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Abstract

Systems whose arrival or service rates fluctuate over time are very common, but are still not well
understood analytically. Stationary formulas are poor predictors of systems with fluctuating load.
When the arrival and service processes fluctuate in a Markovian manner, computational methods,
such as Matrix-analytic and spectral analysis, have been instrumental in the numerical evaluation
of quantities like mean response time. However, such computational tools provide only limited
insight into thefunctional behavioof the system with respect to its primitive input parameters:

the arrival rates, service rates, and rate of fluctuation.

For example, the shape of the function that maps rate of fluctuation to mean response time is not
well understood, even for an M/M/1 system. Is this function increasing, decreasing, monotonic?
How is its shape affected by the primitive input parameters? Is there a simple closed-form ap-
proximation for the shape of this curve? Turning to user experience: How is the performance
experienced by a user arriving into a “high load” period different from that of a user arriving into a
“low load” period, or simply a random user. Are there stochastic relations between these? In this
work, we provide the first answers to these fundamental questions.






“Characteristics of queues with non-stationary input streams are difficult to evaluate,
therefore their bounds are of importance.”

-TOMASZ ROLSKI [27]

1 Introduction

Motivation and model

The vast majority of queueing models assume a stationary process in order to derive performance
characteristics, such as mean response time or mean number in system. In reality, computer sys-
tems have arrival rates which fluctuate over time. Furthermore, when the arrival rate is high, it is
common to try to compensate by increasing the service rate, possibly by adding additional servers.

System designers often try to use standard queueing theorems, such as the stationary M/M/1 for-
mulas, to predict the performance of their system. However, when the load fluctuates over time, it
is not clear which stationary formula to use. One can try to average the load in some way over time,
and use a stationary M/M/1 with the “average load,” to predict system performance. However, as
many system designers know, this is a very poor estimation of mean behavior. Furthermore, it
completely ignores the differences in user perceived performance depending on whether the user
arrives into a high-load or low-load state.

As people have become aware of the effects of fluctuating load, mathematical tools have been
developed, such as matrix analytic methods and spectral analysis, which allow one to numerically
evaluate systems in which the arrival rate and/or service rate change over time according to a
Markovian process. While such tools provide numerical values for time-average behavior, they
provide only limited insight into the functional behavior of the system with respect to the input
parameters. These methods don't tell us how the mean response time is affected by the rate of
fluctuation between high and low load, whether this is increasing or decreasing, whether it is
monotonic, etc. These methods don’t give us a complete sense of how the results vary as a function
of the other input primitives, such as the arrival rate and service rate, or which parameters are most
important.

In order to consider such questions, we evaluate a specific model for fluctuating load, shown in Fig-
urel.l. The system alternates between a “high” state and a “low” state, according to a Markovian
process, where the system is in “high” for an exponentially-distributed time witlfasnd in the

“low” state for an exponentially-distributed time with raté. While in the high state (respectively

low state), arrivals occur according to a Poisson Process with fateespectively\’). Also while

in the high state (respectively low state), services complete with exponentialtdtespectively,

pu"). We definep” = 27 andp” = 27 and assume throughout that > p* (but wedo not
assume any relationship betwegt and\” or between:” andp’). We allowp” > 1, provided

that the system is still stable, as defined in SecBioNote that the above model encompasses as
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special cases models with ON/OFF arrival processes (WXtere 0) and/or breakdowns = 0,

in this case we defing’’ = c0). Even our simple Markovian model generates non-obvious and
counter-intuitive behavior, and provides insight for more general models. In S&;tiwa will
consider a more general variant of our model where we allow for a burst of arrivals at each arrival
instant, where the burst size can have an arbitrary distribution.

exp(oH) exp(oH)
A — S —

A A -

exp(at ) exp(at)

Figure 1.1:Alternating Load Model

Prior Work

Time-varying models, have been very widely studied since the earliest work in the 50’s, continuing
unabated to the present. (In the interest of brevity, we focus on models having non-deterministic
switching behavior.) The earliest reference of this type is Clé@kevho used generating functions

to derive expressions for the number in queue. Soon thereafter other researchers applied transforms
and generating functions to related models: Ne2@ [Cinlar [7, 6], Arjas |3]. Yechiali and Naor

[34] used generating functions to reduce the solution of our model to that of obtaining the roots of
a cubic equation. Using similar techniques, de Sifi} pbtained a Wiener-Hopf factorization for
systems with MAP arrivals and general service; Sengi#fipgnalyzed a system with Markovian
arrival and service distributions and service interruptions; Takine and Sen@2pgeperalized

[29] to MAP arrivals and general service; Adan and Kulkai2]igllowed dependencies between
successive arrivals and services in a MAP/G/1 framework; and finally Harrison and Zat&&hler [
numerically derived the entire sojourn time distribution for very general Markovian systems which
they call G-Queues.

A second class of highly effective analytical tools for time-varying models are the Matrix Ana-
lytical and related techniques. Neufl] used Matrix Analytical techniques to obtain numerical
results for our model, observing that its behavior could be qualitatively different from the stationary
M /M /1; Ramaswami25] allowed general service times and Markovian Arrival Processes (MAP);
Lucantoni, Meier-Hellstern and Neutsd] modeled phase-type service and added server vacations;
Sengupta3(] allowed dependencies between semi-Markov interarrival and semi-Markov service
times; Takine et al.31] combined Matrix Analytical techniques with generating functions to allow



multiple customer classes and priorities; Lucantoni and Néiilsdllowed batch MAP arrivals;
Mitrani and Chakka numerically compared Matrix Analytic and spectral expansion techniques
[18]; and finally Asmussen and Mglled] solved matrix equations to get the entire waiting time
distribution for a queue with MAP arrivals, phase-type service and multiple servers.

It is thus clear that researchers have been highly effective at developing methods tonobtain
merical results but what about basic properties, intuitive insights and simple approximations?
Researchers have been at work in these directions as well. One of the classic conjectures in queue-
ing theory was posed by Ros8], who conjectured that increasing variability (fluctuation rate)

in a Poisson arrival process would (weakly) increase mean customer delay, when the service rate
does not vary. Rolskid7] confirmed this conjecture, and more recently Miyoshi and Rol&8j |
extended the proof of Ross’s conjecture to more general queueing models. HéWdhanof

vided a contrasting insight — he gave an example of a deterministically varying arrival function
that performs no worse than the stationary version. We continue this tradition in our current work
— generalizing/13] by finding simple conditions which guarantee that a stationary system and its
time-varying analog perform identically in our Markovian setting.

Another way to garner intuition for time-varying systems is to analyze limiting regimes. Very
early on, Newell 22, 23, 24] used diffusion approximations for time-varying /M /1 queues.

Later, Massey/17] used uniform acceleration to derive the transient behaviors; Abate, Choud-
hury and Whitt [l] derived tail asymptotics for the waiting time and workload in MAP/GI/1 and
MAP/MAP/1 queues; and Ride2§], Gelenbe and Rosenbefl], Choudhury et al 8], and Yang

and Knessl33] evaluated the special case when transitions happen much more slowly than arrivals
or departures. Finally, Knessl and Yarfi] restricted themselves to a case in which the traffic
intensity takes a very specific form, with the aim of generating insights for more general cases.

Our Goals

As we saw above, the prior work is very effective at producing computational results for our, and
even more complex models. However, it is more limited at providing intuition. Part of the problem

is that all these methods (generating functions, Matrix Analytical, Spectral Expansion) involve cal-
culating the root of a cubic equation. While in theory a cubic polynomial can be solved analytically,

in practice the solution is so cumbersome (dozens of linddathematica that there is no way

to get a sense of the effect of the input parameters on the system performance. For example, the
prior work does not provide a sense of the shape of the response time curve, nor how response time
relates to the input primitives, such as thé anda* parameters or the” | \L, | /¥ parameters.

Our goal in this work is to get this type of intuition.

One of the simplest/most fundamental questions is what happens when the rate of fluctuation (the
a’s) either approach zero or approach infinity. The prior work has not yet provided answers to
even the very basic question of whether fast or slow fluctuations lead to higher mean response
times. Rossl28] conjectured, and Rolski confirme@7], that fluctuation leads to higher mean



response time for the case where the mean service rate is a copstaat/(” = 1). In our more
general model, however, where the service rate chandesi(u”), we find in Sectioi® that lower

rate of fluctuation doesot always lead to higher mean response time. There are cases where the
response time is insensitive to the rate of fluctuation, or can even drop as the rate of fluctuation
decreases. We derive a criterion, based on the notion of “slackAiids’) wheres = ;7 — \H

ands® = p — AL, which determines whether faster or slower rates of fluctuation result in better
system performance.

Another fundamental question in the same vein is whether response time is always bounded by
the two asymptotes, the case of high fluctuation rate and low fluctuation rate. Specifically, does a
system with a “medium” fluctuation rate always have mean response time in between those two
extreme cases? And if so, does mean response time change monotonically between those two
extremes? To answer these questions,we start by deriving the transform for the number of jobs
in our model (Sectio/3), and then we analyze a certain root of the denominator of this transform
which allows us to answer these questions affirmatively in Sedtion

Our work also produces simple and accurate approximations for the mean number of jobs in the
system, see Sectid® We do this by again starting with the transform derived in Sec3joout
deriving approximations for its roots. We provide both a simple closed-form approximation which
holds for all fluctuation ratesi(s), as well as even simpler approximations which specialize for
the case of only “high” or “low”«. While computational methods exist for obtaining the exact
mean response time, our simple and accurate approximations have advantages over the exact re-
sults. From a computational perspective, the fact that our approximations are closed-form solutions
means that they can easily be computed on any spread-sheet. More importantly our approxima-
tions provide the first results about thleapeof the mean response time curve as a function of the
fluctuation rateq. In particular, they provide a simple and accurate approximation for the curve’s
functional form. The advantage of the simple functional form is that it shows which primitives are
most important in determining mean response time, and allows for further sensitivity analysis. We
also derive the closed-form fluid approximation for the mean number of jobs in the system for the
case ! > ;# and compare it numerically with the exact value.

In Section6, we use our analysis to provide some insights into the behavior of the fluctuating
load queue. We first ask the question: How does the mean number of jobs in the system vary
as we scale the arrival and service rates? We find that the answer in this case is different from
that in aGI/GI/1 queue, and, in fact, varies depending on the “slacks”. Next we look at the
effect of scaling the switching rates on the mean number of jobs, and identify the regimes where
this scaling has a more pronounced effect, and the regimes where there is negligible effect on the
mean number of jobs. Finally, we consider the problem of optimal capacity provisioning in a
gueue with fluctuating arrival rates, but a given total average service capacity. We provide a simple
expression for near-optimal capacity splitting (irrespective of the switching rates). Further, our
findings prove that under scenarios whaféand* are under the control of a system designer,
optimal capacity provisioning with a fluctuating arrival process leads to a smaller mean number
of jobs, when compared to a system with a constant mean arrival rate. Thus, a fluctuating arrival
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Figure 2.2:lllustration of the behavior of E[N] as a function af described in Theoreid.2 For

all three figures, we fiy? = 0.2 andp” = 0.6, anda®* = of. The rest of the parameters are as
follows: (@Q)ur = 1, A\l =02, uf =1, N2 =06;(b) u* =1, \F = 0.2, pf =2, M1 =1.2; (c)

pt =1, =02, uff =4\ =24,

process is desirable as it can lead to more “efficient” resource provisioning.

Finally, while our results thus far have dealt with the overall time-average mean performance be-
havior, it is also of practical importance to understand how this time-average mean compares to
the experience of a customer arriving into a “higlif)(period or a customer arriving into a “low”

(L) period. Once again computational results can be used to evaluate specific instances, however
we seek a qualitative ordering. We answer this question in Sectioomparing three quantities:

the number in system witnessed by an arrival intoFaperiod, the number in system witnessed

by an arrival into anl, period, and the number in system witnessed by an arrival into a stationary
system whose arrival rate is the weighted average of the two arrival rates and whose service rate
is the weighted average of the two service rates. We find tei@astic dominancelationship

does exist. However, counter to intuition we find that while the number of jobs seen by an arrival
into the ‘average’ system and the number of jobs seen by an arrival infopdrase are both sto-
chastically dominated by the number of jobs seen by an arrival intd ghase, the number of

jobs seen by an arrival into dnphase is1ot stochastically dominated by the number of jobs in the
average system.

Throughout the majority of the report we investigate the characteristics of the mean number in
system,E[N], as through application dfittle’s Law (using the time-average arrival rate) this
yields results for mean response time.

2 Anomalous Behavior of Fluctuating Load Queue

We start our work by asking the most basic of questions: How does the mean number of jobs
in the systemF[N], compare in the case when the load fluctuates slowly pwas compared

with the case where the load fluctuates quickly (higR For all the work that has been done on
numerically evaluating instances of our model, the question of whéth¥} is higher under low



a or high a has not been addressed. Although intuition would tell us thatdostould lead to
higher E[N] because there is seemingly more variability in the load in this case, this fact has not
been proven. In this section we prove that lowedoesnot always lead to higheE[N], and we
derive a criterion that tells us whefi|N| increases for lowv and when itdecreasegor low «.
Before we can state our theorem, we need to define a quantity which waazdand which we

use throughout the paper.

Definition 2.1 Theslackduring the low load period is defined a5 = ;& — AL, The slack during
the high load period is defined a§ = pff — \7.

Recall that we make no assumptions abeltu’, \F, or A, except to assume that’ = 2—5 >

= 2—? We allow p? > 1, so long as stability is met. The remainder of the section will be
spent proving Theorei@.2 below; providing a condition for stability; and discussing the nebulous
concept of “load,” in a load-fluctuating system.

Theorem 2.2 Leta = o* + ofl.

If s&° < s, thenE[N*~0] < E[N*~>],
If s& > s, thenE[N*~] > E[N*~],
If s© = s, thenE[N*~] = B[N~

Corollary 2.3 If u# = u%, then E[N>~% > E[N°~=] for all settings. This confirms Ross’s
Conjecture.

We start with a discussion of the two extreme value€¥] whenp” < 1; the case where”
ando! are both very low, and the case wherk anda!! are both very high. When the's are

very low, E[N] can be shown to be a weighted mixture of the mean numbers of jobs under two
stationary M/M/1 queues: one with logd and the other with loag”. This may seem obvious,

but it will be formally verified via our analysis in Secti@ Specifically, we have:
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By contrast, whem” anda ! are very high, fluctuations are very rapid. In this case, our analysis
in Sectiori3 will show that the system converges to a single M/M/1 queue with jgad

wherep# and)\“ are the average service and arrival rates,

T
~
>
T
>
&~

W p A LAY
A _ aH+ocL )\A — «a +0¢L
=TT = I



That is,

A
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Observation 2.4 We observe that*! as defined above serves astability criterionfor the system
under alla’ and o* values, since” < 1 is equivalent to saying that the time-average arrival
rate is less than the time-average service rate. Howew&rdoes notrepresent thdrue load
Specifically

pt #1—m

wheren, represents the fraction of time that the system is idle. In fact, we conjecture that deter-
miningmy is as hard a problem as determinigf V]. (These last two observations were also made
by Yechiali and Naor34].)

We now prove TheorelB.2.

Proof: The necessary and sufficient condition for
E[N*™Y < E[N*~>]is:
L H
T phar + Tpmar p
o tom 1—p

A

(2.1)

A

which reduces to

Cc

AH(1—c)+AL(1—1) >0

wherec = [Lﬁ%if, Or,
M2 — (AT + M) + 2P <0

The solution to the above inequality ds= <§—f1, 1). Note thatc > j—f{ is equivalent tgp” > pt,

which is trivially true. Therefore the only other conditionds< 1, or (uf — A\L) < (puff — M),
Note, we are assuming’ < 1, otherwise this behavior is not possible. The remaining cases in the
theorem are proven analogously. m

The behavior of the fluctuating-load queue is illustrated in Fi@ze
Intuition for Theorem 2.2
While the proof of Theorer2.2 was purely algebraic, we can provide some intuition for the ob-

served behavior. Recall that in ddi/)M /1 queue with arrival rate. and service ratg, the mean
response time is given % That is, the mean response time of Eii)/ /1 queue is the inverse
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of the slack between the arrival and service rates. Thus if we comparetf/#i#6/1 queues, one
operating at rates” andyu and the other at rateg” andu”, when(uf? — A7) > (u* — \L), the
former system exhibits a lower mean response time.

Now let us compare the fraction of customers departing durindftiphase in the fluctuating load

queue whenp” < 1. Asa — 0, almost all customers arriving during ti#& phase depart during

the samef phase. Therefore)w/gg/% fraction of customers depart during tiie phase as

a — 0. Whena — oo, the fraction of customers departing during figohases is just the fraction

of service capacity offered during tté phase, that |%

As can easily be seen, the fraction of customers departing défippase increases by a factor

of pff /p* as the switching rates decrease fromto 0. Thus whens? > s%, as switching rates
decrease, an increasing fraction of customers experience lower mean response times due to lower
slack offered in the/f phases causing a lowering of overall mean response time and hence mean
number of jobs in the system.

3 Analysis

We first define the following quantities.

Definition 3.1 N’ is defined as the random variable for the number of jobs at the instants when
t/h\e system switches from a Lowj)(to a High (/) phase. The-transform of N* is denoted by
[1L(2). Similarly, N¥ represents the random variable for the number of jobs at the end of
phases andl”(z) denotes the-transform of N,

NE and N are illustrated in Figur8.32. Our approach is based on deriving the expressions for
ﬁZ(z) andﬁﬁ(z). In Sectiori3.1we prove that knowledge of thdistributions at switching points
suffices to determine the distribution of the number of jobs in the system at a randomly sampled
pointin time. To deriveﬁz(z) andﬁ?f(z), we will first obtain aransition functionwhich maps the
distribution of number of jobs at a switching point to the distribution at the next switching point
(Sectior3.2, equation/8.€)). This transition function will then allow us to expreﬁ\é(z) in terms

of ﬁ7{(z), and vice-versa (see SectiBif, equations3.9)-(3.10)). Finally we solve these to get
expressions foﬂAL(z) andﬁ?f(z) in terms ofmy only (see Sectiol3.3, equation(8.8)). All the
transform derivations described above will assume a more general model than we have considered
so far, where we allow for aurst of arrivalsat each arrival instant, where the burst size can be
arbitrary.
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Figure 3.3:Switching Points used in Analysis

3.1 Conditional PASTA

Let N denote the random variable for the number of jobs in the system at a randomly sampled
point. The following theorem relates the distribution’éfwith those of N> and N,

Theorem 3.2 N has the same distribution ag”, where

N = Nt w.p.aﬁ_%
NHE w.p. o

OCL+OéH

Proof: Let ﬁ(z) be thez-transform of N. Proving the above theorem is equivalent to proving

ﬁ:d(z

L —|—
N O}H (3.2)
Let I/Ii(z t) be thez-transform for the number of jobs in the systerlmnits of time after the start
of the L phase, conditioned on the phase belng longer thand IetHH(z t) be the corresponding

quantity for H phase. Note thalf[L(z 0) = HH( ). Also by conditioning on the length of ah
phase,

ﬁi(z) :/ I_/I\L(z,u)ozLe_aL“du (3.3)

We will use renewal-reward theory to prove equati8r), The renewal cycles consist of a single
L phase followed by a singlé/ phase. The instantaneous reward earned at timegiven by
r(t) = z"® wheren(t) is the number of jobs in the system at timeClearly,I1 ( ) is the long run



average rate at which reward is earned. Therefore,

fi(z) E[reward inL phas¢+ E[reward inH phasé
N Ellength of L phasé+ E[length of H phasé

11\
(—+ H) / / HLzuduaeo‘tdt+/ / Hqu)dua eatdt]
o t=0 Ju=0 u=0
( ) / / HLzuduaeo‘tdt—i—/ / Hqu)dua eo‘tdt}
tu 0 Jt=u

_ LL LH) o TE(z, u)La e~ vy fu:O HH(z,uLa e “du] (3.4)
o &
‘|' i
_ et 3.5
% + (3.5)
m

The intuition behind Theorel.2 is the PASTA (Poisson Arrivals See Time Averages) property
exhibited by the Markovian switching process, as we prove next.

Theorem 3.3 The time average distribution of number of jobs in the system duripgases (re-
spectivelyH phases) is the same as the distribution\df (respectivelyV 7).

Proof: Consider a slight modification of our system where whenever the system switcheH from

to L, we restart the system with an initial number of jobs sampled from the distributiai’ofit

is obvious that the time average distribution of number of jobs durind.thkases in our original
system is the same as the time average distribution of the number of jobs durihgtiases in

this modified system. Now consider another queueing system where we set off timers according to
a Poisson process with rai¢. Whenever a timer expires, we restart the system with some number

of jobs sampled from the distribution &f’. This can be visualized as seeing only fhphases of

our modified queueing system stitched together. Since the timer events are a Poisson process, by
PASTA, the distribution of number of jobs at these event instants is the same as the time average
distribution, which is the time average distribution of number of jobs during_tiphases in the
modified system and hence the same as the time average distribution of jobs/dphages in the
original system.

To further justify the use of PASTA, the time average distribution of number of jobs in the final
system is the distribution at a randomly sampled point in time. Since the timer events are Poisson,
the distribution of elapsed time since the immediately preceding timer expiration and a random
time instant is also exponential with megba. Therefore, the distribution at such a ramdom time

is the distribution arzp(a’) time after the start of ah phase, precisely’ by definition |

Now, since the long term fraction of time spent/iphases i |s— andinH is L+ =, the linear
combination of Theorer8.2 follows. Although we have proved the above result for only one
observable quantity, the number of jobs in the system, the result holds for any observable quantity

10



e.g. square of number of jobs in system, age of the job in servitensform of the number of
jobs in service.

To summarize, although we defin®d and N to be the distributions of number of jobs at switch-
ing points, they are the same as the distributions for number of jobs seen by an arbitrary arrival
duringthe L or H phase, respectively.

3.2 Derivation of Transition functions

Our goal in this section is to derive a transition function which maps the distribution of the number
of jobs at a switching point to the distribution at the next switching point. To do this, we first need
to return to a simplé///M /1 queue (without fluctuating load), and consider its transient behavior
with respect to the number of jobs at tifie~ exp(«), given a distribution on the number of jobs

at time0.

Consider anV//M /1 queue with service rate where with rate\ arrivals occur (possibly, more
thanl). Let N(¢) be the number of jobs in the system at timendIl(z,¢) be thez-transform of
N(t). LetT be an exponentially distributed random variable with mgaldve representl(z, T),
the z-transform of N(T'), by II,(z). The following Theorem expressék,(z) as a function of
I1(z,0).
Theorem 3.4

~ azIl(z,0) — u(1 — 2)ma

II,(z) = — 3.6
=) az — pu(l —2) + Az(1 — A(2)) (3.6)

Whereﬁ(z) is the z-transform of the burst size distribution and if we fedenote the root of
denominator of(3.6) in the interval(0, 1), then,

__ aglI(£,0)
Ton(l=9)

The constant, is equal to the idle probability af’.

(3.7)

Proof: The proof of the above theorem is a trivial extension of Baile@jswork on transient

analysis ofM/ /M /1 queues to incorporate bursts. We mention it here for completeness; het

the probability that the burst size jwlog, ag = 0). Also, letp;(t) be the probability that there
arei jobs in the system at time We can now write the differential equations for this system:

dpc;gt) =A Z a;pi—j(t) — (A + p)pi(t) + ppia ()
P po(t) + (1)

11



which gives,

2D G, 1) {1 - )~ r=1 - A } - (1~ 2l

Integrating by parts, we get the expressionﬁlgr(z) as:

ﬁa(z):/ II(z, t)ovedt
0

azIl(z,0) — p(1 — Z)po(AT)

az — (1l —2)+ Az(1 — A(2))

To complete the solution we need to fipgl7') (= m,). The denominator in the expression of
I1,(z) has the value-x < 0 atz = 0 anda > 0 atz = 1 and therefore, a roat € (0,1). For
I1,(z) to converge inside the unit digk| < 1, £ must also be a root of the numerator. Hence,

agll(€,0)

poll) = n(l—¢)

The transition functions mapping the distribution at the start of.ar an // phase to the end of
the phase is obtained by specifying\, « and A(z) in (3.€).

3.3 Distributions at Switching Points

The transition function we have derived will now allow us to write fixed point equations, the
solution to which will be the desired expressions for(z) andIl”(z). To get there, letA%(z)

(respectively@ (2)) be thez-transform for the distribution of the burst sizes for arrivals during
L (respectivelyH) phases. LetAl and A" be the mean burst sizes duridgand H phases.

Theoremi3.5, gives the expressions fdi/I‘\L(z) andfﬁf(z).
Theorem 3.5

zaflol + zalot — (1 — 2)oH (ulrd)

zaflol + zaltoll — (1 — z)olHol

L (z) =

(3.8)

12



where,

1- AL
O_ZL:'uL_)\LZ 1_2(3)

1— Al
Uf:luH_)\HZ 1_Z(Z)
O'L:(Tf‘zzl = /LL—)\LE
0H20'5|Z:1 = uH—)\Hﬁ

my = Pr{N* =0}

The expression fdﬁ7{(2) is completely symmetric {8.8)
Proof: From 3.€), we can write the following relations

i) oL ATH (z) — pl (1 — )Ty (3.9)
oz — ph(1 — 2) + AF2(1 — Ab(2))
i) a1 (z) — (1 — 2)7l! (3.10)

allz — pf(1—2)+ M2(1— @(z))
wherer} = Pr{N’ = 0} andr/l = Pr{N" = 0} are unknowns. We can solv&.8)-(3.10) for
I14(z) to get

zalpfall + zaf plrl — (1 — 2)o B pbrl

ML (z) = 3.11
(2) zallgl + zalol — (1 — z)oHok (3.11)
By substitutingz = 1 in the above equation we get one equation relatihngnd '
R T S R (3.12)
al + ol al + ot
=1-pt (3.13)

It turns out that there is a very simple explanation 8rl¢) based orLittle’s Law. Imagine
stretching the. periods by a factor ofi* and H periods byu?. Now in this transformed time, the
service rate is a constarit, The switching times are distributed @sp(a’ /%) andexp(a? /uf).

The time average arrival rate scales by a facto(-aéﬁf + O%H) divided by (g—i + Z—Z) because

. . . . L H .
the arrivals that were earlier occurring (@}T + C%H) now occur m(Z—L + Z—H> amount of time.

Using similar reasoning, the idle probability of this system is the expression on the LB (
Applying Little’s Law at the server in this scaled system gi@4%).
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To complete the solution, we need one more equation relatirandr/’. Using PASTA we know
that

wherem is the long term fraction of the time when system is idle. Howewgis also unknown
and isnotequal tol — p*. But, by using/8.12), (3.11) simplifies to B.8). m

Corollary 3.6 When;l\L(z) = @(z) = z (burst size= 1), ﬁz(z) andﬁﬁ(z) become:

Syt = A 4 skl — M)~ (1= )~ A ()
) = (i = Xe) + 20k (ull = W2) — (L= o) (i — M)k —aba) &)
zalf(pt = A) + zat(u" = M) — (1 = 2) (" = A2) (p'7g)

zaf (pt — Noz2) + zal(pH — AN z) — (1 — 2)(pH — M z)(ul — AEz)

TL(z) = (3.15)

Expressions3.14)-(3.15 agree with those derived by Yechiali and Nad4][ In the rest of the
paper we will analyze the special case mentioned in Corc8diyAgain, we can solve forl and

7l by noticing that the cubic polynomial in the denominators of these expressions has a root in
(0, 1) where both numerators must also(beéNumerically solving for this root, however, does not
achieve our goals of getting simple and intuitive expressions.

4 Results - Monotonicity of E[N]

In Sectior2, we analyzed how asymptotic behavior of @gphase fluctuating load queue compares
for the casesr — 0 anda — oo. We are now interested in determining the behavior in the anid-
range. To be precise, we want to answer questions like: If we fix the valyés pf’, \*, A and
the ratio%;, but start increasing (o = o' + o) from 0 to oo, how doE[N], E[N*] and B[N "]
behave? Are they always between the asymptotes of Se2Zfobo they increase or decrease
monotonically witha? What is the asymptotic behavior whefh > 1?

We will first derive expressions forl andr/’ as linear combinations of the asymptotes, and show
that these are monotonic, in Sectidrf. Then, in Sectio.3, we will introduce the parameter

r, which can be thought of as denoting tfaio, or the mixture, of the two asymptotes at the
given parameter setting. We will use this parameterization for our ultimate expressiang\or
recasting the expressions in Sectéf in terms ofr. These expressions will be used to prove the
desired monotonicity results fdt[ V], first for p? < 1, in Sectior4.4, and then in SectioA.5 for

p > 1.

Throughout, we disregard the singular ca8e= 1.
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4.1 Definitions

To clean up our derivations we start with some definitions.
Definition 4.1 The normalized switching ratéy, is defined as

ot af

A= L + i (4.16)
The intuition behind using\ instead ofa is thatA can be thought of as absorbing the scale of
the problem by stretching the periods by a factor ofi” and theH phases by a factor qgf’’.
This leads to identical queueing behavior (at least at the switching points) but further analysis only
depends op*, p* andp’ as will be seen later since the service rates are now a corsatwill
assume.”, it #£ 01). UsingA, Equations8.14)-(3.15), can be rewritten as follows:

Ty - 280 =p) = (1= 2)(1 = pha)ry’
W) = XA = 72 = (=20 = o)1 = 75) #17)
AL pA) — (1 2)(1— oyt

T (z) = 4.18
S| e e [ RS (419

Definition 4.2 Let F'(z) denote the quadratic in the denominators(df17) and (4.198):
F(z) = 2A(1 — p2) — (1 — 2)(1 — pl2)(1 — p"2). (4.19)

The roots ofF’(z) 2 will play an important part in our analysis.
Definition 4.3 We definey to be the root of?'(z) that lies in the interval(0, 1). Further, let

1— A
= P
1 —pAx
To convince ourselves that(z) hasexactlyone root in(0, 1), note thatF'(0) < 0, £(1) > 0 and

F(1/p*) <0

4.2 Monotonicity of the mg’s

The following two theorems establish the desired monotonicity property.
Theorem 4.4 For p" > 1, nf!, 7k andm, decrease monotonically as switching rates decrease.

When either of these i the solution reduces to solving a quadratic.
2It is interesting to note that if)(x) represents the characteristic matrix polynomial obtained during the spectral
expansion solution of our fluctuating load queue, t tﬁi’”)] = K2®F(x~1) for a constani’.
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Theorem 4.5 for pf! < 1

(i) ml! decreases monotonically as switching rates decrease.
(71) my increases monotonically as switching rates decrease.

(ii1) T decreases monotonically as switching rates decrease if and qmtysif /1.

Proof: (Theoremg.4and4.5). Our first step is to derive expressions fgrandr’. As mentioned

previously, sincd’(x) = 0 andy < 1, the numerators dfi” (z) andII*(z) must be zero at = x
for thesez-transforms to converge inside the unit djsk< 1. Therefore,

H _ X A
™= T g )
Ty = X A1 = p)

(1 =x)(1 = p"x)
yielding
mo (1= px) = my' (1= p"'x)
Combining this with8.12) and using the definition af gives simpler expressions fof’ andr}:
mo = (ph) (= ph)p™ = 0(p™ — p™)]
mo = (p™) (A = ph)p" +6(p" = p")]

We can write the above as follows:

= =) [ ] - [R ] (4.20)
rh = (1= pY) [%} +(1-pb) [%] (4.21)

or equivalently as
=0 [ () ] e
wherew = £-{=2.) By observing thatima .6 = (1 — p4) andlims 0 = min (1),

equations/4.20)-(4.21) can be seen as expressing and !} as a convex combination of the
limiting cases whenp < 1. Similarly, equations4.22)-(4.23 expresst} andr/ as a convex
combination of the limiting cases wheff > 1.
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Sincex and hencé are monotonic im\ 3, this proves the monotonicity iml’ andr’. Sincer is
a linear combination of and~=, the behavior ofr, will also be monotonic between its limiting
valueslim,_. 7o andlim,_.., . Forp > 1, it is easy to see that

lim 7y < lim g
a—0

a—00

For p’ < 1 we have

lim my > lir%ﬂo — pH(ut — ")

a—00

> pt(u® — ')

Sincep! < p*, the last part of the theorem follows. m

4.3 Parameterization in Terms ofr

While parameterization in terms éfis sufficient to show monotonicity ofl and=/?, parame-
terization byf doesnotyield the simplest expressions féi{ N], which is our ultimate aim. We
identify a new parameter which will allow us to expres#/[N| as a convex combination of two
limits, similar to what we did above forl! andx%. We will show how to expres&[N*] and
E[N*] as convex combinations of their limiting curves. Similar expressiorFfdy¥] can be ob-
tained using the following fact proved in Secti8rd:

EIN"] | E[N"]
E[N]= 22— o
M=
We start by defining the parametefor the caseg < 1 andp” > 1.
Definition 4.6 For p” < 1, we define(,« ) as:

by qy — 0
_ H(pf<1)
TH<l) =~ (4.24)
’ Aél(pH<1)
where
Cipricry = iix_n)oﬁ =1 (4.25)
Cijaoqy — 0 A
/ 1 (pf<1) _ P
g(pH<1) - ilino A - (1—ph)(1 — pH) (4.26)
(4.27)

3y is the root of a polynomial that is the sum of a cubic with roD.,tsplﬁ, ﬁ and a quadratic that is positive

in (0, p%,) and increases uniformly with. Therefore,F'(z) increases uniformly ir(07 p%) asa increases, hence
proving monotonicity ofy.
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Definition 4.7 For p” > 1, we define(,x-1) as:

e
_ “(pH>1)
Fpsny = L2 (4.28)
’ Aél(pH>1)
where
H A
p(1=p7)
bprony = im0 == — 5 (4.29)
- (1 — p)
/ — 1 (pH>1) _ p p
e = TTA T T G T ) <0

Whenever unambiguous, we will suppress the subscripts. 0By the way we have defined
lim,_or = 1 andlim,_,., 7 = 0. To obtain the limits mentioned in the above definitions, we first

substitutez = (M) in (4.19 to obtain the following cubic polynomial:

g(0) = (p*)*Al0 — (1 — p™)]6
— 0= 1][0(p" = p") + p" (1 — PN — p?) — p" (1 = p?)] (4.31)

Then,? is the root of the above polynomial lying in the interyal— p4, 1).

We now present one of our main results, expresginy’] and E[N] as convex combinations of
the limiting curves in terms of.

Theorem 4.8 a. For pff < 1

H p* p" p*
A L A
L p P P
E[N ]: |:]_—ij| -+ |:1—pL_ 1—pA:| T(pH<1) (433)
b. For p” > 1
T AT r A H _ Y
p p p 1 —Lpnsyy (pH>1)
ENH = + + } + TpH
A T=pA) =t T o = |~y A T\l ) Y
(4.34)
[ A i I A L 1 - g H 6/ H
p P P (pH>1) (p>1)
ENL = + - 1 + T(p,H
a [1=p4]  [1=pt 10t [_él(pHd)A —Lipn <) vy
(4.35)
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Proof: We start by differentiating our transforms frod.17)-(4.18 and set: = 1, which results
in:

A L _H _nH
E[NT] = 1pr _4 pﬁg_gfl) ) (4.36)
pt (A =p"N)(A = p" =)
E[N'] = A AL oY) (4.37)

By substitutingr{’ and ! in terms ofd from (4.20-(4.2]) into (4.36-(4.37) and collecting the
terms dependent oA, we get the expressions i1.82)-(4.39. Similarly, substitutingr}’ andr
from (4.22)-(4.23) into (4.36)-(4.37) results in ¢.34-(4.35). u

Note that for the casp”! < 1, we expressE[N*] and E[NL] in (4.32-(4.39 as the convex
combination of two constants. This is not possible wh€n> 1 because whe — 0, the mean
number of jobs becomes unbounded. However for this case, we can3yiNté] (and respectively
E[N1]) as a convex combination of two asymptotic functions of the farm % which are only
separated by a constant.

4.4 Monotonicity of Number in System,p”” < 1

The following theorem proves monotonicity 6fN| for p < 1:
Theorem 4.9 For the casep” < 1

(i) E[N'] decreases and[N¥] increases monotonically as the switching rates decrease.

(ii) If s¥ < s then E[N] decreases monotonically as switching rates decrease, otherwise it
increases monotonically.

Proof: For succinctness, we will define the following quantities

oA

1—p

1
oH

Ny =

H

+
+

From (4.32)-(4.33, we can write the expectations of number of jobs in system as

A H A
E[NH]:prA}+[1pr—1pr1r (4.38)

[ p" p*
E[N*] = L _pA} + [1 — LT _pA} r (4.39)
E[N] = Neo + [No — Neo] 7 (4.40)



From the limits proved in4.25-(4.26), we know that for the casg” < 1, lima_..o7 = 0 and
lima_or = 1. We will now show that- is monotonic inA. This will imply that E[N¥] increases
andE[N*] decreases monotonically as switching rates decreask [@idwill increase or decrease
depending on whethet is larger or smaller thas?, respectively.

By substitutingd = 1 — rAE’( H ) in g(0) from (4.37), we get the following polynomial relating
A andr:

h(A, ) =r2 D2 (0 )2 [P (1= pP) (1 = p™) +r(p" = p") (™ = p™)]
— Ay (1 + ph) (1= p") (1 = p™) o {(p" = p") (" = 1) + (1= p") (0" = p™)}]
+ ("= p") (A =)L =) (4.41)
The above may be viewed as a cubic foin terms of A, or, alternatively, as a quadratic fax
in terms ofr. Therefore, for any there can be at most two valuesAf Sincer is a continuous
function of A, h(A,r) must cross: = ¢ with ¢ € (0,1) an odd number of times and withe

(—00,0) U (1,00) an even number of times. For> 1, the product of the two roots of the above
guadratic is negative and hence does not have two positive roots. The eagkcannot arise

because as mentioned earliere (0,1) and hence) = (f—_‘p%) € (1 — p4,1). Thereforer

decreases monotonically froirto 0 asA increases. ]

4.5 Monotonicity of Number in System,p” > 1

Complementary to TheoremS, the following Theorem proves monotonicity Bf N| for p > 1:

Theorem 4.10 Whenp® > 1, E[N], E[Nt] and E[N*¥] increase monotonically as the switching
rates decrease.

Proof:  From (4.34)-(4.35), we can write the expression féi{ V] as

(7> 7‘) (4.42)

pH<1)

Lomsyy | 4
A E’

E[N]zzvooﬂzvoo—fv](lg,

H<1)

From the limits proved in4.29-(4.30), we know that forp” > 1, lima_o, 7 = 0 @andlima_o 7 =

1. We will now show that- is monotonic inA. From equations4,34-(4.35 and @.42), this

will imply that E[N#],E[NL] and E[N] all increase monotonically as switching rates decrease.
MoreoverE|[N| is bounded between two curves which are separated by the coGsjaen by,

1 pf 1
C— p” a_prI—l aLl —pL gl pH>1)
- 1—pA - A1 (’
o ar, (pH <1)

20




The proof of monotonicity of- for this case will be along the same lines as gife< 1 case. By
substitutingd = £(,1 1) — rAL] in (4.31), we get the following polynomial relating andr:

(pHE>1)

PO, ) =12 (U PO (072 + 1y (0 = ) (0™ = )]

A A H A
/ pr(L=p7)p" +p /
— sy Ap” { ( ) < )¢ rl sy (L= pM) (" = p") = (0" = 1) (p" = p"))

pH —p
A AN 2
p"(1—p7)
+ptpt (%) (1-7) (4.43)
pt—p
As before, the case < 0 cannot arise and for > 1 the product of the roots is negative. Following
the same arguments as in Seci#b4, we have the desired results. n

5 Results - Simple Approximations

Having established the monotonicity property/fN|] with respect toA (and hencev), we now

turn to the question of obtaining tight approximations for BjéV] versusA curve that are simple

and can be easily analyzed. Evaluating these approximations yields insights into the behavior of
E[N] versus the system primitives, in particutarin Section$t.4and4.5, we expressed[N] as

a function ofr. To recapitulate, fop” < 1 we have from'4.40)

E[N] = a + br(pH<1)
for some constants, b and forp” > 1 we have from4.42)

C/

A
for some different constants, ', ¢’. The aim of this section is to get simple approximations-for

E[N] = a4+ Vrgu.q) +

We handle the casgé’ < 1 andp’ > 1 together by defining the following quantities.
Definition 5.1

u = min (1, p7), v = max (1, p)

For succinctness, we also define the following constants

c1 = (v—u)(v—p")
2= (u—pH)v—p") = (v—u)(p" - p")

We first deriver*, an approximation for, shown in equation5.44). Ther* approximation is
highly accurate under all values &f (and hencey), and yet it is a closed-form expression, which
does not require the solution of a cubic.
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In Section5.1 we go further by finding simpler approximations for in the case wheré\ is
“low” and the case wherd\ is “high” separately (we make low and high precise in the coming
sections). Although these approximatiofis,,, (equation’s.48) andry ., (equation’s.47)) are
intended to work only for “low” and “high™A, we will find (see Figuré.4) that using just these
two expressions gives us an excellent sense of the shape éf[ffiecurve as a function oA
(and hencey). We also give another approximatiot},.,,.., (équation®.49), for the special case:
o~ 1.

Claim 5.2 Ther versusA curve is well-approximated by thé versusA curve where,

201
e+ (0 p)A + /B 1200+ pA)er + 206) + (v — pA)2A2

*

r

(5.44)

Although, we don’t have a formal proof of the above claim we will provide arguments in support of
the same. The3A? terms in @.41) and @.43 go to0 asA — 0. Also asA — oo, rA approaches

a constant but®A? again goes t®. Therefore, by neglecting this term (A, r), we get the
following quadratic equation in,

h*(A,r) =r? [Asz — Acs] —rey [Alv + o) + al +a (5.45)

where we have usedandv to combine 4.41) and @.43. The polynomiah*(A, r) gives a very
good approximation t@& (A, r) around the root of interest. The approximationis obtained by
taking the root oh*(A, r)

Afv + p N INCEY S 2 o(AZpA — A
"= e (v+p") + o1 = V(A +pt) +c1)? — du(A%p C2) (5.46)
20(A2pA — Acy)

261
e+ (V4 pN)A + /2 +2A((v + pA)er + 2vcy) + (v — pA)2A2

The sign of the discriminant irb(4€) has to be negative because

1. If the coefficient ofr? is negative then the product of the roots is negative and minus sign
will give the positive root.

2. If the coefficient ofr? is positive then both roots are positive and minus sign will give the
smaller of the roots.
5.1 Simpler Approximations

In this section, we start with the expressionforand simplify it further by looking at two different
A regimes, high and low.

Case: HighA
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(v+p?)e1+2ven

Claim 5.3 WhenA > 2

= tn, "Anign APProximates: where

(v—p?)?
* Cl/’U
T Ahigh = A ot (Cl+02) (5.47)
Proof: Starting from 6.44) and making appropriate approximations, we get,
2 (&
. (2)
(040 + 5 o= )24 ()74 2 (L2t
_ 2(%)
(v+p)+ R+ (v— pA)\/l + (ﬁ(ﬁp )> +2 (—(”“’(U)C;jf;’”)
N 2(%)
C v A C ve C 2
4o+ o+ 0= ot {14 O g ()]
- 2(%)
C v A C ve
(v—l—pA)+Zl+{(v—pA)+ (%)}
_ (&)
vt (5)
e /v
A+ O=r5)
|
Case: LowA
Claim 5.4 WhenA <« 2 m = 1, Th.0, APProximates: where
. 1
T Allow = (548)

14 @ (U+Pj)+U02)A
1
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Proof: Starting from 6.44 and making appropriate approximations, we get,

% 2¢cq
(S Y () V. R TR ES R E
— 2¢y

) a+ @W+pt)A+ca \/1 + <(”_§f)A>2 + (2(U+pA)§%1+4ch)A

- 2cy
mﬂn+(v+p®A+%a{1+§<@3§E>?+wﬁwi?%MA}

_ 2cq

o (v+ph)A + {61 + 3 ((”*p2)2A2> + ((v+pA)i11+2vc2)A}

&1
+ alrptives | 1 <(vpr>2A2>

‘1 c1 1

1
1 4 ltph) A

2
1

We defined the “high”A regime asA > ¢, and the “low” A regime asA <« ¢;. We will now
provide very simple bounds on these thresholds. First observe that

(v + pMer + 2vey

(v —u)(v+ph) < oA < (v—=p")(1+p")
Therefore,
(v+ pM)ey + 2vey
t, =2
(0= p
_ L 1 H 20(1 H
o) 2001+ ")
(v—p*) (v —p*)
and
t = a
" 200 + pNer + dvey

(v=p")( —=p")? _ (1=p")?
20 = p")(L+pM) ~ 2(1+ pM)

Another salient question concerns the size of the area between the thresholds for the two regimes;
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how Widett—’; is:

th (2 (v+ pY)er + 21}02)2
t (v—pYa

(v —p") (1 + p") (v — p*)\
< (2 (0= M0 H)(o ) )

Therefore ag’’ — 1, this gap increases (Figu¥e4 (a)-(d)). We handle this special case next.

Case: IntermediateA, p’ ~ 1

As we have noted above, whefi — 1, the gap where neithet, ,,,, norr.,,;,, approximation is
tight increases. The reason this happens is that the range of switching rates whetertimedom-
inates the constart term and theA? term in the radical of Equatioib(44) increases. Therefore,
for this case we give the following approximatiof}, obtained from%.44) by just keeping the
A term of the radical:

med?

261
c1+ (04 pM)A 4+ /2A(cr (v + pA) + 2vey)

(5.49)

* J—
TAvmed =

Ther}.,.. approximation is illustrated in Figue4(e)-(f). This approximation supplements,, .,
andr}.;,,, and depending on the switching rates ad one should be chosen appropriately for
observing the functional behavior.

5.2 Fluid Limit for p" > 1 case

When the arrival pattern causes transient overload during#thmhase, fluid limit of the queue
length process allows us to get a simple approximation for the queue length distribution. This
approximation becomes tighter when< {1, A}.

We will denote the stochastic process denoting the state of the environmgiit)adn our case
E(t) € {H,L}. We define a fluid procesg () in this reference environment process by the
following differential equations:
ay(t) [ r®0 if Y(¢) >0
dt | (PO ifY() =0
whererf! = —sf andr? = —s® denote the fluid flow rates in that environment state. The fluid
scaling theoremd] states:
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Figure 5.4:lllustration of E[N] as a function ofv (= o + %), using the exact; our closed-
form approximation*; and our very simple approximationg ;,,, andr} ., The top row shows
examples wherg’ < 1. The middle row shows examples wheré > 1. The bottom row
illustrates the approximationi, .., whenp” =~ 1. The vertical lines in each plot indicate the
thresholds for the lowA and highA regimes. In all cases” = ;* = 1 anda!? = o”.

Theorem 5.5 Let N, be the queue length process of the fluctuating load queue run in environment
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processt, = {E(et) : t > 0}. LetE.(-/e) — E(-) in D][0,00) w.p. 1 ase | 0. If eN.(0) — y in
R w.p.1ase | 0, then

eN(-/e) = Y (-)in D[0,00) W.p.1 ase | 0, (5.50)
whereY is the stochastic fluid process with environment prodésdeterministic flowrates” =
—s°(E € {H, L}) and initial contentY’(0) = y.

Since we are interested in the stationary distribution, we can interpret this theorem in the following
simpler way,

Theorem 5.6 Let N, denote the stationary distribution of the fluctuating load queue with switching
ratesea’ andea”. Then

eN, L YinRase ] 0 (5.51)
whereY is the stationary distribution of the stochastic fluid process with switching rateand
o’ and deterministic flow rates” = —s* (£ € {H, L}).

The following theorem gives the distribution bf.

Theorem 5.7 LetY be the stationary stochastic fluid process defined in ThebténtetY * and
Y~ be the random variables for the time average fluid levels dufingnd L phases, respectively.
The distributions ot”, Y> andY ! are given by

0 1+ al /st ) ol
w.p- aH JsH | ol ol
Y ~ P A (5.52)
exp <—S—H - T) w.p. (1- T) ol ol
OéH OZL
YH ~ a4 5.53
can (<% - %) (559
0 1 o/ )
w.p-. oH JsH
vE o~ o o /SL/ (5.54)
exrp <_S_H — s_L> w.p. _ocH/sH)

Proof: We begin by noting thaPr[Y# = 0] = 0. Letp} = Pr[Y'L = 0]. Also let f¥(y) and
f"(y) be the density functions af # andY*, respectively, with support oft, +oc]. Further, let
Y (s) andY [ (s) be the Laplace-Stieltjes transforms3f and f*, respectively. Then,

aLy

pi= [ ffye " dy
y=0

o5 04L
=Y uL — \E
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We also have the following expressions for the probability density functions (using Th&a&em

aHy

_ y _ oMy 1
1) = |phatte” Ty [T fraatle S dx]
=0

/\H_MH

r o _ ol 1
fiy) = / f(@)ate dl‘] Y
L =y

which gives the following relationships betwe&?(s) and)ZL(s):
VH(s) = F/\E (O‘_L> n YNL(s)l ﬁ
+ + ,uL — M\ + % +3

. b
Yi(s) = lYf(s)—Yf (ML_AL)} < 3 8)
;LL—AL -

The above equations solve to

off ol

YH(s) = gl (5.55)
)\Ha,MH - #La,/\L + s
o1 al/(ut — ") ol /(ut =N\ o5
Yi(s)=1[1-— YH 5.56
0= (1= i)+ () 77O (559
The distribution ofy is of an exponential random variable with rate— — #L"‘%AL) yrL
is the combination of an atom atand an exponential distribution with the same rate. Taking a
weighted average of / andY * gives the distribution o¥’. m

Corollary 5.8 The mean fluid level is given by

R e el G g 55)

Figure’5.5 shows a comparison of thB[N] vs. « curve with that obtained using the fluid limit
of the system. Thé’[V] axis is also plotted ofbg scale to illustrate the gap at higher values of
switching rates.

6 Behavioral insights into the fluctuating load queue

Having established some fundamental properties of the fluctuating load queue, we further examine
the behavior of this system. One question that we ask is, if we doublé} and 1%} put
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f'Exact —EXxact
---Fluid Approx

---Fluid Approx

@M =1.1,\l =0.1 (b) \T = 1.01, AL = 0.2

Figure 5.5:Comparison of fluid approximation with actual mean queue length. In all gd5es
pt =1andaf = ot.

keep the switching rates the same, what happens to the mean response time? Does it decrease by
twice (as in aG1/G1/1 system) or can it decrease by a smaller or a larger factor? If so, by how
much? We address this question in Secah Another important question is, when is the effect

of slowing the switching rate most felt on mean response time (Se6tB)® We conclude this

section with an application. In Secti@3 we consider the question of how to optimally split a

given average service capacity given a traffic arrival pattern’s).

6.1 Effect of scaling the arrival and service rates

It is well known that for aG'7/G1/1 system, scaling both the arrival rates and service rates by a
factor of k£ leads to identical queueing behavior as the original system but mean response times are
scaled by a factot. This is because the new system can be seen as a scaled version of the original
system where time is sped up by a factokof-or the same reason, if in our fluctuating load queue

we scale the arrival, service and switching rates by a factdr, the mean response time of the

new system will bgﬁ- times that of the original system, as i-d /G /1 queue. But what happens

if we only scale the arrival and service rates?

Let us represent the original system (with arrival rax€s'’}, service rateg !>/} and switching
ratesa{"}) by system A. Let system B be the same as system A except that the switching rates
are halved, and let system C represent the system we want to compare with system A, that is with
arrival rates2\ -7}, service rategu!>} and switching rates!>/’}. Clearly, mean response

time of system CE[T¢], is half the mean response time of systemFB/ 5] using time-scaling
argument. The problem now is to compare the response times of systéfT Al and system B.

We consider several cases:

Cases” = s': For this case, as noted before, the mean response time is invariant to the switching
rates and therefore system A and B have same mean response times. ConsefEptly-
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1 _ 1

5E[NB] = 5E[N4.

Cases” > s, p < 1. Here, moving from A to B leads to an increase in mean response times.
However, we will show that the mean response time (equivalently, mean queue length) does not

increase by more than twice in the process. To show this, it suffices to prov}ed—gigg]) is
bounded by 1. BUE[N] = a + br for some positive constantsandb and hence,

dlog E[N]| |dlog(a+ br)
dlog A | dlog A
| br dlogr
~la+br| |dlogA
dl
< ogr
dlog A
We will find it easier to prove[fjlf’—gA < —1. This would imply—1 < 4% < ( and hence
ogr og
}dlogE N]‘ ‘ dlogr
dlog A — | dlog —
Lemma 6.1
dlogA _
dlogr —
Proof: See AppendiA.1. |

Therefore the mean response time of system B is within a factdrobresponse time of system
A.Thus,lE[T4] < E[T¢) < E[T4].

Cases” < s, p < 1: The mean response time of system B is now less than that of system A.
In this case we can express the mean number of jobs in systéfinNds= a + b(1 — r) for some
positive constantg andb and hence,

dlog E[N]| |dlog(a+0b(1—r1))
' dlog A ‘_‘ dlog A ‘
_ |dlog (a+b(1 1)) dlogr
_‘ dlogr ’ ‘dlogA
br dlogr
a+b(1—7) |dlogA
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As a consequence of the proof of Lemfd, we actually obtain the stronger inequalityl —r) <
jllg’ggg < 0. Therefore,

dlog E[N] br dlogr
‘ dlog A ‘_a+b(1—r) dlog A
br(l —r)
“a+b(l-71)
<r
<1

Therefore; E[N,] < E[Np] < E[N,] and hence E[N,] < E[N¢| < $E[N4].
Casep! > 1: The expression for the mean response time of system#M,] = o’ + b'r + CZ'

for some positive constants, v', ¢’. To prove dld%gE[AN] < 1, we begin with the following lemma:
Lemma 6.2 For f(x),g(x) >0

R+ 00) [ L0810) Skt
dx - de ' dx

Proof:

dlog(f(xz) +g(x))  Olog(f(x)+ g(x))dlog f(x) N dlog(f(x)+ g(x)) dlog g(x)

dx 0log f(x) T dlog g(x) x
___fl@) dlogf(z) _ glx) dlogg(x)
f@)+g(x) dx f@)+g(zx) do
- max{dlog f(z) dlogg(x)}
- de = dw

Corollary 6.3 For f(z),g(x) >0

o) ala)) ¢ | e S0

dlog g(z)
dx

Y

|

dlog E[N]
Using Corollary6.3to bound‘ dlggA

31



dlog E[N]| |dlog(a'+Vr+c/A)
dlog A | dlog A

log (b'r)

) )

a (<
dlogA 8\ A

< max d log a’ d
= dlog A 8| [dlog A

a4 0 dlogr | |dlogA
= max

"ldlog A|’ |dlog A
< max {1, 1}
=1

where we have used Lemntal to bound‘jﬁ’ﬁ by 1. Further, asymptotically ad — 0,

E[N4] =~ &. Therefore, when the switching rates are very smallVs] ~ 2E[N,] implying

E[N¢] = E[N4]. To see why doubling the arrival and service rates has almost no effect on mean
response times, observe that during thehase the queues grow at a raté df — ;). Doubling

the arrival and switching rates causes the queues to build up twice as fast. Although each customer
spends half the time at the server in system C, they have to wait for almost twice as many customers
as in system A, nullifying the benefit of faster service rates.

6.2 Effect of switching rates on Mean Response Times

We have yet to directly address the question of when does changing the switching rates have a big
effect on the mean response times and when does it have almost no effect. We will try and answer
this question here.

Casep!’ > 1: As we have mentioned previously, ti&N] vs A curve for this case is bounded
between two curves of the form+ %, which indicates that the effect of switching rates keeps
increasing as the switching rates become smaller.

Casep < 1. From Figureb.4 one can see that for this case, there is a certain zone within
which changes in\ affect the mean response times a lot, and beyond which the curve asymptotes.
We will use the approximations we have derived in Secida find the boundaries of this zone,
noting thatry ,,,, (5.49 is a tight approximation at the left boundary arfd,, ,, (5.47) is a tight
approximation at the right boundary. Since the exact mathematical notion of boundary is very
fuzzy, we will take them as the intersection of the tangent at the inflexion point of thivg A

curve and- = 1 orr = 0. After going through the calculations, one gets the following expression
for the left boundary

_ (afe)?
Au= e (14 pA) + ¢, (6.58)
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and

(Cl + 62)62

Ay —
H 1= A

(6.59)

for the right boundary. Figuré.6 shows an example of these boundaries.

Figure 6.6:1llustration of the calculations in Secti@?Z2. The vertical lines are the zone boundaries.
W =pt =1, =al, pf! =0.9, p* =0.1).

6.3 Optimal Capacity Splitting

So far we have concerned ourselves with analysing a system with given servicerated " .

From a system designer’s point of view, the question that is of more importance is: Given a traffic
arrival pattern §%, \¥ o” o) and a certain average service capagity how should it be split

over theL and H phases so as to minimise the mean response times? Is load balancing across the
L andH phases a good policy?

Let
oot
ol + ot
Lot
p OzL—i—O./H

Instead of finding the optimal split of service capacity for some setting'sgfwe will find that
policy which minimisest[N*~°]. We hope this policy will provide near optimal response times
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for all scales of switching rates. Formally, the optimization problem for minimizihy~—°] is:

o u M DY

minimize D m+p m
over  uff u*

subjectto  puf + ptut = pf

p >0

The solution to this optimization problem is straightforward and is given by,

A //\H
He — \NH (A — 2\ 6.60
iz (w )pH N (6.60)
A/ \L
plr = NE o (pt = A A (6.61)

pH,/)\H +pL AL

For this solution,lj—i > MATL and (uff* — M) > (ul* — A\L). Also note that load balancing

<2—§ = z—ﬁ = 2—?) is notthe optimal solution. Figur6é.7 shows how the above capacity provision-

ing policy performs in comparison with the optimal capacity splitting policy. As can be seen from
the figure, minimisingz[NV*~°] gives near-optimal mean response times for all scales of switching
rates. An important implication of this fact is that it is not only sometimes good to have variability

in the arrival process but in fact it esirable By splitting capacity intelligently over the high

arrival rate and low arrival rate phases, one can get lower mean response times than if the system
had a fixed arrival rate.

—ENlgye —ENlop,

---Optimal fora - 0 ---Optimal fora - 0| |

Load Balancing Load Balancing

10" 107 10° 107 10° 107

@M =18, =01 (b) M =0.95, \F = 0.1

Figure 6.7:lllustration of the optimalZ[N] as a function ofx (= o' + o*). The dashed curve
representsd’|N| using the optimal splitting of service capacity and the solid curve represents the
E[N] curve obtained by setting’” = p* andu? = p**. In all casesi = 1 anda = o”.
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7 Results — Stochastic Ordering

Most results in queueing theory describe the experience of an arbitrary arrival to a system. But,
in a time-varying system, an arrival may know that she is not “arbitrary”; she may know whether
she is arriving into a high load or a low load period. In this case the salient question, as far as the
arrival is concerned, is not about arbitrary arrival’'s experience, but rather abddr experience
(conditional on the type of period into which she arrives).

To explore this question we comparé?, N*, andnN*" stochastically, where the last term denotes
the number in system seen by an arrival tstationaryqueue with the same average load, as
our time-varying system.

Note that the distribution of future service rates, and thus response tiocmmidetely determined

by the number in system seen upon arrival and the type of period arrived into. Moreover, if only
arrival rates vary (i.e. if service rates are constant), stochastic orderings for number in system
immediately translate into stochastic orderings for response times.

Intuition leads one to believe that an arrival into a high load state should see more customers
than one arriving into a low load state in expectation, but whether there is a stochastic dominance
between these, that i&” >,, N’, is not obvious; we prove this to be true. Furthermore, one
might also believe that an arrival during a high load state would see more customers than an arrival
into the average system, and that an arrival into the average system would see more customer than
an arrival during the low load stat&]” >, N >, NT. Surprisingly, we find that this statement

is only partially true: The first inequality holds but the second does not in general. Thus our system
exhibits a striking lack of symmetry.

We start with a preliminary result:

Lemma 7.1 Given anM /M /1 queue with loac and stationary distribution’, if we start this
system with an initial distributiorX (0), then

X(t)>aqg X(t+s)>q X Vs, t>0
<
Pr{X(0) = j} = p Pr{X(0) =j — 1}

The directions of all the inequalities can be reversed to get the condition for a stochastically in-
creasing system.

Proof: Define a discrete time processsuch that”(0) =, X (0). Fori > 0, Y(:) evolves as:

, Y(i—1)+1 w.p. A
(i) = { V(=1 = 1)* wp. 22

We couple the processes andY as follows: sinceX (0) =, Y (0) we choose the same initial
value for these. Set timers according to a Poisson process withurat®) and at the'” expiration
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of the timer (say at;) we setX (¢;) = Y (¢). Using this coupling,

X(t) >0 X(t+5) >0 X Vs,t>0
—

We first examine the condition faf (i + 1) < Y (4):

PH{Y(i+1) > j} <PH{Y(i) > j}

A
PHY () = j = b5y + PrY () 2 j + 155 < PrY () 2} (525 + 545
<
PHY (i) > j — 1} = PHY (i) 2 j}] 52 < [PHY () > j} — PHY (i) > j + 1}] 52
<

PRY (i) =Jj — 1}p < PHY (i) = j}
ThusY (i + 1) < Y (i) iff PHY (i) = j} > pPH{Y (i) = j — 1} Vj > 1, as required. Now, if
Y(i+1) <g Y (i) Vi > 0itimmediately follows that' (i) >, X, Vi > 0, becausé’(n) converge
in distribution toX asn — oco. To complete the proof, we need to show that
PHY (i) = j — 1}p < PHY (i) = j} Vj>0
implies
PH{Y(i+1)=j—1}p<PHY(i+1)=j} Vj>0
which follows forj > 1 since:
P{Y(i+1)=j}
. . A . . 7
=PHY()=j—1}——— 4+PHY(i)=j+ 1} ——
Y (0) = = Ty, +PAY () =+ 5
. . A . 1 M
> =5 -2 — "
> [pPHY (i) = 2}]A+u + [pPHY (i) J}]AJFM
=pP{Y(i+1)=j—1}
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Forj =1, we have
P{Y(i+1) =1}
B N A N i
=PH{Y (i) = O}A T +PH{Y (i) = 2}—>\ y

. PH : H
2 PrY (@) = 057 + [pPY () = =
= p[PHY (i) = 0} + PH{Y (i) = 1}]ﬁ

— pPHY (i + 1) = 0}

For p > 1, the system cannot decrease stochastically because the stationary distribution does not
exist. The condition for such a system to be stochastic increasing is the same as thatja/an
with p < 1. n

Theorem 7.2 For our alternating load system,

NH Zst NL

Proof: We will prove that starting an/ /M /1 with load p* and initial distribution agV satisfies
the conditions of Lemma.1 and will result in a stochastically decreasing process. Then, difice
is the random variable for the number of jobs at a time chosen from the distrikution’ ), it too
will be stochastically smaller than the initial distributiaki/”.

By factoring the polynomials in the numerator and the denominat@.a#we can Writefﬁf(z)
as:

ﬁ?{(z) _ i (6 —2)(z—x)
MM (2 = a)(z = b)(z — x)
B ﬁ (6 —2)
T (z—a)(z - b)
where(0 < y < 1, with saya < b. (As mentioned in Sectiof, the denominator has a rogtin

(0,1) and the numerator must also have a root equal for the z-transform to converge in the
unit disc|z| < 1.) Similarly

(7.62)

= 5 (v—2)
[ (2) = ,O_Lm (7.63)
The fact thata, b, y, 6 and~ are all real forp* < 1 can be easily verified. Als®@,y > a since
the z-transform is an increasing function ef it must become negative via a discontinuity. Using
TL(0) = 7t andII# (0) =
§=pfab, ~=plab (7.64)
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Evaluating 4.19 for information about the roots and b, we haveF(1/p) > 0, F(1) >
0, F(1/p*) < 0, F(1/p*) < 0. Therefore:max{l, »} < a < 5 < - < b. Combining
these with7.64: 1 <a <y <b <.

Letp!’ = Pr{N¥ = i}; to derivep!, we will expand 7.62).

=i [ () -3 (=)
“ o

) 1 ) 1
202 -1)=—(-=1)=p+--- 7.65
e {(a > a? (b b? + ( )
Note that the last representation is what we would obtain by writing out the spectral expansion
solution, with% and% as the two eigenvalues and the probability distribution as the sum of two

geometric distributions.

H
Let v/ = % From (7.65),

k3

oD (-1
(VR ()
_Cu1+1 7,/,Ul+1
QUi

Cut ! — it Cut ! — it
- (M) (Ge—e)
(Cui+l o nvi+1)2 o CT]UiUi(UQ + U2) + C’I’]UiUi(UQ + UQ)
(o — ) (Gt — o)
(Cuf — ) (Cu 2 — q™*?) | Gpuiv(u? + 0 — 2uv)
(Cut — o) (CuH T — i) (it — ) (Gt — i+

P < L)
i+1 (Cuz _ nvz)(guz—i-l _ nvz+1)
> Vﬁq

Since thep are a mixture of two geometrics, one decaying with raétand the other with
£, and 1 > ;, asi increases the first component dominates and the rate of decay effectively
becomes;; or, lim; ., v = 1 > p~. Also because;” are decreasing;’ > > p’ Vi. m

Theorem 7.3 For our model:
N >, Ne* but N £, N°°.
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Proof: From the proof of Theorei.2, v’ > vf{, Vi > 0 andlim;_, v/ = £ > p*. Therefore,
vH > pA Vi > 0. Then using Lemm&.1, N¥ >,, N*",
Returning to the proof of TheoreihZ, defineg” = Pr{N* > i}. Usingﬁ\L(l) =1in(7.69,
L —1b-1
T _ (- D=1 (7.66)
p (v—1)

Thus, using the formula fop”, derived from the expansion dffz(z) analogous to4.65), and
using (7.66):

Letc = % Theng/ = c;; + (1 — ¢); and0 < ¢ < 1. Also recall thata < ;. Let
k = [log(,,a) c| + 1 so that(ap*)* < c. Now,
1 1 c A
L _ ANk . p
ap; —CJ+(1—C)b—kZ@>(P )" =q

Clearly,Vj > k, ¢* > qu and henceVZ #,, N**. Infact, NZ =, N*" if and only if p* = p? =

pr. ]

Above we saw howV and N* compare stochastically for a particular setting of arrival, service
and switching rates. While such results seem theoretically appealing, these are of limited utility.
In Section4 we showed that?[N], E[NL] and E[N] are monotonic imx (= oF + off). Itis
interesting to ask the question: Do any of these monotonic behaviors extend to the stronger setting

of stochastic monotonicity. We conjecture the following.

Conjecture 7.4 For given values ofi{"}, A%} and the ratioa” /o', N increases stochasti-
cally as switching ratex (= o + o) decreases.

8 Conclusion

In this paper we have considered very basic, yet open, questions regarding the response time of a
gueue with time-varying load. We have found that the response time can both increase or decrease
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when the load fluctuates more slowly, and we have derived a sistgui& criterionto specify the
behavior. We have also proven the firsbnotonicityresults for systems with time-varying load,

as well as the firsstochastic orderingesults for these systems. Finally we have provided the first
results on theshapeof the mean response time in a queue with fluctuating load, as a function of the
rate of fluctuation and other input primitives. These latter results were enabled by the derivation of
a series of approximations for the mean number of jobs in the system, which are accurate and also
very simple and closed-form, telling us how the shape of the mean number of jobs is affected by
the input primitives.

We hope that our research will stimulate others to ask further fundamental questions about time-
varying systems. For example, we have seen #jaf], E[N*] and E[N] are all monotonic in

«. Further, we conjecture that a stronger result may exist, namely that the random vaifaise
stochastically monotonic in. However this is entirely non-obvious, particularly singé is not
stochastically monotonic.
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A Proofs

A.1 Proof of Lemmal6.1

By combining @.41) and 4.43) using the notation introduced in Definiti&nl, we get the follow-
ing equation relating\ andr:

A%y [ A ro(p? — p*)(u — p?)
C1

} — Ar [rves + ei(v+ pM)] +cf(1—1) =0 (A.67)

The above is a quadratic equationdnwith coefficients involving-. We can solve for\ in terms
of r in closed form as

rvey + c1(v + pt) — \/[rvcz +e(v+pMP 431 —r)v [pA + —m(pA_pL)(u_pA)]

C1

A —

Cc1

9 [pA 4 Tv(pA—pL)(u—pA)}

2¢2(1—r)
— r

rveg + (v + pA) + \/[T’UCQ + e (v + pA)]2 — 431 —r) [pA i Tv(pA*ﬂcLl)(upr)}
(A.68)

The sign of the discriminant in the first expression has to be negative betausé) asr — 1.
This gives:

dlogA  dlog () _ dlogp(r)
dlogr  dlogr dlogr
B 1 r dp(r)

1—r p(r) dr

wherep(r) is the expression in the denominator&f8). Sinced < r < 1, = < —1. Therefore
we only need to prove thé% > 0.

Caselic; >0

The term outside the radical ji{r) is increasing in-. The polynomial inside the radical j#{r) is

a quadratic where the coefficient:dfis positive. It will suffice to show that the coefficient ofn
this quadratic polynomial is also positive. The coefficient @i the quadratic polynomial inside
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the radical ofp(r) is:

2ver [ea(v + p) + 2e1p™ = 20(p" = pP)(u — p)]

=2v¢, [{ — )0 =p") = (0 =u)(p* = p")} (v + p?) + 2e1p" = 20(p" = p")(u - p?)]

=2v¢; [(u— p { —p")(w+pt) = 20(p" = p")} + (v —w) {207 (v = p") = (p" = p") (v + ph)}]
=2vey [(u = p)(w+p) + (0 = u)(p" + p") (v = ph)]

>0

Since the coefficients of all terms involvingn p(r) are positive,‘l”# > 0.

Case 2:c; <0
In this case the coefficient of in the term outside the radical is negative and a more tedious
analysis is required. Let,

f(r) = rvey + er(v + p?)

g(r) =4ci(1 —r)v {pA +

ro(pt — pt)(u — pA)}

8]

Now,

o) 20 = T (F0) + VPG —90)) 20

2()'(r) = g 0)

2/ — o)

= (0 + A0 o)~ A7) ()5 ) 2 0

We first show thay/(r) < 0

= f(r)+

g'(r) = deo [u(p™ = pP)(u = p*) = per = 2rv(p™ = pP)(u — p)]
Sinceg” (r) = —2v(p” — pL)(u — p?) < 0, to proveg'(r) < 0 it suffices to show thay’(0) < 0.

g(0) <0 = v(p" = p")(u— PA) P —u)(v—p") <0
= - [0~ {vl—) -1
(v—U)[(p"‘ +{p 1)+p(1—p)}]<0
= — [(u —p™) ) {v(1 N+ pX( (v—1}+@w-u) {p 1)+pL(1—pA)}]§0
“— <0
Let



Proving-<Lp(r) > 0 is equivalent to proving(r) > 0. For this, it suffices to show that(r) > 0
)

andq(0) > 0.
Claim: ¢/(r) > 0
Proof:

q'(r) =24"(r)lg'(r) = 2f(r) f'(r)]

sincef”(r) = 0. We knowg”(r) < 0. Further consider

Now,

and,

s(0) = ¢'(0) — 2f(0) f'(0)
= 2610 [20(p" — o) — ) — 201 — er(o + )
= 20 [20(p" — o) — ) — 20 (0 — )0 — ")
—(u—p")(v pL)(v + o) + (0 —u)(p* — p") (v + p?)]
= —2c10(v = p) [(u = pM) (v + p*) + (v = W) (p" + p")]
<0

u —
u —

Therefores(r) < 0 and combiningy/(r) = 2¢”(r)s(r) > 0.
Claim: ¢(0) >0
Proof:

q(0)

2
oz = 00" =" u=p") = pler)” = ea(v ") (o™ = p")(u = p?) = pler) + chup?
1

Now the polynomiak? — cy(v + p*)x + c2vp” is negative only in the intervdk,v, cop?). But,
2

v(p? = p")(u—p*) = pler
=v(p® = p")(u—p") — p* (v —u)(v—p")
=v(u—p") {(v—p") = (v=p")} = (0 —w) {v(p* = p") + p"(v - p")}
e — (0= p*) [o(u = p") + o0 — )]
<cov
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Thereforeg(0) > 0.
Combiningg(0) > 0 andg’(r) > 0, ¢(r) > 0 and hencelp(r) > 0.
Hence,

dlog A 1 r dp(r)
dlogr ~ 1—r p(r) dr
1
= 1-r
< -1
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