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Abstract

The rapid proliferation of mobile handheld computing devices, such as cellphones and
PDAs, has led to an unfortunate conflict. On one hand, we have light mobile computing
devices that can be carried anywhere. However, on the other hand, these devices are fre-
quently unable to execute applications that are of highest value to a mobile user such as
language translators and speech recognizers. One way to resolve this conflict is to use
cyber foraging – utilize compute resources available in the environment to augment the
capabilities of mobile devices.

A key challenge in enabling cyber foraging is that there exist many applications of high
value to a mobile user that must be quickly, easily, and effectively retargeted to support
cyber foraging. This retargeting is made more difficult as applications can be written in any
programming language and style. In this thesis, quickly refers to the retargeting time, easily
refers to the retargeting effort, and effectively refers to the retargeted application’s runtime
performance.

This dissertation shows that it is possible to quickly, easily, and effectively retarget
computationally-intensive useful applications for cyber foraging. I developed a process
called RapidRe that allows even novice developers to easily, quickly, and effectively retar-
get large unfamiliar applications for cyber foraging. To create RapidRe, I first developed a
powerful remote execution system, called Chroma, that is able to achieve excellent appli-
cation performance in mobile environments. Chroma uses the concept of tactics to greatly
reduce its search space when deciding the optimal remote partitioning of applications. Tac-
tics are enumerations of the useful application partitionings. At runtime, Chroma picks the
tactics that would have the optimal performance for the given resource environment and
user preferences.

I then developed a domain-specific language, called Vivendi, that allows developers to
specify the adaptive characteristics of an application that are relevant for mobile computing.
These characteristics include the parameters, fidelity variables, and tactics of the applica-
tion. The parameters give hints about the expected application resource usage. These hints
are used by Chroma to decide the optimal tactic. The fidelity variables are application set-
tings that Chroma must set based on the available resources. Finally, tactics are described
in two parts; the first part is the list of application procedures that can be remotely executed
and the second is the possible ways to combine these procedures to do useful work.

RapidRe is language agnostic and consists of four steps. In step 1, application develop-
ers specify the adaptive characteristics of the application using Vivendi. In step 2, the stub
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generator processes this description and creates most of the interface code needed for the
application to work with Chroma. In step 3, the developer inserts automatically generated
API calls, created in step 2, into the application to create the client and server components
of the applications. Finally, in step 4, the client and server components are compiled, to-
gether with the automatically generated code and the Chroma libraries, to create the final
retargeted adaptive application.

I validated my dissertation in the following way. I first conducted an extensive user
study that showed that novice developers can use RapidRe to quickly, easily, and effectively
retarget large applications for cyber foraging. In particular, novice developers can retarget
large, complex, and unfamiliar applications in under 4 hours with no knowledge of Chroma
and minimal knowledge of the application. I also show that these novice-retargeted appli-
cations achieve comparable performance to expert-retargeted applications. I then present
extensive runtime system measurements that show that these expert-retargeted applications
can achieve excellent performance under various cyber foraging scenarios. Finally, I vali-
dated that RapidRe is versatile by performing all of the previous validations using a large
and diverse set of computationally-intensive useful mobile applications.
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Chapter 1

Introduction

The rapid proliferation of mobile handheld computing devices, such as cellphones and
PDAs, has led to an unfortunate conflict. On one hand, we have light mobile computing
devices that can be carried anywhere. On the other hand, these devices are frequently
unable to execute applications that are of highest value to a mobile user. These applications
include natural language translation and speech recognition which would, for example, be
extremely helpful to a foreign traveller. Optical character recognition of signs in a foreign
script could help a lost traveller find his way. An augmented reality application coupled
with a light heads up display might allow mobile users to augment their vision with extra
information such as the names of people they meet etc. Unfortunately, the CPU, memory
and energy demands of these applications far outstrip the capabilities of devices that people
are willing to carry or wear for extended periods of time as these devices are optimized for
size and weight and not computing power.

One way to resolve this conflict is to use the computing capabilities of nearby servers,
via remote execution, to augment the capabilities of mobile devices. This transient and
opportunistic use of resources is known as cyber foraging. Even though compute servers
for public use are currently not common, this dissertation addresses future environments
where cheap commodity machines will become widely dispersed for public use as compute
servers. Indeed, as the price of computing continues to fall, they may become as common
as water fountains, lighting fixtures, chairs or other public conveniences that we take for
granted today. When public infrastructure is unavailable, other options may exist. For
example, the body-worn computer of an engineer who is inspecting the underside of a
bridge may use a compute server in his truck parked nearby. Finally, if there are absolutely
no compute resources available, the mobile device can still fall back onto its own limited
resources.

Successfully implementing cyber foraging requires many pieces. For example, ser-
vice discovery and security mechanisms are necessary to detect available servers and to
securely use them. In this thesis, I build on others’ work for these other pieces, and concen-
trate solely on the following key challenge: how to quickly, easily, and effectively retarget
applications to support cyber foraging. This retargeting is difficult because applications are
written in any programming language and style. In this thesis, quickly refers to the retar-
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geting time, easily refers to the retargeting effort (i.e., how difficult was the retargeting.
This may or may not be correlated with the retargeting time), and effectively refers to the
retargeted application’s runtime performance.

A quick, easy, and effective retargeting solution is vital due to the short useful life of
mobile devices. Smart cell phones, wearable computers, PDAs and other mobile devices
are emerging at a dizzying rate that shows no sign of slowing [69, 96, 126, 223]. However,
these devices also have very short market life spans; typically just a year or less. Hence,
developers cannot spend months or even weeks either building brand new applications or
retargeting existing applications for these new devices.

The key solution insight is that a large number of these applications share commonali-
ties that allow a combination of abstraction, language support, stub tools, and a dedicated
runtime layer to be used to satisfy the retargeting goal. In the rest of this chapter, I first
discuss previous approaches to retargeting applications for cyber foraging. I then briefly
describe my solution. I next state the thesis statement and describe the validation plan.
Finally, I end with a roadmap describing the rest of this dissertation.

1.1 Previous Approaches to Supporting Cyber Foraging
Previous approaches at providing application support for cyber foraging can be broadly
categorized into two main groups. The first group uses thin client solutions, such as
VNC [179], SSH [1], or web-based services such as GoToMyPC [47], to allow mobile
devices to execute applications running on remote servers. These solutions do not require
any application modification and are extremely easy to use and deploy. To be usable, they
require low latency network connectivity to the remote server. However, this connectivity
may not be present, or may be present in limited and expensive forms, in many environ-
ments, such as planes and city outskirts, that a mobile user might find himself in. In such
situations, thin clients either cannot be used at all (no bandwidth) or have unacceptably
poor interactive performance (high latency link). They are unable to adapt to the lack of
appropriate bandwidth and it is entirely up to the user to manually decide on the appropriate
corrective action.

To overcome this major shortcoming, thicker client solutions have been developed. In
these solutions, part of the application also runs locally on the mobile device. Hence,
when a remote machine cannot be used, the local application component can still provide
a degraded quality output and/or a corrective action.

The extreme form of this solution is the completely thick client solution where the
entire application runs on the mobile device. However, this solution is impossible for
computationally-intensive applications as they are unable to run effectively on resource-
limited mobile devices.

To support these computationally-intensive applications, two types of thick client solu-
tions have been proposed. Both of these solutions use a smart runtime system, running on
the mobile device, to dynamically change the application quality and to migrate parts of the
application to remote servers. They differ in how the runtime interacts with applications.
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In the first method, known as application-transparent adaptation, the runtime uses ex-
isting application APIs to control and communicate with the application. This method
requires no application modification. However, the adaptation it can perform is limited
by the existing APIs. Additionally, many applications do not have APIs that allow them
to be externally adapted. Examples of systems that use this kind of adaptation include
Coign [115] and Puppeteer [54].

The second method, called application-aware adaptation, requires applications to be
explicitly modified to work with the runtime. This method is thus able to work with any
application and exploit the full adaptive capabilities of the runtime. However, it requires far
more effort than application-transparent adaptation as each application must now be man-
ually modified. Additionally, this requires the source for each application to be available.
Odyssey [160, 76, 152] and Rover [121] are examples of systems that use application-aware
adaptation.

For this thesis, I use application-aware adaptation as I wanted to effectively support a
broad and diverse range of useful mobile applications. The key goal of this thesis is to
show that it is possible to achieve the full power of application-aware adaptation without
significant retargeting overheads.

1.2 Solution: RapidRe
To achieve this goal, I propose a solution, called RapidRe, that is based on the well-known
approach of little languages [25]. By developing abstractions that are well-matched to
the problem of cyber foraging, I enable a compact static description of the user-specified
meaningful partitions and fidelities of an application. A stub-generation tool uses this de-
scription to create application-specific interfaces (API) to the underlying adaptive runtime
system that provides the dynamic components necessary for adaptation in changing mobile
environments. These APIs are then inserted into the application to complete the retargeting
process.

RapidRe is able to easily and quickly retarget applications for cyber foraging. In addi-
tion, the retargeted applications have excellent performance under various mobile scenar-
ios.

1.3 The Thesis
The thesis statement can thus be stated as follows:

It is possible to easily, quickly, and effectively modify an important class of existing
computationally-intensive applications, such as language translators, speech recog-
nizers, face detectors, and graphics applications, for cyber foraging.

This dissertation establishes the thesis via the following steps:
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• First, it identifies the salient characteristics of a cyber foraging environment that need
to be addressed by the solution. It then clearly identifies the kinds of applications that
this thesis is focusing on.

• It then identifies the commonalities of these applications that allow a general solution
to be developed.

• Next, it presents a solution, called RapidRe, that exploits these commonalities. In
particular, RapidRe uses a combination of abstraction, language support, stub tools,
and a dedicated runtime layer to accomplish its goals.

• It then demonstrates the versatility of RapidRe by using it to retarget a large and
diverse set of eight computationally-intensive useful applications.

• It then demonstrates, via a software usability study, that RapidRe allows even novice
developers to quickly and easily retarget these applications, in under four hours, to
support cyber foraging. In addition, the quality of these retargeted applications is
comparable to applications retargeted by expert developers.

• Finally, it shows that retargeted applications are effective as they can achieve excel-
lent performance in a cyber foraging environment. In particular, they achieve com-
parable performance to an oracle that always achieves the best possible performance

1.4 Dissertation Roadmap
The rest of this dissertation is organized into six chapters and four appendixes as follows:

Chapter 2 describes the characteristics of cyber foraging environments. In particu-
lar, it defines the types of applications, computationally-intensive interactive applications,
that this dissertation is concerned with. It then details the requirements of any solution
geared towards allowing applications to be rapidly retargeted for cyber foraging. These
requirements are that the solution must be language independent, work with even novice
developers, and result in high quality applications. Next, it describes the insight that facili-
tates a solution; namely that for the class of applications being considered, the application
information needed to make them adaptive is small and can be concisely described. The
chapter than describes the RapidRe process that uses this insight to provide a solution. It
first describes the three components, a little language called Vivendi, the Chroma runtime
system, and a smart stub generator, that make up RapidRe. It then describes, in detail, the
four stage process that developers must use to retarget their applications.

Chapter 3 presents the ten applications used to validate this dissertation. It describes
the characteristics of each applications and gives the tactics file for each application. This
chapter also demonstrates that RapidRe is applicable to a wide range of applications in
terms of functionally, language the application was written in, and application size.

Chapters 4 and 5 present the validation for this dissertation. Chapter 4 presents the
results of a detailed software usability study that shows that novice developers are able to
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use RapidRe to quickly and easily retarget large computationally intensive applications for
cyber foraging. It also shows that quality of the retargeted applications is comparable to
that achievable by an expert developer. In Chapter 5, I show that these expert-modified
applications achieve excellent absolute runtime performance in a variety of mobile envi-
ronments. These two chapters validate the thesis statement and show that it is possible to
quickly, easily, and effectively retarget computationally-intensive interactive applications
for cyber foraging.

Finally, Chapters 6, and 7 present the related work and the dissertation conclusion (that
summarizes the main contributions of the dissertation and presents future work) respec-
tively.

This dissertation also has five appendices.
Appendix A, describes Chroma. Chroma is the dynamic adaptive runtime component

of RapidRe, built for this dissertation, that dynamically partitions applications in a dynamic
environment. It is the key system component that allows applications to achieve excellent
performance in a cyber foraging environment. This appendix first describes the goals of
Chroma and then proceeds to give an overview of every component of Chroma. In partic-
ular, it describes how Chroma decides on the optimal partitioning and fidelity settings for
an application. It also describes how Chroma discovers, secures, and uses available servers
in the environment. Finally, it describes the API used by applications to communicate with
Chroma. Appendix B provides the complete details of the Vivendi syntax. Appendix C
presents the details of how each individual user study was conducted while Appendix D
and Appendix E provide the actual documentation and questionnaires, respectively, that
were given to each participant during each user study experiment.
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Chapter 2

Retargeting Applications for Cyber
Foraging

In this chapter, I describe what cyber foraging is. I then list the salient characteristics of
a cyber foraging environment. I then describe the kinds of applications that this thesis is
concerned with. Finally, I present the RapidRe solution that allows developers to quickly,
easily, and effectively retarget applications to support cyber foraging.

2.1 What Is Cyber Foraging?
As mentioned earlier, cyber foraging is the opportunistic use of resources in the environ-
ment to augment a device’s capabilities. The scenario below describes how cyber foraging
could be used in practice.

“Jane is traveling in Portugal with her PDA. However, Jane speaks very little Por-
tuguese and is depending on the language translation application on her PDA to assist
her in communication. However, the PDA, by itself, can only run the language translation
application at the lowest quality due to its limited resources. In particular, the PDA does
not have enough memory to use all of the language translator’s data files. Fortunately,
Jane’s PDA is cyber foraging enabled and can use servers in the environment to both run
the language translator faster and with higher quality.

Currently, Jane is lost in the back alleys of Lisbon. She approaches a local and attempts
to ask the local for directions. However, because there are no servers available, the lan-
guage translator has to be run locally on the PDA. This results in degraded quality and
Jane is only able to ask “Where is the nearest cafe?” to the local. She hopes that a cafe will
provide servers that can be used to perform more powerful translations. The local, indi-
cates via hand gestures, where the nearest cafe is. Jane thanks the local and heads towards
the cafe. As Jane approaches the cafe, her PDA discovers available servers, provided by
the cafe, in the environment and establishes a secure connection with those servers. Jane’s
PDA can now use those servers to perform more powerful language translation. Noting
this, Jane approaches another local and starts obtaining directions to her hotel. After ob-

7
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Figure 2.1: The Moore’s Law Effect

taining these directions, Jane continues the discussion and starts asking the local about
activities and festivals that might be of interest to her. Finally, Jane thanks the local and,
no longer lost, heads off towards her next destination.”

2.2 The Cyber Foraging Environment
The above scenario presents some characteristics of the cyber foraging environment that I
will now expand upon.

2.2.1 Small Light Devices
In 1965, Gordon Moore published his famous article in which he stated that the num-
ber of transistors in integrated circuits would double roughly every two years [148]. This
has proved to be true (Figure 2.1) and similar exponential increases have been observed
for other computing components such as RAM and hard disk densities. However, not all
computing components exhibit this kind of rapid growth. In particular, as shown in Fig-
ure 2.2, the density of battery cells (the bottom-most line in the figure) has improved very
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This figure was produced using data generously provided by Thad Starner (the graph
originally appear in Paradiso and Starner [169]). The original data stopped at 2003 and
I have added values for 2004 to 2006 (except for CPU speed which stops at 2004 as
published speed values for the latest processors (Intel Core Duo and AMD Turion 64 X2
Mobile) are not publically available yet). The figure shows the relative improvements in
laptop computing technology from 1990-2003. The wireless-connectivity curve considers
only cellular standards in the US, and does not consider short-range 802.11 “hot-spots”.
The dip in 2001 marks the removal of the Metricom network while the large increase
in 2004 marks the introduction of the 1x Evolution-Data Optimized (EVDO) service.
Overall, the figure shows that the rate of increase of most laptop computing components
is starting to flatten out.

Figure 2.2: Improvements in Technology Over the Years
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slowly. Every now and then, the battery capacity increases a bit due to improvements in
technology (such as the switch from Nickel-Cadmium to Nickel-metal hydride, and finally
to Lithium-Ion). However, within each new technology tree, the improvements have been
mostly linear.

This presents a huge conundrum to mobile device manufacturers as consumers of these
devices frequently demand smaller and lighter devices. For example, a mobile watch like
IBM’s Linux watch [153] is far more likely to be carried everywhere compared to a laptop
computer. Manufacturers understand this, and strive to make each new mobile device (such
as cellphones and PDAs) generation as small and light as possible.

However, to achieve the desired size, manufacturers are forced to use smaller batteries
in these devices. As a result, they also have to use less powerful CPU, memory, disk,
and network components. Otherwise, the battery lifetime of these devices would be too
low to be useful. Each new mobile generation has significantly more CPU, memory, and
disk capacity than the previous generation (due to improvements in these components).
However, due to battery concerns, mobile devices are unable to use the most powerful (or
largest) current-generation computing components. Hence, there is a large gap between
the resource availability of desktop computers and mobile devices. This gap is unlikely to
change in the next ten years without a significant improvement in battery technology (such
as a switch to fuel cells).

This gap leads to the fundamental resource conflict that is the focus of this dissertation.
This conflict is that there are many large computationally intensive applications, that were
originally developed for desktop machines, that would also be highly useful for mobile
users. Unfortunately, mobile devices do not have the resources to effectively run these
applications. These applications are described in more detail in Section 2.2.3.

2.2.2 Variable Resources and User Preferences
Another salient feature of mobile computing environments is that they are characterized by
highly variable resource availability. This has been noted by many researchers such as Fox
et al. [80], Katz [128], and Satyanarayanan [189]. In particular, wireless bandwidth avail-
ability can vary by orders of magnitude in just a few seconds. This has been demonstrated
for many different environments such as universities [65], commercial factory floors [232],
metropolitan wireless networks [8, 137], local area wireless networks [120, 178], home
wireless networks [236], and even ideal undistorted wireless environments [97].

Additionally, these mobile devices have to adjust to the needs of users. For example,
the user may require highly accurate application results. This in turn needs to be translated
into appropriate settings for the individual applications running on the device. The user
may then require that low application latency be the highest priority. This new policy will
require the mobile device to change the settings for every application from accuracy to low
latency.

This combination of resource variation and changing user preferences requires mobile
devices to be able to dynamically change application behaviour. For example, an appli-
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cation running remotely on a server may need to dynamically change which server to use
depending on the available wireless bandwidth and the current load on the remote server.
Alternatively, mobile applications may need to decrease their quality to meet a user speci-
fied latency goal.

2.2.3 Application Taxonomy
In this section, I present a taxonomy of mobile applications and clearly identify the appli-
cation areas that this dissertation is addressing. I characterize potential mobile applications
along three axes. The first axis is “Is the application a useful mobile application?”. In this
dissertation, I only consider applications that are useful for mobile users. Hence, appli-
cations such as web server load-balancing tools and integrated development environments
like Eclipse [66] and Visual Studio [145] are not considered.

The set of useful mobile applications is then further classified according to two axes:

• Interactive: Does the application have an interactive or continuous nature? For this
dissertation, an interactive application has the property that it waits for input from the
user before performing work. The results of this work are then presented to the user
and the application then returns to waiting for input from the user. For example, a
language translator that performs translation only when provided input by the user. A
continuous application is one that performs work without waiting for any user input.
For example, streaming a movie over the network.

• Resource Intensive: Does the application require significant resources to achieve
adequate performance? For this dissertation, I limit the resources to network band-
width, CPU, and memory usage. The main resource omitted was energy as the client
hardware used for this thesis did not allow accurate measurements of battery con-
sumption. In particular, the hardware did not support ACPI or have smart batteries.
This omission is acceptable as conservation of energy, in a similar context, has al-
ready been demonstrated by Flinn [74].

Table 2.1 shows the four possible combinations of these two classifications along with
examples of applications that satisfy each combination. I focus solely, in this dissertation,
on resource intensive interactive applications. This restriction arose due to three reasons.
First, non-resource intensive applications can be easily run on mobile devices. Hence, there
is nothing interesting to investigate with these applications. Second, there is very little that
can be done to support resource-intensive continuous applications as these applications tend
to be bandwidth limited. It is possible to make these applications use less bandwidth by
reducing the bitrate of the multimedia streams. However, these methods have already been
heavily investigated by previous researchers[54, 144, 160, 220] and we can just reuse those
techniques.

Finally, the remaining class of computationally-intensive interactive applications is in-
teresting for a number of reasons. The first reason is that this class of applications has
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Resource Intensive Non-Resource Intensive
Interactive Language Translation Calendar

Pattern Recognition Applicationsa TODO List
3D Augmented Realityb Email

Speech Synthesisc

Continuous Streaming Media Clock on Screen
Voice Over IP Resource Monitorsd

aE.g., face recognizers, speech recognizers, and optical character recognizers
bthese are applications that can display a 3D display on a light heads up display worn by a mobile user
can application that converts text into speech
dE.g., little applets that continuously show the bandwidth and CPU usage

This table shows examples of various applications that fit each of the 4 possible com-
binations of resource intensive and interactive. This dissertation concentrates solely on
applications that are both resource intensive and interactive (the shaded quadrant).

Table 2.1: Application Taxonomy

not been well supported on mobile devices as they require more resources than is available
on most mobile devices. Manufacturers usually create “lite” mobile-device optimized ver-
sions of these applications for use on mobile devices. However, these lite versions usually
don’t provide the full functionality and quality of the regular applications. The goal of this
dissertation is to allow the regular applications to run effectively on mobile devices.

The second reason is that there are a large number of computationally-intensive appli-
cations that would be of great benefit to mobile users. These applications include language
translators, speech recognizers, speech synthesizers, optical character recognizers, and aug-
mented reality applications. Hence, this class of applications is an excellent choice for this
thesis as they are currently not usable on most mobile devices even though they would be
highly useful to mobile users.

2.3 Retargeting Applications for Cyber Foraging
In this section, I describe the RapidRe process that allows existing applications to be retar-
geted for cyber foraging.

2.3.1 Motivating Scenario
Joe is a new hire at the company. His manager wants him to retarget an existing adaptive
language translator for use on handheld devices running Linux and X. Not being a lan-
guage translation expert, Joe collaborates with domain experts in order to understand how
to make language translators adaptive. As a result, Joe realizes that language translators
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adapt by changing the data files that they use to perform the translation. For example, if
resources are available, the translator will use a large more accurate data file that requires
more memory and CPU cycles than the smaller less accurate data files.

Joe decides to use the Pangloss-Lite [81] application as the base. He modifies Pangloss-
Lite to dynamically change the data files that it uses based on the available resources. This
is a tedious and iterative process as Joe potentially has to make extensive changes to the
Pangloss-Lite source to perform new tasks such as detecting the current resource availabil-
ity and deciding on the optimal data file to use. Rather than adding such functionality di-
rectly to Pangloss-Lite, Joe decides to use a common resource management layer. However,
interfacing Pangloss-Lite with this layer proves to be a non-trivial task that still requires
extensive changes to the Pangloss-Lite source.

Finally, Joe achieves the desired modification: Pangloss-Lite now uses an underlying
resource management layer to adapt its behavior to the available resources. His manager is
delighted and asks Joe to make a number of other applications, such as a speech recognizer,
adaptive. These applications are completely different from Pangloss-Lite – many are also
written in a different programming language. Joe must redo all the painstaking work that
he put into Pangloss-Lite for each of these new applications.

However, help is on hand for Joe. Using the RapidRe process, Joe is able to reuse the
knowledge he learnt when modifying Pangloss-Lite to quickly and easily modify the other
applications. The methodology and tools provided by RapidRe makes it easy for Joe to take
an existing application, written in an arbitrary language, that Joe knows very little about
and quickly modify it to be an adaptive mobile application.

2.3.2 Solution Requirements
To make the above scenario a reality, RapidRe has to support the following requirements.

2.3.2.1 Be Language and Application Agnostic

An obvious design strategy for cyber foraging would require all applications to be written
in a language that supports transparent fidelity adaptation and remote execution of pro-
cedures. Java would be an obvious choice for this language, though other possibilities
exist. The modified language runtime system could monitor operating conditions, deter-
mine which procedures to execute remotely and which locally, and re-visit this decision
as conditions change. No application modification would be needed. This language-based,
fine-grained approach to remote execution has been well explored, dating back to the Emer-
ald system [123] of the mid-1980s.

I rejected this strategy because of its restriction that all applications be written in a single
language. An informal survey of existing useful applications (as described in Section 2.2.3)
reveals no dominant language in which they are written. Instead, the preferred language
depends on the existence of widely-used domain-specific libraries and tools; these in turn
depend on the evolution history and prior art of the domain. For example, my validation
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suite, presented in Chapter 3, includes applications written in C, C++, Java, Tcl/Tk and
Ada.

This decision to be language agnostic had three consequences.

1. Application-aware adaptation: First, it naturally leads to an application-aware adap-
tation solution where the application source code is required.

2. Unable to use code-analysis techniques: Next, it eliminated the use of fully auto-
mated code-analysis techniques because these tend to be language-specific. These
analysis techniques also don’t support many languages such as C++ and are also un-
able to identify the fidelity metrics and partitioning points of an application without
higher-level guidance or language support. Hence, without automatic tool support, I
have to manually modify applications to add runtime support for cyber foraging.

3. Coarse-grained remote execution: Finally, it led to a coarse-grained approach in
which entire modules rather than individual procedures are the unit of remote exe-
cution. Without language support, every procedure would need to be manually ex-
amined to verify if remote execution is feasible, and then modified to support it. By
coarsening granularity, I lower complexity but give up on discovering the theoreti-
cally optimal partitioning. This is consistent with my emphasis on reducing program-
mer burden and software development time, as long as an acceptable cyber foraging
solution is still produced.

I show, in Chapter 5 that the absolute performance of these applications, when using
coarse-grained remote executed, is good in mobile environments. It may be possible
to achieve better results using a finer-grained strategy. However, that strategy is not
explored in this dissertation.

Finally, because coarse-grained remote execution is performed at the modular level,
I use a Remote Procedure Call (RPC) [30] model for the remote execution.

2.3.2.2 Support Rapid and Effective Retargeting

The mobile device market is highly dynamic. In particular, a large number of new de-
vices appear on the market every year. For example, Federal Communications Commission
data [69] reveals that there were 52 new cellphone models registered in 2000, 61 in 2001,
146 in 2002, 223 in 2003, 385 in 2004 and 55 in the first two months of 2005. This in-
crease in new models is primarily driven by increasing consumer demand. For example, the
worldwide cellphone market is estimated to reach 2 billion users by 2007 [226] and ∼700
million cellphones were shipped in 2004 compared to ∼500 million in 2003 [223]. Manu-
facturers thus release many different mobile device models, each with different feature sets
and pricing, to ensure that they have an appropriate device for a prospective buyer.

These devices also have very short life cycles. It is not uncommon for a device to be
considered “outdated” after 6 months, for it to not be sold in store after 1 year, and for
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the manufacturer to remove all support for the device after 2-3 years. This phenomena
results in mobile devices having to sell well within 6 months. Otherwise, they end up being
commercial failures.

This short device life and its implications for software development were dominant
considerations in my design. My target context is a vendor who must rapidly bring to mar-
ket a new mobile device with a rich suite of applications. Some applications may have
been retargeted to older devices, but others may not. To attract new corporate customers,
the vendor must also help them rapidly retarget their critical applications. The lower the
quality of programming talent needed for these efforts, the more economically viable the
proposition. Hence, in many companies, the task of porting code often falls to junior devel-
opers. However, the quality of the retargeted applications, in mobile environments, should
not be sacrificed.

This leads to the central challenge of this dissertation: How can junior software de-
velopers rapidly, easily, and effectively retarget large, unfamiliar applications for cyber
foraging? I assume that the application source code is available; otherwise, we cannot sup-
port arbitrary applications (the next requirement listed below). Even with source code, just
finding one’s way around a large body of code is time consuming. My design must help a
developer rapidly identify the relevant parts of an unfamiliar code base and then help him
easily create the necessary modifications for coarse-grained remote execution and fidelity
adaptation. Obviously, the quality of the resulting retargeting must be good enough for se-
rious use. In rare cases, a new application may be written from scratch for the new device.
My design does not preclude this possibility, but I do not discuss this case further in this
dissertation.

2.3.3 Summary of Requirements
The entire set of RapidRe requirements can be summarized as follows: RapidRe must
support:

• Any application that fits the requirements listed in Section 2.2.3

• Any language (C, C++, Ada, Java, Tcl, etc.)

• Any developer (novice or expert)

• Quick retargeting of applications

• Excellent retargeted application performance (in terms of absolute runtime perfor-
mance)

Satisfying all these requirements seems to be an impossible task. Fortunately, there is a
solution.
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2.3.4 Exploiting Application Commonalities
The key insight that allows a general solution to be created is that many computationally-
intensive interactive applications share a common structure. This structure allows the de-
velopment of RapidRe.

The first commonality is that all these applications have an operation model of execu-
tion. In particular, they receive input from a user and then execute some computation. The
results of the computation are then presented to the user. This sequence of input, computa-
tion, and output is an operation.

The second commonality is that all these applications need to perform the same set of
steps to adapt effectively in a mobile environment. They first need to measure the available
resources in the environment. They then need to decide on the optimal application runtime
settings, for the current operation, that best match the available resources and the current
user preferences.

This commonality allows us to move common tasks into a common runtime layer. For
this thesis, I use Chroma [20] as the runtime layer. In particular, this layer can perform the
tasks of measuring the available resources and determining the optimal application runtime
settings. This greatly simplifies the modifications that need to be made to applications to
support cyber foraging – applications just have to provide the appropriate information to
the runtime and receive the chosen runtime settings whenever they perform an operation.
More precisely, applications have to specify just three pieces of information. These are the
parameters, fidelity variables, and tactics of the application.

Parameters are precise application settings that affect the resource usage of the current
operation. Given the current parameter settings, the runtime can determine the expected
resource usage of the application. For example, for a language translation application, the
size of the sentence being translated affects the resource usage. Applications could have one
or more parameters. For example, a graphics application usually has multiple parameters
such as the camera position, the lighting position, and the size of the model being rendered.
The expected resource usage is then used by the runtime to pick the optimal application
runtime settings. Narayanan [151] has demonstrated that accurate runtime parameter values
are vital in correctly predicting application resource usage.

These runtime settings consist of fidelity variables and tactics. Fidelity variables are
particular application settings that need to be set according to the available resources. For
example, a graphics application may want the runtime to determine the optimal resolu-
tion to render the model at. Not all applications may have fidelity variables. Tactics, as
explained in more detail in the next section, are an enumeration of the possible coarse-
grained partitioning choices for the application. At runtime, Chroma will pick the optimal
tactic and fidelity variable settings.

In Appendix A, I explain how Chroma uses parameters, fidelity variables and tactics to
pick the optimal application runtime settings. In Section 2.5, I explain how an application
can specify its parameters, fidelity variables, and tactics.

Finally, these applications are also designed, for code maintenance and modularity rea-
sons, in very well-defined ways. For example, modules are cleanly separated from other
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modules and the GUI portions of the application are usually cleanly separated from the
computational portions. This makes it possible for developers to quickly skim the applica-
tion code and narrow their focus to just the required computational portions. I revisit this
issue again in Section 4.7.1 after presenting the actual performance of RapidRe.

2.3.5 Solution: RapidRe
To address the requirements stated in Section 2.3.2, I developed a process called RapidRe.
RapidRe consists of three main parts.

First, there is a “little language” called Vivendi for expressing the application-specific
information relevant to cyber foraging. A developer examines the source code of an ap-
plication and creates a Vivendi file called the “tactics file.” The tactic file contains the
parameters and fidelity variables of the application. It also contains the function prototype
of each module deemed worthy of remote execution, and specifies how these modules can
be combined to produce a result. Each such combination is referred to as a remote execu-
tion tactic or just tactic. For many applications, there are only a few tactics. In other words,
the number of practically useful ways to partition the application is a very small fraction of
the number of theoretical possibilities. A tactics file has to be created once per application.
No changes are needed for a new mobile device.

The second part of RapidRe is a runtime system tuned for the target environment. For
this dissertation, I use Chroma as the runtime system. By using a runtime, I am able to
cleanly separate the application-specific adaptation information from the general mecha-
nisms, such as resource monitoring and prediction, needed for adaptation. This greatly
reduces the amount of code that needs to be added to each application. Applications can
just query Chroma to discover the appropriate operation setting to use for the current op-
eration. A common runtime system also makes it much easier to coordinate the adaptive
behaviour of multiple applications running on the same device.

The third part is the Vivendi stub generator, which uses the tactics file as input and
creates a number of stubs. Some of these stubs perform the well-known packing and un-
packing function used in remote procedure calls [31]. Other stubs are wrappers for Chroma
calls. Calls to stubs are manually placed in application source code by the developer.

Although not a tangible artifact, there is an implicit fourth component to my solution.
This is a set of application agnostic instructions to developers to guide them in using the
three solution components mentioned above. This includes documentation, as well as a
checklist of steps to follow when modifying any application.

2.4 Using RapidRe
Figure 2.3 shows how the three parts of RapidRe are used as part of a 4-step process that
allows developers to rapidly retarget applications. The four steps are as follows; first, the
developer describes, using Vivendi and the help of a domain expert (explained below), the
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Figure 2.3: The 4 Stages of RapidRe

adaptive capabilities of the application to be retargeted. Second, the description is pro-
cessed by the stub generator that generates most of the code needed to interface the appli-
cation with the runtime system (Chroma). The stub generator also generates application-
specific APIs that need to be manually inserted into the application. Third, the developer
manually inserts these APIs, using a well-defined methodology, to create the client and
server components of the application. Finally, the application is compiled together with the
generated stub code and runtime libraries to create the final retargeted application. After
this process is complete, the application will be able to connect to Chroma and participate
in cyber foraging. I describe each of the four steps of RapidRe in more detail below.

2.5 Step 1: Creating the Tactics File
The first step in using RapidRe is describing the adaptive behaviour of an application using
Vivendi. Vivendi was designed using a top-down approach – a large number of applications
were examined before the Vivendi syntax was finalized. The goal was to create the simplest
syntax that was sufficient for effectively describing a large number of computationally-
intensive applications. I do not claim that the syntax is necessary. This goal of simplicity
was to make it as easy as possible for even novice developers to use Vivendi. However,
where necessary, more advanced syntax was also provided for developers who wished to
exploit advanced application adaptation possibilities. In the rest of this section, I present
the key components of Vivendi using examples that highlight the most common language
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APPLICATION graphix;
OPERATION render;

IN int size DEFAULT 1000; // parameters
OUT float resolution FROM 0.0 TO 1.0; // fidelities

// RPC definitions
RPC step_1 (IN string input, OUT string buf1);
RPC step_2 (IN string input, OUT string buf2);
RPC step_3 (IN string buf1, IN string buf2,

OUT string final);

// TACTIC definitions
// do step 1 followed sequentially by step 3
TACTIC do_simple = step_1 & step_3;

// do steps 1 & 2 in parallel followed by step 3
TACTIC do_all = (step_1, step_2) & step_3;

This is a complete example of a hypothetical graphics application, that renders 3D scenes,
description using Vivendi. It is used as a working example throughout this dissertation
and it is referenced multiple times in this Chapter and also in Chapter 5 and Appendix A.
This description is intentionally kept simple (using names such as step 1 etc. for the
RPCs) as the point of this figure is to illustrate tactics file syntax.

Figure 2.4: Example Tactics File in Vivendi

usage patterns. The formal language specification is presented in Appendix B.

2.5.1 Basic Syntax
In this section, I present the basic Vivendi syntax. This is the syntax that has to be used
for every application. Figure 2.4 shows an example of a tactics file description for a hy-
pothetical graphics application. Each part of the description is explained in more detail
below.

2.5.1.1 Application and Operation

First, the developer has to specify the name of the application using the APPLICATION
tag. Next, the developer has to specify the operations that this application provides by
using the OPERATION tag. Any specifications following an OPERATION tag is assumed
to belong to that operation. This allows developers to easily describe applications with
multiple operations, for example an application that provides both speech recognition and
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language translation, by just using multiple OPERATION tags to separate the information
for each operation.

2.5.1.2 Parameters and Fidelities

Next, the developer has to specify the parameters and fidelity variables of the application.
Recall, from Section 2.3.4, that parameters are application-specific values that are used to
determine the application’s resource usage. Fidelity variables, on the other hand, affect
the quality and resource usage of the application. The precise setting for these variables is
determined by Chroma at runtime.

Parameters and fidelity variables are specified in Vivendi using a syntax similar to de-
scribing variables in C. The only difference is that the IN keyword is used to denote
parameters and the OUT keyword is used to denote fidelity variables. Vivendi supports all
basic data types as shown in the formal syntax presented in Appendix B.

To specify the parameters and fidelity variables, I assume that developers are able to
leverage the assistance of domain experts. In particular, I assume that the domain expert
will be able to advise the developer, in very general terms, as to what the parameters and
fidelities of the type of application being retargeted might be. For example, for graphics
applications, the domain expert might say that the screen size, viewing position, camera
position, and lighting position affect the resource usage of the application while the reso-
lution is a dynamic quantity that should be set based on latency requirements. Given this
broad description, the developer has to then find the exact variables in the application that
provide this information and specify them as parameters and fidelity variables. I believe
that this assumption accurately reflects reality where a developer, tasked with the retarget-
ing task, is able to quickly obtain general information about an application obtained from
either existing documentation or a colleague. The developer then has to use this general
information to retarget the application.

2.5.1.3 Tactics

As stated earlier, using servers to augment the capabilities of limited mobile devices can
result in significant performance improvements when executing computationally intensive
applications. However, before applications can be remotely executed, it is necessary to de-
termine an appropriate partitioning of those applications. This is non-trivial because there
are potentially a very large number of ways to partition any large application. Fortunately,
the use of coarse-grained remote execution greatly reduces this search space. For most
applications, in practice the number of useful ways to partition them, at the modular level,
is small. These small number of useful partitions are called tactics. In addition, I claim
that tactics can be quickly and effectively specified by developers. I validate this claim in
Chapter 4.

The power of tactics lies in their ability to concisely express the small number of useful
partitions of an application. This dramatically reduces the search space for any dynamic
adaptive runtime system, such as Chroma, that is attempting to pick an optimal application
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partitioning given the current resource availability and user preferences. However, before
tactics can be used, it is necessary to clearly identify the type of remote execution that
tactics are describing.

I again assume that the developer is able to use the assistance of a domain expert to
determine if the application requires any special forms of remote execution. For example,
the domain expert might say that for graphics applications, it is common to perform the
rendering on the server. The server then ships back the rendered pixels to the client which
displays it locally. The developer then has to use this general information to figure out the
exact RPCs and tactics for the application.

In this section, I explain how tactics can be used to describe the coarse-grained remote
partitionings of an application. Describing these partitions requires three components:

1. Description of each remote procedure that can be partitioned. For this dissertation,
these are the procedures that perform the computational operations of an application.
For example, the procedures that perform the rendering for a graphics application or
the procedures that perform the language translation for a language translator.

2. Description of the possible ways to execute each RPC to successfully perform the
operation. Each of these possible combinations is a different tactic.

3. Description of optional restrictions on assigning servers to individual RPCs in a tac-
tic.

In the next few subsections, I describe the Vivendi syntax that is used to describe the
three tactic components (as listed above).

RPCs RPCs are described using a syntax similar to declaring procedures in the C pro-
gramming language. For example,

RPC do_it (IN int size, IN float type, IN string name,
OUT string text);

specifies an RPC called do it that has 3 input arguments (denoted by the keyword IN)
called size, type, and name (which are an integer, float and string respectively). The
RPC has an output argument (denoted by the keyword OUT) called text that is a string
variable. Vivendi supports all basic data types and requires that RPC arguments be explic-
itly marked as either inputs or outputs by using the IN and OUT keywords respectively.

Tactic Plans Figure 2.5 shows how tactics can be described using Vivendi. Tactics can
consist of sequential and / or parallel sequences of RPCs. Vivendi itself has no limitations
on specifying arbitrary combinations of sequential and parallel RPCs. However, Chroma
has limitations on the types of tactics that it can support.
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// legal TACTIC declarations

// do RPCs a, b and c in sequence
TACTIC do_in_sequence = a & b & c;

// do RPCs a and b in parallel and then do c
TACTIC do_in_parallel = (a, b) & c;

// do RPCs a and b in parallel and then do c; repeat
TACTIC do_more_parallel = (a, b) & c & (a, b) & c;

// illegal TACTIC declarations

// do RPCs a, b, and c in parallel with no sequential stage after
TACTIC do_only_parallel = (a, b, c);

// parallel RPCs within a parallel stage. not a single parallel stage
TACTIC do_fanout = (a, (b, c, d), c);

This figure gives examples of legal and illegal tactic declarations.

Figure 2.5: Examples of Various Tactic Specifications

Even though there are no Vivendi limitations on describing sequential and parallel
RPCs, Chroma only supports a subset of all possible tactic specifications. In particular,
Chroma only supports one level of parallel RPCs. I.e., there cannot be any sequential or
parallel stages within a parallel stage. In addition, all parallel stages must be followed by a
sequential stage. This restrictions arose because no real application that was tested required
more complicated tactics. If necessary, support for more complicated tactics can be added
to Chroma. Figure 2.5 shows the types of tactics that are supported by Chroma. Chroma
will try to ensure, to achieve best possible performance, that parallel stages (such as RPCs
a and b in tactic do in parallel) use different servers.

Vivendi uses an implicit mechanism to pass arguments between RPCs in tactics. In par-
ticular, arguments are passed between RPCs if they share the same name and are correctly
specified as either inputs or outputs of the RPC. For example, in Figure 2.4, the argument
buf1 is passed between RPCs step 1 and step 3 in tactic do all as it is an output
of RPC step 1 and an input of RPC step 3. This mechanism has the key advantage of
being simpler for developers to use – no additional syntax to specify the exact argument
passing between RPCs in a tactic needs to be learnt and used.
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// set up server groups 1 and 2
SERVER one = foo.cs.edu, bar.cs.edu;
SERVER two = mop.cs.edu;

// do RPC a on a group one server, then sequentially do RPC b on a
// group 2 server
TACTIC affinity_1 = a:one & b:two;

// do RPC a on server group 1. Tag its choice with the symbol h. do
// RPC b on the server with tag h in parallel with RPC c. Finish
// the tactic with RPC d. RPCs c and d can use any available
// server (discovered by the service discovery module).
RPC d TACTIC affinity_2 = a:one@h & (b@h & c) & d;

// RPCs a, b and c will be done in parallel on the same server.
// There are no restrictions in picking the initial server. Note
// that this is just a demonstration of the syntax. In practice,
// doing three parallel stages on the same server would eliminate
// the benefits of doing those stages in parallel (as the three
// parallel stages would be sequentialized on the common server).
// The runtime will ensure that the common server picked can run
// RPCs a, b, and c.
TACTIC affinity_3 = (a@h, b@h, c@h) & d;

// RPC a has to be done locally and b has to be done remotely. The
// reserved keywords local and remote refer to the local and remote
// servers respectively.
TACTIC affinity_3 = a@local & b@remote;

This figure gives examples of server specifications that can be specified using Vivendi.

Figure 2.6: Server Specification Example



24 CHAPTER 2. RETARGETING APPLICATIONS FOR CYBER FORAGING

// tactic has only 1 RPC, a, which is a decomposable RPC. The split
// function is called split and the join function is called join
TACTIC single_decomp = %split:(a):join;

// similar to the first tactic except that after the data is split,
// it is processed by more than just a single RPC. In this case,
// the split data is first sent to RPC a and then it is sent in
// parallel to RPCs b and c. After b and c return, the split data is
// sent to RPC d which creates the final partial output.
TACTIC longer_decomp = %split:(a & (b, c) & d)):join;

// in this tactic, there are 2 decomposition stages (using RPCs a
// and c) and 2 normal sequential stages (using RPCs b and d).
// Note that the split and join functions are different for different
// decomposition stages.
TACTIC mixed_decomp = %split1:(a):join1 & b & %split2:(c):join2 & d;

This figure gives examples demonstrating how data decomposable tactics can be specified
using Vivendi.

Figure 2.7: Data Decomposition Examples

2.5.2 Advanced Syntax
In the following subsections, I describe more advanced Vivendi syntax that developers can
use to specify advanced application characteristics.

2.5.2.1 RPC Server Specification

Vivendi allows server groups to be specified. These groups can then be used to constrain
particular RPCs in a tactic to a particular precise set of servers (the server group specifies
the set of servers) or to specify that particular RPCs must be run on the same servers as
previous RPCs (the server group specifies the server dependencies between RPCs). I don’t
expect this syntax to be used normally but it is useful in cases where license servers are
required or in cases where future RPCs can benefit from state or warm caches left behind
by earlier RPCs. Figure 2.6 shows examples of specifying server constraints using Vivendi.

2.5.2.2 Data Decomposition

Some applications may also be able to benefit from extra servers by splitting the work nec-
essary for an operation among multiple servers. The applications can do this by decompos-
ing the input data, using application-provided code, into smaller chunks and shipping each
chunk to a different remote server. The partial results are then recombined, again using
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application-provide code, to form the final output. This modality is called data decom-
position. As will be shown in Section 5.5.3, data decomposition can result in substantial
performance improvements.

Data decomposition is a useful optimization as a large number of applications, includ-
ing optical character recognition, language translation, and speech synthesis, can benefit
from data decomposition. They benefit because many of these application have input that
can be subdivided into smaller independent chunks. These smaller chunks can then be
executed in parallel and the partial results recombined to form the final output. This has
the potential to result in big speedups for the application (the speedup is dependent on
the number of chunks and the amount of parallelization in the entire chosen tactic). The
only requirement is that the application data must be easily decomposable into independent
chunks. In this section, the Vivendi syntax for describing data decomposition is presented.
Applications use data decomposition by specifying a data decomposable tactic using the
following syntax:

%split_function:(rpc_sequence):join_function

where split function is the name of the application-supplied function that splits
input data into smaller pieces, rpc sequence is the sequence of RPCs that will process
each piece of data, and join function is the name of the application-supplied func-
tion that can recombine the partial results created by the rpc sequence to generate the
final result. The split function and join function must be application-supplied
(written by either the application developer or the retargeting expert) as these functions are
very data and application specific. Figure 2.7 shows examples of how data decomposition
stages can be specified.

Chroma supports data decomposition as follows; When a data decomposable applica-
tion is run, Chroma determines how many servers are available in the environment and
provides the number (y) to the application. The application-supplied split function then
breaks the input into n pieces (where n <= y). Note that n could be less than y as the
application may decide that splitting the input into y pieces may result in pieces that are
too small (the overhead of shipping the piece to a remote server is higher than the com-
putational gains). Chroma then sends the n pieces, in parallel, to different servers to be
executed. Chroma waits for all the n partial results to returns and then sends them to the
application. The application-supplied join function combines the partial results to create
the final result. I present results to show the benefits of decomposition in Section 5.5.3.

2.6 Step 2: Using the Stub Generator
After the tactics file has been created, the developer gives it to a stub generator that creates
most of the interface code needed to interface the application with the targeted runtime
system (Chroma in this case). The stub generator also creates application-specific APIs
that need to be inserted into the application, as described in Section 2.7, to create the client
and server components of the applications.
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RapidRe is able to use a stub generator because the tactics file description presents all
the information to make the application adaptive is concise and complete. The use of a stub
generator is crucial in achieving the thesis of this dissertation as it allows us to hide the
runtime details from developers (as shown in Section 4.7.1.1 and isolates applications from
runtime and device changes. Each of these is described in more detail below.

2.6.1 Hiding the Runtime Details from the Developer
Manually integrating an application with a runtime system can be tedious and time con-
suming. The stub generator greatly reduces this burden by generating most of the code
needed to interface an application with the targeted runtime – Chroma in this case. The
generated code, in particular, includes all the tedious and easy to get wrong marshaling and
buffer management code needed to send data between Chroma and the application. The
developer only has to use the simple application-specific generated APIs. The details of
how these simple APIs perform the actual communication with Chroma can remain a mys-
tery to the developer. I describe the application-specific APIs, how they should be used,
and also provide details of what these simple APIs are actually doing under the covers in
Section 2.7.

2.6.2 Isolates the Application from Runtime Changes
RapidRe was developed to facilitate rapid application retargeting. However, as mentioned
in Section 2.3.2.2, the mobile device market is highly dynamic. It is thus important that
retargeted application require as little modification as possible when moved to a new device
or runtime.

The stub generator is crucial in enabling this as all the runtime and device specific infor-
mation is hidden in the generated stub code. The developer only sees application-specific
interfaces that are completely runtime and device agnostic. These APIs also provide very
generic adaptive functionality (as shown in the next section) and can thus be easily be
mapped to almost any underlying adaptive runtime system.

Hence, even if the runtime or underlying operating system changes (e.g, from Linux
to Symbian or even WinCE), it is possible (only possible and not certain as I have not
verified this claim) that the retargeted application will not need to be modified. Only the
stub generator will need to be modified to support the interfaces of the new runtime or
OS. However, once this is done, previously retargeted applications just have to use the new
generated stub code to support the new runtime or OS. This is a process that can be done
in minutes, even for hundreds of applications, using automated build scripts.

Note however, that normal bugfixes, feature additions, and code changes to compile
under specific OSes will still require manual application modifications. It may also be
necessary to modify the application if the application’s tactics description changes.
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/* APIs to interface with adaptive runtime */
int graphix_render_register ( );
int graphix_render_cleanup ( );
int graphix_render_find_fidelity ( );
int graphix_render_do_tactics (char *input,

int input_len, char *final, int *final_len);

/* APIs to set parameters and retrieve fidelity variables */
void graphix_render_set_size (int value);
float graphix_render_get_resolution ( );

Figure 2.8: Stub Generated Application-Specific Client Header File

2.7 Step 3: Inserting the APIs
In this section, I explain how developers can use the generated API calls to successfully
create the client and server application components.

2.7.1 Client APIs
Figure 2.8 shows part of the generated client header file for the tactics file shown in Fig-
ure 2.4. It shows the generated calls to set parameter values and retrieve fidelity values and
the four main generated API calls that have to be inserted into the application to create the
client component. The four API calls are used as follows:

• graphix render register and graphix render cleanup are inserted at
the start and end (wherever it exits) of the application respectively.

• graphix render find fidelity call is inserted before the code that performs
the operation. It tells the runtime to decide the operation setting for this opera-
tion. The developer must use the graphix render set size call to set the
value of the parameter before calling graphix render find fidelity. After
graphix render find fidelity returns, the developer must read the runtime-
determined fidelity value using the graphix render get resolution call.
These fidelity values should then be used to set the appropriate state for the oper-
ation. For example, the returned resolution value might need to be used to setup a
rendering data structure.

• graphix render do tactics is then inserted to perform the actual operation
using the tactic selected by the runtime. The graphix render do tactics
argument list will contain all possible inputs and outputs for any tactic. This sim-
plification allows one single API call to support any number of tactics. Finally, the
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/* Server RPCs that need to be created */
void do_step_1 (char *input, int input_len,

char *buf, int *buf_len);
void do_step_2 (char *input, int input_len,

char *buf, int *buf_len);
void combined (char *input, int input_len,

char *final, int *final_len);

/* Server APIs */
int service_init (int *argc, char ***argv );
void run_server ( );

Figure 2.9: Stub Generated Application-Specific Server Header File

developer must remove the code that used to perform the operation. Once all these
steps are performed, the developer has successfully created the adaptive client com-
ponent of the application.

If the application is data decomposable, the developer has to also create the split and
join functions specified in the tactic description (as shown in Section 2.5.2.2). The stub
generator will create all the data structures needed to store the partial data and results.

2.7.2 Server APIs
Figure 2.9 shows part of the generated server header file. It shows the RPC functions
and generated APIs that the developer needs to be concerned about. To create the server
component of the application, the developer must do the following: First, service init
must be inserted at the start of the application to initialize the server. The developer must
then preserve any initialization code that is needed for the server to function. run server
is then inserted after the initialization code. This starts a non-terminating event loop that
listens for RPC requests from clients. When it receives a request, it retrieves the argument
list, calls the appropriate RPC, and returns the RPC output to the client.

Finally, the developer must create the RPC functions required by the server. These
functions are usually easily created as the developer can reuse existing code (usually the
code removed during client creation). The developer just has to a) use the RPC inputs to
setup the appropriate state before the existing code is executed and b) ensure that the RPC
outputs are correctly created after the code has finished executing.
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2.8 Step 4: Compile, Link, and Run
The final step in the RapidRe process is to compile the client and server components of the
application together with the generated code stubs (that provide the functionality for the
application-specific APIs) and the Chroma libraries. This creates the final client and server
application binaries that are completely cyber foraging enabled.

2.9 What’s Missing?
Unfortunately, RapidRe doesn’t solve all the problems associated with retargeting applica-
tions to work on mobile devices.

Application GUI : RapidRe allows developers to quickly and easily retarget the com-
putationally intensive portions of the application. However, before these applications can
be used on mobile devices, the user interfaces of these applications usually need to also
be retargeted for the capabilities of the device. This is not an easy task as mobile devices
usually have very small displays and very limited I/O capabilities. For example, a mobile
wristwatch may have only a small 60 by 60 DPI display with no keyboard and only 5 input
buttons whereas the application being retargeted was developed for a desktop computer
with a 1600 by 1200 DPI display with a full keyboard and a mouse. In this dissertation, I
do not address this problem of retargeting the user interfaces. Fortunately, the problem of
GUI retargeting is being actively researched and there is ongoing work on automated user
interface generation [67, 157] that I can defer to.

Application Hint Modules : For every operation, Chroma will determine the optimal
application settings that best match the available resources and user preferences. Before
it can do this, Chroma needs to know how choosing different fidelity variable settings and
tactics affects the application’s quality. For example, Chroma needs to know that choosing
tactic awill result in a low quality output while choosing tactic bwill result in a high quality
output. This information is necessary for Chroma to choose an optimal tactic. Currently,
this information has to be hand written by the developer in the form of a very short and
simple C file (called an application hint module) that gets linked into Chroma. In the
future, I plan to expand the Vivendi syntax to allow developers to specify the crucial pieces
of information needed for these hint modules. This extension will allow the stub generator
to automatically create the hint modules for the application.

Adding Fidelity Adaptation Support to Applications : If an application already sup-
ports fidelity adaptation, the developer can easily specify the fidelity variables that control
the adaptation. However, if it doesn’t, RapidRe does not provide any assistance in adding
fidelity adaptation to the application. If fidelity adaptation is required, it has to be manually
added, a potentially lengthy and complicated task, by the developer. For example, adding
fidelity adaptation to a graphics application such that the resolution of the image can be
changed dynamically.
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2.10 Summary
In this chapter, I presented the characteristics of a cyber foraging environment. Namely, that
mobile devices are small, light, and transient and that resource availability fluctuates im-
mensely in mobile environments. I then identified the specific category of computationally-
intensive interactive application that this thesis is concentrating on. Next, I identified the
key requirements of any solution that attempts to make it easy to retarget these applications
to support cyber foraging. Finally, I presented my solution, called RapidRe, that allows
even novice developers to quickly, easily, and effectively retarget computationally-intensive
interactive applications for cyber foraging.



Chapter 3

Applications Studied

To validate my dissertation, it is necessary to retarget a large number of real, useful mobile
applications. In this chapter, I describe the applications used to validate my dissertation.
The actual validation is presented in the subsequent chapters. Not all applications were
used in every aspect of the validation. I used 10 real applications that have the following
characteristics: a) They were all developed by other developers, b) they were not origi-
nally designed for cyber foraging, and c) they are all potentially useful mobile applications
that fit the computationally-intensive interactive application classification presented in Sec-
tion 2.2.3.

3.1 Face : Face Recognition
Face is a program that detects human faces in images. It was developed by Henry Schnei-
derman [191] and consists of ≈ 20, 000 lines of Ada code. For a given image, Face will
draw a box around each face found in the image (as shown in Figure 3.1). It is representa-
tive of image processing applications of value to mobile users. For example, face detection
could be a crucial component of a mobile device that allows the visually impaired to know
who is near them. Surveillance personnel, with wearable computers, who use images to
detect suspicious features in the environment are also likely to require this kind of applica-
tion.

Face has a very simple tactics description file as shown in Figure 3.2. It has a single
parameter (input size), no fidelity variables, and only one tactic (just do it) consisting
of a single RPC (detect frontal). Even though Face has only one tactic, Chroma can
use extra resources in the environment, through data decomposition (Section 2.5.2.2), to
improve the performance of Face. For example, different parts of the image can be sent to
different servers.

31
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Figure 3.1: Detecting Faces in Images

APPLICATION face;
OPERATION detect;

IN int input_size;

RPC detect_frontal (IN file in_image_name, OUT file out_image_name);

TACTIC just_do_it = detect_frontal;

// The data decomposable tactic is shown below. It
// replaces the normal tactic
// TACTIC just_do_it = %split:(detect_frontal):join;

Figure 3.2: Tactics Description for Face
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APPLICATION flite;
OPERATION synthesize;

IN int file_size FROM 0 TO 1000000;

RPC synthesize (IN file text_file, OUT file wav_file);

TACTIC just_do_it = synthesize;

// The data decomposable tactic is shown below. It
// replaces the normal tactic
// TACTIC just_do_it = %split:(synthesize):join;

Figure 3.3: Tactics Description for Flite

3.2 Flite : Text to Speech Synthesis
Flite, short for Festival Lite, is a speech synthesis program developed by the University of
Edinburgh and Carnegie Mellon University (the principal developers are Alan Black and
Kevin Lenzo [32, 33]). It is written in C and consists of ≈ 570, 000 lines of code. Flite
transforms text files into spoken output. This is useful as mobile device users may prefer
having files read to them instead of having to view them on the devices’ small displays.
Spoken text is also a viable output modality that can be used in mobile devices designed
for the visually impaired.

Flite, similar to Face, also has a very simple tactics description file (shown in Figure 3.3)
with a single parameter (file size), no fidelity variables, and a single RPC and tactic. It
can also use data decomposition to exploit extra resources in the environment. For example,
different parts of the input file can be sent to different servers to be synthesized. The final
audio output is then created by simply combining the synthesized partial outputs.

3.3 c2dfft : Image Filtering
c2dfft is a C program (≈ 1, 000 lines of code), written by David O’Halloran [164], that
calculates the 2-dimensional fast Fourier transform (FFT) of an array. Calculating FFTs of
an array is a crucial component of any image filtering algorithm. In particular, image filters
perform a number of FFTs followed by a transpose. Hence, this application represents
image filters that mobile users are likely to use. For example, a mobile user takes a picture
of a scene and wants his mobile device to detect if there are any houses in the scene. The
first step in this process might involving detecting all the edges in the scene. This edge
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APPLICATION c2dfft;
OPERATION fft;

IN int size;

RPC fft_stage1 (IN int start, IN int stop, IN int width,
IN FILE buffer, OUT FILE outbuf);

RPC transpose_stage1 (IN int start, IN int stop, IN int width,
IN FILE outbuf, OUT FILE outbuf1);

RPC fft_stage2 (IN int start, IN int stop, IN int width,
IN FILE outbuf1, OUT FILE outbuf2);

RPC transpose_stage2 (IN int start, IN int stop, IN int width,
IN FILE outbuf2, OUT FILE out buf_final);

TACTIC do_it_all = %split1:(fft_stage1):join1 & transpose_stage1 &
%split2:(fft_stage2):join2 & transpose_stage2;

Figure 3.4: Tactics Description for c2dfft
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detection performs a number of FFTs and transposes.
I use c2dfft to simulate a 2-pass image filtering operation. This consists of performing

two consecutive FFTs where each FFT is followed by a transpose. The FFT algorithm in-
dependently processes each row of an array and is thus highly parallelizable. The transpose
algorithm however, is very hard to parallelize as it processes the entire array at the same
time. Overall, the two FFT operations make c2dfft highly data decomposable.

The tactics description file for c2dfft is shown in Figure 3.4. There is a single parameter
called size and separate RPC functions for the two FFT and transpose operations. Separate
RPCs are used as the current stub generator requires that each RPC in a tactic must have a
different name. The single tactic has two decomposable FFT stages (denoted by the % tag).
Each of the FFT stages is followed sequentially by a non-decomposable transpose stage.

3.4 GLVU : 3D Model Viewing
GLVU is a graphics application, developed by the Walkthrough group at University of
North Carolina [224], that allows users to virtually “walk through” (by changing the camera
position) a three dimensional model of a building or object. GLVU is written in C++ using
the OpenGL toolkit and consists of ≈ 25, 000 line of code.

Narayanan [152] added multi-fidelity support to GLVU. This allowed GLVU to dy-
namically change the resolution of the model being navigated. However, even with multi-
fidelity support, GLVU was still not designed to be remotely executable. For this disserta-
tion, I used the multi-fidelity version of GLVU.

GLVU is representative of augmented reality [17] (AR) applications that could be use-
ful to mobile users. In AR, a user looks through a transparent heads-up display connected to
a wearable computer. Any displayed image appears to be superimposed on the real-world
scene before the user. AR thus creates the illusion that the real world is visually merged
with a virtual world. AR has already proved useful in domains such as tourist guides [70],
power plant maintenance [62], architectural design [228], and computer-supported collab-
oration [29].

Figure 3.5 shows the tactics description for GLVU. GLVU has a large number of pa-
rameters (22) that affect its resource usage. This is because every application value that
affects the viewing position and the size of the model has an effect on the resource usage of
GLVU. GLVU has a single fidelity variable (resolution) that determines the resolution of
the model. Changing the resolution changes the number of polygons that are used to render
the 3D model. The lower the number of polygons used to render the model, the lower the
CPU and memory usage. However, lowering the number of polygons greatly changes the
quality of the model as perceived by the user. Figure 3.6 shows the effect of changing the
resolution in GLVU.

Finally, GLVU has a single tactic consisting of just one RPC. The argument list for the
RPC is fairly long as a number of values need to be sent to the application server before
the current scene can be rendered. These values state the exact position of the user and the
current model settings.
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APPLICATION glvu;
OPERATION draw;

IN double polygons FROM 0 TO infinity;
IN double width FROM 0 TO infinity;
IN double height FROM 0 TO infinity;
IN double min_x FROM 0 TO infinity;
IN double min_y FROM 0 TO infinity;
IN double min_z FROM 0 TO infinity;
IN double max_x FROM 0 TO infinity;
IN double max_y FROM 0 TO infinity;
IN double max_z FROM 0 TO infinity;
IN double eye_x FROM 0 TO infinity;
IN double eye_y FROM 0 TO infinity;
IN double eye_z FROM 0 TO infinity;
IN double vrp_x FROM 0 TO infinity;
IN double vrp_y FROM 0 TO infinity;
IN double vrp_z FROM 0 TO infinity;
IN double vup_x FROM 0 TO infinity;
IN double vup_y FROM 0 TO infinity;
IN double vup_z FROM 0 TO infinity;
IN double yfov FROM 0 TO infinity;
IN double aspect FROM 0 TO infinity;
IN double near FROM 0 TO infinity;
IN double far FROM 0 TO infinity;

OUT double resolution FROM 0 TO 1;

RPC glvu_draw (IN uint w, IN uint h, IN string filename,
IN float eye_x, IN float eye_y, IN float eye_z,
IN float lookat_x, IN float lookat_y, IN float lookat_z,
IN float up_x, IN float up_y, IN float up_z,
IN float yfov, IN float aspect, IN float ndist,
IN float fdist, IN uint numpolygons, OUT ustring buf);

TACTIC do_render = glvu_draw;

Figure 3.5: Tactics Description for GLVU
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Full Resolution (1.0) Low Resolution (0.1)

Images obtained from Dushyanth Narayanan

Figure 3.6: Effect of Resolution on GLVU Quality

3.5 GOCR : Optical Character Recognition
GOCR is an optical character recognizer (OCR) developed by Joerg Schulenburg [192]
that is written in C (≈ 30, 000 lines of code). It takes as input images containing characters
in them (for example, the image shown in Figure 3.7). It then produces an ascii text file
containing all the characters found in the image. Optical character recognition is useful for
mobile users. For example, a foreign traveller can take an image of a street sign, perform
OCR on it to extract the words, and then translate the words into a known language using a
language translator.

GOCR has a very simple tactics description file (shown in Figure 3.8) consisting of a
single parameter (image size) and a single tactic with just one RPC. However, GOCR can
benefit from data decomposition. In particular, each line of text in the input image can be
sent to a different server to be processed.

3.6 Janus : Speech Recognition
Janus is a speech recognition program that can identify spoken text in an audio file (in wav
format). This is useful to mobile users as converting speech to text is required for any user
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Figure 3.7: Example Image File that GOCR Can Process

APPLICATION gocr;
OPERATION recognize;

IN int image_size FROM 0 TO 1000000;

RPC recognize (IN file image_file, OUT file out_text_file);

TACTIC just_do_it = recognize;

// data decomposable tactic
// TACTIC just_do_it = %join:(recognize):split;

Figure 3.8: Tactics Description for GOCR



3.6. JANUS : SPEECH RECOGNITION 39

APPLICATION janus;
OPERATION recognize;

IN int file_size;

OUT int model_size;

RPC Full (IN string model, IN model_size,
IN FILE infile, OUT string recognition);

RPC Hybrid_Stage1 (IN string model, IN model_size,
IN FILE infile, OUT FILE intermediate);

RPC Hybrid_Stage2 (IN string model, IN model_size,
IN FILE intermediate, OUT string recognition);

TACTIC Janus_Full = Janus_Full;
TACTIC Janus_Hybrid = Hybrid_Stage1@local & Hybrid_Stage2@remote;

Figure 3.9: Tactics Description for Janus

interface that allows users to speak their commands to the device.
Janus is already written as a client-server application. The client (written by Flinn [76])

is written in C (≈ 1000 lines of code) using the Motif toolkit. The server was developed by
Carnegie Mellon University and the University of Karlsruhe. It was written using a mix of
Tcl/Tk and C and consists of≈ 125, 000 lines of code. Even though Janus is a client-server
application, it is not adaptive and does not change fidelity or server location dynamically.

Figure 3.9 shows the tactics description for Janus. The recognize operation has a single
parameter, file size, and a single fidelity variable, model size. model size is used by
Chroma to tell the client whether to use a large or small language model to perform the
recognition. The larger the model, the more accurate the recognition. However, larger
models require more memory and CPU cycles. The recognize operation has three RPCs
(Janus Full, Janus Hybrid Stage1, and Janus Hybrid Stage2) that are combined to
form two tactics (Full and Hybrid). The Full tactic performs the recognition, either
locally or remotely, in one step. The Hybrid tactic is an energy efficient recognition,
using functionality added by Flinn, that performs the first part of the recognition locally
(Janus Hybrid Stage1) and the second remotely (Janus Hybrid Stage2). Janus can
use data decomposition as the the input wav file can be split into independent bits (using
silence detection techniques) that can be recognized on different servers.
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APPLICATION music;
OPERATION categorize;

IN int nsamples FROM 0 TO 1000000;
IN int freq;

RPC categorize (IN string packed_input_samples,
OUT string packed_output_results);

TACTIC do_it = categorize;

Figure 3.10: Tactics Description for Music

3.7 Music : Identification of Music Pieces
Music is a music recognition program developed by Yan Ke, Derek Hoiem, and Rahul
Sukthankar [129]. Given a short sample of music, Music will identify other pieces of
music that contain the sample. This kind of sample identification application is useful to
mobile users. For example, a lost mobile user may take a photo of his current location.
This photo is matched against other images in a database to figure out where the user is.
Music is an example of such an application.

Music is already designed as a client server application with the client written in Java
(≈ 2000 lines) and the server in C++ (≈ 7000 lines). However, it was not designed to adapt
in a mobile environment and cannot dynamically change servers to adapt to the resource
conditions or user preferences. The tactics description of Music is shown in Figure 3.10.
Music has two parameters (nsamples and freq) and has a single tactic with one RPC.

3.8 Panlite : Natural Language Translation
Panlite (short for Pangloss-Lite) is a natural language translator that converts Spanish to
English and vice versa. Panlite was developed by Robert Frederking and Ralf Brown and
consists of ≈ 150, 000 lines of C++ code. Table 3.1 shows examples of the translations
performed by Panlite. Language translation is a useful application for mobile users as
demonstrated by the motivating example in Section 2.1.

Panlite translates sentences by using up to three different translation engines (the glos-
sary, dictionary, and example-based machine translation (EBMT) engines). Each of these
translation engines use different algorithms, can be run independently, and produce differ-
ent quality partial outputs. The EBMT engine has the highest quality output followed by
the glossary engine, and finally the dictionary engine. These partial outputs are then com-
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Original Spanish Translated English
Muchas veces dispararon contra aldeas Often fired versus villages
También llevaron refuerzos hasta la frontera, in-
cluidas unidades de tanque

Only take reinforcements until the border, in-
cluding units for tank

En enero de 1993, la composición de la FPNUL
era la siguiente

In January of 1993, the composition of the [FP-
NUL] was the next :H

La razón principal es que desde hace varios
años el Gobierno del Lı́bano no ha reembolsado
a los propietarios el valor de los terrenos y lo-
cales utilizados por la FPNUL

The main discretion exist that ever since various
years The Lebanon Government do not consider
possess to reimburse to the owned the million
from the terrestrial and premises utilized by you
[FPNUL]

Table 3.1: Examples of Converting Spanish to English with Panlite

bined by a language modeler, that factors in the quality of each engine, to create the final
translation.

Figure 3.11 shows the tactics description for Panlite. The only parameter is nwords and
there are no fidelity variables. There are 4 RPCs (server gloss, server dict, server ebmt,
and server lm) corresponding to the three translation engines and the language modeler
(lm). There are seven tactics as there are seven ways to translate a sentence. This corre-
sponds to the seven ways of combining the RPCs such that a sentence is processed by at
least one translation engine before the final translation is produced by the language mod-
eler. To facilitate this, the server lm RPC has one input for each translation engine. The
stub generator will set any unused inputs to NULL automatically.

Each of these seven tactics use different amounts of resources and have different quality
outputs. The lowest quality tactic is the dict tactic where the sentence is processed only
by the dictionary engine. The highest quality tactic is the gloss dict ebmt tactic where all
three engines are executed in parallel. The partial results from the three engines are then
combined by the language modeler. Panlite is also data decomposable as individual lines
can be translated on different servers.

3.9 Radiator : Lighting for 3D Models
Radiator is a program, written in C++ (≈ 65, 000 lines of code) using the OpenGL library
by Andrew Willmott [233], that performs radiosity computations on 3D models. Radios-
ity [49] computations colour and shade a 3D scene according to the light sources present
in the scene. This computation needs to be redone every time the scene changes, i.e.,
when objects or light sources are added, removed, or modified. However, radiosity is view-
independent and does not need to be recomputed when the camera position or orientation
changes. Radiosity is useful for augmented reality applications as it adds the proper light-
ing details to the scene. Since radiosity computations are extremely CPU and memory
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APPLICATION panlite;
OPERATION translate;

IN int nwords FROM 0 TO infinity DEFAULT 1;

RPC server_dict (IN string line, OUT string dict_out);
RPC server_gloss (IN string line, OUT string gloss_out);
RPC server_ebmt (IN string line, OUT string ebmt_out);
RPC server_lm (IN string line, IN string ebmt_out,

IN string dict_out, IN string gloss_out,
OUT string translation);

TACTIC gloss = server_gloss & server_lm
TACTIC dict = server_dict & server_lm;;
TACTIC ebmt = server_ebmt & server_lm;
TACTIC gloss_dict = (server_gloss, server_dict) & server_lm;
TACTIC gloss_ebmt = (server_gloss, server_ebmt) & server_lm;
TACTIC dict_ebmt = (server_dict, server_ebmt) & server_lm;
TACTIC gloss_dict_ebmt = (server_gloss, server_dict, server_ebmt) &

server_lm;

Figure 3.11: Tactics Description for Panlite

intensive, Radiator already has built-in fidelity adaptation support. In particular, the res-
olution of the model can be changed dynamically. Figure 3.12 shows an example of the
multi-fidelity radiosity computations performed by Radiator.

The tactics description for Radiator is shown in Figure 3.13. There is one parameter
(size) and two fidelity variables (resolution and algorithm). The resolution changes the
number of polygons used to render the scene. The lower the number of polygons, the lower
the output quality but less CPU and memory is consumed. The algorithm fidelity vari-
able determines which algorithm is used to perform the radiosity computation. Different
algorithms may result in different output qualities. They may even have the same qual-
ity but use different amounts of resources. For example, the progressive algorithm and
the hierarchical algorithms result in the same quality output. However, the progressive
algorithm uses more CPU cycles while the heirarchical algorithm uses more memory.
Radiator has a single tactic comprising of a single RPC.
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No Radiosity

Low Quality (0.1) High Quality (1.0)

The top image shows the image before any radiosity computations: we see that the lighting
has no effect on the observed image. The next two images show the same image, after
radiosity computation, at low fidelity (0.1), and at high fidelity (1.0). The light source is
above the dragon in all three cases.

Figure 3.12: Radiosity: Adding Lighting to 3D Models
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APPLICATION radiator;
OPERATION radiosity;

IN int size FROM 0 TO 1000000;

OUT float resolution FROM 0.0 TO 1.0;

OUT string algorithm;

RPC radiosity (IN file scene_file, IN float resolution,
IN string algorithm, OUT file rendered_image);

TACTIC just_do_it = radiosity;

Figure 3.13: Tactics Description for Radiator

The top left image is the original 2D image of the Carnegie Mellon University University
Center. The remaining three images are screen captures of the 3D scene created by PopUp
from that single image. Additional 2D images would improve the quality of the 3D scene.
Images obtained from Derek Hoiem.

Figure 3.14: Example of PopUp Creating 3D Scenes from 2D Images
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APPLICATION popup;
OPERATION vrml;

IN INT num_images;

RPC test_directory_s (IN STRING cluster_density, IN STRING image_dir,
IN STRING vert_density, IN STRING horz_density,
IN STRING testseg, IN STRING varargin);

TACTIC do_it = % split:(test_directory_s):join;

Figure 3.15: Tactics Description for PopUp

3.10 PopUp : Creation of 3D Scenes from 2D Images
PopUp creates 3D VRML [227] (an industry standard 3D scene specification language)
scenes from 2D images. This can be used by mobile devices with a camera to create
3D scenes for use with augmented reality applications. PopUp was written in Matlab (≈
20, 000 lines of code) by Derek Hoiem [107]. Figure 3.14 shows examples of PopUp at
work.

Since Matlab is too large for most mobile devices, I created simple Perl and Python
client interfaces (less than 100 lines of code each) to PopUp. Both these interfaces were
identical in functionally. They just read a list of files supplied by the user and submitted
a request to the PopUp application to process those files. Creating these simple client
interfaces allowed us to a) avoid needing Matlab on mobile devices, and b) test RapidRe
with more languages. Figure 3.15 shows the tactics description for PopUp. PopUp has a
single parameter (num images) and just one tactic with a single RPC. However, the tactic
is data decomposable as PopUp can process multiple 2D images in parallel to create the
final VRML 3D scene.

3.11 Summary
In this Chapter, I described the applications used to validate this dissertation. Table 3.2
gives an overview of these applications. The applications covered a broad range of func-
tionality ranging from language translation to face detection to creating lighting models for
3D displays. They also varied tremendously in their sizes and in the languages they were
written in. Finally, the applications covered a broad range of parameters, fidelities, and
tactics. In the next two chapters, I show that it possible for novice developers to quickly,
easily, and effectively retarget these application for cyber foraging.
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Face (Face Recognizer) 20K 105 Ada w/C interface 0 1 1 2 1 Yes

Flite (Text to Speech) 570K 182 C 0 1 1 2 1 Yes

c2dfft (Image Filtering) 570K 182 C 0 1 1 2 1 Yes

GLVU (3D Visualizer) 1K 155 C++, OpenGL 1 15 1 18 1 No

GOCR (Char. Recognizer) 30K 71 C++ 0 1 1 2 1 Yes

Janus (Speech Recognizer) 126K 227 C, Tcl/Tk, Motif 1 1 3 9 2 Yes

Music (Music Finder) 9K 55 Java, C++ 0 2 1 2 1 No

Panlite (Lang. Translator) 150K 349 C++ 0 1 4 11 7 Yes

Radiator (3D Lighting) 65K 213 C++, OpenGL 2 1 1 4 1 No

PopUp (3D Scene Generation) 20K 213 Perl, Python, Matlab 2 1 1 4 1 Yes

Table 3.2: Overview of the Applications Used to Validate This Dissertation



Chapter 4

Validation : Easy To Retarget

In this Chapter, I provide validation that RapidRe makes it easy for application developers
to retarget large computationally intensive applications for use on resource limited mobile
devices.

4.1 Success Criteria
Before this validation can be performed, it is necessary to determine what the success
criteria are. For this thesis, RapidRe is successful if it allows developers to do the following:

• Face complex applications confidently with little training. Less required training is
always better, of course, but some training will be needed before a developer can use
my solution. About an hour of training is acceptable in commercial settings, and is
probably close to the minimum time needed to learn anything of substance.

• Modify complex applications quickly. It is not easy to become familiar with the
source code of a complex new application, and then to modify it for adaptation and
cyber foraging. Based on my own experience and that of others I expect the typical
time for this to be on the order of multiple weeks. Shortening this duration to a day
or less would be a major improvement.

• Modify complex applications with few errors. Because programming is an error-
prone activity, it is unrealistic to expect a developer to produce error-free code with
my solution. A more realistic goal is a solution that avoids inducing systematic or
solution-specific coding errors by developers. The few errors that do occur should
only be ordinary programming errors that are likely in any initial coding attempt.

• Produce modified applications whose quality is comparable to those produced by an
expert. When fidelity and performance metrics are carefully examined under a variety
of cyber foraging scenarios, the adaptive applications produced by developers using
my solution should be indistinguishable from those produced by an expert.

47
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4.2 Validation Plan
The primary goal of this validation was to assess how well RapidRe meets the success
criteria laid out in Section 4.1. A secondary goal was to gather detailed process data to help
identify a) the reasons for RapidRe’s success or failure, and b) areas for future research.
To effectively satisfy both goals, I performed a laboratory-based user study that combined
well-established user-centric and system-centric evaluation metrics. I used user-centric
metrics for programmers such as ease-of-use, ease-of-learning, and errors committed [196]
and system-centric metrics such as application latency and lines of generated code.

The laboratory study consisted of two parts. In the first part, novice developers modified
a variety of real applications for cyber foraging. I used novice (and not regular) developers
as a) this was a harder goal to achieve, and b) novice developers are more likely to be
tasked with retargeting work at companies. I describe the experimental setup for this part
in Section 4.2.1 and report its results in Sections 4.3 to 4.5. In the second part, I compared
the performance of these modified applications to the performance of the same applications
when modified by an expert. I describe this part and report its results in Section 4.6

4.2.1 User-Centric Evaluation
In this section, I describe the setup for the user study conducted to evaluate the effective-
ness of RapidRe. Following the lead of Ko et al. [135] and Klemmer et al [134], I took
user-centric evaluation methods originally developed for user interface investigations and
adapted them to the evaluation of programming tools.

4.2.1.1 Control Group

In designing the user study, a major decision was whether to incorporate a control group
in my design. When there is substantial doubt about whether a tool or process improves
performance, it is customary to have one condition in which the tool is used and a control
condition where subjects perform the task without the tool. This allows reliable comparison
of performance. However, the practicality and value of control groups is diminished in
some situations. For example, it is difficult to recruit experimental subjects for more than a
few hours. Further, the value of a control group is negligible when it is clear to task experts
that performing a task without the tool takes orders of magnitude longer than with it.

My own experience, and that of other mobile computing researchers, convinced us that
modifying real-world applications for adaptive mobile use is a multi-week task even for
experts. Given this, my goal of one day is clearly a major improvement. Running a control
condition under these circumstances would have been highly impractical and of little value.
I therefore chose to forego a control group.
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Face (Face Recognizer) 20K 105 Ada w/C interface 0 1 1 2 1 Yes

Flite (Text to Speech) 570K 182 C 0 1 1 2 1 Yes

GLVU (3D Visualizer) 1K 155 C++, OpenGL 1 15 1 18 1 No

GOCR (Char. Recognizer) 30K 71 C++ 0 1 1 2 1 Yes

Janus (Speech Recognizer) 126K 227 C, Tcl/Tk, Motif 1 1 3 9 2 Yes

Music (Music Finder) 9K 55 Java, C++ 0 2 1 2 1 No

Panlite (Lang. Translator) 150K 349 C++ 0 1 4 11 7 Yes

Radiator (3D Lighting) 65K 213 C++, OpenGL 2 1 1 4 1 No

This figure is similar to Figure 3.2. The main difference is that PopUp and c2dfft are
omitted as they were not used for the user study.

Table 4.1: Summary of Applications Used for User Study

4.2.1.2 Test Applications

I used eight of the ten applications (the remaining two were obtained after the user study
was conducted) described in Chapter 3 for this user study. The applications were: GLVU
(Section 3.4), a virtual walkthrough application that allows users to navigate a 3D model of
a building; Panlite (Section 3.8), an English to Spanish translator; Radiator (Section 3.9), a
3D lighting modeler; Face (Section 3.1), a face recognition application; Janus (Section 3.6),
a speech recognizer; Flite (Section 3.2), a text to speech converter; Music (Section 3.7), an
application that records audio samples and finds similar music on a server; and GOCR
(Section 3.5), an optical character recognizer. Table 4.1 shows the salient characteristics of
these eight applications.

None of these applications was written by us. Some of these applications, such as
GLVU, Janus, and Radiator, already had support for fidelity adaptation. Other applica-
tions, such as Music, and Janus, were already designed as client – server applications.
However, none of the eight applications were designed for use in dynamic mobile envi-
ronments where the exact runtime operation setting will change as the environment or user
preference changes. As Table 4.1 shows, the applications ranged in size from 9K to 570K
lines of code, and were written in a wide variety of languages such as Java, C, C++, Tcl/Tk,
and Ada. The application GOCR, was used only for training participants; the others were
assigned randomly.
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Participant Application 1 Application 2 Application 3

1 GLVU Face –

2 Panlite Janus –

3 GLVU Janus Music

4 Panlite Face Radiator

5 GLVU Music –

6 Panlite – –

7 GLVU Janus –

8 Panlite Flite –

9 GLVU – –

10 Panlite Radiator –

11 Flite Face –

12 Radiator Flite –

13 Music – –

The assignment of applications to participants is shown in this table. Each participant was
given an initial application (Application 1). Some participants returned, on a different day,
for a second application (Application 2). Two participants (3 and 4) even returned, again
on a different day, to modify a third application (Application 3).

Table 4.2: Assignment of Participants to Applications

4.2.1.3 Participants and Setup

In many companies, the task of porting code falls to junior developers. I modeled this
group by using undergraduate seniors majoring in computer science. In addition, I used a
group size large enough to ensure the statistical validity of my findings. While the exact
number depends upon the variability within the participants and the overall size of the
effects, widely accepted practices recommend between 12 and 16 users [158]. I used 13
participants, which falls within this range and represents the limit of my resources in terms
of time (six hours were needed for each data point).

The participants were all between 18 to 25 years of age. There were 12 male and
1 female participant. 12 participants were students at Carnegie Mellon University. The
remaining participant was a student at the University of Pittsburgh. 11 of the participants
was computer science majors. The remaining 2 were electrical engineering majors. 11 of
the participants were seniors. The remaining 2 were masters students (in the 5th year senior
thesis program).

The selection criteria required them to know C programming and be available for a
contiguous block of six hours. None of them were familiar with my research, any of the
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tools under development, or any of the test applications. Table 4.2 shows the assignment
of participants to applications. As the table shows, several participants returned for addi-
tional applications. In keeping with standard human-computer interaction (HCI) practice,
I counter-balanced the assignment of participants to applications to avoid any ordering ef-
fects. Using the same participants to retarget multiple applications allowed us to investigate
learning effects and to determine whether my one-time training was adequate. Each appli-
cation was retargeted by 3 participants. The exceptions were Panlite and GLVU which
were retargeted by 5 participants each. I used more participants for just two applications as
a) I did not have enough resources to conduct 5 experiments for every application, and b)
Panlite and GLVU had the most complicated tactics descriptions. I thus expected them to
be the most difficult applications to retarget. Hence, I assigned more participants to them
as I expected the most interesting user study results from them. To ensure that these results
were not tainted due to learning effects, Panlite and GLVU were never assigned as a second
or third application.

Participants were compensated at a flat rate of $120 for completion of a task. I stressed
that they were not under time pressure, and could take as long as they needed to complete
the task. I made certain that they understood the motivation was quality and not speed. This
was a deliberate bias against my goal of short modification time.

The participants worked alone in a lab for the duration of the study. I provided them
with a laptop and allowed them to use any editor of their choice. The displays of the par-
ticipants were captured throughout the study using Camtasia Studio [210]. This provided
us with detailed logs of user actions as well as accurate timing information.

4.2.1.4 Experimental Procedure

The user study consisted of 25 separate experiments involving 13 participants. Each exper-
iment lasted up to 6 hours and required a participant to take an unmodified application and
retarget it, using RapidRe, for cyber foraging. All 25 experiments were conducted over a 1
month period and no participant participated in more than 1 experiment on any given day.
In the rest of this section, I describe the exact procedure that was used for each experiment.

Training Process: Upon arrival, participants were given a release form and presented
with a brief introduction to the user study process. They were told that they were going to be
making some existing applications work on mobile devices, and that they would be learning
to use a set of tools for making applications work within an adaptive runtime system. The
participants were then introduced to the concepts of operations, parameters, fidelities, RPCs
and tactics. I then conducted a hands-on training session using the GOCR application where
I demonstrated how to identify and describe these concepts in Vivendi. The participants
were provided with documentation on Vivendi syntax, with many examples. The training
then showed them how to create, using the automatically generated APIs, the retargeted
client and server components of GOCR. They were also provided with extensive example-
filled documentation explaining how to create the client and server component. The entire
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training session lasted less than one hour in all cases.

Testing Process: After training, each participant was randomly assigned to an applica-
tion to be modified. They were given all accompanying documentation for the application
written by the original application developer that explained how the application worked and
explained the functional blocks that made up the application. This documentation did not
mention anything about making the application adaptive as that was not the original devel-
oper’s intention. The participants were also provided with domain information from which
it was possible to extract the parameters and fidelity variables. For example, the domain
information might say that for 3D graphics applications, the name of the model, the size
of the model, the current viewing position and current perspective affect the resource us-
age of the application. It was up to the participants to determine exactly which application
variables these general guidelines mapped to.

Task Structure: I provided participants with a structured task and a set of general in-
structions. The task structure consisted of three stages, as shown in Table 4.3. In Stage
A, the primary activity was creating the tactics file; in Stage B, it centered on creating the
client code component; in Stage C, it centered on creating the server component. I wanted
to cleanly isolate and independently study the ability of novices to perform each of these
stages. I therefore provided participants with an error-free tactics file for use in Stages B
and C. This ensured that errors made in Stage A would not corrupt the analysis of Stages
B and C. For Stages B and C, the success criteria was that the retargeted client and server
components should compile cleanly. I did not allow participants to test their retargeted
applications as that would have required additional infrastructure support (remote servers,
correct data files etc.). This would have also increased the length of each already-lengthy
experiment as participants would have a) needed extra training, and b) would have needed
extra time to ensure that the applications worked. Given the limits of my resources, I de-
cided to end the experiment as soon as the retargeted code compiled cleanly. A concern
with this strategy is that the resulting code would be filled with runtime bugs and that this
would affect the overall results. I explain in Section 4.5 how I overcame this problem.

As Table 4.3 shows, each stage consists of a structured sequence of subtasks. For each
subtask, participants were given a general set of instructions, not customized in any way
for specific applications. After completion of each subtask, I asked participants to answer
a set of questions about it.

The exact procedure, documentation, and questionnaires used for the user study are
shown in Appendixes C, D, and E.

4.2.1.5 Data Collected

I collected four different kinds of data. In the rest of this section, I use correlations to help
interpret this data. These correlations are interpreted as follows: the correlation coefficient,
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Stage A Stage B Stage C

Tactics file Client component Server component

Read docs Read docs Read docs

Application Include file Include file header

In Register service init API call

Out Cleanup Create RPCs

RPC Find Fidelities run server API call

Tactic Do Tactics Compile and fix1

Compile and fix1

This table shows the task stages and the subtasks within each stage. 1 Note that in Stages
B and C, the participants compiled their code, but did not run it.

Table 4.3: Task Stages

usually denoted as r, denotes the slope of the line that best fits the data. A positive co-
efficient means that an increase in the x-axis corresponds to an increase in the y-axis. A
negative coefficient means that an increase in the x-axis corresponds to a decrease in the
y-axis. If the coefficient is zero, the data cannot be approximated by a straight line (there is
no correlation between the x values and the y values).

The likelihood indicator, usually denoted as p, gives the probability that this correlation
would have occurred if we had just selected values at random. In particular, a high (> 0.5)
value indicates that picking random values would have resulted in the same correlation. A
small p value indicates a true correlation that could not have occurred by chance.

The data I collected were:

Timing: I used the Camtasia recordings to obtain exact completion times for each sub-
task. This allowed us to determine the completion times for stages or for the overall task.

Task Process: The Camtasia recordings were also used to collect process data on how
participants completed all of the subtasks. In particular, I noted where they had trouble,
were confused, or made mistakes.

Self-Report: I collected questionnaire data of several types, including quality of train-
ing, ease of use of my solution, and performance in each subtask. The questionnaires
comprised mostly of multiple choice questions with a few free-form open-ended questions.
The multiple choice questions were used to precisely identify how participants felt about
various aspects of the process. The possible answers to each multiple choice question were
chosen to form a Likert scale [141]. The Likert method is one of the most popular attitude
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measuring tools. This method consists of a series of statements, each with an evaluative
scale consisting (usually) of five positions running from strongly agree, through neutral, to
strongly disagree. A respondent is required to read the given statement and then indicate,
on the corresponding scale, the degree to which they agree or disagree with the statement.
To prevent learning effects from tainting the results, the ordering of the answers was ran-
domized. The free-form questions were used to allow participants to express any feedback
that was not captured by the multiple choice questions.

Solution Errors: I noted all errors in the participants’ solutions. I fixed only trivial errors
that kept their code from compiling and running. This allowed us to collect performance
data from their solutions.

4.3 Results: Little Training
The first criterion for a good solution relates to training duration, as listed in Section 4.1:
“Can novices face complex applications confidently with little training?” The training pro-
cess was presented in Section 4.2.1.4. As stated there, the training session was one hour or
less for all participants, thus meeting the above criterion. What is left to be determined is
whether this training was adequate. The ultimate test of adequate training is task perfor-
mance, as shown by the success the participants have in actually modifying applications.
These results are reported in the rest of this chapter. A secondary test is the subjective
impression of participants. I asked participants several questions after task completion to
help us judge whether they felt adequately prepared. In particular, I asked the participants
questions that required them to rate the value of the training and training materials.

After completing an experiment, each participant was asked the following question:
“Was the training helpful?”?. Overall, on a 5-point Likert scale (1 – Helped immensely,
2 – Quite a lot, 3 – Somewhat, 4 – A little bit, 5 – Didn’t help at all), the average participant
response fell between 1 (Helped immensely) and 2 (Quite a lot), with a mean value of
1.33 and a standard deviation of 0.48. The results were similar for the question “Was the
documentation helpful?” The mean response was 1.64 and the standard deviation was 0.76.
Figure 4.1 shows the breakdown for these questions on a per-application basis.

In addition, after every subtask of Table 4.3, I probed participants’ confidence in their
work through the question, “How certain are you that you performed the subtask correctly?”
Responses were provided on a 7-point Likert scale (1 – Incredibly certain to 7 – Completely
uncertain). As shown in Figure 4.2, participants reported a high degree of confidence across
the range of applications. The mean response ranged from 1.3 for Face, to 2.2 for Music.

These self-report ratings correlate (explained in Section 4.2.1.5) highly with the task
performance times presented in Section 4.4. The correlation coefficient (r) is 0.88, indicat-
ing a strong positive correlation. The p value of 0.009 indicates that it is highly unlikely
this correlation would occur by chance. I will discuss these results in more detail in Sec-
tion 4.7.2, where I identify opportunities for improving my solution. Overall, these results
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b) Usefulness of Documentation Scores

For each application, the height of its bar is the mean score on the Likert scale shown
in the legend, averaged across all participants who retargeted that application. Error bars
show the standard deviation.

Figure 4.1: Self-Reported Usefulness of Training and Documentation Scores
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For each application, the height of its bar is the mean uncertainty score on the Likert
scale shown in the legend, averaged across all participants who retargeted that application.
Error bars show the standard deviation. Participants calibrated the scale as follows: 1 was
“Incredibly certain. I would bet my house that I’m correct.” while 7 was “Completely
uncertain. I would be wasting money betting on my correctness even given 1000-1 odds.”

Figure 4.2: Self-Reported Uncertainty Scores
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For each application, the height of its bar is the mean certainty score on the Likert scale
shown in the legend, averaged across all participants who retargeted that application. Error
bars show the standard deviation.

Figure 4.3: Self-Reported Benefit of Experience Scores
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For each application, the height of its bar is the mean completion time averaged across all
participants who retargeted that application. Error bars show the standard deviation.

Figure 4.4: Measured Application Completion Times

suggest that the participants believed their training prepared them well for the modification
tasks they faced.

RapidRe is also an easy process to learn. I asked the 10 participants who retargeted
more than one application to rate where experience with RapidRe helped when retargeting
a subsequent application. On a 5-pt Likert scale (1–Helped Immensely to 5–Didn’t Help
at All), the mean answer was 1.67 with a standard deviation of 0.89. Figure 4.3 shows the
breakdown on a per-application basis. Note that GLVU and Panlite are not shown as these
applications were always the first applications modified by a participant.

4.4 Results: Quick Modifications
In this section, I address the second criterion listed in Section 4.1: “Can novices modify
complex applications quickly?” To answer this question, I examined overall task comple-
tion times across the range of applications in validation suite. I found that the average
completion time was just over 2 hours, with a mean of 2.08 and a standard deviation of
0.86. Figure 4.4 shows the distribution of task completion times. These data show mean
completion times ranging from 70 to 200 minutes, with no participant taking longer than
4 hours for any application. For two applications, some participants only needed about an
hour. Figure 4.5 and Table 4.4 presents the breakdown of these times across task stages.

The proportion of the original code base that was modified is another measure of task
simplicity. Table 4.5 shows the relevant data. These data show that only a tiny fraction of
the code base was modified in every case, and that there was roughly ten times as much
automatically generated code as hand-written code. In addition to the reduction in cod-



58 CHAPTER 4. VALIDATION : EASY TO RETARGET

0

20

40

60

80

100

120

Face Flite Janus GLVU Music Panlite Radiator

C
om

pl
et

io
n 

Ti
m

e 
(m

in
ut

es
)

a) Time to Create the Tactics File
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b) Time to Create the Adaptive Client Component
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b) Time to Create the Adaptive Server Component

Figure 4.5: Breakdown of Time Needed to Retarget Each Application
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For each application, the height of its bar is the mean difficulty score on the Likert scale
shown in the legend, averaged across all participants who retargeted that application. Error
bars show the standard deviation. Participants calibrated the scale as follows: 1 was
“Really easy. Equivalent to writing a simple hello world program” and 7 was “Incredibly
hard. Equivalent to adding concurrency support to an operating system.”

Figure 4.6: Self-Reported Task Difficulty Scores

App Stage A Stage B Stage C Total
Face 10.3 (1.7) 36.6 (4.5) 33.6 (17.8) 80.5 (22.7)
Flite 12.6 (7.8) 37.7 (6.7) 20.6 (16.4) 70.9 (20.4)
Janus 29.3 (14.0) 31.0 (6.5) 42.1 (10.2) 102.4 (26.2)
GLVU 66.3 (20.8) 65.1 (22.5) 40.3 (7.7) 171.7 (33.8)
Music 49.6 (15.7) 68.2 (17.1) 83.0 (23.0) 200.8 (45.4)
Panlite 36.2 (7.7) 48.7 (20.2) 32.8 (14.7) 117.8 (36.6)

Radiator 17.2 (6.0) 45.3 (8.7) 39.4 (7.0) 101.9 (11.7)

Each entry gives the completion time in minutes for a task stage, averaged across all
participants who were assigned that application. Values in parentheses are standard devi-
ations.

Table 4.4: Completion Time by Task Stage
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ing effort, the use of automatically generated stubs allowed participants to get away with
minimal knowledge of Chroma.

Finally, I asked participants the question “How easy did you find this task?” Responses
were provided on a 7-point Likert scale (1 – Really easy to 7 – Incredibly hard). As Fig-
ure 4.6 shows, the responses were heavily weighted toward the easy end of the scale for
all applications. These self-report ratings also correlate highly with the task completion
times reported earlier (r = 0.82, p = 0.02), increasing the confidence that these results are
meaningful. As an additional validation, the self-reported confidence and task difficulty
scores were also strongly correlated (r = 0.88, p = 0.01). Taken together, these pieces of
evidence converge to suggest that the participants were able to quickly and easily modify
the complex applications represented in the validation suite.

4.5 Results: Low Error Rate
In this section, I examine the third criterion listed in Section 4.1: “Can novices modify
complex applications with few errors?” Because programming is an error-prone activity, I
expect novice-modified applications to contain ordinary programming errors of the types
described by Pane et al. [168]. In addition, I expect a few additional simple errors because
participants could not test their solution, except to verify that it compiled cleanly. I divide
the analysis into two parts; errors in creating tactics files (Stage A); and errors in modifying
application code (Stages B and C). An expert scored both parts through code review.

Table 4.6 shows the errors for Stage A. The parameter, RPC, and tactic errors were
due to specifying too few parameters, RPC arguments, and tactics respectively. Too few
parameters can lead to poor predictions by Chroma. Too few tactics could hurt application
performance because the tactics-fidelity space is too sparse. Too few RPC arguments results
in a functionally incorrect solution. There were also 4 harmless errors that would not have
caused any performance problems. In particular, the participants specified extra fidelities
that Chroma would ignore.

For Stages B and C, I classified the errors found as either trivial or non-trivial. Triv-
ial errors are those commonly occurring in programming assignments. Examples include
being off by one on a loop index, or forgetting to deallocate memory. Trivial errors also
include those that would have been detected immediately if my procedure allowed partici-
pants to test their modified applications. An example is forgetting to insert a register API
call to Chroma. All other errors were deemed non-trivial.

Table 4.7 shows the error distribution across applications. A total of 25 trivial errors
were found, yielding an average incidence rate of one trivial error per modification attempt.
The bulk of these errors (80%) were either a failure to register the application early enough
or an incorrect specification of the output file. The register error was due to participants not
placing the register call at the start of the application. This prevented the application from
connecting to Chroma. The output file errors were due to incorrect use of string functions
(a common programming error); this resulted in the application exiting with an error when
performing an RPC. Both of these errors would have been discovered immediately if the
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App Lines File Tactic Stage B: Client Modifications

of Code Count File Lines Lines Stub Files

Size Added Removed Lines Changed

Face 20K 105 10 31 – 68 12 – 15 556 2

Flite 570K 182 10 29 – 39 1 – 5 556 2

GLVU 25K 155 38 62 – 114 3 – 21 1146 2

Janus 126K 227 25 28 – 47 2 – 7 1538 3

Music 9K 55 11 61 – 77 4 – 6 1127 2

Panlite 150K 349 21 30 – 66 1 – 39 1481 3

Radiator 65K 213 15 41 – 51 1 – 47 643 2

Stage C: Server Modifications

Lines Lines Stub Files

Added Removed Lines Changed

Face 20K 105 10 26 – 45 15 – 24 186 2

Flite 570K 182 10 13 – 30 3 – 87 186 2

GLVU 25K 155 38 88 – 148 12 – 32 324 2

Janus 126K 227 25 59 – 130 7 – 70 434 4

Music 9K 55 11 131 – 269 23 – 147 203 2

Panlite 150K 349 21 12 – 73 18 – 39 406 3

Radiator 65K 213 15 49 – 106 17 – 32 202 2

Any a–b value indicates a lower bound of a and an upper bound of b. Lines of Code and
File Count show the size and number of files in the application. Tactic File Size gives
the number of lines in the application’s tactics file. The Lines Added and Lines Removed
columns show how many lines were added and removed when performing the task. Stub
Lines gives the number of automatically generated lines of code. Files Changed gives the
maximum number of files that were actually modified by the participants.

Table 4.5: Application Modifications
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Apps Params RPCs Tactics Harmless # Apps Okay

Face 0 0 0 0 3 3

Flite 1 0 0 0 3 2

GLVU 1 1 0 3 5 4

Janus 0 0 0 1 3 3

Music 0 1 0 0 3 2

Panlite 0 0 2 0 5 3

Radiator 0 2 0 0 3 1

Total 2 2 0 4 25 18

The # Apps column lists the no. of tactics files created for each app. Okay lists how many
tactic files had no harmful errors.

Table 4.6: Total Errors for Stage A Across All Participants

participants had been able to test their applications.
A total of 10 non-trivial errors were found, giving an incidence rate of 0.4 per modifi-

cation attempt. These took two forms: incorrectly setting parameter values, or incorrectly
using fidelities. The parameter errors appeared across many applications while the fidelity
errors occurred only in GLVU. Neither of these errors would be immediately apparent when
running the application. I examine the performance impact of these errors in Section 4.6.

In summary, I achieved a good success rate with 72% (18 of 25) of the Stage A tactics
files having no harmful errors and 64% (16 of 25) of the Stage B and C novice-modified
applications having no non-trivial errors. At first glance, these numbers may seem unim-
pressive. However, no novice-modified application had more than 1 non-trivial error. This
is very low given that the applications being modified consisted of thousands of lines of
code and hundreds of files. I am confident that any manual attempt, even by experts, to
modify these applications would result in far larger numbers of non-trivial errors. This low
error rate is also an upper bound as the participants were not able to actually test their mod-
ified applications — they only confirmed that it compiled cleanly. The low error rate also
substantially improves standard testing phases as the applications are mostly correct. In
addition, any errors caught during testing can be rapidly traced to the offending code lines,
because relatively few lines of code were inserted or deleted. In Section 4.7.2 I examine
ways to reduce this error rate even further.

4.6 Results: Good Quality
The fourth criterion listed in Section 4.1 pertains to the quality of modified applications:
“Can novices produce modified applications whose quality is comparable to those pro-
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Trivial Errors Non-Trivial Errors

Apps Reg. Output Output Mem. Other Params Fids

Late File Space Freed

Face 0 3 0 0 0 1 0

Flite 0 3 0 0 1 0 0

GLVU 3 0 1 0 1 1 4

Janus 1 2 0 0 0 0 0

Music 1 0 0 2 0 1 0

Panlite 4 0 0 0 0 1 0

Radiator 2 1 0 0 0 2 0

Total 11 9 1 2 2 6 4

Observed trivial errors include: did not register application early enough; did not create
output file properly; did not allocate enough space for output; freed static memory. Ob-
served non-trivial errors include: did not set parameters correctly; did not use fidelities to
set application state properly

Table 4.7: Total Errors for Stages B and C Across All Participants

duced by an expert?”. To answer this question, I conducted the system-centric evaluation
described in Section 4.6.1.

4.6.1 System-Centric Evaluation
The goal of the system-centric evaluation was to understand whether developer retargeted
applications created using RapidRe had adequate performance. For each application, I
asked an expert who had a good understanding of my solution and the application to cre-
ate a hand-tuned adaptive version of the application. In essence, I hand retargeted each
application and ensured that they were fully tuned to achieve optimal performance. The
performance measurements from this expert-modified application were then used as a ref-
erence against which to compare the performance of novice-modified applications under
identical conditions.

4.6.1.1 Testing Scenarios

Ideally, one would compare novice-modified and expert-modified applications for all pos-
sible resource levels and user preferences. Such exhaustive testing is clearly not practical.
Instead, I performed the comparisons for six scenarios that might typically occur in cyber
foraging.
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ID Load BW User Prefs Typical Scenario
Q Low High Highest quality result Conducting an important business meet-

ing using a language translator
T Low High Lowest latency result Field engineer just wanting to navigate a

quick 3D model of a building to under-
stand the building’s dimensions

LH Low High Highest quality result
within X s

Sitting in an empty cafe with plentiful
bandwidth and unused compute servers

HH High High Highest quality result
within X s

Bandwidth is available in cafe but long
lived resource intensive jobs are running
on the compute servers

LL Low Low Highest quality result
within X s

Cafe’s compute servers are unused but
other cafe users are streaming high bitrate
multimedia content to their PDAs

HL High Low Highest quality result
within X s

The cafe is full or people either streaming
multimedia content or using the compute
servers for resource intensive jobs

Load is the compute server load. BW is the available bandwidth. User Prefs are the User
Preferences. X is 20s for Face, 25s for Radiator, and 1s for the rest.

Table 4.8: Scenario Summary

These six scenarios are shown in Table 4.8. I used two values of load on compute
servers: light (1% utilization) and heavy (95% utilization). I used two bandwidth values:
high (5 Mb/s) and low (100 Kb/s), based on published measurements from 802.11b wire-
less networks [137]. This yielded four scenarios (labeled “LH,” “HH, “LL” and “HL” in
Table 4.8). All four used the same user preference: return the highest fidelity result that
takes no more than X seconds, where X is representative of desktop performance for that
application. X was 1 second except for Face (20 s) and Radiator (25 s). The other two
scenarios are corner cases: scenario “Q,” specifying highest fidelity regardless of latency;
and scenario “T,” specifying fastest result regardless of fidelity. In all cases, Chroma was
provided with correct utility functions that captured the user preferences for the scenario
being tested.

4.6.1.2 Experiment Setup

To model a resource-poor mobile device, I used an old Thinkpad 560X laptop with a Pen-
tium 266 MHz processor and 64 MB of RAM. I modeled high and low end compute servers
using two different kinds of machines: Slow, with 1 GHz Pentium 3 processors and 256 MB
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of RAM, and Fast, with 3 GHz Pentium 4 processors and 1 GB of RAM. The mobile client
could also be used as a very slow fallback server if needed. All machines used the Debian
3.1 Linux software distribution, with a 2.4.27 kernel for the client and a 2.6.8 kernel for
the servers. To avoid inconsistent behaviour due to Chroma’s history-based mechanisms, I
initialized Chroma with the same history before every experiment.

4.6.1.3 Procedure

Each novice-modified and expert-modified application was tested on 3 valid inputs in each
of the 6 scenarios above. These 18 combinations were repeated using fast and slow servers,
yielding a total of 36 experiments per application. Each experiment was repeated 5 times,
to obtain a mean and standard deviation for metrics of interest.

For each novice-modified application, I conducted 36 experiments comparing its per-
formance to that of the same application modified by an expert. As explained in Sec-
tion 4.6.1.1, these 36 experiments explored combinations of compute server loads, network
bandwidths, user preferences, and server speeds. For each experiment, I report fidelity and
latency of the result. Fidelities are normalized to a scale of 0.01 to 1.0, with 0.01 being the
worst possible fidelity, and 1.0 the best. Fidelity comparisons between different versions of
the same application are meaningful, but comparisons across applications are not. I report
latency in seconds of elapsed time.

I deemed applications to be indistinguishable if their performance on all 36 experiments
came within 1% of each other on both fidelity and latency metrics. This is obviously a very
high bar. Data points differing by more than 1% were deemed anomalies. I evaluated the
performance of client and server components of each application separately.

4.6.2 Server Component Results
All 25 retargeted server components achieved indistinguishable performance from their
expert-modified counterparts. I thus do not show further results for the retargeted server
components.

4.6.3 Client Component Results
Table 4.9 presents the client component results. The table entry for each participant, and ap-
plication modified by that participant, gives the percentage of the 36 experiments for which
novice-modified and expert-modified applications were within 1%. A score of 100% indi-
cates indistinguishable applications; a lower percentage indicates the presence of anoma-
lies. Table 4.9 shows that novice- and expert-modified applications were indistinguishable
in 16 out of 25 cases.

Tables 4.10 to 4.14 show details for the five anomalous applications (Face, Flite, GLVU,
Panlite, and Radiator). I only show the performance of one anomalous version of GLVU
as the other 3 anomalous versions were similar. For each application, I provide the relative
fidelity and latency obtained for all 3 inputs in all 6 scenarios. The relative fidelity is
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Participant No. Application
Face Flite GLVU Janus Music Panlite Radiator

1 100% 44%

2 100% 100%

3 44% 100% 100%

4 100% 83% 94%

5 44% 100%

6 100%

7 100% 100%

8 100% 100%

9 44%

10 100% 100%

11 67% 100%

12 67% 78%

13 100%

A score of 100% indicates that the participant’s client version matched the performance
of the expert in all 36 experiments. A blank entry indicates that the participant was not
asked to create a modified version of that application.

Table 4.9: Relative Performance of Novice-Modified Client Component

expressed as H (Higher), S (Same), or L (Lower) than the expert-modified version. Latency
is given as a ratio relative to the expert. For example, a value of 11.9 indicates that the
novice-modified application had 11.9 times the latency of the expert-modified application,
for the same input.

GLVU was the source of most of the anomalies. The novices’ solutions selected an
inappropriately high fidelity resulting in their solutions exceeding the latency goals for the
T, LH, HH, LL, and HL scenarios. Code inspection of the anomalous versions of GLVU
revealed that all 4 anomalous versions made the same mistake. To successfully modify
GLVU, participants needed to use a fidelity value returned by Chroma to set the application
state before performing the chosen tactic. In all 4 cases, the participants read the value of
the fidelity but forgot to insert the 2 lines of code that set the application state. As a result,
these 4 applications always performed the chosen tactic using the default fidelity, and were
unable to lower fidelity for better latency.

The other 5 anomalies (1 Face, 1 Flite, 1 Panlite and 2 Radiator versions) were due to
mis-specified parameters. In 4 of the 5 cases, the participants set a parameter value that
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Scenarios
Q T LH HH LL HL

Slow . . . S, 5.24 S, 5.22 . . . . . . . . .

. . . S, 5.26 S, 5.24 . . . . . . . . .

. . . S, 5.20 S, 5.25 . . . . . . . . .

Fast . . . S, 14.21 S, 14.22 . . . . . . . . .

. . . S, 14.37 S, 14.29 . . . . . . . . .

. . . S, 14.17 S, 14.25 . . . . . . . . .

Participant 11

Each entry consists of a relative fidelity followed by a relative latency for a single input.
The relative fidelity is either L–lower than expert, S–same as expert, or H–higher than
expert. The relative latency gives the ratio between the participant’s version versus the
expert. E.g., a latency of 11 indicates the participant’s version had 11 times the latency of
the expert. Only the anomalous values are presented. All other values are replaced by the
symbol “. . . ” to avoid visual clutter.

Table 4.10: Detailed Results for Anomalous Retargeted Face Client Component

was too small. For Panlite, the parameter was set to the length of the entire input string
instead of just the number of words in the input string. For Flite, the participant forgot to
set the parameter value, which then defaulted to a value of 0. For Face, the parameter was
set to input file name length instead of file size. For Radiator (participant 12), the parameter
was set to a constant value of 400 instead of the number of polygons in the lighting model.
These mis-specifications of parameter values led Chroma to recommend fidelity and tactic
combinations that exceeded the scenario latency requirements.

In the last case (Participant 4’s version of Radiator), the parameter was set to a far higher
value than reality. In particular, it was set to the size of the model file on disk instead of
just the number of polygons in the model being used. This caused Chroma to be more
pessimistic in its decision making than it should have been. So this application version
achieved lower fidelity than it could have.

4.6.4 Summary
In summary, the results confirm that the novice-modified application code is of high quality.
All 25 of the server components, and 16 of the 25 client components modified by partic-
ipants were indistinguishable from their expert-modified counterparts. Where there was
divergence, analysis of the anomalies provided ideas for improving my solution. I discuss
these improvements in Section 4.7.2.
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Scenarios
Q T LH HH LL HL

Slow . . . . . . S, 2.33 . . . S, 2.45 . . .

. . . . . . S, 2.77 . . . S, 2.74 . . .

. . . . . . S, 2.51 . . . S, 2.42 . . .

Fast . . . . . . S, 2.91 . . . S, 2.97 . . .

. . . . . . S, 3.56 . . . S, 3.23 . . .

. . . . . . S, 3.16 . . . S, 3.38 . . .

Participant 12

Each entry consists of a relative fidelity followed by a relative latency for a single input.
The relative fidelity is either L–lower than expert, S–same as expert, or H–higher than
expert. The relative latency gives the ratio between the participant’s version versus the
expert. E.g., a latency of 11 indicates the participant’s version had 11 times the latency of
the expert. Only the anomalous values are presented. All other values are replaced by the
symbol “. . . ” to avoid visual clutter.

Table 4.11: Detailed Results for Anomalous Retargeted Flite Client Component

Scenarios
Q T LH HH LL HL

Slow . . . H, 11.26 . . . H, 3.04 . . . H, 3.06

. . . H, 13.29 H, 1.16 H, 4.65 H, 1.15 H, 4.61

. . . H, 8.31 . . . H, 2.47 . . . H, 2.45

Fast . . . H, 11.34 . . . H, 3.06 . . . H, 3.02

. . . H, 13.40 . . . H, 4.59 . . . H, 4.67

. . . H, 7.85 . . . H, 2.46 . . . H, 2.48

Participant 1

Each entry consists of a relative fidelity followed by a relative latency for a single input.
The relative fidelity is either L–lower than expert, S–same as expert, or H–higher than
expert. The relative latency gives the ratio between the participant’s version versus the
expert. E.g., a latency of 11 indicates the participant’s version had 11 times the latency of
the expert. Only the anomalous values are presented. All other values are replaced by the
symbol “. . . ” to avoid visual clutter.

Table 4.12: Detailed Results for Anomalous Retargeted GLVU Client Component
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Scenarios
Q T LH HH LL HL

Slow . . . . . . H, 7.68 . . . H, 7.57 . . .

. . . . . . H, 6.89 . . . H, 6.93 . . .

. . . . . . H, 7.54 . . . H, 7.49 . . .

Fast . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Participant 4

Each entry consists of a relative fidelity followed by a relative latency for a single input.
The relative fidelity is either L–lower than expert, S–same as expert, or H–higher than
expert. The relative latency gives the ratio between the participant’s version versus the
expert. E.g., a latency of 11 indicates the participant’s version had 11 times the latency of
the expert. Only the anomalous values are presented. All other values are replaced by the
symbol “. . . ” to avoid visual clutter.

Table 4.13: Detailed Results for Anomalous Retargeted Panlite Client Component

4.7 Analysis of Results
Sections 4.3 to 4.6 have shown that RapidRe is able to achieve the four success criteria
posed in Section 4.1. In this section, I take a deeper look at both the RapidRe process and
the user study results and ask the following two questions:

1. Why is RapidRe so successful at reducing the time needed for developers to retarget
large unfamiliar applications? What magic is at work here? This question is answered
in Section 4.7.1.

2. How can RapidRe be improved even further? This question is answered in Sec-
tion 4.7.2.

4.7.1 Why My Solution Works
At first glance, the results of the previous sections seem too good to be true. Modifying a
complex application for cyber foraging, a task that one expects will take a novice multiple
weeks, is accomplished in just a few hours. The modified application performs close to
what one could expect from an expert. Yet, it is not immediately clear what accounts for
this success. Vivendi, Chroma and the stub generator are each quite ordinary. Somehow,
their combined effect is greater than the sum of the parts. What is the magic at work here?
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Scenarios
Q T LH HH LL HL

Slow . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . L, 0.17 . . . . . . . . .

Fast . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . L, 0.05 . . . . . . . . .

Participant 4

Q T LH HH LL HL

Slow . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . H, 3.98 H, 1.14 H, 1.10 H, 1.15

Fast . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . H, 1.11 H, 1.12 H, 1.16 H, 1.14

Participant 12

Each entry consists of a relative fidelity followed by a relative latency for a single input.
The relative fidelity is either L–lower than expert, S–same as expert, or H–higher than
expert. The relative latency gives the ratio between the participant’s version versus the
expert. E.g., a latency of 11 indicates the participant’s version had 11 times the latency of
the expert. Only the anomalous values are presented. All other values are replaced by the
symbol “. . . ” to avoid visual clutter.

Table 4.14: Detailed Results for Anomalous Retargeted Radiator Client Components
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The key to explaining the success is to recognize, as mentioned in Section 2.3.4, the
existence of a deep architectural uniformity across modified applications. This is in spite
of diversity in application domains, programming languages, modular decompositions, and
coding styles. It arises from the fact that, at the highest level of abstraction, we are dealing
with a single genre of applications: mobile interactive resource-intensive applications.

In a mobile environment, all sensible decompositions of such applications place interac-
tive code components on the mobile client, and resource-intensive components on the com-
pute server. This ensures low latency for interactive response and ample compute power
where needed. This space of decompositions is typically a tiny fraction of all possible
procedure-level decompositions. The challenge is to rapidly identify this “narrow waist” in
an unfamiliar code base.

In examining a broad range of relevant applications, I was surprised to observe that
every unmodified application of interest to us was already structured to make such decom-
position easy. In hindsight, this is not so surprising. Code to deal with user interaction
is usually of a very different flavor from code that implements image processing, speech
recognition, and so on. Independent of mobile computing considerations, a capable pro-
grammer would structure her application in a way that cleanly separates these distinct fla-
vors of code. The separation would be defined by a small procedural interface, with almost
no global state shared across that boundary — exactly the criteria for a narrow waist.

In addition to this similarity of code structure, there is also similarity in dynamic ex-
ecution models. First, there is a step to obtain input. This could be a speech utterance,
a natural language fragment, a scene from a camera, and so on. Then, resource-intensive
processing is performed on this input. Finally, the output is presented back to the user. This
may involve text or audio output, bitmap image display, etc.

In modifying such an application for mobile computing, the main change is to introduce
an additional step before the resource-intensive part. The new step determines the fidelity
and tactic to be used for the resource-intensive part. It is in this step that adaptation to
changing operational conditions occurs. A potential complication is the need to add the
concept of fidelity to the application. Fortunately, this has not been necessary for any of the
applications. Most applications of this genre already have “tuning knob” parameters that
map easily to fidelities — another pleasant surprise.

RapidRe exploits these similarities in architecture and execution model. The archi-
tectural similarity allows us to use a “little language”(Vivendi) to represent application-
specific knowledge relevant to cyber foraging. This knowledge is extracted by a developer
from the source code of an application and used to create the tactics file. The similarity
in execution model allows us to use a common runtime system (Chroma) for adaptation
across all applications. The use of stubs raises the level of discourse of the runtime sys-
tem to that of the application. It also hides many messy details of communication between
mobile device and compute server.

The net effect of executing the solution steps using a checklist is to quickly channel
attention to just those parts of application source code that are likely to be relevant to cyber
foraging. At each stage in the code modification process, the developer has a crisp and
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Figure 4.7: Self-Reported Chroma Knowledge Scores

narrow goal to guide his effort. This focused approach allows a developer to ignore most
of the bewildering size and complexity of an application.

In addition to reducing programmer burden, there is also a significant software engi-
neering benefit to the clean separation of concerns implicit in my design. The application
and the runtime system can be independently evolved, with many interface changes only
requiring new stubs.

It should be noted that RapidRe is not a magic bullet. There are applications for which
it will not be useful. As mentioned above, RapidRe does not help developers in adding
fidelity variable support to applications. In addition, applications that do not enforce clean
separation between the modules that make up a tactic will need to be reworked before they
can be used. For example, applications that use global variables to communicate between
modules.

4.7.1.1 Information Isolation

A key reason, listed above, why RapidRe works is because it dramatically reduces the
amount of information that developers need to know before they can retarget an applica-
tion. In this subsection, I present process data that quantifies the effect of this information
isolation. I obtained this process data by asking each participants in the user study to answer
a number of questions after they had finished retargeting an application.

The first two questions I asked were “How much about Chroma did you learn during the
user study?” and “Was this level of Chroma knowledge sufficient to complete the task?”.
The mean response for the first question was 1.28 (standard deviation of 0.68) on a 5-pt
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Figure 4.8: Self-Reported Application Knowledge Scores
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Likert scale (1–Knew Nothing at All to 5–Knew Every Minute Detail). For the second
question, the mean was 1.44 (standard deviation of 0.58) on a 5-pt Likert scale (1–Strongly
Agree to 5–Strongly Disagree). Figure 4.7 shows the breakdown for these two questions on
a per-application basis. Overall, every participant felt that they did not need to know much
about Chroma and that this was still sufficient to successfully retarget an application.

I then asked each participant four questions that asked them to state how much appli-
cation knowledge they needed to successfully retarget the application. The four questions
were 1) Did you need to understand the entire detailed application logic?, 2) Did you need
to understand the detailed logic of the operation? For example, exactly how the language
translation algorithms worked, 3) Did you need to understand the control flow of the op-
eration?, and 4) Did you need to understand the inputs and outputs of the operation? For
each question, I also asked each participant (similar to the question about Chroma knowl-
edge) to rate how important that particular piece of information was in allowing them to
successfully retarget the application. Each question was answered on a 5-pt Likert scale
(1–Strongly Agree to 5–Strongly Disagree).

Overall, the participants said that they did not need to know the detailed application
logic (mean of 3.52, standard deviation of 1.48) and that they also did not need to know the
detailed logic to perform the operation (mean of 4.36, standard deviation of 0.91). They
also felt that knowing the detailed application logic (mean of 4.00, standard deviation of
1.08) and the detailed operation logic (mean of 4.64, standard deviation of 0.49) was not
needed to successfully retarget the application. On the other hand, they did say that they
needed to know the control flow of the operation (mean of 1.76, standard deviation of
0.72) and the inputs and outputs of the operation (mean of 1.4, standard deviation of 0.5).
They also felt that knowing the operation control flow (mean of 1.64, standard deviation of
0.7) and the operation’s inputs and outputs (mean of 1.84, standard deviation of 1.14) was
crucial in retargeting the application. Figure 4.8 shows a breakdown of these answers on a
per-application basis

This process data provides strong evidence of the information isolation provided by
RapidRe. Participants do not need to understand the complicated and detailed runtime
system and they only need to understand a small bit of the application being retargeted. In
particular, they just needed to understand the application control pertaining to the operation
and the inputs and outputs of the operation. This validates the RapidRe process as these are
the only portions of the application that it tells developers to find and understand (described
in Section 2.7).

4.7.1.2 Usefulness of Stub Generator

A key component that facilitates the information isolation properties of RapidRe is the stub
generator. In particular, the stub generator is the reason that developers do not need to know
anything about the runtime system.

I asked participants how useful they thought the stub generator was. The mean response,
on a 5-pt Likert scale (1–Helped Immensely to 5–Didn’t Help at All), was 1.48 with a
standard deviation of 0.51. Figure 4.9 shows this response on a per-application basis. The
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results indicate that the participants thought that the stub generator was highly useful.
To further quantify the benefits of the stub generator, I asked participants to estimate

how long they would need to retarget their application if there was no stub generator. I
asked this question two times. The first time I asked this question, I provided participants
with no information about what exactly the stub generator did. I then asked the participants
a number of other questions (to try to make them forgot their answer). I then asked them
this same question again without letting them see their previous answer. However, this time,
I explained to them exactly what the stub generator was doing (I told them a summary of
Section 2.7). Both times, I provided them with 6 ascending options. They were “5 to 6
hours”, “1 day”, “3 to 5 days”, “1 to 2 weeks”, “1 month”, and “greater than 1 month”.
On average, without detailed knowledge of the stub, participants said that they would need
between “3 to 5 days” to “1 to 2 weeks” (mean of 3.52, standard deviation of 1.12). After
learning what the stub did, participants said that they would need between “1 to 2 weeks” to
“1 month” (mean of 4.2, standard deviation of 1.08) to retarget the application. Figure 4.10
shows the breakdown of both these questions on a per-application basis.

Overall, the participants answers demonstrated the benefits provided by the stub gen-
erator. The stub, in turn, is made possible because of the concept of tactics and the tactics
file (created using Vivendi). In particular, participants estimated that they would need up to
2 weeks to retarget an application without the stub generator. This time matches my prior
experience of retargeting applications without RapidRe.

4.7.2 Improving RapidRe
In this section, I identify areas in which my solution, RapidRe, can be improved. RapidRe
could be improved in several ways: eliminating all errors, further reducing the time re-
quired, and ensuring it applies to the widest possible range of potential mobile applications.
In order to chart out these future directions, I analyzed all the non-trivial errors, examined
how the subjects spent their time, and examined the differences in applying the solution
to the range of applications. Because it is already fast, I focused on improving RapidRe’s
quality.

From the results displayed in Sections 4.5 and 4.6, I identified the errors made by the
participants. The non-trivial errors in Stage A took 3 forms; specifying too few parameters,
specifying too few RPC arguments, and specifying too few tactics. These errors were
distributed randomly across participants and applications.

All of the non-trivial errors in Stages B and C occurred in one subtask, “Find Fidelities”,
while creating the client, and were of only two types. In one type of error, all for GLVU,
novices successfully read the fidelity values returned by Chroma, but failed to use those
values to set the application state. In the other cases, novices failed to set the parameters
correctly to reflect the size of the input. There were no errors associated with any other
subtask involved in creating either the client or server.

In order to eliminate these errors, I needed to determine whether the programmers were
unable to understand the task or simply forgot to complete all necessary steps. If the latter,
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straightforward improvements in the instructions may be sufficient to eliminate all observed
errors. An examination of the evidence summarized in Figure 4.11 suggests that forgetful-
ness is the likely cause. Subjects did not report that the “Find Fidelities” subtask was par-
ticularly difficult, rating it only 2.6 on a 7-point difficulty scale where 4 was the midpoint.
They also did not report a high degree of uncertainty (not shown) in their solution, giving
it a 1.7 on a 7-point uncertainty scale (midpoint at 4). Table 4.9 shows that, of the seven
programmers who made at least one non-trivial error, five successfully modified a second
application with no errors. Of the other two, one modified only a single program, and the
other made non-trivial errors on both programs they modified. Together, these results sug-
gest that nearly all the subjects were capable of performing all tasks correctly. This implies
forgetfulness was the problem. This analysis leads us to believe that forcing developers to
pay more attention to these error-prone parts of the “Find Fidelities” task, perhaps with an
extended checklist, will eliminate most of the errors.

Figure 4.11 also suggests that the difficult and time-consuming tasks vary considerably
across application types. For example, GLVU required more time in the “In” and “RPC”
subtasks of Stage A as it had a large number of parameters and RPC arguments as shown
in Table 4.1. It also had larger times for the “Find Fidelities” and “Do Tactics” subtasks of
Stage B as “Find Fidelities” required participants to set each of the parameters while “Do
Tactics” required participants to manage each of the RPC arguments. Similarly, Panlite
required more time during the “Tactic” subtask of Stage A as it had a large number of tactics
that had to be identified and described. In each of these cases, I suspect that instructing
programmers on how to keep track of the minutiae of these subtasks, and ensuring that
each is completed, would be of substantial benefit.

Finally, Music had a very large “Compile and fix” time for Stage C. This was because
Music was originally written as a non-adaptive, desktop oriented client–server application.
Thus it already used a specific on-wire data format that participants had to reuse, requiring
them to write large amounts of relatively simple buffer manipulation code. Trivial errors in
this code led to the increased subtask times. This suggests that there will be issues specific
to some types of applications that may make them less amenable to my solution.

4.7.3 Applicability of RapidRe
In this section, I discuss the applicability of RapidRe. This discussion first identifies the
types of applications that RapidRe is most suitable for. It then discusses exactly which parts
of the application retargeting process RapidRe helps to speed up.

4.7.3.1 Applications That Can Benefit From RapidRe

I first describe exactly what kinds of applications can fully benefit from RapidRe. This
knowledge is a combination of my basic assumptions with the knowledge obtained from
developing and evaluating RapidRe. For RapidRe to be most effective, applications should
have the following properties:
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• Interactive Nature : Applications should be interactive in nature. In particular, they
must have the following mode of operation; the user provides input to the application
and the application then performs some computation on the input. This sequence of
user input followed by computation can occur as many times as necessary.

• Resource Constrained on Mobile Devices : A suitable application should be re-
source constrained when running on a mobile device. In particular, it should not be
possible to achieve acceptable application performance, when running on a mobile
device, without adapting the application. In addition, Chroma was designed for CPU
and/or memory constrained applications and has only limited support for bandwidth
constrained applications. Hence, bandwidth constrained applications may not work
well with RapidRe (this was explained in more detail in Section 2.2.3).

• Independent and Stateless RPCs : Chroma assumes that the individual RPCs that
make up an application’s tactics are independent. In particular, a RPC should not de-
pend on state created by a previous RPC. Chroma has, by using the server constraint
syntax of Vivendi, limited support for RPCs that need to be co-located on particular
servers. However, using this feature limits the ability of Chroma to pick the best
runtime solution. Chroma also has a very simple error handling mechanism which
assumes that RPCs are stateless; i.e., it is possible for any RPC to fail and then be
retried without any negative effects. If this assumption is violated, then the developer
will have to manually add the appropriate code to the application server such that it
can recover from a failed RPC request.

• No Global Variables Used Between RPCs : A key requirement for any RPC mech-
anism is that all arguments needed for the RPC to successfully execute should be
specified as inputs to the RPC. In particular, an RPC should not depend on the value
of a global variable that is set in some other RPC (or the client code). An example
of such a global variable is the errno variable commonly used in Unix programs. If
an RPC uses such global variables, it must be manually fixed to either not use these
variables or to receive the current value of these variables as an input to the RPC.
Note that it is okay for an RPC to use a global variable that is fully self-contained
within that RPC. However, even in this special case, care must be taken to not violate
the stateless assumption mentioned above.

• Written in a C-friendly Language : RapidRe achieves a large part of its language-
independent characteristic because Chroma is written in C. In my experience, all the
languages I tested RapidRe with have an easy and well-documented way to interface
with a C library (the stub code is linked into the application as a C library). In
particular, it was possible to use the Simplified Wrapper and Interface Generator
(SWIG) tool [206] to automatically create API wrappers for the non-C languages
used in this thesis. This eliminated the need to change the stub generator to generate
code in different languages. If an application is written in a language that doesn’t



80 CHAPTER 4. VALIDATION : EASY TO RETARGET

have an easy C interface, then it will be necessary to change the stub generator. This
change would take at least a few days to complete.

4.7.3.2 The Application Retargeting Process

There are many steps involved in retargeting an application from one domain to another.
These include a) identifying if the application is suitable for the other domain, b) converting
the application compilation routines to work in the other domain, c) converting the applica-
tion itself to support the other domain, and d) testing the retargeted application in the other
domain.

RapidRe only helps with step c). It significantly reduces the time needed to convert a
legacy application and make it work on a mobile device. This time savings can be on the of
one to two weeks per application. However, it doesn’t help with the other three retargeting
steps. In particular, developers still have to identify if a legacy application is suitable for
running on a mobile device (i.e., it supports the requirements stated in Section 4.7.3 above).
From my personal experience, this can take a few hours per application. The developer
also has to modify the application’s build process to support the new environment. My
experience is that converting the build process can take a few minutes to one day depending
on how complicated and well written the application’s build process is.

Finally, RapidRe decreases some of the time needed to test the retargeted application
and verify that it accurately works in the new domain. In particular, RapidRe decreases
the unit-testing time as the automatically generated stub code can be unit tested separately
from the retargeted applications. As shown in Figure 4.5, the amount of code added to
the application is minimal. Hence, RapidRe also makes it easier to unit-test the individual
client and server components of the retargeted applications. However, RapidRe does not
speed up the final domain-specific overall application testing. In the context of mobile
computing, these are the tests that verify that the retargeted application can actually work
effectively on a mobile device in a variety of mobile environments.

4.8 Summary
In this chapter, I presented the results of a user study that was designed to measure the ef-
fectiveness of RapidRe. In the user study, thirteen undergraduate students retargeted seven
large applications using RapidRe. The user study showed that this group of novice devel-
opers were able to retarget each application in under 4 hours. The quality of the retargeted
applications was also excellent; comparable to expert-modified applications. A closer look
at the process data obtained during the user study shows that RapidRe is excellent at isolat-
ing developers from having to know anything at all about Chroma. RapidRe also requires
developers to only know very little about the applications they are retargeting. In particu-
lar, only the control flow of the operation and the inputs and outputs of the operation need
to be known. Finally, an analysis suggested that RapidRe’s error rate might be reduced
by drawing developer attention, through a checklist or other means, to certain error-prone
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portions of the retargeting process. Overall, this chapter effectively validates that RapidRe
allows even novice developers to quickly and easily retarget computationally-intensive ap-
plications for cyber foraging. Furthermore, these applications have comparable quality
to expert-retargeted applications. In the next chapter, I show that these expert-retargeted
applications achieved excellent performance in a variety of mobile environments.
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Chapter 5

Validation: Effectiveness

In the previous chapter, I showed that the relative performance of novice-retargeted appli-
cations was excellent. In particular, they achieved equivalent performance, in many cases,
to to expert-retargeted applications. In this chapter, I show that these expert-retargeted ap-
plications achieve excellent absolute performance in a variety of mobile scenarios. More
precisely, I show that Chroma can achieve excellent application performance in mobile
environments.

5.1 Validation Strategy
The validation goal of this chapter can be separated into six smaller questions. Successfully
answering these six questions will provide excellent validation of the top-level goal.

1. Can Chroma correctly pick the optimal runtime settings for an application when
the user preference and resource environment is fixed? This is the basic require-
ment that Chroma has to provide. A runtime setting consists of precise fidelity vari-
able settings, the tactic to run, and precise server selections for each RPC in the
chosen tactic. The validation for this question is provided in Section 5.2.

2. Can Chroma work in a dynamic mobile environment? In particular, can Chroma
pick the best application runtime settings even when user preferences and the re-
source environment changes? Satisfying this dynamic requirement is vital for Chroma
to successfully support the needs of a mobile user. This question is validated in Sec-
tion 5.3. The validation also shows that for Chroma to achieve good performance, it
needs to use dynamic utility functions that capture the current user preferences.

3. Is the overhead of Chroma’s decision making process reasonable? In particular,
it should not add substantially to the total latency of the application. This question’s
validation is presented in Section 5.4.

4. Is Chroma able to use extra server resources in the environment to automati-
cally improve application performance? The validation of this question, shown

83
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in Section 5.5, demonstrates that Chroma can effectively handle cases where either
overprovisioning or underutilization results in extra server resources being available
for use.

5. Are there simple client-side mechanisms that Chroma can use to protect against
malicious servers? Answering this question will provide evidence that Chroma can
be used in an untrusted mobile environment. Section 5.6 provides the results of this
validation.

6. How does Chroma work in real environments? This question removes some of
the assumptions made by previous sections and attempts to investigate how Chroma
would behave in real environments. In particular, it asks the following two subques-
tions: 1) how would Chroma work in an environment that had heterogeneous servers
(i.e., the servers had different computing capabilities), and 2), how would Chroma
work in an environment where multiple Chroma clients are all vying for the same set
of server resources. Section 5.7 provides the results of this validation.

5.1.1 Client and Server Setup

For the rest of this section, except where stated otherwise, I used HP Omnibook
6000 notebooks with 256 MB of memory, a 20 GB hard disk and a 1 GHz Mobile
Pentium 3 processor as the remote servers. I used two different clients that represent
the range of computational power available in today’s mobile devices. The fast client
is the above mentioned HP Omnibook 6000 notebook. The slow client is an IBM
Thinkpad 560X notebook with 96 MB of memory and a 233 MHz Mobile Pentium
MMX CPU. The computational power of the Thinkpad 560X is representative of
today’s most powerful handheld devices. The clients and servers ran Linux and were
connected via a 100 Mb/s Ethernet network. I used the Coda [133, 190] distributed
file system to share application code between the clients and servers.

5.2 Q1: Determining the Optimal Operation Setting
Since Chroma automatically determines how to remotely execute an application based on
the current resources, it is possible that the decisions it makes are not as good as a care-
ful manual remote partitioning of the application. I allay this concern by showing that
Chroma’s partitioning comes close to the optimal partitioning possible for a number of
different applications and operating conditions.

5.2.1 Experiment Setup
To demonstrate this, I compared the decision making of Chroma with that of an ideal run-
time system. This ideal runtime system was achieved by manually testing every possible
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application runtime setting for a given experiment and then choosing the best one. Chroma,
on the other hand, has to figure out the best application runtime setting dynamically at run-
time.

I defined the best runtime setting as the one that maximizes the given utility function.
For this experiment, I used the following simple utility function.

utility =
fidelity

latency
(5.1)

Fidelity has no units and represents the application quality. It ranges from 0.0 (worst quality) to
1.0 (best quality). Latency, given in seconds, is the time needed to perform the operation.

I used Panlite (Section 3.8), Janus (Section 3.6), and Face (Section 3.1) as the appli-
cations for this experiment. Each experiment was repeated five times and the results are
shown with 90% confidence intervals where applicable. Since Chroma uses history-based
demand prediction, I created history logs for each application before running the experi-
ments using training data that was not used in the actual experiments. These logs provide
the system with the proper prediction values for the application. Without these logs, the
system would have to slowly learn the correct prediction values online and this could take
a long time and lead to incorrect results. The results for each application is presented
separately in the next few sections.

5.2.2 Panlite
5.2.2.1 Description

As mentioned in Section 3.8, Panlite translates text from one language to another. It can
use up to three translation engines: EBMT (example-based machine translation), glossary-
based, and dictionary-based. Each engine returns a set of potential translations for phrases
within the input text. A language modeler combines their output to generate the final trans-
lation.

Panlite’s fidelity increases with the number of engines used for translation. I assigned
the EBMT engine a fidelity of 0.5. The glossary and dictionary engines produce subjec-
tively worse translations— I assigned them fidelity levels of 0.3 and 0.2, respectively. When
multiple engines are used, I added their individual fidelities since the language modeler can
combine their outputs to produce a better translation. For example, when the EBMT and
glossary-based engines are used, I assigned a fidelity of 0.8. The seven possible combina-
tions of the engines are captured by the seven tactics (shown in Fig 3.11).

Each translation engines and the language modeler may be executed either locally or
remotely. While execution of each engine is optional, the language modeler must always
execute. Thus, there are at least 52 tactic plans (a tactic plan is a specific tactic selec-
tion with precise server locations for each RPC) for Chroma to choose from when at least
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Sentence Length Ideal Runtime Chroma Ratio
(No. of Words) chosen tactic utility chosen tactic utility

11 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
23 gloss dict ebmt 1.00 dict ebmt 0.70 0.70
35 gloss dict ebmt 1.00 dict ebmt 0.70 0.70
47 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
59 dict ebmt 0.70 dict ebmt 0.70 1.00

(a) Fast Client

Sentence Length Ideal Runtime Chroma Ratio
(No. of Words) chosen tactic utility chosen tactic utility

11 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
23 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
35 gloss dict ebmt 1.00 dict ebmt 0.70 0.70
47 dict ebmt 0.70 dict ebmt 0.70 1.00
59 dict ebmt 0.70 dict ebmt 0.70 1.00

(b) Slow Client

The two tables show the exact tactic and the utility value of the runtime setting chosen
by Chroma and the ideal runtime. The locations chosen by Chroma and the ideal runtime
were identical in all cases and are thus omitted from the table. The ratio ( Chroma

Ideal
) between

the ideal system’s utility value and Chroma’s is shown in the Ratio column. Any value
less than 1.0 indicates that Chroma chose an inefficient runtime setting.

Table 5.1: Comparison Between the Ideal Runtime and Chroma for Pangloss-Lite

one remote server is available. Since Panlite has no fidelity variables, these tactic plans
represent the possible runtime settings.

I used the simple utility function (Equation 5.1) to determine the runtime setting to use
for Panlite. However, to model the preferences of an interactive user, I specified that all
predicted latencies of one second or lower are equally good and that all predicted latencies
larger than five seconds are impossibly bad. Thus if the prediction is greater than five
seconds, I set the utility to zero and if the prediction is one second or lower, I changed
its value to one (the final utility thus depends solely on the fidelity). All other predicted
latency values were left unchanged.

I used as input five sentences with different number of words (ranging from 11 words
to 59 words) as inputs for the baseline experiments. The input sentences were in Spanish
and were translated into English. There were three remote servers available and both the
servers and the clients were unloaded for the purposes of this experiment.
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(b) Slow Client

These 2 figures show the predicted latency for each of the 7 tactics (D = dictionary, E =
ebmt, G = gloss) as well as the actual latency for each of those tactics. From the figures,
we see that for both clients, the predicted latency for executing the glossary engine was
much higher than the actual latency. Thus, Chroma chose the best tactic (shown by the
arrow) that it thought would maximize the utility function. The 1s latency cutoff is the
point below which all latencies were considered equally good. I.e., the point below which
only fidelity values affected the final utility score.

Figure 5.1: Difficulty with Predicting Sentences with 35 Words
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5.2.2.2 Results

Table 5.1 shows the decisions made by Chroma and the ideal runtime, for all five sentences,
on the fast and slow clients respectively. From the results, we see that Chroma made de-
cisions that approximated the decisions made by the ideal runtime system. In the cases
where Chroma made a different decision, it was off by 30%. This difference in decision
making was due to incorrect resource estimations by Chroma. From the results, we see
that Chroma decided not to run the glossary engine in the cases where it differed from
the ideal runtime. The time needed for the glossary engine to complete a translation was
hard for Chroma to predict as it was not a simple function of the length of the input sen-
tence. This prediction difficulty is shown in Figure 5.1. Chroma’s decision to drop the
glossary engine incurred a 30% reduction in fidelity and this resulted in the final 30%
difference in Ratio. The latencies used to calculate the utility value were below 1 second for
both Chroma and the ideal runtime system in all the cases where the utility values differed.

5.2.3 Janus
5.2.3.1 Description

As mentioned in Section 3.6, Janus performs speech recognition and converts spoken
phrases to text. This recognition can be performed at either full or reduced fidelity. The
reduced fidelity uses a smaller, more task-specific vocabulary that limits the number of
phrases that can be successfully recognized but requires less time to recognize a phrase.
Janus has a fidelity variable that determines which vocabulary files to use. I assigned the
reduced fidelity a utility of 0.5 and the full fidelity a utility of 1.0 to reflect this behavior.
Similar to Panlite, I modeled an interactive user by making all predicted latencies less than
or equal to one second equally good (we set the predicted latency value to one) and all
latencies greater than five seconds horribly bad (I set the utility value to zero). All other
latency values were left unchanged.

Janus has two tactics, as shown in Figure 3.9, that can be executed either locally or
remotely. The tactic Janus Full uses a single RPC while the Janus Hybrid uses
two RPCs. Janus Full has a lower latency than Janus Hybrid but uses more battery
energy.

I used as input ten different utterances containing different numbers of spoken words
(ranging from 3 words to 10 words) as inputs for the baseline experiments. One remote
server was used for this experiment and both the server and the clients were unloaded.

5.2.3.2 Results

Table 5.2 shows the decisions made by the ideal runtime and Chroma. In all cases, the ideal
runtime and Chroma both chose the Janus Full tactic as it had the lower latency (and
battery conservation was not a factor). The table lists, for both the fast and slow client, the
fidelity variable setting chosen by both Chroma and the ideal runtime along with the actual
execution latency for each of the 10 input sentences.
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Utterance Ideal Runtime Chroma Ratio
Fidelity Value Latency Utility Fidelity Value Latency Utility

1 reduced 0.50 reduced 0.50 1.00
2 reduced 0.50 reduced 0.50 1.00
3 reduced 0.50 reduced 0.50 1.00
4 reduced 0.50 reduced 0.50 1.00
5 reduced 0.50 reduced 0.50 1.00
6 reduced 0.50 reduced 0.50 1.00
7 full 0.53 reduced 0.50 0.94
8 reduced 0.50 reduced 0.50 1.00
9 reduced 0.50 reduced 0.50 1.00

10 reduced 0.50 reduced 0.50 1.00

(a) Fast client

Utterance Ideal Runtime Chroma Ratio
Fidelity Value Latency Utility Fidelity Value Latency Utility

1 reduced 0.71 0.50 reduced 0.73 0.50 1.00
2 reduced 1.00 0.50 reduced 1.00 0.48 0.96
3 reduced 0.76 0.50 reduced 0.80 0.50 1.00
4 reduced 0.78 0.50 reduced 0.79 0.50 1.00
5 reduced 0.99 0.50 reduced 1.03 0.49 0.98
6 reduced 0.95 0.50 reduced 0.96 0.50 1.00
7 reduced 0.70 0.50 reduced 0.71 0.50 1.00
8 reduced 1.20 0.42 reduced 1.22 0.41 0.98
9 reduced 0.77 0.50 reduced 0.77 0.50 1.00

10 reduced 0.99 0.50 reduced 0.99 0.48 0.96

(b) Slow Client

These two tables show the exact tactic and the utility value of the runtime setting chosen
by Chroma and the ideal runtime. The locations chosen by Chroma and the ideal runtime
were identical in all cases and are thus omitted from the table. The ratio ( Chroma

Ideal
) between

the ideal system’s utility value and Chroma’s is shown in the Ratio column. Any value
less than 1.0 indicates that Chroma chose an inefficient runtime setting.

Table 5.2: Comparison Between the Ideal Runtime and Chroma for Janus
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This figure shows the normalized utility ratio of the choices made, for the slow client, by
the Ideal Runtime, Chroma, and a theoretical runtime that always uses the runtime settings
that have the best fidelity. As can be seen, picking the highest fidelity choice results in a
far lower utility.

Figure 5.2: Relative Utility of Different Operation Settings for Janus

We see that Chroma picked the optimal choice in almost all cases on the fast client.
Even in the case where Chroma picked a different tactic plan, the utility value of the plan
picked by Chroma was very close to optimal (94% of optimal). On the slow client, Chroma
performed as well as the ideal runtime. In all cases, Chroma picked the same tactic plan as
the ideal runtime system and the differences in the utility value were due to experimental
errors in the latency measurements. In particular, as Figure 5.2 demonstrates (for the slow
client), Chroma did not pick the runtime setting with the best fidelity as this would have
been suboptimal.

5.2.4 Face
5.2.4.1 Description

Face (Section 3.1) is a program that detects human faces in images. It is representative
of image processing applications of value to mobile users. Face can potentially change
its fidelity by degrading the quality of the input image. However, for the purposes of this
experiment, all experiments were run with full fidelity images.
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Face has a single tactic, as shown in Figure 3.2, with a single RPC that can be run
either entirely locally or entirely remotely. Even though Face has only one tactic, this does
not mean that it cannot benefit from tactics. I show in Section 5.5.3 how Chroma can
use this single tactic to improve the performance of Face by using extra resources in the
environment.

I used as input three different image files of different size (ranging from 133 KB to 621
KB in size) as inputs for the baseline experiments. There was one remote server available
and both the server and the clients were unloaded.

5.2.4.2 Results

Figure 5.3 shows the latency that can be achieved when doing the face recognition locally
and remotely for both configurations. Since the fidelity was constant (full quality images)
in all the experiments, maximizing the utility function would require Chroma to pick the
option that minimized the latency. We see that in all cases, Chroma chose the correct option.

The graphs show that Face has extremely high latencies; on the order of tens of seconds
per image. In Section 5.5.3, I show how data decomposition can be used to reduce this
latency.

5.2.5 Q1: Summary
Sections 5.2.2, 5.2.3 and 5.2.4 described the performance of Chroma relative to an ideal
runtime system for Panlite, Janus and Face respectively. We see that while Chroma is not
perfect, its performance is still comparable to an ideal runtime system. Hence, Chroma is
able to pick the appropriate runtime setting for an application.

5.3 Q2: Can Chroma Perform Well in Dynamic Environ-
ments?

In this section, I answer the second question posed at the start of this chapter (Section 5.1).
Namely, can Chroma work effectively in a dynamic environment? To effectively answer
this question, I answered the following two more focused questions.

1. Why is a default utility function not good enough? In this question, I investi-
gated if it was really necessary for Chroma to dynamically change its optimization
functions to accommodate changing user goals. In particular, would it be possible to
satisfy changing user goals by using just a single good default optimization function?
This question is answered in Section 5.3.2

2. Can Chroma provide the correct behavior even when user preferences dynami-
cally change? In this question, I investigated whether Chroma, when provided with
accurate representations of the current user preferences, can pick a runtime setting
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The latency that was achieved by executing Face remotely and locally for all inputs on
both clients is shown. In all cases, Chroma picked the option that minimized latency. This
maximized the utility function as the fidelity was constant in all cases.

Figure 5.3: Relative Latency for Face
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that satisfies the user and the given resource environment. I also measured if the
runtime setting chosen is optimal. This question is answered in Section 5.3.3.

The rest of this section is structured as follows; Section 5.3.1 presents the experimental
setup used for the system validation. The answers to the two subquestions posed above are
presented in Sections 5.3.3 and 5.3.2 respectively.

5.3.1 Experiment Setup
To answer the two focused questions, I used the following scenario: I assumed that a user
is performing language translation using a computationally limited PDA. To overcome
the PDA’s computational limitations, Chroma is able to use faster remote servers, if they
are available, to perform the language translations. Remote servers are available for use
in a rich resource environment while a poor environment has no available servers. To
effectively simulate these two environments, I used a single remote server and the slow
client (hardware described in Section 5.1.1). When the resources were poor, the remote
server was unavailable.

I used Panlite as the language translation application. Panlite is capable of performing
both English to Spanish and Spanish to English translations. For the experiment, I used
3 randomly selected sentences, of between 10-12 words in length. Each sentence was
translated from English to Spanish and then back into English. I measured the time taken
to complete the two translations and the accuracy of the resulting English re-translation.
Each sentence was translated five times for every experiment.

The accuracy of the translation was computed based on which tactic was used to per-
form the translation. Each tactic has a different fidelity which affects the output quality.
However, the difference in quality between tactics cannot be easily discerned by a user. To
characterize this, I mapped the seven possible fidelity level (one for each tactic) into just
three user-perceived accuracy levels. Using just a single translation engine (the gloss,
dict, and ebmt tactics) resulted in low accuracy translations. Using a tactic with 2
translation engines (the gloss dict, gloss ebmt, and dict ebmt tactics) resulted
in medium accuracy translation while picking the single tactic (gloss dict ebmt) that
used all three translation engines resulted in high accuracy translations. Higher accuracy
translations require Panlite to do more work and hence, take longer.

At runtime, Chroma would pick a runtime setting that optimized the utility functions
(which factored in user preferences and the available resources). The translation would
then be characterized as low, medium or high depending on which tactic Chroma picked.
For this experiment, once Chroma had decided, for a given sentence, the runtime setting to
use for the English to Spanish translation, it would use the same choice for the Spanish to
English translation.
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User Preference Response Time Accuracy
Accurate Upper - 3.2s High Accuracy - Highly Desired

Lower - 0.6s Medium Accuracy - Somewhat Desired
Low Accuracy - Not Desired

Fast Upper - 1.4s High Accuracy - Highly Desired
Lower - 0.3s Medium Accuracy - Highly Desired

Low Accuracy- Somewhat Desired

The table shows the tradeoffs in the accurate and fast preferences used for these experi-
ments. The response time column shows the response time below which the user would
be very happy (lower value) and the response time above which the user would be com-
pletely unhappy (upper value). Response times in between these two points would be
linearly interpolated to calculate how favorable they were to the user. For accuracy, the
table lists how desired different accuracy translations were to the user. These preferences
were formed into a utility function that was used to calculate a utility score for each pos-
sible runtime setting.

Table 5.3: Tradeoffs Used in User Preferences

Avg. Response Accuracy
Time (s)

Fast Template 0.32 Medium
Accurate Template 0.49 High

(a) Rich Resource Environment

Avg. Response Accuracy
Time (s)

Fast Template 0.72 Low
Accurate Template 2.86 Medium

(b) Poor Resource Environment

The tables show the average response time (in seconds) and accuracy for translations per-
formed by Chroma under different resource conditions. For each condition, Chroma was
first provided with the fast preference that preferred fast responses over accuracy. Chroma
was then provided with the accurate preference that preferred accuracy over response time.
For each preference, Chroma translated 3 sentences of between 10-12 words in length 5
times each.

Table 5.4: Performance of Chroma with Different Preference Tradeoffs
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Chroma’s Lower Accuracy Higher Accuracy
Selection Answer Answer

Fast Template (Poor Resources) 1.0 N/Aa 0.0b

Accurate Template (Poor Resources) 1.0 0.37 0.0b

Fast Template (Rich Resources) 1.0 0.51 0.83
Accurate Template (Rich Resources) 1.0 0.5 N/Ac

aChroma selected the lowest accuracy result as its choice
bThe response time exceeded the maximum allowable value for the template
cChroma selected the highest accuracy result as its choice

The table compares Chroma’s choices (the raw values are presented in Figure 5.4) against
other possible choices (that would result in different accuracies and response times). I
computed a utility value (using the appropriate user preference) for all the choices and
normalized them against Chroma’s choice. Any choice with a normalized value of greater
than 1.0 would be better than Chroma’s choice. For each case, Chroma translated 3 sen-
tences of between 10-12 words in length 5 times each.

Table 5.5: Optimality of Chroma’s Choices

5.3.2 Is A Default Utility Function Good Enough?
In this sub-section, I answer the question of whether Chroma can satisfy changing user
preferences by using just a single default utility function (the first sub-question posed at the
start of this section). If the answer to this question is “yes”, then Chroma’s design can be
greatly simplified. However, if the answer is “no”, then Chroma needs support for dynamic
utility functions.

For this experiment, I used only the rich resource environment and provided Chroma
with three different static utility functions. They were a) a function that preferred accuracy
over response times (I used the logic of the Accurate preference from Section 5.3.3), b) a
function that preferred response times over accuracy (I used the Fast preference logic from
Section 5.3.3), and c) a function that chose the runtime setting that returned the fastest
translation. For each case, I measured how well each static function was able to satisfy
two different user goals. One goal, called min-latency, required response times of less than
0.2 seconds (accuracy was irrelevant). The other goal, called, max-latency, wanted high
accuracy answers (response time was irrelevant). The results of this experiment are shown
in Table 5.6. We see that none of the static preferences was able to optimally satisfy both
user goals. I claim that, in general, it is impossible for an adaptive system to adequately
support changing user goals if it uses a single fixed optimization function. Hence, for
Chroma to be effective in mobile environments, it needs to use dynamic and correct utility
functions that accurately capture the current user preferences.
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5.3.3 Chroma Can Support Changing User Preferences
In the previous subsection (Section 5.3.2), it was shown that Chroma cannot effectively
support changing user goals with a single default utility function. In this subsection, I
answer the question of whether Chroma can be effective in a dynamic environment (the
second sub-question posed at the start of this section) where user preferences can change
dynamically.

The first challenge for Chroma is obtaining dynamic utility functions that encapsulate
these changing user preferences. To obtain these dynamic functions, I integrated Chroma
with Prism [199]. Prism is a user level program that monitors the user and generates utility
functions that accurately capture the user’s current preferences. Prism, and the integration
of Chroma with Prism, is described in more detail in Appendix A.5.

For the rest of this section, I used two different user preferences. The first preference,
called Accurate preferred accuracy over response time (latency) while the second prefer-
ence, called Fast, preferred response time over accuracy. Table 5.3 lists the exact tradeoffs
expressed in each preference. Chroma was provided, by Prism (Appendix A.5), detailed
utility functions that encapsulated each of these preferences.

For each translation, Chroma would pick the runtime setting that had the highest utility
value. Table 5.4 shows the raw results for the choices made by Chroma for both preferences
and for both the poor and rich resource environments. In all cases, Chroma was able to pick
a solution that satisfied the given preference and environment.

I then compared Chroma’s choices against other possible choices to determine if Chroma
was operating optimally. I obtained these other choices by translating the test sentences us-
ing runtime settings that would result in higher and lower accuracy answers than the choice
made by Chroma. For example, if Chroma’s choice resulted in a medium accuracy answer,
I translated the same sentence using a runtime setting that would result in low and high
accuracy answers. Effectively, I am comparing Chroma’s choice against all possible other
choices that could have been made. I ran this experiment using both resource environments
and both preferences. For each preference, I computed a utility value for every choice (both
Chroma’s decision and the other choices). I normalized all the scores against the choice
made by Chroma for that particular preference and resource environment (i.e., Chroma’s
choice is set to 1.0). Any score above 1.0 indicates a better choice that should have been
chosen by Chroma. Table 5.5 shows the results of this experiment. As can be seen, Chroma
selected the optimal choice, in each resource condition, for both preferences. These results
verify that Chroma is effective at choosing the appropriate application settings even in a
dynamic environment.

5.3.4 Q2: Summary
In this section, I first showed that in environments where user preferences can change dy-
namically, such as mobile environments, it is vital that Chroma use accurate utility func-
tions that capture the current user preferences. Otherwise, Chroma’s performance will not
be optimal. I then showed that Chroma, when provided accurate utility functions from sys-
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Average Accuracy Satisfies Satisfies
Response Max-Accuracy Min-Latency
Time (s) Goal? Goal?

Prefer Accuracy 0.49 High Yes No
Prefer Response Time 0.32 Medium No Yes
Lowest Response Time 0.09 Low No Yes

The table shows the average response time (in seconds) and accuracy for translations
performed by Chroma using different static optimization functions. For each function, the
table also lists if the function satisfied the two different user goals of max-accuracy and
min-latency. For each function, Chroma translated 3 sentences of between 10-12 words
in length 5 times each. This experiment was run with rich resources.

Table 5.6: Performance of Chroma with Different Static Optimization Functions

tems like Prism, can choose the optimal runtime setting even in a dynamic environment
where the resources and the user preferences change.

5.4 Q3: Chroma’s Overhead
In this section, I present the complete overhead of Chroma’s decision making process. This
includes the resource prediction and resource measurement overheads. This answers the
third question posed in Section 5.1. Namely, is the overhead of Chroma’s decision making
process reasonable.

To decide on the appropriate runtime settings for an application, Chroma uses an ex-
haustive brute force solver algorithm (details presented in Appendix A.6). A key concern
with this brute force exhaustive solver is that it could take too long to solve for an opti-
mal runtime setting. This proves to be not the case. Figure 5.4 shows the time taken (in
milliseconds) by the solver to decide the optimal runtime setting. To obtain these results, I
extracted the core solver from Chroma and supplied it with synthetic inputs. Each synthetic
tactic had 3 RPC stages and the experiment was conducted on a 1 Ghz Mobile Pentium 3
processor. The experiment showed that the solver is not a bottleneck as it takes less than
1ms even for a large number of tactics and servers.

This solver overhead does not include other Chroma components such as the resource
measurers and resource predictor. The total end-to-end measured overhead of Chroma is
presented next. In the rest of this section, I use Panlite as the test application as it had the
most tactics and thus required Chroma to do the most decision making. I therefore do not
present the end-to-end overhead results for other applications as they were all strictly less
than the overhead incurred for Panlite.

Figure 5.5 shows the maximum overhead of Chroma’s decision making. This overhead
represents the maximum time that Chroma needs to determine the appropriate runtime
setting. Minimizing this overhead is crucial as Chroma currently does not take its own
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Figure 5.4: Overhead of the Chroma Solver

overhead into account when making placement decisions. Chroma can thus achieve longer
latencies than expected. This is more apparent on slower clients as it takes longer for
Chroma to make its decisions on these computationally weaker clients. From the figure,
we see that Chroma’s maximum overhead was ≈ 0.15 seconds for the fast client and ≈ 0.8
seconds for the slow client.

Figure 5.6 shows the breakdown of the overhead. We see that most of it (≈ 80%)
came from the resource measurers. In particular, the overhead arose from measuring the
available resource on remote servers. This arose due to two factors; 1) Chroma uses a very
inefficient sequential measuring mechanism. In particular, if Chroma needs to measure the
resource availability on ten servers, it does them one by one instead of in parallel, and 2)
Chroma doesn’t cache resource values. Hence, every operation incurs the full resource
measurement time. Both of these inefficiencies can be reduced. First, Chroma can be
modified to perform resource measurements in parallel. Second, Chroma could use cached
resource values for subsequent operations. The tradeoff with using cached results is that it
may result in inefficient decisions if the resource availability has changed.

5.4.1 Q3: Summary
In summary, Chroma’s decision making overhead adds, in the worst case, up to 0.8 sec-
onds of latency (for slower clients) to application execution times. Fortunately, this high



5.4. Q3: CHROMA’S OVERHEAD 99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

11 23 35 47 59
Input Size (number of words)

L
at

en
cy

 (s
ec

)
Chroma
Chroma (no overhead)

(a) Fast Client

0

0.5

1

1.5

2

11 23 35 47 59
Input Size (number of words)

L
at

en
cy

 (s
ec

)

Chroma

Chroma (no overhead)

b) Slow Client

The bars show the time needed for different tactic plans to execute with and without
Chroma’s decision making process. The difference in time represents the overhead of
Chroma’s decision making process. The tactic plans used in this experiment are the same
ones Chroma chose in Figure 5.1 for the different inputs. The results are the average of 5
runs and are shown with 90% confidence intervals.

Figure 5.5: Overhead of Decision Making for Panlite
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The bars show how the percentage contribution of each of Chroma’s three major compo-
nents to the total overhead. The solver overhead is the time needed to execute the nested
loops of the solver (as described in Appendix A.6). The resource prediction overhead is
the total time needed to determine the predicted resource usage of each runtime setting.
The resource measuring overhead represents the time needed to accurately measure the
available resource both locally and on remote machines. The bars for the solver include
the time needed to discover the available servers in the environment. That is the reason
why the solver time is an order of magnitude larger than the times shown in Figure 5.4.

Figure 5.6: Breakdown of Chroma’s Decision Making Overhead
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latency overhead can be significantly reduced if clients are willing to use cached resource
measurements.

5.5 Q4: Overprovisioned Environments
In this section, I answer the third question posed in Section 5.1. Namely, can Chroma op-
portunistically use extra resources in the environment to improve application performance.

So far, my focus has been on environments that are resource constrained. However,
there are cases where the assumption of resource constrained environments proves false.
For example, there are already many environments, such as smart rooms and computer
laboratories, that have an abundance of server resources by design. There may also be cases
where due to unexpected underutilization, additional server resources become available.
For example, a computing environment was designed to handle a peak load of X requests
but the average load is just Y requests (where Y < X) which results in lucky occasions
when the computing infrastructure is underutilized.

We refer to these kinds of environments as being over-provisioned. Over-provisioned
environments are characterized as having more computing resources, either because of their
nature or by lucky underutilization, than are actually needed for normal operation. For
example, an application can use at most five servers but the environment provides 30. I
would also like Chroma to work well in the anticipated common case where resources
are scarce but also be able to automatically make use of over-provisioning if it becomes
available. In particular, by using extra idle servers, I hope to improve the user’s experience.

Tactics facilitate this dual modality by providing precise knowledge of the remote calls
needed by a given operation and the data dependencies between them. Chroma can then
use this information to opportunistically use extra resources in three different ways.

First, Chroma can make multiple remote execution calls (for the same operation) to
different remote servers and use the fastest result. For example, Chroma can execute
RPC step 1 of tactic do simple (Figure 2.4) on multiple servers and use the fastest result.
Chroma knows that it can do this safely because the description of the tactics makes it clear
that executing RPC step 1 is a stand-alone operation and does not require any previous
results or state. I call this optimization method fastest result.

Second, Chroma can perform the same operation but with different fidelities at dif-
ferent servers. Chroma can then return the highest fidelity result that satisfies the latency
constraints of the application. For example, Chroma can execute multiple instances of RPC
step 1 in parallel at separate servers (all with different fidelity variable settings) and use the
highest fidelity result that returns within a specified amount of time. I call this optimization
method best fidelity.

Finally, Chroma can split the work necessary for an operation among multiple servers.
It does this by decomposing the input data, using application provided logic, into smaller
chunks and shipping each chunk to a different remote server. The partial results are then
recombined, again using application provided logic, to form the final output. I call this
optimization data decomposition.



102 CHAPTER 5. VALIDATION: EFFECTIVENESS

Tactics allow us to use these optimizations on behalf of applications automatically with-
out the applications needing to be re-compiled or modified in any way. There are other op-
timizations possible with tactics, but these are the ones I have explored so far and I present
performance results for them in the following subsections.

These results used the same hardware setup described in Section 5.1.1. However, I only
used the slow client as it could benefit the most from using extra resources. The results
show that extra servers can be used in the three ways described above to:

• Hedge against load spikes at the remote servers: the same operation can be run on
multiple servers using the “fastest result” method.
• Satisfy absolute latency constraints of an application while providing the best possi-

ble fidelity: the operation can be run at different servers (where each server runs the
operation at a different fidelity) using the “best fidelity” method and the best fidelity
result that returns within the latency constraint is returned to the application.
• Improve the total latency of an operation without sacrificing fidelity: the operation

can be broken up into smaller parts using the “data decomposition” method and each
smaller part run on a separate server.

5.5.1 Hedging Against Load Spikes
5.5.1.1 Description

This experiment shows how opportunistically using extra servers in the environments pro-
vides protection against random load spikes at any particular remote server. The over-
all scenario I are assuming for this section is as follows; Chroma has decided where to
remotely execute an application component. At the time it made the decision, Chroma
noticed that the remote server was capable of satisfying the latency requirements of the
operation. However, when the operation was actually executed, the actual average latency
was much higher due to the random load on the server that Chroma was unaware of. I
show results to quantify just how bad the average latency (and variance) becomes and how
opportunistically using extra servers in the environment can help improve this.

To show the benefits of this approach, I introduced an artificial load on the server that
Chroma selected to remotely execute application components. This artificial load has an
average load of 0.2 (i.e., on average, each CPU was utilized only 20% of the time). How-
ever, the actual load pattern itself is random. I chose a random load pattern to model the
uncertainty inherent in mobile environments where remote servers could suddenly perform
worse than expected due to a variety of random reasons (such as bandwidth fluctuations,
extra load at the server etc.). The average load was set at 0.2 to ensure that the servers were,
on average, underutilized. In contrast, a load of 0.8 (the CPU was utilized 80% of the time)
or higher would indicate a heavy load.

In this experiment, Chroma decides to execute the glossary engine of Panlite remotely
to translate a sentence containing 35 words. I ran the translation of this sentence 100 times
using a different number of remote servers (with different loads) in parallel and noted the
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This figure shows the use of multiple loaded servers to improve the performance of Pan-
lite and Janus. As the number of loaded servers is increased, the latency and standard
deviation for both applications decrease significantly and converge towards the best-case
value (1 unloaded server).

Figure 5.7: Using Extra Loaded Servers to Improve Latency

average latency achieved and the standard deviation. I also repeated this experiment using
Janus.

5.5.1.2 Results

Figure 5.7 shows the results I obtained from executing the glossary engine remotely on a
totally unloaded server and from executing the glossary engine remotely on one, two and
three servers respectively that had the artificial load explained earlier. Figure 5.7 also shows
the results for Janus where the recognition of utterance 5 is performed multiple times on
remote servers.

The results for the totally unloaded server present the best possible average latency and
standard deviation. What we notice is that when the remote server is loaded, executing
the glossary engine or recognition remotely at the server results in a much higher aver-
age latency and standard deviation. We also notice that executing the glossary engine or
recognition on two remote servers that are randomly loaded (with the same average load)
reduces the latency and standard deviation significantly compared with the single loaded
server case. Executing the glossary engine or recognition on more loaded remote servers
reduces the average latency and standard deviation even further and brings them closer to
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These 2 figures show the exact latency measurements when using loaded servers. The
top figure shows all the measurements while the bottom figure removes the measurements
obtained when using just 1 loaded server. The baseline result (using an unloaded server)
is the almost solid black line at the bottom of both figures.

Figure 5.8: Use of extra loaded servers to improve latency for Panlite
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the best possible results. This effect is shown in more detail in Figure 5.8. Each data point
in the figure is a latency measurement. The top figure shows all the results while the bottom
figure removes the results obtained when using just 1 loaded server. Comparison of the two
figures clearly shows that using more loaded servers significantly reduces the average and
standard deviation of the latency.

The reduction in latency caused by using extra servers with load was due to the load
on the servers being uncorrelated. Hence, even though the average load on the servers was
the same, when one server was experiencing a load spike, another server was unloaded and
was able to service the request faster. This method of using extra servers thus maximizes
the probability of being able to execute the application component at an unloaded server.

This assumption of uncorrelated load is reasonable in a mobile environment for the
following reasons: if the remote servers are located in different parts of the network, it is
quite likely that they experience different load patterns. This is also true for remote servers
that are co-located but owned by different entities. In the case where the remote servers are
co-located and owed by the same entity, it is possible that they experience the same load
patterns. However, in this case, enabling some sort of Ethernet-like backoff system on the
remote servers will ensure that the load on each server is uncorrelated.

Of course, if every Chroma client is sending extra requests to every available server,
the assumption that the load on each server is uncorrelated will not be true. Cheng [45]
showed that if the environment has enough resources, using a simple randomized server
selection policy can significantly reduce the probability of clients using the same servers.
The study of additional server selection and fair sharing mechanisms is beyond the scope
of this dissertation.

5.5.2 Meeting Latency Constraints
5.5.2.1 Description

Chroma allows an application to specify a latency constraint for a given operation. This is
frequently required for interactive applications to meet user requirements. Chroma looks at
the tactics for the application and automatically decides how to remotely execute this oper-
ation in parallel with different fidelity values for each parallel execution. For example, for
Panlite, Chroma could chose to execute the dictionary, gloss and ebmt translation engines
on separate servers. When the latency constraint expires, Chroma picks the completed
result with the highest fidelity and returns that to the application.

5.5.2.2 Results

I present results for Panlite to show experimentally the benefits of this approach. For this
experiment, I assumed that the application has specified a latency constraint of 1 second.
There were three remote servers available for Chroma to use. I used a sentence of 35 words
as input. I loaded all the servers with a random load of average value 0.2. I ran each
experiment 5 times.
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Fidelity Latency Metric
Average (s) Standard Deviation (s)

Running to Completion 1.0 1.96 0.15 0.51
Taking Best Result after 1s 0.75 1.00 0.01 0.77

The table shows the latencies and fidelities obtained by running all three translation en-
gines (dict, gloss, ebmt) on the input on loaded servers. We see that taking the best result
that returns before 1 second results in a higher latency-fidelity metric than using the high-
est fidelity result.

Table 5.7: Achieving Latency Constraints for Panlite

Table 5.7 shows the results for this experiment. We see that by taking the best result
after 1 second and returning that to the application, Chroma is able to achieve a higher
latency-fidelity metric than by waiting for all the engines to finish and returning a full
fidelity result. During this experiment, Chroma did the following: It performed the trans-
lation using a different translation engine (ebmt, gloss, dict) on each of the three
servers. When the latency constraint expired, Chroma determined which engines had suc-
cessfully finished translating. Chroma then consulted the tactics description to determine
how best to combine the completed results to provide the highest fidelity output. All of
these steps can be done automatically by Chroma without application knowledge.

5.5.3 Reducing Latency by Decomposition
5.5.3.1 Description

This experiment shows how decomposing an operation into smaller pieces and executing
each piece on a separate remote server reduces the overall latency of the operation. The
Vivendi syntax to describe data decomposition is presented in Section 2.5.2.2. To facilitate
this decomposition, for each application validated in this section, I created functions to split
and recombine the application data.

5.5.3.2 Results

As shown in Figure 5.3, Face had high latencies for the three input files. However, this
latency can be reduced in two ways. Firstly, the input image can be reduced in size by
scaling it. However, this method reduces the fidelity of the result. The second method is to
break the image into smaller pieces and separately process each piece. This method has the
potential of improving the latency without reducing the fidelity.

Table 5.8 shows the results obtained by using this method. I ran each experiment 5 times
and measured the average latency and standard deviation. The servers used were unloaded.
The results show that splitting the image into smaller pieces (allowing Chroma to parallelize
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No. of Average (s) Standard Latency
Servers Used Deviation (s) Reduction

1 24.54 0.05 —
2 13.59 0.05 44.6%
3 9.73 0.07 60.4%

We see that splitting the input image for the operation into smaller pieces and sending
these smaller pieces to different remote servers results in a dramatic reduction in total
latency. The number of servers used corresponds to the number of pieces the image file
was split into.

Table 5.8: Improvement in Face Latency by Decomposition

the operation) results in a substantial latency improvement (up to 60% reduction) over the
original latency.

Figure 5.9 shows the benefit of data decomposition for the c2dfft application (Sec-
tion 3.3). The two FFT stages of c2dfft can benefit from data decomposition by performing
parallel FFTs of subsets of the original input matrix. The figure shows the benefits of this
decomposition for different input matrix sizes. The benefits are marginal – a 20% improve-
ment for the largest matrix when using two servers instead of one. Using more than two
servers does not improve performance – in fact it hurts performance in many cases. The
reason for this marginal improvement is that even though the two FFT stages do bene-
fit tremendously from data decomposition, the latency of the transpose stages remains the
same no matter how many servers are used. Additionally, a large amount of the total time is
spent transferring the huge matrixes to the remote servers (a 4192 by 4192 matrix has about
500 MB of data). To fully realize the benefits of data decomposition for c2dfft, Chroma
will have to transfer control to a remote server to minimize the amount of data that needs
to be transferred. These results indicate that Chroma must take into account the amount of
data transfered before deciding on the optimal number of servers to use for data decom-
position. Currently, this smart logic has not been implemented into Chroma and is left for
future work.

The PopUp application (Section 3.10) can also benefit from data decomposition. PopUp
processes a number of independent image files and extra servers can be used to parallelize
this process. Table 5.9 shows the benefits of doing this – up to a 65% reduction in latency
compared to using just one remote server.

A more comprehensive evaluation of the benefits of data decomposition (using Chroma,
Panlite, Janus, and Flite (Section 3.2)) is available in Cheng’s [45] Master’s dissertation.
Cheng also evaluates various client-side algorithms for effectively sharing extra resources
between multiple independent clients.
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The x-axis is the number of servers that were available for data decomposition. The y-axis
is the total application latency (in seconds). This is the time to complete 2 FFTs and 2
transposes of the input matrix. The input ranged from a 64 by 64 matrix to a 4192 by 4192
matrix (each input is shown as different lines).

Figure 5.9: Performance of c2dfft when using data decomposition

5.5.4 Q4: Summary
In this section, I presented three ways in which Chroma can use tactics to automatically
improve user experience in over-provisioned environments. The improvement in each case
was significant. Tactics allow us to obtain these improvements automatically at runtime
without the application being aware of Chroma’s decisions. The “data decomposition”
method (Section 5.5.3), was the only method that required prior input from the applica-
tion before it could be used. In this case, the application needed to tell Chroma how its
data could be split into smaller pieces and recombined later. But even here, once Chroma
had this information, it was able to use extra available resources to improve application
performance at runtime without the application being aware of Chroma’s optimizations.

In practice, the “fastest result” (Section 5.5.1) and “best fidelity” (Section 5.5.2) meth-
ods prove to be minor optimizations as they require very specific conditions, such as loaded
servers for “fastest result” and applications with multiple tactics and/or fidelities for “best
fidelity”, before they become useful. However, data decomposition proves to be more use-
ful, especially in applications such as image processing and image identification where
the input data can be easily decomposed into multiple independent chunks. There were
many examples of these types of applications in the computationally-intensive interactive
domain. Hence, data decomposition was integrated into Vivendi (shown in Section 2.5.2.2)
and Chroma (shown in Appendix A.6.1 and A.8.2).
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No. of Average (s) Standard Latency
Servers Used Deviation (s) Reduction

1 1025.71 11.62 —
2 706.59 6.57 31.1%
3 354.67 4.00 65.4%

We see that using extra servers can greatly improve the PopUp latency. PopUp was given
3 image files to process. It could benefit from data decomposition by sending different
image files to different servers. The partial VRML files were then recombined on the
client. This experiment used different servers from the previous experiments as each
server needed to run Matlab. In particular, three Pentium 3 700 Megahertz machines with
256 Megabytes of RAM were used as servers.

Table 5.9: Improvement in PopUp by Decomposition

5.6 Q5: Resistant Against Malicious Servers
In this section, I answer the last question posed in Section 5.1 and verify if Chroma can use
simple client-side mechanisms to protect against malicious servers. These are servers that
arbitrarily return wrong results to clients. Previous solutions to this problems used trusted
hardware components, such as TPMs [184, 185], to detect malicious code. Cerium [44] is
an example of such a system. Recently, there have also been systems, such as Pioneer [193],
that are able to perform excellent software attestation (detection of malicious code) without
the use of trusted hardware components.

For this dissertation, I used a simple verification mechanism where the mobile client
verifies the correctness of a result, using MD5 checksums, returned from an untrusted
server with a known trusted server. It is probabilistic in nature as the client does not do
this verification all the time (otherwise this degenerates into using a trusted server all the
time). The frequency of verification affects the probability with which the mobile client
can discover a rogue server. The advantage of the scheme is that the mobile client does not
have to always use the trusted server, which could be located fair away and/or be loaded.
The mobile client could use unloaded nearby untrusted servers and probabilistically verify
the results returned by those servers with the trusted server.

A key drawback of this mechanism is that it is fairly fragile as it cannot easily tol-
erate applications that are not idempotent. In particular, Pangloss-Lite cannot easily use
this verification as the same input sentence can result in different non-deterministic output
translations. One possible solution is for the trusted server to test the untrusted output with
many possible correct output permutations. However, this process requires additional time
and could result in incorrect results being classified as correct. In this section, the goal is
to demonstrate, when using deterministic applications, the effectiveness of simple, easy to
implement schemes in protecting against malicious servers.

Note that this mechanism does not protect the privacy of the client. A rogue server
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could easily leak or infer information about the client. In general, preserving privacy when
performing RPCs is hard as the untrusted server is merely provided the inputs to the func-
tions that need to be computed. If these inputs are encrypted or modified in any way (to
preserve privacy), the server may not be able to compute a correct result. If privacy is
important, a better solution would be to couple systems like Cerium or Pioneer, with code
migration techniques (either at the application or virtual machine level) to perform the re-
mote execution. This would allow the client to establish a completely trusted computing
environment on a remote server and ensure that there is no possibility for a rogue process
to see any client data.

This mechanism requires the mobile client to have access to at least one trusted server.
However, no changes need to be made to untrusted servers. This mechanism also has the
nice property that, depending on the implementation, the untrusted server will not be aware
that the mobile client is checking its results. As such, it makes it much harder for the
untrusted server to modify its behavior based on what the mobile client is doing.

This probabilistic mechanism is simple enough to actually be useful for a mobile client.
The major drawback is that it requires access to a trusted server. However, I believe that
this disadvantage is not enough to make this mechanism unusable in practice. The rest
of this section will analyze the effectiveness of this mechanism. The different methods
and frequency of checking results with the trusted server are described in Section 5.6.1
while Sections 5.6.2 and 5.6.3 evaluate the accuracy and resource usage of this probabilistic
mechanism respectively.

5.6.1 Implementation of Probabilistic Verification Mechanism
The probabilistic verification mechanism described above can be implemented in a number
of ways. Each of these methods has different strengths and weaknesses. I present three
different methods below.

5.6.1.1 Verify Result Simultaneously

In this method, the mobile client contacts the trusted server at the same time as it sends the
request for computation to the untrusted server. This has the advantage of minimizing the
time needed to get a verified result from the trusted server. The mobile client then compares
the result from the untrusted server with the result from the trusted server.

The main disadvantage of this method is that an untrusted server listening on the wire-
less link may discover that the mobile client is also talking to a remote trusted server. As
such, the untrusted server may then decide to fool the client by not returning a wrong result
this time. I call this method Verify Simultaneously.

5.6.1.2 Verify Result After

In this method, the mobile client contacts the trusted server after it sends the request for
computation to the untrusted server. This method has the advantage in that it leaks no
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information to the untrusted server. By the time the untrusted server realizes that the mobile
client is verifying its result, it is too late for the untrusted server to change its result.

The main disadvantage of this method is that it increases the latency of the computation.
The mobile client first has to wait for the untrusted server to finish its computation and then
it has to wait for the trusted server to finish its computation. I call this method Verify After.

5.6.1.3 Verify Result with Cached Known Results

In this method, the mobile client contacts the trusted server ahead of time and caches the
results of some random number of known computations. Every now and then, the mobile
client sends one of these known computations to an untrusted server and verifies the result
against its cached result. This method has the advantage that the mobile client doesn’t need
to have contact with the trusted server. The untrusted server also never sees messages from
the mobile client to the trusted server. Hence, the untrusted server cannot tell if the mobile
client is checking its results.

The main disadvantage of this method is that the mobile client needs extra disk space
to store the results of the known computations. This may not be viable for certain mobile
clients. The cached results may also become stale. Finally, certain computations require
runtime components, such as the system clock, and cannot be cached in advance. I call this
method Cache.

5.6.2 Accuracy of Scheme
In this section, I determine how effective the probabilistic mechanism is at detecting ma-
licious servers that purposely return wrong results. The probability of a remote server
returning wrong results and the probability of a client checking a result are independent
as the actions of remote servers and mobile clients are very loosely coupled in real en-
vironments. As such, the probability of a mobile client detecting that a remote server is
malicious is simply x ∗ y, where x is the probability of the remote server returning a wrong
result and y is the probability of the client checking the result.

Figure 5.10 provides a graphical representation of this simple equation, for easy view-
ing, for different client checking probabilities. As expected from the linear equation, the
probability of a mobile client accepting a wrong result from a bad surrogate increases as the
probability of the remote server lying increases. In such cases, the mobile client needs to
increase the probability with which it verifies results. However, increasing this probability
has resource and latency implications as shown in Section 5.6.3.

5.6.3 Resource Usage of Various Methods
In this section, I determine the resource usage of the three different methods (as described in
Section 5.6.1) of the probabilistic verification mechanism. The bandwidth, battery, disk and
latency impact of each of these three methods is evaluated. The bandwidth, battery, and disk
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This figure shows the probability that a mobile client accepts a wrong result from a remote
server. The x-axis is the probability of the remote server returning a wrong result while
the y-axis is the probability that the mobile client actually accepts the wrong result (these
are the results that the mobile client thinks is good because they were not checked). Each
line is a different client checking probability. For example, 50% means that the client
verifies a result 50% of the time.

Figure 5.10: Probability of a Client Accepting a Wrong Result

usage of each method was determined using simple “back of the envelope” calculations.
The latency impact was determined experimentally.

5.6.3.1 Bandwidth / Battery Usage

For most mobile clients, the main source of energy consumption is the transmission and
reception of network packets. Hence, any increase in bandwidth usage will also lead to an
increase in energy usage.

Analytically, the bandwidth usage of each method is shown in Table 5.10. Both Verify
After and Verify Simultaneously require twice the normal bandwidth needed for as compu-
tation as they also have to do the same computation at the trusted server. Cache requires
no extra bandwidth and is thus the best method if reducing bandwidth usage becomes a
significant concern.
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Verify Simultaneously 2 * Bandwidth Needed for Computation
Verify After 2 * Bandwidth Needed for Computation

Cache Results Bandwidth Needed for Computation

Table 5.10: Bandwidth Needed by Each Implementation

Verify Simultaneously None
Verify After None

Cache Results Disk Space Needed to Store Previously Computed Results

Table 5.11: Disk Space Needed by Each Implementation

5.6.3.2 Disk Usage

The disk usage of each method is shown in Table 5.11. Both Verify After and Verify Simul-
taneously require no additional disk space.

However, Cache requires disk space proportional to the number of results that are being
cached. This can range from just a few bytes of space (if only 1 or 2 results are cached)
to a few gigabytes (if hundreds of results are cached). The amount of disk space needed
is also highly application dependent. For example, the highly compressible text output of
Panlite requires far less space than the large binary output of Flite (audio file containing the
spoken text) or GLVU (bitmap of the screen). This disk space requirement is a main reason
why Cache may not be suitable for all mobile clients; especially those with limited storage
capacity.

5.6.3.3 Latency Impact Analysis and Experimental Results

Analytically, the latency impact of each method is shown in Table 5.12. Verify After has
the largest expected latency as it has to perform two computations sequentially. Verify
Simultaneously will have the latency of either the remote server computation or the trusted
server computation; whichever is larger. This usually will be the trusted server computation
latency as the trusted server is usually located further away than the remote server. Cache
has no extra latency (other than the miniscule amount of time needed to verify a result

Verify Simultaneously max(Latency of Computation at Surrogate +
Latency of Computation at Trusted Server)

Verify After Latency of Computation at Surrogate +
Latency of Computation at Trusted Server

Cache Results Latency of Computation at Surrogate

Table 5.12: Latency Impact of Each Implementation
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This figure shows the latencies of each of the three methods. The latency of the computa-
tion performed without verification is shown as a baseline.

Figure 5.11: Experimentally Determined Latencies of Each Implementation

against a cached result).
To verify the latency impact experimentally, each of the three verification methods was

implemented in Chroma. I used the hardware setup described in Section 5.1.1. In particular,
I used the slow client as the mobile client and had a single trusted server and a single
untrusted remote server. I assumed that the trusted server was located far from the mobile
client (otherwise, the client could just use the trusted server all the time). Hence, the round
trip latency to the trusted server was set to 300ms, using NistNet [159], and the round trip
latency to the untrusted surrogate was set to 10ms. I used Panlite as the test application
and each experiment was repeated 5 times. This experiment presents the worst case latency
as each result returned by the remote server was always verified. In practice, the average
latency will be lower as not all results will be verified.

Figure 5.11 shows the experimentally measured latencies for each method. They agree
with the analytical claims and show that the Verify After method had the worst latency while
the Cache method had the best latency.
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5.6.4 Choosing the Appropriate Method
After factoring in the pros and cons of each method, Cache appears to be the best. It uses
the least amount of bandwidth and has the lowest latency. However, it requires disk space
which could be a problem for some handheld devices. Cache also requires pre-planning as
mobile clients will have to cache trusted results for each application in advance. However,
its other benefits outweigh these disadvantages. As such, Cache should be used except
when disk space is at a premium. In such cases, or when a trusted result has not been
cached, Verify Simultaneously should be used as it has the next lowest latency. Verify After
should only be used when mobile clients cannot use Cache and they suspect that remote
servers are actively monitoring the network.

5.6.5 Q5: Summary
In this section, I showed how a simple probabilistic verification mechanism can be used
to provide protection against malicious remote servers returning incorrect results. This
mechanism can be implemented in various ways; each with its own pros and cons. A
comparative analysis of three such ways, Verify After, Verify Simultaneously, and Cache,
suggests that Cache has the best overall performance.

5.7 Q6: Chroma’s Performance in More Realistic Envi-
ronments

In this section, I investigate how effective Chroma is when operating in more realistic envi-
ronments. In Section 5.7.1, I present results showing how Chroma behaves in environments
that have heterogeneous servers while in Section 5.7.2, I show how multiple Chroma clients
can effectively share the same set of server resources.

All the results in this section are taken from the thesis of a Masters student, Jesse Cheng,
that I supervised. The detailed results, experimental setup, and discussion appear in his
thesis [45]. I merely present a summary of his results here for completeness.

5.7.1 Heterogeneous Environments
The previous validations presented in this chapter have assumed that the servers available to
a Chroma client have been homogeneous. In particular, the servers have had the same CPU
capability and available memory. In this section, I present results to show how Chroma
would behave in more realistic environments that have heterogeneous servers.

For this experiment, five slow servers and five fast servers were used. The slow and fast
servers were the same as the slow and fast clients described in Section 5.1.1. The slow client
was used for all the experiments. GOCR was used as the application for these experiments
and it was provided an input containing 1524 characters. For these experiments, we used
data decomposition and provided each server with a different part of the input to process.
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The lines are in the same order as the legend. This figure is reproduced from Cheng’s
thesis [45].

Figure 5.12: Naive Use of Slower Servers

Figure 5.12 shows the performance when each server (regardless of whether it was
fast or slow) was provided the same size input to process. We see that, in general, the
overall latency decreases we increase the number of servers in the system. However, it is
clear that the overall performance of the system is bottlenecked by the slow servers. For
example, when we have 5 fast servers and 5 slow servers in the environment, the average
latency is around 3 seconds. But with 5 fast servers alone (the bottom line in the Figure),
the latency is less than one second on average. This phenomena arises because the input
was proportionally divided between the server without regard to the actual computationally
capabilities of the servers. Hence, the slow and fast servers had to do the same amount of
work and this resulted in the entire system being slowed down by the slow servers.

Figure 5.13 shows the performance when each server receives inputs that are sized
according to the computational capabilities of the server. Hence, a server that is 3x faster
will receive and input that is 3x larger. We see that this proportional division of input
has a dramatic impact on performance. In particular, using a slow server now has a small
improvement over not using any slow servers at all (when the number of fast servers used is
small). More importantly, using slow servers doesn’t hurt performance compared to using
just fast servers.

Hence, in summary, when using heterogeneous servers, Chroma needs to divide its
work proportional between the servers (based on their computational capability). Other-
wise, the slower servers will limit the performance that Chroma can achieve even when a



5.7. Q6: CHROMA’S PERFORMANCE IN MORE REALISTIC ENVIRONMENTS 117

One slow server was used for the “Equal Division” and “Proportional division” results.
Only fast servers were used for the “No slow server” result. This figure is reproduced
from Cheng’s thesis [45].

Figure 5.13: Proportional Use of Slower Servers

large number of servers are used.

5.7.2 Sharing Server Resources Between Independent Chroma Clients
In the previous validations presented in this chapter, with the exception Section 5.5.1, I
assumed that the Chroma client had sole and unrestricted use of all server resources. How-
ever, this assumption is not realistic. In practice, multiple Chroma clients could be vying
for the same set of server resources. For example, there may be a few Chroma clients at a
cafe all trying to use the same set of servers provided by the cafe.

To investigate the effect of competition between Chroma clients, a simple experiment
was conducted using two slow Chroma clients. We chose GOCR as the application for this
experiment. One client was designated as the “aggressive user” and it continuously ran a
large optical recognition involving 9144 characters. This operation takes 120 seconds to
complete on a single fast server. The other client was designated as the “light user” and it
ran a small optical recognition involving 768 characters every 10 seconds. This operation
takes 1.36 second on average to complete on a single fast server.

We provided eight fast servers in the environment and allowed each client to use two-
way data decomposition (i.e., they could split the input into two pieces and use two servers
simultaneously). We allowed each client to pick any server it wanted, using the normal
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This figure is reproduced from Cheng’s thesis [45].

Figure 5.14: Effect of Server Collisions Between Competing Chroma Clients

Chroma server selection routines (that pick the first available server that is suitable), and
ran the experiment until the light client had finished 100 recognitions of its 768 character
input.

Figure 5.14 shows the effect of server competition (the bars labelled “collision”). Since
each client picks servers independently (and currently will pick the first available server
they find), the light and aggressive clients frequently chose the same servers. Note that they
only pick the same server if the server was unloaded at the time they both were deciding
which server to picked. If the server was already being used, Chroma would have picked
another server.

The aggressive client greatly benefited from data decomposition as its latency decreased
for 120 seconds to about 30 seconds. However, the latency for the light client increased by
more than an order of magnitude and went from 1.36 seconds to about 23 seconds. The fig-
ure also shows the latency (the bars labelled “no collisions”) that would have been obtained
if there was some global coordinator, or server-side strict admission control mechanism,
that ensured that the two clients used different servers (which is possible as the two clients,
together, need only 4 of the 8 available servers). In the best case, the aggressive client’s
latency would still have been about 30 seconds. However, the light client’s latency would
improve tremendously to about 0.82 seconds.

Unfortunately, a global coordinator, that can keep track of independent clients and as-
sign them to distinct servers, is not likely to be found in many environments. Hence, what
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“Random 20”, “Random 50”, and “Random 100” are 20, 50, and 100 iterations of the light
client respectively. The aggressive client had similar latencies for all the experiments (the
apparent variations were due to random fluctuations and were not meaningful). This figure
is reproduced from Cheng’s thesis [45].

Figure 5.15: Benefits of Randomized Server Selection in Reducing Collisions

measures can individual clients take to improve their performance, even in the presence of
competition from other independent clients?

Figure 5.15 shows the effect that a simple randomized server selection scheme has on
client performance. In this scheme, each client randomly picks servers from the list of
available, and equally capable, servers. I.e., the client first generates a list of servers that
have sufficient resources to handle the client’s request. The client then randomly picks
servers from this list to use. This is different from the current algorithm that always picks
the first available server from the list of usable servers.

We see that the longer the client uses the randomized scheme, the better its performance
gets. This is not a surprising results as, in the long run, the probability that the client
uses a server that is completely free is higher. Unfortunately, even after 100 iterations,
the randomized performance is only about 7 seconds. This is still quite far from the best
achievable latency of 0.82 seconds. However, it is much better than the latency of 23
seconds reported in Figure 5.14. Developing better algorithms that will allow Chroma
clients to compete fairly without requiring independent Chroma clients to communicate
with each other or requiring a global coordinator or strict server-side admission control is
an ongoing research area.
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5.7.3 Q6 Summary
In this section, I showed how Chroma could operate in more realistic environments where
server capabilities could be heterogeneous and where multiple clients could be competing
for the same server resources. I showed that to make full use of heterogeneous servers,
Chroma needs to send each server data proportional to the capabilities of the server. I
also showed that a simple randomization algorithm can reduce the effect of competition on
clients. However, the randomized scheme’s performance is still significantly worse than
the best possible performance and more research is needed to develop better algorithms to
allow independent clients to share servers.

5.8 Summary
In this chapter, I provided validation that applications can use Chroma to effectively run
on resource limited mobile devices under various mobile computing scenarios. This val-
idation was presented in five parts: first I showed that Chroma can choose the optimal
runtime setting for an application when the resource environment and user preferences are
fixed. I then showed that Chroma can also choose the optimal runtime setting even when
the resource environment and user preferences change. Next, I showed that Chroma has
reasonable overheads as long as the user is willing to use cached resource measurements. I
then showed that Chroma can successfully use extra server resources in the environment to
dramatically improve application performance. I then provided evidence that Chroma can
use a simple probabilistic verification mechanism to protect users from malicious remote
servers. Finally, I presented results that showed that Chroma can work in real environ-
ments that have competing Chroma clients and heterogeneous servers. These six smaller
validations provide substantial evidence of the viability of Chroma to effectively support
the dynamic runtime needs of mobile users. This validates that applications retargeted
using RapidRe can achieve excellent performance in cyber foraging environments.

In this chapter, I provided detailed results showing the Chroma could pick the correct
runtime setting for Panlite (Sections 5.2.2.2, 5.3, and 5.5), Janus (Sections 5.2.3.2 and 5.5),
Face (Sections 5.2.4.2 and 5.5), c2dfft (Section 5.5), and Popup (Section 5.5). In Sec-
tion 4.6, I showed that GLVU, Flite, Music, and Radiator could also be used with Chroma
under different conditions. Finally, Cheng’s dissertation [45] shows that GOCR (the final
application) can also be successfully adapted by Chroma. It also has additional results for
Panlite, and Flite. Overall, these various validations prove that all ten applications described
in Chapter 3 can be effectively adapted by Chroma.

In Chapter 4, I showed that eight of the ten applications (Chapter 3) could be quickly
and effectively retargeted by developers. Seven of the applications (Face, Flite, GLVU,
Janus, Music, Panlite, and Radiator) were retargeted by participants. The last application
(GOCR) was used as a training application and was retargeted completely as part of the
guided training process. Even though GOCR was not modified completely by a participant,
I am confident that it would not have needed more time (or resulted in worse performance)
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Applications Good Runtime Performance? Easy to Retarget?

Face (Face Recognizer) Sections 5.2.4.2 and 5.5 Yes

Flite (Text to Speech) Section 4.6 and in [45] Yes

c2dfft (Image Filtering) Section 5.5 Untested

GLVU (3D Visualizer) Section 4.6 Yes

GOCR (Char. Recognizer) In [45] Yes (training app)

Janus (Speech Recognizer) Sections 5.2.3.2 and 5.5 Yes

Music (Music Finder) Section 4.6 Yes

Panlite (Lang. Translator) Sections 5.2.2.2, 5.3, 5.5, and in [45] Yes

Radiator (3D Lighting) Section 4.6 Yes

PopUp (3D Scene Generation) Section 5.5 Untested

For each of the ten applications, the second column (Excellent Runtime Performance?)
lists the section (or related work) where the validation for the application, that shows that
it can achieve excellent cyber foraging performance is presented. The third column (Easy
to Retarget?) lists if the application was used in the user study presented in Chapter 4.

Table 5.13: Overview of the Versatility of Chroma and RapidRe

than the other seven applications. The user study provides strong validation that RapidRe
is capable of rapidly retargeting a broad range of useful mobile applications.

I currently have not validated whether c2dfft and PopUp can be retargeted by devel-
opers. Both these applications require developers to do a little more work. In particular,
developers have to write the split and join functions to perform the data decomposition
steps (Section 2.5.2.2) for these applications. However, I believe that these additional steps
can be done in a reasonable amount of time and that retargeting these two applications will
not take more than 4 to 5 hours. Table 5.13 summarizes these results.

In Section 2.3.3, a list of requirements for RapidRe were stated. Now that the validation
section for this dissertation have been presented, I can determine how well I supported those
requirements. The requirements, along with how well my dissertation supports them, are:

• Any application that fits the requirements listed in Section 2.2.3. Chapter 3 demon-
strates this requirement.

• Any language (C, C++, Ada, Java, Tcl, etc.). Chapter 3 demonstrates this require-
ment.

• Any developer (novice or expert). The user study presented in Chapter 4 was con-
ducted using novice developers. I am confident that the results apply to expert devel-
opers as well.
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• Allow quick retargeting of applications. As Section 4.4 shows, the retargeting time
has decreased from weeks to just a few hours.

• Retargeted application must be effective (in terms of absolute runtime performance).
Chapter 5 shows that Chroma is highly effective in achieving excellent performance
for applications running on mobile devices. However, not all the retargeted applica-
tions (Section 4.6) achieved the maximum performance possible. This was due to
errors made by the novices when retargeting the applications. I am confident that
some procedural changes in the retargeting process, explained in Section 4.7.2, will
reduce these retargeting errors significantly.

Overall, in summary, this chapter, along with Chapters 3 and 4, collectively provide
good validation of this dissertation’s thesis.



Chapter 6

Related Work

In this chapter, I present the related work relevant to this dissertation. My work spans
mobile computing, software engineering and human-computer interaction (HCI). At their
juncture lies the problem of rapid modification of resource-intensive applications for ef-
fective cyber foraging. To the best of my knowledge, this is the first work to recognize
the importance of this problem and propose a solution. My solution and its validation
build upon work in three areas: declarative descriptions of application behavior using little
languages, adaptive runtime systems for mobile computing, and a complete software en-
gineering process evaluated using rigorous HCI evaluation methods. I am not the first to
research any of these individual areas. However, I am the first to combine these three areas
into a complete solution for an important problem.

Section 6.1 presents the work most closely related to the Vivendi little language. I show
that even though little languages have been used in many different scenarios before, my use
of languages to support mobile applications is fairly new.

In Section 6.2, I present the work relevant to Chroma. Chroma is similar to and even
draws inspiration and ideas from a number of previous adaptive systems. However, my use
of tactics to reduce the solution search space is novel.

Finally, in Section 6.3, I present the work relevant to RapidRe. In particular, I discuss
previous research in facilitating rapid retargeting of applications for a particular domain.
I also describe prior research that evaluated the usability of software systems and explain
how I used those ideas to develop the user study described in Chapter 4.

6.1 Vivendi: Related Work
The declarative language I use to express an application’s tactics addresses some of the
same issues as 4GLs [143] and “Little languages” [25]. The latter are task-specific lan-
guages that allow developers to express higher level semantics without worrying about low
level details.

The power of little languages was first shown by early versions of the Unix program-
ming environment. Make [71] is perhaps the best-known example of a little language. As

123
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Bentley explains [25], the power of a little language comes from the fact that its abstrac-
tional power is closely matched to a task domain. My Vivendi language exploits this power
as it allows application developers to specify the adaptive capabilities of their applications
at a higher level without needing to worry about low level system integration details.

There have been numerous other systems that used a little language to express applica-
tion capabilities. I provide just a small sampling here. In the area of software compilation
tools, in addition to Make, the GNU configuration tools, comprising of Autoconf [88],
Automake [89], M4 [91], and libtool [90], provide a language for developers to state the
requirements (software tools, source files, dependencies, etc.) for compiling their software.
These tools then read these descriptions and generate the appropriate Makefiles needed to
compile the software. The Ant build tool [13] uses an XML syntax (instead of Makefiles) to
describe the software’s build dependencies. Finally, both the Debian [56] and RedHat [176]
Linux distributions provide customized little languages for creating software packages. De-
bian uses the dpkg [57] language and toolset while RedHat uses the RPM [18] language
and toolset. Vivendi differs from all these languages in that it is focused towards expressing
the adaptive capabilities of useful mobile applications.

There have also been several little languages created to assist the development of ap-
plications that have specific Quality-of-Service (QoS) requirements. Leue describes the
use of formal specification languages, specifically Specification and Description Language
(SDL), Message Sequence Charts (MSCs), and temporal logic, to specify QoS require-
ments for different environments [139]. The QUASAR project used the Z specification
language to specify various application-level QoS requirements [200]. These were then
translated into specific resource reservation requests.

Frolund and Koistinen describe a specification language, QoS Modeling Language
(QML), for specifying QoS requirements [82]. QML is an extension of the Unified Mod-
eling Language (UML) [163] and allows developers to specify the QoS requirements of
applications along multiple dimensions. BeeHive provided a set of service-specific ap-
plication programming interfaces (APIs), through which objects can make QoS requests
from an underlying resource manager [201]. The resource manager translates each request
into low-level resource requests. Monteiro et al. describe a language (and mechanisms to
enforce the language specifications) for specifying QoS requirements for communication
networks [147].

Finally (in the area of QoS specification languages), the Condor scripting language [51]
allows developers to specify how, to maximize application throughput, existing applications
can be distributed across a computing cluster. These languages all assume a mostly static
environment where resources do not fluctuate dramatically due to environmental factors.
Resource availability changes only because of competition from other applications and
processes.

The languages most closely related to Vivendi are those that specifically assist the de-
velopment of mobile computing applications. The best example of this are the Quality
Description Languages (QDL) [142] developed by the QuO project. The QuO framework
uses object-based remote execution to create distributed CORBA [162, 221] applications
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that have specific QoS requirements. QDL comprises of two main languages: a Con-
tract Description Language (CDL) and a Structure Description Language (SDL). These
languages use aspect-oriented language principles first proposed by Kiczales et al. [132].
CDL is used to describe the QoS requirements of a client while SDL is used to describe the
structure of a QuO application. This structure includes specifying the mechanisms that an
application should use when performing remote object execution. Pal et al. [167] extended
this work and developed the Configuration Setup Language (CSL). CSL allows develop-
ers to specifying exactly how QuO applications should be initialized and shut down. This
makes it possible to dynamically start server components on remote servers without any
manual setup steps. Vivendi differs from QDL as it doesn’t assume that applications will
use the CORBA Object Request Broker (ORB) model of remote execution. Vivendi’s goal
is to support a far wider range of applications than QDL. The tradeoff is that, by constrain-
ing the execution environment, QDL allows developers to specify far more precise QoS
and runtime settings.

Finally, looking a little broader, there have been numerous programming languages
that were built to support the development of distributed and parallel applications. These
languages include Durra [21, 22], Emerald [124], Facile [85], Jade [180], Java RMI [204],
Mentat [95], MPI [149, 215], NESL [35, 34], Obliq [39, 40], Orca [19], PVM [50, 84, 205],
and TDL [197]. Using these languages, programmers can explicitly specify how applica-
tions (or processes) should be parallelized and partitioned either across a multi-CPU or
cluster computing environment. To obtain the benefits of these languages, applications had
to be programmed using the language. The mobile computing domain doesn’t allow this.
A large number of useful applications already exist, in a number of different languages, and
reprogramming them using a specific language is highly impractical. Additionally, with the
exception of Java RMI, none of these languages were designed for mobile environments.

6.2 Chroma: Related Work
Building an adaptive system is definitely not new. There is a long and rich history of
research in building adaptive systems. In the rest of this section, I present the systems that
are most related to Chroma. I do not describe the work related to the service discovery and
security components of Chroma as that work is discussed in Appendix A.7.1.

Broadly speaking, there are two types of adaptive systems: ones that perform purely
local adaptations, such as the original Odyssey system [160], and ones, such as Chroma,
that also use application partitioning and remote execution as part of the adaptation. In this
section, I consider mainly the systems that use remote execution.

Within those systems, there are two broad methods of adaptation. The first type is
application-transparent adaptation where the adaptive system uses well-defined APIs to
adapt the application without needing any application modifications. The Coign [115] and
Puppeteer [54] systems use this method of adaptation. Both of them adapt applications
by changing the inputs of the application using the well defined Windows COM interface.
Application-transparent adaptation makes it easy to add new applications into the system.
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However, the adaptation is limited by the scope of the well-defined APIs. For example,
it is impossible to change fidelity settings within the application that are not exposed via
the well-defined API. Other examples of application-transparent adaptation are the TCP
congestion control protocol [116] which transparently adapts the network usage of appli-
cations using the standard socket interface and the Coda filesystem [133, 190] which pro-
vides a standard filesystem interface, but hides network disconnections transparently from
applications. Application transparency can also be achieved through the use of proxies as
demonstrated by the Active Streams research [38], the Conductor system [237, 238], and
Fox et al. [80].

The second is called application-aware adaptation and it requires applications to be
modified to use the system. Chroma uses this method of adaptation. This results in better
adaptation results at the expense of longer application modification times. I concentrate on
application-aware adaptation in the rest of this section.

Chroma builds on ideas first proposed in Odyssey [160]. Odyssey demonstrated the
importance of adapting to network bandwidth in mobile scenarios, and proposed the first
generic API for application-aware adaptation. Narayanan extended this API to support
multi-fidelity adaptation [151] where application quality can be changed at runtime (to
conserve resources) by adjusting specific application variable settings. Chroma uses multi-
fidelity adaptation and allows developers to specify the variables, using the fidelity variable
aspect of Vivendi, that control the application’s fidelity. Chroma also uses the history-based
prediction mechanisms first proposed by Narayanan et al. [152]. These mechanisms have
since been extended by Gurun et al [98]. Chroma builds on the remote execution framework
developed by Flinn et al. [75]. It extends this framework to support the notion of tactics.

Systems such as Chroma and Odyssey were designed to support the adaptive require-
ments of individual mobile applications. There are also systems, such as Prism [199], that
track the mobile user and perform adaptation at the user task level. A user task is a high
level representation of a computing activity that the user wishes to perform. For example,
one task may be “editing my thesis”, while another may be “finish my programming as-
signment”. Each task may require multiple applications working in sequence before it can
be satisfied. For example, the “editing my thesis” task may require the use of an editor
to create the Latex source and Make to create the final compiled document. Prism uses
a combination of user input, provided via a GUI, and smart measurement and prediction
mechanisms to accurately create task descriptions and utility functions that match the cur-
rent user’s needs. Prism also has mechanisms to discover the applications and resources that
are available in the local environment. Prism then solves a resource optimization problem,
using a component called the Environment Manager [173], to pick the appropriate applica-
tions and QoS levels that will satisfy all the user’s tasks. It leaves the runtime optimization
of these applications to lower level systems like Chroma.

Chroma and Prism complement each other very well and have been integrated with
each other. Prism provides Chroma with utility functions that match the user’s prefer-
ences. It also tells Chroma which applications need to be executed to satisfy a given user’s
task. Chroma, on the other hand, uses these utility functions to provide the best possible
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runtime performance for every chosen application. Prism is also able to query Chroma’s
fine-grained resource measurers and application resource predictors to obtain a better un-
derstanding of the current resource environment and application resource requirements.
Appendix A.5 describes exactly how Prism interacts with Chroma.

Looking at related work from a broader perspective, there have been numerous other
adaptive distributed systems. Rudenko et al. [182] and Flinn and Satyanarayanan [76, 77]
have demonstrated that remote execution can dramatically reduce the energy consumption
of mobile devices. Bayou [211, 172] and Rover [121] were application-aware solutions
(unlike Coda) that allowed mobile users to access their data anywhere. In the domain of
cluster and grid computing, Abacus [11], Condor [23, 213, 214], Globus [78], Legion [114,
154], OGSI [79, 122, 218], and OGSI.NET [225] have used remote execution to improve
overall system throughput. There have also been grid computing systems, such as Mobile
Legion [48] and Mobile OGSI.NET [46] that have developed client support for mobile
devices. Finally, the Virtual Microscope project [7, 42, 73] uses remote execution and data
adaptation to allow users to visualize high-fidelity medical images. These systems were
either developed for very specific adaptation goals (energy, mobile data access, and data
visualization) or were designed to work in mostly static resource environments (cluster and
grid computing). Chroma, on the other hand, was designed to support multiple user-centric
adaptation goals, such as accuracy, latency, and energy conservation, in a dynamic resource
environment.

The adaptive systems most similar to Chroma are the various component-based adap-
tive QoS systems. These include CORBA-based adaptive middleware frameworks [63, 87,
136, 194], CORBA-based adaptive systems that use QuO [127], CORBA-based mobile
application frameworks [102], and Java-based remote execution systems [27, 28]. These
systems all provide functionality to measure the available resources in the environment and
use these resource measurements to remotely partition applications according to a provided
metric. Chroma differs from these systems in that it doesn’t assume that applications are
written using CORBA or Java.

Chroma’s use of data decomposition is similar to methods first proposed in River [15].
These ideas were then expanded into a full production system by Google [55]. However, to
the best of my knowledge, this is the first system to apply these ideas to the domain of mo-
bile computing. In particular, as a viable mechanism for exploiting extra server resources
in mobile environments.

Finally, Chroma’s effectiveness depends on the correctness of the utility functions used
by the solver. In this dissertation, I used Prism to obtain accurate utility functions that
capture the user’s preferences. There are other systems, such as Horvitz’s mixed-initiative
approach [109] and the Lumière Project [110], that can also be used. In addition, there
has been a large amount of research in modeling user tasks, such as Albrecht et al. [10],
Shearin and Lieberman [195], Terveen and Murray [212], and Weld [230], that can be used
to determine the appropriate user preferences.
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6.3 RapidRe: Related Work
RapidRe consists of a little language, a runtime system, and a stub generator. Individu-
ally, these components are not particularly novel. However, RapidRe combines them to-
gether to achieve the first solution for rapidly retargeting applications, written in a variety
of languages, for cyber foraging. The related work for the little language and the runtime
(Chroma) have been previously presented. In this section, I present the work related to a)
the stub generator, b) the evaluation of RapidRe, and c) the problem of retargeting applica-
tions.

The use of a stub generator to greatly reduce the burden of developing large amounts
of well-defined code is a well understood and used technique. For example, Birrell and
Nelson [30] used a stub generator, called Lupine, to generate the client and server code
stubs for their seminal RPC work. Their work inspired numerous other stub generators [86,
104, 170, 177, 219, 188, 203, 229]. RapidRe reuses these well-known and understood stub
generation techniques.

To evaluate RapidRe, I used well-established techniques from HCI to conduct the user-
centric evaluation. Nielsen [158] gives a good overview of these techniques. These tech-
niques have traditionally not been used to investigate the effectiveness of programming
tools. Recently, there has been some work in conducting user-centric evaluations of pro-
gramming tools. Ko et al. conducted a study of Java programmers using Eclipse [66] to
identify the tools most likely to help these programmers perform routine code maintenance.
Klemmer et al. investigated the effectiveness of a toolkit at reducing the difficulty of devel-
oping tangible user interfaces. I used these evaluations as a reference when designing the
user study presented in Chapter 4.

From a broader perspective, my work overlaps closest with automatic re-targeting sys-
tems such as IBM’s WebSphere [37] and Microsoft’s Visual Studio [235]. For example,
IBM’s WebSphere allows developers to retarget Java applications for use as mobile Web
Portals while Visual Studio allows C# applications to be retargeted for mobile devices run-
ning the WinCE operating system. These systems allow developers to quickly port appli-
cations to new target systems. Unfortunately, they use a language-specific approach, which
runs counter to my design considerations.

Looking further afield, RapidRe shares many similarities to approaches used to re-
target programming language compilers for different hardware architectures [14, 43, 68].
RapidRe is also similar to various approaches used to retarget hardware specifications for
new hardware devices [4, 36, 106, 108].



Chapter 7

Conclusion

For mobile computing to become a reality, we need small lightweight devices, pervasive
wireless connectivity, and useful mobile applications. In the last decade we have seen rapid
advances along the first two fronts. Devices are becoming smaller everyday and high speed
wireless network connectivity will soon be available almost everywhere. However, it is
still difficult to execute resource-intensive applications, such as language translators and
speech recognizers, on these devices. Alas, these applications also tend to be of high value
to mobile users.

This dissertation provided a solution to this problem. it presents a process called
RapidRe, that makes it easy to retarget existing applications to work on mobile devices.
RapidRe uses a little language called Vivendi and a custom adaptive runtime system called
Chroma. Chroma uses remote servers and fidelity adaptation to allow resource-intensive
applications to effectively run on small lightweight devices.

In this chapter, I summarize, in Section 7.1, the research contributions made by this
dissertation. I then describe possible future work in Section 7.2. Finally, Section 7.3 places
this dissertation in perspective with the current state of mobile computing research.

7.1 Contributions
This dissertation makes contributions in three major areas. The first area is conceptual—
this consists of the novel ideas generated by this work. The second area is a set of artifacts:
Chroma, the stub generator, and the other software systems that were developed to validate
this dissertation. The final area of contribution is the experimental evaluation and the user
study which validate the ideas presented in the dissertation.

7.1.1 Conceptual contributions
The primary conceptual contribution is the recognition of a deep architectural similarity in
computationally-intensive interactive applications. In particular, a large number of these
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applications are already structured in a way that makes them very amenable to the retar-
geting process and remote execution and adaptation mechanisms developed in this disser-
tation. For example, applications are already developed such that operations are cleanly
separated as distinct modules in the application. This makes it easy to identify the module
that performs an operation and to remotely execute it. Additionally, any built-in application
functionality for fidelity adaptation can be easily exploited. This thesis does not, however,
provide any assistance for developers to add fidelity adaptation support to applications.
This architectural similarity is thus a crucial factor that a) allows tactics to be easily discov-
ered and specified, and b) enables RapidRe to be successful at dramatically reducing the
time needed to retarget applications.

The second conceptual contribution is the recognition that for each application oper-
ation, the parameters, fidelity variables and tactics of that operation can be concisely de-
scribed using a little language. Knowledge of these three attributes is sufficient to efficiently
and effectively adapt the application in a mobile environment. This is an important con-
tribution as it greatly reduces the application knowledge developers need to have before
they can retarget an application for cyber foraging. It also allows the development of a cus-
tomized little language, called Vivendi, that allows developers to quickly specify just these
application aspects.

The third conceptual contribution of this dissertation is tactics. Tactics provide an excel-
lent tradeoff between full dynamic application partitioning and rigid pre-determined appli-
cation partitioning. Full dynamic partitioning occurs when applications can be partitioned,
at runtime, in any arbitrary fashion. This form of partitioning can result in the theoretically
optimal application performance. However, the high search space of this form of partition-
ing makes it intractable to use in practice. On the flip side, rigid pre-determined application
partitioning is simple to use but will result in inefficient application performance in dy-
namic environments (as shown in Section 5.3). Tactics allows us to use the best features of
both. Tactics list the small set (out of all possible partitions) of useful modular-level appli-
cation partitions. At runtime, the tactic that will achieve the best application performance
is picked. Tactics thus achieve the performance of dynamic partitioning while retaining the
tractability of static partitioning.

The fourth conceptual contribution is the RapidRe process for rapidly retargeting appli-
cations for cyber foraging. RapidRe uses three components: the Vivendi little language, the
Chroma runtime system, and a smart stub generator. It uses these components as part of a
four stage process that developers can use to rapidly retarget applications for cyber foraging
(as shown in Figure 2.3). Two parts of the process require significant developer attention:
step 1 where the adaptive characteristics of the application are described using Vivendi and
step 3 where application-specific APIs are inserted to create the modified client and server
components. To make these two steps more manageable, they have been further broken
down into multiple subtasks (as shown in Table 4.3). Each of these subtasks has been
well documented and made as easy as possible for developers to understand and complete
correctly.

The fifth conceptual contribution is the idea that mobile devices should be able to ben-
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efit from overprovisioned environments. Traditionally, mobile adaptive systems have been
built to use only as many servers as normally required by the applications. However, with
computers steadily becoming cheaper, it is quite likely that mobile devices will encounter
environments that have an abundance of server resources – possibly because the environ-
ment is currently underutilized. This dissertation is one of the first to recognize this and
present a solution that allows mobile devices to seamlessly exploit extra resources to im-
prove application performance.

The sixth conceptual contribution is the development of a validation approach for in-
vestigating the usefulness of software tools. Historically, systems evaluations have concen-
trated on measurable performance metrics such as latency, cache hit rate, throughput, and
overhead. Unfortunately, usually very little validation is performed, beyond a description
of personal usage experience, to quantify how easy it is for the target audience to use their
tools or system. This validation is made harder as traditional HCI evaluations cannot be
easily applied as they concentrate mostly on evaluating user interfaces and not low-level
programming tools and system interfaces. This dissertation aims to remedy this situation.
It presents one of the first rigorous evaluations of the usability of low-level programming
tools and shows that such an evaluation can a) be attempted with confidence, and b) pro-
duce excellent results about the usability of the system. This evaluation combines both tra-
ditional user-centric evaluation methods with system-centric evaluation methods to provide
a complete understanding of the effectiveness of RapidRe. Additionally, this dissertation
contains enough information about how to setup and conduct such an evaluation that I am
confident it will be a useful template for other systems researchers hoping to evaluate the
usability of their systems.

7.1.2 Artifacts
This dissertation has produced a number of tangible software artifacts. The first artifact is
Chroma. Chroma is a fully functional dynamic adaptive runtime system that can achieve
good application performance in cyber foraging environments. In particular, it can deter-
mine the current resource availability in the environment and pick the optimal operation
setting for an application that both matches the resource availability and satisfies the user
preferences. Chroma uses many components that were developed for Odyssey, such as
the resource measurers and the resource demand predictors. The main differences from
Odyssey is the tactic and user preference support. This is explained in more detail in Ap-
pendix A.

The second artifact is a complete specification of Vivendi. Vivendi allows developers to
completely specify the necessary information about an application that needs to be known
before the application can be adapted effectively in a mobile environment.

The third artifact is a sophisticated stub generator that can accept Vivendi descriptions
and generate most of the code to interface the application with Chroma. The stub generator
will generate application-specific APIs that need to be manually inserted by a developer to
complete the retargeting process. The stub is sophisticated enough to generate correct code
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even if the application has multiple parallel stages or uses data decomposition (the split and
join functions must be written by the developer).

The fourth and final artifact is a large set of useful mobile applications (described in
Chapter 3). These applications were obtained from other developers. However, all of them
have been successfully modified, using RapidRe, for use on small mobile devices.

7.1.3 Evaluation results
The evaluation results presented in this dissertation have contributed several important find-
ings. The evaluation has two distinct flavors: the first part of the evaluation shows that
RapidRe can be used by developers to quickly and effectively retarget large unfamiliar ap-
plications for cyber foraging while the second part shows that Chroma can effectively and
efficiently adapt applications in a cyber foraging environment.

The evaluation of RapidRe presented several important results. First, it is one of the
few rigorous evaluations of the usability of low-level software tools. The details of the
two-phase (user-centric followed by system-centric) evaluation can serve as a template for
other researchers who want to evaluate the usability of their systems. The user study com-
ponent of the evaluation showed that novice developers could be trained to use RapidRe in
under one hour. Even with this short training, novices could still retarget unfamiliar large
applications in under four hours each. In the system-centric portion of the evaluation, I
showed that even with this short retargeting times, the quality of the retargeted applications
was still excellent – there were very few errors in the retargeted applications. More impres-
sively, most of the retargeted applications had comparable performance to applications that
were retargeted by experts who understood both Chroma and the applications intimately.
Analysis of the retargeted applications that did not have comparable performance revealed
just two types of errors that led to the performance difference. I am confident that a simple
procedural change to RapidRe will, in the future, make it harder for developers to commit
these two types of errors.

The evaluation of Chroma also presented several important results. First, it showed that
tactics can be used to achieve excellent application performance in mobile environments.
It then showed that dynamic user preferences are vital for optimal application performance
in a dynamic environment. In particular, a static utility function will result in inefficient
results. Next, it showed that most of Chroma’s overhead arises from measuring the re-
source availability on remote servers. This overhead can be reduced with clever caching
techniques. The evaluation then showed how using extra server resources can significantly
improve application performance; up to a 4x improvement when using data decomposi-
tion. Finally, the evaluation showed that a simple client-side verification mechanism had
the potential to protect clients against malicious servers.

7.2 Future work
In this section, I present avenues for future work on RapidRe and Chroma.
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7.2.1 RapidRe
In Section 4.7.2, it was discovered that RapidRe could be improved by improving the “Find
Fidelities” subtask by making developers aware of common pitfalls when describing pa-
rameters and using fidelity variables. It was also discovered that developers would benefit
from solutions that allow them to better keep track of the minutiae of each subtask. In
addition to the areas of improvement, there are other avenues for future RapidRe research.

7.2.1.1 Evaluate Data Decomposition Applications

The user study in Chapter 4 provided reasonable proof that RapidRe can be used for a
broad range of applications. However, none of the applications used in the user study
were retargeted explicitly to use data decomposition. In particular, participants did not
have to create split and join functions for any application. In the future, I plan to conduct
further user studies to test if developers can retarget applications, such as c2dfft and PopUp,
explicitly for data decomposition in a reasonable amount of time.

7.2.1.2 Extend RapidRe to Other Adaptive Domains

A very interesting area of future work lies in investigating the applicability of RapidRe to
other adaptive domains. These domains include grid computing, self-configuring systems,
and web services. Grid computing, in particular, can already benefit from Chroma and
RapidRe. The only differences are that a) most grid applications will use data decomposi-
tion, and b) the utility function that Chroma’s solver uses will optimize for overall system
throughput instead of user-centric goals.

To support the other domains, I will first have to carefully identify the adaptive require-
ments of applications for that domain. For example, how exactly does a web service adapt?
This knowledge can be used to separate the application-specific information from the gen-
eral mechanisms needed to perform the domain-specific adaptation. For example, for mo-
bile computing, the general adaptation mechanisms are resource monitoring, resource pre-
diction, and solving for an optimal solution. The application-specific information, that is
used to guide the solver, is the list of tactics, parameters, and fidelity variables. The general
adaptation mechanisms can then be built into a common domain-specific runtime; if such
a runtime doesn’t already exist.

With this knowledge separation, I can develop a little language, similar to Vivendi, that
will allow developers to easily express the application-specific portions of information. The
generic mechanisms can then be built into a common runtime. This syntax allows the use
of a stub generator that can create the code required to interface an application with the
domain-specific runtime.

7.2.1.3 Case Study: Self Configuring Systems

In this section, I explain how RapidRe could potentially be used to rapidly retarget ap-
plications for use with a self-configuring system. I use Rainbow [83] as the example
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Figure 7.1: The Rainbow Architecture

self-configuring system. The goal of Rainbow is to reduce the cost and improve the re-
liability of making changes to complex systems. The idea is to develop a smart runtime
monitoring system that uses architectural models, explicit representation of user tasks, and
performance-oriented run-time gauges to determine if the overall system is functioning op-
timally. If inefficiencies are detected, Rainbow will reorganize the applications used by the
system to fix the inefficiencies. For example, Rainbow is monitoring a Voice-over-IP sys-
tem that uses five different applications and ten machines. If Rainbow detects that either a
machine or application is not functioning properly, it might decide to either use a different
application or route around the machine to fix the problem.

Figure 7.1 shows the Rainbow architecture. It consists of two layers. The architecture
layer contains the Rainbow runtime adaptation engine. This layer determines if the current
system is efficiently meeting the requirements of the architectural model and constraints.
The system layer is the actual working system (which can comprise of multiple applications
and machines). Each application and machine in the system needs to be augmented with
a Rainbow API that a) facilitates communication with Rainbow, and b) exchanges QoS
metrics with Rainbow (Rainbow uses these metrics to detect inefficiencies).

Currently, every application needs to be hand-modified to support Rainbow. These
modifications can take up to two weeks per applications as each application needs to a)
establish a connection with Rainbow, b) understand the messages that Rainbow sends to it,
and c) provide appropriate responses to these messages.

Fortunately, most of this work can be automated making Rainbow a prime candidate
for RapidRe. In particular, Rainbow already separates the application-specific information
(the system layer) from the general mechanisms (the architectural layer) needed to perform
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the adaptation. As mentioned in Section 4.7.1, this separation is a key reason for RapidRe’s
success.

The three key steps that need to be done before Rainbow can use RapidRe are a) identi-
fying the exact application-specific bits of information that Rainbow requires, b) develop-
ing a syntax that allows those bits of information to be easily specified, and c) developing
a stub generator that can generate the necessary interface code. The application-specific
information needed by Rainbow is very similar to tactics, parameters, and fidelity variables
as Rainbow also needs to understand the resource usage and the adaptation possibilities of
each application to achieve optimal application performance when resources or user prefer-
ences change. In addition, Rainbow also needs to understand the exact services offered by
each application. For example, Panlite is a language translator that can translate Spanish
to English and English to Spanish. The stub generator will require the most amount of
time to create – ≈ 1-2 weeks. However, once this is done, subsequent applications can be
retargeted in just a few hours. I am currently working with Rainbow developers and I hope
to build and evaluate a complete RapidRe solution for Rainbow in the near future.

7.2.2 Chroma
In addition to adding proper service discovery, server instantiation, and security to Chroma
(discussed in Appendix A.7.1), there are other improvements that can be made to Chroma.

• Better Solver Mechanisms: As stated in Appendix A.6, Chroma has two different
solvers. There is a general solver that solves for the optimal operation setting. There
is also a data decomposition solver that determines a set of servers that can be used
for the decomposition.

The normal solver uses a very simple computationally intensive algorithm (shown in
Figure A.7). Even though this algorithm has a reasonably low overhead (shown in
Figure 5.4), in the future, I plan to replace the solver with an even less computation-
ally demanding solver. More importantly, I hope to replace the current solver with
a provably correct solver. Examples of such a provably correct solver includes the
multi-resource solver developed by Lee et al. [138].

The data decomposition solver is also in a fairly preliminary stage. It currently uses
static thresholds to determine if a remote server is good enough to be used. In the
future, the solver should use thresholds obtained from the user. The decomposition
solver also currently doesn’t handle multiple tactics and fidelity variables.

• Lower Overhead Chroma Runtime: As shown in Figure 5.6, Chroma has fairly
high overheads when measuring the resource availability on remote servers. In the
next version of Chroma, I hope to reduce these overheads through the use of better
mechanisms and intelligent caching.

• Deploying Chroma on Real Mobile Devices: Finally, the ultimate goal for the next
version of Chroma is a field study on actual small mobile devices. This would allow
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Chroma to be tuned for the needs of real users.

7.2.3 Longer Term Research
The previous sections discussed shorter term research relevant to RapidRe and Chroma.
In this section, I discuss longer term research in the general area of mobile and pervasive
computing.

Designing the next generation mobile operating system : My thesis research has
focused on legacy applications. However, in the near future, it is likely that legacy ap-
plications will become less important and that new applications will be built from scratch
to support mobility. With this in mind, an interesting research question is the following:
“What extensions do future mobile operating systems need to have to sufficiently support
the next generation of adaptive mobile applications?”. I personally believe that the OS
will need to provide some sort of application-level resource prediction querying mecha-
nism. This would allow higher level management systems to query the OS and figure out
what performance any particular application would achieve if it ran with a particular set
of fidelities under a particular resource environment. This knowledge would allow those
management systems to accurately decide which applications (and with what particular
fidelities) should be run to achieve the user’s current goals.

However, building this resource prediction querying mechanism will require more re-
search to understand exactly what types of predictive queries applications will want to ask
and develop mechanisms to support those queries. For example, supporting a query of “If
I ran this application with these settings right now, what latency would I achieve” requires
less work than supporting a query of “I need this application to have a latency of less than
0.8 seconds. Tell me when and how I should run this application.”. The example also shows
that research in providing a query syntax that allows applications to accurately specify their
requirements while keeping the syntax simple enough to be tractable and usable will also
be necessary.

Managing multiple mobile devices : A popular vision of pervasive computing is that
eventually, almost every device in the environment will have some sort of processing power
embedded in it. These devices would be able to exchange information among themselves
and use that information to better support users. For example, my fridge may realize that
it is out of milk. It sends that information to my PDA which automatically adds it to my
shopping list.

However, a major concern with this vision is dealing with the complexity of managing
multiple smart devices. It is already the case that most users cannot effectively manage their
personal computers – the computer is either not up-to-date with security patches etc. or the
user is unable to fix problems that arise with various applications running on the computer.
This management problem is only going to get worse when the number of smart devices in
the environment increases. For example, what happens if my fridge tells my PDA to buy
beef instead of milk? How easy is it for me to debug the problem and figure out exactly
which device or software component needs to be fixed? In a similar vein, is it easy for me



7.2. FUTURE WORK 137

to tell my fridge to send a short message service (SMS) notice to my cellphone instead of
changing the shopping list on my PDA?

I claim that normal users will not want to use pervasive technology if they are unable
to fix common problems or change their requirements without calling in an expert. How-
ever, providing this capability will require building management tools and services that will
quickly and easily allow users to update their personal requirements and to locate, identify,
and fix problems. This is a very challenging area of research that is both very interesting
and extremely important and timely.

Making Pervasive Computing a reality : My ultimate research goal is to understand
why, even after 10-15 years of research, pervasive computing is not as pervasive as many
people predicted. At best, it has achieved a small foothold, in the form of context soft-
ware on cellphones, in some Asian and European countries. However, overall, pervasive
computing still remains confined to academic research and has not been widely deployed.
I speculate that understanding the deep reasons for this lack of deployment will require
finding answers for the following three sub-questions.

• Is there no killer pervasive application? : The most pervasive mobile application
seems to be the SMS on cellphones. Indeed, it is a highly lucrative revenue source
for many Asian and European cellphone providers. Unfortunately, SMS is simi-
lar to the functionality of a cellphone in that it is fundamentally a person-to-person
communication technology. SMS became incredibly popular as it allowed people to
communicate with each other in situations where placing a phone call would not be
as convenient. Does this then mean that communication technology is the only kind
of application that mobile users desire? Is there no other killer application out there
that will convince the masses to jump onto the pervasive bandwagon? I personally
think that mobile gaming has the potential to be such a killer application. It is ad-
dictive, simple to use, massively multiplayer-friendly, amenable to context-sensitive
technology, and deployable on existing mobile devices such as cellphones. However,
a large amount of research still needs to be done before a usable and highly addictive
mobile gaming service can be deployed.

I also believe that another potentially “killer” pervasive application would be a per-
sonal butler service. This service would store all your credit card information, phone
book, context information, and eventually even contain electronic cash. The vision is
that this electronic butler would effectively replace your wallet. Such an application
would mean that people would not need to manually carry a huge stack of cards and
cash with them wherever they go. However, before this application can become real-
ity, a large amount of research in user interfaces, management toold, authentication,
security, storage, backup, and revocation needs to be done.

• Do we need to develop better pervasive computing infrastructure? : Before perva-
sive computing can become literally pervasive, the appropriate infrastructure needs
to be deployed. This infrastructure can be in the form of the hardware needed to
support pervasive computing, such as sensors, power lines, wireless access points
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etc. Deploying and maintaining this hardware is a tricky endeavour. However, I
believe that this is the simpler problem to solve. The more difficult problem is to de-
velop the software that would allow providers and end-users of pervasive technology
to quickly, easily, effectively, and securely manage and use their pervasive environ-
ments. As mentioned above, I believe that there is still a large amount of research
that needs to be done in this area of mobile device management. This research will
need to span multiple areas of research. For example, it will be necessary to develop
systems protocols and mechanisms for managing a large number of devices. It will
also be necessary to develop AI techniques to automatically predict user behaviour
and correctly manage the system as much as possible without user interventation.
In addition, software architectures that allow the development of clean, modular, and
easy to manage pervasive systems will need to be created. Finally, HCI expertise will
need to be leveraged to develop excellent GUIs that allow users to easily manage and
operate various pervasive applications and/or devices.

• Do we need a better business model? : A possible problem with deploying pervasive
technology is a lack of a good business model. For example, what is the economic
incentive for technology companies to develop and deploy new pervasive solutions?
I am very interested in collaborating with business experts to understand how to eval-
uate and understand the economic and business implications of deploying pervasive
technology. I believe that this understanding will help focus subsequent research
towards avenues that are more likely to be economically and practically viable.

7.3 Closing Remarks
Mobile computing is at a crossroads today. A decade of sustained research effort has de-
veloped the core concepts, techniques, and mechanisms to provide a solid foundation for
progress in this area. Yet, mass-market mobile computing lags far behind the frontiers ex-
plored by researchers. Smart cell phones and PDAs define the extent of mobile computing
experience for most users. Laptops, though widely used, are best viewed as portable desk-
tops rather than true mobile devices that are always with or on a user. Wearable computers
have proven effective in industrial and military settings [198, 240], but their impact has
been negligible outside niche markets.

An entirely different world, that this thesis addresses, awaits discovery. In that world,
mobile computing augments the cognitive abilities of users by exploiting advances in ar-
eas such as speech recognition, natural language processing, image processing, augmented
reality, planning and decision-making. This can transform business practices and user ex-
perience in many segments such as travel, health care, and engineering. Will we find this
world, or will it remain a shimmering mirage forever?

We face two obstacles in reaching this world. The first is a technical obstacle: running
resource-intensive applications on resource-poor mobile hardware. Remote execution can
remove this obstacle, provided one can count on access to a compute server via a wireless
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network. The second obstacle is an economic one. The effort involved in creating applica-
tions of this new genre from scratch is enormous, requiring expertise in both the application
domain and in mobile computing. Further, there is no incentive to publicly deploy compute
servers if such applications are not in widespread use. We thus have a classic deadlock, in
which applications and infrastructure each await the other.

This dissertation aims to break this deadlock by providing solutions to both obstacles.
It uses the concept of tactics to develop a runtime system called Chroma. Chroma al-
lows resource-poor mobile hardware to exploit fidelity adaptation and remote execution to
achieve good performance even when running resource-intensive applications. This disser-
tation also presents a solution for lowering the cost of creating resource-intensive mobile
applications by reusing existing software that was created for desktop environments. Us-
ing the RapidRe approach, relatively unskilled programmers can do an excellent job of
rapidly porting such software to new mobile devices. The results are close to optimal in
terms of performance in most cases. RapidRe also makes it easier to fix incorrectly retar-
geted applications as only a small number of changes need to be made to the application
source. RapidRe and Chroma have been extensively validated and shown to be effective
solutions. Even so, this dissertation has just scratched the tip of the iceberg in addressing
the issues necessary for making true mobile computing a reality. Necessary components
such as ubiquitous service discovery and security still remain to be resolved. Nonetheless,
I am confident that this dissertation is a major step in the right direction and that it can help
stimulate the transformation of mobile computing.
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Appendix A

Chroma: Runtime Support for Cyber
Foraging

In this Appendix, I describe the goals and implementation of Chroma. Chroma is written
in C as a Linux user space process. It consists of many different components as shown in
Figure A.1. These components provide resource measurement, prediction, fidelity, tactic
selection, and remote execution functionality. This detailed discussion of Chroma is in an
Appendix as only the tactic selection solver component was specifically developed for this
thesis. The other components were originally developed by other researchers and reused.
However, for completeness, I still describe each component in detail in the subsequent
sections. Where appropriate, I make clear which is my work and which is work that I am
reusing.

A.1 Design Goals
Chroma was designed to achieve three major goals. These are:

1. Seamless from user perspective: The user should be oblivious to the decisions being
made by Chroma and the actual execution of those decisions.

2. Effectiveness : Chroma should employ close to optimal strategies for remote execu-
tion under all resource conditions. An application developer should not be tempted
to hand tune.

3. Minimal burden on application writers: I want Chroma to be an easy system for
application writers to use.

I achieved these goals as follows:
Seamless from user perspective : I achieved this goal by making Chroma completely

automatic from the perspective of the application user. Chroma was designed to support
interactive applications which already demand user attention due to their interactive nature.
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Figure A.1: Main Components of Chroma

It is thus vital that Chroma distract the users as little as possible. I achieve this by allowing
the user to specify high-level preferences in advance to Chroma. With these preferences,
Chroma will decide at runtime how and where to execute applications. The user is oblivious
to these decisions in normal use of the system.

Effectiveness : The use of tactics allows Chroma to dynamically pick an optimal appli-
cation partitioning. Chroma couples this with predictive resource management to achieve
excellent application performance in dynamic mobile environments

Minimal Burden : This was accomplished using the RapidRe process described earlier
in this thesis.

A.2 Chroma Overview
Chroma has full support for concurrent application execution. Chroma’s goal is to, at
runtime, decide the following two application settings:
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Application Fidelity Variable Settings : These are application-specific variables that
affect the quality of the application. The tradeoff is that reducing the application quality
results in lower resource usage. Hence, in many cases, it is necessary to use a lower quality
setting to satisfy the available resources. Examples of fidelity variables include the reso-
lution setting for graphics applications, the data files used by language translators, and the
size of the language model for speech recognizers. Chapter 2.5.1.2 showed how developers
can specify the fidelity variables for their applications.

Tactic Plan : A tactic plan is a particular tactic, from the set of possible tactics, where
a specific server has been selected for every RPC in the tactic. For example, a possible
tactic plan is choosing the do simple tactic from Figure 2.4 and deciding that RPC step 1
will run on server X and RPC step 3 will run on server Y . A tactic plan thus contains all
the necessary information for an application to execute the chosen tactic. Chapter 2.5.1.3
showed how developers can specify the tactics for their applications.

In the rest of this appendix, I use the term runtime setting to refer to a combination of a
tactic plan and the precise settings for the fidelity variables of an application. Operation set-
tings thus represent the complete set of information needed by applications to successfully
perform the operation.

To decide the optimal runtime setting, Chroma needs to know three things; Namely, the
current resource availability, the predicted resource usage of every tactic plan and fidelity
combination, and knowledge of the user’s goals. Given these three things, Chroma will
then have to decide the best tactic plan and fidelity settings and return the chosen settings
to the application. Chroma uses a solver component, built for this thesis, that iterates
through all possible tactic and fidelity settings and selects the optimal runtime setting. The
solver is explained in more detail in Appendix A.6. The application then performs the
operation using the determined runtime setting. The actual resource usage of the operation
is measured by Chroma and used to update the resource usage predictors.

A.3 Resource Measurers
The current implementation of Chroma uses multiple resource measurers to determine the
current resource availability. These measurers were developed by other researchers for the
Odyssey [160, 76, 152] system and are not part of this dissertation’s contributions. My
work was to port the measurers to Chroma and update them to work under the Linux 2.6
kernel – the base measuring algorithms remained the same. The key resource measurers
needed for this thesis were the available bandwidth and latency of operation measurers
(both developed by Noble [160]), and the available system memory and available CPU
cycles measurers (both developed by Narayanan [151]). The details of these measurers are
provided below in the interest of completeness.
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A.3.1 CPU
Chroma uses the /proc filesystem of Linux to measure the current availability of both
these resources. For CPU, Chroma reads the value of /proc/loadavg every 0.5 seconds
to discover the current system load. This load is then smoothed, to eliminate the effect of
transient load spikes, using a weighted average of the measurements for the last one minute.
This average load provides a realistic approximation of the expected system load. Chroma
then converts this average load into expected available cycles using the following formula:

available cpu cycles = 1 − average load ∗ machine clock speed,

The machine clock speed is obtained by reading the value of /proc/cpuinfo.

A.3.2 Memory
Chroma uses different algorithms to discover the available memory. On Linux 2.2 kernels,
the available memory is given by the following formula:

MemAvail = MemFree + Buffers− 1024,

where MemFree is the available free memory and Buffers is the number of raw 4
Kilobyte disk blocks used for relatively temporary storage. These values are read from
/proc/meminfo. The value of Buffers is decreased, based on experiments performed
by Narayanan, by 1024 to ensure that the system always has at least 4 Megabytes of free
memory.

Linux 2.4 kernels have a more sophisticated virtual memory system and the available
memory measurer uses the following formula instead:

MemAvail = MemFree + Inact clean,

where, as before, each of the values are read from /proc/meminfo. MemFree is
the available free memory (that is not being used by any application), Inact clean is the
number of easily freeable memory pages. These are memory pages that have not been
accessed recently. Determining the available memory on Linux 2.6 kernels is similar to 2.4
kernels except that the Inact clean variable is called Inactive in /proc/meminfo. The
memory measurer is purposely designed to only add memory pages that are safe to use and
can be used immediately. For example, it does not include active pages or inactive yet dirty
pages into these measurements. This ensures that Chroma does not try to use memory that
it shouldn’t or which is not immediately usable.
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A.3.3 Available Wireless Bandwidth
Chroma uses passive network monitoring to measure the available wireless bandwidth. As
such, Chroma observes normal network traffic to discover the available bandwidth. This is
in contrast to active network measurement techniques such as BFind [9], Cartouche [105],
Pathchar [117], and Pathneck [111] that add traffic to the network to discover the available
bandwidth. These active schemes have the potential to provide better measurements but
they can also overstress a network with large amounts of measurement traffic.

Chroma performs its passive measurements as follows; the low-level communication
package used by Chroma, RPC2 [188], is able to measure the observed bandwidth and
round trip times of any initiated network connection. Hence, whenever Chroma communi-
cates with a remote server, for example, when checking if the server is running (done by the
service discovery component) or when performing an operation, it timestamps this RPC2
information and writes it to a log.

Whenever Chroma needs an available bandwidth measurement, it reads this log and
extracts the most recent bandwidth measurements (this is set to the last 30s of measure-
ments). Chroma then performs a weighted average of these values and uses the final value
as the expected available bandwidth. The weighting is performed to smooth out transient
bandwidth fluctuations. The assumption is that the available bandwidth will not change
drastically in such a short time period.

A.4 Resource Predictors
For a given operation, Chroma needs to be able to predict the resource usage and execution
latency of every possible runtime setting. For this dissertation, I use the resource demand
prediction work by Narayanan [151] to provide this information. To summarize this work,
it uses history-based prediction as the main mechanism to do prediction. The key idea
here is that the resource usage and predicted execution latency of any possible runtime
setting, for a given set of application inputs, can be predicted from its recent resource
usage. To index the prediction table, the predictors use the runtime settings of particular
application variables called parameters that indicate the amount of resources the current
operation will require. Parameter values are fixed and should have the property where a
larger parameter value indicates more resource usage. For most applications, the size of
the inputs to the operation make great parameters. Chapter 2.5.1.2 how parameters are
specified using Vivendi.

To bootstrap the predictors and avoid a lengthy convergence phase, Chroma performs
off-line logging where the resource usage of a large number of runtime settings, for a
given set of training inputs, is measured and stored. During normal operation, the predic-
tors are updated using online monitoring and machine learning to improve accuracy. A
more thorough description and evaluation of this resource demand predictor is available in
Narayanan’s dissertation [151] or from the paper cited above.
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A.5 Obtaining User Preferences and Goals
To effectively match resource demand to resource availability, Chroma needs to trade off
resources for fidelity. How to perform this tradeoff is frequently context sensitive and thus
dynamic. For instance, would the user of a language translator prefer accurate translations
or snappy response times? Should an application running on a mobile device use power-
saving modes to preserve battery charge, or should it use resources liberally in order to
complete the user’s task before he or she needs to board their plane?

I provide Chroma with these user-specific resource tradeoffs in the form of utility func-
tions. A utility function is a user-specific precise mathematical function that quantifies the
tradeoff between two or more attributes. The utility function takes a particular runtime
setting, factors in the available resources and the predicted resource usage of that runtime
setting, and returns a value in the range [0, 1] (inclusive). This value represents how happy
the user would be with this particular runtime setting – the higher the value, the happier the
user would be. The solver then iterates through all possible runtime settings and picks the
one that maximizes the utility function.

Unfortunately, obtaining utility functions that match the current user preferences is not
a trivial task. An effective and non-intrusive system would have to infer the correct user
preferences from mostly passive monitoring of user activities. However, the system will
also have to provide the right interfaces for users to directly convey their desires, in cases
where the monitoring is ineffective, to the system. However, even with this passive mon-
itoring and direct inputs, frequently, the user preferences will only be specified in very
broad general terms. For example, the preference might be “Conserve as much energy as
possible”, or “I want to use as little bandwidth as possible”. The system will then have
to convert these preferences into specific and detailed utility functions such as “The total
energy consumption for applications A, B, and C, over a 10 minute period, must be less
than 200 Joules. The quality and latency of these application does not matter.”

Fortunately, there are already existing systems designed solely to address the issue of
accurately obtaining detailed user preferences. One such system is Prism [199] and Chroma
has been modified to work with it. This integration is one of the key new features of Chroma
that differentiate it from the previous Odyssey system.

A.5.1 Integration with Prism
Chroma was first modified to allow asynchronous communication from Prism. This elim-
inated the need to tightly synchronize Chroma and Prism. Prism communicates with
Chroma using self-describing XML messages. In particular, Prism uses 4 different types of
messages, activate (Figure A.2), setState (Figure A.3), getResources (Figure A.4), and
deactivate (Figure A.5) to communicate with Chroma. These messages all share common
features. They all identify the task (using the taskId tag in each message) the message
pertains to and the location of the requesting Prism process (using the location and port
tags in the message). A task refers to a user-specific grouping of application services to
satisfy some larger goal. For example, a “write my dissertation” task may involve a text
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<activate location="chroma-15" bind="5700" taskId="1" >
<service id="1" type="translate" application="panlite">
<-- constraints are for resources, which are tagged by name -->

<constraints>
<resource name="cpu" type="integer">

<numEstimate average="10" variance="10" unit="%"/>
</resource>
<resource name="bandwidth" type="integer">

<numEstimate average="50" variance="50" unit="Kbps"/>
</resource>

</constraints>
</service>

</activate>

This message is used by Prism to tell Chroma which service (translate in this case) and
application (panlite in this case) is required by the user. It also specifies the maximum
resources that can be used by that application (CPU of 10% and bandwidth of 50 Kbps).
Chroma is responsible for finding the optimal runtime setting for the application given
these constraints.

Figure A.2: Example Prism Activate Message

editor, a graphics editor, and a compiler. Finally, each message has a unique service id
indicating which particular service in the task this message is pertaining to.

These messages are used as follows: When Prism first connect to Chroma, and when
Prism detects that the user preferences have changed, Prism will send a setState message
to Chroma. This message will contain the utility function that encodes the current user
preferences. When Prism detects that the user requires a particular application, it will send
Chroma an activate message containing the name of the application. This allows Chroma
to setup any state needed to handle the application. The activate message will also contain
any resource constraints that this application should not exceed. When the application is no
longer needed by the user, Prism will send Chroma a deactivate message. Finally, Prism
will periodically query Chroma, using the getResources message, to discover the current
resource availability. Chroma returns the current resource availability to Prism using a
ResourceSnapshot (Figure A.6) message. This resource availability is distilled by Prism
and then presented to the user. This allows the user to provide realistic preferences.

The integration of Chroma with Prism proves to be useful to both systems. Chroma
is able to obtain realistic user preferences from Prism and Prism is able to obtain accurate
resource availability measurements from Chroma. In addition, Chroma provides the adap-
tation functionality needed to achieve the user’s application goals (validated in Chapter 5).
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<setState taskId="1" location="chroma-15" bind="5700" profile="fast">
<service id="1" type="translate">

<utility combine="product">
<-- the utility functions for this service --->

<QoSdimension name="latency" type="float">
<function type="sigmoid" weight="1">

<thresholds unit="second" good="1.5" bad="7"/>
</function>

</QoSdimension>
<QoSdimension name="fidelity" type="float">

<function type="sigmoid" weight="0.5">
<thresholds unit="float" good="1" bad="0"/>

</function>
</QoSdimension>

</utility>
<-- resource constraints that Chroma should not exceed -->
<-- these are tagged by name with exact units -->
<constraints>

<resource name="cpu" type="integer">
<numEstimate average="50" variance="10" unit="%"/>

</resource>
<resource name="bandwidth" type="integer">

<numEstimate average="150" variance="50" unit="Kbps"/>
</resource>

</constraints>
</service>

</setState>

Prism uses this message to provide Chroma with the utility function for a particular
service (translate in this case). In this example, the utility function states that la-
tency values under 1.5s are excellent (given a utility value of 1) and that any value
above 7s is unacceptable (utility value of 0). Any latency value in between receives
a proportional utility value. The function also states that any fidelity value of 1 is
excellent (utility score of 1) and any value of 0 is unacceptable (score of 0). The
final utility is calculated by first multiplying each individual function components
(latency and fidelity in this case) by its weight and then by multiplying the weighted
values together. In this case, latency has a weight of 1 while fidelity only has a weight
of 0.5. The final utility, in this message, is thus (utilitylatency∗1.0)∗(utilityfidelity ∗0.5).

This message is also used to update the resource constraints for the service. In
this case, translate can use a maximum of 50% of the CPU and 150 Kbps of bandwidth.

Figure A.3: Example Prism setState Message
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<getResources taskId="1" location="chroma-15" bind="5700">
<service id="1" type="translate"/>

</getResources>

Prism uses this message to determine, from Chroma, the available resources for a partic-
ular service (translate in this case). Chroma will reply with a ResourceSnapshot message
(Figure A.6).

Figure A.4: Example Prism getResources Message

<deactivate taskId="1" location="chroma-15" bind="5700">
<service id="1" type="translate" application="panlite"/>

</deactivate>

This message is used by Prism to tell Chroma that a particular service (translate in this
case) and application (panlite in this case) is not needed by the user anymore.

Figure A.5: Example Prism Deactivate Message

A.6 Solver
At the heart of Chroma is the solver component. I used the Odyssey solver as a baseline,
fixed some bugs, and added tactic support to it.

The solver is given the list of tactics and fidelity variables for the operation and con-
structs a solution space of all tactic-fidelity variable combinations. The goodness of any
specific point in this space is computed using the utility functions described above. The
solver then exhaustively searches this space for the optimal runtime setting. I.e., the point
that maximizes the given utility function. This exhaustive search is feasible as the space is
relatively small because there are only a few tactics and fidelity variables for most applica-
tions.

For the solver to work properly, it requires accurate resource supply measurements,
resource demand predictions for all possible runtime setting permutations of the current
application operation, and the utility function expressing the user’s preferences. In addition
to these three things, the solver requires two additional pieces of information. First, it
requires the list of tactics and fidelity variables for the current application. This is provided
by an application-specific configuration file that is read by Chroma when the application
registers. This configuration file, shown in Figure A.11, is automatically generated from
the information in the developer specified tactics file.

Next, the solver needs to know how choosing different tactics and fidelity variable set-
tings affects the application quality. For example, the solver has to know that tactic a
has twice the expected quality of tactic b. Without this information, the solver will not
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<ResourceSnapshot taskId="1" location="localhost" bind="5700">
<service id="1" type="translate">

<-- resource constraints that Chroma should not exceed -->
<-- these are tagged by name with exact units -->
<constraints>

<resource name="cpu" type="integer">
<numEstimate value="50" variance="10" unit="%"/>

</resource>
<resource name="bandwidth" type="integer">

<numEstimate average="450" variance="50" unit="Kbps"/>
</resource>
<resource name="memory" type="integer">

<numEstimate average="213" variance="14" unit="MB"/>
</resource>

</constraints>
</service>

</ResourceSnapshot>

This message is used by Chroma to inform Prism of the current resources available for
a particular service (translate in this case). In the above message, the resources available
are 50% CPU, 450 Kbps network bandwidth and 213 MB of memory.

Figure A.6: Example Prism ResourceSnapshot Message

be able to pick the optimal runtime setting that maximizes the utility function. Chroma
uses application-specific hint modules to provide this information. These hint modules are
short C routines that list the relative fidelities of different tactics and fidelity variable set-
tings. These routines are compiled into a library and dynamically loaded by Chroma as
necessary.

In the normal case, the solver solves for an optimal runtime setting using the following
high-level loop:

1. pick a possible application runtime setting

2. calculate the expected resource usage of this runtime setting using the resource de-
mand predictor

3. calculate the goodness of this runtime setting using the utility function (which uses
the hint module to calculate fidelity levels)

4. repeat for all possible application runtime settings

5. pick the runtime setting that had the highest goodness value
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Algorithm Prototype: Chroma Solver(Tactic, RPC, Server, params, fid vars);

1: chosen tactic = 0, runtime setting = ∅;

2: for (i = 0; i < num tactics; i++) do // For every application tactic
3: UtilityTactici

= 0.0;

4: for (j = 0; j < tactic[i].num rpcs; j++) do // For every RPC in the tactic
5: UtilityRPCj

= 0.0, ServerRPCj
= 0, fid valsRPCj

= ∅;

6: // For every available server (includes local machine)
7: for (k = 0; k < num avail servers; k++) do
8: Utilityk = 0.0 and i = 0;
9: fid vals← Random settings for all fidelity variables

10: while (Utility < 1.0 and i++ 6= 1000) do
11: Utilityk ← Utility func(Tactic[i], RPC[j], Server[k], params, fid vals);

12: if (Utilityk > UtilityRPCj
) then

13: UtilityRPCj
← Utilityk;

14: ServerRPCj
← k;

15: fid valsRPCj
← fid vals;

16: end if // Check if current settings have higher utility
17: Use gradient descent to pick better fidelity variable settings
18: end while // Fidelity Variables

19: end for // For every available server
20: end for // For every RPC in the tactic
21: UtilityTactici

=
∑tactic[i].num rpcs

j=0 UtilityRPCj
// Sum all RPC utilities

22: // The server and fidelity variable settings for each RPC are also saved
23: end for // For every application tactics

24: chosen tactic← max(UtilityTactici
); // Tactic with the highest utility

25: for (i = 0; i < tactic[chosen tactic].num rpcs; i++) do
26: runtime setting ← Concat(RPCiserver

, RPCifid vals
);

27: end for // Create runtime setting for the chosen tactic

28: return chosen tactic and runtime setting;

Figure A.7: The Chroma Solver Algorithm
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The full algorithm representing the high-level intuition presented above is shown in
Figure A.7. It performs an exhaustive search to determine the optimal runtime setting. It
starts by searching through all possible application tactics (Line 2). The algorithm will then
search through every RPC that makes up that tactic (Line 4). For each of these RPCs, the
algorithm will search through every possible available server (Line 7).

The heart of the solver is between Lines 10 and 18. In these lines, the solver searches
for an optimal fidelity variable setting for this tactic, RPC, and server setting. The solver
first picks a random value for each of the fidelity variables. It then uses gradient descent
(Line 17; the actual algorithm for this descent is not shown) to pick new values for fidelity
variables. The goal is to maximize the utility function (Line 11). This gradient descent
search continues until either a setting that maximizes the utility (the maximum utility value
is 1.0) is found or 1000 iterations have been performed. This loop saves the server and
fidelity variable settings that achieve the highest utility for the current RPC.

After the optimal server and fidelity variable settings for each RPC has been determined,
the algorithm (Line 21 will calculate the overall utility for the tactic. After each tactic has
been processed, the tactic with the highest overall utility is chosen as the tactic to use
(Line 24). The algorithm will then concatenate (Line 25) the individual servers and fidelity
variable settings for each RPC in the tactic to create the final runtime setting.

The solver is thus able to pick an optimal fidelity variable setting for every RPC in the
chosen tactic. However, my application model does not support this; applications assume
that the same chosen fidelity variable settings are used for the entire tactic. Hence, the
solver’s output is adjusted such that only the fidelity variable settings for the first RPC in
the chosen tactic are returned. Even though it is not optimal, this heuristic still proves to be
effective in practice.

A.6.1 Data Decomposition Solver
When performing data decomposition, Chroma uses a different solver. The main difference
is that this solver solves for a set of servers that are good enough to be used for the data
decomposition. This is unlike the normal solver that solves for the optimal server settings
for the given operation.

The algorithm for this solver is shown in Figure A.8. This solver is fairly simple and
has a few limitations. In particular, the solver can only handle applications that have only
a single tactic (that is decomposable). In addition, the solver will set all fidelity variables
to their maximum values to simplify the task of decomposing the tactic. Otherwise, the
decomposition routines would have to manage a situation where different sub results could
have different qualities.

Given these limitations, the solver will return a set of servers that can be used for the
decomposition. To determine if a server is acceptable, the solver checks if the utility (as
shown in Line 5 of Figure A.8) of using the servers exceeds a given threshold. In my current
implementation, the threshold is arbitrarily set to 0.70. In the future, I hope to obtain this
threshold dynamically from the user (possibly via Prism).
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Algorithm Prototype: Chroma Decomp Solver(Tactic, RPC, Server, params, fid vars);

1: chosen tactic = 0, server list = ∅;
2: fid vals← maximum values for all fidelity variables

3: // For every available server (includes local machine)
4: for (k = 0; k < num avail servers; k++) do
5: if (Utility func(Tactic[0], RPC[0], Server[k], params, fid vals) > thresh);

then
6: server list← Append(Server[k]); // Add server to server list
7: end if // Check if server is acceptable
8: end for // For every available server

9: return chosen tactic, fid vals, and server list;

Figure A.8: The Chroma Data Decomposition Solver Algorithm

A.7 Remote Execution
In the previous sections, I described the components of Chroma that allow it to determine
the runtime settings of an application at runtime. With these settings, the application can
use the remote execution functionality of Chroma to perform the operation using the chosen
tactic plan and fidelity variable settings.

In this section, I describe the components that comprise the remote execution function-
ality of Chroma. These components collectively allow Chroma to leverage the capabilities
of remote servers and are vital in facilitating cyber foraging. To successfully use remote
execution, Chroma needs to discover remote machines, start application servers on these
machines, establish trust with these machines, and provide mechanisms to use these ma-
chines to execute operations. In this dissertation, I leverage prior research for the first three
issues. However, for completeness, I discuss each of these components in more detail in
the next few sections.

A.7.1 Service Discovery
Before Chroma can use remote servers, it must first discover them. Chroma has two differ-
ent mechanisms for service discovery. The first mechanism is a very simple simple service
discovery interface developed by Flinn [75]. This interface uses a static text file containing
a list of possible remote servers to perform discovery. After reading this list, Chroma will
dynamically query each server in this list to discover if that server can be used for remote
execution. When using this simple interface, Chroma assumes that all available servers
can be used for any applications. I.e., it is not able to determine that server a can only be
used for application x and not application y. The text file, shown in Figure A.9, also speci-
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d 1
l localhost
r chroma-1.aura.cs.cmu.edu
r chroma-2.aura.cs.cmu.edu
r chroma-3.aura.cs.cmu.edu
r chroma-4.aura.cs.cmu.edu
r chroma-5.aura.cs.cmu.edu
r chroma-6.aura.cs.cmu.edu
r chroma-7.aura.cs.cmu.edu
r chroma-8.aura.cs.cmu.edu

The first line (that starts with a “d”) specifies the interval (in seconds) at which Chroma
should query each server in the list. In this case, the query interval is set to 1s. The rest
of the file contains the list of possible servers. The local server is explicitly specified (as
“l localhost”) as there may be cases where users may not want Chroma to perform any
operations locally.

Figure A.9: Service Discovery Config File

fies the interval at which Chroma should query each server. This simple solution provides
a nice tradeoff between a completely static and a completely dynamic service discovery
mechanism.

Chroma can also use a more powerful service discovery interface called SDF (short for
service discovery framework). This interface was developed by three masters students for
the class project component of a mobile computing graduate-level class at Carnegie Mellon
University. The students were Karthik Belur, Abhijit Deshmukh, and Mark Pariente. I
supervised them for the project and played a key role in guiding the overall design of SDF.

SDF is a fully dynamic system that can detect new services in the environment. Chroma
can use it to query for servers in the environment that specifically support the required
applications. To provide this functionality, SDF provides a client and server framework
component. Application servers register with the server framework component (running
either on the application server or somewhere else) and tell the component what service
they can provide and what specific characteristics their service has. For example, a print
server can tell the component that it has a laser printer that supports letter size pages and
can print at 600 dpi. This information is specified as a SQL string and is stored by the
server component in a MYSQL database.

Client applications, such as Chroma, use the client framework component to make ser-
vice discovery calls. The client application specifies, using a SQL string, the exact ser-
vice that is looking for. The client framework component then broadcasts this query on a
well-known port. This port is monitored by the server framework components in the en-
vironment and they will respond with any positive matches in their database. The client
framework component accumulates these results and returns them to the client application



A.7. REMOTE EXECUTION 175

when requested.
There are also other service discovery protocols (SDP) that Chroma can possibly use.

This includes industry standard protocols such as Bluetooth Proximity Detection [103,
186], Jini [222], Service Location Protocol [99, 100, 101, 171], and UPnP [119] as well
as more proprietary solutions such as the Intentional Naming System [6], Salutation [187],
and the Secure Service Discovery Protocol [53].

A.7.2 Instantiating Servers
Discovering remote servers that can be used is just the first step in the remote execution
process. The second step involves starting application servers on these servers that can
respond to queries by application clients running on mobile devices. Similar to the service
discovery problem, this problem is also not part of the scope of this dissertation. Instead,
Chroma assumes that servers are manually started a-priori on all possible servers.

To make it easier to manually start a number of application servers, Chroma uses a
simple mechanism, developed by Flinn, called rmexec. rmexec reads a config file on
startup and starts all the servers specified in the config file. It also has been modified to
work with the SDF service discovery framework. In particular, rmexec tells the server
framework component of SDF exactly which application servers it has started.

There are more dynamic solutions that can be used by Chroma. These include prior
research by Shaikh et al. [183] that focused on dynamically starting servers for distributed
game infrastructures. Other possible solutions are object migration techniques as used in
Emerald [123] and process migration techniques as used in V [216], Amoeba [150, 207,
208], Charlotte [16], Condor [214], Demos [174], Mach [239], Sprite [60, 61, 166] and
Zap [165]. Nuttal [161] and Milojicic et al. [146] provide overviews of the various migra-
tion techniques that have been developed. It may be also be possible to use code migration
systems such as ANTS [231] or language-supported code migration functionality [234] to
dynamically execute code on remote servers. Finally, researchers such as Garlan et al. [83],
Gribble et al. [94], Huang and Steenkiste [112, 113], and Raman et al. [175] have looked
at the problem of service composition or the building of useful applications from smaller
components already available in the environment. This may prove to be a viable way to
build application servers in certain environments.

Recently, there has been work on instantiating servers specifically for cyber foraging.
This includes work by Goyal and Carter [93] as well as the Slingshot system, that uses
virtual machines to start application servers on remote servers, by Su and Flinn [202].

A.7.3 Security of Using Remote Servers
The third part involved in using remote servers is establishing trust with those servers.
However, establishing this trust is not a trivial task. First, we have to verify the identity of
the servers to the mobile clients and vice versa. Second, we have to prevent unauthorized
entities from eavesdropping on the communications between the servers and clients. Third,
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we have to verify that the servers are actually doing what they are supposed to be doing.
In particular, clients should be able to verify that the servers are actually performing the
correct computations and are not returning made up results. These three problems are
known as the authentication, encryption, and integrity problems respectively.

In this dissertation, I differ to prior research for most of these problems as there are al-
ready a number of excellent solutions for these problems. However, I do present a possible
solution for the integrity problem and present an analysis of my solution in Section 5.6.

A.7.3.1 Authentication and Encryption

The authentication problem involves the mobile client discovering the true identities of the
remote servers and vice versa. This is vital to prevent mobile clients from unintentionally
communicating with rogue servers masquerading as legitimate servers. After the identities
of remote servers have been validated, communication between the mobile clients and the
remote servers can commence. However, to be secure, it is necessary to ensure that these
communications cannot be read by other entities. This requires encryption.

Fortunately, both authentication and encryption can be achieved existing well-tested
mechanisms. For authentication, protocols such as Diffie-Hellman [59], Needham-Schroeder [156],
and RSA [181] can be used. These protocols have been heavily validated [72] and shown
to be resistant to common attacks. For encryption, IPSec [130] with secure encryption pro-
tocols such as Blowfish, Camellia, Digital Encryption Standard (DES), and the Advance
Encryption Standard (AES) [72] can be used.

A.7.3.2 Integrity

After the secure communication has reached the authenticated remote server, the server
can now perform computation on behalf of the mobile client. However, how can the mobile
client ensure that the remote server is doing the right computations and returning the correct
results?

One way to ensure this is to setup a completely trusted software environment on each
remote server. Establishing trust in hardware is a major goal of the security community, es-
pecially the Trusted Computer Group [217]. The recent work on trusted platform modules
at IBM [184, 185] is of particular relevance here.

Another solution is to embed information into the data sent to the remote server such
that any tampering can be detected by the mobile client. The work by Chen and Morris
on hardware assisted tamper-evident remote execution [44], Seshadri et. al on tamper-
proof code execution without hardware assistance [193], and by Necula on proof carrying
codes [155] are examples of this line of research.

There has also been a large amount of research in using cryptosystems [26, 52, 92,
12, 118] and random oracles [24] to provide integrity and accuracy of results. However,
these solutions are complicated and it is unclear how they would map to a mobile remote
execution domain.
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The use of fault-tolerant computation [5, 64, 125, 209] has been proposed as a solution
to errors caused by transient server failures. However, these methods assume that the fail-
ures are transient and are not malicious in nature. Masking malicious or Byzantine failures
requires the use of multiple servers and distributed agreement protocols [41].

Using the solutions described above, it might be possible to solve the integrity problem.
However, these solutions require large amounts of access to the remote servers, complicated
new networking protocols, or application changes on the mobile client. For this disserta-
tion, I ask a simpler question. Namely, “What is the simplest solution that can be used by a
mobile client to detect misbehaving servers?”

My solution is to use a simple probabilistic verification scheme. In this scheme, the
mobile client sends a remote server a known query (i.e., a query for which the mobile
client already knows the answer). The mobile client can then verify the answer returned by
the server. By repeating this verification step randomly multiple times, the mobile client
can build a trust index for each server in the environment. This simple probabilistic scheme
is useful as it can detect even Byzantine failures and requires no infrastructure support,
new networking protocols, or application changes. However, because it is probabilistic,
the mobile client can still end up using misbehaving servers. In Section 5.6, I analyse the
detection probability of this scheme and present its runtime overheads.

A.7.4 Remote Execution Mechanisms
The final component involved is using remote servers is developing the mechanisms used
to perform the remote execution. Because I am using coarse-grained remote execution, I
use the RPC model of communication for this dissertation. However, there are still further
questions to address.

Because Chroma uses tactics, it is possible that the chosen tactic may involve more than
one RPC stage. For example, tactic do simple in Figure 2.4 involves 2 RPC operations,
step 1 and step 3, performed consecutively. However, even for this simple tactic, there are
multiple ways to “control” the tactic. For example, control can be retained at the mobile
client. In this scheme, the mobile client will first initiate RPC step 1. It will then initiate
RPC step 3, after the results of RPC step 1 have returned. This method of control is the
easiest to implement and debug.

Alternatively, control can be delegated to another machine. For example, the mobile
client delegates control to machine Y and sends Y the inputs for the tactic. Y then executes
the tactic and returns the results to the mobile client. This delegated control method is
useful when the outputs of the intermediate RPCs are large or when the mobile client needs
to conserve battery power. However, this method of control is much harder to implement
and debug as it requires fairly sophisticated signalling protocols.

For this dissertation, Chroma uses the centralized method of control where the mobile
client initiates all RPC requests. Even though this method is not as efficient as the delegated
control method in certain situations, I show in Section 5 that it is still able to achieve
excellent performance.
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API Command Description

Registering the Application

int register fidelity (char *conf file, int
num rpcs, int *op id)

Registers app with Chroma. conf file is the name of the config file
(example shown in Figure A.11). num rpcs is the number of app RPCs
(each RPC is given a unique connection to make executing parallel
RPCs easier). Chroma returns a unique op id on successful registration.

void close chroma sockets (int
num rpcs)

Closes all connections (num rpcs is the number of open connections)
with Chroma.

Determining an Optimal Operation Setting / Operation Resource Logging

int begin fidelity op (int op id, int
num params, fid param val t *params, int
num fidelities, fid param val t *fidelities,
int *runid, int *chosen tactic)

This multi-argument API call tells Chroma to pick an optimal runtime
setting for the app. op idisthe unique application identifier. params

and fidelities are the list of parameters and fidelity variables. This call
returns the chosen tactic (chosen tactic), a unique runtime id (runid)
and the fidelity variable settings (in fidelities). Chroma internally
stores the server selection for each RPC in the chosen tactic. Chroma
starts logging the resource usage of the operation when this call is made.

int end fidelity op (int runin, int opid,
failure code failed)

Tells Chroma to stop logging the resource usage of this operation (de-
noted uniquely by runid and opid). The app-perceived success of the
RPC is also reported (failed).

Executing the Chosen Operation Setting

int do remote op (int rpc num, int op id,
int runid, remoteop t* rop, void* in data,
int in len, char* in file, int in file flag,
void* out data, int* out len, char* out file,
int out file flag)

Performs a remote RPC. rpc num is the RPC to perform. op id and
runid are the app and runtime ids. The input data is provided in in data

(buffer with length in in len) and/or in file (file name). the output
data is received in out data (length in out len) and/or out file (output
file name). {in|out} file flag specify permissions on the input/output
files. Chroma remembers which server was chosen for this RPC (can be
changed using set rpc server)

int do local op (int rpc num, int op-
type id, int opid, remoteop t* rop, void*
in data, int in len, char* in file, void*
out data, int* out len, char* out file)

Perform an RPC locally. The arguments are the same as do remote op.
The only difference is that local RPCs don’t need to specify file permis-
sions. This local RPC call is provided for efficiency reasons.

int set rpc server (int op id, int runid,
int rpc num, char* server)

Allows apps to change the server used by a specific RPC. rpc num is
the RPC to change and server is the server to use.

This figure shows the API calls that are used by application client components to commu-
nicate with Chroma’s client component (viceroy). These calls are for normal operation.
In particular, the begin fidelity op decomp call used for data decomposition is omitted.

Figure A.10: Chroma’s Client API



A.7. REMOTE EXECUTION 179

# Automatically generated Chroma configuration file by the
# Chroma stub generator
description foo:bar # application name foo, operation bar
mode normal # this is not the training mode
logfile /usr/chroma/etc/foo_bar.log # used for resource prediction
# provides the application-specific information needed by solver
hintfile /usr/chroma/lib/foo_bar_hints.so

# these are all the fidelities and parameters
param size ordered 0-infinity
fidelity resolution ordered 0-1

# number and definitions of each application RPC
num_rpcs 3
rpc 0 a
rpc 1 b
rpc 2 c

# number of application tactics
num_tactics 3

# definition of each tactic. each RPC in the tactic is uniquely
# numbered. seq is used to denote a sequential dependency between
# RPCs while par is used to denote a parallel dependency.
tactic 0 do_a_and_c 2 seq a 0 seq c 2
tactic 1 do_b_and_c 2 seq b 1 seq c 2
tactic 2 do_a_b_and_c 3 par a 0 par b 1 seq c 2

This is an example config file required by Chroma when using the register fidelity
client API call. This file provides all the relevant information needed by Chroma to choose
a runtime setting for the application.

Figure A.11: Chroma Application Config File Example
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API Command Description

int service init (int* argc, char*** argv) Registers the application with rmexec

int service getop (int* op num, int*
opid, char* in file, void** data, int*
datalen)

Retrieves an RPC request from rmexec. This call blocks
until work arrives. op num is the requested RPC’s num-
ber and opid is a unique identifier. in file is the name
of the input data file (if any). data is the input data to the
RPC and datalen is the length of data.

int service retop (int opid, char*
out file, void* data, int len)

Returns the results of an RPC operation. opid should be
the same opid received in service getop (rmexec uses
this id to determine which client to send the results to).
out file is used to return results stored in a file (out file
is the name of the file). data is a buffer containing the
results and len is the length of data.

This figure shows the API calls that are used by application server components to com-
municate with Chroma’s server component (rmexec).

Figure A.12: Chroma’s Server API

A.8 Chroma APIs
The APIs used by applications to communicate with Chroma are described in this section.
Client application components running on a mobile users device connect with the client
component of Chroma (called viceroy) using the API described in Figure A.10. Server
application components communicate with Chroma’s server component (rmexec) using
the server API described in Figure A.12.

A.8.1 Client Component
The client API is used as follows. First the developer creates the application’s Chroma
config file (shown in Figure A.11). At this time, the developer must also decide on a
consistent numbering scheme for the application’s RPCs. This numbering scheme is used
by do remote op and do local op.

With this config file and numbering scheme, the developer can start modifying the ap-
plication itself. First, she must add the register fidelity call at the start of the application
to establish a connection with Chroma. She then must find the computationally intensive
portions of the application (these are the parts that need to be remotely executed).

One this portion has been found, she must then do the following tasks; a) pack all the
application parameters into a param val t data structure, b) allocate enough space for all



A.8. CHROMA APIS 181

fidelity variables in a fid val t data structure, c) add a call to begin fidelity op, d) retrieve
the returned tactic and fidelity variable settings, and e) use the fidelity variable settings to set
any required state before performing the operation. Chroma will start logging the resource
usage of the application when begin fidelity op is called.

Next, she has to perform the operation. This requires her to first create the appropriate
control function for the chosen tactic. For example, if the chosen tactic has 2 sequential
RPCs, she will have to allocate intermediate buffers to save the results of the 1st RPC. She
will also have to add the calls to execute each of the two RPCs. If the tactic has parallel
stages, she will have to use a threads library (such as pthreads or LWP) to perform the
parallelism. Before executing an RPC, she will have to determine if it is a local or remote
RPC (by checking the server location fidelity values returned by begin fidelity op). She
should use do local op for local RPCS, and do remote op for remote RPCs. She also has to
ensure that all the arguments for the RPC are properly packed into a byte stream (using the
in data argument of do local op and do remote op), saved into a file (using the in file
argument), or both. After each RPC has completed, she has to unpack the results from
either out data and/or out file. These results must then be either copied into application
buffers or into temporary buffers depending on where in the tactic that RPC occurred. After
the tactic is completed, she must call end fidelity op with the appropriate success code.
This tells Chroma to stop logging the resource usage of this operation.

The stub generator component of RapidRe (described in Section 2.6) greatly simplifies
this entire process. It generates the Chroma config file needed by register fidelity. It also
packs the parameters and fidelity variables into the appropriate data structures before call-
ing the Chroma API calls. The stub also remembers the runtime setting returned by Chroma
and generates the control code to correctly execute this runtime setting. In particular, it en-
sures that intermediate data and parallel RPC stages are properly handled. This control
code is hidden under the do tactics application-specific API call used by developers. The
exact details of each generated API call is presented next.

The stub code contains an opaque data structure that contains all the application-specific
state exchanged between Chroma and the application. This allows the application-specific
APIs presented to the developer to be as simple as possible. For example, many of them
have no arguments. In reality, the arguments for these API calls are automatically stored
and maintained by the stub code.

set size: Every set call for a parameter works as follows: the stub generator will allo-
cate an entry for every parameter in the opaque data structure. Whenever a set call is made,
the entry for that parameter is updated to the argument value of the call. The values in this
data structure are used when performing the find fidelity call.

get resolution: Every get call for a fidelity variable works as follows: the stub genera-
tor will allocate an entry for every fidelity variable in the opaque data structure. The runtime
settings for these variables, as determined by Chroma when find fidelity is called, will
be stored in this structure by the stub. The get call will return the current stored value of
this variable to the application.

register: This API call uses the Chroma register fidelity API call to register the
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application with Chroma. The stub generator automatically generates the config file needed
as one of the arguments to this call. It also statically determines the number of application
RPCs (needed as the 2nd argument of register fidelity) from the tactics file. The stub
code remembers the op id returned by Chroma and automatically uses it for subsequent
API calls. This id is used to uniquely identify the application to Chroma. This API call
also initializes the opaque data structure used by the stub.

cleanup: This API call use the Chroma close chroma sockets API call (with the stat-
ically determined number of application RPCs as the argument) to disconnect the applica-
tion from Chroma.

find fidelity: The stub code automatically packs a data structure containing the cur-
rent values of all application parameters. It also creates a fidelity variable data structure
with enough space to store the return value for every application fidelity variable. It then
calls the Chroma begin fidelity op API call and gives it the parameter structure, the saved
op id, and the fidelity variable data structure. After the Chroma API call completes, indi-
cating that Chroma has decided on the operation setting, the stub code saves the returned
fidelity variable values in the opaque data structure. It also saves the returned fidelity vari-
able and tactic choices in the opaque data structure. If data decomposition is used, the stub
will use the begin fidelity op API call instead and save the list of possible servers in the
opaque data structure.

do tactics: The stub generates the most amount of code for this application-specific
API. For every possible tactic, the stub generates the appropriate control function to cor-
rectly execute the RPCs in that tactic. If a tactic has parallel stages, the generate control
function will perform parallel RPC calls using the pthread threading library. In addition to
the control function, the stub generates the appropriate code to marshal the arguments and
unmarshal the outputs for each RPC. The output of find fidelity specifies the tactic to ex-
ecute and the server to use for each RPC in the chosen tactic. The stub uses the do local op
Chroma API call to perform an RPC on the mobile client itself and the do remote op
Chroma API call to perform an RPC on a remote server. The stub generator ensures that
developers do not need to care about any control, networking, and data packing issues in-
volved with executing tactics. If data decomposition is used, the stub will generate the
required buffers to store the partial data and generate the code to a) call the developer pro-
vided split function to split the input data, b) parallelize the decomposable stages, c) use a
different server and piece of data for each parallel stage, and d) combine the partial results,
by calling the developer provided join function, to create the final result.

A.8.2 Data Decomposable Client Component
To create a data decomposable client component, the developer must do the following. First
the application is registered with Chroma using exactly the same method described above.

Next, the developer asks Chroma for a set of servers that can be used for the decompos-
able operation. This is different from regular clients where Chroma returns a single optimal
runtime setting. The developer uses the begin fidelity op decomp API call (instead of the
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regular begin fidelity op API call. This API call is not shown in Figure A.10 ) to tell
Chroma to use the data decomposition solver described in Section A.6.1. This new API
call has the same output as begin fidelity op except that it also returns the list of servers
that can be used for the decomposable operation.

As described above, the developer is then responsible for creating the control function
that executes the chosen tactic. Standard sequential and parallel stages are handled as
described in Section A.8.1. Decomposable stages must be handled in the following way;

The developer must first decompose the original input data for the first RPC in the
stage into a number of smaller pieces. The number of pieces cannot exceed the number of
possible servers. However, it can be lower than the number of possible servers if too many
splits would result in data chunks that are too small to be optimally remotely executed. The
application developer is responsible for both writing the logic that performs this split and
for creating the necessary buffers to store split data.

The decomposable stage can then be parallelized (using pthreads or other threading
libraries) with each parallel stage given a different split piece of data as input. To ensure
that each RPC in a parallel stage uses a different server (to avoid server contention), the
developer must use the do remote op server API call (not shown in Figure A.10) instead
of the regular do remote op API call. This new API call has an extra argument that allows
the developer to explicitly specify which server to use to perform the remote RPC. The
developer should use the list of possible servers returned by begin fidelity op decomp to
pick a unique server for each parallel stage. The developer has to create the appropriate
data structures to store the partial results returned by these parallel stages.

After every parallel stage has returned, the partial results must be combined to form the
final result. The developer is responsible for writing the logic that performs this recombi-
nation. This combined result is then returned to the user (if the decomposable stage was
the last stage in the tactic) or passed as input to the next stage in the tactic.

When using RapidRe, the entire control code logic (putting a different server for each
chunk etc.) and intermediate data buffers is completely generated by the stub generator.
The developer merely has to provide the functions to decompose and recombine the data.

A.8.3 Server Component
The server API is used as follows. First, the developer registers the server with Chroma
(rmexec) by inserting a call to service init at the start of the server. Next, she preserves
any application-specific initialization routines. These have to be preserved to ensure that
the server is properly started.

She then writes an event loop that a) receives new client requests using the service getop
API call, b) determines the RPC this request was for, c) unpacks the arguments for the
RPC (the data (for packed data) and in file (for filedata) arguments of server getop), d)
calls the appropriate RPC with the unpacked arguments, e) packs the outputs of the RPC
into a buffer, a file, or both, and f) returns the outputs to the requesting client using the
service retop API call (with the correct opid). This event loop should loop continuously
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until the server exits.
Finally, she creates the RPC functions that the server has to support. This is usually an

easy step as the functions usually already exist in the application (usually the code that was
removed from the client). Hence, usually it is sufficient to just write a little bit of glue code
that accepts the arguments from the RPC request and calls the correct existing application
function. A little additional glue code that extracts the outputs of the existing functions and
puts them into buffers to return to the user may also need to be written.

The RapidRe stub generator generates the event loop that polls rmexec for client re-
quests, executes the appropriate RPC function, and then returns the results to the client (via
rmexec). This event loop is called by the run chroma server automatically generated
call. The developer just has to provide the RPC functions. The exact operation of each
generated API call is presented next.

server init: For this API call, the stub generates the code that performs the appropri-
ate steps to connect and register the application with the underlying Chroma server mech-
anisms. These mechanisms allow clients to query the resource status of remote servers.

run server: This API call is the main generated server function. The stub generator
generates a continuous event loop that a) listens for client requests (using service get op),
b) unmarshals the arguments for the request, c) calls the appropriate RPC function (these
functions have to be created by the developer) with the correct arguments, d) retrieves
the RPC output, marshals it, and sends it back to the client (using server retop). This
generated API call completely shields the developer from the low level networking and
data packing details necessary for an effective server.

A.9 Putting it All Together: Chroma in Action
When the mobile client enters a new environment, Chroma first discovers and authenticates
the available remote servers. Chroma then starts application servers on each of these remote
servers. Next, Chroma starts measuring the available resources, both locally and on the
remote servers. Sometime during this process, Chroma will obtain utility functions that
encapsulate the user’s preferences from an external entity such as Prism.

When an application wants to perform an operation, Chroma will first obtain the list
of tactics and fidelity variables for that application. Next, it predicts the resource usage
and expected execution latency of every runtime setting using the history-based demand
predictors and the supplied application parameters. Given these pieces of information and
the measured resource levels, Chroma will then solve for an optimal runtime setting that
maximizes the utility function. This runtime setting is returned to the application.

The application then performs the operation using the tactic plan and fidelity variable
settings contained in the runtime setting. The actual resource usage of the operation is
measured and used by Chroma to update the history-based demand predictors.

If the application is using data decomposition, the sequence is slightly different. Instead
of returning an optimal runtime setting, the solver returns the chosen fidelity variables and
the set of servers that can be used. The application then decomposes the input data into
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smaller pieces – up to the number of servers returned by the solver. Each server will then
be given a piece of data and will compute a partial result. These partial results are then
pieced together, on the mobile client, to form the final result.

A.10 Summary
In this appendix, I described the components of Chroma. Chroma is a dynamic adaptive
runtime system that is able to determine the optimal runtime setting that meets the current
resource availability and user preferences. To do this, Chroma provides resource monitor-
ing, resource prediction, and a solver that is able to choose the optimal runtime setting.
Chroma also has limited functionality to discover available remote servers and to start ap-
plication servers on these servers. Finally, Chroma provides the appropriate mechanisms
for applications to use these servers for remote executions.
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Appendix B

Vivendi Syntax

In this Appendix, the full Vivendi syntax is presented in the form of Backus Naur Form
(BNF) diagrams. These diagrams should be read as follows: the starting state appears in
bold font above each diagram. For example, start is the first state in the syntax. Non-
terminal states appear in rectangular boxes (e.g. operation in the start state). Termi-
nal states appear in rounded boxes (e.g., APPLICATION and NAME) and may have
subscripted comments. These comments either state that the terminal name is a reserved
language keyword or explains what value the state expects to be provided. For example,
APPLICATION is a keyword and NAME requires the application name.

These diagrams use two types of lines. Rounded lines that curve back into a state indi-
cate that the states between the lines can be repeated arbitrarily many times. An example
of this type of line is shown in the operation state. The other type of line (with arrows)
indicates an alternative choice for the next state. An example of these type of “alterna-
tive choice” lines is shown in the required command state. Note that some states (like
commands) have both types of lines.

start

- APPLICATION keyword
�
�

�
�

- NAME application name
�
�

�
�

- ;
�
�

�
�

- operation -

operation

- OPERATION keyword
�
�

�
�

- NAME operation name
�
�

�
�

- ;
�
�

�
�

- commands�

�

�

�

-
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commands

- required commands�

�- data decomposition commands

�- optional commands

�

�

�

- ;
�
�

�
��

�

�

�

-

required commands

- fidelities and parameters�

�- rpcs

�- tactics

�

�

�

-

fidelities and parameters

- IN keyword
�
�

�
��

�- OUT keyword
�
�

�
�

�

�

- datatypes -
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datatypes

- STRING keyword
�
�

�
��

�- USTRING keyword
�
�

�
�

�

�

- NAME
�
�

�
�

- array - range - default�

� - INT keyword
�
�

�
��

�- UINT keyword
�
�

�
�

�- DOUBLE keyword
�
�

�
�

�- FLOAT keyword
�
�

�
�

�- CHAR keyword
�
�

�
�

�

�

�

�

�

- NAME
�
�

�
�

- array - from - to - default

� - FILE keyword
�
�

�
��

�- USER keyword
�
�

�
�

�

�

- NAME
�
�

�
�

- array - default

�- ENUM keyword
�
�

�
�

- NAME
�
�

�
�

- IDENT enum values
�
�

�
�

- array - default

�

�

�

�

-
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array

- [
�
�

�
�

- NUMBER array size
�
�

�
�

- ]
�
�

�
��

�

�

�

-

range

- RANGE keyword
�
�

�
�

- IDENT range of string
�
�

�
��

�

�

�

-

default

- DEFAULT keyword
�
�

�
�

- IDENT default value
�
�

�
��

�

�

�

-

to

- TO keyword
�
�

�
�

- IDENT upper bound value
�
�

�
��

�

�

�

-
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from

- FROM keyword
�
�

�
�

- IDENT lower bound value
�
�

�
��

�

�

�

-

rpcs

- RPC keyword
�
�

�
�

- NAME
�
�

�
�

- rpc arguments -

rpc arguments

- (
�
�

�
�

- rpc function variables - )
�
�

�
�

-
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rpc function variables

- IN keyword
�
�

�
��

�- OUT keyword
�
�

�
�

�

�

- STRING keyword
�
�

�
��

�- USTRING keyword
�
�

�
�

�- INT keyword
�
�

�
�

�- UINT keyword
�
�

�
�

�- DOUBLE keyword
�
�

�
�

�- FLOAT keyword
�
�

�
�

�- CHAR keyword
�
�

�
�

�- FILE keyword
�
�

�
�

�- ENUM keyword
�
�

�
�

- NAME
�
�

�
�

�- USER keyword
�
�

�
�

�

�

�

�

�

�

�

�

�

�

- NAME
�
�

�
��

��

� - ,
�
�

�
�

- rpc function variables�

�

�

�

-
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tactics

- TACTIC keyword
�
�

�
�

- IDENT
�
�

�
�

- =
�
�

�
�

- tactic components -

tactic components

- sequential�

�- parallel

�

�

- &
�
�

�
�

- tactic components�

�

�

�

-

sequential

- rpc name -

parallel

- (
�
�

�
�

- parallel rpc components - )
�
�

�
�

-

parallel rpc components

- rpc name - ,
�
�

�
�

- parallel rpc components�

�- rpc name

�

�

-
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rpc name

- NAME function name
�
�

�
�

- optional server constraint�

�

�

�

-

optional server constraint

- :
�
�

�
�

- NAME
�
�

�
�

-

data decomposition commands

- maxservers�

�- split function

�- join function

�- recombtactics

�

�

�

�

-

maxservers

- MAXSERVERS keyword
�
�

�
�

- NUMBER maximum number of servers application can use
�
�

�
�

-
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split function

- SPLIT keyword
�
�

�
�

- NAME split function name
�
�

�
�

- rpc arguments -

join function

- JOIN keyword
�
�

�
�

- NAME join function name
�
�

�
�

- rpc arguments -

recombtactics

- %
�
�

�
�

- NAME split func
�
�

�
�

- :
�
�

�
�

- (
�
�

�
��

��

�- tactic components - )
�
�

�
�

- :
�
�

�
�

- NAME join func
�
�

�
�

�

�- recombtactics - &
�
�

�
�

- tactic components

�

�

�

-
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optional commands

- constraints resource constraints�

�- hints resource hints

�- includes user defined include files

�- typedefs user defined typedefs

�- servers user defined server lists

�

�

�

�

�

-

constraints

- CONSTRAINT keyword
�
�

�
�

- NAME constraint name
�
�

�
�

- IDENT constraint in quotes
�
�

�
�

-

hints

- HINT keyword
�
�

�
�

- NAME hint name
�
�

�
�

- IDENT hint in quotes
�
�

�
�

-

includes

- INCLUDE keyword
�
�

�
�

- NAME name of file to include
�
�

�
�

-
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typedefs

- TYPEDEF keyword
�
�

�
�

- NAME name of typedef
�
�

�
�

- IDENT typedef in quotes
�
�

�
�

-

servers

- SERVER keyword
�
�

�
�

- NAME name of server group
�
�

�
�

- =
�
�

�
�

- IDENT server list in quotes
�
�

�
�

-
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Appendix C

User Study Procedure

In this Appendix, I explain how the user study was conducted. Section C.1 provides the
high level scenario that was used to setup the user study. Section C.2 gives the detailed
procedure that was used for the user study.

C.1 Scenario for User Study
We have 3 entities. The original application developer, a domain expert, and a novice ap-
plication developer whose goal is to add the application to an adaptive runtime framework.

The original application developer will develops his application for its intended purpose
and leaves behind a good set of documentation that explains

1. the high level control flow of the application

2. specific details about individual files / procedures

When writing this documentation, the original application developer was not thinking
that his application would be used in Chroma or by an adaptive remote execution system.
The application may already be structured for client/server operation if that was it’s original
design.

A domain expert (someone who understands the domain which the application belong
to. For example, video players, language translators, speech recognizers, 3D model dis-
players etc.) writes a brief document that broadly describes what parameters and fidelities
are appropriate for that domain. This will be phrased in generic language.

For example, a 3D model display expert may say that parameters that affect resource
usage are the size of the display window (height and width of output window), the number
of polygons in the model, the dimensions of the model (using the coordinate space of the
application), the current position of the viewer (using the application’s coordinate space)
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and the current perspective of the model (how it is rotated etc. again using the applica-
tion’s coordinate space). After providing these parameters, the application will need to be
informed of the appropriate resolution at which to render the display.

The task of determining which particular application variables and values map to these
parameters and fidelities is left up to the novice developer. There may be hints in the
original application developer documentation (for example, the documentation may spec-
ify what the application’s coordinate space is and how to extract values corresponding to
different points in the space).

Each application will thus have 2 sets of documentation. The specific application doc-
umentation left behind by the original developer and more general “what are the adaptive
knobs of this kind of application” documentation left behind by the domain expert. Given
these two sets of documentation, the novice developer will have to

1. create a tactics file for the application

2. make the application adaptive by correctly partitioning the application into client/server
components and by correctly inserting the API/macro calls in the right places. Some
new application glue code may also need to be written.

C.2 Detailed User Study Procedure
Pre-Experiment Checklist

• Ensure all documentation is ready for the participant. Refer to documentation check-
list (Section D.1) for this.

• Bring the two windows XP laptops + power supplies + hub + 4 network cables to
seminar room. don’t even think of running the experiment over wireless.

Experiment Checklist

• participant arrives

– greet the participant

• assign participant a unique number

• explain to them that they must use only the number of the questionnaires

• explain to them the consent form (Appendix D.2.1) and make them sign two copies.

– give them one to keep
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• explain to them the scenario / give them scenario handout (Appendix D.3)

• start training (process described in Appendix C.3)

– go through the “How to create adaptive applications” handout (Appendix D.3.2)
and explain operation, parameters, fidelities, RPCs, tactics

– explain overall picture. They need to create a tactics file and then modify appli-
cation

– do think aloud protocol [140] training. Think aloud protocols require partici-
pants to think aloud as they are performing a set of specified tasks. Participants
are asked to say whatever they are looking at, thinking, doing, and feeling, as
they go about their task. This enables observers to see first-hand the process of
task completion (rather than only its final product). Explain to the participants
that they should think aloud when

1. starting a new section
2. when encountering a problem that they are having trouble with

– start with tactics training with GOCR

• explain to them the software setup

– 3 Xterms will be open. one xterm will be in the build directory. They should
ignore that xterm for now

– The other 2 Xterms will be open in the source directory for the application being
retargeted

• give them the tactics file documentation (“Creating the tactics file” section in Ap-
pendix D.1. Explain each piece of documentation to them

• explain to them the user study procedure

– they have to say when they are done with each section as listed in the “overview
of process” handout (Appendix D.6.1)

– fill in the stage questionnaire (Appendix E.1) after each section

• start Camtasia [210]. This software records the laptop’s screen and captures every
mouse and keyboard input made by the participant. This recording allowed me to
review exactly what each participant did at a future time (and also allowed me to
obtain very accurate timing information)

• let them begin

• at the end of the tactics file, stop Camtasia

– save Camtasia recording as a meaningful file name participant number,date,time,application,experiment part
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• let them take a break

• set up for modifying the application

• copy their tactics file to somewhere safe in /coda

• copy good tactics file into source directories (client and server)

• Do the modifying the application training. This training, using GOCR, will cover the
steps needed to create both the client and server application components

• run make in the build tree to create the stubs

• give them the “modifying the client” documentation (“Creating the retargeted client
application” section in Appendix D.1) and explain each piece of documentation

• remind them of the think aloud protocol and the need to say each stage and fill in the
questionnaire

• start Camtasia

• let them modify the client

• at the end, stop Camtasia and save the recording using a meaningful filename

• let them take a break

• give them the “modifying the server” documentation (“Creating the retargeted server
component” section in Appendix D.1) and explain each piece of documentation

• start Camtasia for server modification (remind them of the think aloud and stuff)

• let them modify the server

• at the end, stop Camtasia and save the recording using a meaningful filename

• give them the “Overall retargeting the application” questionnaire (Appendix E.5)

• if the participant was retargeting their 2nd or 3rd application, give them the “Effect
of experience” questionnaire (Appendix E.7)

• give them the “Overall user study experiment” questionnaire (Appendix E.6)

• make them fill up a payment claim form (Appendix D.2.2) and fill in the appropriate
amount

– $120.00 for a successful modification

– lower amounts for unsuccessful modification. actual amount to be determined
on a case by case basis



C.3. TRAINING PLAN 203

C.3 Training Plan
This is the 4-step training process that was given to every participant.

1. Explain how to create a tactics file

(a) explain what the APPLICATION line is

(b) explain what the OPERATION line is

(c) explain how to specify parameters

(d) explain how to specify fidelities

(e) explain how to specify RPCs

(f) explain how to specify TACTICs

2. Hands on training on creating a tactics file

(a) walkthrough how to create a tactics file using GOCR as the test application

3. Explain how to modify the application

(a) explain how to identify what is client code and what is server code.

(b) explain the APIs

i. initialize
ii. register

iii. start operation
iv. stop operation
v. find fidelity

vi. do tactics
vii. cleanup params

4. Hands on training on modifying application

• Walkthrough how to modify GOCR to use the stub generated API calls
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Appendix D

User Study Documentation

D.1 Documentation Checklist
This is the set of documentation needed by every participant for every experiment.

Basic Documentation

• Consent form (Appendix D.2.1)

• Payment form (Appendix D.2.2)

• Scenario description (Appendix D.3)

• Definitions handout (Appendix D.3.1)

• How to create adaptive applications readme (Appendix D.3.2)

Creating the tactics file (Stage A in Table 4.3).

• Application specific readme (Appendix D.4)

• Application specific DOMAIN readme (Appendix D.5)

• Creating a tactics file overview (Appendix D.6.1)

• Creating a tactics file manual (Appendix D.6.2)

• Stage A questionnaire (they fill this in as they create the tactics file) (Appendix E.1)

• Overall tactics file questionnaire (given at the end) (Appendix E.2)

205
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Creating the Retargeted Client Application (Stage B in Table 4.3).

• Application specific readme (Appendix D.4)

• Application specific DOMAIN readme (Appendix D.5)

• Application tactics file printed out (Chapter 3 has the tactics files for every applica-
tion)

• Client side modification overview (Appendix D.7.1)

• Manual for modifying applications (Appendix D.8)

• Common routines cheat sheet (Appendix D.7.3)

• Programming notes handout (Appendix D.7.4)

• The C Programming Language (2nd Edition) reference book [131]

• C++ How to Program (4th Edition) reference book [58]

• Stage B questionnaire (they fill this in as they retarget the application) (Appendix E.3)

Creating the Retargeted Server Application (Stage C in Table 4.3).

• Application specific readme (Appendix D.4)

• Application specific DOMAIN readme (Appendix D.5)

• Application tactics file printed out (Chapter 3 has the tactics files for every applica-
tion)

• Server side modification overview (Appendix D.7.2)

• Manual for modifying applications (Appendix D.8)

• Common routines cheat sheet (Appendix D.7.3)

• Programming notes handout (Appendix D.7.4)

• The C Programming Language (2nd Edition) reference book [131]

• C++ How to Program (4th Edition) reference book [58]

• Stage C questionnaire (they fill this in as they retarget the application) (Appendix E.4)
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After the Application has been Retargeted Completely

• Overall retargeting the application questionnaire (Appendix E.5)

• Overall user study experiment questionnaire (Appendix E.6)

• Effect of experience questionnaire (only given to participants who are retargeting
their 2nd or 3rd application) (Appendix E.7)

D.2 Basic Documentation

D.2.1 Consent Form
Research Participant Information and Consent/Authorization Form for Minimal Risk
Studies

The purpose of the Study is to investigate the effectiveness of a set of tools and methods
in enabling the rapid development of adaptive applications.

You will be asked to make an existing application work within an adaptive runtime sys-
tem and then provide feedback as to how easy you felt this task was. The task will consist
of three different phases and the total experiment time (including training) should not ex-
ceed seven hours. For this study, everything you type along with anything you say during
the study will be recorded.

You should experience no risk or discomforts from participating in the Study.

There will be no cost to you if you participate in this Study.

There may be no personal benefit from your participation but the knowledge received
may be of value to research in distributed systems.

Your participation is voluntary. Refusal to participate or withdrawal of your consent or
discontinued participation in the study will not result in any penalty or loss of benefits or
rights to which you might otherwise be entitled. The Principal Investigator may at his/her
discretion remove you from the study for any of a number of reasons. In such an event,
you will not suffer any penalty or loss of benefits or rights which you might otherwise be
entitled.

You will receive $120 for successfully participating in this Study. You will receive
$40 if you stay at least three hours but do not successfully complete the Study. Payment
amounts for other situations will be at the sole discretion of the Principal Investigator. This
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payment is for your time and personal cost of participation.

Your anonymity will be maintained during data analysis and publication/presentation
of results by any or all of the following means: (1) You will be assigned a number as names
will not be recorded. (2) The researchers will save the data file and/or any video or audio
recordings by your number, not by name. (3) Only members of the research group will
view collected data in detail. (4) Any recordings or files will be stored in a secured location
accessed only by authorized researchers.

If you have any questions about this Study, you should feel free to ask them now or
anytime throughout the Study by contacting:

Professor Mahadev Satyanarayanan
School of Computer Science
Carnegie Mellon University,
Wean Hall 8208,
5000 Forbes Avenue,
Pittsburgh, PA 15213
Phone : (412) 268-3743
E-Mail : satya@cs.cmu.edu

If you have questions pertaining to your rights as a research participant; or to report
objections to this Study, you should contact:

IRB Chair
Regulatory Compliance Administration
Carnegie Mellon University
5000 Forbes Avenue
Warner Hall, 4th Floor
Pittsburgh, PA 15213
Email: irb-review@andrew.cmu.edu
(412) 268-1901 or (412) 268 4727

The Carnegie Mellon University Institutional Review Board (IRB) has approved the use
of human participants for this Study.

This study is funded by the Aura Project, which is supporting the costs of this research.
Neither Carnegie Mellon University (CMU), nor Prof. Mahadev Satyanarayanan will re-
ceive any financial benefit based on the results of the Study.

I understand the nature of this Study and agree to participate. I received a signed copy of
my consent. I give the Principal Investigator, and his/her associates, permission to present
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this work in written and/or oral form for teaching or presentations to advance the knowl-
edge of science and/or academia, without further permission from me provided that my
image or identity is not disclosed.

PARTICIPANT SIGNATURE DATE:

D.2.2 Payment Form
Name :

Social Security Number :

Address :

Phone Number :

Payment Amount :

PARTICIPANT SIGNATURE DATE:

D.3 User Study Scenario
You have just graduated from school and taken a job as an application developer at a com-
pany that develops applications for mobile devices. The company has developed an adap-
tive runtime system, called Chroma, for mobile devices that is able to dynamically execute
applications on remote servers to improve performance (since mobile devices generally
have limited hardware).

The company has access to a large number of applications that are useful for mobile
devices. These include face recognizers, 3D model viewing application, language transla-
tors, speech recognizers, optical character recognizer and speech synthesizers. However,
none of these applications were designed specifically for mobile devices and they are not
currently integrated with Chroma.



210 APPENDIX D. USER STUDY DOCUMENTATION

Your job, as the new hire, is to take these applications and modify them to work with
the adaptive runtime system.

Usually, this task would require you to completely understand each application and the
internal workings of Chroma. You would then have to modify the application to work with
Chroma (which involved packing and unpacking variables, adding calls to internal Chroma
functions in the appropriate places, and handling remote execution of application code).

However, the company has developed a set of tools along with a modification method-
ology that they claim will greatly reduce the time needed for you to modify an application
to work with the adaptive runtime system. The tools and methodology were designed such
that you will not need to know anything about the internal workings of Chroma and very
little about the application being modified. Even then, the tools allow you to create a mod-
ified application that is almost as effective (performance wise) as an application created
using the old manual process.

The purpose of this user study is to quantify how effective these tools and methodology
are. For this study, you will modify different applications to work with the Chroma adaptive
runtime system.

D.3.1 Definitions Handout
Operation :- An application specific notion of work. For example, a graphics application
would have an operation called render while a language translation application would have
an operation called translate. The operation is thus the core functionality of the application.

Parameter:- Application specific variables who’s values affect the resource usage of
the application. For example, camera position for graphics applications and number of
words for language translation applications. Each adaptive application will have at least
one parameter. There is no upper bound on the number of parameters.

Fidelity :- These are values that the application asks the runtime to set. I.e., the appli-
cation tells the runtime, “Tell me what the values of these variables should be for the given
resource conditions”. The runtime will decide what the appropriate value for the fidelity
should be for the current resource conditions. The tradeoff is that using a lower fidelity
value will use fewer resources but result in a lower quality output. For example, a graphics
application may want the runtime to tell it what resolution to use for the current operation.
A higher resolution results in a higher quality rendering but will consume more resources
(and hence take too long to complete on certain hardware platforms). A lower resolution
will consume less resources (and render faster) but result in a poorer output.

After the runtime returns values for these variables, the application will need to use the
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values to set any internal parameters that depend on those values. For example, a graphics
application may ask the runtime to determine the resolution for each render operation. Af-
ter obtaining this value from the runtime, the application may need to set certain rendering
parameters appropriately before performing the operation. An application may not have
any fidelities.

Chroma :- An adaptive remote execution system that is able to adapt applications using
two orthogonal mechanisms.

1. It can change the values of the fidelities

2. It decides which tactic to use to perform the operation

RPC :- Remote Procedure Call. This is a method of remotely executing application
procedures at different servers.

Tactic :- Tactics are different ways of combining various RPC calls together to satisfy
the operation. At runtime, Chroma will pick one of these ways based on the criteria ex-
plained below. For example, language translation can be done using anywhere from 1 to 4
procedure calls. The tactics specification would list all possible valid ways of doing those
4 procedure calls to satisfy the operation. At runtime, Chroma will decide which tactic
to choose (similar to fidelities, the tactics differ in their resource usage and quality) that
optimizes the application performance (achieve the best quality while using the optimal
amount of resources).

D.3.2 Adaptive Applications Overview
Applications can be made adaptive in at least two different ways

1. By adjusting variables that affect the resource usage of the application. The trade-
off is that the quality of the application also changes when you change the values
of these variables. These variables are called fidelities. For example, for graphics
applications, you can adjust the rendering resolution from the maximum value of 1.0
(full resolution) to 0.0 (no polygons at all). Making the resolution lower requires
less CPU and memory resources to render the model (as the number of polygons to
render is lower) but results in a lower quality output

2. By remotely executing parts of the application on faster remote servers. For example,
in the same amount of time, you may be able to either render a scene with 0.5 resolu-
tion locally or render it at 1.0 resolution on a faster remote server. Clearly, rendering
it remotely results in a better quality result and uses less resources locally (This might
be important for mobile devices as using more resources increases battery usage). Of
course, the time taken to transfer data to and from the remote server must also be
taken into account (along with the energy used for this transmission if energy usage
is a concern) before deciding to use remote servers.
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The Chroma adaptive runtime system is able to use both these methods to adapt appli-
cations. These methods are orthogonal. For example, the best solution might be to render
remotely using a resolution of 0.8.

D.3.2.1 What are Tactics?

However, automatically deciding how to remotely execute an application is impossible in
practice. To make this problem more tractable, Chroma uses the concept of tactics. Tactics
are a specification of all the useful ways an application can be remotely executed. For many
applications, there is only 1 tactic. For example, for the 3D application, the only tactic is to
remotely execute the rendering procedure. However, for other applications, there may be
more than one way to generate a correct result. Again, similar to fidelities, these different
ways will differ in their resource usage and output quality.

For example, assume that a language translation application (application that translates
one language into another) is able to run multiple independent translation engines on the
provided text file. The intermediate output from all these engines is then sent to a final
“combiner” stage that combines these partial results to create the final output. For this
application, there would be multiple tactics. Each of these tactics would use a different
number (and set) of the translation engines before finally sending the output to the com-
biner. Obviously, the best result is achieved by the tactic that uses all available translation
engines. However, this tactic also uses the most resources.

D.3.2.2 What are Parameters and Fidelities

Parameters : The Chroma runtime system contains the necessary machinery to deter-
mine, at runtime, what the best values for the application’s fidelities should be and which
tactic should be used. Choosing a tactic also involves determining the actual servers to use
for each component in the tactic.

To make its decisions, Chroma requires the application to provide it with certain in-
formation. These are the values being used for the current operation (an operation is an
application specific instance of work. For example, each time the graphics application re-
renders its display is a different operation) that affect the resource usage of the application.
We call these values parameters.

For example, to render a 3D model, the model being rendered (identified by its name),
the size of the rendering window, the current camera positions, and the current perspective
of the model affect the resource usage of the operation. These values are static in that
Chroma is not allowed to change them. The application sets these values and Chroma
cannot change them. Basically, the application is telling the runtime this

“I need to do some work. The work uses these settings which affect my resource usage.
With this information, decide what values I should use for my fidelities and decide which
tactic I should use.”
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Fidelities : Parameters should not be confused with fidelities. Parameters are values set
by the application that affect the resource usage of the application. These may not be actual
variables in the application. For example, the size of the input file may be an important
parameter. This value will have to be calculated.

Fidelities, on the other hand, are actual application settings that need to be set before the
operation can be performed. The application is letting Chroma determine the appropriate
values for these settings (based on the current resource usage) to achieve optimal perfor-
mance. For example, always rendering the display at 1.0 resolution may take too long in
cases where the CPU capability is limited. It may be better to reduce the resolution and
achieve faster renderings.

Chroma uses the parameter values to determine the resource usage of the application.
Based on this, Chroma sets the values of the fidelities and decides which tactic to use such
that they will not exceed the available resources. These resources could include remote
servers if they are available.

D.3.2.3 Adding Chroma Support to an Application

An application will need to do the following to use Chroma.

1. Tell Chroma the current values of the parameters. This is accomplished by using the
set xxx macro calls generated by the stub generator (xxx is the name of the parameter).

2. Call foo bar find fidelity. Chroma will then set the values of the fidelities and decide
which tactic to use

3. Read the values of the fidelities. This is done using the get xxx macro calls.

4. Tell the application to use the fidelity values. For example, for a graphics applica-
tion, after using the get resolution macro call to read the value of the resolution, the
developer will need to call the routines that tell the application to use that particular
resolution value.

5. Call foo bar do tactics to actually perform the operation. This call will use the tactic
chosen by Chroma to perform the operation. This could involve remote execution for
some or all of the stages in the tactic.

D.4 Application Documentation
In this section, the documentation for each application is presented. This is the documen-
tation that was given to the participants. The documentation can be found as follows: Face
(Figure D.1), Flite (Figure D.2), GLVU (Figures D.3, D.4,and D.5), GOCR (Figure D.6),
Janus (the XSpeech client (Figure D.7) and the Janus server ( (Figure D.8)), Musicmatch
(the Java client (Figure D.9) and the C++ server (Figure D.10)), Panlite (Figure D.11), and
Radiator (Figure D.12).
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face_README.txt Wed May 24 18:21:02 2006 1

face_detector application developer notes
-----------------------------------------

Face was written in ADA. The main ADA function 
to recognize faces is located in detect-objects.adb

To make it easy to use the face detector, we also
wrote a C interface procedure that allows C/C++/Java programs
to easily use the Ada routine.

The C interface procedure is 

void Detect_Objects (char * input_file, int infile_len, 
                     char * output_file, int * output_len);

you pass the routine the path to the image file to recognize faces in
along with the length of the file. You also pass in a buffer
that can contain the name of the output_file along with a integer
to store the length of the output_file name.

Detect_Objects will assign a name to the output file. it does this by taking
the input_file name, stripping away the extension and creating an output
file with the same basename but with extension v3a.overlay.pgm.

For example, given an input file of /home/images/test.pgm
the routine will return an output file name of test.v3a.overlay.pgm

Detect_Objects will *NOT* add the path where the file can be found into the
output_file variable. The file will be placed in the working directory of
the application. The working directory can be found using the getcwd( ..)
command. 

An example C application using our C procedure is provided. Look at face.c

Figure D.1: Face Readme File
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flite_README.txt Wed May 24 18:20:53 2006 1

flite speech synthesis program
------------------------------

flite synthesis text into speech. I.e., it take typed words (either from a
file or stdin) and speaks out those words. It can also produced wav files
containing the spoken words.

flite is a large program containing many libraries.

The main program, called flite_main.c, is located in the main/ subdirectory.

This program does the following (starting from the main () routine)

- initializes the flite synthesis engine
- processes command line parameters (flite_usage explains what these are)
- calls the synthesize procedure

The synthesize procedure (also found in flite_main.c) does the following

- creates a synthesis model

- reads the text input. By default, it will read from stdin unless the 
  -t flag is used to provide an input file name

- loops the following routines if flite_loop or flite_bench are set  
  at the command line. Looping is mostly used for performance testing

- calls the flite_phones_to_speech if the explicit_phones option is 
  set. This is used to train new synthesis models

- calls flite_text_to_speech if no input filename is provided. Input is
  read from stdin. This is the default function that will be called if no
  cmdline parameters are specified.

- calls flite_file_to_speech if an input filename is specified. This 
  function will open the file and synthesize the text in it. The output is
  played using the soundcard (if outtype is set to "play") or stored in a
  file otherwise (name specified in outtype).

- prints timing information (if requested) and exits (after deleting the 
  synthesis model)

Figure D.2: Flite Readme File
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glvu_README.txt Wed May 24 18:20:59 2006 1

GLVU allows you to walkthrough a 3D model. It is comprised primarily of
libraries that allow you to quickly navigate and render a 3D model. It uses
OpenGL to perform the 3D rendering.  Any functions you see, in the code,
that start with gl_function_name are OpenGL functions. You can lookup these
functions using the system man command. For example,

man glReadPixels

Directory Tree
--------------

camera
math
object
texdepthmesh
video
tracker
timer
images
lightcam
glutils
glvu :  all these directories contain runtime libraries used by applications
        to render 3D models

example_client 
example_server : these 2 directories contain examples applications that use
                 the runtime libraries. For this user study, you will only
                 need to look at the rgl.cpp example application.

------------------------------------------------------------------------

An example application (in the example subdirectory) called rgl.cpp is
provided to help you understand how to use GLVU to render 3D models onto a
display. There are other examples applications in the same directory.
However, rgl.cpp should be sufficient for figuring out the basic
functionality of GLVU.

rgl.cpp uses the Glut toolkit. Glut is a 3D toolkit that makes it easy to
obtain user input (mouse events) and to create a user interface for
displaying OpenGL output. rgl.cpp reads the name of a 3D model (from the
command line inputs) and then displays the model in a window (using the GLUT
toolkit). The user is able to rotate and walkthrough the model using the
mouse (rgl.cpp will call the appropriate GLVU functions to re-render the
model everytime the user changes the model or the viewing position).

Glut works as follows. The application registers functions to handle various
events. This include functions to handle mouse input, functions to handle
keyboard input and functions to handle display updates (i.e., re-render the
display to react to user input). Glut will call the registered functions
when the appropriate event occurs. In the main program of the application,
you register the various callback functions that Glut should call. You then
make a call to glutMainLoop(). This procedure never returns and starts the
Glut event processing loop. When user input occurs, Glut will call the user
input function (that was registered using the glutKeyboardFunc call for
keyboard events and the glutMouseFunc call for mouse events). When the
display needs to be re-rendered, Glut will call the function registered
using the glutDisplayFunc call.

Detailed Explanation of Example Application rgl.cpp
---------------------------------------------------

This example application shows how to use GLVU to do a simple virtual
walkthrough of a 3D model.

This application has three main functions.

userDisplayFunc0()  /// Glut callback function that renders the model to screen

userIdleFunc0()     /// handles automatic walkthroughs of the model i.e.,
                    /// user specifies randomwalk or randomcam as a command
                    /// line input

userKeyboardFunc0() /// Glut callback function that handles user keyboard
                    /// input (user can change position of model, rotate it,
                    /// go through it etc.) the mouse support and menu
                    /// callback functions are created when the rendering
                    /// model is initialized.  I.e., when rgl.Init
                    /// (explained below) is called

These 3 procedures (along with main() ) comprise the entire application. The
procedures call many internal GLVU libraries and functions (located in other
files) to render the object and handle user input. But conceptually, all the
code to handle the rendering of the 3D model are in these 3 procedures.

The main program does the following

  - handle command line parameters

  - initialize the rendering data structure and create the display window

  - intializes rendering defaults and specify the functions to use to handle
    keyboard input and display rendering

  - initialize the object model

  - start the interactive application and wait for user input.
    glutMainLoop() does this and uses the registered functions to handle
    rendering and user input. You only need to call glutMainLoop() if you
    are creating an interactive application that processes user input. This
    function will retain control (control never returns from glutMainLoop()
    unless the application exits or crashese) and call the various callback
    functions, registered using glutDisplayFunc, glutKeyboardFunc and
    glutIdleFunc, when the appropriate event occurs.
  
userKeyboardFunc0 function does the following

  - handle various keyboard presses either explicitely or by using the
    default keyboard handler rgl.Keyboard(Key,x,y);

userIdleFunc0 function

  - does a random walk of the 3D model.  call userDisplayFunc0() to render
  - the display at every step of the walk

userDisplayFunc0 function
 
  - is responsible for rendering the display everytime the model changes
    - usually because the user navigates the model
  
  - this function is called everytime something happens that requires the
    display to be re-rendered.

  - this function first checks the resolution to render the model and sets
    the number of polygons appropriately

  - it then extracts all the values needed to render the display (as
    mentioned at the top of this file)

  - it then sets the size of the rendering window

  - it then sets the camera and perspective positions properly

  - it then renders the model

  - displays the rendered data on screen
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glvu_README.txt Wed May 24 18:20:59 2006 2
the procedure contains documentation that further explains the above points.
Overall, userDisplayFunc0 calls a bunch of minor routines to set up the
rendering engine and then calls Obj->Display() to actually render the model.
It then displays the rendered 2D image (created from the 3D model) onto the
display. In the new version of the code (this version is the new version),
Obj->Display () automatically displays the rendered image onto the screen.
Previously, further calls needed to be made to extract the rendered pixels
from the rendering buffer and display them on the screen. This old code has
been commented out in the procedure (it is still available in case it is
ever needed again).

To render the 3d model, you need the following:

a) The name of the model (to load the model file)

b) The dimensions of the model

c) The dimensions of the rendering window

e) The number of polygons being rendered

f) The Currrent viewpoint of the viewer. This is expressed as
   three different vectors (x,y,z values).

   Eye (The x,y,z position of the viewers eyeball).

   CentrePoint (The x,y,z position of the center of the model. This value
                never changes for a given model)

   Up (The x,y,z matrix for going up in the world. This is constant and 
       the matrix is (0,1,0)).

g) The perspective of the model. This is expressed as 4 different floating
   point values (not vectors)
 
   Fov    :- The field of view
   Aspect :- The aspect of the model
   Near   :- The near rendering point of the model
   Far    :- The far rendering point of the model

GLVU renders objects using two different data structures. The
ObjModelMultiRGL data structure contains information specific to the model
being rendered (the name, dimensions, number of polygons).

The RGL data structure contains information specific to the rendering
environment (the current viewpoint and the perspective).

Each of these data structures is explained in more detail below

ObjModelMultiRGL
----------------

    The Object model is initialized by doing

1)  ObjModelMultiRGL(const char *tmp_filename, RGL *tmp_rgl);

    where tmp_filename is the name of the model and tmp_rgl is a pointer to
    the rendering data structure. 

2)  Obj->GetNumTris()
    returns the total number of polygons in the model

3)  Obj->GetNumVisible()
    returns the number of visible polygons that will be rendered. This is
    calculated from the total number of polygons and the current camera position
    and perspective by the rendering engine

4)  Obj->SetVisible(int) 
    will set the number of visible polygons to render

5)  Obj->SetVisible(float) 
    will multiply the current number of total polygons (obtained using
    Obj->GetNumTris()). GetNumVisible returns only the
    *visible* polygons) to render by the value of the float. The float should
    thus have a range of between 0.0 and 1.0

6)  Obj->getfilename() 
    returns a char * to the name of the object

7)  Obj->Min 
    the Vec3f value of the minimum position of the model.
   
    Vec3f is defined as 
    typedef Vec3<float> Vec3f;
 
    and contains 3 floating point variables called x, y and z.
 
    for example, 
  
    Vec3f tmp;
 
    tmp.x = 1.0;
    tmp.y = 1.0;
    tmp.z = 1.0;
 
    The Vec3f class is defined in math/vec3f.hpp and contains many nice
    operator overloads. In particular you can do

    Vec3f Min = Obj->Min 
    and the 3 elements of Obj->Min (Obj->Min.x, Obj->Min.y, Obj->Min.z) will
    be copied into the 3 element of Min
    Obj->Max;

8)  Obj->Max
    the Vec3f value of the maximum position of the model.

9)  Obj->Display()
    render the model (using the current camera and perspective specified
    in the RGL data structure).
    This call must be preceded by a 

    rgl.BeginFrame();  

    which will set the rendering engine with the values of the cameras and
    perspective.

    after calling Obj->Display(), you must call
    glFlush ();     /// to flush all GL buffers
    rgl.EndFrame(); /// to actually display the rendered image on screen

    The call sequence is thus

    rgl.BeginFrame();
    Obj->Display();
    glFlush();
    rgl.EndFrame();

  
RGL
---

  The RGL data structure is initialized as follows

1) rgl.Init("GLVU Basic Example",
            GLUT_DOUBLE | GLUT_DEPTH | GLUT_RGBA,
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            50, 50, width, height);

  "Glvu Basic Example" is the name of the display window 
   GLUT_DOUBLE | GLUT_DEPTH | GLUT_RGBA are options that should be specified this w
ay
   The next four parameters are the lower x, lower y, upper x, upper y
   positions of the display window. Thus in this example, the display window
   will be called "Glvu Basic Example" and have a size of width by height
   (since the lower x,y coordinates are 0,0).
   

   Camera and Perspective Settings
   ------------------------------- 

2) rgl.GetCurrentCam()->GetLookAtParams(&Eye, &ViewRefPt, &ViewUp);

   returns the current camera positions of the users eye position (in &Eye),
    the center of the model (in &ViewRefPt) and the vector to go up in the world 
   (in &ViewUP). Each of the 3 arguments is a pointer to a Vec3f data type.

3) rgl.GetCurrentCam()->GetPerspectiveParams(&Yfov, &Aspect, &Ndist, &Fdist);

   returns the current perspective in 4 floating point variables (not Vec3f
   vars). Yfov is the field of view, Aspect is the aspect ratio, Ndist is
   the near rendering point and Fdist is the far rendering point.

4) rgl.SetAllCams(Min, Max, Eye, LookAtCntr, Up, Yfov, Aspect, Ndist, Fdist);   
 
   set the camera and perspective to the values specified in the 5 Vec3f
   vars (Min, Max, Eye, LookAtCntr, Up) and the 4 float vars (Yfov, Aspect,
   Ndist, Fdist).  Min and Max are the minimum and maximum values of the
   model being rendered.

  
5) rgl.GetCurrentCam()->LookAt(Eye, LookAtCntr, ViewUp);
   to set just the camera position

6) rgl.GetCurrentCam()->Perspective(Yfov, Aspect, Ndist,Fdist);
   to set just the perspective

   The full list of prototypes offered by the RGL data structure can be
   found at glvu/rgl.hpp and glvu/glvu.hpp (since RGL inherits GLVU)
   
   The functions listed above are the minimum you will need to set the
   cameras and perspective for a simple application.
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gocr is an application that performs character recognition on image files.

it has a number of command line parameters.

run ./gocr -help to see what these are.

To run gocr with it’s basic settings, do

./gocr <image_file>

the recognized characters found in the image_file (.pcx format only is
supported) are printed on stdout.

gocr has the following main functions (all found in gocr.c with 1 exception):

process_arguments :- this procedure processes the command line arguments

mark_start :- checks that the data structure used to perform the recognition
              (data structure is explained in more details below) exists. prints 
              debugging information if the verbose option is enabled

mark_end :- ends the recognition. prints debugging information if the verbose 
            option is enabled

read_picture :- calls the readpcx function to read the input .pcx image into
                the data structure.

pgm2asc :- This is the function that performs that actual OCR recognition.
           This function is found in pgm2asc.c

print_output :- prints the characters found in the image (the character list
                is stored in the data structure) to stdout.

main :- initialize the data structure, processes the command line arguments
        and then performs the recognition by calling the following functions
        (in this order).
        mark_start(JOB);   /* print debugging information if debugging is set */

        read_picture(JOB); /* read provided picture into job_t data structure */

        /* call main recognition loop */
        pgm2asc(JOB);      /* perform the recognition. This function calls many oth
er functions
                              the recognized characters are stored in the job_t dat
a structure */

        print_output(JOB); /* takes the data structure and prints out the recognize
d
                              characters to stdout                                 
   */

        mark_end(JOB);     /* print ending debugging information */

       job_free(JOB);     /* clear data structure and reset it to accept another pi
cture file */

Gocr Data Structure
-------------------

Gocr stores all its data in a job_t data structure. There is only one
instance of this data structure for the entire recognition. 
A global pointer to this data structure is declared in gocr.c as
job_t *JOB; 

The actual data structure is declared in gocr.c (in main()) as 
job_t job;

This data structure is defined as follows

/* job_t contains all information needed for an OCR task */
typedef struct job_s {
  struct { /* source data */
    char *fname;  /* input filename; default value: "-"  or stdin*/
    pix p;        /* source pixel data */
                  /* pixelmap 8bit gray */
  } src;
  struct { /* temporary stuff, e.g. buffers */
#ifdef HAVE_GETTIMEOFDAY
    struct timeval init_time; /* starting time of this job */
#endif
    pix ppo; /* pixmap for visual debugging output */

    /* sometimes recognition function is called again and again, if result was 0
       n_run tells the pixel function to return alternative results */
    int n_run; /* num of run, if run_2 critical pattern get other results */
               /* used for 2nd try, pixel uses slower filter function etc.*/
    List dblist; /* FIXME jb: desc */
  } tmp;
  struct { /* results */
    List boxlist; /* FIXME jb: desc */
    List linelist; /* FIXME jb: desc */

    struct tlines lines; /* used to access to line-data */
                         /* here the positions (frames) of lines are */
                         /* stored for further use */

    int avX,avY; /* average X,Y (avX=sumX/numC) */
    int sumX,sumY,numC; /* sum of all X,Y; num chars */
  } res;
  struct { /* configuration */
    int cs; /* FIXME jb: grey level 0<160<=255; default value: 0 */
            /* critical value (pixel<cs => black pixel) */

    int spc; /* spacewidth/dots (0 = autodetect); default value: 0 */
    int mode; /* operation modes; default value: 0 */
            /* operation mode (see --help) */
    int dust_size; /* dust size; default value: 10 */
    int only_numbers; /* numbers only; default value: 0 */
    int verbose; /* verbose mode; default value: 0 */
                 /* verbose option (see --help) */
    FORMAT out_format; /* output format; default value: ISO8859_1*/
    char *lc; /* list of chars (_ = not recognized chars); default value: "_" */
    char *db_path; /* pathname for database; default value: NULL */
    char *cfilter; /* char filter; default value: NULL */
  } cfg;
} job_t;

this data structure consists of structs within a struct. accessing values in
this structure is done in the following way.

assuming JOB points to this data structure.

accessing the spc variable would be done as

JOB->cfg.spc

changing the input filename would be done as

JOB->src.fname = new_name;

etc.
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xspeech is a C application that uses that Motif Windowing library to record
voices into wave files. It then calls the janus libraries to recognize the
text in the wave files and display what was spoken as a text file to the
user.

Motif requires xspeech to use an event callback execution model. I.e.,
xspeech creates buttons and actions associated with the buttons. Motif will
draw the buttons on the screen and wait for user input. When this input
happens, Motif will call the application function associated with the button
that was pressed.

The heart of xspeech is the Recognize_Callback function. This function is
called when the user decides to record audio and recognize it (into text).

This function is located in speech_dialog.c

It updates various buttons (to indicate that work is being done).  It then
calls record_audio to record (in .wav format) spoken audio into a buffer.
This buffer is then saved to a file on the disk.

it then calls recognizeFile to recognize the wave file and return the text
translation.

This translation is then displayed to the user (or an error message if
recognizeFile failed).

recognizeFile (also in speech_dialog.c) does the following

sets the flag to do ADC to HYP recognition.

There are 2 ways to do recognitions

take the .wav file (this is the ADC file) and convert it directly to a text
file using ADC to HYP recognition.

The other way is to convert the ADC file into an intermediate format called
MEL and then convert MEL into the final HYP recognition. 

i.e., you do ADC to MEL and then MEL to HYP.

refer to the janus README file for more information.

Figure D.7: XSpeech Readme File



D
.4.

A
PPL

IC
A

T
IO

N
D

O
C

U
M

E
N

TA
T

IO
N

221
janus_README.txt Wed May 24 18:21:03 2006 1
Janus is application, written in Tcl/Tk, that accepts .wav file inputs and
recognizes the text spoken in those .wav files. 

Tcl/Tk uses an event callback model where you register callback functions to
handle specified events. When those events occur, the tcl interpreter will
call those functions.

the main program for Janus is located in JRTK/main.c

and contains

#ifndef DISABLE_TK
  Itf_Main (argc, argv, Tcl_AppInit);
#else
  Tcl_Main (argc, argv, Tcl_AppInit);
#endif

by default, this will execute Itf_Main (DISABLE_TK will not be defined)

Itf_Main (in JRTK/itfMain.c) does the following

it handles commands line arguments and sets up the necessary variables and
conditions needed to initialize Tcl and Tk. It then call Tcl_AppInit when it
exits.

Tcl_AppInit (found in JRTK/main.c) does the following.

It initializes the Tcl and Tk libraries. It then initializes the Janus
recognition libraries (Itf_Init and Janus_Init). It then initializes the
Server (Server_Init) that processes input from clients. Finally, it tells
tcl to read the .janusrc config file (this may not exist).

JRTK/odyitf.c contains the routines that handle client input.

Server_Init is called by Itf_Main and calls

Tcl_CreateCommand (interp, "server", ServerProc, 0, 0);

This command basically tells Tcl to run the ServerProc function if the Tcl
interpreter recieves the "server" command.  For Janus, this command is sent
to the Tcl interpreter at startup (the command is in a .tcl script read at
startup). Hence, the ServerProc function will always be called.

This function calls Janusserver.

Janusserver is a function that does the following

- reads client input (the wav file to recognize, the model to use and flag
                      indicating what to do to the inputs).

- the value of the flag argument determines which of 5 possible things
  should be done.
 
  if the flag is 0, Janusserver will call the JanusADCToHYP function to
  completely reognize the text in the wav file. The output is a string
  containing the recognized text.

  if the flag is 1, Janusserver will call the JanusADCToMEL function which
  takes a .wav file and converts it into an intermediate MEL format output
  file.

  if the flag is 2, Janusserver will call the JanusMELToHYP function which
  takes a MEL file and recognizes the text in the file. This function must
  be provided a MEL file and not a normal .wav file. The reason for using
  the 2-stage process of ADCToMEL and then MELToHYP (instead of always doing

  ADCToHYP) is that MELToHYP is less computationally intensive than ADCToHYP
  and ADCToMEL is relatively cheap computationally. Hence, by separating the
  ADCToHYP process into 2 stages, it is possible to achieve better
  throughput in cases where you have more than one Janus server and some
  servers are computationally weaker than others. The weak servers can be
  used to do ADCToMEL conversions while the stronger servers are used for
  MELToHYP recognitions. However, if all servers are equally capable,
  breaking the recognition into 2 stages just increases overhead (you have
  to transfer the MEL file back and forth between the client and the
  servers). It is better, in these cases, to just use ADCToHYP.

  if the flag is 3, Janusserver will load a particular model into memory.
  This speeds up the recognition time if that model is used later. This
  function is not normally used and is provided as a performance optimization.
  if MELToHYP, ADCToMEL, or MELToHYP are called with a model that is not in
  memory, that model will be loaded automatically.

  if the flag is 4, Janusserver will unload a particular model from memory.
  Again, this function is provided as an extra performance optimization
  option.

- the output is then sent back to the client. This is a string containing
  the recognized words for ADCToHYP and MELToHYP. The ADCToMEL returns the
  MEL file itself to the client. This is a binary file. LoadModel and
  UnloadModel return short strings containing error/success codes

- this function loops forever.

The various commands, MELToHYP, ADCToMEL, MELToHYP etc. are sent to the
Janus library as Tcl commands. These commands are then interpreted by Tcl
and the appropriate Janus functions are called (which perform the actual
operations). These functions are registered by Janus in the Tcl_AppInit
function call. The Itf_Init and Janus_Init calls register the functions that
should be called when Tcl receives commands to process ADC files etc. This
is similar to how Tcl is told to call ServerProc when it receives the
"server" command.

Refer to JanusADCToHYP, JanusADCToMEL, JanusMELToHYP, JanusLoadModel and
JanusUnloadModel to see the actual Tcl commands sent to the interpreter.
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The Music Recognizer client is written in Java (to be platform independent)

what this program does is it allows clients to determine if a particular
piece of music is similar to other pieces of music (or whether it is the
same piece of music). It does this in the following way. It allows uses to
record a sample of music. It then sends this sample to a server to be
recognized. The server will return a list of songs that best match the
sample. The client will then display this list to the user. The client also
allows the user to playback the music.

The main routines for the client are found in RetrieveMusicApp.java (in the
musicretrievaldemo subdirectory).

This entire file contains the RetrieveMusicApp which is the main class for
the client.

The class works as follows

public static void main(String args[])

initializes the client using the command line arguments provided by the
user. in particular, the client is run as follows

java RetrieveMusicApp <list of wave files> [mrserver_name] [mrserver_port]

<list of wave files> (the only mandatory argument) is a filename of a file
containing a list of songs. This is used to provide more information to the
user about songs that were matched by the server. E.g.,

java RetrieveMusicApp wavlist.txt

mrserver_name is the name of the server (set to localhost by default)

mrserver_port is the port the server is running on (set to 2000 by default)

the main routine then calls         

new RetrieveMusicApp(songlistfn, name, port).setVisible(true);

to start the application with the provided command line arguments
(songlistfn is the filename containing the list of songs).

This pops up a gui that allows the client to record a new song sample, to
recognize a recorded sample and to play back samples.

The sequence of steps is as follows. The user presses a button to record a
sample, the recorder function is called (this is in another file) and the
recording begins. When the recording stops (uses presses another button),
the doneRecording function (in the same file) is called and this takes the
recorded music and calls the searchDB function which sends it to the server
to be recognized. The doneRecording function than takes the output of
searchDB (an array of songs the sample matches) and displays it.

The heart of the recognize functionality of the client is in

private Vector searchDB(byte [] buffer, int freq)  (also in the same file).

This function is called by     

public void doneRecording(byte [] buffer, int freq) {

and does the following

- opens a socket to the server

- sends the sample buffer and the frequency (all inputs to searchDB) to the
  server

- receives the reply from the server and extracts the individual song
  entries from the reply. The SongData class (also in the same file) has the
  code necessary to understand the output sent by the server. 

- it then returns the array of song entries to be further processed.
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mrserver.cc  is the main program for the music recognizer server backend.

broadly, this application tries to decide if a particular piece of music
matches other pieces already in a directory. It does this by using FFT
filters combined with "keypoints" technology. This is where the server
stores points of interest from other pieces of music and compares these
points with the provided piece of music. Based on how many points match, the
server predicts that the provided piece of music matches with other pieces
of music in its database.

The server works as follows:

in the main program, it

- initializes based on the command line parameters

- reads the EM parameters 

- initializes the filters 

- reads in the keypoints database from disk. this database contains the
  points of interests for many other songs.

- builds a hash table of the keypoints for first searching

- after all these initialization steps are done, the server calls 
  mainloop ( )  which does the actual work

mainloop () (also found in mrserver.cc) does the following 

- opens a listening fd to listen for connections from clients

- does the following in an infinite loop
 
- accepts input from clients. This input is a packed binary character buffer
  of the following form

  1st integer in buffer (1st 4 bytes)   ->  number of bytes in the music
                                            sample being sent. This is
                                            stored in the nbytes variables. 
                                            The nsamples variable is set to
                                            nbytes/2 to denote the unique
                                            samples in the music (divide by
                                            2 since we assume stereo
                                            samples). The endianness of this
                                            integer is swapped before it is
                                            read.

  2nd integer in buffer (next 4 bytes)  ->  frequency of the music piece.
                                            this byte will need to have its
                                            endianness swapped. This is
                                            stored in the freq variable

  remainder of bytes                    ->  the music sample itself. the 1st
                                            integer in the buffer refers to
                                            the length of this part of the
                                            buffer. It doesn’t include the
                                            length of the first 2 integers
                                            in the buffer. These bytes are
                                            stored in the Sample array

 refer to ReadFromSocket () (also in mrserver.cc) for the actual details.

- takes the samples sent by the client and creates a bit pattern using
  wav2bits ( ).

- creates a set of keys (used in the search) from these bits using bitsTokeys ( )

- then it does the actual searching for song matches. It does that using the
  following four steps

  - finds all possible matches using FindMatches ( )
  
  - filters the matches to remove obvious errors using FilterMatches ( )

  - performs a verification step on the filtered matches (this is further
    filtering) using verify4em ( )

  - picks the final list of matched songs using chooseBestSong ( ) 

- the keys used for the matching are then deleted 

- and the matched songs (chosen by the final chooseBestSong ( ) step)
  are sent back to the client using writeResults ( )

  The format of the data sent back to the client is as follows:

  This function effectively writes back a string to the client. The string
  is formatted in the following way (which the client knows how to decipher)

  Data written

  Bytes  DataType  Descr
  4      int       Number of songs

  for each song:
  11     char      cddb id, underscore, track #.  Example "1234567A_08"
  4      int       db start frame
  4      int       db end frame
  4      int       query start frame
  4      int       query end frame
  4      int       string length
  x      char      string (name of song)

  refer to writeResults ( ) for the exact code to send data back to the
  clients. Note that every time we send an int, we use writeInt ( ) which
  actually swaps the endianness of the integer. This is a convention we use
  between the client and the server to ensure that we don’t run into
  problems when using this code on different hardware. Effectively, it is
  doing what ntonl ( ) and htonl ( ) would do.
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Panlite Readme
--------------

Panlite is a natural language translation application that is able to
convert english sentences into spanish and vice versa.

It works as follows: sentences provided by users are processed by 1 to 3
translation engines. These engines are the dictionary, glossary and example
based machine translation (ebmt) engines. The results from these engines are
fed into a language modeller stage that combines the various results
together and creates the final translated sentence.

The language modeller must be provided with output from at least one of
these engines. Providing it with the output of more engines results in
higher quality translations. However, using more engines requires more time
and cpu/memory resources. Each of these engines can be run independently
from the others.

Application Guide
-----------------

panlite is comprised of 4 main directories (each of them has a src/
subdirectory containing the actual C++ zsource files)

framepac
  |
  |----> src/   contains the src code for the framepac library.
                This library contains the routines needed to handle
                word tokens. The line to be translated is split into
                individual word tokens and the routines in this 
                library allow these tokens to be easily manipulated.

ebmt
 |
 |-----> src/   contains the src code for the translation library.
                This library contains the routines needed by the
                dictionary, glossary and ebmt translation engines.

lm 
 |
 |-----> src/   contains the src code the language modelling library.
                This library takes the output from the translation
                engines and creates the final translated sentence.

panlite
 |
 |-----> src/   contains the src code for the main application.
                the main routine is found in panlite.C 

Panlite can be run in many modes. However, the only mode that really works
at the moment is the normal mode. The batch mode and network modes are still
under testing.

The main routine of panlite is found in panlite/src/panlite.C 
It does the following:

- initialize the libraries
- process the command line input
- initialize the translation engines
- call process_Panlite_input to process the input

process_Panlite_input is found in panlite/src/plmain.C
- read the sentences provided as input
- extract individual sentences from the input
- send each sentence to Panlite_process_line to be translated

Panlite_process_line is also found in panlite/src/plmain.C
- checks if the sentence provided is valid
- if it is, calls translate_sentence to perform the translation

translate_sentence is also found in panlite/src/plmain.C
- There are 2 prototypes for this function.
- Panlite_process_line uses the char *translate_sentence(const char *line) 
  prototype
- this translates each line by sending it to the three translation engines
  and then sending the 3 outputs to the language modeller (which creates the
  final translated output)
- the functions called are
  - do_gloss_translation
  - do_dict_translation
  - do_ebmt_translation
  - do_lm_modelling
- these functions are all found in panlite/src/plchr.C
- the translation functions take a sentence as input and 
  returns a partial result
- the modelling function takes 1 to 3 partial results (some can be NULL)
  and returns a translated sentence

Currently, this function uses all 3 translation engines. However, it is
possible to envision cases where it might be better (to conserve resources
on limited hardware for example) to only use 2 or even 1 of these
translation engines only. Although we have taken the first step by allowing
the modelling function to accept NULL inputs from any particular translation
engine, full support for this feature will only appear in future versions of
this software

Data Structures
---------------

The engine functions and the modelling function (do_gloss_translation,
do_dict_translation, do_ebmt_translation and, do_lm_modelling) use an FrList
structure internally to store the results of the various translation engines
and the language modeller. However, they all return a simple character
buffer to the calling "main" function translate_sentence.

This structure is large and contains many other inherited classes. It’s
definition is found in framepac/src/frlist.h

Figure
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radiator_README.txt Wed May 24 18:20:53 2006 1

radiator is a library that calculates lighting for 3D models. It takes as
input a 3D scene file and produces rendered images of the 3D model. For each
rendering, you can change the resolution and algorithm to use for the
rendering.

an example program, called RadMain.cc, is available in rad_client/src/

the main program processes the command line options and then calls the main
routine, app.DoRadiosity();

app.DoRadiosity() (also found in RadMain.cc) does the following

- it reads the provided scene object file

- it sets up the matrixes used for the lighting models

- it decides what resolution and algorithm to use for the lighting (these
  are currently set to default values)

- it then calls the library functions to render the scene with the new
  lighting

- it saves the rendered scene to a new scene object file

If you need to load the new object files, you can do so using 

        path.SetPath(sceneFile);
        scene = SceneReader::Load(path);

as used at the top of app.DoRadiosity

Figure D.12: Radiator Readme File
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D.5 Application-Specific Domain Expert Information
In this section, the domain information for each application is presented. This is the domain
information that was given to the participants. The documentation can be found as follows:
Face (Figure D.13), Flite (Figure D.14), GLVU (Figure D.15), GOCR (Figure D.16), Janus
(the XSpeech client (Figure D.17) and the Janus server ( (Figure D.18)), Musicmatch (Fig-
ure D.19)), Panlite (Figure D.20), and Radiator (Figure D.21).

face_domain_README.txt Wed May 24 19:14:37 2006 1

For adaptive face detection programs, the size of the image in which faces
are to be recognized fundamentally determines the resource usage of the
application.

Figure D.13: Face Domain Information File

flite_domain_README.txt Wed May 24 18:20:54 2006 1

For adaptive speech synthesis programs, the size of the text file being
synthesized fundamentally determines the resource usage of the
application.

the easiest way to make these kind of programs remotely executable is to
just send the text file to synthesize to the server and then receive the
synthesized wav file at the client side.

Figure D.14: Flite Domain Information File
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glvu_domain_README.txt Wed May 24 18:20:58 2006 1

For 3D modelling applications, the following are important for making them
adaptive.

The values that affect the resource usage are

1) The name of the model being rendered.

2) The height and width of the rendering window

3) The size of the model being display (usually specified as the minimum and
maximum coordinates of the model).

4) The number of polygons in the model that will be rendered.

5) The current viewing position of the model. This is usually expressed as a
combination of 2 or 3 different values. Each value will usually be expressed
as a x,y,z coordinate.

6) The current perspective of the model. This is also usually expressed as a
combination of multiple values. Refer to your specific application for
details on how it stores the current viewing position and perspective.

If there is an adaptive runtime system, the 3D application could obtain the
appropriate resolution to render the model at from the system dynamically.
This resolution will then be used to decide the exact number of polygons to
render.

For adaptive systems that perform remote execution, you can partition 3D
modelling applications as follows:

The client will receive the user input, figure out the rendering window
size, camera position, pespective, model name, model size and the number of
polygons to render. It will then send all this information to the remote
server. The remote server will then render the image and send a raw data
stream (containing the rendered pixels) back to the client. The client will
then take these rendered pixels and display them on the screen. This allows
the client to use a server to perform the computationally intensive task of
rendering the 3D model for the current viewing position and perspective.

Figure D.15: GLVU Domain Information File

gocr_domain_README.txt Wed May 24 18:20:57 2006 1

For adaptive OCR programs, the size of the image being recognized
fundamentally determines the resource usage of the application.

Figure D.16: GOCR Domain Information File

xspeech_domain_README.txt Wed May 24 18:20:59 2006 1

For adaptive speech detection programs, the size of the wave file being
recognized affects the resource usage.

Figure D.17: XSpeech Domain Information File
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janus_domain_README.txt Wed May 24 18:21:02 2006 1

For adaptive speech detection programs, the size of the wave file being
recognized affects the resource usage.

the main operation for speech recognizers is the code that takes a wav file
as input and produces recognized text as input (It could use 1 or more 
intermediate stages to produce the text file)

speech recognizers also have a secondary operation that is used by clients
to load/unload models on the server (for improved performance). These
functions should only be supported as a secondary optimization (you can
specify more than one OPERATION block in a .input file. Each separate
OPERATION block must have a full set on IN, OUT, RPC and TACTIC
specifications appropriate to that operation. You should start a new
OPERATION block only after defining everything required for the previous
OPERATION). For loading/unloading the model, there are no parameters or
fidelities for this operation. This is because this operation will be
manually called by the client when it is necessary (by calling the
do_tactics call with the appropriate arguments). As such, only specify the
RPCs and TACTICs for this secondary operation. Refer to the janus server to
see the functions needed to perform loading and unloading of models.

When modifying the client, focus only on the main operation (i.e.,
converting speech to text). You do not need to add code to handle the 2nd
operation. On the server side, however, you must be able to handle any RPC
(for all OPERATIONS). The process is similar to the case with only one
OPERATION. The only difference is that you will need to create wrappers for
more RPC functions (the set of RPCs for both OPERATIONs). Everything else
remains the same.

Figure D.18: Janus Domain Information File
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mrserver_domain_README.txt Wed May 24 18:21:01 2006 1

for music recognition / categorization applications, the number of samples being
categorized and the frequency of the music being categorized determine the
resource usage.

Many of these kinds of applications already use a client / server
architecture. Adding these applications to an remote execution framework is
not too difficult. Replace the client socket calls with the API calls for
the runtime you are targetting (you should be sending the same data that
went over the socket to the runtime API calls).

On the server side, the server would not need to open any listening sockets
or accept connections anymore. Instead it receives its input from the
runtime. On the output side, instead of writing data directly to a socket,
you write it into the buffer provided by the runtime code. Assume that this
buffer is large enough. Once you have written the data into the buffer
correctly (i.e., in the same order it was written to the socket), the
runtime will send the buffer directly to the client for you. The server
should also send the number of songs in the buffer separately to the client
so that the client can process the buffer accordingly. This number of songs
value can be stored as the first integer in the buffer also. How it is done
is left up to the individual applications.

On the client side, the client will receive all the output in one go
(instead of possibly receiving it piecemeal). This shouldn’t be a problem
for most clients and you can reuse whatever client code exists to decipher
the buffer sent by the server (since you havn’t changed the contents of the
buffer. you’ve only changed the mechanisms used to transfer the buffer
between the client and the server). you should also reuse existing client
code to create the buffer to send to the server. The only difference is that
you don’t write the buffer to a socket. Instead, you write it to a buffer
instead. On the server side, you should preserve any code that already
exists that is able to take inputs from the client and decipher it. The only
difference is that this code will not be receiving data from a socket. It
will receive it from a buffer provided by the runtime.

When deciding how to partition these kinds of applications for remote
execution, there are many possible ways to do it.

One way is to make every possible data mining step (these application
usually do a lot of machine learning steps on the data to achieve the final
result) a separate remote function. The disadvantage of this is that you
will need to be able to send all the intermediate data between the remote
servers.

Another way is to use one remote procedure and simply let the server do
everything. i.e., you give it the raw samples, it does a whole bunch of
steps on this and then it returns the results. This might be the simplest
solution if the intermediate data produced by the the categorization
functions are complication while the initial input to the categorization
functions is simple and the final output from these functions is also simple

There is of course, the middle ground where you make some of the data mining
steps a separate remote function and combine others together in one
function. The exact decision of what to do depends on the actual
application. If it is simple to send intermediate values between servers,
then creating separate functions for the steps with easy to manage output is
encouraged. Otherwise (if the data sent between stages is complicated), then
just take the easy way and put everything in one big remote procedure.

Figure D.19: Musicmatch Domain Information File
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panlite_domain_README.txt Wed May 24 18:20:57 2006 1

For adaptive language translation programs, the number of words in the
sentence being recognized fundamentally determines the resource usage of the
application.

Figure D.20: Panlite Domain Information File

radiator_domain_README.txt Wed May 24 18:20:55 2006 1

For 3D radiosity applications (applications that calculate the lighting for
3D models), the following parameters affect the resource usage.

- the number of polygons in the 3D model being used

if there is an adaptive runtime system, the application can benefit by
knowing the appropriate values for the following quantities.

- the resolution to use to calculate the new lighting for the model

- the algorithm to use when calculating the new lighting

Figure D.21: Radiator Domain Information File

D.6 Tactics File Documentation

D.6.1 Tactics File Creation Overview
Creating a tactics file requires the following step.

1. Read the application-specific documentation and understand what the parameters and
fidelities of the application are. Get a sense of what the RPCs and TACTICs might
be.

(a) Fill out the Questionnaire labeled I1 after you are done

2. Create the APPLICATION tag

(a) Fill out the Questionnaire labeled I2 after you are done

3. Create the OPERATION tag

(a) Fill out the Questionnaire labeled I3 after you are done

4. Identify and specify all the parameters of the application using the IN tag

(a) Fill out the Questionnaire labeled I4 after you are done

5. Identify and specify all the fidelities (if any) of the application using the OUT tag

(a) Fill out the Questionnaire labeled I5 after you are done
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6. Identify and specify all the remote procedures of the application using the RPC tag

(a) Remember, you can use the string data type for packed data because the stub
will automatically generate a length variable for every string variable. Refer to
the RPC section of the documentation for more information.

(b) Fill out the Questionnaire labeled I6 after you are done

7. Specify the tactics of the application using the TACTIC tag

(a) Fill out the Questionnaire labeled I7 after you are done

D.6.2 Tactics File Creation Manual
A tactics file has 6 components. They are denoted by the following keywords.

APPLICATION
OPERATION
IN
OUT
RPC
TACTIC

Each of these keywords is explained in more detail below.

D.6.2.1 APPLICATION

The APPLICATION tag is used to specify the name of the application. For example, for an
application called foo, you would specify

APPLICATION foo;

in the tactics file

Note that the APPLICATION line *must* be the top line in the tactics file and that the
line must be terminated by a semicolon (;) (like C and C++).

D.6.2.2 OPERATION

The OPERATION tag is used to specify the operation that this application performs. An
operation can be thought of as the functionality that the application provides. For example,
language translators would provide the translate operation, speech recognizers recognize
and image recognizers recognize. Assume that the application called foo is a graphics
application that renders 3D models to screen. You would thus specify
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OPERATION render;

in the tactics file

Note that the OPERATION line *must* be the 2nd line in the tactics file (after the AP-
PLICATION line) and that the line must be terminated by a semicolon (;) (like C and C++).

The next 4 tags can appear in any order in the tactics file. But usually, they appear in
the following order. All the INs followed by the OUTs followed by the RPCs and finally
the TACTICs.

D.6.2.3 IN

The IN tag is used to specify the parameters of the application. Parameters are variable
settings of the application that affects its resource usage. Hence, the values of these vari-
ables needs to be conveyed to the underlying runtime system so that it can decide what
resources the application will need to use.

For example, the resource usage of language translation applications is determined by
the size of the sentence to be translated. 3D graphics applications, in particular, may have
a number of parameters. These include the size of the rendering window, the number of
polygons being rendered, the position of the viewing camera, and the current perspective
of the 3D model.

IN parameters are specified as follows

IN <variable_type> <variable_name> <optional_parameters>

Arguments : The variable type field is used to specify the data type of the variable. The
following values are legal for this field.

int :- the variable is a signed integer
uint :- the variable is an unsigned integer
float :- the variable is a float
double :- the variable is a double
char :- the variable is a character
string :- the variable is a string (char * in C/C++)
ustring :- the variable is an unsigned string (unsigned char * in C/C++)

the variable name is the name of the variable (as it appears in the application).

optional parameters are used to specify the range of the variable. They should be used
only when necessary. The examples section shows how optional parameters may be used.
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Examples of use :

// This specified that the variable file_size is an integer var
// that has a range of 0 to 1000000
IN int file_size FROM 0 TO 10000000;

// The parameter is a string variable called filename. It has no
// specified range.
IN string filename;

Again, note that all the lines are terminated with a semicolon.

D.6.2.4 OUT

The OUT tag is used to specify the fidelities of the application. Fidelities are variables
whose values should be set by the runtime system according to the current resource avail-
ability. I.e., the application doesn’t set the values of these variables. Rather, the runtime
system tells the application what these variables should be set to, to achieve maximum per-
formance.

For example, a graphics application may want the runtime to tell it what the rendering
resolution should be set to. In this case, the variable resolution will be a fidelity and should
be specified using the OUT tag.

The syntax for fidelities is exactly the same as that for parameters. The only difference
is that you use the keyword OUT instead of IN to specify that a variable is a fidelity and
not a parameter. The OUT tag uses the same data types and optional parameters as the IN
tag.

OUT fidelities are specified as follows

OUT <variable_type> <variable_name> <optional_parameters>

Note that not all applications will have fidelities. All adaptive applications should have
at least one parameter though. Otherwise, the runtime system will not know how to predict
what resources the application will need at any point in time.

Examples of use :

// the double variable resolution is a fidelity that can range
// from 0.0 to 1.0
OUT double resolution FROM 0.0 TO 1.0;

Again, note that all the lines are terminated with a semicolon.
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D.6.2.5 RPC

The RPC tag is used to specify which procedures in the application can be remotely exe-
cuted.

These procedures could be actual application procedures or even new procedures that
accept all the inputs needed to call existing application procedures and that return the re-
quired outputs needed by the application. You may need to create a new function because
no existing function has the exact set of inputs and outputs necessary to perform the oper-
ation. For example, for a graphics application, the RPC may be a procedure called render
that takes as inputs the name of the model file, the number of polygons to render, the camera
position, the current perspective and returns a string containing the rendered pixels. The
server application will accept these inputs and call the appropriate application rendering
function and then return the rendered pixels to the client (after extracting those pixels from
the rendering buffers). The client will receive those pixels and display them on the screen
(by calling the appropriate display function).

You specify the procedures using the following syntax:

RPC <procedure_name> (argument list);

The argument list is specified using the same data types as used by the IN and OUT
tags. I.e., int, uint, float, double, char, string, ustring.

The RPC argument list contains an extra data type, called FILE, which is not available
for IN and OUT tags.

The FILE data type is used to transfer data files between local and remote servers. If a
procedure has a FILE variable, it will accept a string (char *) containing the name of a data
file. This file will then be transferred to the remote machine. This file can contain arbitrary
amounts of data. Thus, this is very useful mechanisms for transferring large amounts of
data between local and remote machines.

For FILE and char * arguments, the stub generator will automatically create a length
variable associated with this arguments. You do no need to explicitly specify any length
variables for these two data types. You can thus use char * types even to send packed binary
data as the stub generator will not perform string operations on the buffer. Instead it uses
the lengths of the buffer as set by the associated length variable. For output arguments, the
length of the output buffer is returned to the application. Refer to the actual stub generated
RPC prototype to see the exact length arguments that need to be given to the stub generated
RPC function.

There is no array type though. If you need to send an array, you must enumerate every
array element individually. For example, instead of saying

RPC foo (IN int bar[3], OUT float out[3]);
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You would do

RPC foo (IN int bar_1, IN int bar_2, IN int bar_3,
OUT float out_1, OUT float out_2, OUT float out_3);

And pass in the individual array elements as inputs and recombine the 3 output floats
in the application code to form the required array. We may add array types in the future if
enough applications require it.

Each variable in the argument list needs to be pre-pended with either an IN or OUT tag.
IN variables are inputs to the procedure while OUT variables are outputs of the procedure.

In the argument list, it is vital that all the IN variables are listed before any OUT vari-
able.

The RPC argument lists should contain all the inputs necessary to perform the opera-
tion. This should include all the fidelity variables (or values obtained by using the fidelity
values) and possibly some of the parameters. Not all the parameter values should be speci-
fied as some may not be relevant for the actual operation (like the size of the input. Instead,
you should send the input itself).

The stub generator will generate the necessary code to ensure that all the variables
specified in the argument list are sent correctly between servers.

Examples of use :

// procedure foo takes as input a string containing the name of
// the data file to be transferred. The} procedure returns its
// output in a string (char *) variable called buffer. The stub
// generated will automatically generate a length variable for
// buffer that returns the exact length of the data} returned in
// buffer by the remote server.
RPC foo (IN FILE name, OUT string buffer);

// it is okay to capitalize the types
RPC foo (IN double a, IN DOUBLE b, IN DOUBLE c, OUT int value);

// this is not allowed. OUT before IN
RPC foo (OUT int value, IN int type);

// the procedure reads a data file as input and uses a data file
// as output the stub generator will generate length variables
// associated with in and out
RPC foo (IN FILE in, OUT FILE out);

D.6.2.6 TACTIC

The TACTIC keyword is used to tell the system how to combine the RPCs of the application
to perform useful work. For example, an application may have 4 RPCs (a, b, c and d), but
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not all combinations of doing these 4 RPCs may result in correct output.

The TACTICs keyword allows you to specify that RPC a must be followed sequentially
by RPC b. It also allows you to say that RPCs a, b and c can be done in parallel. The syntax
is described using the examples below:

Examples of use : For these examples, assume that the application has 4 RPCs (specified
using the RPC tag described above). These RPCs are a, b, c and d.

// do RPC a and then after it finishes, do RPC b. the & symbol
// is used to denote a sequential relationship.
TACTIC foo = a & b;

// do RPCs a, b and c in parallel, wait for all of them to
// finish and then do RPC d. any RPCs appearing in ( ) are to be
// done in parallel. A parallel stage *MUST* be followed by a
// sequential stage.
TACTIC foo = (a, b, c) & d;

We do not allow parallel stages to be followed by other parallel stages. Also that can
be no further sequential or parallel stages inside a () block. I.e., the fanout inside a parallel
stage is 0. For example,

// Illegal. Sequential stage inside a parallel stage is not
// allowed.
TACTIC foo = (a & b, c) & d

// also illegal. Parallel stage inside a parallel stage is not
// allowed.
TACTIC foo = (a, (b, c, d)) & a;

// is also illegal. No sequential stage after the parallel
// stage.
TACTIC foo = (a, b, c);

// completely legal
TACTIC foo = (a, b, c) & d;

More good examples:

// do only RPC a. This may look trivial but RPC a could be done
// remotely and this may greatly improve performance. The
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// decision of where to do a is decided by the runtime. Many
// application only have 1 RPC (and only 1 TACTIC) that does all
// the computation.
TACTIC foo = a;

An application may have more than 1 TACTIC. This represents the case where the
application has more than one procedure that does the computation necessary to support a
computation and these procedures can be combined in different ways to do useful work.
The different ways will result in different quality outputs but they will also have different
resource consumptions. Hence, at runtime, the system will decide which tactic should be
chosen that will provide the best quality while not exceeding any resource usage bounds
set by the application.

For example, given the 4 RPCs a, b, c, and d, assume that the application processes in-
puts in the following way: the input is sent to one or more of procedures a, b, and c (in
parallel) and the partial results from these procedures is sent to d which produces the final
result. Given this, you could write 4 TACTICs as follows

TACTIC do_a_and_d = a & d;

TACTIC do_a,b_and_d = (a, b) & d;

TACTIC do_a,b,c_and_d = (a, b, c) & d;

TACTIC do_b_and_d = b & d;

The complete TACTIC list for this application would contain 7 tactics (only 4 are shown)
as a full enumeration of this pattern (do one or more of a, b and c in parallel and then do d)
will result in 7 tactics in total.

Tactic Constraints : Other than the specification constraints (no fanout in a ( ) and a par-
allel step must be followed by a sequential step) listed above, the following two constraints
must also be observed. These apply to applications that have more than one tactic.

1. For an application, the 1st RPC of all its TACTICs must have the same set of IN
parameters. I.e., the 1st RPC of every tactic must have the same inputs. These inputs
must also have the same names. If the 1st RPC is a parallel stage, every RPC in the
parallel set must have the same set of inputs (that have the same names).

2. For an application, the last RPC of all its TACTICs must have the same set of OUT
parameters. I.e., the last RPC of every tactic must have the same outputs. These
outputs must have the same names.
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These requirements are necessary to ensure that the stub generator can generate a com-
mon do tactics ( ) procedure that will work for all of the application’s tactics.

For example, given the following RPC definitions

RPC a (IN int input, OUT int partial_result);

RPC b (IN int input, OUT int partial_result2);

RPC c (IN int partial_result, IN int partial_result2,
OUT int final_result);

The following TACTIC specifications

TACTIC do_a = a & c;

TACTIC do_b = b & c;

TACTIC do_c = (a, b) & c;

are perfectly okay because for every TACTIC, the input is IN int input and the output is
OUT int final result.

Note that RPCs a and b have different outputs and that RPC c has 2 different inputs to
accept the different outputs of a and / or b. This is perfectly fine.

The example above also highlights the final tactic constraint:

3. If you want an output of a RPC to be an input of another RPC, the two variables (in
the RPC argument list) must have the same type and name.

i.e., like the example above, if you want RPC b’s output to be an input in RPC c, RPC
b must have an output variable with the same type and name as an input variable of RPC c.

By default, all arguments to an RPC are set to NULL or equivalent (0 for integers etc.).
Hence, in cases where RPC b is not run (for example, tactic do a and d is chosen which
doesn’t include RPC b), the input for RPC c that would have corresponded to the output of
RPC b will be set to NULL. When creating the RPC functions, you must thus be prepared
to accept NULL inputs.

This naming constraint arises because we wanted to keep the syntax simple. Hence,
we decide which variables are passed between RPCs by looking at the variable names. If
we didn’t do this, we would need additional syntax to allow programmers to specify which
variables are to be sent to which RPCs.
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D.7 Retargeting the Application Documentation

D.7.1 Client Retargeting Overview
Modifying the client requires the following steps (there are 7 in total):

1. Read the application-specific documentation and identify the routines that need to be
modified.

(a) Fill out the Questionnaire labeled C1 after you are done

2. Including the stub generated client header files

#include “foo bar.chroma.h”

3. Fill out the Questionnaire labeled C2 after you are done

4. Register the application using the register app ( ) API call

5. Fill out the Questionnaire labeled C3 after you are done

6. Add the cleanup ( ) call at the end of the application

7. Fill out the Questionnaire labeled C4 after you are done

8. Use the find fidelity ( ) call to tell the runtime that work is about to be done. This call
will decide the appropriate fidelities and tactics to use for the current operation. This
call requires the following sub steps.

9. Identifying the parameters, fidelities and tactics of the application

(a) Setting the parameters before calling find fidelity ( ) by using the appropriate
set var name ( ) macro call.

(b) Reading the fidelities after calling find fidelity ( ) by using the appropriate
get var name ( ) macro call.

(c) Using the fidelity values to set actual application settings before doing the actual
work.

10. Fill out the Questionnaire labeled C5 after you are done

11. Replace calls to the functions that perform the operation with a call to do tactics
( ). This call will perform the operation using the selected tactic (either locally or
remotely) and return the results to the client.

12. If necessary, use the results from the do tactics ( ) call. For example, the results may
need to be displayed to the screen or the output may need to be printed to stdout.
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13. Remember that you need to allocate enough space in the client for the outputs from
do tactics ( ).

14. Fill out the Questionnaire labeled C6 after you are done

15. Compile the client code and fix any compilation errors.

16. Fill out the Questionnaire labeled C7 after you are done

D.7.2 Server Retargeting Overview
Modifying the server requires the following steps (there are 7 in total):

1. Read the application-specific documentation and identify the routines that need to be
modified.

(a) Fill out the Questionnaire labeled S1 after you are done

2. Add the Stub generated server header files into the server code.

(a) Fill out the Questionnaire labeled S2 after you are done

#include “foo bar.chroma.server.h”

3. add a call to int service init (&argc, &argv) to initialize the application with the un-
derlying runtime system. The runtime will remove any parameters that were runtime
specific from the argument set. This has to be done before any specific application
specific processing of the command line arguments.

(a) Fill out the Questionnaire labeled S3 after you are done

4. Preserve any application specific initialization routines.

(a) Fill out the Questionnaire labeled S4 after you are done

5. Create the RPC functions specified in the tactics file (if they do not already exist)
and make sure that they can accept the inputs and return the outputs specified in
the tactics file. All output variables will be created as global variables by the stub
generator and a pointer to that variable passed to the RPC functions. You should not
declare the output variables or allocate space for them. The actual RPC functions
that need to be created (along with the arguments to these functions) will be shown
in the foo bar.chroma.server.h stub generated header file.

for example, given the following application main routine and the following RPC
specification.

RPC perform_work (IN int value, IN string position,
OUT FILE outfile);
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You will have to ensure that the server has a function called perform work with the
following prototypes

void perform_work (int value, char * position,
int position_len, char * outfile,
int * outfile_len);

Remember that length variables are automatically generated for string and FILE vari-
able types. The length variable will be passed as a pointer if it is an output value (i.e.,
it is a length associated with an OUT variable). You can see the exact RPC function
prototypes that the stub code is expecting by looking at the foo bar.chroma.server.h
file.

6. Fill out the Questionnaire labeled S5 after you are done

7. Replace the rest of the application code with a stub generated (automatically) API
call

void run_chroma_server ( );

This function will receive parameters and requests from the client, and will return
outputs to the client.

8. The main routine of the application should just have

(a) Call to service init ( )

(b) Application initialization routines that initialize any libraries or functions needed
by the server to perform the operation.

(c) run chroma server ( )

(d) The existing code in the main routine that process any inputs and calls the
routines that do the operation should not be run. Anything appearing after
run chroma server ( ) will not run as run chroma server ( ) will loop forever
(accepting client requests, calling the right procedures and returning results).

9. Fill out the Questionnaire labeled S6 after you are done

10. Compile the server code and fix any compilation errors.

11. Fill out the Questionnaire labeled S7 after you are done

D.7.3 Common Routines Cheat Sheet
This handout explained how to do certain common programming tasks that the participants
may or may not need to know.
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D.7.3.1 Common Programming Tasks

These are example C / C++h code snippets for various tasks that you may need to solve the
problem given to you. Please note that you may not need to use any of these tasks to solve
the problem.

D.7.3.2 To Determine the size of a File

use the stat() system call as follows

make sure the following 3 include files are included

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

In the code where you want to check the size of file, do this

int check_file_size (char * file_name) {

struct stat buf;

if (stat(file_name, &buf) < 0) {
perror("error stating file");
exit(1);

}

printf("The filesize of %s is %d bytes\n",
file_name, buf.st_size);

}

D.7.3.3 Creating a temporary file

Frequently, servers will need to create temporary files to store results of computations.

this can be done using the tmpname( ) command

char *tmpfile;

tmpfile = tempnam (NULL, "temp");

for example, this will make tmpfile point to a temp name that starts with temp (5 char-
acters maximum) and be placed in the directory contained in the environment variable
$TMPDIR. For more details,

man tempnam
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D.7.3.4 Redirect Output to a File

There might be times when you need to redirect output to a file (instead of stdout).

There are two ways to do this

1. open a FILE pointer and use that in fwrite, fputs etc.

2. use freopen(file name, ”w”, stdout) to map stdout to the file with the name given in
file name. After this, all writes to stdout will go to file name instead.

Example

#include <stdio.h>
.
.
.

FILE *fp;
.
.
.

fp = freopen ("/tmp/logfile", "w+", stdout);
.
.

// this write will go to /tmp/logfile instead
fputs (buffer, stdout);

D.7.3.5 Include C headers in a C++ program

You must put the include directive in an extern “C” { . . . } statement (if the included .h file
doesn’t have the extern command already). The stub generated header files are all C header
files.

For example,

extern ‘‘C’’ {
#include ‘‘foo_bar.chroma.h’’

}

D.7.4 Programming Notes Handouts
This handout explained exactly how space allocation for input and output variables was
handled by the stub. The allocation was different for the client and server stubs.
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Allocating Space for Output Variables

1. When modifying the client, the space for all output variables for the do tactics ( )
API call must be allocated by the client (the stub code will not do this). This include
string (char *) variables and FILE variables. In the case of FILE output variables,
you must provide a valid string buffer that contains the name of the file in which the
incoming data is to be placed into.

For example, for an RPC and TACTIC specification of

RPC foo (IN int value, OUT string buffer, OUT FILE file_name);

TACTIC do_it = foo;

The created do tactics ( ) API call will look something like this

int foo_bar_do_tactics (foo_bar_struct *params, int value,
char * buffer, int * buffer_size,
char * file_name, int * file_name_size);

in the application code, you must do something like this.

buffer[5000]; // allocate space for buffer

// allocate space for file_name and
// make it contain the name of the output file
file_name[256] = "/tmp/output.txt";

int buffer_size;
int file_name_size;

foo_bar_do_tactics (params, value, buffer,
&buffer_size, file_name,
&file_name_size);

2. When modifying the server, you do not need to worry about allocating space for
the output variables of individual RPCs. The stub will create global variables for
the outputs of the RPCs. You just have to create functions that match the name and
parameters of the RPCs specified in the tactics file.

Using the example above, you will have to create a function called foo as follows:
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int foo (int value, char * buffer, char * file_name) {

printf("value of value is %d\n", value);

// space has already been allocated for buffer by the stub
strcpy (buffer, ‘‘This is a test’’);

// space has already been allocated for file_name
strcpy (file{\_}name, ‘‘/tmp/file.txt’’);

}

The stub will ensure that the values in buffer and file name are sent back to the client.

D.8 RapidRe Application Retargeting Guide

D.8.1 Four step guide to adding applications
Step 1: Create a tactics file for the applications. This process is described in a separate
document.

Step 2: Run the chroma stub generator on the tactics file to create an application specific
client file containing application specific APIs and macros to interface with Chroma.

Step 3: Embed these application specific APIs and macros calls into the application at
the appropriate places. This process might involve packing and unpacking variables for
remote execution. This process is explained later in this document.

Step 4: Compile the application together with the chroma stub generated code and the
Chroma runtime library. This process is also described later in this document.

For the rest of this document, assume that the application name is foo and that the
operation provided by the application is bar.

D.8.2 Step 2 : Running the stub generator
For this experiment, run “make” in the application build directory and the stub generator
will be automatically executed. The stub generated files can be found in the source directory
of the application’s build directory. For example, the client stubs for gocr will be found in
the gocr/src client build directory and the server stubs will be found in the gocr/src server
build directory. The stub generator will create the following files:

D.8.2.1 Interface to Chroma

foo bar.chroma.conf : configuration file read by Chroma on application startup. You do
not need to use or change this file.
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D.8.2.2 Client Side Code

foo bar.chroma.h : header file containing definitions of application specific APIs, macros
and data structures used by the client side of the application

foo bar.chroma.c : file containing actual code for the APIs, macros and data structures
used by the client side of the application

D.8.2.3 Server Side Code

foo bar.chroma.server.h : header file containing definitions of application specific APIs
used by the server side of the application

foo bar.chroma.server.c : file containing actual code for the APIs used by the client
side of the application

D.8.3 Step 3 : Embedding Generated APIs and Macros in an Appli-
cation

D.8.3.1 Client Side APIs

The following API calls are generated for the client side of the application

int foo_bar_register ( );
int foo_bar_cleanup ( );
int foo_bar_find_fidelity ( );
int foo_bar_do_tactics (char * input0, int * inlen0,

char * output0, int * outlen0);

D.8.3.2 Client Side Macros

IN Vars (Parameters) For every IN variable (the parameters of the application) specified
in the tactics file, the following macro will be generated.

// used to set the value of the parameters
set_var_name (var_type value);

where var name is the name of the variable and var type is the type of the variable (int,
float, char * etc)

OUT Vars (Fidelites) For every OUT variable (the fidelities of the application) specified
in the tactics file, the following macro will be generated.

// used to read the value of the fidelity
var_type get_var_name ( );

where var name is the name of the variable and var type is the type of the variable (int,
float, char * etc)
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D.8.3.3 Server Side APIs

void run_chroma_server ();

D.8.3.4 Server Side Macros

There are no macros for the server side.

D.8.4 Client Side Modifications
Modifying the client requires the following steps

1. Read the application-specific documentation and identify the routines that need to be
modified.

2. Including the stub generated client header files

#include "foo_bar.chroma.h"

3. Register the application using the register app ( ) API call

4. Add the cleanup params ( ) call at the end of the application

5. Use the find fidelity ( ) call to tell the runtime that work is about to be done. This call
will decide the appropriate fidelities and tactics to use for the current operation. This
call requires the following sub steps.

(a) Identifying the parameters, fidelities and tactics of the application

i. Setting the parameters before calling find fidelity ( ) by using the appro-
priate set var name ( ) macro call.

ii. Reading the fidelities after calling find fidelity ( ) by using the appropriate
get var name ( ) macro call.

iii. Using the fidelity values to set actual application settings before doing the
actual work.

6. Replace calls to the functions that perform the operation with a call to do tactics
( ). This call will perform the operation using the selected tactic (either locally or
remotely) and return the results to the client.

(a) If necessary, use the results from the do tactics ( ) call. For example, the results
may need to be displayed to the screen.
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D.8.5 Detailed Description of Each Client Modification Step
D.8.5.1 Including the Stub Client Header Files

Add the Stub generated header files into the client code.

// This will work for C and C++ applications
#include "foo_bar.chroma.h"

D.8.5.2 Using the Client APIs

1) int foo bar register ( ) This call is used to register the application with the underlying
adaptive runtime system. This call should be made as soon as possible.

The register call returns 0 if the call was successful and a non zero number if unsuc-
cessful.

Example code stub

void main () {

if (foo_bar_register( ) != 0) {
/* register call was unsuccessful */
printf("Unable to register application\n");
exit(1);

}

/* rest of application */

}

2) int foo bar cleanup ( ) This API call is used at the end of the program to deregister
the application from the underlying runtime system. This call should be made just before
the application exits. It also returns 0 on success and non zero otherwise.

Example code stub

void main () {

if (foo_bar_register( ) != 0) {
/* register call was unsuccessful */
printf("Unable to register application\n");
exit(1);

}

/* rest of application */
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if (foo{\_}bar{\_}cleanup( ) != 0) {
/* cleanup call was unsuccessful. no need to explicitly exit as

application is already ending */
printf("Unable to deregister application\n");

}
}

3) int foo bar find fidelity ( ) Before the application can ask the runtime to do work on
its behalf, the application will need to use the

foo_bar_find_fidelity ( );

API call to let the runtime determine what the correct runtime parameters for the appli-
cation should be.

Before making this call, the application will need to set the values of all it’s parameters
using the appropriate set macro functions. After this call has successfully completed, the
application will be able to read the values for all it’s fidelities using the appropriate get
macro functions. The find fidelity( ) call will also determine the appropriate tactic to use
for this instance and the servers to use for individual RPCs in the chosen tactic. These
decisions are hidden from the application in the application specific data structure. The
programmer can still access these values using the appropriate get and set macro calls.
look at the foo bar chroma.h for the exact prototypes. This API call returns 0 on success
and non zero otherwise.

Example code stub For this example, assume that the application has 2 parameters called
length and size and 2 fidelities called resolution and framerate.

void main () {

if (foo_bar_register( ) != 0) {
/* register call was unsuccessful */
printf("Unable to register application\n");
exit(1);

}

/* rest of application */

/* non computationally intensive GUI operation */

.

.

.
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/* setup code */

/* set the value of the 2 parameters */

set_length (length_value);
set_size (size_value);

if (foo_bar_find_fidelity( ) != 0) {
/* register call was unsuccessful */
printf("Find Fidelity API call unsuccessful\n");
exit(1);

}

/* read the values of the 2 fidelities */
resolution = get_resolution ( );

framerate = get_framerate ( );

/* perform operation using values of fidelities */

/* end of operation */

/* rest of application */

if (foo{\_}bar{\_}cleanup( ) != 0) {
/* cleanup call was unsuccessful. no need to explicitly exit as

application is already ending */
printf("Unable to deregister application\n");

}
}

4) int foo bar do tactics (argument list); This API call is used by the application to tell
the runtime to perform the operation on behalf of the applications. Before using this call,
the find fidelity( ) call must have been called to allow the runtime to determine which tactic
to use for the operation.

The application will have to pass in the appropriate inputs and output variables to this
call. It is the responsibility of the application to allocate space for any output variables.
This API call also returns 0 on success, non-zero otherwise. The actual arguments to the
do tactics ( ) call will be found in the foo bar.chroma.h stub generated header file.

Example code stub For this example, assume that the tactics prototype takes a string as
an input and returns a string as output. i.e., the prototype is

int foo_bar_do_tactics (char * input0, int * inlen0,
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char * output0, int * outlen0);

void main ( ) {

/* create input and output buffers for do_tactics ( ).
Declare length variables needed by do_tactics ( ) */

char output_string[MAX_OUTPUT_LENGTH;
char input_string[MAX_INPUT_LENGTH];
int intput_length;
int output_length;

if (foo_bar_register( ) != 0) {
/* register call was unsuccessful */
printf("Unable to register application\n");
exit(1);

}

/* rest of application */

/* non computationally intensive GUI operation */

/* setup code for operation */

/* perform operation using tactics */

strcpy(input_string, "Do Some Computation");
input_length = strlen(input{\_}string);

if (foo_bar_do_tactics (input_string, &input_string,
output_string, &output_string_len) != 0) {

/* register call was unsuccessful */
printf("Do Tactics API call unsuccessful\n");
exit(1);

}

/* end of operation */

/* rest of application */

if (foo{\_}bar{\_}cleanup( ) != 0) {
/* cleanup call was unsuccessful. no need to explicitly exit as

application is already ending */
printf("Unable to deregister application\n");

}
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}

D.8.6 Server Side Modifications
1. Read the application-specific documentation and identify the routines that need to be

modified.

2. Add the Stub generated server header files into the server code.

#include "foo_bar.chroma.server.h"

3. add a call to int service init (&argc, &argv) to initialize the application with the un-
derlying runtime system. The runtime will remove any parameters that were runtime
specific from the argument set. This has to be done before any specific application
specific processing of the cmdline arguments.

4. Preserve any application specific initialization routines.

5. Create the RPC functions specified in the tactics file (if they do not already exist)
and make sure that they can accept the inputs and return the outputs specified in
the tactics file. All output variables will be created as global variables by the stub
generator and a pointer to that variable passed to the RPC functions. You should not
declare the output variables or allocate space for them. The actual RPC functions
that need to be created (along with the arguments to these functions) will be shown
in the foo bar.chroma.server.h stub generated header file.

6. Replace the rest of the application code with a stub generated (automatically) API
call

void run_chroma_server ( );

This function will receive parameters and requests from the client, and will return out-
puts to the client.

Example for example, given the following application main routine and the following
RPC specification.

RPC perform_work (IN int value, IN string position, OUT FILE outfile);
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Original Code

int main (int argc, char * argv[]) {

int value;
char position[255];
char output_buffer[255];

/* initialize application */

process_cmdline_arguments();

initialize_app_code();

/* start application proper */

/* obtain user input and do client related work */

process_client_inputs();

do_work(value, position, output_buffer);

/* cleanup */

cleanup_app_code();
}

Modified Code to use Chroma, the main routine is modified as follows.

#include "foo_bar.chroma.server.h"

int perform_work (in value, char * position, char * outfile) {

/* this is still declared as it is not part of the RPC */
definition */
char output_buffer[255];

do_work (value, position, output_buffer);

/* new code to save contents of output_buffer into a file */
/* must create a file that the server can write to and save */
/* the name in outfile */

strcpy (outfile, "/tmp/output.txt");
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/* routines to open the file and copy the contents of */
/* output_buffer into it */

}

int main (int argc, char * argv[]) {

/* note that the variables used by the RPC are not declared */
/* anymore */

/* initialize application with runtime */
/* note that this *MUST be done before the application */
/* processes argc and argv */

if (service_init &argc, &argv) != 0) {
perror("Unable to initialize with the runtime!");
exit(1);

}

/* initialize application itself */

process_cmdline_arguments();

initialize_app_code ( );

/* start application proper */

/* make call to stub generated server API call */

/* this will wait for input and call perform_work ( ) with
the input values} sent by the client. It will also return
the output values to the client. */

run_chroma_server ( );

/* cleanup */

cleanup_app_code ( );

}

compile the code and use the application binary as the server. For ease of use, it will
be advisable to rename the binary differently from the client side code. For example, the
server binary might be app server and the client binary might be app client.
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User Study Questionnaires

In this Appendix, I present the actual questionnaires given to participants during each user
study experiment. In every questionnaire, the ordering of the answers for each questions
has been randomized. In particular, some questions are phrased such that the participant
has to agree with the question (in the best case) while other questions are phrased such that
the participant has to disagree with the question (in the best case). This random biasing
prevents a well known sampling error called “pleasing the questioner” where a participant
always picks one particular answer because they sense a pattern to the questions. In each
question, the words that affect the bias of the question have been highlighted to make it
easier for the participant to notice the bias.

E.1 Stage A Questionnaire
Each participant had to complete 7 tasks (listed in Appendix D.6.1 and Table 4.3) to satisfy
Stage A of the user study. The questionnaire for each task was the same and is shown in
Appendix E.1.1. Hence, each participant was given 7 sheets of the questionnaire shown in
Appendix E.1.1 (I wrote the appropriate task names on the sheets before giving it to them).

E.1.1 Standard Questionnaire
Task Name:

1. On a scale from 1 to 7, how easy did you find this task? (circle the appropriate num-
ber).

255
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1 2 3 4 5 6 7

Really easy. Incredibly hard.
equivalent to equivalent to adding
writing a simple concurrency support to
hello world program an operating system

2. On a scale from 1 to 7, how certain are you that you performed the task correctly.
I.e., you did what was asked and the lines you added to the tactics file are correct
(circle the appropriate number).

1 2 3 4 5 6 7

Completely uncertain. Incredible certain.
I would be wasting money I would bet my house
betting on my correctness that I’m correct
even given 1000-1 odds

3. Comments on the task (if any). Use this space to highlight any problems you might
have encountered in solving the task. This includes aspects of the task that you found
particularly challenging or anything about the task that confused you. You can also
use this space to provide suggestions for improving the task.

E.2 Overall Tactics File Creations Questionnaire
This is the questionnaire that was given to each participant after they had completed Stage
A. It was designed to obtain more specific information about how easy they found the Stage
to be.

E.2.1 1) Parameters
For the following questions, please circle the answer that best describes how you feel about
the given statement.
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1a) I understood the concept of parameters.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

1b) After reading the documentation, I did not know what the parameters for the type
of application I was modifying would be.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

1c) I was able to specify the parameters easily in the tactics file.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

E.2.2 2) Fidelities
For the following questions, please circle the answer that best describes how you feel about
the given statement.

2a) I did not understand the concept of fidelities.
Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2b) After reading the documentation, I concluded that this application did not have any
fidelities.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2c) Answer this question only if the application had any fidelities. After reading the
documentation, I did not know what the fidelities for the type of application I was modi-
fying would be.
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Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2c) Answer this question only if the application had any fidelities. I was able to specify
the fidelities easily in the tactics file.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

E.2.3 3) RPCs
For the following questions, please circle the answer that best describes how you feel about
the given statement.

3a) I understood the concept of RPCs.
Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

3b) After reading the documentation, I did not know what the RPCs for the type of
application I was modifying would be.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

3c) I was able to specify the RPCs easily in the tactics file.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

E.2.4 4) TACTICs
For the following questions, please circle the answer that best describes how you feel about
the given statement.

4a) I understood the concept of tactics.
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Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4b) After reading the documentation, I did not know what the tactics for the type of
application I was modifying would be.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4c) I was not able to specify the tactics easily in the tactics file.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

E.3 Stage B Questionnaire
Each participant had to complete 7 tasks (listed in Appendix D.7.1 and Table 4.3) to satisfy
Stage B of the user study. The questionnaire for each task was the same and is shown in
Appendix E.1.1. Hence, each participant was given 7 sheets of the questionnaire shown in
Appendix E.1.1 (I wrote the appropriate task names on the sheets before giving it to them).

E.4 Stage C Questionnaire
Each participant had to complete 7 tasks (listed in Appendix D.7.1 and Table 4.3) to satisfy
Stage C of the user study. The questionnaire for each task was the same and is shown in
Appendix E.1.1. Hence, each participant was given 7 sheets of the questionnaire shown in
Appendix E.1.1 (I wrote the appropriate task names on the sheets before giving it to them).

E.5 Overall Retargeting the Application Questionnaire
This is the questionnaire that was given to each participant after they had completed Stages
B and C. It was designed to obtain more specific information about how easy the entire
process of retargeting the application into client and server components. The verbal “this
is what the stub generation does” description given to the participants (for question 5a) is
shown in Appendix E.5.2.
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E.5.1 Overall Questionnaire About Modifying the Application
1) Knowledge of Chroma

1a) How much did you end up knowing about the internal workings of Chroma?

Please tick the answer that you agree most with (tick only 1 answer).

Nothing at all (Chroma is a complete black box )
Learnt a little bit (For example, saw the main routine and understood it)
Learnt the basic functionality (For example, understood the high level control path)
Learnt a large amount of functionality (For example, understood the details of some
of the internal libraries)
Learnt every detail of Chroma (understood the exact workings of all the libraries)

Please circle the answer that best describes how you feel about the given statement.

1b) The level of knowledge I had of Chroma was sufficient to successfully complete
all the tasks.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2) Knowledge of the Application

For the following questions, please circle the answer that best describes how you feel
about the given statement.

2a) I did not acquire an understanding of the application control flow related to the
operation.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2b) Understanding the high application control flow related to the operation was nec-
essary for successfully completing the task

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2c) I did not acquire a detailed understanding of the entire application control flow.
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Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2d) Understanding the entire application control flow was necessary for successfully
completing the task.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2e) I ended up understanding the inputs and output to the functions that perform the
required operation.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2f) Understanding the inputs and output to the functions that perform the required op-
eration was not necessary to successfully complete the task.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2g) I ended up understanding the inner workings of the functions and libraries that
performed the required operation.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2h) Understanding the inner workings of the functions and libraries that performed the
required operation was not necessary to successfully complete the task.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

2i) What else, if anything, about the application did you need to know (that was not
covered above)?

3) Usefulness of Tool
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Please circle the answer that you agree most with for the following questions.

3a) How much do you think the stub generated code and the modification process as-
sisted your task in separating the application into client and server components that could
work with an adaptive runtime system (Chroma in this case)?

Didn’t help at all A little bit Somewhat Quite a lot Helped Immensely

3b) How long do you think you would have needed to modify the application if you
didn’t have the stub generated code and modification guide?

5 – 6 hrs 1 day 3 – 5 days 1 – 2 weeks 1 month More than 1 month

4) Comparative Effort

For the following questions, please circle the answer that best describes how you feel
about the given statement

4a) Writing a simple web proxy is easier than making this application adaptive using
the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4b) Adding concurrency support to an operating system is harder than making this
application adaptive using the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4c) Writing an implementation of malloc is harder than making this application adap-
tive using the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4d) Creating a stateful firewall application is easier than making this application adap-
tive using the methods presented in this user study.
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Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4e) Writing a simple html webpage that only says “Hi There” is harder than making
this application adaptive using the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4f) Writing a ftp/irc client is easier than making this application adaptive using the
methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4g) Writing a kernel device driver is easier than making this application adaptive using
the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4h) Writing the application you modified is harder than making the application adap-
tive using the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

4i) Writing a simple “Hello World” program is easier than making this application
adaptive using the methods presented in this user study.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree

5) Final Question
5a) Rajesh will verbally tell you what the stub code is actually doing to interface the

application with Chroma. The stub code is made possible by the modification process (pro-
viding specific information in the tactics file). Given this information, how long do you
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think you would have needed to modify the application if you didn’t have the stub gener-
ated code and modification guide?

Please circle the answer that you agree most with:

5 – 6 hrs 1 day 3 – 5 days 1 – 2 weeks 1 month More than 1 month

E.5.2 Description of What the Stub Generator Does
This is the description that was given to the participants for question 5a) in the “Overall
Application Modification Questionnaire” shown in Appendix E.5.

E.5.2.1 Stuff the Stub Generator Does for You

• connects to the runtime

• calls the right runtime initialization routines with the right parameters

• calls the correct runtime API calls

– to set parameters

– retrieve fidelities

– ask the runtime to decide where to do stuff

• shields you from having to pack / unpack variables to send to the runtime

• do tactics performs the appropriate remote execution calls for you

– it will create the right demultiplexor to do the right sequence of RPC calls for
the appropriate tactic

– it will also do the pthreads stuff required to do parallel execution

– calls the appropriate runtime calls to do the RPC call at the chosen server

– it will marshall / unmarshall the data to be sent to / from the remote servers

E.6 Overall Experiment Questionnaire
This questionnaire was given to each participant after they had completed all three stages.
It was designed to obtain feedback about the user study process itself.
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E.6.1 General Questionnaire About The Entire User Study
1. Was the training helpful?

Please circle the answer that you agree most with:

Didn’t help at all A little bit Somewhat Quite a lot Helped Immensely

2. How can we improve the training?

3. Was the documentation helpful?

Please circle the answer that you agree most with:

Didn’t help at all A little bit Somewhat Quite a lot Helped Immensely

4. How can we improve the documentation?
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5. What could we have done to improve the User Study experience?

6. Any other comments / suggestions / observations?

E.7 Effect of Experience Questionnaires

E.7.1 Effect of Experience on Creating the Tactics File
For the following questions, please circle the answer that best describes how you feel about
the given statement.

1. Creating a tactics file for an application was much easier the second time round.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree
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E.7.2 Effect of Experience on Modifying the Application
For the following question, please circle the answer that best describes how you feel about
the given statement.

1. Modifying an application (to make it adaptive) was much easier the second time
round.

Strongly Somewhat Neutral Somewhat Strongly
Agree Agree Disagree Disagree


