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Abstract

Systems whose arrival or service rates fluctuate over time are very common, but are still not well
understood analytically. Stationary formulas are poor predictors of systems with fluctuating load.
When the arrival and service processes fluctuate in a Markovian manner, computational methods,
such as Matrix-analytic and spectral analysis, have been instrumental in the numerical evaluation
of quantities like mean response time. However, such computational tools provide only limited
insight into thefunctional behaviorof the system with respect to its primitive input parameters:
the arrival rates, service rates, and rate of fluctuation.
For example, the shape of the function that maps rate of fluctuation to mean response time is not
well understood, even for an M/M/1 system. Is this function increasing, decreasing, monotonic?
How is its shape affected by the primitive input parameters? Is there a simple closed-form ap-
proximation for the shape of this curve? Turning to user experience: How is the performance
experienced by a user arriving into a “high load” period different from that of a user arriving into a
“low load” period, or simply a random user. Are there stochastic relations between these? In this
work, we provide the first answers to these fundamental questions.





“Characteristics of queues with non-stationary input streams are difficult to evaluate,
therefore their bounds are of importance.”

-TOMASZ ROLSKI [27]

1 Introduction

Motivation and model

The vast majority of queueing models assume a stationary process in order to derive performance
characteristics, such as mean response time or mean number in system. In reality, computer sys-
tems have arrival rates which fluctuate over time. Furthermore, when the arrival rate is high, it is
common to try to compensate by increasing the service rate, possibly by adding additional servers.

System designers often try to use standard queueing theorems, such as the stationary M/M/1 for-
mulas, to predict the performance of their system. However, when the load fluctuates over time, it
is not clear which stationary formula to use. One can try to average the load in some way over time,
and use a stationary M/M/1 with the “average load,” to predict system performance. However, as
many system designers know, this is a very poor estimation of mean behavior. Furthermore, it
completely ignores the differences in user perceived performance depending on whether the user
arrives into a high-load or low-load state.

As people have become aware of the effects of fluctuating load, mathematical tools have been
developed, such as matrix analytic methods and spectral analysis, which allow one to numerically
evaluate systems in which the arrival rate and/or service rate change over time according to a
Markovian process. While such tools provide numerical values for time-average behavior, they
provide only limited insight into the functional behavior of the system with respect to the input
parameters. These methods don’t tell us how the mean response time is affected by the rate of
fluctuation between high and low load, whether this is increasing or decreasing, whether it is
monotonic, etc. These methods don’t give us a complete sense of how the results vary as a function
of the other input primitives, such as the arrival rate and service rate, or which parameters are most
important.

In order to consider such questions, we evaluate a specific model for fluctuating load, shown in Fig-
ure1.1. The system alternates between a “high” state and a “low” state, according to a Markovian
process, where the system is in “high” for an exponentially-distributed time with rateαH and in the
“low” state for an exponentially-distributed time with rateαL. While in the high state (respectively
low state), arrivals occur according to a Poisson Process with rateλH (respectively,λL). Also while
in the high state (respectively low state), services complete with exponential rateµH (respectively,
µL). We defineρH = λH

µH andρL = λL

µL and assume throughout thatρH ≥ ρL (but wedo not

assume any relationship betweenλH andλL or betweenµH andµL). We allowρH > 1, provided
that the system is still stable, as defined in Section2. Note that the above model encompasses as
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special cases models with ON/OFF arrival processes (whereλL = 0) and/or breakdowns (µH = 0,
in this case we defineρH = ∞). Even our simple Markovian model generates non-obvious and
counter-intuitive behavior, and provides insight for more general models. In Section3, we will
consider a more general variant of our model where we allow for a burst of arrivals at each arrival
instant, where the burst size can have an arbitrary distribution.

Hλ ,H

µL
λ ,L

exp(     )αL exp(     )αL

exp(     )αH exp(     )αH

µ

Figure 1.1:Alternating Load Model

Prior Work

Time-varying models, have been very widely studied since the earliest work in the 50’s, continuing
unabated to the present. (In the interest of brevity, we focus on models having non-deterministic
switching behavior.) The earliest reference of this type is Clarke [9], who used generating functions
to derive expressions for the number in queue. Soon thereafter other researchers applied transforms
and generating functions to related models: Neuts [20], Çinlar [7, 6], Arjas [3]. Yechiali and Naor
[34] used generating functions to reduce the solution of our model to that of obtaining the roots of
a cubic equation. Using similar techniques, de Smit [10] obtained a Wiener-Hopf factorization for
systems with MAP arrivals and general service; Sengupta [29] analyzed a system with Markovian
arrival and service distributions and service interruptions; Takine and Sengupta [32] generalized
[29] to MAP arrivals and general service; Adan and Kulkarni [2] allowed dependencies between
successive arrivals and services in a MAP/G/1 framework; and finally Harrison and Zatschler [12]
numerically derived the entire sojourn time distribution for very general Markovian systems which
they call G-Queues.

A second class of highly effective analytical tools for time-varying models are the Matrix Ana-
lytical and related techniques. Neuts [21] used Matrix Analytical techniques to obtain numerical
results for our model, observing that its behavior could be qualitatively different from the stationary
M/M/1; Ramaswami [25] allowed general service times and Markovian Arrival Processes (MAP);
Lucantoni, Meier-Hellstern and Neuts [15] modeled phase-type service and added server vacations;
Sengupta [30] allowed dependencies between semi-Markov interarrival and semi-Markov service
times; Takine et al. [31] combined Matrix Analytical techniques with generating functions to allow
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multiple customer classes and priorities; Lucantoni and Neuts [16] allowed batch MAP arrivals;
Mitrani and Chakka numerically compared Matrix Analytic and spectral expansion techniques
[18]; and finally Asmussen and Møller [4] solved matrix equations to get the entire waiting time
distribution for a queue with MAP arrivals, phase-type service and multiple servers.

It is thus clear that researchers have been highly effective at developing methods to obtainnu-
merical results, but what about basic properties, intuitive insights and simple approximations?
Researchers have been at work in these directions as well. One of the classic conjectures in queue-
ing theory was posed by Ross [28], who conjectured that increasing variability (fluctuation rate)
in a Poisson arrival process would (weakly) increase mean customer delay, when the service rate
does not vary. Rolski [27] confirmed this conjecture, and more recently Miyoshi and Rolski [19]
extended the proof of Ross’s conjecture to more general queueing models. Heyman [13] pro-
vided a contrasting insight – he gave an example of a deterministically varying arrival function
that performs no worse than the stationary version. We continue this tradition in our current work
– generalizing [13] by finding simple conditions which guarantee that a stationary system and its
time-varying analog perform identically in our Markovian setting.

Another way to garner intuition for time-varying systems is to analyze limiting regimes. Very
early on, Newell [22, 23, 24] used diffusion approximations for time-varyingM/M/1 queues.
Later, Massey [17] used uniform acceleration to derive the transient behaviors; Abate, Choud-
hury and Whitt [1] derived tail asymptotics for the waiting time and workload in MAP/GI/1 and
MAP/MAP/1 queues; and Rider [26], Gelenbe and Rosenberg [11], Choudhury et al. [8], and Yang
and Knessl [33] evaluated the special case when transitions happen much more slowly than arrivals
or departures. Finally, Knessl and Yang [14] restricted themselves to a case in which the traffic
intensity takes a very specific form, with the aim of generating insights for more general cases.

Our Goals

As we saw above, the prior work is very effective at producing computational results for our, and
even more complex models. However, it is more limited at providing intuition. Part of the problem
is that all these methods (generating functions, Matrix Analytical, Spectral Expansion) involve cal-
culating the root of a cubic equation. While in theory a cubic polynomial can be solved analytically,
in practice the solution is so cumbersome (dozens of lines inMathematica) that there is no way
to get a sense of the effect of the input parameters on the system performance. For example, the
prior work does not provide a sense of the shape of the response time curve, nor how response time
relates to the input primitives, such as theαH andαL parameters or theλH , λL, µH , µL parameters.
Our goal in this work is to get this type of intuition.

One of the simplest/most fundamental questions is what happens when the rate of fluctuation (the
α’s) either approach zero or approach infinity. The prior work has not yet provided answers to
even the very basic question of whether fast or slow fluctuations lead to higher mean response
times. Ross [28] conjectured, and Rolski confirmed [27], that fluctuation leads to higher mean
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response time for the case where the mean service rate is a constant (µH = µL = µ). In our more
general model, however, where the service rate changes (µH 6= µL), we find in Section2 that lower
rate of fluctuation doesnot always lead to higher mean response time. There are cases where the
response time is insensitive to the rate of fluctuation, or can even drop as the rate of fluctuation
decreases. We derive a criterion, based on the notion of “slack,” (sH andsL) wheresH = µH −λH

andsL = µL − λL, which determines whether faster or slower rates of fluctuation result in better
system performance.

Another fundamental question in the same vein is whether response time is always bounded by
the two asymptotes, the case of high fluctuation rate and low fluctuation rate. Specifically, does a
system with a “medium” fluctuation rate always have mean response time in between those two
extreme cases? And if so, does mean response time change monotonically between those two
extremes? To answer these questions,we start by deriving the transform for the number of jobs
in our model (Section3), and then we analyze a certain root of the denominator of this transform
which allows us to answer these questions affirmatively in Section4.

Our work also produces simple and accurate approximations for the mean number of jobs in the
system, see Section5. We do this by again starting with the transform derived in Section3, but
deriving approximations for its roots. We provide both a simple closed-form approximation which
holds for all fluctuation rates (α’s), as well as even simpler approximations which specialize for
the case of only “high” or “low”α. While computational methods exist for obtaining the exact
mean response time, our simple and accurate approximations have advantages over the exact re-
sults. From a computational perspective, the fact that our approximations are closed-form solutions
means that they can easily be computed on any spread-sheet. More importantly our approxima-
tions provide the first results about theshapeof the mean response time curve as a function of the
fluctuation rate,α. In particular, they provide a simple and accurate approximation for the curve’s
functional form. The advantage of the simple functional form is that it shows which primitives are
most important in determining mean response time, and allows for further sensitivity analysis. We
also derive the closed-form fluid approximation for the mean number of jobs in the system for the
caseλH > µH , and compare it numerically with the exact value.

In Section6, we use our analysis to provide some insights into the behavior of the fluctuating
load queue. We first ask the question: How does the mean number of jobs in the system vary
as we scale the arrival and service rates? We find that the answer in this case is different from
that in aGI/GI/1 queue, and, in fact, varies depending on the “slacks”. Next we look at the
effect of scaling the switching rates on the mean number of jobs, and identify the regimes where
this scaling has a more pronounced effect, and the regimes where there is negligible effect on the
mean number of jobs. Finally, we consider the problem of optimal capacity provisioning in a
queue with fluctuating arrival rates, but a given total average service capacity. We provide a simple
expression for near-optimal capacity splitting (irrespective of the switching rates). Further, our
findings prove that under scenarios whereµH andµL are under the control of a system designer,
optimal capacity provisioning with a fluctuating arrival process leads to a smaller mean number
of jobs, when compared to a system with a constant mean arrival rate. Thus, a fluctuating arrival

4



10
−4

10
−2

10
0

10
2

0.7

0.8

0.9

1

1.1

α = α
L
+α

H

10
−4

10
−2

10
0

10
2

0.7

0.8

0.9

1

1.1

α = α
L
+α

H

10
−4

10
−2

10
0

10
2

0.7

0.8

0.9

1

1.1

α = α
L
+α

H
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Figure 2.2:Illustration of the behavior of E[N] as a function ofα, described in Theorem2.2. For
all three figures, we fixρL = 0.2 andρH = 0.6, andαL = αH . The rest of the parameters are as
follows: (a)µL = 1, λL = 0.2, µH = 1, λH = 0.6 ; (b) µL = 1, λL = 0.2, µH = 2, λH = 1.2 ; (c)
µL = 1, λL = 0.2, µH = 4, λH = 2.4.

process is desirable as it can lead to more “efficient” resource provisioning.

Finally, while our results thus far have dealt with the overall time-average mean performance be-
havior, it is also of practical importance to understand how this time-average mean compares to
the experience of a customer arriving into a “high” (H) period or a customer arriving into a “low”
(L) period. Once again computational results can be used to evaluate specific instances, however
we seek a qualitative ordering. We answer this question in Section7, comparing three quantities:
the number in system witnessed by an arrival into anH period, the number in system witnessed
by an arrival into anL period, and the number in system witnessed by an arrival into a stationary
system whose arrival rate is the weighted average of the two arrival rates and whose service rate
is the weighted average of the two service rates. We find that astochastic dominancerelationship
does exist. However, counter to intuition we find that while the number of jobs seen by an arrival
into the ‘average’ system and the number of jobs seen by an arrival into anL phase are both sto-
chastically dominated by the number of jobs seen by an arrival into anH phase, the number of
jobs seen by an arrival into anL phase isnotstochastically dominated by the number of jobs in the
average system.

Throughout the majority of the report we investigate the characteristics of the mean number in
system,E[N ], as through application ofLittle’s Law (using the time-average arrival rate) this
yields results for mean response time.

2 Anomalous Behavior of Fluctuating Load Queue

We start our work by asking the most basic of questions: How does the mean number of jobs
in the system,E[N ], compare in the case when the load fluctuates slowly (lowα), as compared
with the case where the load fluctuates quickly (highα)? For all the work that has been done on
numerically evaluating instances of our model, the question of whetherE[N ] is higher under low
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α or high α has not been addressed. Although intuition would tell us that lowα should lead to
higherE[N ] because there is seemingly more variability in the load in this case, this fact has not
been proven. In this section we prove that lowerα doesnot always lead to higherE[N ], and we
derive a criterion that tells us whenE[N ] increases for lowα and when itdecreasesfor low α.
Before we can state our theorem, we need to define a quantity which we callslackand which we
use throughout the paper.

Definition 2.1 Theslackduring the low load period is defined assL ≡ µL−λL. The slack during
the high load period is defined assH ≡ µH − λH .

Recall that we make no assumptions aboutµL, µH , λL, or λH , except to assume thatρH ≡ λH

µH >

ρL ≡ λL

µL . We allowρH > 1, so long as stability is met. The remainder of the section will be
spent proving Theorem2.2below; providing a condition for stability; and discussing the nebulous
concept of “load,” in a load-fluctuating system.

Theorem 2.2 Letα = αL + αH .
If sL < sH , thenE[Nα→0] < E[Nα→∞].
If sL > sH , thenE[Nα→0] > E[Nα→∞].
If sL = sH , thenE[Nα→0] = E[Nα→∞].

Corollary 2.3 If µH = µL, thenE[Nα→0] ≥ E[Nα→∞] for all settings. This confirms Ross’s
Conjecture.

We start with a discussion of the two extreme values ofE[N ] whenρH < 1; the case whereαL

andαH are both very low, and the case whereαL andαH are both very high. When theα’s are
very low, E[N ] can be shown to be a weighted mixture of the mean numbers of jobs under two
stationary M/M/1 queues: one with loadρL and the other with loadρH . This may seem obvious,
but it will be formally verified via our analysis in Section3. Specifically, we have:

E[Nα→0] =

ρL

1−ρL · 1
αL + ρH

1−ρH · 1
αH

1
αL + 1

αH

By contrast, whenαL andαH are very high, fluctuations are very rapid. In this case, our analysis
in Section3 will show that the system converges to a single M/M/1 queue with loadρA:

ρA =
λA

µA
=

λH

αH + λL

αL

µH

αH + µL

αL

whereµA andλA are the average service and arrival rates,

µA =
µH

αH + µL

αL
1

αH + 1

αL
, λA =

λH

αH + λL

αL
1

αH + 1

αL
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That is,

E[Nα→∞] =
ρA

1− ρA

Observation 2.4 We observe thatρA as defined above serves as astability criterionfor the system
under allαH andαL values, sinceρA < 1 is equivalent to saying that the time-average arrival
rate is less than the time-average service rate. However,ρA does notrepresent thetrue load.
Specifically

ρA 6= 1− π0

whereπ0 represents the fraction of time that the system is idle. In fact, we conjecture that deter-
miningπ0 is as hard a problem as determiningE[N ]. (These last two observations were also made
by Yechiali and Naor [34].)

We now prove Theorem2.2.

Proof: The necessary and sufficient condition for
E[Nα→0] < E[Nα→∞] is:

ρL

(1−ρL)αL + ρH

(1−ρH)αH

1
αL + 1

αH

<
ρA

1− ρA
(2.1)

which reduces to

λH(1− c) + λL

(
1− 1

c

)
> 0

wherec = µL−λL

µH−λH . Or,

λHc2 − c(λH + λL) + λL < 0

The solution to the above inequality isc ∈
(

λL

λH , 1
)

. Note thatc > λL

λH is equivalent toρH > ρL,

which is trivially true. Therefore the only other condition isc < 1, or (µL − λL) < (µH − λH).
Note, we are assumingρH < 1, otherwise this behavior is not possible. The remaining cases in the
theorem are proven analogously.

The behavior of the fluctuating-load queue is illustrated in Figure2.2.

Intuition for Theorem 2.2

While the proof of Theorem2.2 was purely algebraic, we can provide some intuition for the ob-
served behavior. Recall that in anM/M/1 queue with arrival rateλ and service rateµ, the mean
response time is given by1

µ−λ
. That is, the mean response time of anM/M/1 queue is the inverse
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of the slack between the arrival and service rates. Thus if we compared twoM/M/1 queues, one
operating at ratesλH andµH and the other at ratesλL andµL, when(µH − λH) > (µL − λL), the
former system exhibits a lower mean response time.

Now let us compare the fraction of customers departing during theH phase in the fluctuating load
queue whenρH < 1. As α → 0, almost all customers arriving during theH phase depart during
the sameH phase. Therefore, λH/αH

λH/αH+λL/αL fraction of customers depart during theH phase as
α → 0. Whenα →∞, the fraction of customers departing during theH phases is just the fraction
of service capacity offered during theH phase, that is, µH/αH

µH/αH+µL/αL .

As can easily be seen, the fraction of customers departing duringH phase increases by a factor
of ρH/ρA as the switching rates decrease from∞ to 0. Thus whensH > sL, as switching rates
decrease, an increasing fraction of customers experience lower mean response times due to lower
slack offered in theH phases causing a lowering of overall mean response time and hence mean
number of jobs in the system.

3 Analysis

We first define the following quantities.

Definition 3.1 NL is defined as the random variable for the number of jobs at the instants when
the system switches from a Low (L) to a High (H) phase. Thez-transform ofNL is denoted by
Π̂L(z). Similarly, NH represents the random variable for the number of jobs at the end ofH

phases and̂ΠH(z) denotes thez-transform ofNH .

NL andNH are illustrated in Figure3.3. Our approach is based on deriving the expressions for
Π̂L(z) andΠ̂H(z). In Section3.1we prove that knowledge of thedistributions at switching points
suffices to determine the distribution of the number of jobs in the system at a randomly sampled
point in time. To derivêΠL(z) andΠ̂H(z), we will first obtain atransition functionwhich maps the
distribution of number of jobs at a switching point to the distribution at the next switching point
(Section3.2, equation (3.6)). This transition function will then allow us to expresŝΠL(z) in terms

of Π̂H(z), and vice-versa (see Section3.3, equations (3.9)-(3.10)). Finally we solve these to get

expressions for̂ΠL(z) andΠ̂H(z) in terms ofπ0 only (see Section3.3, equation (3.8)). All the
transform derivations described above will assume a more general model than we have considered
so far, where we allow for aburst of arrivalsat each arrival instant, where the burst size can be
arbitrary.
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Figure 3.3:Switching Points used in Analysis

3.1 Conditional PASTA

Let N denote the random variable for the number of jobs in the system at a randomly sampled
point. The following theorem relates the distribution ofN with those ofNL andNH .

Theorem 3.2 N has the same distribution asN , where

N =

{
NL w.p. αH

αL+αH

NH w.p. αL

αL+αH

Proof: Let Π̂(z) be thez-transform ofN . Proving the above theorem is equivalent to proving

Π̂(z) =

cΠL(z)
αL +

dΠH(z)
αH

1
αL + 1

αH

(3.2)

Let Π̂L(z, t) be thez-transform for the number of jobs in the systemt units of time after the start

of theL phase, conditioned on the phase being longer thant, and letΠ̂H(z, t) be the corresponding

quantity forH phase. Note that̂ΠL(z, 0) = Π̂H(z). Also by conditioning on the length of anL
phase,

Π̂L(z) =

∫ ∞

u=0

Π̂L(z, u)αLe−αLudu (3.3)

We will use renewal-reward theory to prove equation (3.2). The renewal cycles consist of a single
L phase followed by a singleH phase. The instantaneous reward earned at timet is given by
r(t) = zn(t) wheren(t) is the number of jobs in the system at timet. Clearly,Π̂(z) is the long run
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average rate at which reward is earned. Therefore,

Π̂(z) =
E[reward inL phase] + E[reward inH phase]
E[length ofL phase] + E[length ofH phase]

=

(
1

αL
+

1

αH

)−1 [ ∫ ∞

t=0

∫ t

u=0

Π̂L(z, u)du αLe−αLtdt +

∫ ∞

t=0

∫ t

u=0

Π̂H(z, u)du αHe−αH tdt

]

=

(
1

αL
+

1

αH

)−1 [ ∫ ∞

u=0

∫ ∞

t=u

Π̂L(z, u)du αLe−αLtdt +

∫ ∞

u=0

∫ ∞

t=u

Π̂H(z, u)du αHe−αH tdt

]

=

(
1

αL
+

1

αH

)−1
[∫∞

u=0
Π̂L(z, u) αLe−αLudu

αL
+

∫∞
u=0

Π̂H(z, u) αHe−αHudu

αH

]
(3.4)

=

cΠL(z)
αL +

dΠH(z)
αH

1
αL + 1

αH

(3.5)

The intuition behind Theorem3.2 is the PASTA (Poisson Arrivals See Time Averages) property
exhibited by the Markovian switching process, as we prove next.

Theorem 3.3 The time average distribution of number of jobs in the system duringL phases (re-
spectivelyH phases) is the same as the distribution ofNL (respectivelyNH).

Proof: Consider a slight modification of our system where whenever the system switches fromH
to L, we restart the system with an initial number of jobs sampled from the distribution ofNH . It
is obvious that the time average distribution of number of jobs during theL phases in our original
system is the same as the time average distribution of the number of jobs during theL phases in
this modified system. Now consider another queueing system where we set off timers according to
a Poisson process with rateαL. Whenever a timer expires, we restart the system with some number
of jobs sampled from the distribution ofNH . This can be visualized as seeing only theL phases of
our modified queueing system stitched together. Since the timer events are a Poisson process, by
PASTA, the distribution of number of jobs at these event instants is the same as the time average
distribution, which is the time average distribution of number of jobs during theL phases in the
modified system and hence the same as the time average distribution of jobs duringL phases in the
original system.
To further justify the use of PASTA, the time average distribution of number of jobs in the final
system is the distribution at a randomly sampled point in time. Since the timer events are Poisson,
the distribution of elapsed time since the immediately preceding timer expiration and a random
time instant is also exponential with mean1

αL . Therefore, the distribution at such a ramdom time
is the distribution anexp(αL) time after the start of anL phase, preciselyNL by definition.

Now, since the long term fraction of time spent inL phases is αH

αL+αH and inH is αL

αL+αH , the linear
combination of Theorem3.2 follows. Although we have proved the above result for only one
observable quantity, the number of jobs in the system, the result holds for any observable quantity

10



e.g. square of number of jobs in system, age of the job in service,z-transform of the number of
jobs in service.

To summarize, although we definedNL andNH to be the distributions of number of jobs at switch-
ing points, they are the same as the distributions for number of jobs seen by an arbitrary arrival
duringtheL or H phase, respectively.

3.2 Derivation of Transition functions

Our goal in this section is to derive a transition function which maps the distribution of the number
of jobs at a switching point to the distribution at the next switching point. To do this, we first need
to return to a simpleM/M/1 queue (without fluctuating load), and consider its transient behavior
with respect to the number of jobs at timeT ∼ exp(α), given a distribution on the number of jobs
at time0.

Consider anM/M/1 queue with service rateµ where with rateλ arrivals occur (possibly, more
than1). Let N(t) be the number of jobs in the system at timet andΠ̂(z, t) be thez-transform of
N(t). Let T be an exponentially distributed random variable with mean1

α
. We represent̂Π(z, T ),

the z-transform ofN(T ), by Π̂α(z). The following Theorem expresseŝΠα(z) as a function of
Π̂(z, 0).

Theorem 3.4

Π̂α(z) =
αzΠ̂(z, 0)− µ(1− z)πα

αz − µ(1− z) + λz(1− Â(z))
(3.6)

whereÂ(z) is the z-transform of the burst size distribution and if we letξ denote the root of
denominator of(3.6) in the interval(0, 1), then,

πα =
αξΠ̂(ξ, 0)

µ(1− ξ)
(3.7)

The constantπα is equal to the idle probability atT .

Proof: The proof of the above theorem is a trivial extension of Bailey’s [5] work on transient
analysis ofM/M/1 queues to incorporate bursts. We mention it here for completeness. Letaj be
the probability that the burst size isj (wlog, a0 = 0). Also, letpi(t) be the probability that there
arei jobs in the system at timet. We can now write the differential equations for this system:

dpi(t)

dt
= λ

i∑
j=1

ajpi−j(t)− (λ + µ)pi(t) + µpi+1(t)

p0(t)

dt
= −λp0(t) + µp1(t)

11



which gives,

z
∂Π̂(z, t)

∂t
= Π̂(z, t)

{
µ(1− z)− λz(1− Â(z))

}
− µ(1− z)p0(t)

Integrating by parts, we get the expression forΠ̂α(z) as:

Π̂α(z) =

∫ ∞

0

Π̂(z, t)αe−αtdt

=
αzΠ̂(z, 0)− µ(1− z)p0(T )

αz − µ(1− z) + λz(1− Â(z))

To complete the solution we need to findp0(T ) (= πα). The denominator in the expression of
Π̂α(z) has the value−µ < 0 at z = 0 andα > 0 at z = 1 and therefore, a rootξ ∈ (0, 1). For
Π̂α(z) to converge inside the unit disk|z| < 1, ξ must also be a root of the numerator. Hence,

p0(T ) =
αξΠ̂(ξ, 0)

µ(1− ξ)

The transition functions mapping the distribution at the start of anL or anH phase to the end of
the phase is obtained by specifyingµ, λ, α andÂ(z) in (3.6).

3.3 Distributions at Switching Points

The transition function we have derived will now allow us to write fixed point equations, the
solution to which will be the desired expressions for̂ΠL(z) andΠ̂H(z). To get there, let̂AL(z)

(respectivelyÂH(z)) be thez-transform for the distribution of the burst sizes for arrivals during
L (respectivelyH) phases. LetAL and AH be the mean burst sizes duringL and H phases.
Theorem3.5, gives the expressions for̂ΠL(z) andΠ̂H(z).

Theorem 3.5

Π̂L(z) =
zαHσL + zαLσH − (1− z)σH

z (µLπL
0 )

zαHσL
z + zαLσH

z − (1− z)σH
z σL

z

(3.8)
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where,

σL
z = µL − λLz

1− ÂL(z)

1− z

σH
z = µH − λHz

1− ÂH(z)

1− z

σL = σL
z

∣∣
z=1

= µL − λLAL

σH = σH
z

∣∣
z=1

= µH − λHAH

πL
0 = Pr{NL = 0}

The expression for̂ΠH(z) is completely symmetric to(3.8)

Proof: From (3.6), we can write the following relations

Π̂L(z) =
αLzΠ̂H(z)− µL(1− z)πL

0

αLz − µL(1− z) + λLz(1− ÂL(z))
(3.9)

Π̂H(z) =
αHzΠ̂L(z)− µH(1− z)πH

0

αHz − µH(1− z) + λHz(1− ÂH(z))
(3.10)

whereπL
0 = Pr{NL = 0} andπH

0 = Pr{NH = 0} are unknowns. We can solve (3.9)-(3.10) for

Π̂L(z) to get

Π̂L(z) =
zαLµHπH

0 + zαHµLπL
0 − (1− z)σH

z µLπL
0

zαHσL
z + zαLσH

z − (1− z)σH
z σL

z

(3.11)

By substitutingz = 1 in the above equation we get one equation relatingπL
0 andπH

0 :

µL

αL πL
0 + µH

αH πH
0

µL

αL + µH

αH

= 1−
λLAL

αL + λHAH

αH

µL

αL + µH

αH

(3.12)

= 1− ρA (3.13)

It turns out that there is a very simple explanation for (3.12) based onLittle’s Law. Imagine
stretching theL periods by a factor ofµL andH periods byµH . Now in this transformed time, the
service rate is a constant,1. The switching times are distributed asexp(αL/µL) andexp(αH/µH).

The time average arrival rate scales by a factor of
(

1
αL + 1

αH

)
divided by

(
µL

αL + µH

αH

)
, because

the arrivals that were earlier occurring in
(

1
αL + 1

αH

)
now occur in

(
µL

αL + µH

αH

)
amount of time.

Using similar reasoning, the idle probability of this system is the expression on the LHS of (3.12).
Applying Little’s Law at the server in this scaled system gives (3.12).
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To complete the solution, we need one more equation relatingπL
0 andπH

0 . Using PASTA we know
that

πL
0

αL +
πH
0

αH

1
αL + 1

αH

= π0

whereπ0 is the long term fraction of the time when system is idle. However,π0 is also unknown
and isnot equal to1− ρA. But, by using (3.12), (3.11) simplifies to (3.8).

Corollary 3.6 WhenÂL(z) = ÂH(z) = z (burst size≡ 1), Π̂L(z) andΠ̂H(z) become:

Π̂H(z) =
zαH(µL − λL) + zαL(µH − λH)− (1− z)(µH − λHz)(µHπH

0 )

zαH(µL − λLz) + zαL(µH − λHz)− (1− z)(µH − λHz)(µL − λLz)
(3.14)

Π̂L(z) =
zαH(µL − λL) + zαL(µH − λH)− (1− z)(µH − λHz)(µLπL

0 )

zαH(µL − λLz) + zαL(µH − λHz)− (1− z)(µH − λHz)(µL − λLz)
(3.15)

Expressions (3.14)-(3.15) agree with those derived by Yechiali and Naor [34]. In the rest of the
paper we will analyze the special case mentioned in Corollary3.6. Again, we can solve forπL

0 and
πH

0 by noticing that the cubic polynomial in the denominators of these expressions has a root in
(0, 1) where both numerators must also be0. Numerically solving for this root, however, does not
achieve our goals of getting simple and intuitive expressions.

4 Results - Monotonicity of E[N]

In Section2, we analyzed how asymptotic behavior of our2-phase fluctuating load queue compares
for the casesα → 0 andα →∞. We are now interested in determining the behavior in the mid-α
range. To be precise, we want to answer questions like: If we fix the values ofµL, µH , λL, λH and
the ratioαL

αH , but start increasingα (α = αH + αL) from 0 to∞, how doE[N ], E[NL] andE[NH ]
behave? Are they always between the asymptotes of Section2? Do they increase or decrease
monotonically withα? What is the asymptotic behavior whenρH > 1?

We will first derive expressions forπL
0 andπH

0 as linear combinations of the asymptotes, and show
that these are monotonic, in Section4.2. Then, in Section4.3, we will introduce the parameter
r, which can be thought of as denoting theratio, or the mixture, of the two asymptotes at the
given parameter setting. We will use this parameterization for our ultimate expressions forE[N ],
recasting the expressions in Section4.2 in terms ofr. These expressions will be used to prove the
desired monotonicity results forE[N ], first for ρH < 1, in Section4.4, and then in Section4.5 for
ρH > 1.

Throughout, we disregard the singular caseρH = 1.
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4.1 Definitions

To clean up our derivations we start with some definitions.

Definition 4.1 The normalized switching rate,∆, is defined as

∆ =
αL

µL
+

αH

µH
(4.16)

The intuition behind using∆ instead ofα is that∆ can be thought of as absorbing the scale of
the problem by stretching theL periods by a factor ofµL and theH phases by a factor ofµH .
This leads to identical queueing behavior (at least at the switching points) but further analysis only
depends onρA, ρL andρH as will be seen later since the service rates are now a constant1 (we will
assumeµL, µH 6= 0 1). Using∆, Equations (3.14)-(3.15), can be rewritten as follows:

Π̂H(z) =
z∆(1− ρA)− (1− z)(1− ρLz)πH

0

z∆(1− ρAz)− (1− z)(1− ρLz)(1− ρHz)
(4.17)

Π̂L(z) =
z∆(1− ρA)− (1− z)(1− ρHz)πL

0

z∆(1− ρAz)− (1− z)(1− ρLz)(1− ρHz)
(4.18)

Definition 4.2 LetF (z) denote the quadratic in the denominators of(4.17) and (4.18):

F (z) = z∆(1− ρAz)− (1− z)(1− ρLz)(1− ρHz). (4.19)

The roots ofF (z) 2 will play an important part in our analysis.

Definition 4.3 We defineχ to be the root ofF (z) that lies in the interval(0, 1). Further, let

θ =

(
1− ρA

1− ρAχ

)

To convince ourselves thatF (z) hasexactlyone root in(0, 1), note thatF (0) < 0, F (1) > 0 and
F (1/ρL) ≤ 0.

4.2 Monotonicity of the π0’s

The following two theorems establish the desired monotonicity property.

Theorem 4.4 For ρH ≥ 1, πH
0 , πL

0 andπ0 decrease monotonically as switching rates decrease.

1When either of these is0, the solution reduces to solving a quadratic.
2It is interesting to note that ifQ(x) represents the characteristic matrix polynomial obtained during the spectral

expansion solution of our fluctuating load queue, thendet [Q(x)]
x−1 = Kx3F (x−1) for a constantK.
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Theorem 4.5 for ρH < 1

(i) πH
0 decreases monotonically as switching rates decrease.

(ii) πL
0 increases monotonically as switching rates decrease.

(iii) π0 decreases monotonically as switching rates decrease if and only ifµL > µH .

Proof: (Theorems4.4and4.5). Our first step is to derive expressions forπL
0 andπH

0 . As mentioned
previously, sinceF (χ) = 0 andχ < 1, the numerators of̂ΠH(z) andΠ̂L(z) must be zero atz = χ
for thesez-transforms to converge inside the unit disk|z| < 1. Therefore,

πH
0 =

χ

(1− χ)(1− ρLχ)
∆(1− ρA)

πL
0 =

χ

(1− χ)(1− ρHχ)
∆(1− ρA)

yielding

πH
0 (1− ρLχ) = πL

0 (1− ρHχ)

Combining this with (3.12) and using the definition ofθ gives simpler expressions forπH
0 andπL

0 :

πH
0 = (ρA)−1[(1− ρA)ρH − θ(ρH − ρA)]

πL
0 = (ρA)−1[(1− ρA)ρL + θ(ρA − ρL)]

We can write the above as follows:

πH
0 = (1− ρA)

[
1− θ

1− (1− ρA)

]
+ (1− ρH)

[
θ − (1− ρA)

1− (1− ρA)

]
(4.20)

πL
0 = (1− ρA)

[
1− θ

1− (1− ρA)

]
+ (1− ρL)

[
θ − (1− ρA)

1− (1− ρA)

]
(4.21)

or equivalently as

πH
0 = (1− ρA)

[
ω − θ

ω − (1− ρA)

]
+ 0

[
θ − (1− ρA)

ω − (1− ρA)

]
(4.22)

πL
0 = (1− ρA)

[
ω − θ

ω − (1− ρA)

]
+

(
(ρH − ρL)(1− ρA)

ρH − ρA

)[
θ − (1− ρA)

ω − (1− ρA)

]
(4.23)

whereω = ρH(1−ρA)
(ρH−ρA)

. By observing thatlim∆→∞ θ = (1 − ρA) and lim∆→0 θ = min (1, ω),

equations (4.20)-(4.21) can be seen as expressingπH
0 and πL

0 as a convex combination of the
limiting cases whenρH < 1. Similarly, equations (4.22)-(4.23) expressπH

0 andπL
0 as a convex

combination of the limiting cases whenρH > 1.
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Sinceχ and henceθ are monotonic in∆ 3, this proves the monotonicity inπH
0 andπL

0 . Sinceπ0 is
a linear combination ofπL

0 andπH
0 , the behavior ofπ0 will also be monotonic between its limiting

valueslimα→0 π0 andlimα→∞ π0. ForρH ≥ 1, it is easy to see that

lim
α→∞

π0 < lim
α→0

π0

ForρH < 1 we have

lim
α→∞

π0 > lim
α→0

π0 ⇐⇒ ρH(µL − µH) > ρL(µL − µH)

SinceρL ≤ ρH , the last part of the theorem follows.

4.3 Parameterization in Terms ofr

While parameterization in terms ofθ is sufficient to show monotonicity ofπL
0 andπH

0 , parame-
terization byθ doesnot yield the simplest expressions forE[N ], which is our ultimate aim. We
identify a new parameterr which will allow us to expressE[N ] as a convex combination of two
limits, similar to what we did above forπH

0 andπL
0 . We will show how to expressE[NL] and

E[NH ] as convex combinations of their limiting curves. Similar expression forE[N ] can be ob-
tained using the following fact proved in Section3.1:

E[N ] =
E[NL]

αL + E[NH ]
αH

1
αL + 1

αH

We start by defining the parameterr for the casesρH < 1 andρH ≥ 1.

Definition 4.6 For ρH < 1, we definer(ρH<1) as:

r(ρH<1) ≡
`(ρH<1) − θ

∆`′
(ρH<1)

(4.24)

where

`(ρH<1) ≡ lim
∆→0

θ = 1 (4.25)

`′(ρH<1) ≡ lim
∆→0

`(ρH<1) − θ

∆
=

ρA

(1− ρL)(1− ρH)
(4.26)

(4.27)

3χ is the root of a polynomial that is the sum of a cubic with roots1, 1
ρL , 1

ρH and a quadratic that is positive

in
(
0, 1

ρA

)
and increases uniformly withα. Therefore,F (z) increases uniformly in

(
0, 1

ρA

)
asα increases, hence

proving monotonicity ofχ.
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Definition 4.7 For ρH > 1, we definer(ρH>1) as:

r(ρH>1) ≡
`(ρH>1) − θ

∆`′
(ρH>1)

(4.28)

where

`(ρH>1) ≡ lim
∆→0

θ =
ρH(1− ρA)

ρH − ρA
(4.29)

`′(ρH>1) ≡ lim
∆→0

`(ρH>1) − θ

∆
=

ρAρH(1− ρA)

(ρH − ρL)(ρH − 1)(ρH − ρA)
(4.30)

Whenever unambiguous, we will suppress the subscripts onr. By the way we have definedr,
limα→0 r = 1 andlimα→∞ r = 0. To obtain the limits mentioned in the above definitions, we first
substitutez =

(
θ−(1−ρA)

ρAθ

)
in (4.19) to obtain the following cubic polynomial:

g(θ) = (ρA)2∆[θ − (1− ρA)]θ

− [θ − 1][θ(ρA − ρL) + ρL(1− ρA)][θ(ρH − ρA)− ρH(1− ρA)] (4.31)

Then,θ is the root of the above polynomial lying in the interval(1− ρA, 1).

We now present one of our main results, expressingE[NL] andE[NH ] as convex combinations of
the limiting curves in terms ofr.

Theorem 4.8 a. For ρH < 1

E[NH ] =

[
ρA

1− ρA

]
+

[
ρH

1− ρH
− ρA

1− ρA

]
r(ρH<1) (4.32)

E[NL] =

[
ρA

1− ρA

]
+

[
ρL

1− ρL
− ρA

1− ρA

]
r(ρH<1) (4.33)

b. For ρH > 1

E[NH ] =

[
ρA

1− ρA

]
+

[
ρA

1− ρA
+

ρH

ρH − 1

] [
1− `(ρH>1)

−`′
(ρH<1)

∆
+

(
`′(ρH>1)

−`′
(ρH<1)

)
r(ρH>1)

]

(4.34)

E[NL] =

[
ρA

1− ρA

]
+

[
ρA

1− ρA
− ρL

1− ρL

] [
1− `(ρH>1)

−`′
(ρH<1)

∆
+

(
`′(ρH>1)

−`′
(ρH<1)

)
r(ρH>1)

]

(4.35)
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Proof: We start by differentiating our transforms from (4.17)-(4.18) and setz = 1, which results
in:

E[NH ] =
ρA

1− ρA
− (1− ρL)(1− ρH − πH

0 )

∆(1− ρA)
(4.36)

E[NL] =
ρA

1− ρA
− (1− ρH)(1− ρL − πL

0 )

∆(1− ρA)
(4.37)

By substitutingπH
0 andπL

0 in terms ofθ from (4.20)-(4.21) into (4.36)-(4.37) and collecting the
terms dependent on∆, we get the expressions in (4.32)-(4.33). Similarly, substitutingπH

0 andπL
0

from (4.22)-(4.23) into (4.36)-(4.37) results in (4.34)-(4.35).

Note that for the caseρH < 1, we expressE[NH ] and E[NL] in (4.32)-(4.33) as the convex
combination of two constants. This is not possible whenρH > 1 because when∆ → 0, the mean
number of jobs becomes unbounded. However for this case, we can writeE[NH ] (and respectively
E[NL]) as a convex combination of two asymptotic functions of the forma + b

∆
which are only

separated by a constant.

4.4 Monotonicity of Number in System,ρH < 1

The following theorem proves monotonicity ofE[N ] for ρH < 1:

Theorem 4.9 For the caseρH < 1

(i) E[NL] decreases andE[NH ] increases monotonically as the switching rates decrease.

(ii) If sL < sH thenE[N ] decreases monotonically as switching rates decrease, otherwise it
increases monotonically.

Proof: For succinctness, we will define the following quantities

N∞ ≡ ρA

1− ρA

N0 ≡
1

αH
ρH

1−ρH + 1
αL

ρL

1−ρL

1
αH + 1

αL

From (4.32)-(4.33), we can write the expectations of number of jobs in system as

E[NH ] =

[
ρA

1− ρA

]
+

[
ρH

1− ρH
− ρA

1− ρA

]
r (4.38)

E[NL] =

[
ρA

1− ρA

]
+

[
ρL

1− ρL
− ρA

1− ρA

]
r (4.39)

E[N ] = N∞ + [N0 −N∞] r (4.40)
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From the limits proved in (4.25)-(4.26), we know that for the caseρH < 1, lim∆→∞ r = 0 and
lim∆→0 r = 1. We will now show thatr is monotonic in∆. This will imply thatE[NH ] increases
andE[NL] decreases monotonically as switching rates decrease andE[N ] will increase or decrease
depending on whethersL is larger or smaller thansH , respectively.

By substitutingθ = 1 − r∆`′(ρH<1) in g(θ) from (4.31), we get the following polynomial relating
∆ andr:

h(∆, r) =r2∆2(`′(ρH<1))
2[ρA(1− ρL)(1− ρH) + r(ρA − ρL)(ρH − ρA)]

− r∆`′(ρH<1)ρ
A[(1 + ρA)(1− ρL)(1− ρH) + r{(ρA − ρL)(ρH − 1) + (1− ρL)(ρH − ρA)}]

+ (ρA)2(1− ρL)(1− ρH)(1− r) (4.41)

The above may be viewed as a cubic forr in terms of∆, or, alternatively, as a quadratic for∆
in terms ofr. Therefore, for anyr there can be at most two values of∆. Sincer is a continuous
function of ∆, h(∆, r) must crossr = c with c ∈ (0, 1) an odd number of times and withc ∈
(−∞, 0) ∪ (1,∞) an even number of times. Forr > 1, the product of the two roots of the above
quadratic is negative and hence does not have two positive roots. The caser < 0 cannot arise

because as mentioned earlierχ ∈ (0, 1) and henceθ =
(

1−ρA

1−ρAχ

)
∈ (1 − ρA, 1). Thereforer

decreases monotonically from1 to 0 as∆ increases.

4.5 Monotonicity of Number in System,ρH > 1

Complementary to Theorem4.9, the following Theorem proves monotonicity ofE[N ] for ρH > 1:

Theorem 4.10 WhenρH > 1, E[N ], E[NL] andE[NH ] increase monotonically as the switching
rates decrease.

Proof: From (4.34)-(4.35), we can write the expression forE[N ] as

E[N ] = N∞ + [N∞ −N0]

(
1− `(ρH>1)

−`′
(ρH<1)

∆
+

`′(ρH>1)

`′
(ρH<1)

r

)
(4.42)

From the limits proved in (4.29)-(4.30), we know that forρH > 1, lim∆→∞ r = 0 andlim∆→0 r =
1. We will now show thatr is monotonic in∆. From equations (4.34)-(4.35) and (4.42), this
will imply that E[NH ],E[NL] andE[N ] all increase monotonically as switching rates decrease.
MoreoverE[N ] is bounded between two curves which are separated by the constantC given by,

C =

[
ρA

1− ρA
+

1
αH

ρH

ρH−1
− 1

αL
ρL

1−ρL

1
αH + 1

αL

](
`′(ρH>1)

−`′
(ρH<1)

)
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The proof of monotonicity ofr for this case will be along the same lines as theρH < 1 case. By
substitutingθ = `(ρH>1) − r∆`′(ρH>1) in (4.31), we get the following polynomial relating∆ andr:

h(∆, r) =r2(`′(ρH>1))
2∆2

[
(ρA)2 + r`′(ρH>1)(ρ

A − ρL)(ρH − ρA)
]

− r`′(ρH>1)∆ρA

[
ρA(1− ρA)(ρH + ρA)

ρH − ρA
+ r`′(ρH>1)

(
(1− ρA)(ρH − ρL)− (ρH − 1)(ρA − ρL)

)]

+ ρAρH

(
ρA(1− ρA)

ρH − ρA

)2

(1− r) (4.43)

As before, the caser < 0 cannot arise and forr > 1 the product of the roots is negative. Following
the same arguments as in Section4.4, we have the desired results.

5 Results - Simple Approximations

Having established the monotonicity property ofE[N ] with respect to∆ (and henceα), we now
turn to the question of obtaining tight approximations for theE[N ] versus∆ curve that are simple
and can be easily analyzed. Evaluating these approximations yields insights into the behavior of
E[N ] versus the system primitives, in particularα. In Sections4.4and4.5, we expressedE[N ] as
a function ofr. To recapitulate, forρH < 1 we have from (4.40)

E[N ] = a + br(ρH<1)

for some constantsa, b and forρH > 1 we have from (4.42)

E[N ] = a′ + b′r(ρH>1) +
c′

∆

for some different constantsa′, b′, c′. The aim of this section is to get simple approximations forr.

We handle the casesρH < 1 andρH > 1 together by defining the following quantities.

Definition 5.1

u
def
= min (1, ρH), v

def
= max (1, ρH)

For succinctness, we also define the following constants

c1 = (v − u)(v − ρL)

c2 = (u− ρA)(v − ρL)− (v − u)(ρA − ρL)

We first deriver∗, an approximation forr, shown in equation (5.44). The r∗ approximation is
highly accurate under all values of∆ (and henceα), and yet it is a closed-form expression, which
does not require the solution of a cubic.
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In Section5.1 we go further by finding simpler approximations forr∗ in the case where∆ is
“low” and the case where∆ is “high” separately (we make low and high precise in the coming
sections). Although these approximationsr∗∆:low (equation (5.48)) andr∗∆:high (equation (5.47)) are
intended to work only for “low” and “high”∆, we will find (see Figure5.4) that using just these
two expressions gives us an excellent sense of the shape of theE[N ] curve as a function of∆
(and henceα). We also give another approximation,r∗∆:med (equation (5.49)), for the special case:
ρH ≈ 1.

Claim 5.2 Ther versus∆ curve is well-approximated by ther∗ versus∆ curve where,

r∗ =
2c1

c1 + (v + ρA)∆ +
√

c2
1 + 2∆((v + ρA)c1 + 2vc2) + (v − ρA)2∆2

(5.44)

Although, we don’t have a formal proof of the above claim we will provide arguments in support of
the same. Ther3∆2 terms in (4.41) and (4.43) go to0 as∆ → 0. Also as∆ →∞, r∆ approaches
a constant butr3∆2 again goes to0. Therefore, by neglecting this term inh(∆, r), we get the
following quadratic equation inr,

h∗(∆, r) = r2v
[
∆2ρA −∆c2

]− rc1

[
∆(v + ρA) + c1

]
+ c2

1 (5.45)

where we have usedu andv to combine (4.41) and (4.43). The polynomialh∗(∆, r) gives a very
good approximation toh(∆, r) around the root of interest. The approximationr∗ is obtained by
taking the root ofh∗(∆, r)

r∗ = c1

∆(v + ρA) + c1 −
√

(∆(v + ρA) + c1)2 − 4v(∆2ρA −∆c2)

2v(∆2ρA −∆c2)
(5.46)

=
2c1

c1 + (v + ρA)∆ +
√

c2
1 + 2∆((v + ρA)c1 + 2vc2) + (v − ρA)2∆2

The sign of the discriminant in (5.46) has to be negative because

1. If the coefficient ofr2 is negative then the product of the roots is negative and minus sign
will give the positive root.

2. If the coefficient ofr2 is positive then both roots are positive and minus sign will give the
smaller of the roots.

5.1 Simpler Approximations

In this section, we start with the expression forr∗ and simplify it further by looking at two different
∆ regimes, high and low.

Case: High∆
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Claim 5.3 When∆ À 2
∣∣∣ (v+ρA)c1+2vc2

(v−ρA)2

∣∣∣ ≡ th, r∗∆:high approximatesr where

r∗∆:high =
c1/v

∆ + c1+c2
(v−ρA)

(5.47)

Proof: Starting from (5.44) and making appropriate approximations, we get,

r∗ =
2
(

c1
∆

)

(v + ρA) + c1
∆

+

√
(v − ρA)2 +

(
c1
∆

)2
+ 2

(
(v+ρA)c1+2vc2

∆

)

=
2
(

c1
∆

)

(v + ρA) + c1
∆

+ (v − ρA)

√
1 +

(
c1

∆(v−ρA)

)2

+ 2
(

(v+ρA)c1+2vc2
∆(v−ρA)2

)

≈ 2
(

c1
∆

)

(v + ρA) + c1
∆

+ (v − ρA)

{
1 + (v+ρA)c1+2vc2

∆(v−ρA)2
+ 1

2

(
c1

∆(v−ρA)

)2
}

≈ 2
(

c1
∆

)

(v + ρA) + c1
∆

+
{

(v − ρA) +
(

(v+ρA)c1+2vc2
∆(v−ρA)

)}

=

(
c1
∆

)

v + v
(

c1+c2
∆(v−ρA)

)

=
c1/v

∆ + c1+c2
(v−ρA)

Case: Low∆

Claim 5.4 When∆ ¿ 2
∣∣∣ c21
2(v+ρA)c1+4vc2

∣∣∣ ≡ tl, r∗∆:low approximatesr where

r∗∆:low =
1

1 + (c1(v+ρA)+vc2)∆

c21

(5.48)
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Proof: Starting from (5.44) and making appropriate approximations, we get,

r∗ =
2c1

c1 + (v + ρA)∆ +
√

c2
1 + ((v − ρA)∆)2 + (2(v + ρA)c1 + 4vc2)∆

=
2c1

c1 + (v + ρA)∆ + c1

√
1 +

(
(v−ρA)∆

c1

)2

+ (2(v+ρA)c1+4vc2)∆

c21

≈ 2c1

c1 + (v + ρA)∆ + c1

{
1 + 1

2

(
(v−ρA)∆

c1

)2

+ ((v+ρA)c1+2vc2)∆

c21

}

=
2c1

c1 + (v + ρA)∆ +
{

c1 + 1
2

(
(v−ρA)2∆2

c1

)
+ ((v+ρA)c1+2vc2)∆

c1

}

=
c1

c1 + (c1(v+ρA)+vc2)∆
c1

+ 1
4

(
(v−ρA)2∆2

v1

)

=
1

1 + (c1(v+ρA)+vc2)∆

c21

We defined the “high”∆ regime as∆ À th and the “low”∆ regime as∆ ¿ tl. We will now
provide very simple bounds on these thresholds. First observe that

(v − u)(v + ρL) <
(v + ρA)c1 + 2vc2

v − ρA
< (v − ρL)(1 + ρH)

Therefore,

th = 2

∣∣∣∣
(v + ρA)c1 + 2vc2

(v − ρA)2

∣∣∣∣

< 2
(v − ρL)(1 + ρH)

(v − ρA)
<

2v(1 + ρH)

(v − ρA)

and

tl =

∣∣∣∣
c2
1

2(v + ρA)c1 + 4vc2

∣∣∣∣

>
(v − ρL)(1− ρH)2

2(v − ρA)(1 + ρH)
>

(1− ρH)2

2(1 + ρH)

Another salient question concerns the size of the area between the thresholds for the two regimes;
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how wide th
tl

is:

th
tl

=

(
2
(v + ρA)c1 + 2vc2

(v − ρA)c1

)2

<

(
2
(v − ρL)(1 + ρH)(v − ρA)

(v − ρA)(v − ρL)(v − u)

)2

=

(
2
(1 + ρH)

(v − u)

)2

Therefore asρH → 1, this gap increases (Figure5.4(a)-(d)). We handle this special case next.

Case: Intermediate∆, ρH ≈ 1
As we have noted above, whenρH → 1, the gap where neitherr∗∆:low nor r∗∆:high approximation is
tight increases. The reason this happens is that the range of switching rates where the∆ term dom-
inates the constantc2

1 term and the∆2 term in the radical of Equation (5.44) increases. Therefore,
for this case we give the following approximation,r∗∆:med, obtained from (5.44) by just keeping the
∆ term of the radical:

r∗∆:med =
2c1

c1 + (v + ρA)∆ +
√

2∆(c1(v + ρA) + 2vc2)
(5.49)

Ther∗∆:med approximation is illustrated in Figure5.4(e)-(f). This approximation supplementsr∗∆:low

andr∗∆:high and depending on the switching rates andρH , one should be chosen appropriately for
observing the functional behavior.

5.2 Fluid Limit for ρH > 1 case

When the arrival pattern causes transient overload during theH phase, fluid limit of the queue
length process allows us to get a simple approximation for the queue length distribution. This
approximation becomes tighter whenα ¿ {µ, λ}.
We will denote the stochastic process denoting the state of the environment asE(t). In our case
E(t) ∈ {H, L}. We define a fluid processY (t) in this reference environment process by the
following differential equations:

dY (t)

dt
=

{
rE(t) if Y (t) > 0(
rE(t)

)+
if Y (t) = 0

whererH = −sH andrL = −sL denote the fluid flow rates in that environment state. The fluid
scaling theorem [8] states:
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Figure 5.4:Illustration of E[N] as a function ofα (= αH + αL), using the exactr; our closed-
form approximationr∗; and our very simple approximationsr∗∆:low andr∗∆:high. The top row shows
examples whereρH < 1. The middle row shows examples whereρH > 1. The bottom row
illustrates the approximationr∗∆:med whenρH ≈ 1. The vertical lines in each plot indicate the
thresholds for the low∆ and high∆ regimes. In all casesµH = µL = 1 andαH = αL.

Theorem 5.5 LetNε be the queue length process of the fluctuating load queue run in environment
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processEε ≡ {E(εt) : t ≥ 0}. LetEε(·/ε) → E(·) in D[0,∞) w.p. 1 asε ↓ 0. If εNε(0) → y in
R w.p.1 asε ↓ 0, then

εNε(·/ε) → Y (·) in D[0,∞) w.p.1 asε ↓ 0, (5.50)

whereY is the stochastic fluid process with environment processE, deterministic flowratesrE =
−se (E ∈ {H, L}) and initial contentY (0) = y.

Since we are interested in the stationary distribution, we can interpret this theorem in the following
simpler way,

Theorem 5.6 LetNε denote the stationary distribution of the fluctuating load queue with switching
ratesεαH andεαL. Then

εNε
d→ Y in R asε ↓ 0 (5.51)

whereY is the stationary distribution of the stochastic fluid process with switching ratesαH and
αL and deterministic flow ratesrE = −sE (E ∈ {H,L}).
The following theorem gives the distribution ofY .

Theorem 5.7 LetY be the stationary stochastic fluid process defined in Theorem5.6. LetY H and
Y L be the random variables for the time average fluid levels duringH andL phases, respectively.
The distributions ofY , Y L andY H are given by

Y ∼




0 w.p.
(
1 + αL/sL

αH/sH

)
αH

αL+αH

exp
(
−αH

sH − αL

sL

)
w.p.

(
1− sH

sL

)
αL

αL+αH

(5.52)

Y H ∼ exp

(
−αH

sH
− αL

sL

)
(5.53)

Y L ∼




0 w.p.
(
1 + αL/sL

αH/sH

)

exp
(
−αH

sH − αL

sL

)
w.p.

(
− αL/sL

αH/sH

) (5.54)

Proof: We begin by noting thatPr[Y H = 0] = 0. Let pL
0 = Pr[Y L = 0]. Also let fH(y) and

fL(y) be the density functions ofY H andY L, respectively, with support on(0, +∞]. Further, let

Ỹ H
+ (s) andỸ L

+ (s) be the Laplace-Stieltjes transforms offH andfL, respectively. Then,

pL
0 =

∫ ∞

y=0

fH(y)e
−
�

αLy

µL−λL

�

dy

= Ỹ H

(
αL

µL − λL

)
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We also have the following expressions for the probability density functions (using Theorem3.3)

fH(y) =

[
pL

0 αHe
−
�

αHy

λH−µH

�

+

∫ y

x=0+

fL(x)αHe
−
�

αH (y−x)

λH−µH

�

dx

]
1

λH − µH

fL(y) =

[∫ ∞

x=y

fH(x)αLe
−
�

αL(x−y)

µL−λL

�

dx

]
1

µL − λL

which gives the following relationships betweeñY H
+ (s) andỸ L

+ (s):

Ỹ H
+ (s) =

[
Ỹ H

+

(
αL

µL − λL

)
+ Ỹ L

+ (s)

] (
αH

λH−µH

αH

λH−µH + s

)

Ỹ L
+ (s) =

[
Ỹ H

+ (s)− Ỹ H
+

(
αL

µL − λL

)] (
αL

µL−λL

αL

µL−λL − s

)

The above equations solve to

Ỹ H(s) =

αH

λH−µH − αL

µL−λL

αH

λH−µH − αL

µL−λL + s
(5.55)

Ỹ L(s) =

(
1− αL/(µL − λL)

αH/(λH − µH)

)
+

(
αL/(µL − λL)

αH/(λH − µH)

)
Ỹ H(s) (5.56)

The distribution ofY H is of an exponential random variable with rate
(

αH

λH−µH − αL

µL−λL

)
. Y L

is the combination of an atom at0 and an exponential distribution with the same rate. Taking a
weighted average ofY H andY L gives the distribution ofY .

Corollary 5.8 The mean fluid level is given by

E[Y ] =

(
sH − sL

αH + αL

)(
αL/sL

αH/sH + αL/sL

)
(5.57)

Figure5.5 shows a comparison of theE[N ] vs. α curve with that obtained using the fluid limit
of the system. TheE[N ] axis is also plotted onlog scale to illustrate the gap at higher values of
switching rates.

6 Behavioral insights into the fluctuating load queue

Having established some fundamental properties of the fluctuating load queue, we further examine
the behavior of this system. One question that we ask is, if we doubleλ{L,H} andµ{L,H} but
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Figure 5.5:Comparison of fluid approximation with actual mean queue length. In all casesµH =
µL = 1 andαH = αL.

keep the switching rates the same, what happens to the mean response time? Does it decrease by
twice (as in aGI/GI/1 system) or can it decrease by a smaller or a larger factor? If so, by how
much? We address this question in Section6.1. Another important question is, when is the effect
of slowing the switching rate most felt on mean response time (Section6.2)? We conclude this
section with an application. In Section6.3 we consider the question of how to optimally split a
given average service capacity given a traffic arrival pattern (α, λ’s).

6.1 Effect of scaling the arrival and service rates

It is well known that for aGI/GI/1 system, scaling both the arrival rates and service rates by a
factor ofk leads to identical queueing behavior as the original system but mean response times are
scaled by a factor1

k
. This is because the new system can be seen as a scaled version of the original

system where time is sped up by a factor ofk. For the same reason, if in our fluctuating load queue
we scale the arrival, service and switching rates by a factor ofk, the mean response time of the
new system will be1

k
times that of the original system, as in aGI/GI/1 queue. But what happens

if we only scale the arrival and service rates?
Let us represent the original system (with arrival ratesλ{L,H}, service ratesµ{L,H} and switching
ratesα{L,H}) by system A. Let system B be the same as system A except that the switching rates
are halved, and let system C represent the system we want to compare with system A, that is with
arrival rates2λ{L,H}, service rates2µ{L,H} and switching ratesα{L,H}. Clearly, mean response
time of system C,E[TC ], is half the mean response time of system B,E[TB] using time-scaling
argument. The problem now is to compare the response times of system A (E[TA]) and system B.
We consider several cases:
CasesL = sH : For this case, as noted before, the mean response time is invariant to the switching
rates and therefore system A and B have same mean response times. Consequently,E[NC ] =
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1
2
E[NB] = 1

2
E[NA].

CasesL > sH , ρH < 1: Here, moving from A to B leads to an increase in mean response times.
However, we will show that the mean response time (equivalently, mean queue length) does not

increase by more than twice in the process. To show this, it suffices to prove that
∣∣∣d log E[N ]

d log ∆

∣∣∣ is

bounded by 1. ButE[N ] = a + br for some positive constantsa andb and hence,
∣∣∣∣
d log E[N ]

d log ∆

∣∣∣∣ =

∣∣∣∣
d log (a + br)

d log ∆

∣∣∣∣

=

∣∣∣∣
br

a + br

∣∣∣∣ ·
∣∣∣∣
d log r

d log ∆

∣∣∣∣

<

∣∣∣∣
d log r

d log ∆

∣∣∣∣

We will find it easier to proved log ∆
d log r

≤ −1. This would imply−1 ≤ d log r
d log ∆

≤ 0 and hence∣∣∣d log E[N ]
d log ∆

∣∣∣ ≤
∣∣∣ d log r
d log ∆

∣∣∣ ≤ 1.

Lemma 6.1

d log ∆

d log r
≤ −1

Proof: See AppendixA.1.

Therefore the mean response time of system B is within a factor of2 of response time of system
A. Thus, 1

2
E[TA] ≤ E[TC ] ≤ E[TA].

CasesL < sH , ρH < 1: The mean response time of system B is now less than that of system A.
In this case we can express the mean number of jobs in system asE[N ] = a + b(1 − r) for some
positive constantsa andb and hence,

∣∣∣∣
d log E[N ]

d log ∆

∣∣∣∣ =

∣∣∣∣
d log (a + b(1− r))

d log ∆

∣∣∣∣

=

∣∣∣∣
d log (a + b(1− r))

d log r

∣∣∣∣ ·
∣∣∣∣
d log r

d log ∆

∣∣∣∣

=
br

a + b(1− r)

∣∣∣∣
d log r

d log ∆

∣∣∣∣
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As a consequence of the proof of Lemma6.1, we actually obtain the stronger inequality−(1−r) ≤
d log r
d log ∆

≤ 0. Therefore,

∣∣∣∣
d log E[N ]

d log ∆

∣∣∣∣ =
br

a + b(1− r)

∣∣∣∣
d log r

d log ∆

∣∣∣∣

≤ br(1− r)

a + b(1− r)

≤ r

≤ 1

Therefore,1
2
E[NA] ≤ E[NB] ≤ E[NA] and hence1

4
E[NA] ≤ E[NC ] ≤ 1

2
E[NA].

CaseρH > 1: The expression for the mean response time of system A isE[NA] = a′ + b′r + c′
∆

for some positive constantsa′, b′, c′. To prove
∣∣∣d log E[N ]

d log ∆

∣∣∣ < 1, we begin with the following lemma:

Lemma 6.2 For f(x), g(x) > 0

d log(f(x) + g(x))

dx
≤ max

{
d log f(x)

dx
,
d log g(x)

dx

}

Proof:

d log(f(x) + g(x))

dx
=

∂ log(f(x) + g(x))

∂ log f(x)

d log f(x)

x
+

∂ log(f(x) + g(x))

∂ log g(x)

d log g(x)

x

=
f(x)

f(x) + g(x)

d log f(x)

dx
+

g(x)

f(x) + g(x)

d log g(x)

dx

≤ max

{
d log f(x)

dx
,
d log g(x)

dx

}

Corollary 6.3 For f(x), g(x) > 0

∣∣∣∣
d log(f(x) + g(x))

dx

∣∣∣∣ ≤ max

{∣∣∣∣
d log f(x)

dx

∣∣∣∣ ,

∣∣∣∣
d log g(x)

dx

∣∣∣∣
}

Using Corollary6.3to bound
∣∣∣d log E[N ]

d log ∆

∣∣∣,
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∣∣∣∣
d log E[N ]

d log ∆

∣∣∣∣ =

∣∣∣∣
d log (a′ + b′r + c′/∆)

d log ∆

∣∣∣∣

≤ max

{∣∣∣∣
d

d log ∆
log a′

∣∣∣∣ ,

∣∣∣∣
d

d log ∆
log (b′r)

∣∣∣∣ ,

∣∣∣∣
d

d log ∆
log

(
c′

∆

)∣∣∣∣
}

= max

{
0,

∣∣∣∣
d log r

d log ∆

∣∣∣∣ ,

∣∣∣∣
d log ∆

d log ∆

∣∣∣∣
}

≤ max {1, 1}
= 1

where we have used Lemma6.1 to bound
∣∣∣ d log r
d log ∆

∣∣∣ by 1. Further, asymptotically as∆ → 0,

E[NA] ≈ c′
∆

. Therefore, when the switching rates are very small,E[NB] ≈ 2E[NA] implying
E[NC ] ≈ E[NA]. To see why doubling the arrival and service rates has almost no effect on mean
response times, observe that during theH phase the queues grow at a rate of(λH −µH). Doubling
the arrival and switching rates causes the queues to build up twice as fast. Although each customer
spends half the time at the server in system C, they have to wait for almost twice as many customers
as in system A, nullifying the benefit of faster service rates.

6.2 Effect of switching rates on Mean Response Times

We have yet to directly address the question of when does changing the switching rates have a big
effect on the mean response times and when does it have almost no effect. We will try and answer
this question here.
CaseρH > 1: As we have mentioned previously, theE[N ] vs ∆ curve for this case is bounded
between two curves of the forma + b

∆
, which indicates that the effect of switching rates keeps

increasing as the switching rates become smaller.
CaseρH < 1: From Figure5.4 one can see that for this case, there is a certain zone within
which changes in∆ affect the mean response times a lot, and beyond which the curve asymptotes.
We will use the approximations we have derived in Section5 to find the boundaries of this zone,
noting thatr∗∆:low (5.48) is a tight approximation at the left boundary andr∗∆:high (5.47) is a tight
approximation at the right boundary. Since the exact mathematical notion of boundary is very
fuzzy, we will take them as the intersection of the tangent at the inflexion point of ther − log ∆
curve andr = 1 or r = 0. After going through the calculations, one gets the following expression
for the left boundary

∆L =
(c1/e)

2

c1(1 + ρA) + c2

(6.58)
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and

∆H =
(c1 + c2)e

2

1− ρA
(6.59)

for the right boundary. Figure6.6shows an example of these boundaries.
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Figure 6.6:Illustration of the calculations in Section6.2. The vertical lines are the zone boundaries.
(µH = µL = 1, αH = αL, ρH = 0.9, ρL = 0.1).

6.3 Optimal Capacity Splitting

So far we have concerned ourselves with analysing a system with given service ratesµL andµH .
From a system designer’s point of view, the question that is of more importance is: Given a traffic
arrival pattern (λL, λH , αL, αH) and a certain average service capacityµA, how should it be split
over theL andH phases so as to minimise the mean response times? Is load balancing across the
L andH phases a good policy?

Let

pH =
αL

αL + αH

pL =
αH

αL + αH

Instead of finding the optimal split of service capacity for some setting ofα’s, we will find that
policy which minimisesE[Nα→0]. We hope this policy will provide near optimal response times
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for all scales of switching rates. Formally, the optimization problem for minimizingE[Nα→0] is:

minimize pH λH

µH − λH
+ pL λL

µL − λL

over µH , µL

subject to pHµH + pLµL = µA

µH , µL > 0

The solution to this optimization problem is straightforward and is given by,

µH∗ = λH + (µA − λA)

√
λH

pH
√

λH + pL
√

λL
(6.60)

µL∗ = λL + (µA − λA)

√
λL

pH
√

λH + pL
√

λL
(6.61)

For this solution, λH

µH∗ > λL

µL∗ and (µH∗ − λH) > (µL∗ − λL). Also note that load balancing(
λH

µH = λL

µL = λA

µA

)
is not the optimal solution. Figure6.7shows how the above capacity provision-

ing policy performs in comparison with the optimal capacity splitting policy. As can be seen from
the figure, minimisingE[Nα→0] gives near-optimal mean response times for all scales of switching
rates. An important implication of this fact is that it is not only sometimes good to have variability
in the arrival process but in fact it isdesirable. By splitting capacity intelligently over the high
arrival rate and low arrival rate phases, one can get lower mean response times than if the system
had a fixed arrival rate.

10
−4

10
−2

10
0

α

E[N]
Opt

Optimal for α → 0

Load Balancing

10
−2

10
0

10
2

α

E[N]
Opt

Optimal for α → 0

Load Balancing

(a)λH = 1.8, λL = 0.1 (b) λH = 0.95, λL = 0.1

Figure 6.7:Illustration of the optimalE[N ] as a function ofα (= αH + αL). The dashed curve
representsE[N ] using the optimal splitting of service capacity and the solid curve represents the
E[N ] curve obtained by settingµH = µH∗ andµL = µL∗. In all casesµA = 1 andαH = αL.
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7 Results – Stochastic Ordering

Most results in queueing theory describe the experience of an arbitrary arrival to a system. But,
in a time-varying system, an arrival may know that she is not “arbitrary”; she may know whether
she is arriving into a high load or a low load period. In this case the salient question, as far as the
arrival is concerned, is not about anarbitrary arrival’s experience, but rather abouther experience
(conditional on the type of period into which she arrives).

To explore this question we compare,NH , NL, andNρA
stochastically, where the last term denotes

the number in system seen by an arrival to astationaryqueue with the same average load,ρA, as
our time-varying system.

Note that the distribution of future service rates, and thus response time, iscompletely determined
by the number in system seen upon arrival and the type of period arrived into. Moreover, if only
arrival rates vary (i.e. if service rates are constant), stochastic orderings for number in system
immediately translate into stochastic orderings for response times.

Intuition leads one to believe that an arrival into a high load state should see more customers
than one arriving into a low load state in expectation, but whether there is a stochastic dominance
between these, that is,NH ≥st NL, is not obvious; we prove this to be true. Furthermore, one
might also believe that an arrival during a high load state would see more customers than an arrival
into the average system, and that an arrival into the average system would see more customer than
an arrival during the low load state,NH ≥st NρA ≥st NL. Surprisingly, we find that this statement
is only partially true: The first inequality holds but the second does not in general. Thus our system
exhibits a striking lack of symmetry.

We start with a preliminary result:

Lemma 7.1 Given anM/M/1 queue with loadρ and stationary distributionX , if we start this
system with an initial distributionX(0), then

X(t) ≥st X(t + s) ≥st X ∀s, t ≥ 0

⇐⇒
Pr{X(0) = j} ≥ ρ Pr{X(0) = j − 1}

The directions of all the inequalities can be reversed to get the condition for a stochastically in-
creasing system.

Proof: Define a discrete time processY such thatY (0) =st X(0). For i > 0, Y (i) evolves as:

Y (i) =

{
Y (i− 1) + 1 w.p. λ

µ+λ

(Y (i− 1)− 1)+ w.p. µ
µ+λ

We couple the processesX andY as follows: sinceX(0) =st Y (0) we choose the same initial
value for these. Set timers according to a Poisson process with rate(µ+λ) and at theith expiration
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of the timer (say atti) we setX(ti) = Y (i). Using this coupling,

X(t) ≥st X(t + s) ≥st X ∀s, t ≥ 0

⇐⇒
Y (i) ≥st Y (i + k) ≥st X ∀i, k ≥ 0.

We first examine the condition forY (i + 1) ≤st Y (i):

Pr{Y (i + 1) ≥ j} ≤ Pr{Y (i) ≥ j}
⇐⇒

Pr{Y (i) ≥ j − 1} λ
λ+µ

+ Pr{Y (i) ≥ j + 1} µ
λ+µ

≤ Pr{Y (i) ≥ j}
(

λ
λ+µ

+ µ
λ+µ

)

⇐⇒
[Pr{Y (i) ≥ j − 1} − Pr{Y (i) ≥ j}] λ

λ+µ
≤ [Pr{Y (i) ≥ j} − Pr{Y (i) ≥ j + 1}] µ

λ+µ

⇐⇒
Pr{Y (i) = j − 1}ρ ≤ Pr{Y (i) = j}

ThusY (i + 1) ≤st Y (i) iff Pr{Y (i) = j} ≥ ρPr{Y (i) = j − 1} ∀j ≥ 1, as required. Now, if
Y (i+1) ≤st Y (i) ∀i ≥ 0 it immediately follows thatY (i) ≥st X , ∀i ≥ 0, becauseY (n) converge
in distribution toX asn →∞. To complete the proof, we need to show that

Pr{Y (i) = j − 1}ρ ≤ Pr{Y (i) = j} ∀j > 0

implies

Pr{Y (i + 1) = j − 1}ρ ≤ Pr{Y (i + 1) = j} ∀j > 0

which follows forj > 1 since:

Pr{Y (i + 1) = j}
= Pr{Y (i) = j − 1} λ

λ + µ
+ Pr{Y (i) = j + 1} µ

λ + µ

≥ [ρPr{Y (i) = j − 2}] λ

λ + µ
+ [ρPr{Y (i) = j}] µ

λ + µ

= ρPr{Y (i + 1) = j − 1}
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For j = 1, we have

Pr{Y (i + 1) = 1}
= Pr{Y (i) = 0} λ

λ + µ
+ Pr{Y (i) = 2} µ

λ + µ

≥ Pr{Y (i) = 0} ρµ

λ + µ
+ [ρPr{Y (i) = 1}] µ

λ + µ

= ρ[Pr{Y (i) = 0}+ Pr{Y (i) = 1}] µ

λ + µ

= ρPr{Y (i + 1) = 0}

For ρ ≥ 1, the system cannot decrease stochastically because the stationary distribution does not
exist. The condition for such a system to be stochastic increasing is the same as that for anM/M/1
with ρ < 1.

Theorem 7.2 For our alternating load system,

NH ≥st NL

Proof: We will prove that starting anM/M/1 with loadρL and initial distribution asNH satisfies
the conditions of Lemma7.1and will result in a stochastically decreasing process. Then, sinceNL

is the random variable for the number of jobs at a time chosen from the distributionexp(αL), it too
will be stochastically smaller than the initial distribution,NH .
By factoring the polynomials in the numerator and the denominator of (3.14) we can writeΠ̂H(z)
as:

Π̂H(z) =
λLµHπH

0

λLλH

(δ − z)(z − χ)

(z − a)(z − b)(z − χ)

=
πH

0

ρH

(δ − z)

(z − a)(z − b)
(7.62)

where0 ≤ χ < 1, with saya ≤ b. (As mentioned in Section3, the denominator has a rootχ in
(0, 1) and the numerator must also have a root equal toχ for the z-transform to converge in the
unit disc|z| < 1.) Similarly

Π̂L(z) =
πL

0

ρL

(γ − z)

(z − a)(z − b)
(7.63)

The fact thata, b, χ, δ andγ are all real forρA < 1 can be easily verified. Also,δ, γ > a since
thez-transform is an increasing function ofz, it must become negative via a discontinuity. Using
Π̂L(0) = πL

0 andΠ̂H(0) = πH
0 :

δ = ρHab, γ = ρLab (7.64)
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Evaluating (4.19) for information about the rootsa and b, we haveF (1/ρH) ≥ 0, F (1) >
0, F (1/ρA) ≤ 0, F (1/ρL) ≤ 0. Therefore:max{1, 1

ρH } ≤ a ≤ 1
ρA ≤ 1

ρL ≤ b. Combining
these with (7.64): 1 < a ≤ γ ≤ b ≤ δ.

Let pH
i = Pr{NH = i}; to derivepH

i , we will expand (7.62).

Π̂H(z) =
πH

0 (δ − z)

ρH(b− a)

[
1

a

(
1

1− z/a

)
− 1

b

(
1

1− z/b

)]

=
πH

0

ρH(b− a)

[{(
δ

a
− 1

)
−

(
δ

b
− 1

)}

+ z

{(
δ

a
− 1

)
1

a
−

(
δ

b
− 1

)
1

b

}

+ z2

{(
δ

a
− 1

)
1

a2
−

(
δ

b
− 1

)
1

b2

}
+ · · ·

]
(7.65)

Note that the last representation is what we would obtain by writing out the spectral expansion
solution, with 1

a
and 1

b
as the two eigenvalues and the probability distribution as the sum of two

geometric distributions.

Let νH
i =

pH
i+1

pH
i

. From (7.65),

νH
i =

(
δ
a
− 1

)
1

ai+1 −
(

δ
b
− 1

)
1

bi+1(
δ
a
− 1

)
1
ai −

(
δ
b
− 1

)
1
bi

=
ζui+1 − ηvi+1

ζui − ηvi

=

(
ζui+1 − ηvi+1

ζui − ηvi

)(
ζui+1 − ηvi+1

ζui+1 − ηvi+1

)

=
(ζui+1 − ηvi+1)2 − ζηuivi(u2 + v2) + ζηuivi(u2 + v2)

(ζui − ηvi)(ζui+1 − ηvi+1)

=
(ζui − ηvi)(ζui+2 − ηvi+2)

(ζui − ηvi)(ζui+1 − ηvi+1)
+

ζηuivi(u2 + v2 − 2uv)

(ζui − ηvi)(ζui+1 − ηvi+1)

= νH
i+1 +

ζηuivi(u− v)2

(ζui − ηvi)(ζui+1 − ηvi+1)

≥ νH
i+1

Since thepH
i are a mixture of two geometrics, one decaying with rate1

a
and the other with

1
b
, and 1

a
≥ 1

b
, as i increases the first component dominates and the rate of decay effectively

becomes1
a
; or, limi→∞ νH

i = 1
a
≥ ρL. Also becauseνH

i are decreasing,νH
i ≥ 1

a
≥ ρL ∀i.

Theorem 7.3 For our model:
NH ≥st NρA

butNL ≮st NρA
.
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Proof: From the proof of Theorem7.2, νH
i ≥ νH

i+1 ∀i ≥ 0 andlimi→∞ νH
i = 1

a
≥ ρA. Therefore,

νH
i ≥ ρA ∀i ≥ 0. Then using Lemma7.1, NH ≥st NρA

.

Returning to the proof of Theorem7.2, defineqL
i = Pr{NL ≥ i}. UsingΠ̂L(1) = 1 in (7.63),

πL
0

ρL
=

(a− 1)(b− 1)

(γ − 1)
(7.66)

Thus, using the formula forpL
i , derived from the expansion of̂ΠL(z) analogous to (7.65), and

using (7.66):

qL
i =

∞∑
j=i

pL
i

=
πL

0

ρL(b− a)

[(γ

a
− 1

) 1

ai

(
1

1− 1
a

)
−

(γ

b
− 1

) 1

bi

(
1

1− 1
b

)]

=
(a− 1)(b− 1)

(γ − 1)(b− a)

[(
γ − a

a− 1

)
1

ai
+

(
b− γ

b− 1

)
1

bi

]

Let c = (b−1)(γ−a)
(γ−1)(b−a)

. ThenqL
i = c 1

ai + (1 − c) 1
bi and0 ≤ c ≤ 1. Also recall thata ≤ 1

ρA . Let

k =
⌈
log(aρA) c

⌉
+ 1 so that(aρA)k < c. Now,

qL
k = c

1

ak
+ (1− c)

1

bk
≥ c

ak
> (ρA)k = qρA

k

Clearly,∀j ≥ k, qL
j > qρA

j and henceNL ≮st NρA
. In fact,NL =st NρA

if and only if ρA = ρH =
ρL.

Above we saw howNH andNL compare stochastically for a particular setting of arrival, service
and switching rates. While such results seem theoretically appealing, these are of limited utility.
In Section4 we showed thatE[NH ], E[NL] andE[N ] are monotonic inα (= αL + αH). It is
interesting to ask the question: Do any of these monotonic behaviors extend to the stronger setting
of stochastic monotonicity. We conjecture the following.

Conjecture 7.4 For given values ofµ{L,H}, λ{L,H} and the ratioαL/αH , NH increases stochasti-
cally as switching rateα (= αL + αH) decreases.

8 Conclusion

In this paper we have considered very basic, yet open, questions regarding the response time of a
queue with time-varying load. We have found that the response time can both increase or decrease
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when the load fluctuates more slowly, and we have derived a simpleslack criterionto specify the
behavior. We have also proven the firstmonotonicityresults for systems with time-varying load,
as well as the firststochastic orderingresults for these systems. Finally we have provided the first
results on theshapeof the mean response time in a queue with fluctuating load, as a function of the
rate of fluctuation and other input primitives. These latter results were enabled by the derivation of
a series of approximations for the mean number of jobs in the system, which are accurate and also
very simple and closed-form, telling us how the shape of the mean number of jobs is affected by
the input primitives.

We hope that our research will stimulate others to ask further fundamental questions about time-
varying systems. For example, we have seen thatE[N ], E[NH ] andE[NL] are all monotonic in
α. Further, we conjecture that a stronger result may exist, namely that the random variableNH is
stochastically monotonic inα. However this is entirely non-obvious, particularly sinceNL is not
stochastically monotonic.
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A Proofs

A.1 Proof of Lemma 6.1

By combining (4.41) and (4.43) using the notation introduced in Definition5.1, we get the follow-
ing equation relating∆ andr:

∆2r2v

[
ρA +

rv(ρA − ρL)(u− ρA)

c1

]
−∆r

[
rvc2 + c1(v + ρA)

]
+ c2

1(1− r) = 0 (A.67)

The above is a quadratic equation in∆ with coefficients involvingr. We can solve for∆ in terms
of r in closed form as

∆ =

rvc2 + c1(v + ρA)−
√

[rvc2 + c1(v + ρA)]2 − 4c2
1(1− r)v

[
ρA + rv(ρA−ρL)(u−ρA)

c1

]

2rv
[
ρA + rv(ρA−ρL)(u−ρA)

c1

]

=

2c21(1−r)

r

rvc2 + c1(v + ρA) +

√
[rvc2 + c1(v + ρA)]2 − 4c2

1(1− r)v
[
ρA + rv(ρA−ρL)(u−ρA)

c1

]

(A.68)

The sign of the discriminant in the first expression has to be negative because∆ → 0 asr → 1.
This gives:

d log ∆

d log r
=

d log
(

1−r
r

)

d log r
− d log p(r)

d log r

= − 1

1− r
− r

p(r)

dp(r)

dr

wherep(r) is the expression in the denominator of (A.68). Since0 ≤ r ≤ 1, −1
1−r

≤ −1. Therefore

we only need to prove thatdp(r)
dr

> 0.

Case 1:c2 ≥ 0
The term outside the radical inp(r) is increasing inr. The polynomial inside the radical inp(r) is
a quadratic where the coefficient ofr2 is positive. It will suffice to show that the coefficient ofr in
this quadratic polynomial is also positive. The coefficient ofr in the quadratic polynomial inside
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the radical ofp(r) is:

2vc1

[
c2(v + ρA) + 2c1ρ

A − 2v(ρA − ρL)(u− ρA)
]

=2vc1

[{
(u− ρA)(v − ρL)− (v − u)(ρA − ρL)

}
(v + ρA) + 2c1ρ

A − 2v(ρA − ρL)(u− ρA)
]

=2vc1

[
(u− ρA)

{
(v − ρL)(v + ρA)− 2v(ρA − ρL)

}
+ (v − u)

{
2ρA(v − ρL)− (ρA − ρL)(v + ρA)

}]

=2vc1

[
(u− ρA)(v − ρA)(v + ρL) + (v − u)(ρA + ρL)(v − ρA)

]

>0

Since the coefficients of all terms involvingr in p(r) are positive,dp(r)
r

> 0.

Case 2:c2 < 0
In this case the coefficient ofr in the term outside the radical is negative and a more tedious
analysis is required. Let,

f(r) = rvc2 + c1(v + ρA)

g(r) = 4c2
1(1− r)v

[
ρA +

rv(ρA − ρL)(u− ρA)

c1

]

Now,

d

dr
p(r) ≥ 0 ⇐⇒ d

dr

(
f(r) +

√
f 2(r)− g(r)

)
≥ 0

⇐⇒ f ′(r) +
2f(r)f ′(r)− g′(r)

2
√

f 2(r)− g(r)
≥ 0

⇐⇒ (g′(r))2
+ 4 (f ′(r))2

g(r)− 4f(r)f ′(r)g′(r) ≥ 0

We first show thatg′(r) ≤ 0:

g′(r) = 4c1v
[
v(ρA − ρL)(u− ρA)− ρAc1 − 2rv(ρA − ρL)(u− ρA)

]

Sinceg′′(r) = −2v(ρA − ρL)(u− ρA) < 0, to proveg′(r) < 0 it suffices to show thatg′(0) ≤ 0.

g′(0) ≤ 0 ⇐⇒ v(ρA − ρL)(u− ρA)− ρA(v − u)(v − ρL) ≤ 0

⇐⇒ (u− ρA)
[
(v − ρL)− {

v(1− ρA) + ρL(v − 1)
}]

− (v − u)
[
(ρA − ρL) +

{
ρA(v − 1) + ρL(1− ρA)

}] ≤ 0

⇐⇒ c2 −
[
(u− ρA)

{
v(1− ρA) + ρL(v − 1)

}
+ (v − u)

{
ρA(v − 1) + ρL(1− ρA)

}] ≤ 0

⇐= c2 ≤ 0

Let

q(r) = (g′(r))2
+ 4 (f ′(r))2

g(r)− 4f(r)f ′(r)g′(r)
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Proving d
dr

p(r) ≥ 0 is equivalent to provingq(r) ≥ 0. For this, it suffices to show thatq′(r) ≥ 0
andq(0) ≥ 0.

Claim: q′(r) ≥ 0
Proof:

q′(r) = 2g′′(r)[g′(r)− 2f(r)f ′(r)]

sincef ′′(r) = 0. We knowg′′(r) ≤ 0. Further consider

s(r) = g′(r)− 2f(r)f ′(r)

Now,

s′(r) = g′′(r)− 2 (f ′(r))2

≤ 0

and,

s(0) = g′(0)− 2f(0)f ′(0)

= 2c1v
[
2v(ρA − ρL)(u− ρA)− 2ρAc1 − c2(v + ρA)

]

= 2c1v
[
2v(ρA − ρL)(u− ρA)− 2ρA(v − u)(v − ρL)

−(u− ρA)(v − ρL)(v + ρA) + (v − u)(ρA − ρL)(v + ρA)
]

= −2c1v(v − ρA)
[
(u− ρA)(v + ρL) + (v − u)(ρA + ρL)

]

≤ 0

Therefore,s(r) ≤ 0 and combiningq′(r) = 2g′′(r)s(r) ≥ 0.

Claim: q(0) ≥ 0
Proof:

q(0)

16c2
1v

2
=

(
v(ρA − ρL)(u− ρA)− ρAc1

)2 − c2(v + ρA)
(
v(ρA − ρL)(u− ρA)− ρAc1

)
+ c2

2vρA

Now the polynomialx2 − c2(v + ρA)x + c2
2vρA is negative only in the interval

(
c2v, c2ρ

A
)
. But,

v(ρA − ρL)(u− ρA)− ρAc1

=v(ρA − ρL)(u− ρA)− ρA(v − u)(v − ρL)

=v(u− ρA)
{
(v − ρL)− (v − ρA)

}− (v − u)
{
v(ρA − ρL) + ρL(v − ρA)

}

=c2v − (v − ρA)
[
v(u− ρA) + ρL(v − u)

]

≤c2v
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Therefore,q(0) ≥ 0.

Combiningq(0) ≥ 0 andq′(r) ≥ 0, q(r) ≥ 0 and henced
dr

p(r) ≥ 0.

Hence,

d log ∆

d log r
= − 1

1− r
− r

p(r)

dp(r)

dr

≤ − 1

1− r

≤ −1
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