair or train can give us an estimate of the competing traffic on the bottleneck link.
However, in theDQRregion, output gap is independent of the competing traffic. We also
see that increasing the initial gap will increase theDQRarea. This argues for using small
initial gaps. In fact, ifgI ≤ gB, i.e., if the initial gap is smaller than the probing packet
transmission delay on the bottleneck link, theDQR area does not even exist. However,
with small initial gaps, such asgI ≤ gB, we are flooding the bottleneck link, which may
cause packet losses and disrupt traffic.

We use the following experiment to better understand the impact of the initial probing
gap on the accuracy of theIGI andPTRformulas. We send an Iperf TCP competing traffic
flow of 3.6Mbps over a 10Mbps bottleneck link. We then probe the network using a set
of packet trains; the packet train length is 256 and the probing packet size is 750Byte.
We start with an initial probing gap of 0.022ms, which is the smallest gap that we can
get on the testbed, and gradually increase the initial gap. Figure 2.3 shows the average
gap difference (averaged output gap minus the averaged initial gap), the competing traffic
throughput estimated using theIGI formula, and the available bandwidth estimated using
thePTRformula.

We see that for small initial gaps (smaller thangB = 0.6ms, which is the transmission
time on the bottleneck link), we are flooding the network and the measurements underesti-
mate the competing traffic throughput. Note that for minimalinitial gaps, thePTRformula
is similar to the formula used to estimate the bottleneck link capacity by tools such as
bprobe [32], and in fact, thePTRestimate for small initial gaps is close to 10Mbps, which
is the bottleneck link capacity. When the initial gap reaches gB, theDQReffect starts to
appear. Note that, unless the network is idle, the probing packet train is still flooding the
bottleneck link. So far, the average output gap at the destination is larger than the initial
gap. When further increasing the initial probing gap, at some point (0.84ms in the figure),
the output gap equals the initial gap; we call this theturning point. At this point, the prob-



2.3. IGI AND PTR ALGORITHMS 17

0 0.5 1 1.5

x 10
−3

−2

0

2

4

6
x 10

−4

Inital gap (s)

A
ve

ra
ge

 g
ap

 d
iff

er
en

ce
 (

s)

0 0.5 1 1.5

x 10
−3

0

2

4

6

8

10
x 10

6

Inital gap (s)

M
ea

su
re

m
en

t (
bp

s)

available bandwidth
measured by PTR 

competing traffic throughput
measured by IGI 

Figure 2.3: Impact of the initial gap on available bandwidthmeasurements
The arrows point out the measurements at the turning point, the smallest initial gap where the
average output gap equals the average initial gap.

ing packets interleave nicely with the competing traffic, and the average rate of the packet
train equals the available bandwidth on the bottleneck link. In this experiment, theIGI
estimate for the competing traffic at the turning point is 3.2Mbps and thePTRestimate for
the available bandwidth is 7.1Mbps; both match the actual competing traffic (3.6Mbps)
quite well. As the initial probing gap continues increasing, the output gap remains equal
to the initial gap since all the packets on average experience the same delay.

We believe that the point where the average output gap equalsto the initial gap, i.e., the
turning point shown in Figure 2.3, is the correct point to measure the available bandwidth.
The turning point corresponds to the smallest initial gap value with which the probing
packet train is not flooding the bottleneck link. With respect to the single-hop gap model
in Figure 2.2 on which theIGI formula is based, this initial gap will result in a packet
train that keeps the queue as full as possible without overflowing it; the model shows that
this puts us in theJQR region. With respect to thePTR formula, the initial gap at the
turning point corresponds to the packet transmission rate where the packet trains consume
all the available bandwidth without significant interference with the competing traffic. In
other words, the packet train behaves like an aggressive, but well behaved (i.e., congestion
controlled) application flow, so its rate is a good estimate of the available bandwidth.
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2.3.2 IGI and PTR Algorithms

The Initial Gap Increasing (IGI)and Packet Transmission Rate (PTR)algorithms dis-
cussed below are based on packet trains that operate at the turning point. That is, they
send a sequence of packet trains with increasing initial gapfrom the source to the destina-
tion host. They monitor the difference between the average source (initial) and destination
(output) gap and they terminate when it becomes zero. At thatpoint, the packet train is
operating at the turning point. We then use theIGI andPTRformulas to compute the final
measurement.

The pseudocode for theIGI algorithm is shown in Figure 2.4. The available bandwidth
is obtained by subtracting the estimated competing traffic throughput from an estimate
of the bottleneck link capacity. The bottleneck link capacity can be measured using, for
example, bprobe [32], nettimer [77], or pathrate [45]. Notethat errors in the bottleneck
link capacity measurement will affect the accuracy of the available bandwidth estimate,
since the bottleneck link capacityBO is used in the calculation of the bottleneck gapgB,
the competing traffic throughputc bw, and the available bandwidtha bw. However, the
analysis of the above mentioned tools and our experience show that the bottleneck link
capacity measurement is fairly accurate, so in the implementation of IGI/PTR, we do not
consider this factor.

ThePTRalgorithm is almost identical to theIGI algorithm. The only difference is that
the last three lines in Figure 2.4 need to be replaced by

ptr = packet size ∗ 8 ∗ (probe num− 1)/dst gap sum;

These formulas assume that there is no packet loss or packet reordering.
In both algorithms, to minimize the number of probing phases, the gap step and

init gap need to be carefully selected. The first probing uses aninit gap that is as small
as possible. This allows us to estimate the bottleneck link capacity andgB. it then sets
gap step = gB/8, andinit gap = gB/2. Another key step in both algorithms is the au-
tomatic discovery of the turning point. This is done in the procedure GAPEQUAL(). It
tests whether the source and destination gaps are “equal”, which is defined as

|src gap sum− dst gap sum|

max(src gap sum, dst gap sum)
< δ.

In the experiments,δ is set to 0.1. These two steps are a key difference betweenPTR
algorithm and other techniques based on Formula (2.4) sincethey allow us to quickly
find a good initial gap. We evaluate how fast this algorithm converges in Sections 2.5.1
and 2.6.2.

Besides the initial gap, two other parameters also affect the accuracy of theIGI and
PTRalgorithms:

1. Probing packet size. Measurements using small probing packets are very sensitive
to interference. The work in [45] also points out significantpost-bottleneck effects
for small packets. This argues for sending larger probing packets.
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Algorithm IGI:
{

/* initialization */
probe num = PROBENUM; packet size = PACKETSIZE;
gB = GET GB();
init gap = gB/2; gap step = gB/8;
src gap sum = probe num ∗ init gap; dst gap sum = 0;

/* look for probing gap value at the turning point */
while (!GAP EQUAL(dst gap sum, src gap sum)) {

init gap += gap step;
src gap sum = probe num ∗ init gap;
SEND PROBING PACKETS(probe num, packet size, init gap);
dst gap sum = GET DST GAPS();

}
/* compute the available bandwidth using IGI formula */
inc gap sum = GET INCREASED GAPS();
c bw = b bw ∗ inc gap sum/dst gap sum;
a bw = b bw − c bw;

}

Figure 2.4: IGI algorithm
SEND PROBINGPACKETS() sends outprobe num packet size probing packets with the initial
gap set toinit gap; GET DST GAPS() gets the destination (output) gap values and adds them;
GET INCREASEDGAPS() returns the sum of the initial gaps that are larger than the bottleneck
gap; c bw, b bw, anda bw denote the competing traffic throughput, the bottleneck link capacity,
and the available bandwidth, respectively.

2. The number of probing packets. It is well known that the Internet traffic is bursty,
so a short snapshot cannot capture the average traffic load. That argues for send-
ing a fairly large number of probing packets. However sending too many packets
can cause queue overflow and packet losses, increase the loadon the network, and
lengthen the time it takes to get an estimate.

Through experiments we found that that the quality of the estimates is not very sensitive to
the probing packet size and the number of packets, and that there is a fairly large range of
good values for these two parameters. For example, a 700-byte packet size and 60-packet
train work well on the Internet. We discuss the sensitivity to these two parameters in more
detail in Section 2.6.

Finally, we would like to point out the two limitations of theIGI/PTR design. One is
that IGI/PTR requires access to both the source and the destination of a path. That limits its
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applicability since regular end users often only have localaccess. This problem is partially
solved by the Pathneck technique that is presented in the next chapter. The other is that
the performance model of IGI/PTR presented in Section 2.2 assumes that routers use a
FIFO algorithm to schedule packets. This model may not applyto wireless networks and
broadband networks where packets are often scheduled usingnon-FIFO algorithms.

2.4 Evaluation Methodology

The evaluation includes three parts:

• In Section 2.5, we compare the performance ofIGI, PTR, and Pathload, focusing on
the measurement accuracy and the convergence time.

• In Section 2.6, we analyze how the probing packet size and thenumber of probing
packets (packet train length) affect the measurement accuracy ofIGI andPTR.

• In Section 2.7, we study the performance ofIGI andPTRon a network path where
the tight link is not the same as the bottleneck link. We also look into a related issue
about the impact of gap timing errors.

The first two parts are based on Internet measurements; whilethe last part is based on
ns2 simulations, because we need to carefully control the competing traffic load in the
network.

The Internet measurements are collected from the 13 Internet paths listed in Table 2.2.
In this table, CORNELL, CMU[1-3], NYU, ETH, NCTU are machines in Cornell Univer-
sity, Carnegie Mellon University, New York University, ETHZurich (Switzerland), and
National Chiao Tung University (Taiwan), respectively. MA, SLC[1-2], SV, FC, SWE-
DEN, NL are machines on commercial networks, and they are located in Massachusetts,
Silicon Valley, Foster City, Sweden, and The Netherlands, respectively. For each path in
Table 2.2, the first site is the sender, and the second site is the receiver. The capacities
in the third column denote the bottleneck link capacities, which we will also refer to as
thepath capacity. The path capacities are measured using bprobe [32], and theRTTs are
measured using ping. The path capacities shown in the table are obtained by “rounding”
the measured values to the nearest well-known physical linkcapacity.

To evaluate the accuracy of the different probing algorithms on the Internet, we in-
terleave probing experiments with large application data transfers that show how much
bandwidth is actually available and usable on the network path. However, it is sometimes
hard to determine the actual available bandwidth on an Internet path. In practice, most
applications, especially bulk data transfer applications, use TCP. Unfortunately, for high
bandwidth paths, TCP is often not able to fully utilize the available bandwidth. In most
cases the reason was simply that TCP end-to-end flow control is limiting the throughput,
and without root permission, we can not increase the size of socket buffers. On other paths
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Table 2.2: Internet Paths
ID Path Capacity RTT (std dev)

(sender→receiver) (Mbps) (ms)

1 CORNELL→MA 1.5 27.59 (2.82)
2 SLC1→ CMU2 10 59.65 (0.58)
3 NWU→ CMU1 100 10.29 (0.94)

4 CORNELL→ CMU1 10 13.43 (0.15)
5 ETH→ SWEDEN 10 76.04 (0.35)
6 SLC2→ CMU1 100 83.21 (0.41)
7 SLC2→ NYU 100 53.52 (0.36)
8 ETH→ CMU1 100 125.00 (0.30)
9 ETH→ NL 100 28.21 (0.21)
10 SV→ NYU 2.5 78.29 (0.21)

11 SLC1→ FC 4.5 43.39 (10.10)
12 SLC2→ FC 4.5 80.65 (23.60)
13 NCTU→ CMU3 100 265.54 (0.41)

we observe a significant amount of packet reordering or unexplained packet losses, both
of which can have a significant impact on TCP performance.

For the above reasons, we use a mixture of techniques to measure the “true” available
bandwidth. When possible, we use a single TCP flow. When smallwindow sizes prevent
us from filling the pipe, we use a number of parallel TCP flows. The number of flows
is selected on a per path basis. A typical example of how the end-to-end throughput
increases with the number of flows is shown in Figure 2.5. The throughput increases
initially and then flattens out. Typically 10 or at most 20 flows are sufficient to fill the
available bandwidth pipe.

Note that this approach provides only a rough idea of the accuracy of the probing
techniques. A first problem is that the probing and the data transfers cannot be run at the
same time, so they see different traffic conditions, and we should expect slightly different
results. Moreover, because of the bandwidth sharing characteristics of TCP, a single TCP
flow is not equivalent with multiple parallel TCP flows. On theother hand, our approach
does model the way applications will typically use probing tools, so our approach captures
the accuracy that applications will perceive. Our experience with tools such as Remos [43]
shows that applications in general only require rough estimates of path properties.

The implementation of theIGI andPTRalgorithms needs accurate timestamp measure-
ment. As a result, we would expect the best results with kernel support, such as libpcap [9].
However, for most of the end hosts we use for our experiments,we only have guest ac-
counts, so all the Internet measurements are collected witha user-level implementation.
The probing packets are UDP packets, and timestamps are measured when the client or
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Figure 2.5: Throughput of parallel TCP flows on the path ETH→ NWU

server applications sends or receives the UDP packets.

2.5 Measurement Accuracy and Overhead

In this section, we analyze the performance ofIGI andPTRalgorithms using experiments
on the 13 Internet paths listed in Table 2.2. We also compare their performance with that of
Pathload. The experiments are conducted as follows. For each Internet path, we measure
the available bandwidth using the following three methods:

1. IGI andPTR: we use bothIGI andPTRalgorithms to estimate the available band-
width. The probing packet size is set to 700Byte, and the probing packet number is
60. We discuss why we choose these two values in Section 2.6.

2. Pathload: The resolution parameter is set to 2Mbps. The Pathload implementation1

returns a measurement interval that should contain the actual available bandwidth.
We use the center of the interval in our analysis.

3. Bulk data transfer: We use one or more Iperf TCP flows to probe for the actual
available bandwidth. The transmission time is 20 seconds, and the TCP window size
at both ends is set to 128KB, which is supported on all machines we have access to.

We separate the above three measurements by a 5-second sleepperiod to avoid interference
between the measurements. We separate experiments by 10 minutes of idle time. The
measurements run for anywhere from 6 to 40 hours.

1http://www.cis.udel.edu/∼dovrolis/pathload1.0.2.tar.gz.
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Figure 2.6: Available bandwidth measurement error fromIGI, PTR, and Pathload
Each bar shows the median value, and the line on each bar showsthe 5% and 95% percentile values.

2.5.1 Measurement Accuracy

We use the metric relative measurement error to evaluate available bandwidth measure-
ment accuracy. It is define as:

relative error =
|a bwX − throughputTCP |

BO

Herea bwX can bea bwIGI , a bwPTR, anda bwPathload, i.e., the available bandwidth esti-
mates generated by the different techniques;throughputTCP is the bulk data transmission
rate, andBO is the bottleneck link capacity.

Figure 2.6 shows the relative measurement error ofIGI, PTR, and Pathload. The
Pathload code used in this experiment does not apply to pathswith available bandwidth
below 1.5Mbps (it returns the interval [0, link capacity]),so we have no Pathload mea-
surements for Path 1. The measurement errors for path 1-10 are below 30%, and in most
cases the error is less than 20%. That is, the estimates produced by theIGI/PTRand the
Pathload algorithms match the TCP performance fairly well.For paths 11-13, the relative
measurement error is much higher. Without the information from the service providers,
it is hard to tell what causes the higher errors. Because all three methods have low accu-
racy, we hypothesize that TCP has difficulty using the available bandwidth due to bad path
properties. For example, Table 2.2 shows that the RTT variances for paths 11 and 12 are
large compared with those for the other paths. This may be caused by route flaps, which
may negatively influence TCP’s performance.

Figure 2.7 includes more detailed comparison of the bandwidth estimates for six of
the paths. We pick three “good” paths with different path properties (paths 1-3, see Table
2.2) and all three of the bad paths (path 11-13). For paths P1,P2, and P3, the graphs
confirm that all three techniques provide good estimates of the available bandwidth, as
measured by Iperf. Which technique is more accurate dependson the path. For example,
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Figure 2.7: Available bandwidth measurements and the TCP performance.
The number in the brackets of Iperf is the number of Iperf TCP flows used. The x-axis is the clock
time value, a number larger than 24 is the time next day.

IGI seems more accurate for P2 and Pathload for P3. One notable exception is the period
from hour 22 to hour 28 for P1, where bothIGI andPTR appear to underestimate the
available bandwidth. For this path, the bottleneck link is aDSL line, which is in general
idle, as is shown by the high available bandwidth. During the22-28 hour interval, the
DSL line is used. Since only one or a few TCP connections are active, they consume only
part of the available bandwidth. The bulk data transfer, however, uses five parallel Iperf
flows and appears to be grabbing bandwidth from the other flows. This illustrates that the
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Table 2.3: Measurement Time
Path ID IGI/PTR(s) Pathload (s) Ratio(Pathload

IGI/PTR
)

(5%,median, 95%) (5%,median, 95%) median
1 (1.60,2.05, 6.27) (14.98,30.56, 31.03) 13.22
2 (0.58,0.73, 1.56) (13.67,15.37, 31.81) 20.86
3 (0.11,0.11, 0.18) (7.55,13.17, 14.91) 99.78
4 (0.49,0.52, 0.52) (11.78,12.26, 12.76) 23.48
5 (0.78,0.80, 0.83) (15.58,15.86, 16.55) 19.75
6 (0.62,0.80, 1.20) (49.07,56.18, 62.24) 70.08
7 (0.51,0.51, 0.67) (14.01,22.40, 28.51) 45.94
8 (1.01,1.02, 1.27) (27.57,31.51, 47.62) 27.80
9 (0.24,0.30, 0.30) (15.35,16.14, 27.66) 65.81
10 (1.27,1.27, 1.50) (20.95,21.04, 21.77) 16.50
11 (1.03,1.10, 2.03) (19.97,25.78, 38.52) 23.45
12 (2.17,2.32, 3.60) (19.24,21.54, 42.00) 9.20
13 (1.10,1.11, 1.13) (12.24,12.76, 47.22) 11.24

Geometric Mean 26.39

“available bandwidth” is not necessarily well-defined and depends on how aggressive the
sender is. Note that this is a somewhat atypical path: on mostInternet paths, individual
senders will not be able to affect the bandwidth sharing as easily.

For the three paths where the relative measurement error is high, we see the available
bandwidth estimates produced by all three methods are much higher than the bandwidth
measured using Iperf. As we already suggested above, this probably means that TCP, as
used by Iperf, is not able to function well because of problems such as window size [103],
loss rate, and variable round trip time [89]. Note that the three bandwidth estimation
techniques provide fairly similar results, except for pathP13, where the Pathload estimates
are extremely high.

In terms the difference between the estimate from theIGI algorithm and that from the
PTRalgorithm, for most paths, they are within 10% of each other.One exception is for
path P2 (Figure 2.7(P2)), where theIGI estimates change over a wider range than those
provided by thePTRmethod. We believe this is caused by traffic on links other than the
bottleneck link. As we will discuss in Section 2.7, theIGI method is more sensitive to
competing traffic from non-bottleneck links than thePTRmethod.

2.5.2 Convergence Times

So far our measurements have shown that the three algorithmshave similar accuracy in
terms of predicting available bandwidth. However, theIGI andPTRmethods, which have
the same measurement time, are much faster than Pathload, asis shown in Table 2.3. In
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this table, we show the percentile values of the measurementtimes at 5%, 50% (median),
and 95% for each path for both theIGI/PTRand the Pathload techniques. We see that the
IGI andPTRmethods typically take about 1-2 seconds while Pathload takes at least 12
seconds [65]. We also compute the ratio between Pathload andIGI/PTRfor each round of
measurements; the median values are listed in the last column of the table. The geometric
mean [67] of all ratios shows that theIGI/PTRmethod is on average more than 20 times
faster than Pathload for the 13 paths used in this study.

The long measurement time for Pathload is due to its convergence algorithm. Pathload
monitors changes in the one-way delay of the probing packetsin order to determine the
relationship between probing speed and available bandwidth. This can be difficult if prob-
ing packets experience different levels of congestion. This can slow down the convergence
process and can result in long probing times as shown in Table2.3. In contrast, the con-
vergence ofIGI/PTR is determined directly by the packet train dispersion at thesource
and destination. Moreover, theIGI andPTRalgorithms use the bottleneck link capacity,
which is estimated using the same probing procedure, to adjust init gapandgap stepso
as to optimize convergence.

2.6 Impact of Probing Configurations

The IGI andPTRalgorithms select the appropriate initial gap for the probing trains by
searching for the turning point, as described in Section 2.3. In this section, we use Internet
experiments to study the impact of the other two packet trainparameters—the probing
packet size and the number of probing packets (packet train length).

2.6.1 Probing Packet Size

To study the impact of the probing packet size on the measurement accuracy of theIGI and
PTRalgorithms, we conduct experiments on two Internet paths, using probing packet sizes
ranging from 100Byte to 1400Byte. We repeat each individualmeasurement 20 times. The
entire experiment takes about one hour. On the assumption that Internet path properties do
not change much on the scale of hours [120], we would expect all measurements to have
very similar result.

The first Internet path we use is from NWU to CMU. It has a path capacity of 100Mbps.
The measurement results are shown in Figure 2.8(a1) and Figure 2.8(b1). Figure 2.8(a1)
shows how the available bandwidth measurements change withthe probing packet size.
The available bandwidth measured using a TCP bulk data transfer (based on the method
discussed in Section 2.5) is 64Mbps. The packet sizes that result in the closest estimates
are 500Byte and 700Byte. For smaller packet sizes, both methods underestimate the avail-
able bandwidth by a significant margin. For larger probing packet sizes, the two methods
overestimate the available bandwidth by a much smaller amount.
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Figure 2.8: Impact of probing packet sizes.
Graphs (a1) and (a2) show the final available bandwidth estimates. Graphs (b1) and (b2) show the
gap convergence for individual measurements: the x-axis isthe initial source gap, and the y-axis is
the gap difference, i.e., the destination (output) gap value minus the source (input) gap value; the
points marked with circles are the turning points where the final estimates are computed.

There are at least two reasons why small probing packet sizescan result in high errors
in the available bandwidth estimation. First, as illustrated in Figure 2.8(b1), at the turning
point the gap value is proportional to the packet size. This means that with small packet
sizes, we will have small gaps, especially if the available bandwidth is high, as is the case
for the NWU to CMU path. The resulting probing train is more sensitive to the burstiness
of the competing traffic. The graph for 100Byte probing packets in Figure 2.8(b1) confirms
this: the gap difference does not converge as nicely as it does with larger probing packets.
The second reason is that the small gap values that occur withsmall probing packets are
harder to measure accurately, so measurement errors can affect the result significantly.
Gap values on the order of 10µs are hard to generate and measure accurately, especially
for user-level applications.
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It is less clear why with larger probing packets, the available bandwidth estimates
further increase and in fact exceed the measured bulk throughput. We conjecture that this
is a result of the aggressiveness of the probing packet trainflow. Probing flows with larger
packets are more aggressive than probing flows with smaller packets, so they “observe” a
higher available bandwidth. The packet size distribution on Internet has clusters around
40Byte, 500Byte and 1500Byte [70], so a flow with only 1200Byte or 1500Byte packets,
for example, is more aggressive than average. A TCP bulk datatransfer is likely to use
mostly maximum sized packets (1500B in this case), but its dynamic congestion control
behavior reduces how much bandwidth it can use.

The second experiment is on the path from CORNELL to CMU. The results are sum-
marized in Figures 2.8(a2) and 2.8(b2). The link capacity ofthe bottleneck link is only
10Mbps, as opposed to 100Mbps for the NWU to CMU path. As a result, the available
bandwidth is significantly lower. The results confirm the main results of the measure-
ments for the NWU to CMU path. First, the available bandwidthestimates increase with
the packet size. Second, since the available bandwidth is much lower, we are seeing fairly
smooth convergence of the gap difference, even for small probing packet sizes (Figure
2.8(b2)). Finally, even though we observe nice convergence, the burstiness of the com-
peting traffic does affect the probes with small packets morethan the probes with larger
packets. For theIGI algorithm, the results with 100Byte probing packet are suspicious and
have a large variance. Because theIGI algorithm uses the changes in individual gap val-
ues instead of the average packet train rate (as used byPTR), it is more sensitive to small
changes in gap values, for example as a result of bursty traffic or traffic on non-bottleneck
links. We discuss this point in more detail in Section 2.7.

Our conclusion is that in general, average-sized probing packets of about 500Byte to
700Byte are likely to yield the most representative available bandwidth estimate. Smaller
packet sizes may underestimate the available bandwidth andmay be more sensitive to
measurement errors, while larger probing packet sizes can overpredict the available band-
width.

2.6.2 Packet Train Length

The packet train length has a large impact on the cost of thePTRandIGI algorithms, since
it affects both the number of packets that are sent (i.e., theload placed on the network)
and the probing time (i.e., the latency associated with the probing operation). Another
important parameter, the number of phases needed to converge on the best initial gap
value (the turning point), is tied very closely to the packettrain length. Intuitively, shorter
packet trains provide less accurate information, so more phases may be needed to converge
on the turning point. For this reason, we will study the packet train length and the number
of phases in theIGI/PTRalgorithm together.

In Section 2.3, we mentioned that trains of 60 packets work well. In this section
we experimentally evaluate how much we can reduce this number without a significant
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Figure 2.9: Performance with packet trains of different lengths

loss in accuracy. We conduct experiments over the same two Internet paths as in the
previous section, i.e., NWU to CMU and CORNELL to CMU. For each path, we use
packet trains of different lengths to estimate the available bandwidth. The measurements
take about two hours. Since the available bandwidth over theInternet is fairly stable [120],
we do not expect the available bandwidth to change significantly during the 2-hour period.
The measurements with different train lengths are also interleaved to further reduce any
possible bias towards a specific train length.

Figure 2.9 shows the cumulative distribution function (CDF) of the estimated available
bandwidth usingIGI (top), and the number of probing phases needed to converge onthe
turning point (bottom). The distributions for thePTRmeasurement are similar and are
not included here. Each graph has five curves, correspondingto five different packet train
lengths: 8, 16, 24, 32, and 64. First, we observe that shorterpacket trains need more
phases to converge, which we had already conjectured earlier. The measurements also
show, again not surprisingly, that shorter packet trains result in a wider range of available
bandwidth estimates, as shown by a CDF that is more spread out. The reason is that the
competing traffic (and thus the available bandwidth) is bursty, and since a shorter packet
train corresponds to a shorter sampling interval, we are seeing a wider range of estimates.
Note however that as the packet train length increases, the impact of the packet train length
on the distribution of the bandwidth estimates becomes smaller, i.e., the estimates converge
on a specific value.

It is interesting to compare the results for the two paths. For the NWU to CMU path,
changing the packet train length has a fairly significant impact on the distributions for both
the available bandwidth and the phase count. In other words,increasing the packet train
length helps in providing a more predictable available bandwidth estimate. Using longer
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Figure 2.10: Relative burstiness measurements based on thegap values.
Each bar shows the median value, and the lines on each bar showthe 5% and 95% percentile values.

trains is also “rewarded” with a reduction in the the number of probing phases. In contrast,
for the CORNELL to CMU path the CDF functions for both the available bandwidth and
phase count are fairly similar for train lengths of 16 packets or more. The reason is that
the competing traffic on this path is not as bursty as that on the NWU to CMU path.

The difference between the two paths raises the question of what packet train length we
should use for available bandwidth estimation. Clearly, the most appropriate train length
depends on the path. For the NWU to CMU path, we probably wouldwant to use a fairly
large value (32 or 64 packets), while for the CORNELL to CMU path, a train length of 16
packets is sufficient. Since the difference between the paths appears to be caused by the
burstiness of the traffic, we decide to use the changes in the packet gaps to characterize the
burstiness of the competing traffic. Specifically, we define therelative burstinessas:

relative burstiness =
1

N−1

∑N
2 |gi − gi−1|

1
N

∑N
1 gi

,

wheregi(1 ≤ i ≤ N) are theN gap measurements of a probing train.
Figure 2.10 shows the relative burstiness of theIGI measurements at the turning point

for the two paths and for the different packet train lengths.We record the detailed gap val-
ues at the turning point for 65 measurements (around 20% of the measurements collected).
The relative burstiness for the path from NWU to CMU is significantly higher than that
for the path from CORNELL to CMU. Interesting enough, the results for 8-packet probing
trains do not follow this trend. We suspect that eight packets is simply not long enough to
get a reliable measurement (note the wide spread).

These results suggest that we can reduce the cost of probing by dynamically adjusting
the length of the packet train. For example, we could use a packet train of 32 packets



2.7. MULTI-HOP EFFECTS 31

for the first few phases and use the burstiness results of those phases to adjust the length
of later packet trains. We decide not to do this because, as the results in Table 2.3 show,
the IGI/PTRalgorithm is already quite fast. The distribution of the probing phase counts
shows that 80% of the measurements only need 4–6 phases to converge to the turning
point, so the corresponding probing time is around 4–6 roundtrip times. Dynamically
adjusting the packet train length is thus not likely to have alarge impact on the probing
time. Of course, we could make the burstiness information available to users so they can
know how variable the available bandwidth is likely to be forshort data transfers.

2.7 Multi-hop Effects

The IGI andPTRalgorithms are based on the gap model presented in Section 2.2. It is
derived for a simple single-hop network, or more generally,for a network in which the
bottleneck link is the tight link and the effect of all other links can be ignored. In this
section we use simulations to study more general multi-hop networks. Specifically, we
address two questions. First, how should we interpret the model if the tight link is not
the bottleneck link, and what are the implications for theIGI andPTRmethod? Second,
how does the competing traffic on links other than the tight link affect the accuracy of the
algorithms?

2.7.1 Tight Link Is Not the Bottleneck Link

When the tight link and the bottleneck link are different, the gap model shows that the
IGI algorithm should use theBO and gB values for the tight link when estimating the
available bandwidth. Unfortunately, tools such as bprobe only estimate the capacity of
the bottleneck link. This will have an impact on the accuracyof the method. Note that
PTRdoes not use theBO andgB values explicitly, so it will not be affected by this tight
link issue. In the remainder of this section we will use ns2 [10] simulation to evaluate the
accuracy of both algorithms in this scenario. While simulation has the drawback that it
leaves out many real-world effects, it has the advantage that we can study topologies that
are difficult or impossible to build.

We use the simulation topology shown in Figure 2.11, using 20Mbps, 10Mbps, and
20Mbps for the link capacities X, Y and Z, respectively. By changing the competing loads
C1, C2, and C3 we can change the tight link of the path and also change the level of
traffic on links other than the tight link. The probing packetsize used in the simulation
is 700Byte and the probing packet train length is 60. The competing traffic consists of
CBR UDP traffic. Note that by picking link capacities that arefairly close, the available
bandwidths on different links are likely to be close as well,which is a challenging case.

In the first set of simulations, we set C2 to 3Mbps and change C1from 0 to 19Mbps.
When C1 is in the range 0–13Mbps, the bottleneck link<R2, R3> is also the tight link,
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Figure 2.11: Simulation configuration.
Ps and Pd are used for probing. C1s, C1d, C2s, C2d, C3s, and C3dare used for the competing
traffic generation.
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Figure 2.12: Pre-tight link effect.

but when C1 falls in 13–19Mbps, the tight link is<R1, R2>. Figure 2.12 presents the
simulation results. We see that when the bottleneck link is equal to the tight link (0 ≤
C1 ≤ 13Mbps), theIGI method accurately predicts the available bandwidth, as expected.
When<R1, R2> is the tight link, we show theIGI estimates based on theBO andgB

values for both the tight (“o” points) and bottleneck links (“x” points). We see that the
results using the tight link values are much closer. The error is the result of interference
from competing traffic on the “non-tight” link, as we discussin more detail in the next
subsection.

Next we run a similar set of simulations, but we now keep C2 fixed to 3Mbps and
change the competing traffic C3 from 0 to 19Mbps. The tight link switches from<R2,
R3> to <R3, R4> when C3 goes above 13Mbps. Figure 2.13 shows that the resultsare
similar to those in Figure 2.12: when the tight link is not thebottleneck link (13 ≤ C3 ≤
19Mbps), using theBO andgB values for the tight link gives a more accurate prediction
for the available bandwidth on the path. However, the results when0 ≤ C3 ≤ 13Mbps
are less clear than for the pre-tight link case in Figure 2.12, we will explain it in the next
section.

In Figures 2.12 and 2.13 we also plot the correspondingPTRvalues. ThePTResti-
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Figure 2.13: Post-tight link effect.

mates are almost identical to theIGI estimates that use theBO andgB values for the tight
link. The reason is that thePTR formula does not explicitly use any information about
the tight link capacity. The fact that theIGI algorithm uses the capacity of the tight link
explicitly is a problem because we only have techniques for identifying the link capacity
of the bottleneck link, not the tight link. In practice, thisis not likely to be a problem: we
expect that on many paths, the access link from the client network to the ISP will be both
the bottleneck and the tight link. Our Internet measurements in Section 2.5 confirm this.

2.7.2 Interference from Traffic on “Non-tight” Links

In a multi-hop network, each link will potentially affect the gap value of a packet pair or
packet train, so we have to effectively concatenate multiple instances of the single-hop
gap model. Such a multi-hop gap model is hard to interpret. However, it is fairly easy to
see that it is the link with the lowest unused bandwidth (i.e., the tight link) that will have
the largest impact on the gap at the destination. The intuition is as follows. On links that
have a lot of unused bandwidth, the packets of the probing floware likely to encounter an
empty queue, i.e., these links will have a limited impact on the gap value. Of course, these
links may still have some effect on the gap values, as we analyze in this section using the
simulation results from the previous section.

The results in Figure 2.12 for0 ≤ C1 ≤ 13Mbps show that bothIGI andPTRare very
accurate, even when there is significant competing traffic ona link preceding the tight
link. Interesting enough, the second set of simulations show a different result. The results
in Figure 2.13 for0 ≤ C3 ≤ 13Mbps correspond to the case that there is significant
competing traffic on a link following the tight link. We observe that whilePTR is still
accurate, theIGI accuracy suffers.

The different impact onIGI of competing traffic in links upstream and downstream of
tight link can be explained as follows. Changes in gap valuesbefore the tight link will be
reshapedby the router which the tight link connects with, and the competing traffic on the
tight link ends up having the dominating impact. In contrast, any changes in gap values
that are caused by traffic on links following the tight link will directly affect the available
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Figure 2.14: Combined pre- and post-tight link effects, with 20Mbps pre- and post-tight
link capacities.
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Figure 2.15: Combined pre- and post-tight link effects, with 100Mbps pre- and post-tight
link capacities.

bandwidth estimates, so they have a larger impact. SinceIGI is based on more fine-grain
information thanPTR, it is more sensitive to this effect.

In Figure 2.14 we show the available bandwidth, as estimatedby IGI, when there is
significant competing traffic on both the links before and after the tight link. The actual
available bandwidth is 7Mbps for all data points. It is determined by link<R2, R3>,
which has 10Mbps capacity and 3Mbps competing traffic (C2). The results confirm the
above observation. Even significant competing traffic before the tight link has almost no
impact on the accuracy: the curve is basically flat along the C1-axis. Competing traffic
after the tight link does however have an effect and, not surprisingly, its impact increases
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Figure 2.16: Impact of initial gap error

with the level of competing traffic.
Note that the above simulations results are designed to highlight a particularly chal-

lenging case. In practice, it is not common to have links withcapacities and/or available
bandwidths that are this similar. In such cases, the effect of competing traffic on other
links is very minimal. For example, we run a set of simulations similar to those described
above, but with the<R1, R2> and<R3, R4> set to 100Mbps instead of 20Mbps. The
capacity of<R2, R3> and it competing traffic throughput (C2) keep to be 10Mbps and
3Mbps, respectively, i.e., the available bandwidth is still 7Mbps. The results are shown
in Figure 2.15. We see that theIGI method gives accurate results—the mean value for
the data points in this figure is 7.24Mbps, and the standard deviation is 0.10Mbps. The
fact thatIGI andPTRtypically produce very similar estimates in our Internet experiments
shows that the results in Figure 2.15 are much more typical than the worst case results in
Figures 2.12 and 2.13.

2.7.3 Impact of Multi-hop Effects on Timing Errors

The above described multi-hop effects also have an important implication for the time
errors in the IGI/PTR implementation. There are two types ofgap measurement errors:
the errors in the initial gap value generated by the source host, and the measurement errors
in the final gap value measured on the destination host.

To illustrate the effect of source gap generation error, we use the topology shown in
Figure 2.11, with X, Y, and Z set to 20Mbps, 10Mbps, and 20Mbps, respectively. The flow
C2 is the only competing flow and we change its throughput in the range of 0–9Mbps. For
each experiment, the initial gap (gI) is incremented by a random valueε that is uniformly
distributed in(−β, β), i.e.,

g = max(0, gI + ε),−β < ε < β.

We run simulations forβ ranging from 0–2ms, and for eachβ value, we collect results
when C2 changes between 0 and 9Mbps. Figure 2.16 shows the average absolute error in
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the IGI estimate as a function ofβ. We see that the error is small. Note the turning gap
value for this simulation is 0.3–1.7ms, so the errors inflicted on the initial gap are quite
large. We believe that the reason for the high error tolerance is the same as the reason for
the low sensitivity ofIGI to the pre-tight link traffic. Specifically, the tight link ends up
reshaping the gaps according to the competing traffic, thus in effect hiding the initial gap
errors. Therefore, measurement errors on the destination side will have a more significant
impact since they will directly change the gap values that are used in theIGI andPTR
formulas.

2.8 Improvement for Heavy-Loaded and High-Speed Paths

After we released its source code [6], IGI/PTR has become oneof the benchmarks for
newly developed available-bandwidth measurement tools like Spruce [113]. These work
further confirm the key properties of IGI/PTR like small measurement overhead and short
measurement time. However, they also discovered some problems. For example, Strauss
et.al. [113] showed that IGI/PTR over-estimates availablebandwidth when path load is
high, and Shriram et.al. [106] pointed out IGI/PTR does not work well on high-speed
network paths. In this section, we show that both problems are due to implementation or
system details, not shortcomings of the algorithm. Specifically, the first problem is due
to the mechanism used to identify the turning point; while the second is due to small-gap
measurement errors. In this section, we present a detailed explanation and describe our
approaches to address these problems.
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2.8.1 Better Estimation of the Turning Point

Liu et.al. [78] pointed out that a possible reason for the measurement error in IGI/PTR
is the divergence from the fluid model used by the IGI/PTR design and their stochastic
model. Figure 2.17 illustrates this difference. Using the fluid model, the probing follows
line FA, while in the stochastic model, it should follow curveFH. If an implementation
uses linear regression toinfer the turning point, there can be a big error. However, the
IGI/PTR implementation does not use this method. Instead, it gradually increases the
source gap until the measured destination gap “equals” the source gap. Therefore, the
original IGI/PTR implementation is not affected by the simplification of the design model.

The measurement errors mentioned in [113] are instead due totwo implementation
features. One is that we only sample each source gap once, which makes measurement
results sensitive to measurement noise. The other is that the turning-point identification
method could be too coarse-grained when the turning-point has a large gap value. In the
original implementation, the turning point is identified when the difference between the
source gap (gs) and the destination gap (gd) is within 20%, i.e.,(gd−gs)/gd < 20%. How-
ever, when traffic load is high, 20% of gap difference can be too large and the probing can
stop prematurely and under-estimate the path load. For example, using 500 byte probing
packets on a path with 50Mbps capacity, when the load is 46Mbps, the turning-point gap
value is1ms. The smallestgs that satisfies the above 20% requirement is240us (using
gd = gB + BC · gs/BO). That corresponds to 16Mbps probing rate, which is four times of
the real available bandwidth value.

Filter measurement noise by sampling a same source gap multiple times

The first issue is relatively easy to address—we only need to collect a number (k) of mea-
surements for each source-gap value and use the average of all k source/destination gap
values in the algorithm. To reduce the impact of measurementnoise, we prefer a largek
value. To minimize measurement overhead, however, smallk is better. As a result, the
choice ofk is a trade-off between measurement accuracy and measurement overhead. To
decide the exact value ofk, we study the performance of the improved algorithm by chang-
ing k’s value from 1 to 5. For eachk value, the experiment was done with different path
load, which was generated using a custom load generator whose packet inter-arrival times
follow a Poisson distribution. For each path load, we collected 10 available bandwidth
measurements, and plotted their average and variances (i.e., max - min) in Figure 2.18.
We can see, with different values ofk, the average (in the top graph) does not change
much, but the variance (in the bottom graph) are dramatically different. It is clear that
measurement variances are larger whenk is 1 or 2 compared with the other cases. Al-
thoughk = 5 is overall the best, its improvements overk = 3 andk = 4 are minor in most
cases. In our current implementation, we choosek = 5. In practice, we suggest settingk
as at least 3.



38 CHAPTER 2. END-TO-END AVAILABLE BANDWIDTH MEASUREMENT

5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

1
1

1
1

1
1

1
1

1

2
2

2

2

2
2

2
2

2

3 3

3 3

3

3
3

3
3

4
4

4

4
4

4
4

4
4

5
5

5

5

5

5
5

5
5

real available bandwidth (Mbps) from ugen

m
ea

su
re

d 
av

er
ag

e 
(M

bp
s)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

real available bandwidth/5 (Mbps) from ugen

m
ea

su
re

d 
va

ria
nc

e 
(M

bp
s)

k=1
k=2
k=3
k=4
k=5

Figure 2.18: Impact of repeated measurements

A better turning-point identification formula

As explained above, the original IGI/PTR implementation detects the turning point based
on therelative difference between the source and the destination gap values. However,
as we will show below in Claim 2.8.1, this relative difference in gap values transforms to
an constant absolute error in the available bandwidth estimation. Therefore, for smaller
available bandwidth, this constant error results in a larger relative measurement error. That
is why we see a large measurement error when path load is high.

Figure 2.19(a) illustrates this insight. In this figure, thex-axis is the source gap value,
denoted asgs, the y-axis is the destination gap value, denoted asgd. Line L1 is the line
gs = gd. Any turning point should be on lineL1. PointF indicates the bottleneck gap
valuegB (see the single-hop gap model in Figure 2.2). Letε be the error margin allowed
for the relative difference between source and destinationgap values, the IGI/PTR probing
stops when|(gs − gd)/gs| < ε. Since the algorithm starts sampling with smallgs, it is
reasonable to assumegd > gs. Therefore, when the turning point is detected:

gd < (1 + ε)gs (2.5)

This condition corresponds to the area below lineL2 in Figure 2.19(a). Assume we have
two paths with different available bandwidth, and their turning point are pointC andE,
respectively. In the extreme case, the estimated turning point for these two paths could be
at pointA andH,respectively. Visually, the measurement error for turning pointE is very
large—gH < gE/2, i.e., the corresponding bandwidth over-estimation is over 50%.
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Figure 2.19: The performance of using different turning-point detection formula

To reduce the measurement error, we change lineL2 into a parallel line withL1, as il-
lustrated in Figure 2.19(b). In this figure, the difference betweengH andgE is significantly
reduced. The formula corresponding to the area below lineL2 can be expressed as

gd < gs + ∆ (2.6)

In Claim 2.8.2 below we will prove that therelativemeasurement error using this method
is constant. Therefore, we use this formula in our improved version of IGI/PTR imple-
mentation.

Claim 2.8.1 Ignoring measurement noise, the absolute available bandwidth measurement
error ( L

gs
− L

go
) using Formula (2.5) is constant,go is the turning point gap value, andL is

probing packet size.

Claim 2.8.2 Ignoring measurement noise, the relative available bandwidth measurement
error (L/gs−L/go

L/go
) using Formula (2.6) is constant.

Proof: Since packet sizeL is constant, we only need to prove that the value of1
gs
− 1

go
and

1/gs−1/go

1/go
are constant. From formula (2.2), i.e.,gd = gB + BC · gs/BO, we know thegd

andgs have the following relationship before reaching the turning point

gd = gB + (1− a)gs (2.7)

Herea = BA/BO, andBA is the available bandwidth. Combining formula (2.5) (treat
“<” as “=”) with formula (2.7), we can get

1

gs

−
1

go

=
ε

gB

= constant
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Figure 2.20: Performance of the improved IGI/PTR implementation

Similarly, combining formula (2.6) with formula (2.7), we have

1/gs − 1/go

1/go
=

∆

gB + ∆
= constant

�

Improved implementation

Based on the above two claims, we improved the implementation of IGI/PTR as follows.
For each source gap, we probe five times, and use the averages of source gaps and desti-
nation gaps in the comparison. The turning-point identification uses formula (2.6), where
∆ = 5us. In Figure 2.20, we compare the performance of this improvedimplementation
with that of the original implementation, using three typesof background traffic: UDP
CBR traffic, TCP flows, and UDP based Poisson traffic. We can see, in all three scenar-
ios, the improved implementation has very small measurement error, which is much better
than the original implementation.

Adjustment to the estimated turning point

To accommodate inevitable measurement noise, when identifying the turning point, the
source and the destination gap values are allowed to be as large as∆. Now we estimate the
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Figure 2.21: Adjust the estimated turning point

average difference between the measured turning point and the real turning point, because
that will allow us to adjust our estimation so that it can be probabilistically closer to the
real turning point.

There are two main factors that affect this difference: the destination gap measurement
error, and the source gap sampling interval. Below we consider the destination gap mea-
surement error first, by assuming the sampling interval can be arbitrarily small; we then
consider the second factor.

Let us denote the sampling interval asδ and assume it is very small. In Figure 2.21
(copied from Figure 2.19(b)), if the real turning point isE, without the measurement
error, the probing should stop at pointH (gH = go −∆/a). If gd has error ofβ, which is
assumed to follow an uniform distribution on[−γ, γ]. Using formula (2.2) and (2.7), we
knowgB + (1− a)gs + β = gs + ∆. So when the probing stops,gs = go + (β −∆)/a. If
γ > ∆, thenβ can be larger than∆ (with probability of(γ −∆)/2γ), thusgs > go, that
is, the probing stops too late. For the other cases,gs ≤ go and the probing stops too early
(with probability of(2γ −∆)/2γ). If γ ≤ ∆, thengs ≤ go is always true, i.e., the probing
always stops early. Regardless of the value ofγ, the average error betweengs andgo is
∆/a, since the average ofβ is 0. Therefore,gs should be adjusted as(gs +∆/a) (a can be
estimated using the measurement available bandwidth). This means that the white noiseβ
in destination gap measurement does not impact the adjustment of the turning point.

If the source-gap sampling intervalδ is not negligible, the probing might not stop at
point H; the estimated turning point can be anywhere betweenH andG (gG = gH + δ,
assumingδ < ∆). If we assume any point betweenH andG has equal probability to
be the stop point, then in average the probing should stop atgH′ = gH + δ/2, and the
adjustment for the estimated turning point should be(gs + (∆/a− δ/2)).
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2.8.2 Accommodating High-Speed Network Paths

[106] pointed out that IGI/PTR does not work well on Gigabit network paths. The reasons
include those that have been discussed in related work [68]—interrupt coalescence (also
called interrupt throttling) and the system-call overheadof gettimeofday() . [97] has
demonstrated how to conduct available bandwidth measurements by identifying the signa-
ture of interrupt coalescence. That technique, however, has difficulty in obtaining correct
measurements when background traffic load is high, where thesignature can become ob-
scured.

For IGI/PTR, interrupt coalescence completely disables IGI, which relies on adjacent
packet gap values. PTR can continue to work if it uses long enough packet train, it needs
to deal with three factors that can affect the measurement accuracy of PTR:

1. Overhead of thegettimeofday() system call. Time used for executing this sys-
tem call can be ignored when the packet gap value is large enough. On a Gigabit
network path, packet gap values often do not satisfy this requirement. To address
this problem, an obvious method is to avoid using this systemcall as much as pos-
sible. For example, one can use libpcap to obtain kernel timestamps. However, our
experiments show that this method does not obviously improve timestamp measure-
ment accuracy. Another method is to only measure the timestamps on the two end
packets of the packet train, and then calculate the average packet gap values. This
method, however, can not be used to measure destination gaps, because we often do
not know which packet is the last one due to packet loss.2

2. Packet buffering in the OS introduces errors in source-gap measurements. On the
sender side, the sending times are measured usinggettimeofday() immediately
aftersendto() returns. However, the return ofsendto() only indicates the end
of packet buffer copying, which is not necessarily the packet transmission time. For
example, when we send back-to-back 1400B packets from an 1Gbps interface on
Emulab pc3000 nodes3, the average packet gap is measured to be5− 9us, while the
theoretical value is(1400 ∗ 8/1000) = 11.2us.

3. Source-gap generation error. In IGI/PTR, fine-granularity packet gaps are generated
using CPU arithmetic instructions executed between twosendto() system calls.
This is the best method we are aware of that can reliably generate small time in-
tervals on light-loaded hosts. However, if the turning-point gap value is small, this
method can easily miss the real turning point. A slightly larger gap values can sig-
nificantly under-estimate available bandwidth estimation. This is especially true for

2We have also tried to reduce the number of times invokinggettimeofday() by measuring the
timestamp of everyN (say 10) packets. It does not alleviate the problem.

3Dell PowerEdge 2850s with a single 3GHz processor, 2GB of RAM, and two 10,000 RPM 146GB SCSI
disks.



2.8. IMPROVEMENT FOR HEAVY-LOADED AND HIGH-SPEED PATHS 43

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

1000

real available bandwidth (Mbps)

m
ea

su
re

d 
av

er
ag

e 
(M

bp
s)

30−pkt train
1000−pkt train
adaptive pkt−train

Figure 2.22: PTR measurement of the improve algorithms on 1Gbps network path

high-speed CPUs whose sophisticated CPU architecture makes it hard to accurately
emulate small time delay using instruction executions.

It is easy to see that the above three factors tend to have lessimpact when the path
available bandwidth is relatively small. In the following,we show that, by properly setting
the length of the packet trains, the PTR algorithm can get reasonably accurate measure-
ments when available bandwidth is less than 800Mbps, which is a significant improve
over the original implementation. The idea is to maintain a constant packet-train length
in time, instead of the number of packets. That is, each time the source node sends out
a packet train, it changes the number of packets (N) in the train according to the source
gap value, so that the train always covers the same time interval (T ). When the source
gap value increases,N decreases. In this way, we can use long packet trains while also
limiting the measurement overhead, which is an important design principle of our original
IGI/PTR technique. As shown below in our analysis, comparedwith using a packet train
that has a constant number of packets, the adaptive algorithm performs better in terms of
measurement accuracy.

Figure 2.22 plots the experimental results when running three different versions of the
PTR algorithm on a network path with 1Gbps capacity. The firstversion uses 30-packet
packet trains, the second version uses 1000-packet packet trains, while the third version
uses the above adaptive algorithm (withT set as5ms). Probing packets are all 1400 byte.
Path load is generated using UDP CBR traffic. With each load, ten PTR measurements are
collected, and we plot the averages in the figure. For the adaptive version, we also plot the
measurement variance (i.e., max-min).
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Comparison of the three versions shows that the adaptive version is indeed the best
one. Between the 30-packet version and the 1000-packet version, the 30-packet version
tends to have better accuracy when available bandwidth is smaller than 500Mbps, while
the 1000-packet version is better when the available bandwidth is larger than 500Mbps.
The adaptive version, however, can combine the better part of both versions, thus achieving
the best measurement accuracy.

For all three versions, the measurement errors are higher for larger available band-
width. This is because the difficulties in timestamp measurement when the turning-point
gap value is small. For example, with no background traffic, the turning-point gap value
should be(1400 ∗ 8/1000) = 11.2us. However, in the first probing phase, the average
source gap is9us(< 11.2us), because of source-gap measurement error. The correspond-
ing destination gap is measured as14us(> 11.2us), because of the overhead of running
gettimeofday() for each packet received. Sincegs < gd, the source gap will be incre-
mented, and eventually results in an under-estimation. We have tried several approaches
to alleviate this problem, including using libpcap kernel timestamps, but none was suc-
cessful.

2.8.3 Discussion

In this section, we have demonstrated the techniques that can improve the performance of
IGI/PTR on high-load paths and high-speed paths. However, even with these techniques,
the clock granularity of current Linux systems only allows IGI/PTR to measure available
bandwidth upto around 800Mbps. That still limits the usage of IGI/PTR on high speed
network paths. Due to similar errors in time measurements, IGI/PTR does not work well
when the host load is high. These problems deserve future research effort.

2.9 An Application of PTR — TCP PaSt

There are two different ways to use the IGI/PTR technique. One is to directly use it as
a tool to measure end-to-end available bandwidth. This is the most straight-forward and
also the most popular method. The other way is to use its idea to manipulate data packet
transmission within an application to obtain available bandwidth information automati-
cally. In this section, we present an example of the latter method, where we integrate the
PTR technique into the TCP Slow Start algorithm to improve TCP startup performance.
In this section, we motivate our design, describe our algorithm in detail, and discuss the
insights of this integration procedure.
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Figure 2.23: Sequence plot for Slow Start (Sack) and Paced Start.
These are from anns2simulation of a path with a roundtrip time of 80ms, a bottleneck link of
5Mbps, and an available bandwidth of 3Mbps. Delayed ACKs aredisabled, so there are twice
times as many outgoing data packets as incoming ACKs.

2.9.1 PaSt Design

TCP Slow Start algorithm is used at the startup phase of TCP transmission to exponentially
increase the window size to identify the right sending rate.It ends either when the conges-
tion window reaches a thresholdssthresh, at which point TCP converts to a linear increase
of the congestion window, or when packet loss occurs. The performance of Slow Start is
unfortunately very sensitive to the initial value ofssthresh. If ssthreshis too low, TCP may
need a very long time to reach the proper window size, while a high ssthreshcan cause sig-
nificant packet losses, resulting in a timeout that can greatly hurt the flow’s performance.
Traffic during Slow Start can be very bursty and can far exceedthe available bandwidth
of the network path. That may put a heavy load on router queues, causing packet losses
for other flows. Furthermore, steady increases in the bandwidth delay products of network
paths are exacerbating these effects.

To address this problem, we integrate the PTR algorithm intoTCP startup algorithm
so that TCP can obtain available bandwidth information, andthus automatically setting a
good initial congestion window value. The TCP startup algorithm so modified is referred
as TCP Paced Start (PaSt). The idea behind Paced Start is to apply the PTR algorithm to
the packet sequence used by TCP Slow Start to get a reasonableestimate for the available
bandwidth without flooding the path. An advantage of the using PTR for TCP Slow Start
is that TCP startup period only needs to obtain a good approximation. It is sufficient that
the initial value of the congestion window is within a factorof two of the “true” congestion
window, so that TCP can start the congestion avoidance phaseefficiently.

Figure 2.23(a) shows an example of a sequence number plot forSlow Start. We have
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disabled delayed ACKs during Slow Start as is done by defaultin some common TCP
implementations, e.g. Linux; the results are similar when delayed ACKs are enabled.
The graph clearly shows that Slow Start already sends a sequence of packet trains. This
sequence has the property that there is one packet train per round trip time, and consecutive
trains grow longer (by a factor of two) and become slower (dueto the clocking). We
decided to keep these general properties in Paced Start, since they keep the network load
within reasonable bounds. Early trains may have a very high instantaneous rate, but they
are short; later trains are longer but they have a lower rate.Using the same general packet
sequence as Slow Start also has the benefit that it becomes easier to engineer Paced Start
so it can coexist gracefully with Slow Start. It is not too aggressive or too “relaxed”, which
might result in dramatic unfairness.

The two main differences between Slow Start and Paced Start are (1) how a packet
train is sent and (2) how we transition into congestion avoidance mode. The self-clocking
nature of Slow Start means that packet transmission is triggered by the arrival of ACK
packets. Specifically, during Slow Start, for every ACK it receives, the sender increases
the congestion window by one and sends out two packets (threepackets if delayed ACKs
are enabled). The resulting packet train is quite bursty andthe inter-packet gaps are not
regular because the incoming ACKs may not be evenly spaced. This makes it difficult
to obtain accurate available bandwidth estimates. To address this problem, Paced Start
does not use self-clocking during startup, but instead directly controls the gap between the
packets in a train so that it can set the gap to a specific value and make the gaps even across
the train. As we discuss in more detail below, the gap value for a train is adjusted based on
the average gap between the ACKs for the previous train (we use it as an approximation
for the inter-packet gaps at the destination). To do that, wedo not transmit the next train
until all the ACKs for the previous train have been received.

Note that this means that Paced Start is less aggressive thanSlow Start. First, in Slow
Start, the length of a packet train (in seconds) is roughly equal to the length of the previous
ACK train. In contrast, the length of the packet train in Paced Start is based on the sender’s
estimate on how the available bandwidth of the path compareswith the rate of the previous
packet train. As a result, Paced Start trains are usually more stretched out than the corre-
sponding Slow Start trains. Moreover, the spacing between the Paced Start trains is larger
than that between the Slow Start trains. In Figure 2.23(b), this corresponds to a reduced
slope for the trains and an increased delay between trains, respectively. Since Slow Start
is widely considered to be very aggressive, making it less aggressive is probably a good
thing.

Another important design issue for Paced Start is how to transition into congestion
avoidance mode. Slow Start waits for packet loss or until it reaches the statically config-
uredssthresh. In contrast, Paced Start iteratively calculates an estimate for the congestion
window of the path and then uses that estimate to transition into congestion avoidance
mode. This typically takes three or four probing phases (RTTs), as is discussed in Sec-
tion 2.9.2. If packet loss occurs during that period, Paced Start transitions into congestion
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Figure 2.24: The Paced Start (PaSt) algorithm

avoidance mode in exactly the same way as Slow Start does.

2.9.2 PaSt Algorithm

The Paced Start algorithm is shown in the diagram in Figure 2.24. It starts with an initial
probing using a packet pair to get an estimate of the path capacity B; this provides an
upper bound for the available bandwidth. It then enters the main loop, which is highlighted
using bold arrows: the sender sends a packet train, waits forall the ACKs, and compares
the average ACK gap with the average source gap. If the ACK gapis larger than the source
gap, it means the sending rate is larger than the available bandwidth and we increase the
source gap to reduce the rate; otherwise, we decrease the source gap to speed up. In the
remainder of this section, we describe in detail how we adjust the gap value and how we
terminate Paced Start.
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Figure 2.25: Behavior of different startup scenarios.

Gap Adjustment

Figure 2.25 provides some intuition for how we adjust the Paced Start gap value. The
bold line shows, for a path with a specific RTT (roundtrip time), the relationship between
the congestion window (x-axis) and the packet train sendingrate (1/source gap). The
goal of the TCP startup algorithm is to find the point (cwnd, sending rate) on this line
that corresponds to the correct congestion window and sending rate of an ideal, stable,
well-paced TCP flow. Since the “target” window and rate are related (cwnd = RTT ∗
sending rate), we need to find only one coordinate.

The traditional Slow Start algorithm searches for the congestion window by moving
along the x-axis (cwnd) without explicitly considering the y-axis (sending rate). In con-
trast, Paced Start samples the 2-D space in a more systematicfashion, allowing it in many
cases to identify the target more quickly. In Figure 2.25, the area below theB line in-
cludes the possible values of the available bandwidth. The solid arrows show how Paced
Start explores this 2-D space; each arrow represents a probing cycle. Similar to Slow Start,
Paced Start explores along the x-axis by doubling the packettrain length every roundtrip
time. Simultaneously, it does a binary search of the y-axis,using information about the
change in gap value to decide whether it should increase or decrease the rate. Paced Start
can often find a good approximation for the available bandwidth after a small number (3
or 4) of cycles, at which point it “jumps” to the target point,as shown in case 1 and case 2.

The binary search proceeds as follows. We first send two back-to-back packets; the
gap at the destination will be the valuegB. In the next cycle, we set the source gap to
2∗gB, starting the binary search by testing the rate ofB/2. Further adjustments of the gap
are made as follows:

1. If gs < gd, we are exploring a point where the Packet Transmission Rate(PTR)
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is higher than the available bandwidth, so we need to reduce the PTR. In a typical
binary search algorithm, this would be done by taking the middle point between the
previous PTR and the current lower bound on PTR. In Paced Start, we can speed up
the convergence by using2 ∗ gd instead of2 ∗ gs. That allows us to use the most
recent probing results, which are obtained from longer packet train and generally
have lower measurement error.

2. If gs ≥ gd, the PTR is lower than the available rate and we have to reducethe packet
gap. The new gap is selected so the PTR of the next train is equal to the middle point
between the previous PTR and the current upper bound on PTR.

Algorithm Termination

The purpose of the startup algorithm is to identify the “target” point, as discussed above.
This can be done by either identifying the target congestionwindow or the target rate,
depending on whether we reach the target along the x or y axis in Figure 2.25. This
translates into two termination cases for Paced Start:

• Identifying the target rate : This happens when the difference between source and
destination gap values shows that the PTR is a good estimate of the available band-
width. As we discuss below, this typically takes 3 or 4 iterations. In this case, we
set the congestion window size ascwnd = RTT/g, whereg is the gap value deter-
mined by Paced Start. Then we send a packet train usingcwnd packets with packet
gapg. That fills the transmission pipe, after which we can switch to congestion
avoidance mode.

• Identifying the target congestion window: When we observe packet loss in the
train, either through a timeout or duplicate ACKs, we assumewe have exceeded the
transmission capacity of the path, as in traditional TCP Slow Start. In this case, we
transition into congestion avoidance mode. If there was a timeout, we use Slow Start
to refill the transmission pipe, after settingssthreshto half of the last train length.
Otherwise we rely on fast recovery.

How Paced Start terminates depends on many factors, including available bandwidth,
RTT, router queue buffer size, and cross traffic properties.From our experience, Paced
Start terminates by successfully detecting the available bandwidth about 80% of the time,
and in the remaining 20% cases, it exits either with a timeoutor fast retransmit after packet
loss.

Gap Estimation Accuracy

An important question is how many iterations it takes to obtain an available bandwidth
estimate that is “close enough” for TCP, i.e. within a factorof two. This means that we



50 CHAPTER 2. END-TO-END AVAILABLE BANDWIDTH MEASUREMENT

2G(gB)

G (gB)2

2G2(gB)

G(gB)

G3(gB)
2G3(gB)

G (gB)2

0 2gB

G(gB)

F(4gB/3)
F(4gB/3)

(8/7)gB

probing gap
of next step

probing
gap

 g B

dst gap value

(4/3)gB

[case 2]

[case3]

[case 4]

[case 5]

[case 1]

g  < gds

g  >= gds

g  < gds

g  < gds

g  >= gds

g  < gds

g  >= gds

g  >= gds

Figure 2.26: Paced Start gap adjustment decision tree.
The formula pointed by an arrow is a possible probing gapgs; the formula above an arrow is agd
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Table 2.4: Paced Start exiting gap values
case a gPaSt

1/a
gPaSt

1 (0.75,1) 8gB/7 (0.9, 1.2)
2 (0.5,0.75) F ((4/3)gB) = (7/3− 4a/3)gB (1.0, 1.2)
3 (0.19,0.5) G(gB) = (3− 2a)gB (1.0, 2.0)
4 (0.08,0.19) G2(gB) = (1 + 2(1− a)(3− 2a))gB (1.0, 2.0)
5 (0,0.08) 2G3(gB) = 2(1 + 2(1− a)(1 + (1− a)2(3− 2a)))gB (0.5,∞)

need to characterize the accuracy of the available bandwidth estimate obtained by Paced
Start.

Figure 2.26 shows the gap values that are used during the binary search assuming
perfect conditions. The conditions under which a branch is taken are shown below the
arrows while the values above the arrows are the destinationgaps; the values at the end
of the arrows indicate the source gap for the next step. From Section 2.2, we know if
gs < gd, then the relationship between the source and destination gap is given bygd =
gB + (1 − a)gs. We useF (g) = gB + (1 − a)g to denote this relationship. We also use
another function,G(g) = F (2g).

This model allows us to calculate how we narrow down the rangeof possible values for
a as we traverse the tree. For example, when during the second iteration we probe with a
source gap of2gB, we are testing the pointa = 0.5. If gs < gd, we need to test a smallera
by increasing the gap value to2G(gB) (based ongd = G(gB)); otherwise, we want to test
a larger value (a = 0.75, following a binary search) by reducing the gap value to(4/3)gB.

Table 2.4 shows the ranges ofa for the 5 exiting cases shown in Figure 2.26. It also
lists the ratio between1/a andgPaSt. This corresponds to the ratio between the real send-
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Figure 2.27: Difference between PaSt gap value and ideal gapvalue.

ing rate and the available bandwidth, i.e. it tells us how much we are overshooting the
path available bandwidth when we switch to congestion avoidance mode. Intuitively, Fig-
ure 2.27 plots the difference between1/a andgPaSt for a network path with a bottleneck
link capacity of 100 Mbps.

From Table 2.4 and Figure 2.27, we can see that ifa is high (e.g. cases 1, 2, and 3), we
can quickly zoom in on an estimate that is within a factor of two. We still require at least
3 iterations because we want to make sure we have long enough trains so the available
bandwidth estimate is accurate enough. This is the case where Paced Start is likely to
perform best relative to Slow Start: Paced Start can converge quickly while Slow Start
will need many iterations before it observes packet loss.

For smallera, more iterations are typically needed, and it becomes more likely that the
search process will first “bump” into the target congestion window instead of the target
rate. This means that Paced Start does not offer much of a benefit since its behavior is
similar to that of Slow Start — upon packet loss it transitions into congestion avoidance
mode in exactly the same way. In other words, Paced Start’s performance is not any worse
than that of Slow Start.

2.9.3 Discussion

Using both testbed emulation and Internet experiments, we show that PaSt can signifi-
cantly improve TCP throughput by reducing its startup time and packet loss. For example,
by implementing the PaSt algorithm in Linux kernel and comparing with a regular Linux
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which implements the TCP Sack protocol, we show that PaSt canremove 90% of the
packet loss during startup for a set of web-page transmissions while also achieving 10%
average throughput improvement. More evaluation details can be found in [59].

This work demonstrates that to successfully integrate a measurement technique into
applications, we need a good understanding of both the network properties and the ap-
plication requirements. Understanding the network properties allows us to improve the
measurement accuracy (e.g., by adjusting the length of packet trains), while understand-
ing the application requirements helps the application measure the right value efficiently
(e.g., by finding the right tradeoff between accuracy and overhead). In PaSt, for example,
many its properties directly follow from the application (i.e. TCP) requirements: (1) TCP
is an adaptive protocol and the purpose of the startup phase is to get a reasonable starting
point for the congestion avoidance phase. At the same time, we would like to switch to
congestion avoidance mode quickly, so it is important to keep the overhead (number of
probing packets) low. Given these two requirements, PaSt cuts off the measurement more
quickly than PTR. (2) Since the congestion control tries to track the available bandwidth,
it needs the available bandwidth averaged over a short interval. Therefore PaSt uses trains
up to a roundtrip time in length. (3) TCP is a two-end protocol. That makes it natural to
apply the PTR algorithm. For the ease of deployment, however, PaSt measures the packet
train rate at the source (based on ACKs), i.e. it is a one-end implementation.

2.10 Related Work

Bandwidth measurements include path capacity measurements and path available band-
width measurements. Surveys on bandwidth measurement techniques can be found in
[87, 96]. Capacity measurement techniques can be classifiedinto single-packet meth-
ods and packet-pair methods. Single-packet methods, like pathchar [64], clink [46] and
pchar [79], estimate link capacity by measuring the time difference between the round-
trip times to the two ends of an individual link. This method requires a large numbers of
probing packets to filter measurement noise due to factors like queueing delay. Packet-pair
path capacity measurement tools include NetDyn probes [30], bprobe [32], nettimer [77],
pathrate [45], and CapProbe [71]. In practice, interpreting packet-pair measurements is
difficult [92], and accurate measurements generally need touse statistical methods to pick
out the packet pairs that correspond to the real path capacity. For example, nettimer uses
kernel density estimation to filter measurement noises; it also compares sending rate with
receiving rate to pick out good measurement samples. Pathrate explicitly analyzes the
multi-modal nature of a packet gap distribution. It first uses a large number of packet-pair
measurements to identify all clusters, which generally include the one corresponding to
the real capacity. It then uses longer and longer packet trains until the bandwidth distri-
bution becomes unimodal, i.e., converges to the asymptoticdispersion rate. The smallest
cluster that is larger than the unimodal cluster then corresponds to the real capacity value.
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CapProbe uses one-way delays to identify the packet pairs that are still back-to-back on
the bottleneck link. It is based on the observation that packet pairs that are not interfered
by competing traffic will have the smallest sum of one-way delays for the two packets in
each pair.

Characterizing end-to-end available bandwidth, however,is more difficult than path
capacity measurement since path available bandwidth is a dynamic property and depends
on many factors. Its dynamic nature means that practical available bandwidth measure-
ments represent an average over some time interval. Therefore, active measurement tech-
niques often use packet trains, i.e., longer sequences of packets. An early example is
the PBM (Packet Bunch Mode) method [92]. It extends the packet pair technique by us-
ing different-size groups of back-to-back packets. If routers in a network implement fair
queueing, bandwidth indicated by back-to-back packet probes is an accurate estimate for
the “fair share” of the bottleneck link’s bandwidth [72]. Another early example, cprobe
[32], sends a short sequence of echo packets between two hosts. By assuming that “almost-
fair” queueing occurs during the short packet sequence, cprobe provides an estimate for
the available bandwidth along the path between the hosts.

Research on available bandwidth measurement made significant progress since the
year 2000, when several effective techniques were proposed, including IGI/PTR. TOPP [85]
proposes a theoretical model on how background traffic load changes the transmission
rate of probing packets. Our technique—IGI/PTR—leverageson its results. Pathload [65]
measures one-way delay of the probing packets in packet trains. If the probing rate is
higher than the available bandwidth, delay values of the probing packets will have an in-
creasing trend, and pathload can adjust the probing rate until it is close enough to the real
available bandwidth. PathChirp [101] uses packet chirps and also uses one-way delay to
identify the packet gap value corresponding to the real available bandwidth. Spruce [113]
is the only technique that uses packet pairs instead of packet trains for available band-
width measurement. Its idea is to use a relatively large number of packet pairs with their
packet gap values following a Poisson distribution to capture background traffic through-
put. Spruce has better measurement accuracy than Pathload and IGI/PTR [113], but its
measurement time, which is around one minutes, is relatively long. For all four techniques
(five algorithms), we use Table 2.5 to summarize their differences and commonalities. For
differences, we use two criteria to distinguish these techniques:

1. What to measure. We can directly measure the transmissionrate of a packet train
to estimate the available bandwidth, as is done in pathChirp, Pathload, and PTR.
Alternatively, we can measure the amount of competing traffic on the bottleneck
link to indirectly estimate the residual bandwidth. This isdone by measuring the
changes in the probing packetgap, as is done in Spruce and IGI.

2. How to measure. All tools use packet pairs, either sent individually or as atrain,
but they differ in how the packet pair gaps are controlled by the sender. Pathload,
IGI, and PTR use packet trains with uniform intervals. In contrast, in pathChirp and
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Table 2.5: Comparison of current available bandwidth measurement algorithms

how to measure
non-uniform uniform

probing probing difference common
what to a bw (rate) pathChirp Pathload, PTR not needB timer problem
measure c bw (gap) Spruce IGI needB two-end control

difference long interval small interval
(a bw: available bandwidth;c bw: background traffic throughput;B: bottleneck link
capacity)

Spruce, the packet intervals are statistically constructed, thus the packet train or the
sequence of packet pairs is non-uniform.

Different categories have different properties and consequently, they have different advan-
tages and disadvantages:

1. Assumption.Techniques that measure background traffic to estimate available band-
width need to know path capacity. Spruce assumes it is known,while IGI esti-
mates it using existing probing techniques. The problem is that any error in the path
capacity estimate directly impacts the available bandwidth measurement accuracy.
Rate-based techniques do not have this problem.

2. Measurement interval.How the probing trains are constructed affects the averaging
interval that is used for the available bandwidth estimate.The uniform probing tech-
niques generally use short packet trains, so they get a relatively short-term snapshot
of network performance. Since they measure the available bandwidth averaged over
a very short time interval, the estimates will change quickly when the background
traffic is very bursty. In contrast, non-uniform probing techniques use statistical
sampling over a longer period thus, for example, average outthe effects of bursty
traffic.

Besides the above differences, all these available bandwidth measurement techniques also
share some problems:

1. System related timer problem.All techniques rely on the correctness and accuracy
of the system timer and the network packet delivery model: any errors that the send-
ing and receiving systems introduce in the timing of the packets will reduce the
accuracy of the tools. The timing accuracy becomes more important as the available
bandwidth increases. This could be a serious problem on veryhigh speed network,
not only because of the limits of timer resolution, but also because they use different
packet delivery mechanisms (e.g. batching). Note that techniques that use the tim-
ing of individual packet gaps are more sensitive to this effect than techniques that
measure packet train rates.
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2. Two-end control.All current techniques need two-end control, which significantly
hinders deployment. Control at the destination is needed toaccurately measure the
packet gap or packet train rate.

Since available bandwidth is a very dynamic metric, it is often important to know the
variance of path available bandwidth. Pathvar [66] is a recently proposed technique to
quantify this metric. Its idea is similar to the turning-point in IGI/PTR. That is, it also
compares sending rates with arriving rates. For a stationary available-bandwidth process,
a packet train with a fixed sending rate has a constant probability of having a destination
arriving rate higher than the sending rate. So by sending a large number of trains and
then estimating the corresponding probability, the distribution of the original process can
be derived. The variance can then be easily calculated basedon the distribution. Pathvar
has two working modes. The non-parametric mode keeps adjusting probing rate until a
specific probability is reached; while in the parametric mode, a Gaussian distribution is
assumed, and only two probing rates are needed to infer the mean and variance.

In this chapter, we used a fluid model to illustrate the insight of IGI/PTR design. A
more realistic model is presented by Liu et.al.[78], who usea stochastic model to study
the properties of packet dispersions on both single-hop networks and multi-hop networks.
For single-hope networks, they show that the asymptotic average of the output packet-
pair dispersions is a closed-form function of the input dispersion, if assuming cross-traffic
stationarity and ASTA sampling. On multi-hop networks, they show that bursty cross
traffic can cause negative bias (asymptotic underestimation) to most existing available
bandwidth techniques. To mitigate this deviation, a measurement technique should use
large probing packet and long probing packet trains.

2.11 Summary

In this chapter, we show that available bandwidth measurement is a solvable problem.
We presented and evaluated two measurement algorithms (IGIand PTR), we also demon-
strated their applicability. The main results from this chapter are as follows. First, we
designed the IGI/PTR tool based on a turning-point idea. That is, using packet-train prob-
ing, accurate end-to-end available bandwidth measurementis obtained when its sending
rate equals its arriving rate. Second, we showed that, comparing with Pathload, IGI/PTR
has a similar measurement accuracy (over 70%), but has a muchsmaller measurement
overhead and uses a much less measurement time. That is, IGI/PTR is both effective and
efficient. Third, using packet trains to measure available bandwidth, packet size should
not be too small—500-byte to 700-byte packets are empirically best; packet train length
should be neither too short nor too long, packet trains with 16-60 packets are appropriate
for IGI/PTR. Fourth, on multi-hop network paths, the post-tight-link effect is the major
factor that introduces errors in IGI/PTR’s measurement. Fifth, PTR can be improved to
work reasonably well on Gigabit network paths. Finally, PTRnot only can be used as
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a stand-alone bandwidth measurement tool, it also can be incorporated into existing ap-
plications or protocols to improve their performance by providing network performance
information.



Chapter 3

Locating Bandwidth Bottlenecks

The IGI/PTR tool shows that we can use the packet-train probing technique to efficiently
and effectively measure end-to-end available bandwidth. In this chapter, we show that
packet-train probing can also be used to locate bottleneck links. The location of bottleneck
links is important diagnostic information for both ISPs andregular end users. For ISP
network operators, given the location of a bottleneck link,they can either fix the problem
or redirect their customers’ traffic to avoid the bottlenecklink. Regular end users can use
multihoming or overlay routing techniques to avoid the bottleneck link, thus improving
the performance of their data transmissions.

However, obtaining bottleneck link location information requires link-level available
bandwidth for all links along a network path, which is much harder to obtain than end-
to-end available bandwidth. Network operators only have access to the performance in-
formation of links on their network, which may not include the bottleneck link. Even if
the bottleneck is in their network, they might not be able to catch it since SNMP is often
configured to provide 5-minute load average information, sotemporary load spikes can
be hidden. For end users, it is even harder since they have no access to any link-level
information. Several techniques have been proposed to detect the link that has the small-
est capacity or available bandwidth, but they either require very long measurement time
(e.g., pathchar [64]), or use a large amount of probing packets (e.g., BFind [26]), which
significantly limits their usage in practice.

In this chapter, we present an active bottleneck locating technique—Pathneck. It is
based on insights obtained from the PTR available bandwidthestimation algorithm. Path-
neck allows end users to efficiently and effectively locate bottleneck links on the Internet.
The key idea is to combine measurement packets and load packets in a single probing
packet train.Load packets emulate the behavior of regular data traffic while measurement
packets trigger router responses to obtain location information. Pathneck relies on the
fact that load packets interleave with competing traffic on the links along the path, thus
changing the length of the packet train. By measuring the changes using the measurement
packets, the position of congested links can be inferred. Two important characteristics of

57
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Pathneck are that it is extremely light-weight and only requires single-end control. In this
chapter, we first describe the Pathneck design (Section 3.1), and then evaluate the tech-
nique using both Internet experiments and Emulab testbed emulations (Section 3.2 and
3.3).

3.1 Design of Pathneck

The goal of Pathneck design is to develop a light-weight, single-end-control bottleneck
detection tool. In this section, we first present the conceptof Recursive Packet Trains and
then describe the detailed locating algorithm.

3.1.1 Recursive Packet Train

As defined in Chapter 1, thebottleneck linkof a network path is the link with the smallest
available bandwidth, i.e. the link that determines the end-to-end throughput on the path.
Note in this definition, a bottleneck link is not necessarilythe one that has the smallest
capacity. In this chapter, we will also use the termchoke link, which refers to any link
that has a lower available bandwidth than the partial path from the source to that link. The
upstream router for the choke link is called thechoke pointor choke router. The formal
definitions of choke link and choke point are as follows. Let us assume an end-to-end
path from sourceS = R0 to destinationD = Rn through routersR1, R2, ..., Rn−1. Link
Li = (Ri, Ri+1) has available bandwidthAi(0 ≤ i < n). Using this notation, we define
the set ofchoke linksas:

CHOKEL = {Lk|∃j, 0 ≤ j < n, k = argmin0≤i≤jAi}

and the corresponding set ofchoke points(or choke routers) are

CHOKER = {Rk|Lk ∈ CHOKEL, 0 ≤ k < n}

Clearly, choke links will have less available bandwidth as we get closer to the destination,
so the last choke link on the path will be thebottleneck linkor the primary choke link. The
second to last choke link is called thesecondary choke link, and the third to last one is
called thetertiary choke link, etc.

In order to identify the bottleneck location, we need to measure the train length on
each link. This information can be obtained with a novel packet train design, called a
Recursive Packet Train. Figure 3.1 shows an example of a Recursive Packet Train (RPT);
every box is a UDP packet and the number in the box is its TTL value. The probing
packet train is composed of two types of packets: measurement packets and load packets.
Measurement packetsare standard traceroute packets, i.e. they are 60 byte UDP packets
with properly filled-in payload fields. The figure shows 30 measurement packets at each



3.1. DESIGN OF PATHNECK 59

2 2

measurement
packets

measurement
packets

1 1255 255 255

500B

60 packets 

load packets

30 30

30 packetsTTL 60B

Figure 3.1: Recursive Packet Train (RPT).

end of the packet train, which allows us to measure network paths with up to 30 hops; more
measurement packets should be used for longer paths. The TTLvalues of the measurement
packets change linearly, as shown in the figure.Load packetsare used to generate a packet
train with a measurable length. As with the IGI/PTR tool [58], load packets should be
large packets that represent an average traffic load. We use 500 byte packets as suggested
in [58]. The number of packets in the packet train determinesthe amount of background
traffic that the train can interact with, so it pays off to use afairly long train. In practice,
we set it empirically in the range of 30 to 100.

The probing source sends the RPT packets in a back-to-back fashion. When they arrive
at the first router, the first and the last packets of the train expire, since their TTL values
are 1. As a result, the packets are dropped and the router sends two ICMP packets back to
the source [24]. The other packets in the train are forwardedto the next router, after their
TTL values are decremented. Due to the way the TTL values are set in the RPT, the above
process is repeated on each subsequent router. The name “recursive” is used to highlight
the repetitive nature of this process.

At the source, we can usethe time gap between the two ICMP packets from each router
to estimate the packet train length on the incoming link of that router. The reason is that
the ICMP packets are generated when the head and tail packetsof the train are dropped.
Note that the measurement packets are much smaller than the total length of the train, so
the change in packet train length due to the loss of measurement packets can be neglected.
For example, in our default configuration, each measurementpacket accounts for only
0.2% the packet train length. The time difference between the arrival at the source of the
two ICMP packets from the same router is called thepacket gap.

The ICMP TIMESTAMPOption

The ICMP TIMESTAMPis an option that allows end users to request timestamp from
routers. That is, upon receiving an ICMP packets with this option set, a router will reply
with an ICMP packet with a timestamp. The timestamp is a 32-bit number represent-
ing milliseconds elapsed since midnight of Universal Time.The ICMP protocol (RFC
792) defines three timestamps: the Originate Timestamp, theReceive Timestamp, and the
Transmit Timestamp. The Originate Timestamp is the time thesender last touched the
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packet before sending it, the Receive Timestamp is the time the echoer first touched it
on receipt, and the Transmit Timestamp is the time the echoerlast touched the packet on
sending it. Currently, only one timestamp is used (either the Receive Timestamp or the
Transmit Timestamp, depending on the vendor), the other twoare set to the same value.

We can useICMP TIMESTAMPpackets as measurement packets to query router times-
tamps and calculate the gap values. Using this method, gap values are not subject to reverse
path congestion anymore, so this approach has the potentialto provide more accurate gap
measurements. However, we decidenot to pursue this approach for the following reasons.
First, although it has been shown that over 90% of Internet routers respond to this ICMP
option [28], on only 37% of end-to-end paths, all routers support this option. Although
we can still measure gap values for those routers that do not support this option, so long
as the TTL values in the ICMP packets are properly set, this results in two different types
of gap values which are hard to compare. This is because unlike the locally measured
gap values that are at the microsecond level, the timestampsfrom routers are at the level
of milliseconds, and can hide small gap value changes. Second, theICMP TIMESTAMP
packets need to use router IP addresses as destination IP to query router timestamps, so
the forwarding routes used for the measurement packets could be different from those of
the load packets due to reasons like ECMP (Equal Cost Multiple Path) routing.

3.1.2 The Pathneck Algorithm

RPT allows us to estimate the probing packet train length on each link along a path. The
gap sequences obtained from a set of probing packet trains can then be used to identify the
location of the bottleneck link. Pathneck detects the bottleneck link in three steps:

• Step 1: Labeling of gap sequences. For each probing train, Pathneck labels the
routers where the gap value increases significantly as candidate choke points.

• Step 2: Averaging across gap sequences. Routers that are frequently labeled as
candidate choke points by the probing trains in the set are identified as actual choke
points.

• Step 3:Ranking choke points. Pathneck ranks the choke points with respect to their
packet train transmission rate.

The remainder of this section describes in detail the algorithms used in each of the three
steps.

Labeling of Gap Sequences

Under ideal circumstances, gap values only increase (if theavailable bandwidth on a link
is not sufficient to sustain the rate of the incoming packet train) or stay the same (if the
link has enough bandwidth for the incoming packet train), but it should never decrease.
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In reality, the burstiness of competing traffic and reverse path effects add noise to the gap
sequence, so we pre-process the data before identifying candidate choke points. We first
remove any data for routers from which we did not receive bothICMP packets. If we miss
data for over half the routers, we discard the entire sequence. We then fix thehill and
valleypoints where the gap value decreases in the gap sequence (Figure 3.2). A hill point
is defined asp2 in a three-point group (p1, p2, p3) with gap values satisfyingg1 < g2 > g3.
A valley point is defined in a similar way withg1 > g2 < g3. Since in both cases, the
decrease is short-term (one sample), we assume it is caused by noise and we replaceg2

with the closest neighboring gap value.

We now describe the core part of the labeling algorithm. The idea is to match the gap
sequence to a step function (Figure 3.3), where each step corresponds to a candidate choke
point. Given a gap sequence withlen gap values, we want to identify the step function that
is the best fit, where “best” is defined as the step function forwhich the sum of absolute
difference between the gap sequence and the step function across all the points is minimal.
We require the step function to have clearly defined steps, i.e. all steps must be larger than
a threshold (step) to filter out measurement noise. We use 100microseconds (µs) as the
threshold. This value is relatively small compared with possible sources of error (to be
discussed in Section 3.1.3), but we want to be conservative in identifying candidate choke
points.

We use the following dynamic programming algorithm to identify the step function.
Assume we have a gap subsequence between hopi and hopj: gi, ..., gj (i ≤ j), and
let us defineavg[i, j] =

∑j
k=i gk/(j − i + 1), and the distance sum of the subsequence

asdist sum[i, j] =
∑j

k=i |avg[i, j] − gk|. Let opt[i, j, l] denote the minimal sum of the
distance sums for the segments between hopi andj (including hopi andj), given that
there are at mostl steps. The key observation is that, given the optimal splitting of a subse-
quence, the splitting of any shorter internal subsequence delimited by two existing splitting
points must be an optimal splitting for this internal subsequence. Therefore,opt[i, j, l] can
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Figure 3.3: Matching the gap sequence to a step function.

be recursively defined as the follows:

opt[i, j, l] =

{

dist sum[i, j] l = 0 & i ≤ j,
min{opt[i, j, l − 1], opt2[i, j, l]} l > 0 & i ≤ j.

opt2[i, j, l] = min{opt[i, k, l1] + opt[k + 1, j, l − l1 − 1] : i ≤ k < j, 0 ≤ l1 < l,
|LS[i, k, l1]− FS[k + 1, j, l − l1 − 1]| > step}

HereLS[i, k, l1] denotes the last step value of the optimal step function fitting the gap
subsequence betweeni andk with at mostl1 steps, andFS[k +1, j, l− l1−1] denotes the
first step value of the optimal step function fitting the gap subsequence betweenk + 1 and
j with at mostl − l1 − 1 steps.

The algorithm begins withl = 0 and then iteratively improves the solution by exploring
larger values ofl. Every timeopt2[i, j, l] is used to assign the value foropt[i, j, l], a new
splitting pointk is created. The splitting point is recorded in a setSP [i, j, l], which is the
set of optimal splitting points for the subsequence betweeni andj using at mostl splitting
points. The algorithm returnsSP [0, len− 1, len− 1] as the set of optimal splitting points
for the entire gap sequence. The time complexity of this algorithm is O(len5), which
is acceptable considering the small value oflen on the Internet. Since our goal is to
detect the primary choke point, our implementation only returns the top three choke points
with the largest three steps. If the algorithm does not find a valid splitting point, i.e.
SP [0, len− 1, len− 1] = ∅, it simply returns the source as the candidate choke point.

Averaging Across Gap Sequences

To filter out effects caused by bursty traffic on the forward and reverse paths, Pathneck uses
results from multiple probing trains (e.g. 6 to 10 probing trains) to computeconfidence
information for each candidate choke point. To avoid confusion, we will use the term
probing for a single RPT run and the termprobing setfor a group of probings (generally
10 probings). The outcome of Pathneck is the summary result for a probing set.

For the optimal splitting of a gap sequence, let the sequenceof step values besvi(0 ≤
i ≤ M), whereM is the total number of candidate choke points. The confidencefor a
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candidate choke pointi (1 ≤ i ≤M) is computed as
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Intuitively, the confidence denotes the percentage of available bandwidth change implied
by the gap value change. For the special case where the sourceis returned as the candidate
choke point, we set its confidence value to 1.

Next, for each candidate choke point in the probing set we calculated rate as the
frequency with which the candidate choke point appears in the probing set withconf ≥
0.1. Finally, we select those choke points withd rate ≥ 0.5. Therefore,the final choke
points for a path are the candidates that appear with high confidence in at least half of the
probings in the probing set. In Section 3.2.3, we quantify the sensitivity of Pathneck to
these parameters.

Ranking Choke Points

For each path, we rank the choke points based on their averagegap value in the probing
set. The packet train transmission rateR is R = ts/g, wherets is the total size for all
the packets in the train andg is the gap value. That is, the larger the gap value, the more
the packet train was stretched out by the link, suggesting a lower available bandwidth on
the corresponding link. As a result, we identify the choke point with the largest gap value
as the bottleneck of the path. Note that since we cannot control the packet train structure
at each hop, the RPT does notactually measure the available bandwidth on each link,
so in some cases, Pathneck could select the wrong choke pointas the bottleneck. For
example, on a path where the “true” bottleneck is early in thepath, the rate of the packet
train leaving the bottleneck can be higher than the available bandwidth on the bottleneck
link. As a result, a downstream link with slightly higher available bandwidth could also
be identified as a choke point and our ranking algorithm will mistakenly select it as the
bottleneck.

Note that our method of calculating the packet train transmission rateR is similar to
that used by cprobe [32]. The difference is that cprobe estimates available bandwidth,
while Pathneck estimates the location of the bottleneck link. Estimating available band-
width in fact requires careful control of the inter-packet gap for the train [85, 58] which
neither tool provides.

While Pathneck does not measure available bandwidth, we canuse the average per-hop
gap values to provide a rough upper or lower bound for the available bandwidth of each
link. We consider three cases:

• Case 1:For a choke link, i.e. its gap increases, we know that the available bandwidth
is less than the packet train rate. That is, the rateR computed above is an upper
bound for the available bandwidth on the link.
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• Case 2:For links that maintain their gap relative to the previous link, the available
bandwidth is higher than the packet train rateR, and we useR as a lower bound for
the link available bandwidth.

• Case 3:Some links may see a decrease in gap value. This decrease is probably due
to temporary queuing caused by traffic burstiness, and according to the packet train
model discussed in [58], we cannot say anything about the available bandwidth.

Considering that the data is noisy and that link available bandwidth is a dynamic property,
these bounds should be viewed as very rough estimates. We provide a more detailed
analysis for the bandwidth bounds on the bottleneck link in Section 3.3.

3.1.3 Pathneck Properties

Pathneck meets the design goals we identified earlier in thissection. Pathneck does not
need cooperation of the destination, so it can be widely usedby regular users. Pathneck
also has low overhead. Each measurement typically uses 6 to 10 probing trains of 60
to 100 load packets each. This is a very low overhead comparedto existing tools such
as pathchar [64] and BFind [26]. Finally, Pathneck is fast. For each probing train, it
takes about one roundtrip time to get the result. However, tomake sure we receive all the
returned ICMP packets, Pathneck generally waits for 3 seconds — the longest roundtrip
time we have observed on the Internet — after sending out the probing train, and then exits.
Even in this case, a single probing takes less than 5 seconds.In addition, since each packet
train probes all links, we get a consistent set of measurements. This, for example, allows
Pathneck to identify multiple choke points and rank them. Note however that Pathneck
is biased towards early choke points— once a choke point has increased the length of the
packet train, Pathneck may no longer be able to “see” downstream links with higher or
slightly lower available bandwidth.

A number of factors could influence the accuracy of Pathneck.First, we have to con-
sider the ICMP packet generation time on routers. This time is different for different
routers and possibly for different packets on the same router. As a result, the measured
gap value for a router will not exactly match the packet trainlength at that router. Fortu-
nately, measurements in [52] and [28] show that the ICMP packet generation time is pretty
small; in most cases it is between 100µs and 500µs. We will see later that over 95% of the
gap changes of detected choke points in our measurements arelarger than 500µs. There-
fore, while large differences in ICMP generation time can affect individual probings, they
are unlikely to significantly affect Pathneck bottleneck results.

Second, as ICMP packets travel to the source, they may experience queueing delay
caused by reverse path traffic. Since this delay can be different for different packets, it is
a source of measurement error. We are not aware of any work that has quantified reverse
path effects. In our algorithm, we try to reduce the impact ofthis factor by filtering out the
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measurement outliers. Note that if we had access to the destination, we might be able to
estimate the impact of reverse path queueing.

Third, packet loss can reduce Pathneck’s effectiveness. Load packet loss can affect
RPT’s ability to interleave with background traffic thus possibly affecting the correctness
of the result. Lost measurement packets are detected by lostgap measurements. Note
that it is unlikely that Pathneck would lose significant numbers of load packets without
a similar loss of measurement packets. Considering the low probability of packet loss in
general [80], we do not believe packet loss will affect Pathneck results.

Fourth, multi-path routing, which is sometimes used for load balancing, could also
affect Pathneck. If a router forwards packets in the packet train to different next-hop
routers, the gap measurements will become invalid. Pathneck can usually detect such
cases by checking the source IP address of the ICMP responses. In our measurements, we
do not use the gap values in such cases.

Pathneck also has some deployment limitations. First, the deployment of MPLS can
significantly impact Pathneck measurement capabilities since MPLS can hide IP-level
routes and make Pathneck only be able to detect AS-level bottlenecks. Second, we discov-
ered that network firewalls often only forward 60 byte UDP packets that strictly conform
to the packet payload format used by standard Unix traceroute implementation, while they
drop any other UDP probing packets, including the load packets in our RPT. If the sender
is behind such a firewall, Pathneck will not work. Similarly,if the destination is behind
a firewall, no measurements for links behind the firewall can be obtained by Pathneck.
Third, even without any firewalls, Pathneck may not be able tomeasure the packet train
length on the last link, because the ICMP packets sent by the destination host cannot be
used. In theory, the destination should generate a “destination port unreachable” ICMP
message for each packet in the train. However, due to ICMP rate limiting, the destination
network system will typically only generate ICMP packets for some of the probing pack-
ets, which often does not include the tail packet. Even if an ICMP packet is generated
for both the head and tail packets, theaccumulatedICMP generation time for the whole
packet train makes the returned interval worthless. Of course, if we have the cooperation
of the destination, we can get a valid gap measurement for thelast hop by using a valid
port number, thus avoiding the ICMP responses for the load packets. Below we provide a
modification to the packet train to alleviate this problem.

3.1.4 Pathneck-dst—Covering The Last Hop

The last-hop problem of the Pathneck tool significantly impacts its utility, especially on
commercial networks where bottlenecks are often on the lasthop. To alleviate this prob-
lem, we modified the structure of the probing packet train. The idea (suggested by Tom
Killian from AT&T Labs–Research) is to use ICMP ECHO packetsinstead of UDP pack-
ets as the measurement packets for the last hop. For example,the packet train in Figure 3.4
is used to measure a 15-hop path. If the destination replies to the ICMP ECHO packet,
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Figure 3.4: The probing packet train used by Pathneck-dst

we can obtain the gap value on the last hop. In order to know where the ICMP packets
should be inserted in the probing packet train, Pathneck first uses traceroute to get the
path length. Of course, this modification does not work if an end host does not respond
to ICMP ECHO packets. In the next chapter, we will show that atleast 40% of Internet
end nodes in our experiments respond to ICMP ECHO packets, therefore, Pathneck-dst is
a significant improvement in terms of measuring the last hop.

To distinguish this modified Pathneck from the original implementation, we will re-
fer this new version as “Pathneck-dst”, while using “Pathneck” for the original imple-
mentation. Because Pathneck-dst was developed later than Pathneck, some experiments
presented later in the dissertation use the original implementation.

3.2 Evaluation of Bottleneck Locating Accuracy

We use both Internet paths and the Emulab testbed [5] to evaluate Pathneck. Internet
experiments are necessary to study Pathneck with realisticbackground traffic, while the
Emulab testbed provides a fully controlled environment that allows us to evaluate Pathneck
with known traffic loads. Besides the detection accuracy, wealso examine the accuracy
of the Pathneck bandwidth bounds and the sensitivity of Pathneck to its configuration
parameters.

3.2.1 Internet Validation

For a thorough evaluation of Pathneck on Internet paths, we would need to know the actual
available bandwidth on all the links of a network path. This information is impossible
to obtain for most operational networks. The Abilene backbone, however, publishes its
backbone topology and traffic load (5-minute SNMP statistics) [1], so we decided to probe
Abilene paths.

We used two sources in the experiment: a host at the University of Utah and a host at
Carnegie Mellon University. Based on Abilene’s backbone topology, we chose 22 probing
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Table 3.1: Bottlenecks detected on Abilene paths.
Probe d rate Bottleneck AS path
destination (Utah/CMU) router IP (AS1-AS2)†

calren2§ 0.71/0.70 137.145.202.126 2150-2150
princeton§ 0.64/0.67 198.32.42.209 10466-10466
sox§ 0.62/0.56 199.77.194.41 10490-10490
ogig§ 0.71/0.72 205.124.237.10 210-4600 (Utah)

198.32.8.13 11537-4600 (CMU)
† AS1 is bottleneck router’s AS#,AS2 is its post-hop router’s AS#.
§ calren =www.calren2.net , princeton =www.princeton.edu ,
§ sox =www.sox.net , ogig =www.ogig.net .

destinations for each probing source, making sure that eachof the 11 major routers on
the Abilene backbone is included in at least one probing path. From each probing source,
every destination is probed 100 times, with a 2-second interval between two consecutive
probings. To avoid interference, the experiments conducted at Utah and at CMU were run
at different times.

Using conf ≥ 0.1 andd rate ≥ 0.5, only 5 non-first-hop bottleneck links were de-
tected on the Abilene paths (Table 3.1). This is not surprising since Abilene paths are
known to be over-provisioned, and we selected paths with many hops inside the Abilene
core. Thed rate values for the 100 probes originating from Utah and CMU are very sim-
ilar, possibly because they observed similar congestion conditions. By examining the IP
addresses, we found that in 3 of the 4 cases (www.ogig.net is the exception), both the
Utah and CMU based probings are passing through the same bottleneck link close to the
destination; an explanation is that these bottlenecks are very stable, possibly because they
are constrained by link capacity. Unfortunately, all threebottlenecks are outside Abilene,
so we do not have the load data.

For the path towww.ogig.net , the bottleneck links appear to be two different peer-
ing links going to AS4600. For the path from CMU towww.ogig.net , the outgoing
link of the bottleneck router 198.32.163.13 is an OC-3 link.Based on the link capacities
and SNMP data, we are sure that the OC-3 link is indeed the bottleneck. The SNMP data
for the Utah links was not available, so we could not validatethe results for the path from
Utah towww.ogig.net .

3.2.2 Testbed Validation

The detailed properties of Pathneck were studied using the Emulab testbed. Since Path-
neck is a path-oriented measurement tool, we used a linear topology (Figure 7.5). Nodes
0 and 9 are the probing source and destination, while nodes 1-8 are intermediate routers.
The link delays are roughly set based on a traceroute measurement from a CMU host to
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Figure 3.5: Testbed configuration.
Hop 0 is the probing source, hop 9 is the probing destination.Hops 1 - 8 are intermediate routers.
The blank boxes are used for background traffic generation. The dashed lines show the default
background traffic flow directions. “X” and “Y ” are the two links whose capacity will change for
different scenarios.

www.yahoo.com . The link capacities are configured using the Dummynet [4] package.
The capacities for linksX andY depend on the scenarios. Note that all the testbed nodes
are PCs, not routers, so their properties such as the ICMP generation time are different
from those of routers. As a result, the testbed experiments do not consider some of the
router related factors.

The dashed arrows in Figure 7.5 represent background traffic. The background traffic
is generated based on two real packet traces, calledlight-traceandheavy-trace. Thelight-
trace is a sampled trace (using prefix filters on the source and destination IP addresses)
collected in front of a corporate network. The traffic load varies from around 500Kbps
to 6Mbps, with a median load of 2Mbps. Theheavy-traceis a sampled trace from an
outgoing link of a data center connected to a tier-1 ISP. The traffic load varies from 4Mbps
to 36Mbps, with a median load of 8Mbps. We also use a simple UDPtraffic generator
whose instantaneous load follows an exponential distribution. We will refer to the load
from this generator asexponential-load. By assigning different traces to different links,
we can set up different evaluation scenarios. Since all the background traffic flows used in
the testbed evaluation are very bursty, they result in very challenging scenarios.

Table 3.2 lists the configurations of five scenarios that allow us to analyze all the im-
portant properties of Pathneck. For each scenario, we use Pathneck to send 100 probing
trains. Since these scenario are used for validation, we only use the results for which we
received all ICMP packets, so the percentage of valid probing is lower than usual. During
the probings, we collected detailed load data on each of the routers allowing us to compare
the probing results with the actual link load. We look at Pathneck performance for both
probing sets (i.e. result for 10 consecutive probings as reported by Pathneck) and individ-
ual probings. For probing sets, we useconf ≥ 0.1 andd rate ≥ 0.5 to identify choke
points. The real background traffic load is computed as the average load for the interval
that includes the 10 probes, which is around 60 seconds. For individual probings, we only
useconf ≥ 0.1 for filtering, and the load is computed using a 20ms packet trace centered
around the probing packets, i.e. we use the instantaneous load.
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Table 3.2: The testbed validation experiments
# X Y Trace Comments
1 50 20 light-traceon all Capacity-determined bottleneck
2 50 50 35Mbps exponential-loadon Y , light-

traceotherwise
Load-determined bottleneck

3 20 20 heavy-traceonY , light-traceotherwise Two-bottleneck case
4 20 20 heavy-traceonX, light-traceotherwise Two-bottleneck case
5 50 20 30%exponential-loadon both directions The impact of reverse traffic

Experiment 1 — Capacity-determined Bottleneck

In this experiment, we set the capacities ofX andY to 50Mbps and 20Mbps, and uselight-
trace on all the links; the starting times within the trace are randomly selected. All 100
probings detect hop 6 (i.e. linkY ) as the bottleneck. All other candidate choke points are
filtered out because of a low confidence value (i.e.conf < 0.1). Obviously, the detection
results for the probing sets are also 100% accurate.

This experiment represents the easiest scenario for Pathneck, i.e. the bottleneck is
determined by the link capacity, and the background traffic is not heavy enough to affect
the bottleneck location. This is however an important scenario on the Internet. A large
fraction of the Internet paths fall into this category because only a limited number of link
capacities are widely used and the capacity differences tend to be large.

Experiment 2 — Load-determined Bottleneck

Besides capacity, the other factor that affects the bottleneck position is the link load. In
this experiment, we set the capacities of bothX andY to 50Mbps. We use the 35Mbps
exponential-loadon Y and thelight-traceon other links, so the difference in traffic load
onX andY determines the bottleneck. Out of 100 probings, 23 had to be discarded due to
ICMP packet loss. Using the remaining 77 cases, the probing sets always correctly identify
Y as the bottleneck link. Of the individual probings, 69 probings correctly detectY as the
top choke link, 2 probings pick link〈R7, R8〉 (i.e. the link afterY ) as the top choke link
andY is detected as the secondary choke link. 6 probings miss the real bottleneck. In
summary, the accuracy for individual probings is 89.6%.

Comparing the Impact of Capacity and Load

To better understand the impact of link capacity and load in determining the bottleneck,
we conducted two sets of simplified experiments using configurations similar to those used
in experiments 1 and 2. Figure 3.6 shows the gap measurementsas a function of the hop
count (x axis). In the left figure, we fix the capacity ofX to 50Mbps and change the
capacity ofY from 21Mbps to 30Mbps with a step size of 1Mbps; no backgroundtraffic
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Figure 3.6: Comparing the gap sequences for capacity (left)and load-determined (right)
bottlenecks.

is added on any link. In the right figure, we set the capacitiesof bothX andY to 50Mbps.
We apply different CBR loads toY (ranging from 29Mbps to 20Mbps) while there is no
load on the other links. For each configuration, we executed 10 probings. The two figures
plot the median gap value for each hop; for most points, the 30-70 percentile interval is
under 200µs.

In both configurations, the bottleneck available bandwidthchanges in exactly the same
way, i.e. it increases from 21Mbps to 30Mbps. However, the gap sequences are quite
different. The gap increases in the left figure are regular and match the capacity changes,
since the length of the packet train is strictly set by the link capacity. In the right figure,
the gaps at the destination are less regular and smaller. Specifically, they do not reflect the
available bandwidth on the link (i.e. the packet train rate exceeds the available bandwidth).
The reason is that the back-to-back probing packets competeun-fairly with the background
traffic and they can miss some of the background traffic that should be captured. This
observation is consistent with the principle behind TOPP [85] and IGI/PTR [58], which
states that the probing rate should be set properly to accurately measure the available
bandwidth. This explains why Pathneck’s packet train rate at the destination provides only
an upper bound on the available bandwidth. Figure 3.6 shows that the upper bound will
be tighter for capacity-determined bottlenecks than for load-determined bottlenecks. The
fact that the gap changes in the right figure are less regular than that in the left figure also
confirms that capacity-determined bottlenecks are easier to detect than load-determined
bottlenecks.
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Figure 3.7: Cumulative distribution of bandwidth difference in experiment 3.

Experiments 3 & 4 — Two Bottlenecks

In these two experiments, we set the capacities of bothX andY to 20Mbps, so we have two
low capacity links and the bottleneck location will be determined by load. In experiment
3, we use theheavy-tracefor Y and thelight-tracefor other links. The probing set results
are always correct, i.e.Y is detected as the bottleneck. When we look at the 86 valid
individual probings, we find thatX is the real bottleneck in 7 cases; in each case Pathneck
successfully identifiesX as theonlychoke link, and thus the bottleneck. In the remaining
79 cases,Y is the real bottleneck. Pathneck correctly identifiesY in 65 probings. In the
other 14 probings, Pathneck identifiesX as the only choke link, i.e. Pathneck missed the
real bottleneck linkY . The raw packet traces show that in these 14 incorrect cases,the
bandwidth difference betweenX andY is very small. This is confirmed by Figure 3.7,
which shows the cumulative distribution of the available bandwidth difference betweenX
andY for the 14 wrong cases (the dashed curve), and for all 86 cases(the solid curve).
The result shows that if two links have similar available bandwidth, Pathneck has a bias
towards the first link. This is because the probing packet train has already been stretched
by the first choke linkX, so the second choke linkY can be hidden.

As a comparison, we apply theheavy-traceto bothX andY in experiment 4. 67 out of
the 77 valid probings correctly identifyX as the bottleneck; 2 probings correctly identify
Y as the bottleneck; and 8 probings miss the real bottleneck link Y and identifyX as the
only bottleneck. Again, if multiple links have similar available bandwidth, we observe the
same bias towards the early link.

Experiment 5 — Reverse Path Queuing

To study the effect of reverse path queuing, we set the capacities ofX andY to 50Mbps
and 20Mbps, and applyexponential-loadin both directions on all links (except the two
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Table 3.3: The number of times of each hop being a candidate choke point.

Router 1 2 3 4 5 6 7
conf ≥ 0.1 24 18 5 21 20 75 34
d rate ≥ 0.5 6 0 0 2 0 85 36

edge links). The average load on each link is set to 30% of the link capacity. We had 98
valid probings. The second row in Table 3.3 lists the number of times that each hop is
detected as a candidate choke point (i.e. withconf ≥ 0.1). We observe that each hop
becomes a candidate choke point in some probings, so reversepath traffic does affect the
detection accuracy of RPTs.

However, the use of probing sets reduces the impact of reverse path traffic. We ana-
lyzed the 98 valid probings as 89 sets of 10 consecutive probings each. The last row of
Table 3.3 shows how often links are identified as choke points(d rate ≥ 0.5) by a probing
set. The real bottleneck, hop 6, is most frequently identified as the actual bottleneck (last
choke point), although in some cases, the next hop (i.e. hop 7) is also a choke point and is
thus selected as the bottleneck. This is a result of reverse path traffic. Normally, the train
length on hop 7 should be the same as on hop 6. However, if reverse path traffic reduces
the gap between the hop 6 ICMP packets, or increases the gap between the hop 7 ICMP
packets, it will appear as if the train length has increased and hop 7 will be labeled as a
choke point. We hope to tune the detection algorithm to reduce the impact of this factor as
part of future work.

3.2.3 Impact of Configuration Parameters

The Pathneck algorithms described in Section 3.1.2 use three configuration parameters:
the threshold used to pick candidate choke points (step = 100µs), the confidence value
(conf = 0.1), and the detection rate (d rate = 0.5). We now investigate the sensitivity of
Pathneck to the value of these parameters.

To show how the 100µs threshold for the step size affects the algorithm, we calculated
the cumulative distribution function for the step sizes forthe choke points detected in the
“GE” set of Internet measurements (see Table 3.4, we use 3000destinations selected from
BGP tables). Figure 3.8 shows that over 90% of the choke points have gap increases larger
than 1000µs, while fewer than 1% of the choke points have gap increases around 100µs.
Clearly, changing the step threshold to a larger value (e.g.500µs) will not change our
results significantly.

To understand the impact ofconf andd rate, we re-ran the Pathneck detection algo-
rithm by varyingconf from 0.05 to 0.3 andd rate from 0.5 to 1. Figure 3.9 plots the
percentage of paths with at least one choke point that satisfies both theconf andd rate
thresholds. The result shows that, as we increaseconf andd rate, fewer paths have iden-
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Table 3.4: Probing sources from PlanetLab (PL) and RON.
ID Probing AS Location Upstream Testbed BW GE CR OV MH

Source Number Provider(s)
1 ashburn 7911 DC 2914 PL

√ √

2 bkly-cs 25 CA 2150,3356,11423,16631 PL
√ √ √ √

3 columbia 14 NY 6395 PL
√ √

4 diku 1835 Denmark 2603 PL
√ √

5 emulab 17055 UT 210 –
√ √

6 frankfurt 3356 Germany 1239, 7018 PL
√ √

7 grouse 71 GA 1239, 7018 PL
√ √

8 gs274 9 PA 5050 –
√ √

9 bkly-intel 7018 CA 1239 PL
√ √

10 jhu 5723 MD 7018 PL
√ √ √

11 nbgisp 18473 OR 3356 PL
√ √

12 princeton 88 NJ 7018 PL
√ √ √ √

13 purdue 17 IN 19782 PL
√ √ √

14 rpi 91 NY 6395 PL
√ √ √

15 uga 3479 GA 16631 PL
√ √ √

16 umass 1249 MA 2914 PL
√ √ √

17 unm 3388 NM 1239 PL
√ √ √

18 utah 17055 UT 210 PL
√ √

19 uw-cs 73 WA 101 PL
√ √ √

20 mit-pl 3 MA 1 PL
√ √

21 cornell 26 NY 6395 PL
√

22 depaul 20130 CH 6325, 16631 PL
√

23 umd 27 MD 10086 PL
√

24 dartmouth 10755 NH 13674 PL
√

25 kaist 1781 Korea 9318 PL
√

26 cam-uk 786 UK 8918 PL
√

27 ucsc 5739 CA 2152 PL
√

28 ku 2496 KS 11317 PL
√

29 snu-kr 9488 Korea 4766 PL
√

30 bu 111 MA 209 PL
√

31 northwestern 103 CH 6325 PL
√

32 cmu 9 PA 5050 PL
√

33 stanford 32 CA 16631 PL
√

34 wustl 2552 MO 2914 PL
√

35 msu 237 MI 3561 PL
√

36 uky 10437 KY 209 PL
√

37 ac-uk 786 UK 3356 PL
√

38 umich 237 MI 3561 PL
√

39 mazu1 3356 MA 7018 RON
√

40 aros 6521 UT 701 RON
√ √ √ √

41 jfk1 3549 NY 1239, 7018 RON
√ √ √ √

42 nortel 11085 Canada 14177 RON
√ √ √ √

43 nyu 12 NY 6517, 7018 RON
√ √ √ √

44 vineyard 10781 MA 209, 6347 RON
√ √ √

45 intel 7018 CA 1239 RON
√ √ √

46 cornell 26 NY 6395 RON
√ √

47 lulea 2831 Sweden 1653 RON
√ √

48 ana1 3549 CA 1239, 7018 RON
√ √

49 ccicom 13649 UT 3356, 19092 RON
√ √

50 ucsd 7377 CA 2152 RON
√ √

51 gr 3323 Greece 5408 RON
√

52 utah 17055 UT 210 RON
√ √

BW: used for bandwidth accuracy analysis in Section 3.3; GE:used for the analysis in Section 3.2.3 and 4.1;
CR: used for correlation analysis in Section 4.4; OV: used for overlay analysis in Section??;
MH: used for multihoming analysis in Section??; “–”: probing hosts obtained privately.

tifiable choke points. This is exactly what we would expect. With higher values forconf
andd rate, it becomes more difficult for a link to be consistently identified as a choke
link. The fact that the results are much less sensitive tod rate thanconf shows that most
of the choke point locations are fairly stable within a probing set (short time duration).

The available bandwidth of the links on a path and the location of both choke points
and the bottleneck are dynamic properties. The Pathneck probing trains effectively sample
these properties, but the results are subject to noise. Figure 3.9 shows the tradeoffs in-
volved in using these samples to estimate the choke point locations. Using high values for
conf andd rate will result in a small number of stable choke points, while using lower
values will also identify more transient choke points. Clearly the right choice will depend
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Figure 3.8: Distribution of step size on the choke point.
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Figure 3.9: Sensitivity of Pathneck to the values ofconf andd rate.

on how the data is used. We see that for our choice ofconf andd rate values, 0.1 and
0.5, Pathneck can clearly identify one or more choke points on almost 80% of the paths we
probed. The graph suggests that our selection of thresholdscorresponds to a fairly liberal
notion of choke point.
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3.3 Tightness of Bottleneck-Link Bandwidth Bounds

A number of groups have shown that packet trains can be used toestimate the available
bandwidth of a network path [85, 58, 65]. However, the sourcehas to carefully control the
inter-packet gap, and since Pathneck sends the probing packets back-to-back, it cannot, in
general, measure the available bandwidth of a path. Instead, as described in Section 3.1.2,
the packet train rate at the bottleneck link can provide a rough upper bound for the available
bandwidth. In this section, we compare the upper bound on available bandwidth on the
bottleneck link reported by Pathneck with end-to-end available bandwidth measurements
obtained using IGI/PTR [58] and Pathload [65].

Since both IGI/PTR and Pathload need two-end control, we used 10 RON nodes for
our experiments — ana1, aros, ccicom, cornell, jfk1, lulea,nortel, nyu, ucsd, utah (see the
“BW” column in Table 3.4); this results in 90 network paths for our experiment. On each
RON path, we obtain 10 Pathneck probings, 5 IGI/PTR measurements, and 1 Pathload
measurement1. The estimation for the upper bound in Pathneck was done as follows.
If a bottleneck can be detected from the 10 probings, we use the median packet train
transmission rate on that bottleneck. Otherwise, we use thelargest gap value in each
probing to calculate the packet train rate and use the mediantrain rate of the 10 probings
as the upper bound.

Figure 3.10 compares the average of the available bandwidthestimates provided by
IGI, PTR, and Pathload (x axis) with the upper bound for the available bandwidth provided
by Pathneck (y axis). The measurements are roughly clustered in three areas. For low
bandwidth paths (bottom left corner), Pathneck provides a fairly tight upper bound for the
available bandwidth on the bottleneck link, as measured by IGI, PTR, and Pathload. In
the upper left region, there are 9 low bandwidth paths for which the upper bound provided
by Pathneck is significantly higher than the available bandwidth measured by IGI, PTR,
and Pathload. Analysis shows that the bottleneck link is thelast link, which is not visible
to Pathneck. Instead, Pathneck identifies an earlier link, which has a higher bandwidth, as
the bottleneck.

The third cluster corresponds to high bandwidth paths (upper right corner). Since the
current available bandwidth tools have a relative measurement error around 30% [58], we
show the two 30% error margins as dotted lines in Figure 3.10.We consider the upper
bound for the available bandwidth provided by Pathneck to bevalid if it falls within these
error bounds. We find that most upper bounds are valid. Only 5 data points fall outside of
the region defined by the two 30% lines. Further analysis shows that the data point above
the region corresponds to a path with a bottleneck on the lastlink, similar to the cases
mentioned above. The four data points below the region belong to paths with the same
source node (lulea). We have not been able to determine why the Pathneck bound is too
low.

1We force Pathload to stop after 10 fleets of probing. If Pathload has not converged, we use the average
of the last 3 probings as the available bandwidth estimate.
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Figure 3.10: Comparison between the bandwidth from Pathneck with the available band-
width measurement from IGI/PTR and Pathload.

3.4 Related Work

Ideally, if we have SNMP load data for all links along a network path, it is trivial to identify
the link that has the smallest available bandwidth. However, such information is seldom
publicly accessible. Even if it is, SNMP data is generally only collected for 5-minute in-
tervals, so it may not correctly reflect the situation at smaller time granularities. For this
reason, all current bottleneck locating tools use active measurement techniques. These
include Cartouche [54], STAB [100], BFind [26], and Pathchar [64]. Among them, Car-
touche is the closest to the Pathneck tool. Cartouche uses a packet train that combines
packets of different sizes to measure the bandwidth for any segment of the network path.
The bottleneck location is deduced from its measurement results. STAB also uses two dif-
ferent sizes probing packets, but instead of letting small size packets expire like Pathneck,
it expires the large packets. Both Cartouche and STAB require two-end control, while
Pathneck only needs single-end control. Also Pathneck tends to use less probing packets
than these two techniques.

BFind only needs single-end control. It detects the bottleneck position by injecting
a steady UDP flow into the network path, and by gradually increasing its throughput to
amplify the congestion at the bottleneck router. At the sametime, it uses traceroute to
monitor the RTT changes to all the routers on the path, thus detecting the position of the
most congested link. Concerns about the overhead generatedby the UDP flow force BFind
to only look for bottlenecks with available bandwidths of less than 50Mbps. Moreover,
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considering its measurement time, its overhead is fairly high, which is undesirable for a
general-purpose probing tool.

Pathchar estimates the capacity of each link on a network path. It can be used to locate
the link that has the smallest capacity, which may or may not be the bottleneck link (the
link that has the smallest available bandwidth) as we defined. The main idea of pathchar is
to measure the link-level packet transmission time. This isdone by taking the difference
between the RTTs from the source to two adjacent routers. To filter out measurement noise
due to factors such as queueing delay, pathchar needs to senda large number of probing
packets, identifying the smallest RTT values for the final calculation. As a result, pathchar
also has a large probing overhead.

3.5 Summary

This chapter presented the Pathneck tool that can locate Internet bottlenecks. Pathneck
uses a novel packet train structure—Recursive Packet Train—to associate link available
bandwidth with link location information. Its overhead is several magnitudes lower than
previously proposed bottleneck locating tools. Using bothInternet experiments and Emu-
lab testbed emulations, we showed that Pathneck can accurately identify bottleneck links
on 80% of the paths we measured. The paths where Pathneck makes mistakes gener-
ally have an ealier link that has an available bandwidth similar to that of the bottleneck
link. Using the RON testbed, we also showed that the bottleneck-link available-bandwith
upper-bounds provided by Pathneck are fairly tight and can be used for applications that
only need rough estimations for path available bandwidth.
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Chapter 4

Internet Bottleneck Properties

Equipped with the light-weight Pathneck tool, and in collaboration with our colleagues,
we have studied several bottleneck properties at the Internet scale [56, 55, 57]. In [56],
we studied bottleneck popularity, bottleneck inference, and how to avoid bottlenecks. In
[55], we looked at bottleneck persistence, bottleneck clustering, relationships between
bottleneck links and link loss/delay, and the correlation between bottleneck links and link-
level performance metrics. In [57], we studied bottleneck location distribution, Internet
end-user access-bandwidth distribution, and analyzed howdistributed systems like CDN
(Content Distribution Network) can be used to avoid bottlenecks and improve end users’
access bandwidth. To the best of my knowledge, this is the first bottleneck property study
at an Internet scale.

In this chapter, I present the results from the four most insightful studies—the bottle-
neck link location distribution, Internet end-user access-bandwidth distribution, the per-
sistence of Internet bottlenecks, and the relationship between bottleneck links and link
loss/delay. The insights from these studies not only greatly improve our understanding of
Internet bottlenecks, they also help us improve the performance of network applications.
To demonstrate this point, in the last part of this chapter, Idescribe how we use bottleneck
information to improve the performance of a content distribution system, and to obtain a
transmission time distribution for web sites.

4.1 Distribution of Bottleneck Locations

The common intuition about Internet bottlenecks is that most of them are on the Internet
edge, but this intuition has not been tested due to the lack ofan efficient tool. In this sec-
tion, we use Pathneck to quantitatively evaluate this assumption. Below we first describe
the data sets we collected for our analysis, and then presentthe location distribution of
Internet bottlenecks.

79
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Table 4.1: Measurement source nodes
ID Location ID Location ID Location ID Location

S01 US-NE S06 US-SE S11 US-NM S15 Europe
S02 US-SM S07 US-SW S12 US-NE S16 Europe
S03 US-SW S08 US-MM S13 US-NM S17 Europe
S04 US-MW S09 US-NE S14 US-NE S18 East-Asia
S05 US-SM S10 US-NW
NE: northeast, NW: northwest, SE: southeast, SW: southwest
ME: middle-east, MW: middle-west, MM: middle-middle

4.1.1 Data Collection

We use three data sets in this chapter. The first is the data setcollected in December
2003 using the “GE” source nodes listed in Table 3.4, which consists of 25 nodes from
PlanetLab [12] and RON [15]. For this data set, each node probed 3000 destinations
which are diversely distributed over a BGP table. For our bottleneck location analysis, we
only use the paths where bottlenecks are on the source side, i.e., the first half of a path.
We ignore the other paths because the Pathneck tool used to collect this data set could not
measure the last hop of Internet paths. This data set is called theBtSrcdata set.

The second data set was collected in February 2005 using the Pathneck-dst tool, which
can measure the last hop of Internet paths. To achieve an Internet scale, we select one
IP address as the measurement destination from each of the 165K prefixes extracted from
a BGP table. Ideally, the destination should correspond to an online host that replies to
ping packets. However it is difficult to identify online hosts without probing them. In
our study, we partially alleviate this problem by picking IPaddresses from three pools of
existing data sets collected by a Tier-1 ISP: Netflow traces,client IP addresses of some
Web sites, and the IP addresses of a large set of local DNS servers. That is, for each
prefix, whenever possible, we use one of the IP addresses fromthose three sources in that
prefix; otherwise, we randomly pick an IP address from that prefix. In this way, we were
able to find reachable destination in 67,983 of the total 165Kprefixes. We used a single
source node at CMU to probe these reachable destinations. Since the measurements share
a source, we only use those paths where bottlenecks are on thedestination side, i.e., where
bottleneck is at the later half of a path. This data set is called theBtDstdata set.

The third data set was collected in September 2004 using 18 measurement sources (see
Table 4.1) within a single Tier-1 ISP. Fourteen of these sources are in the US, three are in
Europe, and one is in East-Asia. All the sources directly connect to a large Tier-1 ISP via
100Mbps Ethernet links. Since these 18 measurement sourcesare diversely distributed,
compared with theBtDst data set, they provide a broader view of bottleneck locations
and bandwidth distributions. The measurement destinations for this data set are selected
using a method similar to that used for theBtDstdata set. The difference is that we use a
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Figure 4.1: Bottleneck location Distribution

different BGP table, which gave us 164,130 IP addresses of which 67,271 are reachable.
In this data set, we consider the bottlenecks on all the 67K complete paths. Since we know
the measurement sources are well provisioned and the source-side links are very unlikely
to be bottlenecks, this data set also captures the destination-side bottleneck distribution.
We call this data set theISPdata set.

4.1.2 Bottleneck Location Distribution

Figure 4.1 plots the bottleneck link distributions from allthree data sets. In each figure,
the x-axis is the hop distance from bottleneck links to the end nodes (source nodes in the
BtSrcdata set, destination nodes in the other two), while the y-axis is the percentage of
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bottlenecks for each hop distance. For theBtSrcand theBtDstdata sets, we also distin-
guish bottleneck links inside the end ASes (indicated usingthe dark bars) from those that
are not (indicated using the lighter bars).

Figure 4.1(a) shows that 79% of the source-side bottlenecksare within the first four
hops, and 74% are within source local ASes. However, note this analysis is limited to
25 source nodes. Figure 4.1(b) shows that 96% of destination-side bottlenecks are on
the last four hops and 75% are inside local destination ASes.Since theBtDst data set
includes measurements from over 67K paths, we believe the conclusion from this figure
are representative for the Internet. Figure 4.1(c) confirmsthe results from theBtDstdata
set: in theISPdata set, 86% of destinations have bottlenecks on the last 4 hops, 75% on
the last two hops, and 42.7% on the last hop. Although the numbers from different data
sets are not exactly the same, they are consistent in the sense that most bottlenecks are on
Internet edge. That is, they confirm people’s intuition thatmost of Internet bottlenecks are
on Internet edge. For simplicity, since theISPdata set has the largest scale, in the rest of
this dissertation, we only refer to the results from this data set, e.g., “86% of bottlenecks
are within 4 hops from end nodes”.

Note that this analysis did not look at how often bottlenecksare on peering links, which
is claimed to be another common location for bottlenecks [26]. The reason is mainly the
difficulty in identifying the exact locations of inter-AS links, as explained in [56].

4.2 Access-Link Bandwidth Distribution

Given that most Internet bottlenecks are on Internet edge, the bandwidth distribution from
these bottlenecks reflects the condition of Internet end-user access speed, which is an-
other important Internet property un-revealed so far. We use theISPdata set to study this
property. Note that an analysis based on this data set can be biased since we probed one
destination per prefix. An implied assumption is that different prefixes have a similar den-
sity of real end hosts, which is probably not true. However, given the large number of
hosts in the Internet, this is the best approach we can think of.

In the ISP data set, since each destination is measured by 18 differentsources, we
select a bandwidth measurement for each destination that ismost representative among
those from all 18 sources to use in the following study. This is done by splitting the 18
bandwidth measurements into several groups, and by taking the median value of the largest
group as the representative bandwidth. The group is defined as the follows. LetG be a
group, andx be a bandwidth value,x ∈ G iff ∃y, y ∈ G, |(x− y)/y| < 0.3.

Figure 4.2 plots the distribution of the representative available bandwidths for the
67,271 destinations for which Pathneck can measure the lasthop. We observe that 40%
of destinations have bottleneck bandwidth less than 2.2Mbps, 50% are less than 4.2Mbps,
and 63% are less than 10Mbps. These results show that small-capacity links still dominate
Internet end-user connections, which are very likely due tosmall-capacity last-mile links
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Figure 4.2: Distribution of Internet end-user access bandwidth
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Figure 4.3: Bottleneck distribution for destinations withdifferent available bandwidth

such as DSL, cable-modem, and dial-up links.
For the destinations with bottleneck bandwidth larger than10Mbps, the bottleneck
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bandwidth is almost uniformly distribute in the range of [10Mbps, 50Mbps]. The distribu-
tion curve in Figure 4.2 ends at 55.2Mbps. This is a bias introduced by our measurement
infrastructure. The sending rates from our measurement sources are generally less than
60Mbps, which determines the maximum bottleneck bandwidththat we can detect. For
destinations with bottleneck bandwidth higher than 10Mbps, high-bandwidth bottlenecks
are more likely to be determined by link load instead of by link capacity, and bottlenecks
more frequently appear in the middle of paths. This observation is illustrated in Figure 4.3,
where we split the 67,271 destinations into different groups based on bottleneck band-
width, and plot the distribution of bottleneck locations for each group. The curve marked
with “ i” represents the group of destinations which have bottleneck bandwidth in the range
of [i ∗ 10Mbps, (i + 1) ∗ 10Mbps). We can see that while groups0 ∼ 3 have distributions
very similar with that shown in Figure 4.1(c), groups 4 and 5 are clearly different. For
example, 62% of destinations in group 5 have bottlenecks that are over 4 hops away from
the destinations, where different measurement sources have a higher probability of having
different routes and thus different bottlenecks.

4.3 Persistence of Bottleneck Links

By “bottleneck persistence”, we mean the fraction of time that the bottleneck is on the
same link. Because the bottleneck location of a path is closely tied with its route, in
this section, we first look at route persistences before discussing bottleneck persistences.
Below we first describe our experimental methodology and howwe collect the data.

4.3.1 Experimental Methodology and Data Collection

We study bottleneck persistence from both spatial and temporal perspectives. For the spa-
tial analysis, we conducted1-day periodic probing. That is, we selected a set of 960 desti-
nations and probed each of them once per day from a CMU host for38 days. That provides
us 38 sets of probing results for each destination. Here the number of destinations–960–
is determined by the length of the probing period (1 day) and the measurement time of
Pathneck (90 seconds per destination). This set of data is used throughout this section.

For the temporal analysis, we conducted two more experiments: (1) 4-hour periodic
probing, where we select a set of 160 destinations from those used in the 1-day periodic
probing and probe each of them from a CMU host every four hoursfor 148 hours, obtain-
ing 37 sets of probing results for each destination; and (2)1-hour periodic probing, where
we select a set of 40 destinations from those used in the 4-hour periodic probing and probe
each of them from a CMU host every hour for 30 hours, thus obtaining 30 sets of probing
results for each destination. These two data sets are only used in Section 4.3.4.
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Table 4.2: Determining co-located routers
Heuristic # IP pairs
Same DNS name 42
Alias 53
CMU or PSC 16
Same location in DNS name 572
Digits in DNS name filtered 190
Real change 1722

4.3.2 Route Persistence

In the 1-day periodic probing data set, we observe quite a fewIP level route changes:
among the 6,868 unique IP addresses observed in this data set, 2,361 of them are associated
with hops whose IP address changes, i.e., the route appears to change. This shows that we
must consider route persistence in the bottleneck persistence analysis. Intuitively, Internet
routes have different persistence properties at differentgranularity, so in the following, we
investigate route persistence at both the location level and the AS level. At thelocation
level, we consider hops with IP addresses that belong to the same router or co-located
routers as the same hop. We will explain what we mean by the “same router” or “co-
located router” below. Location-level analysis can help usreduce the impact of “false”
route changes. At theAS level, we consider all hops in the same AS as the same AS-
level hop; this is done by mapping the IP address of each hop toits AS number using the
mapping provided by [81].

Location-Level Route

At the location level, the IP addresses associated with the same router are identified using
two heuristics. First, we check the DNS names. That is, we resolve each IP address into
its DNS name and compare the DNS names. If two IP addresses(a) have the same hop
position (b) for the same source-destination pair and(c) are resolved to the same DNS
name, they are considered to be associated with the same router. We found that 5,410 out
of the 6,868 IP addresses could be resolved to DNS names, and 42 pairs of IP addresses
resolve to identical DNS names (refer to Table 4.2). Second,we look for IP aliases. For
the unresolved IP addresses, we use Ally [109] to detect router aliases. We found that 53
IP pairs are aliases.

The IP addresses associated with co-located routers are identified by applying the fol-
lowing heuristics sequentially.

1. CMU or PSC. Because all our measurements are conducted from a CMU host,they
always pass through PSC (www.psc.edu ) before entering other networks, so we
consider all those routers within CMU or PSC as co-located.
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Figure 4.4: Route persistence at the location level and AS level

2. Same location in DNS name.As pointed out in [121], the DNS names used by
some ISPs (e.g., the*.ip.att.net for AT&T and the*.sprintlink.net
for Sprint) include location information, which allows us to identify those routers
that are at the same geographical position.

3. Digits in DNS name filtered. We remove the digits from DNS names. If the remain-
ing portion of the DNS names become identical, we consider them to be co-located.

These three heuristics allow us to identify 16, 572, and 190 pairs of co-located routers,
respectively. Note that heuristics (2) and (3) are not perfect: stale information in DNS
can cause mistakes in heuristic (2), while heuristic (3) is completely based on our limited
knowledge of how ISPs assign DNS names to their IP addresses.Although we think
the impact from these errors is small, better tools are needed to identify co-located IP
addresses.

At the location level, we consider a route change only when the corresponding hops
do not belong to the same or a co-located routers. Table 4.2 shows that 1,722 pairs of IP
addresses are associated with hops that experience route changes. Given this definition for
location-level route change, we define apersistent probing setas a probing set where the
route remains the same during the 10 probings.
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Figure 4.5: Frequency of the dominant route

Route Persistence Results on Both Location Level and AS Level

Figure 4.4 shows the route persistence results for the 1-dayperiodic probing, at both the
location and AS level. The top graph plots the cumulative distribution of the number of
probing sets that are not persistent. As expected, AS-levelroutes are more persistent than
location-level routes. Some location-level routes changefairly frequently. For example,
about 5% of the source-destination pairs have more than 15 (out of 38) probing sets that
are not persistent at the location level. However overall, the vast majority of the routes
are fairly persistent in the short term: at the location level, 57% of the source-destination
pairs have perfect persistence (i.e., all probing sets are persistent), while 80% have at most
one probing set that is not persistent. The corresponding figures for AS level are 85% and
97%, respectively.

The bottom graph in Figure 4.4 illustrates long-term route persistence by plotting the
distribution of the number of different location-level andAS-level routes that a source-
destination pair uses. We observe that only about 6% of the source-destination pairs use
one location-level route, while about 6% of the source-destination pairs have more than 10
location-level routes (for 380 probings). The long-term route persistence at the location
level is quite poor. However, at the AS level, not surprisingly, the routes are much more
persistent: 94% of the source-destination pairs have fewerthan 5 different AS-level routes.

We have seen that most of the source-destination pairs use more than one route. For
our bottleneck persistence analysis, we need to know if there is a dominant route for a
source-destination pair. Here, thedominant routeis defined as the route that is used by
the highest number of persistent probing sets in all 38 probing sets for the same source-
destination pair. Figure 4.5 shows the distribution of the dominant route for each source-
destination pair, i.e., the number of persistent probing sets that use the dominant route. We
can see that, at the location level, only around 15% of the source-destination pairs have a
route with a frequency of 20 or more (out of 38), i.e., the “dominant” routes are usually
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not very dominant. At the AS level, for about 30% of the source-destination pairs, the
dominant route is used by less than 20 (out of 38) probing sets. This is consistent with the
observation in [121] that a total of about 1/3 of Internet routes are short lived (i.e., exist
for less than one day).

4.3.3 Bottleneck Spatial Persistence

We study spatial bottleneck persistence from two points of view: the route view and the
end-to-end view. The route-view analysis provides the bottleneck persistence results ex-
cluding the effect of route changes, while end-to-end view can tell us the bottleneck per-
sistence seen by a user, including the effect of route changes. The comparison between
these two views will also illustrate the impact of route changes. In each view, the analysis
is conducted at both the location and the AS level. A bottleneck is persistent at the location
level if the bottleneck routers on different routes for the same source-destination pair are
the same or co-located. A bottleneck is persistent at the AS level if the bottleneck routers
on different routes for the same source-destination pair belong to the same AS.

Route View

In the route view, bottleneck persistence is computed as follows. We first classify all
persistent probing sets to the same destination into different groups based on the route that
each probing set follows. In each group, for every bottleneck router detected, we count the
number of persistent probing sets in which it appears (cnt), and the number of persistent
probing sets in which it appears as a bottleneck (bot). Then the bottleneck persistence is
defined asbot/cnt. To avoid the bias due to smallcnt, we only consider those bottlenecks
wherecnt ≥ 10. The number “10” is selected based on Figure 4.5, which showsthat
over 80% (95%) of the source-destination pairs have a dominant route at the location level
(AS level) with a frequency higher than 10; also, picking a larger number will quickly
reduce the number of source-destination pairs that can be used in our analysis. Therefore,
10 is a good trade-off between a reasonably largecnt and having a large percentage of
source-destination pairs to be used in the analysis.

In Figure 4.6, the two bottom curves (labeled with “route view”) plot the cumulative
distribution of the bottleneck persistence. We can see that, at both the location level and AS
level, around 50% of bottlenecks have persistence larger than 0.7, and over 25% of them
have perfect persistence. This shows that most of the bottlenecks are reasonably persistent
in the route view. Note that the location-level curve and theAS-level curve are almost
identical. This seems to contradict the intuition that bottlenecks should be more persistent
at the AS level. Note however that for a source-destination pair, cnt in the AS level can
be larger than that for the location level, so we cannot directly compare the persistence at
these two levels.
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Figure 4.6: Persistence of bottlenecks.

End-To-End View

In this view, we consider bottleneck persistence in terms ofsource-destination pairs, re-
gardless of the route taken. We compute bottleneck persistence of end-to-end view in a
way similar with that of route view. The two top curves (labeled with “e2e view”) in
Figure 4.6 show the results for end-to-end bottleneck persistence. Again, the results for
location level and AS level are very similar. However, the persistence in the end-to-end
view is much lower than that in the route view – only 30% of bottlenecks have persistence
larger than 0.7. This degradation from that in the route viewillustrates the impact of route
changes on bottleneck persistence.

Relationship With Gap Values

For those bottlenecks with high persistence, we find that they tend to have large gap val-
ues in the Pathneck measurements. This is confirmed in Figure4.7, where we plot the
relationship between the bottleneck gap values and their persistence values in both the
route view and end-to-end view. We split the bottlenecks that are included in Figure 4.6
into 4 groups based on their persistence value: 1, [0.75, 1),[0.5, 0.75), and [0, 0.5), and
then plot the cumulative distribution for the average bottleneck gap values in each group.
We observe a clear relationship between large gap values andhigh persistence in both the
route view (top figure) and end-to-end view (bottom figure). The reason is, as discussed in
[56], that a larger gap value corresponds to smaller available bandwidth, and the smaller
the available bandwidth, the less likely it is that there will be a hop with a similar level
of available bandwidth on the path between a source-destination pair, so the bottleneck is
more persistent.



90 CHAPTER 4. INTERNET BOTTLENECK PROPERTIES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

CDF

ga
p 

va
lu

e 
(m

s)

1
0.75−1
0.5−0.75
0−0.5

(a) Route view

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

CDF

ga
p 

va
lu

e 
(m

s)

1
0.75−1
0.5−0.75
0−0.5

(b) End-to-end view

Figure 4.7: Bottleneck gap value vs. bottleneck persistence

4.3.4 Bottleneck Temporal Persistence

So far our analysis has focused on the 1-day periodic probingresults, which provide only
a coarse-grained view of bottleneck persistence. The 4-hour and 1-hour periodic probings
described early in this section allow us to investigate short-term bottleneck persistence.
Although these two sets of experiments only cover a small number of source-destination
pairs, it is interesting to compare their results with thosein the 1-day periodic probings.

Figure 4.8 compares location-level route persistence over1- hour, 4-hour, and 1-day
time periods. In the top graph, thex-axis for the 1-hour and 4-hour curves are scaled by
38/30 and 38/37 to get a fair comparison with the 1 day curve. For the 4-hour and 1-day
periodic probings, the number of probing sets that are not persistent are very similar, while
those for 1-hour periodic probing show a slightly higher percentage of probing sets that are
not persistent. This seems to imply that there are a quite a few short-term route changes
that can be caught by 1-hour periodic probings but not by 4-hour periodic probings. The
bottom figure shows that the number of different routes for 1-day periodic probings is
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Figure 4.8: Location-level route persistence.
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Figure 4.9: Distribution of the dominant route at the location level.

significantly larger than those for 4-hour and 1-hour periodic probings. We think this is
mainly because the 1-day periodic probings cover a much longer period.

Figure 4.9 plots the distribution of the dominant route at the location level. Clearly,
in the 4-hour and 1-hour periodic probings, the dominant routes cover more persistent
probing sets than for the 1-day periodic probings — in the 4-hour and 1-hour periodic
probings, 75% and 45% of the source-destination pairs have over 20 persistent probing
sets that use the dominant routes, while only around 20% of the source-destination pairs
in the 1-day periodic probings use the dominant routes. Notethat the 4-hour periodic
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Figure 4.10: Persistence of the bottlenecks with differentmeasurement periods at the lo-
cation level.

probing results have the largest dominant route coverage. Apossible reason is that the
1-day periodic probings last much longer and allow us to observe more route changes,
while the 1-hour periodic probings can catch more short-term route changes. The same
explanation can also explain the difference in bottleneck persistence plotted in Figure 4.10,
which compares the location-level bottleneck persistencefor different probing periods.
Again, we see that the 1-day and 1-hour curves are closer to each other in both the route
view and the end-to-end view, while the 4-hour curves stand out distinctly, with higher
persistence. This is because the 4-hour periodic probings have the best dominant route
coverage, so route changes have the least impact.

4.3.5 Discussion

The analysis in this section shows that 20% – 30% of the bottlenecks have perfect per-
sistence. As expected, bottlenecks at the AS level are more persistent than bottlenecks at
the location level. Long-term Internet routes are not very persistent, which has a signifi-
cant impact on the bottleneck persistence. That is, people will reach different conclusions
about bottleneck persistence depending on whether or not route changes are taken into
account. We also confirm that bottlenecks with small available bandwidth tend to be more
persistent. Finally, we show that bottleneck persistence is also sensitive to the length of
the time period over which it is defined, and the worst persistence results seem to occur
for medium time periods. Note that these results are based onmeasurements from 960 or
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Table 4.3: Different types of paths in the 954 paths probed
No loss Loss Total

No bottleneck 139 121 260
Bottleneck 312 382 694

Total 451 503 954

fewer paths, which is a relatively small number of paths compared to the number of paths
that are used in the previous study. In future work, we hope toalleviate this limitation by
using more measurement machines.

4.4 Relationship with Link Loss and Delay

In this section, we investigate whether there is a clear relationship between bottleneck
and link loss and delay. Since network traffic congestion maycause queueing and packet
loss, we expect to see that bottleneck links are more likely to experience packet loss and
queueing delay. On the other hand, capacity determined bottlenecks may not experience
packet loss. Therefore, the relationship between bottleneck position and loss position may
help us to distinguish load-determined and capacity-determined bottlenecks.

4.4.1 Data Collection

In this study, we use Tulip [80] to detect the packet loss position and to estimate the link
queueing delay. We probed 954 destinations from a CMU host. For each destination,
we did one set of Pathneck probings, i.e., 10 RPT probing trains, followed by a Tulip
loss probingand a Tulip queuing probing. Both types of Tulip probings are configured
to conduct 500 measurements for each router along the path [22]. For each router along
the path, Tulip provides both the round trip loss rate and forward path loss rate. Because
Pathneck can only measure forward path bottlenecks, we onlyconsider the forward path
loss rate. Table 4.3 classifies the paths based on whether or not we can detect loss and
bottleneck points on a path.

4.4.2 Relationship with Link Loss

Let us first look at how the positions of the bottleneck and loss points relate to each other.
In Figure 4.11, we plot the distances between loss and bottleneck points for the 382 paths
where we observe both a bottleneck and loss points. In the topfigure, thex-axis is the
normalized position of a bottleneck point — the normalized position of a hop is defined to
be the ratio between the hop index (the source node has index 1) and the length of the whole
path. They-axis is the relative distance from the closest loss point tothat bottleneck point.
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Figure 4.11: Distances between loss and bottleneck points.

If there is a loss point with equal distance on each side, we plot both, one with a positive
distance, and the other with a negative distance. Positive distance means that the loss point
has a larger hop index, i.e., it is downstream from the bottleneck point; negative distance
means that the loss point is earlier in the path than the bottleneck point. The bottom figure
presents the data from the loss point of view, and the distance is computed from the closest
bottleneck point. Figure 4.11 clearly shows that there are fewer bottleneck points in the
middle of the path, while a fair number of loss points appear within the normalized hop
range [0.3, 0.9]. On the other hand, there are fewer loss points in the beginning of the path.

Figure 4.12 shows the cumulative distribution of the distance from the closest loss
point to each bottleneck points, using the same method as that used in the top graph of
Figure 4.11. We observe that over 30% of bottleneck points also have packet loss, while
around 60% of bottleneck points have a loss point no more than2 hops away. This distance
distribution skews to the positive side due to the bottleneck clustering at the beginning of
the path, as shown in Figure 4.11.

4.4.3 Relationship with Link Delay

Besides packet loss, queueing delay is another metric that is frequently used as an indica-
tion of congestion. Tulip provides queueing delay measurements as the difference between
the median RTT and the minimum RTT from the probing source to arouter. Note that the
queueing delay computed this way corresponds to the cumulative queueing delay from the
probing source to a router, including delay in both the forward and return path. The 500
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Figure 4.13: Bottlenecks vs. queueing delay

measurements for each router in our experiment can provide areasonable estimate for this
queueing delay. Based on these measurements, we look at the relationship between the
bottlenecks and the corresponding queueing delays.

Figure 4.13 shows the cumulative distribution of the queueing delays for bottleneck
and non-bottleneck links. In our experiment, we observe queueing delays as large as
900ms, but we only plot up to50ms in the figure. As expected, we tend to observe
longer queueing delays at bottleneck points than at non-bottleneck points: fewer than 5%
of the non-bottleneck links have a queue delay larger than5ms, while around 15% of the
bottleneck links have a queue delay larger than5ms. We also observe the same relationship
between the loss points and their queueing delays, i.e., we tend to observe longer queueing
delay at the loss points. Note that these results are still preliminary since it is unclear to
what degree the tulip delay measurements (in terms of RTT delay variance) can be used to
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quantify link queueing delay.

4.5 Applications of Bottleneck Properties

The studies presented in the previous four sections significantly improved our understand-
ing about Internet bottlenecks, the insights also help us improve the performance of some
important applications. First, the results in Figure 4.3 suggest that an end node may expe-
rience different bottlenecks for paths connecting with different peer nodes, so a distributed
system like a CDN may be able to help the end node avoid the worst bottleneck. Second,
with the end-user access-bandwidth distribution, a web site can obtain its transmission-
time distribution. In this section, I will present detailedanalyses about these two applica-
tions.

4.5.1 Improving End-User Access Bandwidth Using CDN

In this section, we study how Internet bottleneck properties can be used to improve the
performance of content distribution networks (CDNs). The idea of a content distribution
network is to replicate data in a set of servers distributed diversely over the Internet so that
a client request can be redirected to the server that is closest to the client and hopefully
can achieve the best performance. During the redirection procedure, most CDNs focus
on reducing the network delay; few have looked at bandwidth performance due to the
difficulty of obtaining bandwidth estimation. Therefore, there is not a good understanding
on how well a CDN can improve bandwidth performance of end users. On the other hand,
the results in Figure 4.3 suggest that an end-node may experience different bottlenecks
for paths connecting with different servers. This implies that it is possible for a CDN
to also improve clients’ bandwidth performance. In this section, we quantify the extent
of such improvement by viewing the system composed of the measurement nodes listed
in Table 4.1 as a CDN. In the following, we first describe the redirection algorithm, we
then present the analysis results. The analysis is based on the ISP data set described in
Section 4.1.1.

The Greedy Algorithm

To optimize client performance using replicas, we need to know how many replicas we
should use and where they should be deployed. The goal is thatthe selected set of replicas
should have performance very close to that achieved by usingall replicas. A naive way
is to consider all the possible combinations of replicates when selecting the optimal one.
Given that there are218 − 1 (i.e., 262,143) different combinations for 18 replicas, and
each replica measures over 160K destinations, the time of evaluating all combinations is
prohibitively high. Therefore, we use a greedy algorithm, which is based on a similar idea
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as the greedy algorithm used by Qiu et.al. [98]. This algorithm only needs polynomial
processing time, but can find a sub-optimal solution very close to the optimal one. We
now explain how to apply this algorithm on theISPdata set.

The intuition behind the greedy algorithm is to always pick the best replica among the
available replicas. In this algorithm, the “best” is quantified using a metric calledmarginal
utility. This metric is computed as follows. Assume that at some point, some replicas
have already been selected. The best bandwidth from among the selected replica to each
destination is given by{bwi|0 ≤ i < N}, whereN ≈ 160K is the number of destinations,
andbwi is the largest bandwidth that is measured by one of the replicas already selected to
destinationi. Let{sbwi|0 ≤ i < N} be the sorted version of{bwi}. We can now compute
bw sum as:

bw sum =
99

∑

k=0

sbwindex(k)

where

index(k) =
N × (k + 1)

101
− 1

There are two details that need to be explained in the above computation. First, we
cannot simply add all the individual measurements when calculating bw sum. This is
because by definition, a destination is not necessarily reached by all the measurement
sources, so introducing a new replica could bring in measurements to new destinations,
thus changing the value ofN . Therefore, we cannot simply add allbwi since the results
would be incomparable. In our analysis, we add 100 values that are evenly distributed
on the CDF curve. Here, the number “100” is empirically selected as a reasonably large
value to split the curve. Second, we split the curve into 101 segments using 100 splitting
points, and only use the values of these 100 splitting points. That is, we do not use the
two end values—sbw0 and sbwN−1, whose small/large values are very probably due to
measurement error.

Suppose a new replicaA is added, manybwi can change, and we compute a new
bw sumA. The marginal utility ofA is then computed as:

marginal utility =
|bw sum− bw sumA|

bw sum

With this definition, the replica selected in each step is theone that has the largest marginal
utility. For the first step, the replica selected is simply the one that has the largestbw sum.
In the end, the algorithm generates areplica selection sequence:

v1, v2, ..., v18

wherevi ∈ {S01, S02, ..., S18}. To selectm(< 18) replicas, we can simply use the first
m replicas in this sequence. This greedy algorithm has polynomial processing time, but
only gives a sub-optimal solution, although it is very closeto optimal [57].
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Figure 4.14: Bandwidth optimization for well provisioned destinations.

Bandwidth Improvement Using CDN

Using the greedy algorithm, we did two studies based on the ISP data set. In the first
study, we only use the 23,447 destinations where Pathneck can measure the last hop, and
the bottleneck bandwidth is higher than 40Mbps. In the second, we increase the scale by
including more measurement results.

The results of the first study are shown in Figure 4.14, the numbers marked on the
curves are the the numbers of replicas. It shows the cumulative distribution of path band-
width upper-bounds with varying numbers of replicas. We cansee that the bandwidth
improvement from replicas is indeed significant. For example, with a single replica, there
are only 26% paths that have bandwidth higher than 54Mbps, while with all 18 replicas,
the percentage increases to 65%.

An obvious problem for the first study is that it only covers around 16% of the paths
that we measured, thus the results could be biased. Therefore we did the second and
more general study, where we use join nodes instead of real destination in our study. Join
nodes are defined as follows. For those unreachable destinations, we only have partial
path information. Ideally, the partial paths would connectthe measurement sources to a
commonjoin nodethat is the last traced hop from each source, so the join node stands
in for the destination in a consistent way. Unfortunately, such a join node may not exist,
either because there may not be a node shared by all the 18 measurement sources to a given
destination or the shared hop may not be the last traced hop. For this reason, we relax the
constraints for the join node: the join node only needs to be shared by 14 measurement
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Figure 4.15: Bandwidth optimization for all valid destinations.

sources, and it need only be within three hops from the last traced hop. Here “14” is simply
a reasonably large number that we choose. This allows us to make the best of the available
data while still having comparable data. Specifically, thisallows us to include over 141K
destinations (86% of the total) in our analysis, among which47% are real destinations,
and 53% are join nodes. We refer to these 141K destinations asvalid destinations.

Now we apply the greedy algorithm on all the valid destinations, but exclude last-mile
bottlenecks. In other words, we do a “what if” experiment to study what would happen if
last-mile links were upgraded. That is, for those destinations where Pathneck can measure
the last hop, we remove the last two hops; this is based on the observation in Figure 4.1(c)
that 75% paths have bottlenecks on the last two hops. For the others, we use the raw
measurement results. Figure 4.15 includes the results fromthe greedy algorithm when
considering all destinations. Table 4.4 lists the replica selection sequence from the greedy
algorithm, and the marginal utility from each replica. We can see that the bandwidth
improvement spreads almost uniformly in the large range [5Mbps, 50Mbps]. If using
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Table 4.4: Replica selection sequence

select seq. 1 2 3 4 5 6 7 8 9
node id S03 S17 S04 S16 S12 S15 S01 S05 S18
location SW Eu MW Eu NE Eu NE SM As

select seq. 10 11 12 13 14 15 16 17 18
node id S07 S13 S10 S08 S14 S11 S02 S09 S06
location SW NM NW MM NE NM SM NE SE
NE: northeast, NW: northwest, SE: southeast, SW: southwest
ME: middle-east, MW: middle-west, MM: middle-middle
Eu: Europe, As: East-Asia

5% as the threshold for marginal utility, only the first two replicas selected significantly
contribute to the bandwidth performance improvement. Alsogeographic diversity does
not play an important role.

4.5.2 Distribution of Web Data Transmission Time

Pathneck measurements provide both bandwidth and delay information. That makes it
possible to study the distribution of data transmission times of network services like web
services. This is because end-to-end data transmission times are determined by delay,
available bandwidth, and data size altogether, and a web server can easily know their data
size distribution. In this section, we use the bandwidth andthe delay information provided
by Pathneck to study how well replicated hosting can be used to improve a web server’s
data transmission times. Below we first provide a simplified TCP model to characterize
data transmission time as a function of available bandwidth, delay, and data size. We then
look at the transmission-time distribution for different data sizes with different number of
replicas.

Simplified TCP Throughput Model

Simply speaking, TCP data transmission includes two phases: slow-start and congestion
avoidance [63]. During slow-start, the sending rate doubles every roundtrip time, because
the congestion window exponentially increases. During congestion avoidance, the sending
rate and the congestion window only increase linearly. These two algorithms, together
with the packet loss rate, can be used to derive an accurate TCP throughput model [89].
However, we can not use this model since we do not know the packet loss rate, which is
very expensive to measure. Instead, we build a simplified TCPthroughput model that only
uses bandwidth and RTT information.
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Our TCP throughput model is as follows. Let the path under considered have available
bandwidthabw (Bps) and roundtrip timertt (second). Assume that the sender’s TCP con-
gestion window starts from 2 packets and that each packet is 1,500 bytes. The congestion
window doubles every RTT until it is about to exceed the bandwidth-delay product of the
path. After that, the sender sends data at a constant rate ofabw. This transmission algo-
rithm is sketched in the code segment shown below. It computes the total transmission
time (ttotal) for x bytes of data along a path.

cwin = 2 * 1500;
t_ss = 0; t_ca = 0;

while (x > cwin && cwin < abw * rtt) {
x -= cwin;
cwin *= 2;
t_ss += rtt;

}
if (x > 0) t_ca = x / abw;

t_total = t_ss + t_ca;

wheret ss andt ca are the transmission time spent in the slow-start phase and the con-
gestion avoidance phase, respectively. We say the data transmission isrtt-determinedif
t ca = 0. We can easily derive the maximum rtt-determined data size as

2blog2(abw∗rtt/1500)c+1 ∗ 1500(byte)

In the following, we call this size theslow-start size. Clearly, when the data is less than
the slow-start size, it is rtt-determined.

This model ignores many important parameters that can affect TCP throughput, in-
cluding packet loss rate and TCP timeout. However, the purpose of this analysis is not
to compute an exact number, but rather to provide a guidelineon the range of data sizes
where RTT should be used as the optimization metric in replica hosting.

Slow-Start Sizes and Transmission Times

Using the above model, we compute the slow-start sizes for the 67,271 destinations in the
ISPdata set for which Pathneck can obtain complete measurements. Figure 4.16 plots the
distributions of slow-start sizes for the paths starting from each replica. Different replicas
have fairly different performance; differences are as large as 30%. Overall, at least 70%
of paths have slow-start sizes larger than 10KB, 40% larger than 100KB, and around 10%
larger 1MB. Given that web pages are generally less than 10KB, it is clear that their trans-
mission performance is dominant by RTT and replica placement should minimize RTT. For
data sizes larger than 1MB, replica deployment should focuson improving bandwidth.
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Figure 4.16: Cumulative distribution of the slow-start sizes

To obtain concrete transmission times for different data sizes, we use our TCP through-
put model to compute data transmission time on each path for four data sizes: 10KB,
100KB, 1MB, and 10MB. We then use the greedy algorithm to optimize data transmission
times. The four subgraphs in Figure 4.17 illustrate the transmission-time distributions for
each data size using different number of replicas. These figures are plotted the same way
as that used in Figure 4.14. If we focus on the 80 percentile values when all 18 replicas
are used, we can see the transmission times for 10KB, 100KB, 1MB and 10MB are 0.4
second, 1.1 second, 6.4 second, and 59.2 second, respectively. These results are very use-
ful for Internet-scale network applications to obtain an intuitive understanding about their
data transmission performance.

4.5.3 More Applications

Besides the applications on CDNs and web data transmissions, as a collaboration with
Zhuoqing Morley Mao, we also studied how well overlay routing and multihoming can be
used to avoid bottlenecks and improve end-user data transmission performance [56]. We
found that both methods are effective in avoiding bottlenecks. In our experiments, 53%
of overlay paths and 78% of multihoming paths were able to improve end-user bandwidth
performance.
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Figure 4.17: Transmission times for different data sizes

4.6 Related Work

Due to lack of efficient bottleneck locating techniques, there has not been a lot of work
on characterizing Internet bottlenecks. To the best of our knowledge, the only previous
study is from [26], which shows that Internet bottlenecks are mostly on edge and peering
links. That conclusion, however, is limited by the scale of its experiments. Our Pathneck
based study overcomes this limitation by looking at bottleneck properties at an Internet
scale. Furthermore, our study is more extensive by looking at more important bottleneck
properties.

The other group of related work is on the persistence of Internet path properties, such
as route, delay, loss rate, and throughput. Labovitz et.al.[74, 75, 76] showed that a large
fraction of IP prefixes had persistent routes from many observation points, despite the
large volume of BGP updates. Rexford et.al. [99] discoveredthat the small number of
popular destinations responsible for the bulk of Internet traffic had very persistent BGP
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routes. Zhang et.al. [121, 120] showed that Internet routesappear to be very persistent al-
though some routes exhibited substantially more changes than others; packet loss rate and
end-to-end throughput were considerably less stationary.Although none of these stud-
ies are directly on bottleneck link persistence, their insights are helpful in our persistence
analysis.

4.7 Summary

This chapter presented an Internet-scale measurement study on bottleneck properties. We
showed that (1) over 86% of Internet bottlenecks are within 4hops from end nodes, i.e.,
they are mostly on network edges; (2) low-speed links still dominate Internet end-user
access links, with 40% of end users having access bandwidth less than 2.2Mbps; (3) bot-
tlenecks are not very persistent—only 20%–30% of the source-destination pairs in our ex-
periments have perfect bottleneck persistence; (4) bottlenecks have close relationship with
packet loss—60% of the bottlenecks in our measurements can be correlated with a lossy
link no more than 2 hops away; the relationship between bottlenecks and link queueing
delay is much weaker, with only 14% of correlation. We also demonstrated that Pathneck
can help improve the performance of popular applications like CDN, and help web servers
obtain their transmission-time distribution.



Chapter 5

Source and Sink Trees

IGI/PTR and Pathneck provide the techniques to measure end-to-end available bandwidth
and to locate path bottleneck links. A common characteristic of these two techniques is
their relatively small measurement overhead. However, compared with ping or traceroute,
they are still expensive. For example, IGI/PTR is one of the end-to-end available band-
width measurement tools that have the smallest overhead, but it still uses around 100KB
probing packets per path. Consequently, for large-scale available bandwidth monitoring,
i.e., measuring theN2 paths in aN-node system whenN is very large (hundreds or thou-
sands), overhead remains a problem. For example, measuringall the end-to-end paths
in an 150-node system will require over 2GB of probing packets, which is a significant
network load.

To address this problem, we use a key insight from our Internet bottleneck property
study—over 86% of Internet bottlenecks are on Internet edge. Given this fact, if we can
measure the edge bandwidth of a network system, we can cover alarge percentage of
the bottlenecks that determine the path available bandwidth of any network system. The
remaining problem is then how to efficiently measure and represent bandwidth information
for the Internet edge. We use a novel structure of end-user routes—source and sink trees—
to achieve that goal.

It is well known that the Internet is composed of a large number of networks con-
trolled by different ISPs. Internet routes are determined by each ISP independently, and
the overall connectivity topology looks much like a random graph with no simple pattern.
However, if we only focus on the routes used by a single end user, they have a very clear
tree structure. We call them the source and sink trees of the end user. This structure not
only makes the notion of “Internet edge” concrete, it also provides valuable information
on path sharing. This is because each tree branch is used by the end user to communicate
with a large number of other nodes, and the corresponding paths are all affected by the per-
formance of that tree branch. This type of sharing is the key that we will take advantage
of to reduce the overhead for large-scale available bandwidth measurement.

In this chapter, we first define the source and sink trees at both IP-level (Section 5.1)

105
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and AS-level (Section 5.2), showing that AS-level source and sink trees closely approx-
imate real tree structures (Section 5.3). We also show that the size of most trees are rel-
atively small, and can thus be measured efficiently (Section5.4). We then study how we
can group destination nodes that share a tree branch using the RSIM metric (Section 5.5).

5.1 IP-Level Source and Sink Trees

The IP-level source tree of an end node refers to the graph composed by all the upstream
routes it uses, and its IP-level sink tree refers to the graphcomposed by all the downstream
routes it uses. Due to the scale of Internet, it is not necessary to consider a complete tree
that is composed by the full routes, since our goal is to capture network-edge informa-
tion. Therefore, we only consider the firstE (for upstream routes) and the lastN (for
downstream routes) links of a complete IP-level path, and wecall these two partial paths
thesource-segmentandsink-segment, respectively. We also use the termend-segmentto
indicate either a source-segment or sink-segment.

The exact values ofE andN are determined by applications, and different branches
can have differentE or N values. For end-to-end available bandwidth inference, there is
a clear tradeoff between increasing the number of bottlenecks covered by using a large
E or N value and increasing tree-measurement overhead. In Section 4.1, we have seen
that around 86% of bottlenecks are within four hops from the end nodes. That implies
that we need to focus on the top-four-layer trees, since increasing the tree depth will not
significantly increase the number of bottlenecks covered. Therefore, we will useE = 4
andN = 4 for end-to-end available bandwidth inference. With this configuration, the
terms source-segment and sink-segment are defined as follows. Let the path from nodes
to d bePath(s, d) = (r0 = s, r1, r2, ..., rn = d), hereri(1 ≤ i ≤ n− 1) are routers on the
path. Then the source-segment ofPath(s, d) is

srcSgmt(s, d) = (r0, r1, r2, r3, r4)

and the sink-segment ofPath(s, d) is

sinkSgmt(d, s) = (rn−4, rn−3, rn−2, rn−1, rn)

Figure 5.1 illustrates the IP-level source trees for end nodesa0, b0 and the IP-level sink
trees for end nodesc0, d0. The dashed lines indicate the omitted central parts of the
paths. Here we havesrcSgmt(a0, c0) = (a0, a1, a3, a6, a10) and sinkSgmt(c0, a0) =
(c8, c4, c2, c1, c0), etc.

Given the IP-level source and sink trees, the intuition of reducing large-scale available
bandwidth measurement overhead is as follows. If bottlenecks are all on end-segments,
we only need to consider the available bandwidth of source-segments and sink-segments,
while ignoring links within the “Internet Core” as illustrated in Figure 5.1. This is an
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Figure 5.1: IP-level source and sink trees

important observation, since for a large system, many pathswill share a same end-segment.
For example,Path(a0, c0) andPath(b0, c0) share sink-segment(c8, c4, c2, c1, c0). This
means that the measurement overhead is proportional to the number of end-segments, not
the number of paths. As we will discuss later in this this chapter, Internet end nodes have
on average only about ten end-segments, so the overhead is linear to the number of system
nodes.

5.2 AS-Level Source and Sink Trees

IP-level source and sink trees can efficiently capture Internet edge route and bandwidth
information, but to fully take advantage of the tree structures, we also need AS-level infor-
mation. This is because end-to-end routes are determined together by intra-AS routes and
inter-AS routes. Intra-AS routes are generally some type ofshortest-path routes within the
corresponding AS, while inter-AS routes are determined by the BGP protocol, which is
based on AS. Therefore, to integrate the AS-level route information, we also define source
and sink trees at the AS-level. In practice, AS-level sourceand sink trees have three ad-
vantages over IP-level trees. First, AS-level routes have been shown to have some useful
properties like valley-free, shortest-path routing, and tiering structure. These properties
can simplify the design of tree-based algorithms, as demonstrated in the BRoute system.
Second, AS-level routes hide many factors that affect IP-level routes, like load balance
routing which generally happens within ASes. Therefore AS-level routes tend to be more
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stable than IP-level routes, and require less monitoring effort in the long term. Finally, and
perhaps most importantly, as we will demonstrate in Section5.3, AS-level source and sink
trees also have a very clear tree-like structure. That makesAS-level trees a perfect ab-
straction for IP-level trees, thus effectively reducing the tree size to cover the same scope
of route.

AS-level source and sink trees are defined based on two important properties of Inter-
net ASes: the valley-free property of AS paths and the five-tier classification of Internet
ASes. On today’s Internet, depending on how BGP (Border Gateway Protocol) routes
are exchanged between two ASes, AS relationships can be classified into four types:
customer-to-provider, provider-to-customer, peering, and sibling relationships (see Gao
[50] for details). The first two relationships are asymmetric, while the latter two are sym-
metric. An important property of AS relationships is thevalley-freerule: after traversing a
provider-to-customer or peering edge, an AS path can not traverse a customer-to-provider
or peering edge. Consequently, an AS path can be split into anuphill and a downhill path.
An uphill path is a sequence of edges that are not provider-to-customer edges, while a
downhill path is a sequence of edges that are not customer-to-provider edges. Themax-
imal uphill/downhill pathis the longest uphill/downhill path in an AS path. Note that,
unlike the definition from Gao [50], we allow uphill/downhill paths to include peering
edges. This increases the chances that two trees have a common-AS.

A number of algorithms [50, 114, 29, 82] have been proposed toinfer AS relationships
using BGP tables. In particular, Subramanian et.al. [114] classifies ASes into five tiers.
Tier-1 includes ASes belonging to global ISPs, while tier-5includes ASes from local ISPs.
Intuitively, if two connected ASes belong to different tiers, they are supposed to have a
provider-to-customer or customer-to-provider relationship; otherwise, they should have a
peering or sibling relationship. To be consistent with the valley-free rule, we say that an
AS with a smaller (larger) tier number is in ahigher(lower) tier than an AS with a larger
(smaller) tier number. An end-to-end path needs to first go uphill from low-tier ASes to
high-tier ASes, then downhill until reaching the destination (Figure 5.2).

Formally, letT ier(ui) denote the tier number of ASui. then an AS path(u0, u1, ..., un)
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is said to be valley-free iff there existi, j(0 ≤ i ≤ j ≤ n) satisfying:

T ier(u0) ≥ ... ≥ T ier(ui−1) > Tier(ui) = ... = T ier(uj) < Tier(uj+1) ≤ ... ≤ T ier(un)

The maximal uphill path is then(u0, u1, ..., uj), and the maximal downhill path is(ui, ui+1, ..., un).
The AS(es) in the highest tier{ui, ..., uj} are calledtop-AS(es). In Figure 5.2,(u0, u1, u2, u3)
is the maximal uphill path,(u2, u3, u4, u5) is the maximal downhill path, and{u2, u3} are
the top-ASes. The above formula allows an AS path to include multiple peering links.
While this rarely happens, it allows us to resolve one type oferror from theAS-Hierarchy
data set (described in the next section), where two ASes withcustomer-to-provider or
provider-to-customer relationship may have a same tier number.

AS-level source and sink trees are defined using the maximal uphill and downhill paths.
Specifically, theAS-level source treefor a nodes refers to the graphsrcTree(s) = (V, E),
whereV = {ui} includes all the ASes that appear in one of the maximal uphillpaths
starting froms, andE = {(ui, uj)|ui ∈ V, uj ∈ V } includes the directional links among
the ASes inV , i.e. (ui, uj) ∈ E iff it appears in one of the maximal uphill paths starting
from s. AS-level sink treeis defined in the same way, except using maximal downhill paths.
Below we show that AS-level source and sink trees closely approximate tree structures in
practice.

5.3 Tree Structure

In this section, we look at how closely the source and sink trees approximate real tree
structures. This is an important property because it allowsus to clearly group end nodes
based on the tree branches they use. As shown in the next chapter on the BRoute system,
the tree property also helps simplify some algorithm design. Below we first describe the
data sets that are used in our analysis.

5.3.1 Route Data Sets

We use five data sets in our analysis. TheBGPdata set includes the BGP routing tables
downloaded from the following sites on 01/04/2005: University of Oregon Route Views
Project [23], RIPE RIS (Routing Information Service) Project [16] 1, and the public route
servers listed in Table 5.1 which are available from [18]. These BGP tables include views
from 190 vantage points, which allow us to conduct a relatively general study of AS-
level source/sink tree properties. Note that the sources for the above BGP tables are often
peered with multiple ASes, so they include views from all these ASes. We separate the
BGP tables based on peering addresses because an end node generally only has the view
from one AS.

1Specifically, we use ripe00.net – ripe12.net, except ripe08.net and ripe09.net, which were not available
at the time of our downloading.
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Table 5.1: Route servers
route-server.as5388.net route-server.ip.tiscali.net
route-server.as6667.net route-server.mainz-kom.net
route-server.belwue.de route-server.opentransit.net
route-server.colt.net route-server.savvis.net
route-server.east.allstream.netrouteserver.sunrise.ch
route-server.eu.gblx.net route-server.wcg.net
route-server.gblx.net route-views.ab.bb.telus.com
route-server.gt.ca route-views.bmcag.net
route-server.he.net route-views.on.bb.telus.com
route-server.host.net route-views.optus.net.au
route-server.ip.att.net tpr-route-server.saix.net

TheRocketfueldata set is mainly used for IP-level analysis of end-segments. We use
the traceroute data collected on 12/20/2002 by the Rocketfuel project [109, 17], where 30
Planetlab nodes are used to probe over 120K destinations.2 This destination set is derived
from the prefixes in a BGP table that day. Since it covers the entire Internet, the inferred
AS-level source trees from this data set are complete.

ThePlanetlabdata set is collected by the authors using 160 Planetlab nodes, each from
a different physical location. It includes traceroute result from each node to all the other
nodes and it is used to characterize AS-level sink tree properties. This data set is part of
the measurements conducted for the analysis in Section 6.4.

The AS-Hierarchydata set is from [2]. We downloaded two snapshots to match our
route data sets: one on 01/09/20033, which is used for mappingRocketfueldata set; the
other on 02/10/2004, which is the latest snapshot available, and it is used for mappingBGP
andPlanetlabdata sets. These data uses the heuristic proposed by Subramanian et.al. [114]
to assign tier numbers to all the ASes in the BGP tables used inthe computation. As an
example, the 02/10/2004 data set identifies 22 tier-1 ASes, 215 tier-2 ASes, 1391 tier-3
ASes, 1421 tier-4 ASes, and 13872 tier-5 ASes.

TheIP-to-ASdata set is downloaded from [7]. Its IP-to-AS mapping is obtained using
a dynamic algorithm, which is shown to be better than resultsobtained directly from BGP
tables [81].

Three perspectives of these data sets need to clarify. First, while neither theAS-
Hierarchynor theIP-to-ASdata set are perfect, they do provide very good coverage. For
example, Figure 5.3 shows the results for theRocketfueldata set. In this figure, “no tier”
indicates the percentage of paths for which at least one hop could not be mapped onto a tier

2The original data set covers three days and uses 33 nodes. We only use the data from one of the days,
and we discarded the data for 3 nodes because they could not get valid traceroute results for a large portion
of destinations.

3Among the available data sets, it is the closest to theRocketfueldata set in terms of measurement time.
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Figure 5.3: Classification of the AS paths in theRocketfueldata set
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Figure 5.4: Example of multi-tier AS relationship

number, either because its IP address could not be mapped onto an AS, or because its AS
does not have a tier number. The “invalid as-path” bars show the percentage of AS paths
that are not valley-free. On average, only 3% of the paths fall in these categories, while
for each node fewer than 5% of the paths belong to these two categories. We will exclude
these paths from our analysis, which we believe should not change our conclusions.

Second, these data sets were collected at different times. This is not an issue if they
are used independently. Actually, evaluations using data sets collected at different times
can make our analysis results more general. However, the time difference could introduce
errors when we need to use the mapping data sets (AS-HierarchyandIP-to-AS) with the
route data sets (BGP, RocketfuelandPlanetlab) together. We are currently unable to de-
termine whether these errors have positive or negative impact on our analyses, due to the
lack of synchronized data sets.

Finally, we only have complete route information for 30 end nodes (from theRocket-
fuel data set), while we have complete AS-level route information for 190 vantage points.
Since tree-property analysis requires a complete set of route information for a end node,
the following analysis will mainly focus on AS-level sourceand sink trees.

5.3.2 Tree Proximity Metric

An AS-level source or sink tree is not necessarily a real treedue to two reasons. First, ASes
in the same tier can have a peering or a sibling relationship,where data can flow in either
direction; that can result in a loop in the AS-level source/sink tree. Second, customer-to-
provider or provider-to-customer relationship can cross multiple tiers. An example from
theRocketfueldata set is shown in Figure 5.4; we see that tier-3 AS11537 canreach tier-1
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Figure 5.5: The tree proximities of the AS-level source/sink trees from theBGPdata set

AS7018 either directly or through tier-2 AS201. Obviously,the corresponding AS-level
source tree is not a tree since AS7018 has two parents.

In the following, we use thetree-proximity metricto study how closely AS-level
source/sink trees approximate real tree structures. For AS-level source trees it is defined
as follows, the definition for AS-level sink trees is similar. For both theBGPand theRock-
etfueldata set, we first extract all maximal uphill paths for each view point. A view point
is either a peering point (inBGP data set) or a measurement source node (inRocketfuel
data set). We count the number of prefixes covered by each maximal uphill path, and use
that number as the popularity measure of the corresponding maximal uphill path. We then
construct a tree by adding the maximal uphill paths sequentially, starting from the most
popular one. If adding a new maximal uphill path introduces non-tree links, i.e., gives a
node a second parent, we discard that maximal uphill path. Asa result, the prefixes cov-
ered by that discarded maximal uphill path will not be covered by the resulting tree. The
tree proximityof the corresponding AS-level source tree is defined as the percentage of
prefixes covered by the resulting tree. While this greedy method does not guarantee that
we cover the largest number of prefixes, we believe it provides a reasonable estimate on
how well an AS-level source tree approximates a real tree.
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Figure 5.6: The tree proximities of the AS-level source trees from theRocketfueldata set

5.3.3 Analysis Results

Using theBGP data set, we can build an AS-level source tree for each of the 190 view
points. The distribution of the tree proximities is shown asthe solid curve in Figure 5.5.
About 90% of the points have a proximity over 0.95, and over 99% are above 0.88. This
shows that the AS-level source trees are indeed very close toreal tree structures. This
conclusion is consistent with the finding by Battista et.al.[29], who noticed that a set of
AS relationships can be found to perfectly match the partialview of BGP routes from a
single vantage point.

We also built AS-level sink trees using theBGP data set. We identified the prefixes
that are covered by at least 150 view points, i.e., for which we can get over 150 maximal
downhill paths. We picked the number “150” because it can give us a large number of trees.
We tried a number of different values and they lead to the sameconclusion. The dashed
curve in Figure 5.5 shows the distribution of the tree proximities for the 87,877 AS-level
sink trees which have over 150 maximal downhill paths. Again, we see the results support
the argument that AS-level sink trees closely approximate real trees. The results are in
fact slightly better than for source trees, which could be a result of the limited number of
downstream routes used for the AS-level sink-tree construction.

We repeated the AS-level source trees analysis for theRocketfueldata set.4 Figure 5.6
plots the tree proximities for the 30 AS-level source trees.We see that 2 trees are below
0.9, 7 are falling between 0.9 and 0.95, and all the other 23 AS-level source trees have
tree proximities over 0.95. While fairly good, these results are worse than the results from
the BGP data set. We identify several reasons for this. First of all,multihomed hosts
can easily create violations in the tree structure because they can use arbitrary policies to
select an interface. We manually confirm that node 6, 17, 19, 23, and 24 are all multihomed
hosts. Second, traceroute results are subject to measurement noise since the measurements
were conducted over 6-hour period [109], in which routes could change, thus introducing
inconsistency such as an extra parent for an AS in the AS-level source tree. TheBGPdata

4The analysis on AS-level sink trees is not repeated since we only have data from 30 nodes, i.e., at most
30 downstream routes for each destination.
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set does not have this problem since BGP table provides a pureAS-level route snapshot,
Furthermore, Internet exchange points can introduce extraASes that are not present in
BGP routes. These exchange points could easily become an extra parent for some ASes.

5.3.4 Discussion

We have shown that both AS-level source and sink trees closely approximate real tree
structures. Earlier in this section, we identified two possible causes for violations of the
tree property. We found that the second cause, i.e. the creation of multiple paths to reach a
higher tier AS, was by far the most common reason for discarding a maximum uphill path
during tree construction. We speculate that these violations are caused by load-balancing-
related routing policies such as MOAS (Multiple Origin AS),SA (Selected Announced
Prefixes), etc. The fact that the first cause seldom occurs, i.e., there are few loops in the AS-
level source/sink tree, implies that the ASes in the same tier can be “ranked”, as implied
by Battista et.al. [29]. That is, if two peering ASes are in the same tier, although data can
flow in both directions, the data transmission is always in one direction for a specific end
node. That is, from the view of a single end node, a peering or sibling relationship actually
behaves like a customer-to-provider or provider-to-customer relationship.

An important implication of this observation is that, once we have obtained the maxi-
mal uphill paths, the tier numbers from [2] are no longer needed. The AS-level source/sink
tree constructed using the maximal uphill/downhill paths determines the relationships for
the ASes in the tree. As a result, errors from theAS-Hierarchydata set, if any, only
affect the AS-level source/sink tree construction when it cannot correctly determine the
top-AS(es) for a path. Given that over 90% of Internet paths have top-AS(es) at tier-1 or
tier-2 (see Section 5.4), which are relatively stable, we believe that the estimation error
introduced by this data set is very limited.

5.4 Tree Sampling

We have seen two ways of constructing AS-level source/sink trees—using BGP tables
and using traceroute—as we demonstrated using theBGP and theRocketfueldata sets,
respectively. While using BGP is very easy, this type of datais generally not readily
available to end nodes; moreover, it cannot be used for AS-level sink trees. On the other
hand, having each system node use traceroute to probe the entire Internet, as done in the
Rocketfuelproject, is expensive. Fortunately, this is not necessary.In this section, we first
show that 70% of IP-level sink trees have less than 10 branches. We first show that AS-
level source trees are in general small. We cannot do a similar study on AS-level sink trees
because we have insufficient data to build complete AS-levelsink trees, but we speculate
the conclusions from AS-level source trees also apply to AS-level sink trees. We then
present some preliminary results on how to place traceroutelandmarks that will support
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Figure 5.7: IP-level sink-tree size distribution in thePlanetlabdata set.

efficient sampling of the AS-level source tree.
Figure 5.7 shows that the distribution of the number of tree branches for the 210 IP-

level sink trees measured using 210Planetlabnodes. The bold solid line shows the distri-
bution for the 4-layer trees, which is our standard definition. We can see, 70% of sink trees
have less than 10 branches, which shows that most of IP-levelsink trees indeed have very
limited size. There are a few trees that have over 100 different branches. This is due to the
set of Internet2 Planetlab nodes which are deployed very closely to Internet2 peering link.
In practice, these types of nodes are much less likely to be encountered by an end user
or application. This figure also illustrates the changes when the tree include more layers
of nodes. Clearly, with more layers included in a tree, therewill be more branches. For
example, for 8-layer sink trees, over 70% of them have more than 40 branches.

Figure 5.8 plots the size distribution of AS-level source trees in theBGP data set,
measured as the number of distinct ASes in the tree. We separate the trees into three
groups based on the tier number of their root ASes. Tier-4 andtier-5 are grouped with tier-
3 because there are only 6 and 5 AS-level source trees with root AS in tier-4 and tier-5.
Intuitively, the higher the tier (lower tier number) of the root AS, the smaller the size of the
AS-level source tree. This is confirmed by Figure 5.8: the AS-level source trees with root
AS in tier-3/4/5 are significantly larger than those in tier-1 or tier-2. Even for tier-3/4/5,
however, the largest AS-level source tree has fewer than 400ASes and some are as small
as 50 ASes, which can happen, for example, if the root AS is directly connected to a tier-1
AS. We conclude that AS-level source trees are indeed quite small. This observation was
confirmed using theRocketfueldata set, where the tree size varies from 50 to 200.

The limited AS-level source tree size gives us the opportunity to measure it using a
small number of traceroutes. Intuitively, if routes to different prefixes could share the
same maximal uphill path, only one of these routes needs to bemeasured to cover all
these prefixes. Since the size of AS-level source tree is limited, a small number of tracer-
outes should suffice. A good algorithm for the selection of landmark locations is left for
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Figure 5.10: Coverage of using only tier-1 and tier-2 landmarks

future work. Instead, we present some measurements that provide insight in the number
of traceroute landmarks that are needed to provide good coverage of the AS-level source
tree. We do this by presenting the results for two simple selection algorithms: random and
tier-based.

In our first study, we randomly chose 100-1000 AS paths from each BGP table to
construct a sampled AS-level source tree. Figure 5.9 shows the coverage for different
numbers of paths used. In this figure, the x-axis is the percentage prefixes covered by
the sampled tree, while the y-axis shows the number of trees that have at least that much
coverage. We see that 100 traceroutes can cover at least 70% of the prefixes for all trees,
while 300 traceroutes will allow most of trees cover over 90%of the prefixes.

Another approach is to place landmarks strategically. In the Rocketfueldata set, we
find that over 90% paths have top-AS(es) at tier-1 or tier-2. More importantly, there are
only 22 tier-1 ASes and 215 tier-2 ASes in the 02/10/2004AS-Hierarchydata set. The
implication is that if we deploy one traceroute landmark in each of these 237 ASes, the
measured tree can cover at least 90% of the original AS-levelsource tree. In practice, one
AS can map to multiple different prefixes; in that case we randomly pick one of the paths
with the shortest prefix length, hoping that this prefix is themost stable one.

Figure 5.10 plots the sampling performance for theBGPdata set, using the 237 tracer-
oute landmarks selected above as traceroute destinations.We only plot the AS-level source
trees with root ASes in tier-3/4/5. Those from tier-1/2 are ignored because their AS-level
source trees are completely covered. We can see that, among the 49 sampled trees, only 2
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have coverage less than 80%, 5 between 80% and 90%, the other 42 all cover over 90% of
the trees. This shows the effectiveness of the tier-based selection of traceroute landmarks.
These results suggest that by extending this algorithm to include a set of carefully selected
tier-3 and tier-4 landmarks, it should be possible to get very good coverage of the AS-level
trees with a reasonable number of landmarks, e.g. less than 1000.

5.5 Tree-Branch Inference

The tree structure of end-user routes implies that we can split Internet destinations into
different groups, with the destinations in each group sharing a tree branch. To take ad-
vantage of this sharing, we need a mechanism to identifywhichdestinations belong to a
same group. The RSIM metric that we will present in this section is one of the possible
mechanisms. RSIM is a metric that quantifies route similarities of end nodes. Here route
similarity is defined as the overlap of two end-to-end routesbetween two nodes and an
arbitrary third node. That is, we regard routes as a propertyof end nodes, and route sim-
ilarity captures the similarity of this property for different end nodes. Ideally, we expect
to see that any two end nodes with a RSIM value larger than certain thresholdTHRSIM

share a large portion of their routes with any other end node (sayA), making it sufficient
for them to also share one ofA’s source or sink tree branches.

In the rest of this section, we first define the RSIM metric, anddiscuss RSIM’s proper-
ties including destination sensitivity, measurability, and symmetry. We then demonstrate
how to use the RSIM metric to group end nodes.

5.5.1 The RSIM Metric

In the remainder of this section, the term “route similarity” refers specifically to RSIM,
and is defined as follows. LetP (s, d) denote the IP level route from nodes to noded;
L(s, d) denote the number of links onP (s, d); Total(s1, s2, d) = L(s1, d) + L(s2, d);
andCommon(s1, s2, d) denote the total number of links that are shared byP (s1, d) and
P (s2, d). Let SET denote a set of Internet destinations (see Figure 5.11), then the route
similarity betweens1 ands2 relativeto SET is defined as:

RSIM(s1, s2, SET ) =

∑

d∈SET 2 ∗ Common(s1, s2, d)
∑

d∈SET Total(s1, s2, d)
(5.1)

Note this definition uses upstream routes froms1 ands2, RSIM can be similarly defined
using downstream routes. Intuitively, this definition captures the percentage of links shared
by the two routesP (s1, d) andP (s2, d). In this definition, whenSET is obvious, we sim-
plify RSIM(s1, s2, SET ) asRSIM(s1, s2). It is easy to see thatRSIM(s1, s2, SET ) ∈
[0, 1] for any s1, s2, andSET . The largerRSIM(s1, s2, SET ) is, the more similar the
routes ofs1 and s2 are. Figure 5.12 shows an example an RSIM computation. Here
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Figure 5.12:RSIM(s1, s2, {d}) = 8/17

we haveSET = {d}, Common(s1, s2, {d}) = 4, T otal(s1, s2, {d}) = 9 + 8 = 17, so
RSIM(s1, s2, {d}) = 2 ∗ 4/17 = 8/17.

5.5.2 RSIM Properties

We analyze the following properties of RSIM to show that it isa useful metric:

• Destination Sensitivity:how sensitive is the RSIM value to the choice of destina-
tions;

• Measurability:how many measurements are required to compute the value of RSIM;

• Symmetry:what is the difference between the upstream route similarity and down-
stream route similarity?

We will use two data sets described in Section 5.3 in these analyses. One is theRocketfuel
data set. In this data set, because the destination IP addresses are randomly selected, they
do not necessarily correspond to online hosts, so for many ofthe destinations the traceroute
measurements are not complete. To avoid the impact of incomplete routes on our analysis,
we only consider the 5386 destinations which can be reached by at least 28 source nodes
using traceroute. The second data set is thePlanetlabdata set, which we collected using
160 Planetlab nodes, each from a different site. This data set provides us a route matrix,
where we have routes in both directions for all pairs of nodes. This is the largest route
matrix we are aware of, and it is very useful for characterizing the symmetry property of
RSIM.

Destination Sensitivity

Since RSIM is a function of the destination setSET , the value of RSIM can be different
for different destination sets. However, for many applications it is preferable that RSIM is
largely independent of theSET parameter, i.e., it is a fundamental property that only needs
to be measured once. This property is very important for reducing measurement overhead.



120 CHAPTER 5. SOURCE AND SINK TREES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.768

0.630

0.585
0.487

0.356

0.259

0.180

RSIM value

C
D

F

Figure 5.13: Destination-sensitivity of RSIM

In this section, we first focus on the case whereSET includes only a single destination.
The case whereSET includes multiple destinations are discussed in Section 5.5.2.

We use theRocketfueldata set to study destination sensitivity. We first setSET to
include the 5386 reachable destinations in theRocketfueldata set, and compute RSIM
values for all the 435 (= 30 ∗ 29/2) pairs of source nodes. We will use these RSIM
values as benchmark values since they are from the largest destination set possible. The
distribution of these RSIM values has a sharp peak around 0.7. Specifically, 85% of the
435 pairs have RSIM values between 0.65 and 0.8. This confirmsearlier observations
that in 2002, most Planetlab nodes had very little diversityin how they connected to the
Internet (most used Abilene). However, there is some diversity: the RSIM values range
from 0.1 to 0.8.

To study the destination sensitivity of RSIM for node pairs with different RSIM val-
ues, we selected seven source-node pairs with RSIM values roughly evenly distributed
in the range [0.1, 0.8]. We calculate their RSIM values foreachof the 5386 individual
destinations for which they have complete route data. Thesesimilarity values are plot-
ted in Figure 5.13. Each curve plots the cumulative distribution for the RSIM values of
one source-node pair relative to each individual destination. The numbers marked on the
curves are the benchmark RSIM values. The seven curves can beclassified into three
groups:

1. The first group only includes the rightmost curve. This curve corresponds to a pair
of source nodes with the highest benchmark RSIM value (0.768) among the seven
pairs, i.e., their routes are very similar. The similarity values of this source-node pair
for individual destinations are distributed in a fairly small region—90% of them are
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Figure 5.14: Measurability of RSIM

in [0.65, 0.85]. That shows that the similarity between thispair of source nodes is
not very sensitive to the destination selected.

2. The middle three curves make up the second group. Their benchmark RSIM values
are 0.467, 0.585, and 0.630, respectively, and they represent source-node pairs with
average similarity values. Clearly, the RSIM values for individual destinations in
this group are more diverse than in the first group. The lowest30% of similarity
values are significantly lower than the other 70% of the values. However, the highest
70% of similarity values cluster within a small region with 0.2 width.

3. The three leftmost curves represent the third group, where the node pairs have low
similarity—0.180, 0.259, and 0.356. The similarity valuesof these source-node
pairs with respect to individual destinations is almost evenly distribute in a large
range with 0.4-0.6 width. That means that their RSIM values are quite sensitive to
theSET parameter.

The above results show that the larger the benchmark RSIM value is, the less sensitive
the RSIM values are to the chosen destination. Specifically,for node pairs with properties
similar to the rightmost curve, the RSIM values are not sensitive to the specific single-
destination set.

Measurability

In this subsection, we show that measuring route similarityonly needs a small number
of traceroute measurements. We again use theRocketfueldata set to demonstrate this
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Figure 5.15: Impact of randomness

property. In this data set, we use different numbers (x) of randomly (uniform) selected
destinations to compute route similarity (RSIMx) for each of the 435 source-node pairs.
We then compare them with their benchmark values (RSIMb) which is based on all 5386
reachable destinations as discussed in Section 5.5.2, and compute the relative difference as
(RSIMx−RSIMb)/RSIMb. Figure 5.14 plots the distributions of the relative differences
from all 435 source-node pairs. The x-axis is the number of routes used in computing
RSIMx. The bars are plotted using theboxplot function of Matlab, where each bar
corresponds to one distribution of the relative differencefor all 435 source-node pairs.
The middle boxes have three lines corresponding to the lowerquartile, median, and upper
quartile values, and the whispers are lines extending from each end of the box to show the
extent of the rest of the data. We can see that the relative difference betweenRSIMx and
RSIMb quickly drops as more destinations are used. Oncex ≥ 10, the median difference
stays roughly constant at about 5%, although the variance decreases. This result shows
that only 10-20 routes are needed to compute the value of RSIMfor the Rocketfueldata
set.

In the above analysis, for each source-node pair and each number of destinations, the
similarity value is calculated using one instance of a randomly selected destination set.
These values may be different for different randomly selected destination sets. To quantify
the impact of this randomness, for each source-node pair, weselect 1000 different random
10-destination sets and compare their RSIM values. For eachsource-node pair, we then
record the difference between the 95 percentile similarityvalue and the 5 percentile sim-
ilarity value, and use that as a variance measure for different random 10-destination sets.
Figure 5.15 plots the cumulative distribution of this variance for all 435 source-node pairs.
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Figure 5.16: Symmetry of RSIM

We see that the variance for 93% of pairs is less than 0.2, which is small. This tells us that
the choice of the randomly selected destination sets does not have a significant impact on
the RSIM values.

An important implication of the results in Figure 5.14 and 5.15 is that RSIM is not
sensitive to the choice of destination set whenSET includes ten or more “random” des-
tinations. The reason is as follows. Although RSIM can be very different for different
individual destinations, as illustrated in Figure 5.13, ten or more different destinations can
fairly well “cover” the distribution curve by including most important points. Therefore,
even with different destination sets, since they are from the same distribution, which is
determined by the node pair, they should converge to the samevalue.

So far, the results in this section were obtained using routes between 30 source nodes
and 5386 destination nodes. We have done a similar analysis using all 120K destinations,
i.e., including the incomplete route data. The results we obtained are similar. Even so, the
data set used here only covers a limited fraction of nodes on the Internet, and whether or
not our conclusion in this section can be extended to the whole Internet should be validated
using larger and more diverse data sets.

Symmetry

It is well known that Internet routes are asymmetric [82], but we find that RSIM values
computed using upstream routes and those using downstream routes are very similar. In
this sense, RSIM is symmetric, i.e., it captures the similarity of both upstream and down-
stream routes. In this section, we use thePlanetlabdata set to show this property.

For each node pair among the 160 nodes, we calculate their route similarity using both
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upstream routes (RSIMup) and downstream routes (RSIMdown). We then compute the
difference as(RSIMdown−RSIMup). Figure 5.16 plots the distribution of this difference
for the 14,412 pairs which have at least 10 complete traceroute results to compute both
RSIMup andRSIMdown. We can see that 84% of the pairs have difference within a small
range of [-0.1, 0.1], which shows thatRSIMup andRSIMdown are indeed very similar.
That means that, if two nodes have a high probability sharinga large portion of their
upstream routes toward a destination, they will also have a high probability sharing a large
portion of their downstream routes from that destination.

The implication of this property is two-fold. First, RSIM measurements do not neces-
sarily need upstream routes. If only downstream routes are available, we can still compute
RSIM. This property will be used in Section 5.5.3 to get a large sample set for our anal-
ysis. Second and more importantly, this property allows us to infer both source and sink
segments. For example, ifs1 ands2 have similar routes, they will both have similar sink
segments for their routes towards a third node, and have similar source segments for those
routes from a third node. The details are discussed in the next section.

5.5.3 Tree-Branch Inference

The RSIM metric can be used in at least two scenarios. On one hand, it can be used to
group end nodes that have similar routes. Such groups not only can be used to identify
tree-branch sharing as discussed at the beginning of this section, it also can be used by
web sites or peer-to-peer systems for performance optimization. Based on the clustering
information, for example, a web site can optimize for each cluster instead of each client,
thus significantly reducing management overhead. On the other hand, RSIM also can be
used to select a set of end nodes whose routes are very different with each other. End
nodes selected in this way can serve as vantage points for measurement systems like the
traceroute landmarks that we will discuss in the next chapter.

In this section, we focus on the first type of applications, i.e., grouping end nodes that
have similar routes. We study this problem in the context of end-segment inference. That
is, we want to group end nodes based on the probability that two end nodes in the group
share end-segment for a large number of sources and the destinations. Below we first look
at if there exists a RSIM value that allows us to group end nodes. We then present a case
study on how often end nodes can be grouped in real network systems.

RSIM Threshold

Ideally, we would like to have the following two claims:

Claim 1: ∃ THRSIM , ∀ s1, s2, their upstream routes towards any noded share
sink segment iffRSIM(s1, s2) > THRSIM .

Claim 2: ∃ THRSIM , ∀ d1, d2, their downstream routes from any nodes share
source segment iffRSIM(d1, d2) > THRSIM .
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Figure 5.17: End-segment sharing probability.

We call a pair of nodesneighborsif their RSIM value is larger thanTHRSIM . Intuitively,
if a pair of nodess1 ands2 are neighbors, and the bottlenecks ofP (s1, d) andP (s2, d) are
on their sink segments, we then can use the bandwidth measured from P (s1, d) as that of
P (s2, d), because they are very likely to share the bottleneck.

Of course, it is unrealistic to expect that we will be able to find a thresholdTHRSIM

that gives 100% sharing of the remote end segments. Instead,we now look at whether
a thresholdTHRSIM exists that indicates a high probability of end-segment sharing. We
use thePlanetlabdata set for this study. We first take the 14,412 node pairs which have at
least 20 complete traceroute results, compute their RSIM values using these routes, then
group them into nine groups (gi, i = 1..9) based on their RSIM values:gi = {(s, d)|i ∗
0.1 ≤ RSIM(s, d) < (i + 1) ∗ 0.1}(1 ≤ i ≤ 9). For each node pair in each group, we
calculate the probability of sharing source segments and sink segments. Figure 5.17 plots
the cumulative distribution of source/sink-segment sharing probabilities for each group. In
this figure,g9 is grouped intog8 because there are only 6 pairs ing9. The top graph plots
the sharing probability for source segments, and the bottomgraph plots the results for the
sink segment.g8 stands out distinctively with the best prediction accuracy—almost all
node pairs in this group have a sharing probability higher than 0.8. Although not perfect,
we think we can use the value 0.8 forTHRSIM . That shows that RSIM can be used for
end-segment inference with a high inference accuracy.
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Figure 5.18: Probability of having a neighbor.

Probability of Sharing End Segments

The above results suggest that it will be useful for neighbors to share bandwidth informa-
tion. Whether this is feasible depends on how likely it is that a node can find a neighbor.
This is a very difficult question, but we can use theRocketfuelandPlanetlabdata set to
gain some insights. We use theRocketfueldata set as an example of a system that includes
nodes from all over the Internet, while we use thePlanetlabdata set to get the view for a
real deployed system.

For theRocketfueldata set, we use downstream routes to compute route similarities
for the 5386 reachable destinations. The reason that we use destinations instead of sources
is to obtain a large scale analysis. The symmetry property ofRSIM demonstrated in Sec-
tion 5.5.2 allows us to compute RSIM values using downstreamroutes. For thePlanetlab
data set, route similarities are computed for the 160 nodes using upstream routes. Fig-
ure 5.18 plots the distribution of node pairs in each group. In this figure, node pairs are
again grouped as we did in Figure 5.17 (except thatg1 andg2 are combined withg3); the
x-axis is the smallest RSIM value in each group. The dashed curve shows the result for the
Rocketfueldata set. We see that 63% of end nodes can find at least one neighbor, i.e., their
RSIM value is larger than 0.8. ThePlanetlabdata set has significantly fewer end nodes,
so only 10% of end nodes can find a neighbor.

It is worthwhile to mention that in both of these analyses, destinations are selected from
different prefixes, while in reality, many system nodes can come from common prefixes.
In this sense, the results presented in Figure 5.18 provide apessimistic view.



5.6. SUMMARY 127

5.5.4 Discussion

We are not aware of any metrics designed to quantify route similarity. Related work such
as [33] and [53] has studied how to use relay nodes to increaseroute diversity for link or
router fault tolerance, and their route diversity results may be used to measure route simi-
larity. However, our work has a completely different focus—we are interested in segment
route similarity, which can not be directly quantified usingroute diversity. Sometimes IP
prefixes are also used to estimate route similarity. This is based on the observation that
if two nodes have IP addresses from a common prefix, they oftenshare routes. This ap-
proach has three limitations. First, a common IP prefix is nota sufficient condition for
route similarity. Nodes from the same prefix, especially those from a large prefix, do not
necessary share routes. Second, a common IP prefix is not a necessary condition for simi-
lar route, either. For example, from theRocketfueldata set used in [109], we find that node
planet2.cs.ucsb.edu and nodeplanetlab1.cs.ucla.edu have very similar
routes although they belong to completely different prefixes–131.179.0.0/16 (AS52) and
128.111.0.0/16 (AS131). Finally, the IP prefix does notquantifyroute similarity, thus it is
hard to compare the similarities of different pairs of nodes.

One interesting point is that the definition of RSIM remotelyresembles the synthetic
coordinate systems proposed by GNP [88] or Vivaldi [41]. Forexample, in RSIM, the
10-20 traceroute destinations can be regarded as the landmarks; the routes between the
landmarks and an end node can be looked as its coordinates; and the formula (5.1) listed in
Section 5.5.1 can be used as the distance formula. However, RSIM is not a real coordinate
system because its coordinates are not distance values. An intriguing piece of future work
is to explore whether we can extend the RSIM metric to construct a real coordinate system
for route similarity.

RSIM can be used for end-segment inference which is closely related to the goal of the
BRoute system that will be described in the next chapter. In BRoute, each node collects
AS-level source tree and sink tree information to infer end segments, which are further
used to infer path bottlenecks and available bandwidths. The difference between RSIM
and BRoute is that RSIM is a general metric that can be used by different applications,
while BRoute focuses on path bandwidth inference by only characterizing routes of each
individual node, i.e., BRoute does not directly quantify the similarity of routes from two
different nodes. However, BRoute is a much more structured solution that is not sensitive
to system node distribution, while using RSIM for end-segment inference depends on the
chances that system nodes can find neighbors.

5.6 Summary

In this chapter, we studied source and sink tree structures at both the AS-level and the
IP-level. We showed that AS-level source and sink trees closely approximate real tree
structures—around 90% of them have tree-approximity over 0.95. These trees also have
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limited size: AS-level trees in our study have 50-400 tree nodes, and IP-level trees have
10-20 different branches. That shows the source and sink tree structure is an effective
method to capture network-edge information. To group destination nodes that have a high
probability of sharing tree branches, we proposed the RSIM metric. We showed that RSIM
can be measured using a small number of random traceroutes, and it captures the similar-
ity of both upstream routes and downstream routes. When using RSIM for end-segment
inference, we showed that if a pair of nodes have an RSIM valuelarger than 0.8, they have
a high probability of sharing the edges of their routes with an arbitrary third node.



Chapter 6

Large-Scale Available Bandwidth
Estimation

We have seen that RSIM can be used to infer the end-segment used by a path and to reduce
the overhead of large-scale available bandwidth monitoring. The problem with RSIM,
however, is that it is an un-structured solution and its effectiveness is closely tied to the
specific end-node composition of a system, which determinesthe probability that an end
node can find a neighbor. In this chapter, we propose the BRoute system that provides a
more structured solution and does not have this limitation.The key idea is to use AS-level
source and sink trees to infer the two edges of an arbitrary end-to-end path, by leveraging
previous work on AS relationships. In the rest of this chapter, we first introduce the BRoute
design (Section 6.1). We then show how AS-level source and sink trees can be used to
identify end segments (Section 6.2), and how to measure end-segment available bandwidth
(Section 6.3). The overall path available-bandwidth inference accuracy is evaluated in
Section 6.4. We discuss system overhead and security issuesin Section 6.5.

6.1 BRoute System Design

6.1.1 Motivation

The design of BRoute is motivated by GNP [88] and similar coordinate systems [41, 40,
105, 95] that use geometrical spaces to model Internet end-to-end propagation delays.
These systems assign a set of coordinates from a geometricalspace to each node in a
system, and use the Euclidean distance between two nodes as an estimate for their Internet
delay. The coordinates are calculated based on measurements of the end-to-end delay
from end nodes to a small set of “landmarks”. Two intriguing properties distinguish such
systems: (1) scalability—the system overhead is linear with the number of nodes in the
system, and (2) since any node can estimate the latency between two nodes based on their
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coordinates, only minimal interaction between nodes is required. These two properties are
exactly the goals that BRoute achieves for bandwidth estimation.

Using coordinate models for estimating latency is intuitively easy to understand. In-
ternet propagation delay is determined by the physical length of data transmission links,
which are laid on the surface of the earth. Since the earth surface is a geometrical space,
it is not hard to understand why latency can fit into a geometrical space. However, this
argument does not work for bandwidth. Internet path available bandwidth is determined
by the bottleneck link, and there appears to be no reason why it would fit a geometrical
space. In fact, since path available bandwidth is determined by one link, we would expect
it to be harder to predict than latency and potentially very sensitive to even small changes
in the route. This is somewhat similar to the loss monitoringproblem discussed by Chen
et.al. [34]. As a result, while routing may not be important in coordinate-based latency
estimation, we believe it must be considered when estimating bandwidth.

6.1.2 BRoute Intuition

The BRoute system uses the source and sink trees that we discussed in the previous chap-
ter, based on two important observations. First, most bottlenecks are on end-segments, and
we only need to obtain available bandwidth information for both end-segments of a path
to estimate path available bandwidth. Second, the size of source and sink trees is small
for the first 4 layers. That is, relatively few routes exist near the source and destination
compared with the core of the Internet, thus simplifying theproblem of determining which
end-segments a path takes, and which bottleneck it encounters. These two observations
lead to the two key operations in BRoute. First, each node collects both routing and bot-
tleneck information for the source and sink trees to which itis attached, using traceroute
and Pathneck [56], respectively. This information can be published, similar to a set of
coordinates. Second, in order to estimate the available bandwidth between a source node
and a sink node, a third node would collect the tree information for the source and sink and
use it to determine the route taken by the end segments, and the likely bottleneck location
and available bandwidth.

Besides the source and sink trees, a key problem that BRoute needs to solve is match-
ing the source-segment and the sink-segment of a path without direct measurement, i.e.
identifying the dashed lines in the left graph of Figure 6.1.BRoute does this using AS-
level path information. Intuitively, for a pair of nodess andd, if we know all the upstream
AS paths froms (called the AS-level source tree orsrcTree(s)) and all the downstream
AS paths towardd (called the AS-level sink tree orsinkTree(d)), thenPath(s, d) should
pass one of their shared ASes. For example, the right graph ofFigure 6.1 illustrates the
upstream AS paths froma0, and the downstream AS paths towardc0. Assume thatA7 is
the only shared AS then this means that pathPath(a0, c0) must pass throughA7, and we
can useA7 to identifysrcSgmt(a0, c0) andsinkSgmt(c0, a0). We will call the AS that is
shared and on the actual path the common-AS. Of course, therewill typically be multiple
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Figure 6.1: Source/sink-segments and AS level source/sinktrees

shared ASes betweensrcTree(s) andsinkTree(d), we will discuss in Section 6.2.1 how
to uniquely determine the common-AS.

6.1.3 BRoute Architecture

As a system, BRoute includes three components: system nodes, traceroute landmarks, and
information exchange point. System nodes are Internet nodes for which we want to es-
timate available bandwidth; they are responsible for collecting their AS-level source/sink
trees, and end-segment available bandwidth information. Traceroute landmarks are a set
of nodes deployed in specific ASes; they are used by system nodes to build AS-level
source/sink trees and to infer end-segments. An information exchange point collects mea-
surement data from system nodes and carries out bandwidth estimation operations. It could
be a simple central server, or a more sophisticated distributed publish-subscribe system.
For simplicity we will assume it is a central server, and callit thecentral manager.

BRoute leverages two existing techniques: bottleneck detection [56] and AS relation-
ship inference [50, 114, 29, 82]. Bottleneck detection is used to measure end-segment
bandwidth, and AS relationship information is used to inferthe end-segments of a path.
Operations of BRoute can be split into the pre-processing stage and the query stage, as
illustrated in Figure 6.2:
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• Pre-processing:In this stage, each system node conducts a set of traceroute mea-
surements to the traceroute landmarks. At the same time, traceroute landmarks also
conduct traceroutes toward system nodes. The system node then uses the tracer-
oute information to construct AS-level source and sink trees. Next the system node
identifies its source-segments and sink-segments and uses Pathneck to collect band-
width information for each end-segment. This information is reported to the central
manager.

• Query: Any node can query BRoute for an estimate of the available bandwidth
between two system nodes—s to d. The central manager will first identify the
common-AS betweensrcTree(s) andsinkTree(d). The common-AS is used to
identify the end-segmentssrcSgmt(s, d) andsinkSgmt(d, s) of Path(s, d), and
the central manager then returns the smaller of the available bandwidths forsrcSgmt(s, d)
andsinkSgmt(d, s) as the response to the query.

A distinguishing characteristic of BRoute is that it uses AS-level source/sink tree computa-
tion to replace most of end-node network measurements, thusshifting the system overhead
from expensive network measurement to cheap and scalable local computation.

6.2 End-Segment Inference

In this section, we explain the two key operations of BRoute:how to pick the common-
AS, and how to use the common-AS to identify the source-segment and sink-segment of a
path. For each operation, we first define the algorithm, and then evaluate its performance.
We keep using the five data sets described in Section 5.2 for the evaluations.

6.2.1 Selecting the Common-AS
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Algorithm 1 CommonAS
1: if AS(s) = AS(d) then
2: returnAS(s) as the common-AS;
3: end if

4: SET ← srcTree(s) ∩ sinkTree(d);

5: if SET = NULL then
6: SET ← srcTree(s) ∪ sinkTree(d);
7: end if

8: if {AS(s), AS(d)} ⊆ SET then
9: return bothAS(s) andAS(d) as the common-AS;

10: else ifAS(s) ∈ SET or AS(d) ∈ SET then
11: returnAS(s) or AS(d) as the common-AS;

12: else
13: remove all the ASes which have at least one ancestor AS (in either srcTree(s) or

sinkTree(d)) also inSET ;
14: for all A ∈ SET do
15: p(A)← cnt(A, s)/total(s) + cnt(A, d)/total(d);
16: end for
17: return theA which has the largestp(A);
18: end if

Algorithm

Typically, an AS-level source tree and an AS-level sink treeshare multiple ASes, and we
need to choose one of them as the common-AS. Our selection method is shown in Algo-
rithm 1. s andd denote the two end nodes, andAS(s) andAS(d) denote the ASess andd
belong to, respectively. On line 15,cnt(A, s) denotes the number of upstream/downstream
AS paths froms that pass ASA in srcTree(s), while total(s) denotes the total number of
AS paths insrcTree(s). cnt(A, d) andtotal(d) are defined similarly.

The heart of the algorithm is on lines 13-17. The first step is based on the fact that
most AS level routes follow the shortest AS path [82]. As a result, the algorithm searches
for the shared ASes that are closest to the root ASes in bothsrcTree(s) andsinkTree(d)
(line 13). It does this by eliminating from the set of shared ASes (SET ) all ASes which
have a shared AS on the same AS-level source or sink tree branch closer to the root AS. In
other words, if in an AS-level source/sink tree, both ASA and its child ASB are inSET ,
the AS path should only passA since that produces a shorter AS path, soB is dropped. In
the second step, if the resulting set of shared ASes still hasmultiple candidates, we pick
the one that has the highest probability to appear onPath(s, d) based on thep(.) value
(line 14-17).
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There are several border cases where one or both root ASes area shared AS. They
include: (1) nodes andd are in a same AS (line 1-3); (2) bothAS(s) andAS(d) are
shared ASes (line 8-9); and (3) eitherAS(s) or AS(d), but not both, is a shared AS
(line 10-11). For these cases, the algorithm return the rootAS(es) as the common-AS. In
particular, case (2) returns two ASes as the common-ASes.

The last border case is whenSET is empty (line 5). In practice, BRoute uses measure-
ments for a limited number of traceroute landmarks to construct the AS-level source/sink
trees. Although we will show that this method can cover most ASes in an AS-level
source/sink tree, some unpopular ASes could be missing, andas a result, we may not
find a shared AS. For this case, we consider all the ASes in bothtrees as shared (line 6).
Similarly, cnt(.) andtotal(.) are in practice computed based on measurement, so their ab-
solute values may differ from those derived from a complete tree. We quantify the impact
of this sampling in Section 6.4.

Evaluation

Given the data we have, we can use two methods to validate Algorithm 1. The first method
is to build both AS-level source and sink trees as described in Section 5.3 and to apply
Algorithm 1. This is the most direct method and we will use it in our case study in Sec-
tion 6.4. This method however has the drawback that it is based on limited downstream
data, the AS-level sink trees can be incomplete. In this section we use a different method:
we evaluate the algorithm using thesrcTree(d) to replace the incompletesinkTree(d).
The basis for this method is the observation that the AS-level trees are only used to de-
termine the end-segments of a path (we do not need the AS-level path itself), and the
AS-level source tree may be a good enough approximation of the AS-level sink tree for
this restricted goal. This in fact turns out to be the case, aswe show below. This approach
has the advantage that we have much larger data set to work with.

Using theBGP data set, we first construct an AS-level source tree for each vantage
point, we then infer the common-AS for each pair of vantage points, and we finally com-
pare the result with the actual AS paths in BGP tables. To makesure we have the correct
path, we exclude those AS paths whose last AS is not the AS of the destination vantage
point. For the resulting 15,383 valid AS paths, the common-AS algorithm selects the
wrong common-AS for only 514 paths, i.e. the success rate is 97%. For the 14,869 cor-
rectly inferred common-ASes, only 15 are not top AS, which confirms our intuition that
the common-AS inferred by Algorithm 1 is typically a top-AS where the maximal uphill
and downhill paths meet.

Top-AS Symmetry

The high accuracy of common-AS inference shows that we can indeed replace the AS-
level sink tree of the destination with its AS-level source tree in Algorithm 1. This has
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an interesting implication: it does not matter which node isthe source or the destination,
or, in other words, the common-AS is the same in both directions. Since the common-AS
is almost always a top-AS, it is also “symmetric”: for two nodess andd, Path(s, d) and
Path(d, s) share at least one top-AS.

This observation can indeed be confirmed by our data. In the set of 15,383 AS paths we
picked above, there are 3503 pairs of AS paths that connect two nodes in both directions.
Among them, 2693 (77%) pairs have symmetric AS paths, which obviously also share
top-ASes. In the remaining 810 pairs, 486 of them share at least one top-AS. Overall,
the top-AS symmetry property applies to 91% pairs. A similaranalysis of thePlanetlab
data set yields very similar resuls: 67% of the node pairs have symmetric AS paths, while
92% of the pairs have a symmetric top-AS. Note that this result does not contradict the
observation made by Mao et.al. [82] that a large percentage of AS paths are asymmetric,
since we focus on the top-AS only.

It is important to point out that while the top-AS symmetry property provides an-
other method for identifying common-AS, AS-level sink treeinformation is still needed
by BRoute to obtain sink-segment information.

6.2.2 End-Segment Mapping

Given that the AS-level source and sink trees closely followa tree structure, the common-
AS can be easily used to identify a unique branch in both the AS-level source and sink
trees. We now look at how well this tree branch can be used to determine IP-level end-
segment of the path. Our analysis focuses on source-segments because we have complete
data for them.

Ideally, for any ASA ∈ srcTree(s), we would like to see that all upstream paths from
s that passA share a same source-segmente. If this is the case, we sayA is mappedontoe,
and every timeA is identified as the common-AS, we know the source-segment ofthe path
is e. In practice, upstream paths froms that passA could go through many different source-
segments, due to reasons such as load-balance routing or multihoming. To quantify the
differences among the source-segments that an AS can map onto, we define thecoverage
of source-segments as follows. Suppose ASA is mapped tok(k ≥ 1) source-segments
e1, e2, ..., ek, each of which coversn(ei)(1 ≤ i ≤ k) paths that passA. The coverage of
ei is then defined asn(ei)/

∑k
i=1 n(ei). If we haven(e1) > n(e2) > ... > n(ek), thene1

is called the top-1 source-segment,e1 ande2 are called the top-2 source-segments, etc. In
BRoute, we use 0.9 as our target coverage, i.e., if the top-1 source-segmente1 has coverage
over 0.9, we sayA is mapped ontoe1.

We use theRocketfueldata set to analyze how many end-segments are needed to
achieve 0.9 coverage. For the 30 AS-level source trees builtfrom this data set, there
are totally 1687 ASes (a same AS in two different trees are counted twice). Figure 6.3
shows the percentages of ASes (y-axis) that achieve variouslevels of coverage (x-axis)
from top-1 and top-2 source-segments. Of the 1687 ASes, 1101are mapped onto a single
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Figure 6.3: Coverage of top-1 and top-2 source-segments

source-segment (i.e. coverage of 1), while 586 (from 17 trees) are mapped onto multiple
source-segments. Among these 586 ASes, using the 0.9 coverage threshold, 348 can be
covered using the top-1 source-segment, so in total (1101 + 348 = 1449) (85%) ASes can
be mapped onto an unique source-segment. If we allow an AS to be covered using the
top-2 source-segments, only 2% (17 ASes) can not be covered,i.e., 98% of the ASes can
be mapped onto top-2 source-segments. We conclude that an AScan be mapped onto at
most two source-segments in most times.

Detailed checking shows that among the 586 ASes that are mapped onto multiple
source-segments, 302 (51%) map to source-segments whose 4th hops are in the same
AS. We speculate that this use of multiple source-segments is due to load-balance routing.
More work is needed to determine why the other 284 ASes use multiple source-segments.
So far we have focused on the common case when the common-AS for a path is not one of
the two root ASes. If one or both root ASes are returned as a common-AS, the algorithm
for selecting the source-segment or sink-segment still applies. The hard cases are when
the source and sink node are in the same AS, or when the source or sink node are in a
tier-1 AS; more research is need to deal with these two cases.

Using thePlanetlabdata set, for which we can get a large number of downstream
routes for each node, we also looked at the sink-segment uniqueness. We found that the
above conclusion for source-segments also applies to sink-segment. Among the 99 nodes
that have at least 100 complete downstream routes, 69 (70%) nodes have at least 90%
of the ASes in their AS-level sink tree mapped onto top-1 sink-segment, while 95 (96%)
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nodes have at least 90% of their ASes mapped onto top-2 sink-segments.
With these results of end-segment uniqueness, an AS in an AS-level source/sink tree

should be mapped onto top-1 or top-2 end-segments. In the first case, we return the avail-
able bandwidth of the top-1 end-segment. In the latter case,we return the average of
the available bandwidth of the two top-2 end-segments in thepath bandwidth estimation.
This method should work well if the reason for having top-2 end-segments is load-balance
routing, since the traffic load on both end-segments is likely to be similar.

6.3 End-Segment Bandwidth Measurement

BRoute uses Pathneck to measure end-segment bandwidth. Thereason is that Pathneck
can both pinpoint the location bottleneck and provide upperor lower bounds for links on
the path. For example, Pathneck provides an upper bound for the available bandwidth
on the bottleneck link; this upper bound is in general quite tight [56]. It can similarly
provide useful bounds for links upstream from the bottleneck. However, an unfortunate
feature of Pathneck is that it provides little information about the links past the bottleneck
link. Specifically, Pathneck can only provide a lower bound for the available bandwidth
on those links and that bound can be very loose.

These Pathneck properties have the following implicationsfor the measurement of
end-segment bandwidths in BRoute. If the bottleneck is on the source-segment (or in the
core), Pathneck can provide a (tight) upper bound for the source-segment but only a (loose)
lower bound for the sink-segment. If the bottleneck is on thesink-segment, Pathneck can
provide a (tight) upper bound for both the source and sink segment. In other words, any
node can easily measure the available bandwidth on its source-segments. However, to
measure the sink-segment bandwidth, nodes need help from another node, ideally a node
with high upstream bandwidth.

BRoute can collect end-segment bandwidths in two modes: peer-to-peer or infrastruc-
ture. In the peer-to-peer mode, end-segment bandwidth are measured by system nodes
themselves in a cooperative fashion. That is, each system node choose a subset of other
system nodes as peers to conduct Pathneck measurements with, so as to cover all its end-
segments. If we use sampling set to denote the set of paths on which Pathneck measure-
ments are conducted, it should cover all the source-segments and sink-segments in the
system to be useful. Theoretically, selecting the samplingset can be transformed to the
classical graph problem on edge covering, which is NP-hard [39].

We use a simple greedy heuristic to find this set. For each nodes in the system, we
count its number of un-measured source-segments (sink-segments) assrcCnt(s) (sinkCnt(s)).
We then pick the pathPath(s, d) that has the largest(srcCnt(s)∗sinkCnt(d)) value, put
it in the sampling set, and labelsrcSgmt(s, d) andsinkSgmt(d, s) as measured. This
process is repeated until all end-segments in the system aremeasured. The intuition be-
hind the algorithm is as follows. If a node has a large number of end-segments, they are
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shared by fewer number of paths, and are thus less likely to becovered by many paths, so
they should be given a higher priority for being picked for the sampling set. By picking the
path that has the largest(srcCnt(s) ∗ sinkCnt(d)) value, we achieve exactly that. In the
case study presented in Section 6.4, this algorithm finds a sampling set that only includes
7% of all paths, which shows it is indeed effective.

The peer-to-peer operation has the advantage that the bandwidth measurement over-
head is shared by all system nodes, so the system scales naturally. However, the cost is that
it requires interactions between system nodes. This introduces complexity in a number of
ways. First, as new nodes join and leave (including fail), itis necessary to continuously
determine what node pairs need to perform measurements. Another issue is that some (or
even many) system nodes in the system may not have sufficient downstream bandwidth to
accurately measure the available bandwidth on sink-segments of other system nodes, as
was explained earlier in the section. This can significantlyimpact the accuracy of BRoute.

The solution for these problems is to use a measurement infrastructure in the form
of bandwidth landmarks that cooperate with system nodes to measure end-segment band-
width. The bandwidth landmarks can share the same set of physical machines with the
traceroute landmarks. In this infrastructure mode, a system node uses its AS-level source
tree to pick a subset of bandwidth landmarks to measure its end-segment bandwidth. The
system node will use Pathneck to measure source-segment bandwidth, using the bandwidth
landmarks as destinations. Similarly, the bandwidth landmarks, at the request of the sys-
tem, will measure the sink-segment bandwidth using the system node as Pathneck’s des-
tination. The infrastructure mode completely removes system-node dependences, which
makes the system robust to individual node failures. Note that in order to be effective,
bandwidth landmarks should have high upstream bandwidth, so that in general during
measurements, the sink-segment of the system node will be the bottleneck.

The problem with using bandwidth landmarks is of course thateach bandwidth land-
mark can only support a limited number of system nodes, so thenumber of bandwidth
landmarks will have to grow with the number of system nodes. For example, assume each
system node has on average 10 sink-segments and assume bandwidth is measured once
per hour. By default, each Pathneck measurement needs 60 500B packets, or 30K byte,
so each system node contributes rate of only about 670 bit/sec in measurement overhead.
This means that a bandwidth landmark with a dedicated Internet connection of 100 Mbps
should be able to support at least 100K system nodes.

6.4 Overall Inference Accuracy

In the previous sections we describe each step in the BRoute bandwidth estimation process
and evaluated it in isolation. While the error introduced ineach step is relatively small,
these errors can accumulate, so it is necessary to evaluate the performance of the entire
system in terms of its end-to-end accuracy. We decided to runa case study on Planetlab,
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Figure 6.4: Common-AS and end-segment inference accuracy in the Planetlab case study.

using the peer-to-peer mode operation for BRoute. Using Planetlab does have some known
disadvantages: (1) Planetlab nodes are generally well connected, and may not be represen-
tative for regular network users; (2) Planetlab nodes can have very high load, which can
impact bandwidth measurement accuracy. Even so, Planetlabis by far the best evaluation
testbed available due to the scale requirement of BRoute. Inthis section, we first describe
our experimental methodology, we then present the results for the end-segment inference
and the bandwidth estimation accuracy.

6.4.1 Data Collection and End-Segment Inference

On Planetlab, we select one node from 160 different sites. Each node runs traceroute
to all the other 159 nodes and the 237 tier-1 and tier-2 traceroute landmarks selected in
Section 5.4, and uses the information to build the AS-level source and sink trees. Finally,
each node conducted Pathneck measurements to all the other 159 nodes in the system to
measure path bandwidth.

Using the traceroute data, we repeat the analysis describedin Sections 6.2.1 and 6.2.2
to study the common-AS and end-segment inference accuracy.The difference is that we
use both AS-level source tree and AS-level sink tree in the inference, i.e., we strictly follow
Algorithm 1. Here AS-level source trees are constructed using the traceroute results from
Planetlab nodes to the traceroute landmarks, while AS-level sink trees are built using the
downstream routes from the other system nodes.
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Figure 6.4 summarizes the inference results. Each point in this figure corresponds to
a Planetlab node. That is, we group the paths that share the same source node, and then
compute the percentage of paths for which the common-AS and end-segments are inferred
correctly. The solid curve plots the distribution of the common-AS inference accuracy. We
can see it is much worse than those presented in Section 6.2.1. The reason turns out to be
very simple: because of the limited amount traceroute information (160 nodes is not a lot),
the AS-level sink trees are incomplete, so the common-AS algorithm sometimes can not
find a shared AS. If we ignore these cases, the inference accuracy improves significantly,
as shown by the curve marked with “x”: 80% of sources have common-AS inference
accuracy of over 0.7. This level of accuracy is still worse than the results presented in
Section 6.2.1. The reason is that thep(.) values used in the common-AS algorithm are
based on limited data, so they are inaccurate, and again the limited number of nodes used
in the study negatively impacts accuracy. These results suggest that, in peer-to-peer mode,
the accuracy of BRoute will increase with the size of the system.

The dashed and dash-dot curves plot the distributions of theinference accuracy for
source-segments and sink-segments, respectively. We can see that the end-segment infer-
ence is much more accurate than the common-AS inference, with around 50% and 70%
of paths having inference accuracy of over 0.9. This is not surprising since different ASes
could map to the same end-segment, so an incorrect common-ASinference does not nec-
essarily result in a wrong end-segment inference.

6.4.2 Bandwidth Inference

Next we used the peer-to-peer mode to estimate end-segment bandwidth. To estimate
bandwidth inference accuracy, we divide the data into a sampling set and an evaluation
set. We use the algorithm described in Section 6.3 to select the sampling set. The algo-
rithm identifies a sampling set with 753 paths, which are 7% ofthe 10,779 paths for which
we have enough route data to identify both source- and sink-segments. With the path
bandwidth inferred using end-segment bandwidth, we compare them with the real Path-
neck measurements that are not in the sampling set. The accuracy is measured in terms
of their relative difference:(BWinferred−BWmeasured)/BWmeasured. Figure 6.5 plots the
distribution of the relative differences for all paths in the evaluation set. We can see that
30% of the estimates are higher than the measured value, while the other 70% are lower;
this is mainly due to the fact that we only have lower bounds for these paths. Overall,
around 80% of the paths have less than 50% of difference. Considering that bandwidth
measurement generally have a 30% of measurement error [58] and Planetlab nodes’ high
load can interfere with bandwidth measurement, which we believe have negative impact
on our evaluations, we regard 50% of estimation error as a promising result in terms of
inference accuracy.
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Figure 6.5: End-to-end bandwidth inference accuracy

6.4.3 Discussion

The results in this section highlight several aspects of theBRoute system that need im-
provements. First, we need to improve BRoute end-segment inference accuracy, for ex-
ample, by integrating the latest AS path and relationship inference techniques, such as
developed by Mao et.al. [82]. Second, we need to explore pathavailable bandwidth mea-
surement techniques based on bandwidth landmarks, which provide access to both end
points, for example, by combining IGI/PTR with Pathneck. Third, we need to develop
algorithms to select traceroute landmark locations for AS-level tree construction. Finally,
it would be useful to understand the interaction and cooperation between multiple BRoute
systems, which might help multiple applications to participate and potentially collaborate
with each other.

6.5 System Issues

As a large scale network system involving many nodes, BRouteneeds to address many
practical system issues. In this section we briefly discuss two system aspects: system
overhead and system security.
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6.5.1 System Overhead

The system overhead of BRoute is determined by two factors: the overhead of each mea-
surement instance, and the frequency of information updates. Here one instance includes
the measurements for both AS-level source/sink tree and end-segment available band-
width. In reality, application query introduces another overhead factor, we do not consider
it since it is application specific.

The AS-level source/sink trees are constructed based on thetraceroute measurements
to/from a number of traceroute landmarks. Based on the preliminary results in Section 5.4,
we estimate that each system node will need to execute no morethan 1000 traceroute
probes; the same number of probes are needed from traceroutelandmarks to the system
node. This overhead is very small. It has been shown that an optimized traceroute tool such
as that used by Spring et.al. [108] can finish 120K traceroutes in 6 hours, which translates
to 3 minutes for 1000 traceroute probes. The amount of probing packets is around 3M
byte (assuming each path has 25 hop, each hop is measured twice).

The AS-level source trees could also be built using local BGPtable. The sizes of
local BGP tables seem to be generally less than 10MB, which istolerable since it only
involves local communication. Note that even if we use BGP tables for AS-level source
tree construction, traceroute is still needed to obtain (IP-level) end-segment information,
but fewer traceroute probes are needed in this case since theAS-level source tree provides
an upper bound for the number of end-segments.

The overhead for end-segment bandwidth measurements is also fairly small. For the
Rocketfueldata set, we found the median number of source-segments is around 10. Given
that the Pathneck measurement overhead is 30K byte (500byte/pkt * 60pkt), the total avail-
able bandwidth measurement overhead for one node is 300K byte for upstream measure-
ments. Similar overhead is expected for downstream measurements.

For long term system monitoring, the overhead is also affected by the system infor-
mation update frequency. This parameter is ultimately determined by how quickly AS
paths and end-segment bandwidths change. The end-segment available bandwidth change
frequency is determined by traffic load, which has been shownto change fairly quickly
[90]. For this reason, end-segment available bandwidth information needs to be updated
frequently, for example, once per hour. The exact frequencyshould be set by the system
node.

For AS paths, recent results from Zhang et.al [99] have shownthat the BGP routes
associated with most traffic are reasonably stable. Now we look at whether AS-level source
trees also have this level of stability. We downloaded BGP tables from Route Views Project
and RIPE RIS Project on different dates, and compared them with the BGP tables on
01/10/2005. The change metric is defined as the percentage ofprefixes whose maximal
uphill path has changed. Figure 6.6 summarizes the results.The top graph plots the
long-term change results: we compare the BGP tables on mm/01/2004 (mm=03, ..., 12)
with those on 01/10/2005. The x-axis indicates the month, the y-axis is the percentage of
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Figure 6.6: AS-level source tree changes with time

prefixes whose maximal uphill path changed, and each triangle corresponds to one peering
point. While some peering points experience 40-80% of changes, most are less than 15%,
which we think is reasonably small considering the long timeinterval. The bottom graph
focuses on the short-term change: we compare the BGP tables on 01/dd/2005 (dd=01, ...,
09) with those on 01/10/2005. Not surprisingly, the changesare significantly less—on
each day, at most 4 points have a change larger than 4%, and allthe others are below 4%.
We conclude that in general it is safe to update the AS-level source tree once a day. We
expect AS-level sink trees to have similar stability.

One case that is not considered in this section is dynamic routing enabled by some
multihoming devices. Unlike static multihoming, where routes are pre-configured and do
not change frequently, these devices dynamically change data forwarding path based on
real-time measurement. A final point is that, since measurements are under the control of
the system nodes, not all nodes have to use the same system parameters. For example,
system nodes that have historically seen more frequent route or bandwidth changes can
run the measurements more frequently. Similarly, system nodes can adjust the length of
their end-segments, depending on the bottlenecks they observe. Finally, all the routing
and bandwidth information can easily be shared by system nodes in the same AS, thus
providing another opportunity to reduce overhead.
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6.5.2 System Security

Like all systems running on the Internet, BRoute is also subject to attacks. A detailed
discussion on how to deal with attacks is beyond the scope of this dissertation. Here we
only discuss attacks related to malicious system nodes. This includes two types of attacks:
false traceroute measurements and false end-segment bandwidth measurements. The first
attack only has local impact: it only affects the estimates for paths involving the malicious
node.

The second attack has a more severe impact when BRoute measures end-segment
bandwidth in a peer-to-peer fashion. In the peer-to-peer mode, if a node reports false
Pathneck measurement, it not only affects its source-segment bandwidth, but it also af-
fects the sink-segment bandwidth of the destination node. Since sink-segment bandwidth
results are shared, this false information can quickly propagate to other paths. One method
to deal with this type of abuse is to select a sampling set suchthat each sink-segment is
covered at least twice. That allows BRoute to double check the bandwidth measurement
of each sink-segment. If the estimates from one node are consistently different from those
of other nodes, it can be labeled as suspicious. Of course, a malicious node can make de-
tection very difficult by only falsifying a small number of bandwidth measurements. The
cleanest solution is to use (trusted) bandwidth landmarks,as discussed in Section 6.3. In
infrastructure mode, falsified information from a malicious node will only affect the paths
involving that node.

6.6 Summary

In this chapter, we presented the design and the system architecture of BRoute—a large
scale available-bandwidth inference system. We describedthe two key operations used
by the BRoute system: how to select the common-AS and how to use the common-AS to
identify end segments. We showed that in 97% of cases we can identify the common-AS
correctly, and in 98% of cases a common-AS can be mapped onto at most two different
end segments, with 85% of cases mapping to an unique end segment. The overall end-
to-end available bandwidth estimation accuracy is evaluated on Planetlab, where we show
that 80% of inferences have inference error within 50%. The relative high error rate is
due to the fact that we can not get enough number of traceroutelandmarks, and due to
the difficulties of obtaining accurate bandwidth information on the high-loaded Planetlab
nodes. For this reason, we regard the performance of BRoute as encouraging.



Chapter 7

Topology-Aware Measurement
Infrastructure

Compared with popular active measurement techniques like ping or traceroute, available
bandwidth measurement techniques (like IGI/PTR) and systems (like BRoute) are harder
to use. First, they often require the cooperation of non-local end nodes. For example,
the IGI/PTR tool requires access to both the source and the destination of a path, and the
BRoute system needs a diverse set of vantage points to serve as traceroute landmarks.
However, regular end users often do not have such access. Second, available bandwidth
measurement techniques are often more sensitive to configuration details than ping or
traceroute, and correctly setting the configuration parameters requires good understanding
of the technical details, which in many cases is not trivial.Third, available bandwidth
measurement techniques generally use packet trains. If notwell coordinated, packet trains
used by different end users can interfere with each other andintroduce measurement errors.
To address these issues, we developed the Topology-Aware Measurement Infrastructure
(TAMI).

Compared with existing measurement infrastructures like NWS [118], NIMI [94] and
Scriptroute [110], TAMI has two distinguishing characteristics—measurement scheduling
functionality and topology-awareness. The measurement scheduling functionality controls
the execution times of measurement requests. It can parallelize, synchronize, and serial-
ize measurements from different vantage points, both to improve overall system response
times and to avoid measurement interferences. Topology-awareness refers to the capabil-
ity of TAMI in supporting tree-related operations that are used by the BRoute system, such
as measuring the source and sink trees of an end node, identifying the common-AS of two
AS-level source or sink trees, etc.

We use the term “topology-awareness” instead of the more specific term “tree-awareness”
because TAMI may eventually also support other topology related measurement tech-
niques such as tomography. Topology-awareness is important for advanced network ap-
plications that need measurements from a set of network paths. We call such measure-

145



146 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE

mentstopology-aware measurementsbecause to correctly select these paths and avoid
measurement interferences we need network topology knowledge. Two typical examples
of topology-aware measurements are source and sink tree measurements and tomography
measurements. Source and sink trees are the key data structures used in the Doubletree
algorithm [44] and the BRoute system (Chapter 6). The DoubleTree algorithm takes ad-
vantage of the tree structure to reduce measurement overhead in network topology discov-
ery, while the BRoute system uses source and sink trees to exploit bottleneck sharing for
large-scale available bandwidth estimation. As shown later, this tree view of end nodes is
also an effective way of diagnosing routing events. Tomography [31] infers link-level per-
formance information by correlating multiple path-level measurements. It is an important
active measurement technique for end-users to obtain link-level performance data.

At the system level, TAMI also provides the following benefits: (1) it can reduce the
burden on application developers by allowing them to focus on application specific tasks,
(2) it can improve applications’ performance by providing highly efficient measurement
modules, (3) it can better utilize network resources by sharing measurement data, and (4) it
can encourage innovation by providing applications a platform to quickly try new methods
using complex network performance data.

In this chapter, we first describe the architectural design of TAMI. We then present
the implementation and performance evaluation of the TAMI system. We will use three
applications to demonstrate TAMI’s functionalities.

7.1 TAMI Architecture

To explain the TAMI architecture, we first describe the TAMI functional modules and
their interactions. We then present three important designchoices that affect the TAMI
implementation for different application scenarios. We use three representative deploy-
ment architectures to illustrate their impact. For naming convenience, starting from this
section, we also refer to vantage points as agents.

7.1.1 TAMI Functional Modules

Figure 7.1 illustrates the TAMI functional modules and their interactions. The three key
modules are the topology, scheduling, and agent-management modules, which together
enable the topology-aware measurements. It is these three modules that distinguish TAMI
from other measurement infrastructures.

The topology module maintains the topology information of the network, and coordi-
nates path-level measurements for topology-aware measurement requests. For example,
for a sink tree measurement request, the topology module will select a set of agents, and
submit the measurement request to the scheduling module. Once the measurements are
done, it will organize the measurement results in a tree datastructure. In some cases, this
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Figure 7.1: TAMI functional modules

module also provides guidance to the scheduling module, forexample, to avoid measure-
ment interference or overloading a network link in a multi-path measurement.

The scheduling module decides the execution order of all TAMI measurements. It has
the following four capabilities. First, it synchronizes the measurements on different paths
that are used to satisfy a same request, so that the measurement data can be correlated.
Second, it serializes the measurements from different vantage points to a same destination
to avoid measurement interferences. Third, it parallelizes measurements to reduce system
response time. Finally, when there are multiple requests inthe system, it guarantees fair-
ness. The scheduling module achieves these capabilities bycontrolling both the clients
(through the client-control module) and the agents (through the agent-management and
the agent-control modules).

The agent-management module deals with agent specific information, specifically, the
membership of active agents. In a deployed system, if there are a large number of agents,
keeping track of the status of agents could be cumbersome andmay need a separate
functional module to take care of it. When the number of agents is small, the agent-
management module can be combined with the scheduling module.

The functionality of the other modules is similar to those used in more traditional mea-
surement infrastructures like NIMI [94]. The agent-control and the client-control mod-
ules manage low-level measurement operations based on the control messages from the
scheduling module. The measurement module simply implements required measurement
techniques, and conducts the measurements when needed.

Application requests enter TAMI through either the topology module or the schedul-
ing module, depending on whether topology information is needed. When the request
needs the topology information, such as a tree measurement,it should be submitted to the
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topology module. Otherwise, if the request only needs measurement scheduling support,
such as a full-mesh delay measurement among the agents, it should be directly sent to the
scheduling module.

7.1.2 TAMI Deployment Architectures

The functional modules in Figure 7.1 illustrate the necessary functionality that TAMI
should have, but it does not specify how the functional modules should be mapped to real
system software components. This mapping is what we call thedeployment architecture.
The important factors that affect the deployment architecture include:

• Centralized v.s. distributed. Some TAMI modules like the agent-control and the
measurement modules obviously should be distributed on theagents. Other mod-
ules, like the topology and the scheduling modules, can be implemented either in
a centralized controller, or in the distributed agents. Both centralized design and
distributed design have their advantages and disadvantages. A centralized design
simplifies scheduling operations, and provides a platform to aggregate and share
data; while a distributed design scales better and has no single-point failure. The
optimal design depends on the application scenario.

• Trust model. The trust model refers to the relationship of the nodes in the system,
for example, whether or not they belong to the same organization and the level of
trust among them. It determines the level of security that isneeded in the corre-
sponding system design. Obviously, the trust model is also application specific. For
example, a TAMI system used by a private network can assume a much stronger
trust model than that used on Internet.

• Relationship between application and TAMI. TAMI as an infrastructure can be
implemented either inside or outside an application. When implemented inside an
application, TAMI functional modules are also components of the application and
they can be easily customized, thus having much more flexibleinteractions with the
application. On the other hand, if implemented outside the application, the applica-
tion interface is an important implementation consideration for TAMI.

To illustrate the impact of these three factors, we present three TAMI deployment ar-
chitectures for three representative application scenarios: P2P, ISP, and Public-Service
(see Figure 7.2). The P2P scenario (in Figure 7.2(a)) represents highly distributed envi-
ronments, where peers have complete control over their behaviors. In the corresponding
deployment architecture, all TAMI functional modules are implemented inside the peers.
The scheduling modules on different agents use distributedmessaging protocols like gos-
sip or epidemic protocols to manage the agents. In this architecture, the agent-management
module can be integrated into the scheduling module since itonly controls one agent; the
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Figure 7.2: Deployment Architecture. The acronyms are taken from Figure 7.1.

client-control module is not needed either, because TAMI isimplemented inside the appli-
cations. The trust model in this scenario is that of P2P applications.

The ISP scenario (in Figure 7.2(b)) represents a more centralized environment. An ISP
generally needs a complete picture of the network status, thus a centralized deployment
architecture is the natural choice. In such a scenario, the vantage points are purely used
for measurement, therefore they are kept as simple as possible, with only the measurement
and the agent-control modules installed on them. The other modules are maintained in the
central controller. In this scenario, applications can be tightly integrated into the central
controller, so the client-control module may not be needed.Also since both the agents and
the central controller are deployed and used by the same organization, we can use a trust
module appropriate for that organization.

The Public-Service scenario (in Figure 7.2(c)) representsthe classic client-server sce-
narios. This scenario supports external applications, andthe client-control module is
needed to provide an application interface. Functionalities in the topology module can
be split into both the central controller and the client. Details of the splitting depend on
the application. One example is to let the central controller implement topology construct-
ing and storing functions, while the client implements the operations thatusethe topology
information. Finally, since external applications can control the measurement operations,
security is a major challenge.

The TAMI prototype described in the next section is based on the Public-Service de-
ployment architecture, mainly because it matches best withthe networks we have access
to.
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7.2 TAMI System Implementation

Figure 7.3 shows the system structure of our TAMI prototype implementation. To distin-
guish this implementation with the general architecture discussed in the previous section,
we use the term “TAMI system” to refer to our TAMI prototype implementation, while us-
ing “TAMI” to refer to the general architecture. As explained above for the Public-Service
scenario, the TAMI system needs to be deployed on three different types of network nodes,
which we will refer to asclient, master, andagent. We now discuss the details of these
system components, focusing on the features related to topology-aware measurement.

7.2.1 Client Interfaces

Client interfaces of the TAMI system allows clients to control their measurements through
a set of configuration options. The four most important options control measurement
techniques, measurement destinations, measurement agents, and measurement scheduling.
Their values are listed in Table 7.1. In this table, all the parameters are self-explanatory
except for the scheduling parameters, which will be discussed in Section 7.2.4.

The TAMI system provides three client interfaces: web interface, command-line in-
terface, and programming interface. The web interface is provided mainly to help new
users learn how to use the TAMI system without having to install any TAMI software. It
is a CGI wrapper for the command-line interface, and it only accepts a subset of system
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Table 7.1: Client Request Parameters
Measurement techniques
PING measures path delay using ping
TRACEROUTE measures path route using traceroute
IGI/PTR measures path available bandwidth using IGI/PTR
PATHNECK locates path bottleneck using Pathneck

Measurement destinations
(default) when no destination is specified, client itself is the measurement

destination
(explicit) client can specify a destination list

Measurement agents
(explicit) explicitly specifies measurement agents
AUTO AGENT the master automatically selects a diverse set of agents to cover the

source/sink tree of specified destinations. This is the default mode.
ALL AGENT uses all available agents
ANY AGENT uses an arbitrary agent to measure the specified destinations

Measurement scheduling
PM SYN measurements from different agents to a common destinationneed

to be serialized
PM SPLIT split all destinations “evenly” among agents to achieve thesmallest

measurement time
PM RAN different agents measure the same set of destinations in a random

order

parameters to limit the load on the web server. The command-line interface consists of
a set of executables that can be invoked from a command line, and provides access to all
features provided by the TAMI system. The programming interface is a library that allows
applications to use the TAMI system directly.

7.2.2 Measurement Module Implementation

There are two ways to integrate the measurement techniques into the TAMI system. One
is to embed the implementation code in the TAMI system; this typically requires rewrit-
ing some of the codes. The other method is to directly invoke existing implementations
through system-call interfaces such assystem() . Using the second method, new tools
can be easily added, but the existing implementations may not be easily controllable by
the TAMI system. For example, the standard traceroute can not send probe packets faster
than one packet per second, and it can be very slow when a router does not respond. Also,
existing implementations may not export fault signals, making it hard for the TAMI sys-
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tem to handle exceptions. As a result, we choose to use the first method in our prototype
implementation.

The TAMI system currently implements four measurement techniques: ping, tracer-
oute, Pathneck, and IGI/PTR. Among them, ping and traceroute are well understood, and
their implementations are fairly simple. Pathneck [56] locates Internet path bandwidth
bottlenecks; IGI/PTR [58] measures available bandwidth using two techniques, estimat-
ing background traffic (IGI) and packet transmission rate (PTR), respectively. Since Path-
neck and IGI/PTR were designed and implemented by ourselves, it was easy to adopt their
implementations into the TAMI system. An important point isthat our implementation
supports both user-level and kernel-level (using libpcap)timestamps. Kernel-level times-
tamps are needed to improve measurement accuracy on heavilyloaded hosts such as some
Planetlab nodes.

7.2.3 Topology-Aware Functionality

As described at the beginning of this chapter, TAMI topology-aware functionality is used
to collect network topology information that is useful for certain applications. For ex-
ample, for network connectivity monitoring, this can simply be the link-level topology of
the whole network; for tomography techniques, this can be a set of end-to-end paths that
share a common link. In our TAMI prototype system, since we focus on supporting the
BRoute system, topology information refers to the source and the sink trees as defined in
Chapter 5.

In the TAMI system, the tree operations are implemented in both the master and the
client. The master focuses on tree-construction operations, including (1) selecting a set of
agents that are diversely distributed on the Internet to satisfy a tree measurement request;
(2) IP-level source and sink tree measurements, which are obtained by combining tracer-
oute results measured either by client or by the agents selected by the master; (3) AS-level
source and sink tree data, which can be inferred using IP-level tree data. The client fo-
cuses on the operations thatusethe trees, for example, measuring tree-branch available
bandwidth using Pathneck.

7.2.4 Measurement Scheduling Algorithms

The TAMI system implements three different scheduling algorithms: PM-SYN, PM-SPLIT,
and PM-RAN.

• PM-SYN serializes measurements towards a common destination. This, for exam-
ple, supports source and sink tree measurements.

• PM-SPLIT is used when a large number of destinations need to be measured exactly
once, but which agent measures which destination is not important. This scheduling
algorithm makes full use of all the available agents to finishthe measurements as
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quickly as possible. This can, for example, be useful when measuring the last-hop
bandwidth for a set of nodes.

• PM-RAN is a “best-effort” scheduling algorithm where neither measurement order
nor measurement completeness is important.

As will demonstrated in Section 7.4, PM-SYN can help applications to effectively avoid
measurement interference. It can also parallelize measurements from multiple clients.
Therefore, PM-SYN is the most important scheduling algorithm and the focus of the fol-
lowing analysis. While we do not use PM-SPLIT and PM-RAN in the applications dis-
cussed in Section 7.4, they are supported for two reasons. First, they are needed for the
TAMI system administration and debugging. For example, PM-RAN is very useful for
quickly checking the status of each agent. Second, they provide two candidates to com-
pare with PM-SYN as an effort to better understand the scheduling overhead, and also to
study the extensibility of the scheduling data structures.

Despite targeting different application scenarios, thesescheduling algorithms all share
the following three features: (1) efficient, i.e., finishingclient requests in the shortest pos-
sible time; (2) fair, i.e., no performance bias among multiple measurement clients; and (3)
fault-tolerant, i.e., they accommodate agent failures, including both software failures (e.g.,
agent software crashes) and hardware failures (e.g., physical agent node goes down). Be-
low we describe these three algorithms in more detail, focusing on efficiency and fairness;
fault-tolerance is discussed in Section 7.2.5.

PM-SYN

PM-SYN uses two data structures to implement its functionalities: an AVL tree and a 2D
linked list (see Figure 7.4). The AVL tree is used to store alldestination IP addresses that
are currently being measured by some agent, so as to avoid measurement interference.
That is, if a destination is already in the AVL tree, the corresponding measurement will
not be scheduled. The 2D linked list maintains the working relationships between client
requests and active agents. The crossing points (ciaj in Figure 7.4) identify whether an
agent should work on a client request. For example, crossingpoint c2a2 means that client
requestc2 needs agenta2 to conduct measurement for it—we say agenta2 is “linked” with
clientc2. Each client request has a list (pointed byclient.ca) of crossing points to identify
all the agents that need to work for it; and each agent also hasa list of crossing points
(pointed byagent.ca) to identify its client requests. For each client request, we use as
many linked agents as possible to conduct measurements in parallel so as to reduce overall
measurement time.

To achieve client fairness, every agent iterates through all the clients it is linked with,
using the structureagent.w ca. For example, after agenta2 finishes one measurement for
client c2, it will work for client c3, even if there are other destinations need to be mea-
sured forc2. To guarantee measurement completeness, we keep track of the measurement



154 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE

bit_map

ca

dst_i

bit_map

ca

dst_i

bit_map

ca

dst_i

I

I

B

I

I

I

D

I

I I

I

II

D

I

For matrix in the upper−left conner:

I: initial state, B: busy,  D: done

c1a1 c1a3

c2a2 c2a3

c3a1 c3a2 c3a3

c1a2
client c1

client c2

client c3

agent a2agent a1 agent a3

c3.bit_map c3.dst_i

w_ca ca

si ei

w_ca ca

si ei

w_ca ca

si ei

Figure 7.4: Data structure used for scheduling

progress of each client using a bit-map. For the PM-SYN algorithm, since one destination
needs to be measured by multiple agents, its implementationuses a multi-line bit-map,
where the rows correspond to agents and columns correspond to destinations. For exam-
ple, the 3x5 matrix in the top-left corner of Figure 7.4 is thebit-map for clientc1. Using a
bit-map allows us to measure any destination at any possibletime, so as to achieve better
parallelism.

PM-SPLIT

The PM-SPLIT algorithm has more relaxed scheduling constraints, and its goal is to finish
a client request in the shortest time possible. Since each destination needs to be measured
only once, a simple method is to split all destinations evenly among all active agents, send
a sublist to each agent in a single message, and then wait for measurement results. This
way, the master, unlike the PM-SYN case, does not have to submit a request message
for each destination, thus avoiding the corresponding overhead. However, in this method,
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slow agents can become a performance bottleneck. For this reason, we limit the schedul-
ing granularity asmax(10, client.dst num/agent num), whereclient.dst num is the
total number of destinations need to measure in the request,while “10” is an empirically
selected upperbound on the number of destinations the master can forward to an agent in
a single message. This approach reduces the overhead while still achieving a high level of
parallelism and also being resilient to slow agents.

The PM-SPLIT implementation uses the same 2D linked list data structure as PM-
SYN, except that its bit-map is a single line since each destination only needs to be mea-
sured once. We useclient.dst i to point to the first destination that has not been measured.
By carefully manipulating the bit order, we can ensure all destinations beforeclient.dst i
are in non-idle status, so that an idle agent only needs to start from client.dst i to search
for the next set of destinations to measure, and each agent only needs to remember the
starting point (a.si) and ending point (a.ei) in the bit-map.

PM-RAN

PM-RAN scheduling is managed by the agents. That is, measurement requests in PM-
RAN mode are directly forwarded to agents. Each agent maintains a queue of the mea-
surement requests received from the master, and the tasks are ordered by their submission
times. With these queues, agents can conduct measurement independently without wait-
ing for instructions from the master. In Section 7.3.4, we will see that PM-RAN incurs the
smallest management overhead.

7.2.5 Agent Management

In distributed systems, software and hardware failures area common phenomenon. For ex-
ample, on PlanetLab, the MTTF of links has been shown to be 9.48 hours, and the MTTR
from these failures is 2.69 hours [51]. Here, we are mostly concerned about agent failures.
TAMI agent management module detects agent failures using socket-level disconnection
signals and by using a keep-alive protocol.

Socket Signals

All communication in the TAMI system is based on TCP. As a result, software crashes on
one end will generate socket-level disconnect signals suchasSIGPIPE at the other end
of the connection. When receiving such a signal, the TAMI system software cleans up the
corresponding data structures, updates system status, andthen either exits (for the client)
or remains active (for the master and the agents). For agents, this means that they enter
an idle state and periodically try to connect to the master (the IP address of the master is
fixed). When the master comes back, all agents will automatically join the system, thus
avoiding having to restart each agent, which could be time consuming. When an agent
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working on a PM-SPLIT request crashes, we need to move the un-measured destination
elements into the later part of the bit-map, i.e., behindclient.dst i (see Figure 7.4). This
is necessary to ensure measurement completeness.

Since there could be a large number of agents in the system, weneed a mechanism to
automatically restart them. In the TAMI system, we use a cronjob to periodically check
whether the agent software is still running, restart it if itis not. Since the cron job is started
by the OS at boot time, this automatically deals with the caseof agent crash due to OS
rebooting.

Keep-Alive Protocol

When disconnection is due to network problems, as explainedin Section 5.12-5.16 of
[112], it is possible that no error signal is generated on either endpoint of the connection.
We address this issue using an application-level keep-alive protocol between the master
and agents. The master maintains a timer for each active agent, and every agent also keeps
a timer for the master. The master and agents periodically exchange keep-alive messages
to refresh these timers. An expired timer is treated as a disconnection. That is, we assume
the corresponding peer has crashed when a timer expired, andwill carry out the same
operations used to deal with socket signals.

7.2.6 Other System Features

We briefly discuss several other important features of the TAMI system—security, periodic
measurement support, and caching.

Security

Given that the TAMI system controls a large number of agents,a key security concern
is that the agents can be exploited to launch DDoS attacks. The TAMI system tries to
address this problem in two ways. First, we expose the agentsas little as possible. Clients
are only allowed to connect to the master, thus there is only one service point that needs to
be protected. When communication between agents and clients is inevitable, for example
during IGI/PTR measurement, we always let agents initiate the connection, so that agents
do not need to open any listening port for outsiders. Second,the scheduling algorithm
implemented in the TAMI system ensures that there is at most one agent measuring a
destination at any given time. This method, however, does not address the case where
the attack target does not correspond to the destination IP addresses. As Spring et.al.
[110] pointed out, with a sophisticated understanding of network topology and routing,
distributed systems like the TAMI system can still be used togenerate heavy traffic load
on some network node or link. To deal with this issue, we turn to mechanisms like limiting
the measurement frequency of clients and user-behavior logging.
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Periodic Measurement Support

An important function of the TAMI system is to support network monitoring and diagno-
sis, which often require repeatedly measuring the same metric. The TAMI system supports
this directly: a client does not need to repeatedly submit measurement request. It can just
submit a request once and include a measurement frequency. The TAMI system automat-
ically launches the measurement at the corresponding time,and sends back measurement
results. This feature not only makes measurement management easier, it also makes it
possible to continue the measurement if end users lose network connectivity. Obtaining
network monitoring results is especially important duringthose periods for diagnostic pur-
poses.

Caching

In some application scenarios like Planetlab projects, many end users may want to measure
the same metric at the same or similar times. To avoid redundant measurements and also
to reduce response time, the TAMI system uses MYSQL to store all the measurement
results. If a client request specifies an acceptable cache time, the TAMI system will use
cached measurement results for that time period, if there are any, to satisfy the request.

7.3 Performance Evaluation

The TAMI system achieves good user-perceived performance through fast measurement
setup and measurement scheduling. To set up measurements using the TAMI system,
a client only needs to submit its measurement request using aTCP connection, instead
of using the time-consuming ssh command line. For example, we randomly selected 46
Planetlab nodes to issue an “ssh -l <user> <host> ls ” command, the median
response time is 3.3 seconds, which is much larger than the time needed by the TAMI
system. In this section, we study the TAMI system schedulingperformance.

The performance metric that we use in this section isresponse time (tresp), which
is defined as the average time used by the TAMI system on one measurement. For ex-
ample, if a request needs to measureNd destinations from allNa agents, i.e., a total of
(Nd ∗ Na) measurements, and the TAMI system usesT time to finish the request, then
tresp = T/(Nd ∗Na). Note that unlike the traditional definition, our definitionis based on
individual measurement, not a measurement request. This ismainly for the convenience of
comparing with the realmeasurement time, which is the time used by an agent for an indi-
vidual measurement. The measurement times for the tools arefairly well understood since
they are typically studied when the tool is proposed, e.g. [58] and [56] for IGI/PTR and
Pathneck respectively. In this section, we will evaluate various aspects of TAMI’s response
time. Note that for tree-related applications, we mainly care about TAMI’s performance
on large-scale and measurements of bandwidth and bottleneck properties.
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Figure 7.5: Emulab testbed topology

For repeatability, we use Emulab [5] for the experiments in this section. Performance
results for the TAMI system running on the Internet are presented in Section 7.4.2. Us-
ing Emulab, we first conduct a typical run using the PM-SYN algorithm to obtain some
basic measurement times and response times for the TAMI system (Section 7.3.2). We
then look at the relationship between the number of agents and the response time (Sec-
tion 7.3.3). This is followed by a performance comparison ofthe scheduling algorithms
(Section 7.3.4). Finally, we look at the fairness of the TAMIsystem when serving multiple
clients (Section 7.3.5). For all the experiments in this section, we use user-level times-
tamps unless stated otherwise. We first describe the testbedconfiguration.

7.3.1 Emulab Testbed Setup

Figure 7.5 shows the topology of the Emulab testbed used in this section. All links have
50Mbps capacity and 5ms delay. The 50 nodes are used as follows: noden5 runs as the
master,n1 − n4 andn6 − n10 are clients, and the other 40 nodes are agents. The overall
configuration should be viewed as an example of a reasonable large set of nodes with
Internet-like delays. We do not claim this topology is representative of the Internet as
a whole, but we do believe it is sufficient to provide useful insights into how the TAMI
system properties affect response times.

7.3.2 Performance of PM-SYN

In this section, we use the PM-SYN algorithm to obtain some baseline performance re-
sults: the actual measurement time of each measurement technique, the agent utilization,
and the response time of the TAMI system when all agents are utilized. For single-end
probing techniques, i.e., ping, traceroute, and Pathneck,we submit one PM-SYN mea-
surement request that uses all 40 agents to measure a 50-IP destination list, which cor-
responds to all the nodes in the testbed. For the two-end control technique (IGI/PTR),
we usen1 to submit a PM-SYN measurement request that uses all 40 agents to measure
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Figure 7.6: Measurement time of each measurement techniquein the TAMI system, using
user-level timestamps

the available bandwidth for paths between the agents and theclient. The upstream and
downstream paths are measured separately; these are markedas “igi-up” and “igi-down”,
respectively. For every technique, we repeat the experiment using both user-level times-
tamps and kernel-level timestamps.

Figure 7.6 plots1 the medians and variances for the actual measurement times of each
measurement technique; the results presented use user-level timestamps but the results
for kernel-level timestamps are similar. The median valuesare also listed in the “Real
Time” column of Table 7.2. This data provides the performance benchmarks for each
measurement technique. Note that the actual measurement times are closely related to the
RTTs of the paths being measured, e.g. changes in the RTT directly affect the measurement
times. Also, these results are for the case when all destinations respond to probing packets.
If a destination does not reply to probing packets, TAMI agents will wait until a timeout
occurs, which will also affect the results.

Table 7.2 presents three different views of the PM-SYN performance results. The
“Real Time” column lists the median of actual measurement times, which are copied from
Figure 7.6. The “Resp. Time” column lists the response times, while the “Speed-Up” col-
umn is the ratio of the previous two columns. Finally, the “Agent Idle” column is the me-
dian idle time intervals for all agents. We did not compute Agent-Idle time for igi-up and
igi-down because each agent is only involved once in each measurement. From this table,
we can draw two conclusions. First, Agent-Idle times for ping are both around 0.33–0.35
seconds. We believe this reflects TAMI-system overhead because the real measurement
times of ping are much smaller the Agent-Idle times. Agent-Idle times for traceroute are

1The graphs were generated using theboxplot function of Matlab, where one bar corresponds to one
measurement type. The middle boxes have three lines corresponding to the lower quartile, median, and
upper quartile values, and the whiskers are lines extendingfrom each end of the box to show the extent of
the rest of the data.
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Table 7.2: Performance of PM-SYN (unit: second)
Real Time Resp. Time Speed-Up Agent Idle

ping 0.063 0.014 4.5 0.354
ping.b 0.063 0.015 4.2 0.348
traceroute 0.640 0.034 18.8 0.338
traceroute.b 0.640 0.034 18.8 0.338
pathneck 2.411 0.130 18.5 0.985
pathneck.b 2.402 0.131 18.3 0.990
igi-up 0.750 1.015 0.7 —
igi-up.b 0.753 1.074 0.7 —
igi-down 0.901 1.610 0.6 —
igi-down.b 0.934 1.365 0.7 —
[.b means using kernel-level timestamps.]

also around 0.33 seconds, although their real measurementstimes are larger than those
of ping. However, Pathneck has much larger Agent-Idle times. This is because its larger
measurement time results in longer waiting times for destinations to free up. Comparing
the Agent-Idle times for ping, traceroute and Pathneck, we can see that when real mea-
surement time is small enough, Agent-Idle time is determined by the system overhead and
is not sensitive to the real measurement time. Second, by parallelizing the measurements,
the TAMI system significantly improves the response time. The speed-up is at least 4 (for
ping), and can go as high as 19 (for traceroute). Note that none of the techniques achieve
a 40 times of speed-up, as one might expect given that there are 40 agents running in
parallel. This is mainly due to TAMI-system overhead as identified by the “Agent Idle”
column. Not surprisingly, the smaller the real measurementtime, the larger impact the
system overhead has.

7.3.3 Impact of Multiple Agents

Next, we study how the number of agents affects the response time. In this experiment,
we submit requests from only one client node, but the number of agents used to conduct
measurements changes from 1 to 40. We use ping and Pathneck todo the experiment,
due to their wildly different measurement times (see Table 7.2). The same experiment
is repeated using both PM-SYN and PM-SPLIT. For each configuration, we repeat the
experiment five times.

The experimental results are shown in Figure 7.7, where we show both response times
and the corresponding benchmark values. The points labeledwith “x” the median values
of the five experiments, and the bars show the maximum and minimum values. The bench-
mark values (the unlabeled curve) are computed as(tresp with 1 agent/Na)—we expect
to see the response time reducing proportionally as we increase the number of agents.
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Figure 7.7: Comparing the TAMI system performance with different number of agents,
under both PM-SYN and PM-SPLIT

The left two figures show the results using the PM-SYN scheduling algorithm. We can
make several interesting observations. First, with only one agent, the response time of ping
measurement under PM-SYN is 0.58 seconds, which is much larger than the real measure-
ment time listed in Table 7.2. This is a result of the system overhead. The fact that it is
larger than the 0.35 seconds listed in Table 7.2 ”Agent Idle”column tells us that the sys-
tem overhead has a higher impact when there are fewer agents.Second, as the number of
agents increases, the response times of both ping and Pathneck when using the PM-SYN
algorithm decrease proportionally. This shows that both the system overhead (for ping)
and the measurement time (for Pathneck) experienced by end users can be reduced pro-
portionally as the number of agents increases. Third, when the number of available agents
is over 10, the response times, for both ping and Pathneck, are significantly less than the
benchmark values. This is because system concurrency can only be fully exploited when
there is enough parallelism. For example, with a large number of agents working simulta-
neously, downstream and upstream communications can happen simultaneously; the local
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Figure 7.8: Comparing the TAMI system performance under PM-SYN, PM-SPLIT and
PM-RAN

processing of master and agents and their communications can also execute in parallel.
These results show that the TAMI system is very efficient for large-scale measurements,
which is the target application domain for the TAMI system.

When using the PM-SPLIT algorithm (the right two graphs), asexpected, the curve
for Pathneck is very similar with that for the PM-SYN algorithm. The curve for ping,
however, has a different shape—its response time stops improving after there are more than
two agents. This is the combined effect of the small real measurement time of ping and
the implementation of PM-SPLIT. In PM-SPLIT, we assign at most ten destinations to an
agent at a time, and the agent sends back measurement resultsfor eachsingledestination.
Due to the small measurement time for each destination, the master is kept busy by the
measurement results sent back by the first two agents. The result is that, before the third
agent is assigned any destination, the first two agents have already finished their work.
Hence most of the time only two agents are working in parallel. Of course, this is not a
problem if the measurement time is as large as in Pathneck. This problem is of course easy
to fix, e.g. by batching more results.

7.3.4 Comparison of Different Scheduling Algorithms

This experiment is designed to compare the TAMI system performance with different
scheduling algorithms. The experimental configuration is similar to the one used in Sec-
tion 7.3.2. The difference is that we use only five agents so wecan fully utilize the agents
with the PM-SPLIT algorithm. Figure 7.8 plots the response times using different config-
urations. We see that PM-SYN always has the largest responsetime, while PM-RAN has
the smallest. The reason is fairly intuitive: PM-SYN needs to avoid destination conflicts,
which can force agents to wait for each other. PM-SPLIT does not have this problem
since each destination in PM-SPLIT only needs to be measuredonce. Compared with
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Figure 7.9: Fairness of the PM-SYN scheduling algorithm

PM-SPLIT, PM-RAN incurs minimal management overhead in themaster, which further
reduces the response time.

7.3.5 Fairness Among Clients

To study the fairness of the TAMI system, we repeat the same experiment that was con-
ducted in Section 7.3.2, except that we have five different client nodes submitting the same
measurement request.

Figure 7.9 plots the experimental results. The first bar in each group is the benchmark
value, which corresponds to five times the response time measured in Section 7.3.2. It is
presented for comparison purposes, since with five clients requesting service simultane-
ously, the response times are expected to increase by a factor of five. The other five bars are
the response times measured from each individual client. For Pathneck, the performances
of individual clients are apparently better than the benchmark values. This is because with
more clients, the PM-SYN algorithm has a higher probabilityof finding a non-conflicting
task for an idle agent, thus reducing agent idle time. For ping and traceroute, however,
individual client’s performance is very similar or slightly worse than the benchmark value.
This is because the performance of these two types of techniques is limited by the TAMI
system overhead instead of the measurement overhead, thus there is no free processing
power that can be exploited by multiple clients. Overall, for all three measurement tech-
niques, the performance of the five clients are very similar,which confirms that the TAMI
system is indeed fair when serving multiple clients.

7.3.6 Summary

In this section, we have quantitatively analyzed TAMI system response time under various
conditions, the actual measurement times of all implemented measurement techniques, and
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Figure 7.10: Join-performance difference from ESM-bw and ESM-rtt on a single client

the system overhead of different scheduling algorithms. Weshowed that for the scenarios
that we focused on, i.e., for large-scale measurements and bandwidth measurements, the
TAMI system is effective in achieving small response time byfully utilizing measurement
resources, and remains fair when serving multiple clients.Besides, we also learned that
(1) system scheduling overhead is an important factor that affects system response time,
especially when the real measurement time is small; and (2) system parallelism can be lim-
ited by the complicated interactions among measurement overhead, scheduling overhead,
and scheduling communication patterns.

7.4 Applications

As a measurement infrastructure, the ultimate goal of the TAMI system is to support net-
work applications by providing easy and real-time access totopology-aware measurement
data. In this section, we describe three applications that can benefit from the TAMI sys-
tem: bandwidth resource discovery for P2P applications, testbed performance monitoring,
and route-event diagnosis. Since the results presented in this section were collected on
Planetlab, we use kernel-level timestamps for the measurements.

7.4.1 Bandwidth Resource Discovery for P2P Applications

The BRoute system makes it possible for us to quickly infer end-to-end available band-
width between two end nodes once we have the topology and the tree-branch bandwidth
information of their source and sink trees, as provided by the TAMI system. That can help
peer-to-peer applications to discover and adapt to bandwidth changes by optimizing over-
lay routing. In this section, we use ESM (End System Multicasting) [35] as an example to
demonstrate this capability.
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Figure 7.11: Performance difference from ESM-bw and ESM-rtt for all clients

ESM is a peer-to-peer multicast system that uses a self-managed data forwarding pro-
tocol to transmit data among peers. In ESM, when a new node joins, the system must
choose a peer in the system that will function as its parent. The goal is to pick the peer
with the highest available upstream bandwidth. This requires information about the avail-
able bandwidth between the new node and all existing peers. Unfortunately, obtaining this
information is expensive due to the high overhead of available bandwidth measurement
techniques. Therefore, ESM instead uses delay measurements to select the initial parent
for a new node during the join procedure. Once a new node joins, it will keep probing
other peers for both bandwidth and delay information and switch to a better parent if there
is one. We will call this the “ESM-rtt” version of ESM.

The TAMI system makes it practical to use available bandwidth to select the first par-
ent. With the programming interface provided by the TAMI system, we modified ESM
such that, before starting the join procedure, a new node first obtains its source and sink
tree structures, using ten TAMI-selected agents. It also obtains bandwidth information
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for the branches in the source and sink trees. In this way, when a new node joins, all
current peers should already have information on source andsink trees and tree-branch
available bandwidth, which can be sent to the new node. With the peers’ source trees and
its own sink tree, the new node can calculate the available bandwidth from other peers
to itself, using the algorithms proposed in BRoute (see Chapter 6). The peer that has the
largest available bandwidth is selected as the parent. Thismodified ESM is denoted as the
“ESM-bw” version of ESM.

Using 45 Planetlab nodes, we did experiments using ESM-bw and ESM-rtt, respec-
tively. In these experiments, we only focus on the join performance since only the join
procedure of ESM uses the TAMI system. To emulate real world network connection
speeds, we intentionally selected ten nodes that had less than 1Mbps available bandwidth.
The multicast source was on one well provisioned node, sending out a data stream in
a pre-configured 420Kbps rate. The other 44 nodes were clients and joined the system
sequentially.

We use Figure 7.10 to illustrate how ESM-bw improves the performance for an indi-
vidual client. The x-axis is the running time (ignoring the time used to measure source
and sink trees), and the y-axis is the data stream receiving-rate at the client. The data
points marked with “4” are from ESM-bw, and those marked with “5” are from ESM-rtt.
Disconnected points correspond to parent changes, i.e., the new node switches to a new
parent, hoping to improve its performance. We see that ESM-bw can immediately find a
good parent, while ESM-rtt experienced several parent changes over the first 100 seconds
before identifying a good parent.

Figure 7.11 quantitatively compares the performance of ESM-bw and ESM-rtt for all
clients, using the cumulative distributions of three metrics: the join time (graph (a)), the
number of parent changes during the join time (graph (b)), and the relative receiving-rate
during the join time (graph (c)). Here the join time is definedas the time to reach 90%
of source sending rate (420Kbps); and the relative receiving-rate is defined as the ratio
between the average data stream receiving-rate of a client and the source sending-rate. We
can see that 90% of ESM-bw clients have join times less than 18seconds, while over 50%
ESM-rtt clients have join times over 60 seconds. The smallest join time is 6 seconds, as
we sampled the performance every 6 seconds. The longer join time for ESM-rtt clients is
because they could not find a good parent quickly—over 60% of them experienced at least
four parent changes (see graph (b)). Parent changes directly affect the relative receiving-
rate during the join time, as shown in Figure 7.11(c), 70% of ESM-rtt clients have rela-
tive receiving-rates less than 0.5, while over 80% of ESM-bwclients can achive relative
receiving-rates that are over 0.8. Overall, we conclude that the TAMI system can indeed
significantly improve ESM clients’ performance by providing bandwidth information.

Detailed analysis shows that the main reason why ESM-bw performs better than ESM-
rtt in this experiment is the existence of a significant number of slow clients. The slow
clients generally do not perform well as parents, and their delay is poorly correlated with
bandwidth. Without these slow clients, ESM-rtt performs very well, as confirmed by our
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experiment on another set of Planetlab nodes. Also note thatwe exclude ESM-bw’s tree
measurement time (around 60 seconds) from the join time in the analysis. For this reason,
the comparison may not be completely fair, although this measurement time can be hidden
if tree measurement is run as a background service on client nodes.

From the architecture perspective, we have treated ESM peers as clients of our TAMI
system. At first, since ESM is a peer-to-peer application, itmay appear that the P2P
architecture illustrated in Figure 7.2(a) is a better fit. This is actually not the case, because
sink tree measurement needs adiverseset of agents that have significantly different views
of Internet routing, and these agents should have enough upstream bandwidth. ESM peers
may not have sufficient diversity and bandwidth to function as effective agents, especially
during the startup phase of the system.

7.4.2 Testbed Performance Monitoring

The TAMI system is deployed on Planetlab, making it easy to monitor Planetlab’s per-
formance. Compared with other monitoring efforts, such as CoMon [3], Iperf bandwidth
monitoring [14], and pairwise delay monitoring [13], a distinguishing characteristic of
the TAMI system is that it significantly improves the available bandwidth monitoring ca-
pability on Planetlab by supporting the tree operations used by the BRoute system. As
demonstrated in Chapter 6, for a case study using 160 Planetlab nodes, 80% of end-to-end
available bandwidth estimates using BRoute had an error of less than 50%. The TAMI
support also makes the BRoute system very efficient. To demonstrate this capability, we
write a simple client-side code (around 30 lines) using the tree library interface provided
by the TAMI system, and run it on each Planetlab node. That is,the Planetlab node is both
an agent and a client for the TAMI system. This client-side code sends requests to the
system to measure both its source tree and its sink tree. Whenit has the tree data, it sends
them to a central storage node, where full mesh bandwidth data can be calculated. We ran
this code on 190 Planetlab nodes, and it only took 652 secondsto finish.

Besides the above available bandwidth monitoring, we also conducted other types of
monitoring tasks using the TAMI system and obtained some preliminary yet interesting
results. For example, using TAMI’s PM-SYN algorithm, full-mesh ping measurements
become very easy—only one request message is enough. Figure7.12 plots the perfor-
mance of TAMI in measuring full-mesh end-to-end delay for 210 Planetlab nodes. In this
figure, the x-axis shows the time used by TAMI, in log scale; the left y-axis, correspond-
ing to the dot points, is the number of measurements finished in each one-second interval;
and the right y-axis, corresponding to the curve, is the percentage of measurements that
have been finished for the request. Although the total time used is 1855 seconds (around
31 minutes), corresponding to a response time of 42ms, 98% ofmeasurements are fin-
ished within 424 seconds, the rest 1431 seconds are due to a few slow nodes. In a similar
way, we also conducted a full-mesh traceroute measurementsusing TAMI, where the total
measurement time is 7794 seconds, and 98% finished within 723seconds.
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Figure 7.12: Performance ofN2 ping measurement on Planetlab

7.4.3 Route-Event Monitoring and Diagnosis

Route-event diagnosis is another important application that can be supported by the TAMI
system. Route event refers to network anomalies that cause network connectivity prob-
lems. Typical examples include broken links, route loops, etc. As mentioned earlier, there
have been some route-event diagnostic systems [48, 119]. A common property of these
systems is that they use passive monitoring methods to identify route events. For example,
the AS-level route-event diagnosis system presented in [48] uses BGP update messages,
and the Planetseer system [119] monitors the TCP performance of a web-proxy’s clients
to identify possible route problems on the paths between theweb proxy and the clients.
Based on the TAMI system, we propose to use active methods to monitor IP-level route
performance. This method uses IP-level source and sink trees to provide a complete view
of end-node routes, and then focuses on monitoring the treesto detect route events. This
way, we monitor all routes that may be used by the end nodes, not just those currently used
for data transmission.

The implementation of our system has three characteristics. First, we use IP-level
source and sink trees to monitor end-users’ routes. For overhead consideration, we only
focus on the first few layers of the IP-level trees. This method is not only efficient in
reducing monitoring load, it also tends to be effective because route events often occur
in small ISPs which are close to end users (i.e., we assume small ISPs have more limited
management resource or capability to maintain their networks). Second, we focus on two
types of route events—deterministicandpartial route events. Deterministic events refer
to those route events that are persistent during a monitoring interval. The rest are partial
events. For example, a broken link is a typical example of deterministic route events, while
route loop can be either deterministic or partial. Packet loss can also cause connectivity
problem which may appear as partial route event. Therefore,we also consider packet
loss as a route event in our diagnostic system. Third, we use two measurement tools for
route-event diagnosis—ping and traceroute. Ping uses muchfewer probing packets, while
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traceroute can obtain information for each hop.
Below we first present an empirical study on the number of route events that can be

measured in networks. We then describe the diagnosis details for a route event. We finally
explain the design and implementation details of the route-event diagnostic system.

Observations of The Two Types of Route Events

To understand how frequently deterministic and partial route events occur in networks, we
collect IP-level sink-tree measurements for 135 Planetlabnodes using the TAMI system.
We found that only 23 nodes did not experience any connectivity problem. Among the
other nodes, 29 nodes experienced at least one packet-loss events, 8 nodes experienced
only deterministic events, 38 more observed both deterministic and partially events, and
75 nodes experienced only partial events. These results show that route events are not rare
on today’s network.

The root causes of these route events are generally hard to identify. Our diagnostic
system can only provide possible explanations or auxiliaryinformation to simplify the
diagnostic operations of human operators. Sometimes, a route event detected this way
is not a real event, but a measurement artifact. An example isthe incomplete traceroute
due to routers that are pre-configured not to respond to ICMP probing packets. Since
these routers do forward real data packets, they do not causeroute events for real user
traffic. Another example is routing policies that can generate “fake” route events. In our
measurements, we found that the IP-level sink tree of nodepli2-pa-2.hpl.hp.com
has a router where 16 other nodes’ traceroutes toward that node stop at that router, while
other 117 nodes can pass it successfully and reach that node.We were later told that
that this node has a routing policy that only allows nodes with Internet2 access to reach
it. Obviously, to figure out such a policy, one would need domain knowledge to develop
highly customized algorithms. For example, in this example, we would need ways to
differentiate Internet2 nodes with the others. Next, we describe a detailed case study on
how we used IP-level sink-tree information provided by the TAMI system to diagnose a
route event.

Detailed Case Study of A Route Event

Around 00:30am EDT on 08/10/2005, we found that www.emulab.net was inaccessible
from one of our home machines but it was accessible from university office machines. The
home machine uses a commercial DSL service for Internet access. To figure out the prob-
lem, we used the TAMI system to launch a sink-tree measurement for www.emulab.net
(with IP address 155.98.32.70) from all the 200 Planetlab nodes where the TAMI system
was deployed at that moment. This request took 4.5 minutes (273 seconds) to finish. Based
on the route data, we plotted the AS-level sink tree for the destination in Figure 7.13. In
this figure, the labels on the links have the form “a/b”, where b is the total number of



170 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE

1706

210

0/2

17055

166/166

E1

31

7018

6395

0/9

2/24

1273

0/2

4637

0/1

1239

1791

0/1

0/1

3561

0/2

701

0/1

174

1/1

11537

164/164

3549

3356

0/2

0/7

2914

1/6

11

E0

2

2697

E2

1

omitted

164/164

Figure 7.13: AS-level sink tree of www.emulab.net at 00:24am, 08/10/2005

traceroutes that pass that link, anda is the number of traceroutes that can reach the des-
tination. Note that, due to the definition of AS-level trees (its technical definition can be
found in Section 4.1 of [60]), the total number of ingress traceroutes into an AS can be less
than the egress traceroutes from that AS. An example is AS6395 in Figure 7.13, which has
four more egress traceroutes than ingress traceroutes, because the AS tree branch for these
four traceroutes start from AS6395.

From Figure 7.13, we see that only AS11537 (Abilene Network)had good reachability
to the destination, while measurement packets from other ASes mostly disappeared after
entering AS210. That implies something was wrong with AS210’s routing, specifically
with paths from non-Internet2 networks. We also looked at the IP-level sink tree and
found that there was a routing-loop between two routers within AS210. At that moment,
we thought AS210 was doing network maintenance and the problem was going to be
temporary.

At 11:59am EDT the same day, we found that the problem still persisted. We con-
ducted another sink-tree measurement using the TAMI system(with 153 Planetlab agents),
and found that although the sink tree is slightly different,the problem remained the same
(see Figure 7.14). For the 22 traceroutes entering AS210 from non-Internet2 ASes, 21 of
them did not reach the destination. After this measurement,we realized something was
wrong in AS210, and confirmed with Emulab staff that AS210 hadrouting problems with



7.4. APPLICATIONS 171

7018

6395

0/7

210

1/15

17055

127/127

E3

21

1273

0/2

4637

0/1

19092

0/1

1239

1791

0/1

0/1

3561

0/2

701

0/1

6539

0/1

11537

126/126

2914

1/1

3356

0/6

11

E0

2

1706

E1

2

786

E2

1

omitted

126/126

Figure 7.14: AS-level sink tree of www.emulab.net at 11:59am, 08/10/2005

commercial ISPs.
This is an excellent example of detecting a partial route event. It clearly demonstrates

the benefit of IP-level sink-tree measurements in route-event diagnosis—with measure-
ments from only one or a few agents, it is often not possible topinpoint the problem.

An Example Route-Event Diagnosis System

We now describe a route monitoring and diagnostic system. This system is designed as
a client software of the TAMI system. That is, it uses the TAMIsystem to measure IP-
level sink trees but maintains all information on the clientside. Figure 7.15 shows how
the system works. Roughly speaking, this system includes three components: bootstrap,
monitoring, and diagnosis. The bootstrap component initializes the system by obtaining
benchmark route information for each end node in the system;the monitoring component
periodically updates the benchmark information; while thediagnosis component launches
measurements for specific route changes to find out the possible causes of the events.
Below we describe each component in more details.

The bootstrap component has three responsibilities: (1) initializing the system by pro-
viding a complete set of route information from each end node, (2) periodically updating
these route information, and (3) measuring the sink trees for end nodes. The complete set
of route information is used for constructing IP-level sinktrees, based on which monitor-
ing can be done more efficiently by only measuring each tree branch just once. Since route
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information can become stale, these trees need to be updatedperiodically by re-measuring
all the routes. The update period depends on application requirements. Our system uses a
five-hour update period, which is sufficient for experimental purpose.

When measuring IP-level sink trees, we also need to specify the depth of the tree. This
is an important parameter that not only affects tree sizes, but also determines the scope of
route problems the system can monitor and diagnose. Our current system builds four-level
trees, since they are the most critical part of the network for applications like the BRoute
system. This parameter can of course be customized for different applications. The tracer-
oute data used for IP-level sink-tree constructions are classified into three categories ac-
cording to the type of information they can provide for tree branches. The first category
includes those complete routes that can reach the destination. Route data in this category
are directly used for sink-tree constructions. The second category includes a particular
type of incomplete routes whose last hop is within the sink-tree that is already constructed
using the first category of route data. Route data in this category can still be used if they
introduce a new sink-tree branch. The third category includes the incomplete routes whose
last hop is not in the sink tree. The third category is not useful for our monitoring purpose
since they can’t observe any events in the tree. Note that theclassification can change
when routes change, and they need to be updated during each update period. For all routes
in the first and second categories, the system further conducts ping measurements towards
the destination, in preparation of the monitoring operations.

The second component of the system is the monitoring component. To reduce over-
head, monitoring measurement for each destination are doneusing ping—each selected
agent does three consecutive ping measurements towards thedestination. If all ping mea-
surements reach the destination, we claim there is no route events. Otherwise, the di-
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agnostic component—the third component in this system—is invoked. The diagnostic
component works as follows.

1. It first checks if there is at least one ping packet reaches the destination. If yes, we
claim it is only aloss event, and finish the diagnostic procedure.

2. Otherwise, if none of the three ping packets reach the destination, it could be a poten-
tial disconnectivity problem. We then launch three traceroute measurements toward
the destination to obtain more detailed route information about the path. If at least
one traceroute successfully reaches the destination, we report a good-traceroute-
bad-ping event. In our experiments, we saw such events but we are unable to explain
the real root cause.

3. If none of the three traceroutes can reach the destination, we have a high confidence
in claiming a diconnectivity event. We then check the connectivity from other agents
to see the scope of the disconnectivity event. This is where the tree information is
used. The simpler case is when traceroute measurements stopoutside the tree, we
can not further diagnose the event since it is outside the scope of our diagnostic
capability. In this case, we report abreak-outside-tree event.

4. If the traceroute measurement stops within the tree, we will know which branch the
event is on. We can then use other agents that also traverse that branch to double-
check the event. If all other agents can not reach the destination, either, we then
report adeterministic dicconnectivity event; otherwise, we report apartial discon-
nectivity event.

Note using the traceroute results in this diagnostic procedure, we can also diagnose the
route-loop eventas demonstrated in the previous subsection. Although not illustrated in
Figure 7.15, our system will also report this type of event.

We ran the system for 42 hours using 136 Planetlab nodes as destinations. During this
period, 88 nodes experienced at least one route event. Amongthe 88 nodes, 31 nodes
experienced only one type of events, 35 experienced two types of event, 16, 5, and 1 nodes
experienced three, four, and five types events respectively. Packet loss seems to be the
most popular type of events—78 nodes experienced such event; the next type is break-
outside-tree type of events, with 58 nodes experiencing it;the third is good-traceroute-
bad-ping, with 22 nodes experiencing it; while we saw no route-loop event. Also, when
a destination experienced multiple same-type events, these events are often due to a same
problematic router. For example, 41 nodes saw at least four packet-loss events, among
them, 21 nodes’ packet-loss events were due to problems on a same router. We also looked
at the events from the source trees of these 136 nodes. Exceptthere were only 46 nodes
experiencing route events, the other results are similar with those from the sink trees. For
example, packet loss is still the dominant popular event—41of the 46 nodes experienced
such events.



174 CHAPTER 7. TOPOLOGY-AWARE MEASUREMENT INFRASTRUCTURE

7.5 Related Work

Based on their application scenarios, existing network measurement infrastructures can be
separated into two groups. One group includes those developed by ISPs, like IPMON [49]
and NetScope[47]; they rely on passive measurements and focus on network internals.
The other group includes those designed by the networking research community, they
mostly rely on end-system based active measurements and focus on end-to-end perfor-
mance. Representative systems in the second group include NWS [118], Scriptroute [110],
NIMI [94], and ANEMOS [25]. These systems are general infrastructures that offer func-
tions such as automated deployment, privacy protection, and security. TAMI also belongs
to the second category, and shares many of the features of theabove systems. However,
TAMI’s focus is on supporting topology-aware measurementsby collecting and maintain-
ing topology information and scheduling capabilities.

We mentioned that TAMI can be used as a data sharing platform.This feature is also
discussed in ATMEN [73], which proposed a communication andcoordination architec-
ture across multiple administrative entities to achieve various goals including reuse of
measurement data. SIMR [27] also proposed an infrastructure to share measurement data
collected by different research groups. Since it relies on external data sources, it needs to
address issues like data format compatibility, privacy, and security, many of which TAMI
does not have to consider.

An important design goal of TAMI is to facilitate network event diagnosis by sim-
plifying complicated measurements. It potentially can be used to automate the diagnosis
operations in systems like PlanetSeer [119], which correlates web proxy logs with Internet
traceroute data to detect changes in end-to-end performance.

While most end-system based monitoring systems, includingthe TAMI system, rely
heavily on active measurements, several groups are also exploring the use of passive mea-
surements. One example is NETI [69], whose monitoring activities include collecting data
from regular end users by monitoring traffic on their systems.

The TAMI system currently implements four probing techniques: ping, traceroute,
IGI/PTR, and Pathneck. While ping is implemented mainly forevaluation purposes, the
other three tools are useful because they help collect topology and bandwidth information
of source and sink trees, which is our focus. Of course, the TAMI system can also inte-
grate other measurement techniques such as those estimating path capacity [32, 45, 77],
available bandwidth [32, 65, 101, 113], and path loss [102, 80, 107].

7.6 Summary

In this chapter, we described the design and implementationof a TAMI prototype system.
We evaluated the performance the TAMI system on Emulab, and used three representative
applications to demonstrate TAMI’s functionality. We showed that TAMI’s scheduling
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functionality significantly reduces measurement responsetime, and its topology-awareness
greatly simplifies network monitoring and diagnosis. Usingthree applications, we demon-
strated the benefit that the TAMI system can provide. Specifically, they exemplify ap-
plications that require a global view of network performance information (the diagnosis
application), fast measurement speed (the diagnosis and the monitoring applications), a
convenient application interface (ESM and the monitoring application), and the ability to
obtain available bandwidth for large-scale systems (ESM and the monitoring application).
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Chapter 8

Conclusion and Future Work

Available bandwidth is an important metric for network monitoring and diagnosis due to
its role in quantifying data transmission performance. This dissertation studied how to
estimate available bandwidth and locate bandwidth bottleneck links, and how to provide
systematic support for these measurement operations. Specifically, we developed tech-
niques to estimate end-to-end available bandwidth and locate bandwidth bottlenecks. We
also studied the general properties of Internet bottlenecks. Insight into bottleneck proper-
ties helped us solve the problem of estimating available-bandwidth for large-scale network
systems. We proposed a monitoring and diagnostic platform that supports all the above
bandwidth measurement operations. In this chapter, we firstprovide a detailed description
of each contribution of this dissertation, and then discussfuture work that can build on the
results of this dissertation.

8.1 Contributions

8.1.1 Adaptive Packet-Train Probing for Path Available Bandwidth

As a first step towards estimating end-to-end available bandwidth, we have designed a
single-hop model to study the detailed interaction betweenprobing packets and back-
ground traffic packets. We found that the arriving rate of thepacket-train at the destination
is a function of its sending rate at the source and backgroundtraffic load, and that the
path available bandwidth corresponds to the smallest sending rate where the arriving rate
equals the sending rate. That smallest sending rate is what we called the turning point.
Based on this insight, we developed the IGI/PTR measurementtool, which adaptively ad-
justs a packet-train’s sending rate to identify the turningpoint. We have shown that this
tool has a similar measurement accuracy (over 70%) as other tools like Pathload, but has
a much smaller measurement overhead (50-300KB) and measurement time (4-6 seconds).
That makes IGI/PTR very attractive to network applications.

We also studied the various factors that affect the measurement accuracy of IGI/PTR.

177
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We found that (1) probing packet size can not be too small, because small packets are
subject to measurement noise; however, once they are reasonably large, say 500 bytes,
measurement accuracy is no longer sensitive to packet size.(2) Multi-hop effects are an
important factor that can introduce measurement error. Multi-hop effects can be classified
into pre-tight-link effect and post-tight-link effect. Wefound that it is the post-tight-link
effect that introduces most of the multi-hop measurement errors, because pre-tight-link
effect can be mostly smoothed by the background traffic on thetight link, thus having very
small impact on measurement accuracy. For the same reason, unevenly generated probing
packet-trains do not significantly affect measurement accuracy, either.

Finally, to demonstrate the applicability of the idea of adaptive packet-train probing,
we integrated the PTR algorithm into TCP, and designed a new TCP startup algorithm—
TCP Paced Start (PaSt). We showed that this algorithm can significantly reduce TCP
startup time and avoid most of packet losses during startup.

8.1.2 Locating Bottleneck Link Using Packet-Train Probing

Our technique for locating bottlenecks—Pathneck—is a direct extension of the packet-
train probing technique used for PTR. By appending small butcarefully-configured mea-
surement packets at the head and the tail of the PTR packet train, we create the ability to
associate bandwidth information with link location information. The two most intriguing
properties of Pathneck is that it only needs single-end control and that it is extremely light-
weight: it uses upto ten packet trains to finish the measurement, which is several orders of
magnitude lower than other bottleneck locating tools. Using both Internet experiments and
testbed emulations, we showed that the location accuracy from Pathneck is over 70%. The
main reason that Pathneck makes mistakes is the existence ofa link that has very similar
available bandwidth with that of the real bottleneck link. We also evaluated the tightness
of the path available-bandwidth bound measured from Pathneck. Experiments on RON
showed that the bound is actually fairly tight. Therfore, for applications that do not re-
quire precise values of available bandwidth but have only single-end access, Pathneck is a
good option.

8.1.3 Internet Bottleneck Properties

The single-end control and small overhead properties of thePathneck tool make it possible
for the first time to conduct an Internet-scale measurement study of bottleneck properties.
Our measurement study used around 100 measurement sources from RON, Planetlab, and
an Tier-1 ISP, and selected destinations based on global BGPtables to cover the whole
Internet. We found that (1) over 86% of Internet bottlenecksare within four hops from
end nodes, which validates the popular assumption that Internet bottlenecks are mostly
on Internet edges. (2) Internet end-user access links are still dominated by slow links,
with 40% of which slower than 2.2Mbps. (3) Internet bottleneck locations are not very
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persistent because of route changes and path load dynamics.Depending on whether we
focus on link-level or AS-level bottlenecks, only 20% to 30%of bottlenecks are perfectly
presistent. (4) Bottleneck links, link loss and link delay are all considered as signals of
path congestion, but only bottleneck links and packet loss can be correlated (for 60% of
cases), while the correlation probability between bottleneck links and high-queueing delay
links is very low (only upto 14%).

8.1.4 Source and Sink Trees and The RSIM Metric

To address the problem of large-scale available bandwidth estimation, we proposed the
source-tree and sink-tree structures, at both the IP-leveland the AS-level, to capture the
topology information of end nodes. Source and sink trees arecomposed by all the up-
stream and downstream routes that an end-node uses. We used extensive traceroute and
BGP data to show that the tree structures are indeed very close to real trees, and if we
only focus on the first four layers—where most bandwidth bottlenecks locate—the tree
sizes are also limited: over 90% have only 10–20 different branches. This tree concept not
only helps us develop a large-scale available bandwidth inference system, it is also very
important in route-event diagnosis and multi-path routing.

Similar to the idea of source and sink trees, we also proposedthe RSIM metric to
quantify route similarity between an arbitrary pair of end nodes. RSIM can be measured
using only a small number of random traceroutes, and it captures the similarity of both
upstream and downstream routes. We show that RSIM can be easily used for path-edge
inference.

8.1.5 Large-Scale Available Bandwidth Inference

Based on the insight that most Internet bottlenecks are on Internet edges, and equipped
with the source and sink trees, we developed the BRoute system, which can infer the
available bandwidth of allN2 paths in aN-node system with only (O(N)) overhead.
The key operations of the BRoute system are to label the tree branches with bandwidth
information, and then infer which two branches (one from thesource node’s source tree,
the other from the destination node’s sink tree) are used forthe real end-to-end path. The
first operation is currently done using Pathneck, whose bottleneck information can help
us decide if the bandwidth information should be used for thesource tree or the sink tree.
For the second operation, we developed an inference algorithm based on AS-level source
and sink trees, where we first identify the common-AS where the end-to-end path has the
highest probability to pass, we then map the common-AS to theIP-level tree branches.
Planetlab experiments showed that this algorithm has over 85% of inference accuracy.
Overall, available bandwidth inference accuracy is over 50% for 80% of the paths in our
case study.
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8.1.6 Topology-Aware and Measurement Scheduling

To lower the bar of using the techniques that we have developed, including IGI/PTR, Path-
neck, and BRoute, we developed the TAMI system to systematically support these avail-
able bandwidth measurement operations. We identified two important features that are
needed by such an infrastructure but are not supported by existing measurement systems—
the topology-awareness and the measurement scheduling functionality. For BRoute, the
topology-awareness is responsible for obtaining the tree information of end nodes, while
the measurement scheduling functionality is important foravoiding packet-train probing
interference. These two features can both be used for other applications. For example, the
topology-awareness is critical for tomography, and the measurement scheduling function-
ality is important for systems to support multiple applications whose measurements may
interfere with each other. We showed that the TAMI system canbe used to improve the
joining performance of End System Multicasting, large-scale available-bandwidth moni-
toring, and route-event diagnosis.

8.2 Future Work

At least four areas of research can leverage on the results inthis dissertation: improving the
current systems, available bandwidth measurement in different environments, supporting
new applications, and next-generation network architecture design.

8.2.1 Improving The Current Systems

Quite a few features of the monitoring and diagnosis work presented in this dissertation can
be improved. First, we can improve the BRoute available-bandwidth inference accuracy
by using both IGI/PTR and Pathneck for tree-branch bandwidth estimation. That is, we
can use IGI/PTR to obtain a more accurate estimation for pathavailable bandwidth, while
using Pathneck to tell if the path available bandwidth should be used for source-segment
or sink-segment. Second, the evaluations of the BRoute system and the RSIM metric are
still limited by the diversity of the end nodes that we have access to. When more vantage
points are available, it is necessary to do larger-scale evaluations than those presented in
this dissertation. Third, this dissertation only presentsa diagnosis system for route events,
which are easier than diagnosing available-bandwidth related events. Part of the reason
is that we have very limited experience in network operations and very limited network
internal information to study available-bandwidth related events. With more experience
and information, we expect to be able to identify more events, for example, network path
congestion. Although Pathneck is developed towards this goal and we have shown that
Internet bottlenecks have a close relationship with packetloss, we were not able to make
claims in terms of diagnosis because we did not have network internal information to con-
firm the congestion events that we identified. When such information is available, it will
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be very interesting and important to study how well congestion events can be identified.
Fourth, some bottleneck properties need to be explored deeper. For example, the analysis
on the relationship between bottleneck link and link delay is still premature, partly due to
the difficulty of obtaining a good estimation of link delay. It will be interesting to explore
other data sets or experimental methods to get a better understanding of this problem.

8.2.2 Available Bandwidth Measurement in Different Environments

The discussion of this dissertation has three important assumptions about the measurement
environment: (1) we only consider wired network, where linkcapacity is constant, and the
dominant factor affecting available bandwidth is background traffic; (2) network routers
use FIFO packet scheduling algorithm, where all packets goes through a same queue in
the order of their entering time; and (3) we have dedicated measurement end hosts, which
have low CPU load, and the packet timestamp measurement granularity is only determined
by OS and is predictable. In practice, it is not rare that someof these assumptions can not
be satisfied, and we need more research work to understand howto accurately measure
available bandwidth in those environments.

For example, wireless networks directly break assumption (1) and often do not follow
assumption (2). On wireless networks, link capacity can be dynamically adjusted, and
both environment noise and access-point distance can degrade data transmission rate. Fur-
thermore, wireless networks often use either DCF (Distributed Coordination Function) or
PCF (Point Coordination Function) protocols for packet scheduling, neither of which is
FIFO. That means we probably need a completely new set of techniques to address avail-
able bandwidth estimation problem on wireless networks, starting from the very definition
of “available bandwidth”.

Assumption (3) can also be violated if a measurement application is not the only code
running on an end host. A typical example is the Planetlab nodes, which are shared by a
large number of projects. Under this condition, the packet timestamps measured by an ap-
plication can have a big difference with the real sending or receiving times on the network
interface cards. That is one of the major barriers for using existing available bandwidth
measurement techniques on Planetlab. A possible solution is to use some filtering method
to identify and discard those measurements using incorrecttimestamps.

8.2.3 New Applications of Available Bandwidth

In this dissertation, we have explored several types of applications that require available
bandwidth information. These include TCP startup, End System Multicasting, overlay
routing, and multihoming. There are certainly more applications worth studying. Two
important emerging applications are VoIP and IPTV. VoIP is often designed in a way that
voice traffic share the same link with other IP traffic (e.g., web traffic). It is preferable to
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maximize the utilization of access-link capacity so that voice traffic only uses the band-
width it is supposed to, which is often fairly small (e.g., 64Kbps). Achieving that requires
an accurate information of the access link capacity so that we can know exactly the amount
of bandwidth that can be used for best-effort IP traffic. Thatis, bandwidth information is
critical for the packet scheduling in VoIP devices. For IPTV, each channel generally oc-
cupies several Mbps of bandwidth, to support multi-channelIPTV, available bandwidth is
again very important for various scheduling and monitoringoperations.

8.2.4 Implications for Next-Generation Network Architecture

Our research experience has shown that it is hard to monitor the Internet, and a fundamen-
tal reason is that the current Internet architecture does not have a good set of performance
monitoring capabilities. That is, today’s networks do not keep track of some types of key
information, or do not provide information in the best way. For example, router queue-
ing delay is a fundamental network performance metric. However, even with a decade
of research and engineering effort, there is no good way to obtain router queueing delay
information on today’s Internet. Technically, this is not ahard problem—a router simply
needs to time special packets when they enter and leave a router. With this capability, many
heavy-weight active measurement techniques can be implemented using light-weight ping-
like measurements. Another example is the timestamps returned by routers when they are
queried byICMP TIMESTAMPpackets. Although the ICMP protocol defines three dif-
ferent timestamps, router vendors only use one of those timestamps. That forces people to
spend time and energy to design techniques like cing [28] to measure metrics like ICMP
generation delays. Also these timestamps are in millisecond, which is not precise enough
for applications that need micro-second information. The third example is the router IP
addresses that are obtained from traceroute measurements.Such IP address is often an
interface IP address instead of the loopback address of the router. A consequence of this
implementation is that traceroutes from different end users result in different IP addresses,
referred as IP aliases, for the same router. That makes it very hard to correlate route data
measured from different vantage points. Although techniques like Ally [109] have been
developed to solve this issue, they are subject to practicallimitations and do not always
work.

Note that implementing these features is not a hard problem.The key challenge is
providing such functionalities while respecting other architectural requirements such as
scalability and security. The reason is that these featuresnot only give end users more
methods to obtain network internal information, but they also provide malicious users
more power to abuse network systems. Therefore, we must consider these features not just
from a performance perspective, but from a higher architectural level.

In this context, interesting future work is to (1) identify the fundamental performance
metrics that are needed for next-generation networks and applications, and (2) design and
develop techniques to measure these metrics, and explore the possible mechanisms and
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protocols that are needed to maintain, update, and distribute this information in a secure
and efficient way. During this process, one will want to look at other new network architec-
ture research proposals, such as the 100x100 project [19], the FIND (Future Internet Net-
work Design) initiative [20], and the GENI (Global Environment for Networking Investi-
gations) initiative [21], to understand how the design fits in the larger picture. This effort
hopefully can identify the general principles that can be used to guide the design and de-
velopment of performance monitoring and diagnostic components for the next-generation
network architectures.

8.3 Closing Remarks

Available bandwidth measurement has been shown to be a solvable problem. However
related techniques have not been widely used or integrated into popular applications. One
reason is that Internet bottlenecks are still on the edge, and link capacity seems to be al-
ready a good metric to get a rough idea about the performance of data transmissions. At
the same time, link capacity information is often pre-knownand does not require measure-
ment. The second reason is that, as our measurements show, current Internet end-user ac-
cess links are still dominated by slow links, which have verylimited dynamics in terms of
available bandwidth change. Both factors contribute to theimpression that available band-
width is not important. However, I believe this situation will soon be different, with the
deployment of high-bandwidth applications like IPTV. I am looking forward to see more
and more network applications to integrate available bandwidth measurement techniques
to obtain network performance information and to improve their adaptability. For the
same reason, I believe the techniques presented in this dissertation on available-bandwidth
monitoring and diagnosis have a bright future.
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