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Abstract

We present the design and implementation of OverDoSe, an overlay network offering generic
DDoS protection for targeted sites. OverDoSe clients and servers are isolated at the IP level.
Overlay nodes route packets between a client and a server, and regulate traffic according to the
server’s instructions. Through the use of light-weight security primitives, OverDoSe achieves
resilience against compromised overlay nodes with a minimal performance overhead. OverDoSe
can be deployed by a single ISP who wishes to offer DDoS protection as a value-adding service to
its customers.
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1 Introduction

Distributed Denial-of-Service (DDoS) attacks continue tobe a serious problem in the Internet. In
a DDoS attack, an adversary controlling many hosts (often tens of thousands) uses these hosts
to simultaneously send traffic to a victim, exhausting the victims bandwidth or computational
capacity. These attacks may be used to capriciously bring down a prominent website, but they
have also been used in extortion schemes against e-commercesites [22].

Recently, researchers have proposed two categories of DDoSdefense mechanisms. The first
approach requires router support for filtering attack traffic. For instance, in Pushback [11, 21] and
traceback [8, 25, 26], routers use an explicit signaling protocol to detect the source of DDoS
attacks and filter bad traffic as close to the source as possible. Network-capability architec-
tures [6, 20, 32, 33], on the other hand, use markings in the packet header to encode permis-
sion to send traffic. The primary concern with infrastructure-based approaches is deployability, as
modifications to the current network infrastructure require a lengthy standardization process and
significant economic lift to get off the ground. The second approach is to deploy an overlay net-
work to route and filter traffic to the victim server. In contrast to infrastructure-based approaches,
overlays are immediately deployable in today’s Internet. This approach has therefore received
much recent attention in the research community [5, 17, 18, 15, 28, 27]. Previous overlay-based
DDoS defense solutions, including Akamai’s SiteShield service [1], SOS [15, 27] and Mayday [5],
rely on a secret authenticator (e.g., the IP address of the victim server) held by all or a subset of the
overlay peers. If the secret authenticator is revealed, an attacker can bypass the overlay network
and directly flood the victim server.

The potential existence of compromised overlay nodes posesa serious threat to the security
of overlay-based solutions. Previous work has studied waysto limit the damage of compromised
overlay nodes [5, 15]. Their focus is mainly on preventing malicious overlay nodes from learning
and disclosing secret authenticators. The proposed countermeasures require relatively expensive
mechanisms such as anonymous routing to protect the secret authenticator and the identities of the
overlay nodes holding the secret. These security mechanisms have a high run-time performance
overhead, and increase design-time complexity, introducing opportunities for new DDoS attacks.

In this paper, we propose OverDoSe, a high-performance and compromise-resilient overlay
network offering generic DDoS protection for a spectrum of applications. OverDoSeisolates
clients from the victim server at the IP level. Only the overlay nodes have IP reachability to
the protected server; a client cannot reach the server via IP, so it must route its traffic through the
overlay network to communicate with the server.

To achieve the IP level isolation between clients and servers, we take an ISP-centric approach,
where the overlay network is deployed in strategic positions by a single ISP who wishes to offer
DDoS protection as a value-adding service to its customers.The ISP hosting the overlay network
must configure its routers to isolate the source and the victim server, but no new functionality is
required on the ISP’s routers. In addition, an ISP-centric approach requires no cooperation between
different ISPs, imposing fewer hurdles to deployment.

One of the main goals of OverDoSe is to provide resilience against compromised overlay nodes.
We examine a variety of potential DoS attacks by a malicious overlay node, and propose novel
light-weight mechanisms to defend against these attacks.



Clients are recommended to install the OverDoSe client-side software, but need not modify
legacy applications. We also propose ways to support legacyclients, although legacy clients get
weaker protection under DDoS attacks than updated clients.

Unlike Content Delivery Network (CDN)-like approaches that offload the entire application
logic to the overlay network, OverDoSe provides a set of application-independent primitives for
DDoS protection.

2 Problem Definition

2.1 Terminology and Definitions

OverDoSe involves three entities: 1)clients, Internet hosts that request service from the server;
2) overlay nodes(or asoverlay peers), who route and regulate traffic between clients and servers;
and 3)servers,who execute application-specific logic and serve the clients’ requests. Note that the
server could be a single server machine or a server farm deployed in a data center.

OverDoSe considers attacks in which attackers and legitimate clients compete for some bot-
tleneck resource. Other types of DDoS attacks, e.g., those that exploit server software vulnerabil-
ities are outside the scope of this paper. We assume that the bottleneck resource is close to or at
the server, either processing-bound (i.e., the server’s computation/storage capability), or network-
bound (i.e., the access link bandwidth to the server).

We assume the bottleneck resource is divided between serving connection setup requests (hence-
forth referred to as theconnection setup channelor the request channel) and servingestablished
clients. Connection setup is the process by which a client establishes its identity and starts a con-
versation with the server. After connection setup, a clientbecomes an established client. For
example, consider a processing-bound web server. The web server can commit a fixed fraction of
its processing cycles to admit new clients, which requires apassword verification; and commit the
remaining processing cycles to serving established clients, by fetching static or dynamic content
from the local storage system and returning it to the client.Likewise, a network-bound server
divides its access-link bandwidth into a smaller portion toserve connection setup requests and a
larger portion to serve established flows.

2.2 Assumptions and Threat Model

We consider an adversary who has potentially compromised a large number of Internet hosts,
which then collaborate in launching a DDoS attack.

Once the overlay network comes into play, instead of directly DDoSing the victim server,
the adversary can also attack the overlay nodes. We assume that while the attacker may have
enough resources to bring down a subset of the overlay nodes,she cannot disable the entire overlay
network.

A sophisticated adversary can also compromise overlay nodes. In this paper, we assume that a
compromised overlay node can exhibit arbitrarily malicious behavior. For instance, a compromised
overlay node can flood the victim server, it can drop packets,or hijack the sessions of legitimate
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clients. An important goal of OverDoSe is to provide resilience against compromised overlay
peers.

OverDoSe assumes that the overlay network is hosted by a single ISP. We assume that the ISP’s
routing infrastructure is trusted, and that a DDoS-resilient name lookup service can be achieved
through means of replication and IP anycast. We assume that the hosting ISP provides a manage-
ment infrastructure by installing special boxes close to the server, through which the server can
turn off IP-level connectivity between a misbehaving overlay node and the server. (Section 4.1).
We assume that the management infrastructure is not DDoSed.
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Figure 1: OverDoSe basic protocol. This figure illustrates OverDoSe’s basic protocol. The numbers
represent the temporal ordering of messages. Solid lines represent the messages in the request channel and
dashed lines represent the established channel.

3 OverDoSe Overview

3.1 Protocol Overview

OverDoSe uses a novel computational puzzle scheme to provide fairness in the request channel.
When a client wishes to connect to a server, it first sends a request to a name server to resolve
the IP address of the server (step 1 in Figure 1). The name server returns a list of IP addresses of
overlay nodes (step 2 in Figure 1). The client selects an overlay node to which it sends a connection
request (step 3 in Figure 1). The node selection algorithm can be based on a variety of heuristics
such as network proximity [24, 31] or node reputation [13]. In response to a client’s connection
request, the overlay node replies with the latestpuzzle seedreleased by the server, as well as a
puzzle difficulty levelspecified by the server (step 4 in Figure 1). The client is expected to solve a
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puzzle at or above the specified difficulty level in order to successfully set up a connection. The
client generates a puzzle based on the puzzle seed, solves the puzzle, and sends the puzzle solution
to the overlay node (step 5 in Figure 1). The purpose of the puzzle seed and the puzzle generation
algorithm will be detailed in Section 4.2.2. Now the overlaynode validates the puzzle solution and
forwards the request and the solution to the server (step 6 inFigure 1). The server assigns acookie
to the requesting client, and replies to the overlay node with the cookie and aflow specification
(step 7 in Figure 1). The flow specification is a set of rules theoverlay node must enforce for
regulating an established flow. The flow specification can be updated dynamically by the server,
and is explained in more detail in Section 4.3. The overlay node then replies to the client with the
cookie, successfully completing connection setup. The client attaches the cookie to all subsequent
packets to the server. The overlay node then routes traffic between the client and the server, and
polices the client’s flow according to the flow specification.

3.2 Design Rationale

3.2.1 Securing Connection Setup, Established Flows

A complete DDoS solution must protect both the connection setup channel and the established
flows. If a viable mechanism exists to distinguish legitimate clients from malicious clients, we
should give better service to legitimate traffic, or simply blacklist malicious clients. When inferring
legitimate traffic from attack traffic is hard (e.g., when zombies behave like legitimate clients), the
defense mechanisms should provide some fairness among the users, both friend and foe, of the
service.

Securing connection setup. Connection setup may occur before clients establish their identities
with the server. As a result, differentiating between legitimate requests and malicious clients is
difficult and remains an area of open research [14]. OverDoSeuses computational puzzles to share
the connection setup channel resource fairly among clients. Compared with schemes such as per
source-IP fairness, the puzzle-based scheme effectively bounds the rate at which a compromised
overlay node can establish connections with a server. The motivation for choosing computational
puzzles in OverDoSe is explained in more detail in Section 4.2.1.

Securing and regulating established flows. In contrast to connection setup, once a client estab-
lishes a session with the server, the server can often differentiate between legitimate and malicious
behavior, by verifying application-level correctness, orby application-level authentication (e.g.,
password authentication or the CAPTCHA [29] mechanism usedby many websites). In Over-
DoSe, once an attack has been identified, a server can instruct overlay nodes to filter the attacking
traffic. OverDoSe also supports differentiated service: a server to specify to the overlay network
the service level of each client. The overlay then regulatesthe sending rate of each client based on
the client’s service level. In this way, the server can give preference to high-priority customers, e.g.,
customers who spend more money shopping on an e-commerce website. For servers that cannot
distinguish between clients, OverDoSe fair shares the bottleneck resource among all established
clients.
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3.2.2 Defense Against Compromised Overlay Nodes

Compromised overlay nodes can perform three general attacks: 1) flood the server themselves,
or collude with malicious clients to flood the server; 2) droppackets from legitimate clients; 3)
compromise data integrity, e.g., by injecting bogus data, by impersonating legitimate clients or by
hijacking TCP connections.

To defeat the first attack, OverDoSe ensures that the server can always check whether an over-
lay node has correctly verified puzzles and performed packetfiltering. A server can turn off IP
connectivity between itself and a misbehaving overlay nodeusing techniques described in Sec-
tion 4.1.

Under the second attack, the victim client experiences highpacket loss. To defend against this
attack, clients are allowed to switch to a new overlay peer. To the client, the effect of a packet-
dropping overlay peer is indistinguishable from a well-behaved overlay peer that is being DDoSed,
or is simply overloaded. In all of these cases, however, the client has motivation to switch to a new
overlay peer.

OverDoSe offers end-to-end authentication as an option to defeat data integrity attacks. This
assumes the existence of a PKI from which clients can obtain acertificate for a server’s public key,
and then uses the Secure Sockets Layer (SSL) protocol to establish a symmetric key between a
client and a server.

Section 4.4 discusses more sophisticated attacks and defense mechanisms.

3.2.3 Security vs. Deployability

One goal of OverDoSe is to find a good balance between securityand deployability. Wide-spread
overlay deployment across different ISPs increases the capacity of the overlay network, reducing
the chance that the overlay network itself becomes the target of a DDoS attack; in addition, it
allows the filtering of attack traffic closer to the source. Onthe other hand, a universal overlay
deployment requires inter-ISP cooperation, and complicates the deployment process. OverDoSe
investigates a single ISP deployment scenario, in which theability to provide DDoS protection
as a value-added service to its customers provides an economic incentive for an ISP to deploy an
OverDoSe-like solution. We also hope that the successful deployment of OverDoSe by a single ISP
can spur incentives for inter-ISP cooperation, eventuallyleading to the wide-spread deployment of
such an overlay network.

A second goal of OverDoSe is to support legacy clients and legacy applications. Yet to achieve
such backward compatibility imposes severe design constraints, and weakens the level of security
we can achieve. OverDoSe encourages clients to install the OverDoSe client-side software to get
better protection under DDoS attacks. The client-side software is built on top of the OCALA [12]
framework, and allows legacy applications to use the overlay without being aware of its existence.
OverDoSe also supports legacy clients, but they are less protected from DDoS than updated clients.
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4 Detailed Design of OverDoSe

4.1 Infrastructure Support for OverDoSe

OverDoSe requires that servers only be reachable via overlay nodes, and requires that the server
can revoke permission for a particular overlay node to contact it.

Isolation. OverDoSe isolates the home server by placing it on a private network that is logically
separate from the ISP’s IP routing infrastructure. The ISP then configures tunnels between the
overlay nodes and the server, to allow only them to reach the server. In practice, such a private
network can be established using an ISP’s existing VPN technology, by configuring MPLS or other
tunnels between the overlay nodes and the edge. The server can reside at a either public or private
IP address, provided that arbitrary hosts on the Internet cannot directly reach that address. This
approach provides isolation using only components widely available in today’s network infrastruc-
ture.

Revocation. To deal with compromised overlay nodes, OverDoSe requires that a server be able
to prevent a node from communicating with it. We assume that the hosting ISP install boxes close
to the victim node running RSVP-TE [7] and similar protocolsthat can dynamically establish and
destroy tunnels and configure QoS parameters such as capacity and priority. Using this function
requires the ability for a server that is untrusted by the ISP’s network to signal to the network its
desire for tunnel establishment and teardown. This could bedone using RSVP or via a relatively
simple client interface that validates requests and translates them into internal RSVP-TE requests.

Origin authentication for overlay nodes. Compromised overlay nodes can spoof a well-behaved
overlay node and flood the server. To allow servers to identify the attack source, OverDoSe requires
an authenticated communication channel. One way to achievethis is to have routers one hop away
from the overlay nodes filter spoofed IP packets. One could also configure each overlay node with
a different MPLS label, and use the MPLS label for origin authentication. This requires that the
server understand MPLS, and the last-hop router to the server retain the MPLS labels on packets
before handing them to the server. Alternatively, one couldconfigure the last-hop router to the
server to rewrite the source IP address of every packet according to its MPLS label.

4.2 Puzzle-based Connection Setup

4.2.1 Why Puzzles?

As we explain in Section 3.2.1, because differentiating between legitimate and malicious clients in
the request channel remains an open research topic, OverDoSe aims to share the request channel
fairly among clients. The question then reduces to how to reliably identify a client.

Typically, a client can be identified by its IP address. Unfortunately IP-based fairness raises
several concerns: 1)IP spoofing by malicious clients.Although simple IP spoofing attacks can be
countered using an approach similar to SYN cookies, such approaches provide no defense against
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an adversary who is able to sniff packets sent to an IP addressand send packets spoofing that IP
address. In such cases, we say that the adversaryownsthe IP address. For instance, a zombie
machine situated in a class B network can potentially spoof any IP address in the class B range,
even in the presence of ingress filtering. If an IP-fairness scheme is used in the request channel,
an adversary gains an advantage proportional to the number of IP addresses it owns, which could
be much larger than the number of machines the adversary has compromised. 2)IP spoofing by
malicious overlay nodes.A compromised overlay node can flood the server with fake request
packets from many sources. It can then open many different connections with the server and flood
the server using the spoofed IP addresses. 3)NATs.A practical concern with per-IP fairness is due
to the presence of Network Address Translators (NATs) and firewalls which can cause many users
to share a single IP address. Hence, per-IP fairness would discriminate against NATed hosts.

To address these concerns, OverDoSe instead uses computation-based fairness. A server pe-
riodically releases new puzzle seeds to the overlay nodes. Aclient obtains the latest puzzle seed
from an overlay node, generates and solves a puzzle based on the seed, and attaches the solution to
a connection setup request. The server can control the rate of connection setup requests by adjust-
ing the puzzle level. The overlay nodes verify puzzle solutions and admit only requests with valid
puzzle solutions at or above the puzzle level specified by theserver.

Puzzle-based connection effectively defends against compromised overlay nodes. The server
can detect a cheating overlay node that passes incorrect solutions by re-checking the puzzle solu-
tion. By using computational puzzles, malicious overlay nodes also have to solve computational
puzzles to open connections with the server. The rate at which a malicious overlay node can open
new connections with the server is therefore bounded by its computational resources.

If every client had equal computational power, then per-challenge fairness would be equivalent
to per-source fairness. Suggestions on how to mask the asymmetry in computational ability are
provided in Section 5.2.

4.2.2 Design of Puzzle Scheme

Puzzle seeds. The puzzle seeds are a sequence of pseudo-random numbers generated by a server,
which periodically releases a new seed to the overlay network.

Generating and solving puzzles. After receiving the latest puzzle seeds, the client picks a
random noncer and computes a flow-specific puzzle as

p = H(x||r||s||ℓ||source IP||peer IP), (1)

whereH denotes a cryptographic hash function such as SHA-1, and|| denotes concatenation.
To solve the puzzle at difficulty levelℓ, the client finds a 64-bit valuex such that the lastℓ bits

of p are zero. The client includesr, s, ℓ, and the puzzle solutionx in a request packet.
Including the source IP in the hash computation prevents reuse of a puzzle solution by different

zombie machines. Likewise, including the peer IP prevents an adversary from using the same
puzzle solution with different overlay nodes.
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Puzzle verification. Upon receiving a connection setup request with a puzzle solution, an overlay
node first verifies that the puzzle seeds contained in the request packet is one that has been recently
released by the server. Then the overlay node verifies the puzzle solution by computing the same
hash shown in Equation 1, using the noncer, the seeds, and the flow information in the request
packet.

4.2.3 Resource Scheduling in the Request Channel

Request channel resource scheduling must meet four requirements: 1) An overlay node must sup-
press all requests containing puzzle solutions below the threshold difficulty level specified by the
server. 2) To prevent an adversary from reusing the same puzzle solution at high rates, an overlay
node should throttle the rate at which the same puzzle solution is used. 3) To prevent an adversary
from precomputing solutions and using them all at once, puzzle solutions must expire after a finite
amount of time. 4) When requests arrive at the server, the server must check the puzzle solutions,
and preferentially admit clients that solved more difficultpuzzles.

When request packets arrive at an overlay node, the node firstverifies the puzzle solution and
drops requests containing invalid puzzle solutions, expired seeds, or a puzzle difficulty below the
current threshold level. Verified request packets enter a rate throttler that enforces that each puzzle
solution is not excessively repeated. A puzzle solution that has been seen in the pastt seconds is
dropped in this stage.t is an adjustable parameter; when set to infinity, the rate throttler reduces to
strict duplicate suppression.

4.3 Regulating Established Flows

Flow cookie. To receive prioritized service, a client must attach to its data packets the flow
cookie it received during connection setup. The cookie identifies the flow, and can be carried
across multiple TCP sessions to support HTTP-like applications that complete over multiple TCP
transactions.

Compromised overlay nodes or zombie hosts can hijack a client’s connection by eavesdropping
on the path from the client to the server and stealing the session cookie. This attack is similar to
a TCP session hijacking attack [19], where an adversary eavesdrops on a TCP session and steals
TCP sequence numbers to inject bogus data. To mitigate the cookie hijacking attack, OverDoSe
uses a short-lived cookie, and have the server periodicallyupdate the cookie during the life-time
of the flow. When an old cookie expires, the server notifies theoverlay node, who in turn notifies
the client of the new cookie. The cookie expiring mechanism requires an adversary to constantly
tap the session to observe with the latest cookie. A strongerbut more expensive defense involves
the use of end-to-end authentication, and is discussed in more detail in Section 4.4.

Flow specification. The flow specification represents the level of service the server assigns to
the flow. In OverDoSe, this is expressed as a maximum inbound bandwidth. Overlay node rate
limit the incoming flow beneath its maximum allowable bandwidth.

The server can dynamically update a flow’s bandwidth quota. For instance, the server can
instruct an overlay node to blacklist a client or reduce its bandwidth if that client is suspected of
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cheating. The server could also upgrade a client if it is about to spend money or after it has just
spent money on a hosted website. To dynamically update a flow’s quota, the server sends to the
overlay node a flow update message, either piggybacked on topof an existing data packet, or in
the form of an explicit control message.

4.4 Defense against Compromised Overlay Nodes

An important goal of OverDoSe is to provide resilience to compromised overlay nodes. We now
discuss potential attacks from compromised overlay nodes,and techniques to defeat them. Our
study is restricted to DoS attacks; other attacks such as breach of data privacy are outside the scope
of this paper.

4.4.1 Data Integrity Attacks

A data integrity attack in the request channel is a packet dropping attack, for it results in the clients’
inability to establish a connection with a server. We address packet dropping attacks separately in
Section 4.4.2, so the discussion below focuses on data integrity attacks in the established channel.

Data integrity attacks can be detected either at the application level or at the OverDoSe level.
Applications are able to detect invalid data packets, either through application-level data authen-
tication, or through application semantic checks. OverDoSe allows applications and users to to
switch to a new overlay node when such attacks are detected.

OverDoSe also provides an end-to-end data authentication option at the OverDoSe level. Built
on top of the OCALA [12] framework, OverDoSe adopts OCALA’s mechanism for setting up a
secret authentication key between the client and the server, assuming the existence of a PKI from
which clients can obtain a certificate for a server’s public key and using the Secure Sockets Layer
(SSL) protocol for symmetric key establishment.

4.4.2 Packet Dropping Attacks

Dropping legitimate connection setup packets prevents a client from setting up a connection through
that overlay node. An OverDoSe client automatically tries anew overlay node if it fails to set up a
connection through the current overlay node within a certain timeout.

In the established channel, a malicious overlay node can drop packets in transit between a
legitimate client and a server. Similar to data integrity attacks, packet dropping attacks may be
detected either by the application or by OverDoSe. The application perceives a packet dropping
attack as a broken connection, or low application throughput. When this happens, OverDoSe
allows applications and users to explicitly switch to a new overlay node.

OverDoSe itself detects packet dropping attacks. OverDoSeclients can be configured to send
periodic probe messages to the server which sends back probereply messages. A missing probe
reply indicates lossy network conditions or a packet dropping attack. When the loss rate exceeds a
certain threshold, the OverDoSe client automatically switches to a new overlay node.

The probe mechanism must be combined with light-weight cryptography for enhanced secu-
rity:
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Probe integrity.To defeat OverDoSe’s probes, malicious overlay nodes can impersonate clients or
a server and inject bogus probes and probe replies. Such attacks can be defeated by turning on the
end-to-end authentication option as described in Section 4.4.1 to ensure data integrity.
Defense against selective forwarding attacks.A malicious node can selectively forward probes
and reply messages but suppress normal data packets. To defend against the selective forwarding
attack, OverDoSe disguises so that probes are indistinguishable from data packets. To do so, we
assume that the client and the server shares a secret keyK. The secret key can be established
in a similar way as the authentication key. Meanwhile, OverDoSe dedicates a field in its packet
header to contain a random nonceu, and a numberx. A packet is a probe packet if and only
if x = MACK(r||msg), where MACK denotes a message authentication code over secret key
K. If probe packets were sent at regular intervals, maliciousoverlay nodes might also be able
to distinguish probe packets from normal data through timing information. To avoid such timing
attacks, OverDoSe adds randomness to the time when probe messages are sent.

4.4.3 Flooding Attacks

A compromised overlay node can attempt to flood a server to create congestion, and deny service
to legitimate clients. A compromised overlay node can do so in several ways: it can collude with
malicious clients and admit their flood traffic, or it can actively generate flood traffic. Floods can
target the request channel or the established channel.

Request channel floods. In the request channel, a malicious overlay node can attemptto facili-
tate malicious clients by admitting requests without a valid puzzle solution at or above the specified
difficulty level. A malicious overlay node can also generateinvalid request floods.

OverDoSe ensures that servers can check whether an overlay node correctly verified puzzles
in the request channel. When an overlay node forwards a request to the server, it also attaches the
puzzle solution (includings, r, ℓ, x). The server can check if the seeds used in the generation of
the puzzle has been recently disclosed by the server. The server then verifies the puzzle solution
by recomputing Equation 1. In addition to checking the solutions, the server also checks whether
each overlay node has throttled the rate at which each puzzleis reused.

In OverDoSe, a malicious overlay node cannot inject invalidrequest packets at arbitrary rates,
because it must compute a puzzle solution for every request packet it injects to avoid detection by
the server.

Established channel floods. In the established channel, a compromised overlay node can fail to
shape a client’s flow, or actively generate floods. To detect such attacks, the server monitors the
incoming traffic rate of established flows and compares the observed rate against the flow speci-
fication. In this way, a server can detect malicious overlay nodes that fail to regulate established
flows.
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4.4.4 Other Attacks

Slandering. A malicious overlay node can generate floods impersonating alegitimate overlay
node; hence, a server can mistakenly blame and revoke the legitimate overlay node. Packet-level
authentication fails to address this attack, because a slandering attacker can flood with unauthen-
ticated packets. The slandering attack is addressed through infrastructure supported origin au-
thentication techniques as described in Section 4.1. OverDoSe trusts the hosting ISP’s network
infrastructure to prevent slandering by malicious overlaynodes.

Equivocation. A malicious overlay peer can help a zombie client by ignoringa blacklist or flow
downgrade message from the server. Similarly, a malicious overlay node can admit request at
lower difficulty levels by ignoring a puzzle level upgrade message. The equivocation attack can be
addressed by a timeout. We require that the server periodically send flow update messages. If an
overlay peer does not hear any updates for a specific flow within the timeout, it must suppress or
gradually downgrade the service level of that flow. To blacklist a flow, the server first sends explicit
blacklist messages to the overlay node; meanwhile, the server withholds further updates for the
suspect flow. If an overlay node does not respond to the explicit blacklist message immediately, it
must still suppress the flow within a short time to avoid detection. A similar approach can address
equivocations on the puzzle difficulty.

Performance degradation. Instead of dropping all or the large majority of packets of a legiti-
mate flow, a compromised overlay node can potentially avoid detection with a performance degra-
dation attack, where it drops a small subset of legitimate packets or delays packet delivery. This
attack is difficult to defeat. Although OverDoSe clients monitor real-time connection statistics, it
is unclear when an alarm should be raised. The current implementation tries to switch to a new
overlay node when performance drops beneath a user specifiedthreshold (e.g., delay> 100 ms).
We recognize that this is an aspect of OverDoSe left for future research. One promising defense is
to spread a single flow across multiple overlay nodes, as recently proposed by Stavrou et al. [28].
More details on this approach are available in Section 8.

4.5 Supporting Legacy Clients

Thus far, we have assumed that clients install the OverDoSe software that bridges the legacy ap-
plications and the overlay. For incremental deployment purposes, we also describe techniques to
support legacy unmodified clients.

Identifying the destination of legacy packets. When multiple servers are behind the same over-
lay network, overlay nodes must be able to route packets fromclients to the correct server. Updated
clients convey to overlay nodes the destination of each packet through a designated server iden-
tification field in the packet header. Since legacy clients donot provide this information, overlay
nodes in OverDoSe rely on the following means to identify thedestination of legacy packets: 1)
For self-identifying applications such as HTTP, overlay nodes rely on the destination URL em-
bedded in the application data to identify the destination.2) When overlay nodes have multiple
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IP addresses, they can designate a different IP for each protected server. Letn denote the num-
ber of servers, andm the number of overlay nodes. Let(ipi

1, ipi
2, . . . , ipi

n) denote then different
IP addresses associated with theith(1 ≤ i ≤ m) overlay node. When a legacy client sends a
DNS request for thejth(1 ≤ j ≤ n) server, the DNS server returns setS of IP addresses, where
S ⊆ {ip1

j , ip2
j , . . . , ipm

j }. 3) Since the OverDoSe endhost software is built on top of OCALA, it can
also use OCALA’s native approach for supporting legacy clients, i.e., through the use of Legacy
Client (LC) gateways. The LC gateway is configured as the clients’ local DNS server. It intercepts
the clients’ DNS packets, sends back a DNS reply with an Internet routable address to the client
(a different IP address is used for each server), captures packets sent by the legacy client to that
address, stamps them with the destination identifier, and sends them over the overlay [12].

Resource scheduling in the presence of legacy packets.OverDoSe reserves a small fraction
of the request channel to serve legacy request packets. A server specifies to the overlay nodes the
maximum rate at which to admit legacy requests. In this way, legacy requests only compete with
other legacy requests during congestion.

OverDoSe uses IP fair-queuing for legacy connection setup requests. To counter IP-spoofing
attacks, the overlay nodes return TCP SYN/ACKs and SYN cookies impersonating the server such
that spoofed requests are filtered at the overlay network before reaching the server. Malicious
overlay nodes can spoof IP addresses and inject invalid request packets, but cannot exceed the
legacy request bandwidth without being detected.

After a legacy client establishes a connection with a server, the client’s IP address and port
number are used to identify the established flow. Without additional application-level information,
an updated client’s flow should be given preference over a legacy flow, because the updated client
paid a certain amount of computation to set up the flow. A server can establish confidence in a
legacy flow through application-level authentication, andelevate its service level. The following
section explains the server’s resource allocation policy in more detail.

4.6 Expressing Server Policies

The server is responsible for two decisions: 1) admission control, i.e., whether to admit or blacklist
a client; and 2) resource allocation, i.e., how much of the bottleneck resource to allocate to each
client. The server can often make admission control and resource allocation decisions based on
application-level information or through means of application-level authentication. For instance,
an e-commerce website can give higher priority to clients who have spent more money in the past.
A server can also blacklist a client who sends corrupt application data, or data that contain a known
worm signature.

OverDoSe provides a generic framework for servers to express their resource allocation poli-
cies. Letrx denote the rate at which the server can admit new clients; letry denote the rate at
which the server can serve established flows. The rates are either expressed in number of packets
per second, or the bits per second.
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Policy for request channel. The server specifies to an overlay node a minimum puzzle levelℓ.
The overlay node must suppress requests below levell. Initially, when the request channel is free
of congestion,ℓ = 0. The server increasesℓ when congestion occurs in the request channel; and
decreasesℓ when request channel load falls beneath a certain threshold.

Policy for established flows. OverDoSe implements a generic weighted fair sharing schemefor
established flows. The server application specifies to OverDoSe the weight for each flow. Letf
denote the total number of established flows at a particular point of time; letwi denote the weight
of the ith flow, 1 ≤ i ≤ f . OverDoSe computesri

y, the bandwidth quota for theith flow as
ri
y = ry·wi

Pf
i=1

wi

. Settingwi to 0 is equivalent to blacklisting theith flow.

The OverDoSe server software allows the server applicationto differentiate between four types
of established flows and specify a default weight for each type: 1) updated and authenticated; 2)
legacy and authenticated; 3) updated and non-authenticated; 4) legacy and non-authenticated. A
flow is updated if it comes from an updated client. A flow is authenticated if the server application
is able to authenticate the client’s identity at the application level, e.g., through password-based
authentication, or a CAPTCHA [29] mechanism.

5 Discussion

5.1 Accommodating NATs

As shown in Equation 1, a sender computes a puzzle based on itsIP address. If the sender’s
ISP uses a Network Address Translator (NAT), then a sender’sinternal IP address differs from
its external IP address, so overlay nodes in OverDoSe will reject puzzle solutions computed for
a puzzle based on the internal address. To accommodate NATs,when a sender behind a NAT
requests the latest puzzle seed from an overlay node, the overlay node includes not only a puzzle
seed and a puzzle level, but also the sender’s external IP address in the reply. The sender can
extract the external IP address from the response packet anduse it in the computation of a puzzle
solution.

5.2 Asymmetric Computational Ability

One concern with using computational puzzles is that it gives an advantage to endhosts with faster
CPUs. To address this problem, researchers have proposed memory-bound puzzles [4, 9]. Another
possibility is use a database like ARIN WHOIS [2] to obtain organizational information of an IP
address. This can help us infer what type of device is associated with an IP address. We plan to
study this further in future research.

5.3 Other Types of DDoS Attacks

Because clients and servers are isolated at the IP layer in OverDoSe, compromised zombies cannot
directly flood the server at the IP layer. However, a sophisticated adversary can instead direct
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the flood towards hosts close to the targeted server. This cancause network congestion near the
targeted server, hence preventing legitimate clients fromaccessing the server. To defend against
this attack, we can either hide the location of the server or locate the protected server in an isolated
and well-connected part of the network with a very high capacity.

6 Analysis

We analyze OverDoSe’s puzzle-based connection setup scheme (PUZZLE), and compare it with
Fighting Fire with Fire [30] (FFF), in which all clients, both legitimate and malicious, send aggres-
sively to ensure fairness. The results show that with a single bottleneck, PUZZLE and FFF achieve
the same mean and variance.

For simplicity, assume that all Internet hosts are identical in terms of computational power
and access link bandwidth. Assume that the Internet backbone has sufficient capacity such that
in the case of FFF, each client is capable of injecting request packets to the bottleneck as fast as
their access link bandwidth can sustain. Due to space limit,we only show the conclusions of our
theoretical analysis. We provide the detailed proofs in theappendix.

6.1 Response Time without Queuing

Assumen−1 malicious and 1 legitimate clients that concurrently try toestablish a connection with
a server, who is capable of handling new connection requestsat a deterministic rate ofµ.

For FFF, we make the simplifying assumption that every1/µ seconds, the server accepts a
request at random from all requests that have been received in the past1/µ seconds. In PUZZLE,
the server accepts all requests carrying a valid puzzle solution of level at leastℓ. ℓ is selected such
that a client needsn/µ time in expectation to solve a levelℓ puzzle. LetTFFF , TPUZZLE denote
the time for a legitimate client to successfully get a request accepted at the server.

Theorem 6.1.E[TFFF ] = E[TPUZZLE] = n
µ , V AR[TFFF ] = V AR[TPUZZLE] = n2

µ2

6.2 Effect of Queuing

The analysis in the previous section does not take into account queuing delay in FFF and PUZZLE.
Consider FFF-Q-FCFS, a variant of FFF, where the server has aqueue of lengthQ, and requests

are serviced at a deterministic rate ofµ in First-Come-First-Serve (FCFS) order.

Corollary 1. E[TFFF−Q−FCFS] = n/µ + Q/µ, V AR[TFFF−Q−FCFS] = n2/µ2.

Next, we analyze the effect of queuing on PUZZLE and show thatunder FCFS policy, the
queuing delay is sublinear with respect to the number of attackers.

Assume the server has an infinite-size queue, and adopts a First-Come-First-Serve (FCFS)
service policy. The response time is the sum of the time spentcomputing the puzzle and the
queuing delay. To minimize the response time the server has to choose between (1) a lower puzzle
level which translates to a lower computation time, but a larger queuing delay (as more puzzle
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are computed), or (2) a higher puzzle value, which translates to lower queuing delay, but a higher
computation time.

Assume at any point of time,n users concurrently request a connection setup. Define job size
S to be the time spent servicing a request. We consider generaldistributions of job sizes. Letµ
denote the average rate at which the server can service requests, hence,µE[S] = 1. Let x = E[S2]

2E[S]
.

x is a quantity that roughly characterizes the variance of thejob size distribution.

Theorem 6.2. To obtain the best expected response time, one must set the puzzle level to beℓ∗ =

log2
n+

√
µxn

µδ . And underℓ∗, the best expected response time isE[TS ]∗ = n
µ + 2

√

nx
µ .

Corollary 2. Particularly, with deterministic job size,ℓ∗ = log2
n+

√
n/2

µδ , E[TS ]∗ = n
µ +

√
2n. When

job size is an exponential distribution,ℓ∗ = log2
n+

√
n

µδ , E[TS ]∗ = n
µ + 2

√
n.

7 Evaluation

7.1 Implementation Details

We implement the client-side and server-side OverDoSe software on top of OCALA [12], a soft-
ware layer positioned below the transport layer in the IP stack, that allows legacy applications to
use features provided by an overlay network without being aware of the existence of the overlay.
On the client side, when OverDoSe captures a DNS request for aprotected server from a legacy
application, it resolves the name to a list of IP addresses ofthe overlay nodes. OverDoSe then
establishes an end-to-end path to the protected server via the overlay. After setting up the path,
OverDoSe returns to the legacy application a DNS reply containing a fake IP address. OverDoSe
thereafter captures all packets sent to that IP address and routes them via the overlay network. As
described in Section 4.4, OverDoSe also uses probe messagesto monitor end-to-end connectivity.
OverDoSe automatically tries to reroute traffic through a different overlay node when it observes
low throughput or high loss.

On the server side, in addition to connecting the server application with the overlay network,
OverDoSe also provides an API through which server applications can specify to OverDoSe how
to regulate established flows and the connection setup packets.

Overlay nodes in OverDoSe run a single-threaded user-leveldaemon under Linux, capturing
and forwarding packets using UDP. An OverDoSe overlay node allocates a different UDP port for
each server. All established data packets from or destined for a server, as well as control messages
from the server, are sent to a unique UDP port dedicated to that server. In addition, all overlay
node use a unique UDP port to handle initial connection setuprequests.

7.2 Experiment Setup

To validate the design of OverDoSe, we ran several experiments on Emulab [3]. All experiments
use Emulab’s pc3000 nodes, consisting of 3.0 GHz 64-bit Xeonprocessors, 800MHz FSB, and
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Figure 2: Experimental topology. This figure illustrates the virtual and physical topology used in the
experiments. The virtual topology consists of a backbone of“infinite” capacity and endhosts that are subject
to access-link bottleneck bandwidth constraints. We multiplex nodes and links to simulate many virtual
nodes (links) out of one physical node (link). The two gigabit Ethernets provide abundant capacity for all
experiments.
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Figure 3:Request channel experimental results.The server is capable of handling 30 new connections
per second. The connection setup time for OverDoSe includesthe time for requesting the puzzle seed and
solving the puzzle.

2GB 400MHz DDR2 RAM. An underlying VLAN switched network canbe configured to set up
the topologies needed for the experiments.

We emulate an Internet-like topology, consisting of a backbone with infinite capacity, clients
with access-link bandwidth of 1Mbit/s, and peers and a server each with access-link bandwidth of
100Mbit/s. This virtual topology is depicted in Figure 2(a). Figure 2(b) shows the real topology
used in the established channel experiments. To emulate theeffect of large DDoS attacks, we
multiplex nodes and links to simulate many virtual nodes (links) out of one physical node (link).
Link multiplexing is achieved using customized Click [16] routers that shape each virtual node’s
traffic to 1Mbit/s. The total amount of traffic sent into the backbone in every experiment is below
1Gbps, so we use a Gigabit LAN to simulate an Internet backbone with infinite capacity.
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RTT (std. dev.) RTT reverse (std. dev.) Throughput Throughput reverse
OverDoSe 0.499(0.051) ms 0.503(0.082) ms 185.3 Mbps 146.7Mbps
no OverDoSe 0.193(0.051) ms 0.198(0.052) ms 694.3 Mbps 656.8Mbps

Table 1: Micro-benchmarks. The measurements are taken with a single client, peer and server node
connected to the same gigabit Ethernet. Round-trip-time and throughput are measured both from the client
to the server and in the reverse direction.

7.3 Micro-benchmarks

For micro-benchmarks, we connect a client, a peer, and a server to the same gigabit LAN. We
measure round-trip-time and throughput from the client to the server, and vice versa; both with
and without OverDoSe. Table 1 shows micro-benchmarking results. Round-trip-time is measured
by sending 100ping packets; and throughput is measured by runningttcp over 120 seconds.
The round-trip-time with OverDoSe is approximately twice the round-trip-time without OverDoSe,
because with OverDoSe, the packet is routed through an overlay node. The large drop in through-
put is caused by OCALA, which is running in user space; similar results are reported by Joseph
et al. [12].

7.4 Request Channel Evaluation

To evaluate the request channel, we configure the server to handle request packets at a deterministic
rate of 30 requests per second. The server has a finite-lengthdrop-tail queue of length 60, i.e., at
most 2 seconds of buffering; and adopts a First-Come-First-Serve (FCFS) policy.

We compare three schemes, each with 10 to 80 clients: 1) OverDoSe’s puzzle-based scheme;
2) a Fighting-Fire-with-Fire (FFF) scheme [30]; and 3) non-aggressive legitimate senders under no
protection.

Because OverDoSe clients must solve puzzles, a computationally intensive task, we use one
physical node to model each client. We use link multiplexingand have every 10 clients share
a 100Mbit/s LAN. A customized Click router sits at the borderof every LAN and shapes each
client’s traffic to 1Mbit/s. The same setup is used for the FFFand no defense experiments.

The OverDoSe experiment involves 5 overlay nodes. All clients repeatedly request for new
connections as quickly as they can. Each connection setup attempt times out after 10 seconds
at which time the client stops the current puzzle computation, requests a new puzzle seed, and
starts a new connection setup attempt. The connection setuptime for OverDoSe includes the
puzzle computation time. In the FFF experiment, all clientssend request packets as quickly as
their access link bandwidth can sustain. Requests and server responses are tagged with a sequence
number to mark which attempt a request packet belongs to. An FFF client floods with requests
under sequence numberi until it hears a response at which time it completes the current request,
and starts to request under sequence numberi + 1. The connection setup time for attempti is
measured as the time when the first request taggedi is sent out, till when a response taggedi is
received. In the experiment with non-aggressive legitimate senders, one client is configured as the
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legitimate sender, sending requests at a uniform rate of 5 packets per second. The rest of clients
are malicious and inject request packets as quickly as they can. A connection setup attempt times
out after 10 seconds for a legitimate sender, and a new one is started. In all experiments, request
and response packets are 84 bytes in size including IP headers. Ethernet headers and OverDoSe
headers are not counted in the 84 bytes.

Request channel experimental results are shown in Figure 3.The experimental results con-
firm the theoretical analysis in Section 6, showing that FFF and OverDoSe’s puzzle scheme have
roughly the same mean and variance in terms of connection setup time. However, with a queue of
length 60 at the server, FFF introduces a constant queuing delay of 2 seconds, since the queue is
always full in FFF. The gap narrows as the number of clients grows because the queuing delay for
OverDoSe increases in the presence of more clients. In Theorem A.3 of Section 6, we show that
the queuing delay is sublinear with respect to the puzzle computation time, assuming the server
has a queue of sufficient length.

Figure 3(a) shows, unexpectedly, that with 80 clients, the 90th percentile line for FFF increases
sharply. This is because the server is using a software interrupt mechanism for reading packets
from the Network Interface Card (NIC). Because the clients send small request packets at an ag-
gregate rate of 80Mbit/s, the software interrupt handler isconsuming almost the entire CPU. The
server request handling process therefore experiences short outages when it fails to get its schedul-
ing quantum. We also run the experiment with 100 clients, butthe FFF server is so overloaded that
the request handling process gets too few CPU cycles. For this reason, the case for 100 clients is
not included in the figure.

Our experiments show that a non-aggressive legitimate sender has low probability of success-
fully setting up a connection. In the presence of 2 attackinghosts, only 9 out of 917 connection
setup attempts completed within the 10 seconds timeout. Forthis reason, the curve for a non-
aggressive legitimate sender is not shown in Figure 3(a) along with FFF and OverDoSe.

In the OverDoSe implementation, the server dynamically adjusts the puzzle level according to
real-time load, to keep the request arrival rate below 30 requests per second. The server notifies
the peers of the latest puzzle level every second, and the latest puzzle level is returned to the clients
along with the puzzle seed. Figure 3(b) plots the average puzzle level as seen by the clients against
the number of requesting clients.

7.5 Established Channel Evaluation

To evaluate the established channel under DDoS attacks, we set up a web-server running Apache
v2.2.0. The Apache server is unmodified and running with default configuration, except that we
lower the client timeout value in to be 20 seconds, so the server does not wait too long for unre-
sponsive clients under DDoS attacks. A simple detection module runs as an OverDoSe plug-in.
Once a malicious client is found, the plugging informs the OverDoSe server, which then asks the
overlay nodes to blacklist the malicious client. The detection delay is modeled in terms of the
number of packets the server receives from each client before an alarm is triggered. Meanwhile,
the server runs the default OverDoSe policy as described in Section 4.6, aiming to fair-share the
server’s access link bandwidth between all legitimate clients.
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Figure 4:Established channel under bandwidth exhaustion attack.This figure shows the performance
of the established channel under a bandwidth exhaustion attack. Legitimate clients arrive at an Apache
web-server according to a Poisson process with an average inter-arrival time of 0.05s. 300 zombie machines
coordinate to inject attack packets from 60s to 180s.
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Figure 5:Packet dropping attack by compromised overlay nodes.The attack happens at 15s. Detection
and repair occur without interrupting TCP.

We model an adversary who floods with established traffic. There is no resource contention in
the request channel in this experiment, so we turn off the puzzle mechanism, enabling us to mul-
tiplex 5 physical nodes to emulate around 300 concurrent legitimate clients. We use httperf [23],
a HTTP performance measurement tool, to emulate legitimateclients’ behavior. In this experi-
ment, clients arrive according to a Poisson process with an average inter-arrival time of 0.05s. This
is achieved by having each of the 5 physical nodes simulate a Poisson process with an average
inter-arrival time of 0.25s. During a client’s session, it issues 15 requests for a 20KB file. The
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15 requests come in a sequence of bursts of length 5, where consecutive bursts are spaced by 5
seconds of user think-time. Clients arrive in a non-blocking fashion; inside each client’s session, a
client waits for a response to its previous HTTP request before issuing a new one.

We model 300 zombie machines on 15 physical nodes, with each physical node simulating
20 zombie machines. Each client, attacker and legitimate client alike, has 1Mbit/s of access link
bandwidth. All zombie machines attack at the same time, injecting packets as quickly as possible
to congest the uplink bandwidth to the server.

Figure 4 shows the behavior of the established channel underthis attack. With no protection,
throughput drops and response time increases sharply in thepresence of 300 attackers. The per-
formance of the established channel improves greatly with OverDoSe for two main reasons: 1)
Fair-sharing. The default policy fair-shares the uplink bandwidth amongall legitimate clients.
Hence, even without any specialized detection mechanism (the dotted line in Figure 4), the attack
loses its strength after having been shaped by the overlay peers according to each client’s fair-share
bandwidth. 2)Attack detection and blacklisting. Once the server detects that a client is misbehav-
ing, it asks the overlay network to blacklist the client; so the attack packets get dropped before the
bottleneck link.

7.6 Packet Dropping by Compromised Overlay Nodes

This experiment uses Apache with 8 overlay nodes and 20 clients, who establish a persistent TCP
connection with the web server and repeatedly download a 50KB file. Compromised overlay nodes
start to drop all packets at the same point of time, and the client-side OverDoSe detects and repairs
the connection without disrupting TCP, as shown in Figure 5.The figure plots the throughput
over time under a varying number of compromised overlay nodes. In this experiment, once an
OverDoSe client detects a packet dropping attack, it tries to repair the connection with two random
overlay nodes at a time, and if the attempt fails after a smalltimeout, it tries with two other overlay
nodes. A future version of OverDoSe might use a more sophisticated algorithm that incorporates
proximity information [24, 31] or overlay node reputation [13].

8 Related Work

Proposed solutions to DDoS fall roughly into infrastructure-based approaches and overlay-based
approaches. The two approaches are complementary; we believe that a promising direction in
DDoS defense is to introduce minimal changes to the current network infrastructure, and delegate
complex functionalities such as per-flow traffic shaping to alarge-scale overlay network.

8.1 Overlay-based DDoS Defense

In SOS [15, 27], Keromytis et al. first propose the idea of using an overlay network to provide
DDoS defense. SOS assumes a network filter in the vicinity of the protected server that blocks
all incoming packets except those coming from a small subsetof egress nodes in the overlay
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isolation resilience. agst. overhead secure conn. modification to
mechanism compromised peers setup infrastructure.

SOS secret dst. IP low high no edge
Mayday secret IPs, ports, etc. low low ∼ high∗ no edge

Si3 secret dst. IP (physical)∗∗ low low rate limit no (edge)
FoNet IP level low low partial∗∗∗ global

Spread-spectrum secret dst. IP low high no edge
OverDoSe IP level high low puzzle edge

Table 2: Comparison with related work. ∗ Mayday presents several designs allowing us to trade-off
performance for security.∗∗ The Si3 paper describes two designs, one leveraging the i3 overlay network,
the other requiring modifications the the edge ISP’s infrastructure. ∗∗∗ For services that have restricted
access, the server can provide the overlay network with an access control list; however, FoNet does not
protect connection setup for open services.

network. Hence, SOS relies on the identities of the egress nodes being secret; otherwise, zom-
bies could either spoof the source addresses of the egress nodes or selectively attack the egress
nodes. Mayday [5] generalizes SOS, and proposes an expandedset of overlay routing and filtering
mechanisms, allowing a tradeoff between security and performance. Like SOS, Mayday’s filtering
mechanism also relies on a secret authenticator that may be globally transferable across different
clients. SOS and Mayday protect the secret authenticator and increase resilience against compro-
mised overlay nodes through indirection, random routing oragile secret updates. This increases
system design complexity, and creates the possibility of attacks against the overlay routing mech-
anism itself. Multi-hop overlay routing also increases theend-to-end latency and run-time load at
the overlay nodes. A final concern with SOS and Mayday-like approaches is where to deploy the
network filter. The network filter itself can be susceptible to DDoS attack if it is situated too close
to the victim, while moving it towards the core raises scalability issues.

Stavrou et al. extend SOS and Mayday, spreading traffic across multiple access points in the
overlay network for resilience to the “sweeping attack” [28], where malicious zombies flood a
subset of the overlay nodes at a time. This approach requiresall overlay nodes to share a secret
key, and so is susceptible to a single compromised overlay node. However, spread-spectrum com-
munication is potentially valuable for resilience againstnot only the sweeping attack, but also a
performance degradation attack in which malicious nodes drop a subset of legitimate packets or
delay packet delivery in a way that is hard to detect.

Si3 [18] uses the i3 overlay network to route packets to the protected server, proposing to
implement traffic shaping functionalities on i3 nodes. Si3 assumes that a trusted overlay network
hides the protected server’s IP; once the server’s IP address is revealed, attackers can bypass the
overlay and directly attack the server.

FONet [17] proposes a federated overlay network across multiple ASes, offering different types
of DDoS resistance to suit different applications. FONet proposes to configure the network infras-
tructure to isolate senders and protected receivers at the IP level, and to give preference to traffic
between the overlay nodes. FONet assumes a trusted overlay network and does not provide tech-
niques to defend against compromised overlay nodes.
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8.2 Infrastructure-based DDoS Defense

Firebreak decouples senders and protected receivers at theIP level [10] through Firebreak boxes
deployed near the edge of the network, that tunnel packets from sources to the server. Firebreak
is complementary to our work, for it can be used to provide theinfrastructure support required by
OverDoSe.

IP Pushback [21, 11] and traceback [8, 25, 26] use explicit signaling protocols to discover
the sources of attack traffic and install filters to remove theattacking traffic as early as possible.
Network-capability systems [20, 6, 32, 33], on the other hand, use markings in the packet header
to encode permission to send traffic.

9 Conclusion and Future Work

This paper presents OverDoSe, a high-performance and compromise-resilient overlay architecture
to protect targeted sites against DDoS attacks. OverDoSe isintended for deployment by a single
ISP who wishes to provide DDoS protection as a value-added service to its customers. We imple-
ment OverDoSe endhosts on top of the OCALA architecture to support legacy applications. We
run a series of DoS experiments on Emulab and validate the design of OverDoSe.
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A Appendix

We compare three DDoS defense mechanisms, IP-based fair queuing (IP-FAIR), Fighting Fire
with Fire (FFF) and a puzzle scheme like the one adopted by OverDoSe (PUZZLE). We study
the time it takes for a legitimate sender to successfully transmit a packet in each scheme; and
each scheme is evaluated under two different scenarios, in the presence of a single bottleneck, or
multiple bottlenecks.
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For simplicity, assume that all Internet hosts are identical in terms of computational power and
access link bandwidth. We assume that in the case IP-FAIR, IPaddresses must be authentic and
cannot be spoofed.

A.1 Single Bottleneck

Assume that the Internet backbone has sufficient capacity such that in the case of FFF, each client
is capable of injecting request packets to the bottleneck asfast as their access link bandwidth can
sustain.

A.1.1 Mean and Variance

Assumen − 1 malicious and 1 legitimate hosts try to establish a connection with a server, who is
capable of handling new connection requests at a deterministic rate ofµ.

Because different variants of the IP-FAIR, FFF and PUZZLE scheme exist, we consider the
following specific variantions in the analysis. For FFF, assume that every1/µ seconds, the server
accepts a request at random from all requests that have been received in the past1/µ seconds. In
PUZZLE, the server accepts all requests carrying a valid puzzle solution of level at leastℓ. ℓ is
selected in a way such that a client needsn/µ time in expectation to solve a levelℓ puzzle. In
IP-FAIR, assume that the server hasn queues, and each arriving request enters the queue corre-
sponding to its IP address. The server polls then queues in a round-robin fashion at a deterministic
rate ofµ.

Let TFFF , TPUZZLE andTIP−FAIR denote the time for a client to successfully get a request
accepted at the server, for FFF, PUZZLE and IP-FAIR respectively.

In all of the analysis below, we do not take into account the take service time for the request.

Theorem A.1.
E[TFFF ] = E[TPUZZLE] =

n

µ
, E[TIP−FAIR] =

n

2µ

Theorem A.2.

V AR[TFFF ] = V AR[TPUZZLE] =
n2

µ2
V AR[TIP−FAIR] =

n2

12µ2

Proof. (Theorem A.1 and Theorem A.2). In the case of FFF, a client has1/n chance of getting
a request accepted every1/µ seconds. LetTFFF denote the time for a legitimate client to get a
request accepted at the server; thenµ · TFFF follows a geometric distribution with1/n being the
probability of success in each trial. Hence,

E[TFFF ] = n/µ

V AR[TFFF ] = V AR[µ · TFFF ]/µ2

=
(1 − 1/n)

(1/n)2
/µ2 ≈ n2/µ2

25



In the case of PUZZLE, letℓ denote the puzzle level undern concurrent users requesting
connection setup. Letδ denote the time to compute one hash function. The probability of hitting
a level ℓ solution with one hash computation is1/2ℓ, hence, a client need to perform2ℓ hash
computations in expectation to find a levelℓ solution. The PUZZLE server selectsℓ in a way such
that the expected time to solve a levelℓ puzzle equalsn/µ; hence,

E[TPUZZLE] = δ · 2ℓ = n/µ

In addition,TPUZZLE/δ follows a geometric distribution with probability1/2ℓ of success in each
trial. Hence,

V AR[TPUZZLE] = V AR[TPUZZLE/δ] · δ2

=
1 − 1/2ℓ

(1/2ℓ)2
· δ2 ≈ n2/µ2

In the case of IP-FAIR, assume the legitimate client arrivesat a random point of time, then
TIP−FAIR is a uniform distrition on the interval[0, n/µ]. Hence,E[TIP−FAIR] = n/µ, V AR[TIP−FAIR] =

n2

12µ2 .

A.1.2 Effect of Queuing for FFF and PUZZLE

The above analysis does not take into account queuing delay in FFF and PUZZLE.
Let FFF-Queue-FCFS be a variant of FFF, where the server has aqueue of lengthQ, and

requests are serviced at a deterministic rate ofµ in First-Come-First-Serve (FCFS) order.

Corollary 3.

E[TFFF−Queue−FCFS] = n/µ + Q/µ

V AR[TFFF−Queue−FCFS] = n2/µ2

Proof. After the attack has run for a sufficient amount of time, the queue is always full. Hence,
each request gets served after a constant amount of queuing delayQ/µ.

We now analyze the effect of queuing for PUZZLE and show that under FCFS policy and
sufficient queue length, the queuing delay is sublinear withrespect to the number of attackers.

Assume the server has an infinite-size queue, and adopts a First-Come-First-Serve (FCFS)
service policy. Now response time is the sum of the time spentcomputing the puzzle and the
queuing delay. A tradeoff exists between queuing delay and the time of puzzle computation. The
server can raise the puzzle level so every one spends more time computing a puzzle solution; and
requests arrive at a slower rate; hence, the queue is less filled. Alternatively, the server can lower
the puzzle level so every one spends less time computing a puzzle solution, but now they must be
subject to a longer queuing delay.

Assume at any point of time,n users concurrently request a connection setup. Define job size
S to be the time spent servicing a request. We consider generaldistributions of job sizes. Letµ
denote the average rate at which the server can service requests, hence,µE[S] = 1. Let x = E[S2]

2E[S]
.

x is a quantity that roughly characterizes the variance of thejob size distribution. Letδ denote the
time to perform one hash computation.
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Theorem A.3. To obtain the best expected response time, one must set the puzzle level to be

ℓ∗ = log2

n +
√

µxn

µδ

and underℓ∗, the best expected response time

E[TS ]∗ =
n

µ
+ 2

√

nx

µ

Proof. With one hash computation, the probability of successfullyfinding a levelℓ solution is
1/2ℓ. With n requesting clients, the number of clients who can successfully solve a levelℓ puzzle
in time δ follows a binomial distributionB(n, 1/2ℓ). Assume the time to compute one hash is
infinitesimally small, then the clients’ arrival process isapproximately a Poisson process with rate
λ = n

2ℓδ
.

The expected queuing delay for a M/G/1/FCFS system

E[TQ] =
λ

µ − λ
· E[S2]

2E[S]

whereS is a random variable representing the job size, i.e., time toservice each request.
Response timeTS is the sum of the time spent solving a puzzleTC , and the queuing delayTQ.

Hence,

E[TS ] = E[TC ] + E[TQ] =
n

λ
+

λ

µ − λ
· x

E[TS] is a function ofλ, and to minimizeE[TS], let dE[TS ]
dλ

= 0, hence, we get

λ∗ =
µ

1 +
√

µx
n

, E[TS ]∗ =
n

µ
+ 2

√

nx

µ

Hence,

ℓ∗ = log2 (
n

δλ∗
) = log2

n +
√

µxn

µδ

Corollary 4. Particularly, with deterministic job size,

ℓ∗ = log2

n +
√

n/2

µδ
, E[TS ]∗ =

n

µ
+

√
2n

When job size is an exponential distribution,

ℓ∗ = log2
n +

√
n

µδ
, E[TS ]∗ =

n

µ
+ 2

√
n
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A.2 Multiple Bottlenecks

In general, consider an open communication network. A legitimate sender wants to send a packet
over pathP ∗ = R1, R2, . . . , Rm, whereR1 . . . Rm arem routers on the path. Among them routers,
k routers,Rc1, Rc2, . . . , Rck, are overloaded. To simplify, we assume that it takes negligible time
for a packet to traverse a non-congested router; hence, we only study overloaded routers in the
picture.

We formally analyze the following variants of the PUZZLE, IP-FAIR and FFF scheme.
In PUZZLE, assume that a trusted authority distributes the puzzle seeds. Once a sender solves

a computational puzzle, all routers on the path are able to verify the solution. All routers have
a queue of sufficient capacity and adopts a FCFS policy. Each router independently adjusts the
current puzzle level toℓ∗ as in Theorem A.3. We consider an FFF scheme with no queuing. Every
1
µ

seconds, each router randomly picks a packet received in thepast 1
µ

second, and forwards it
along. The IP-FAIR scheme in this section behaves exactly the same way as described in the
single bottleneck scenario.

Assumen − 1 malicious senders and 1 legitimate sender. LetT ∗
FFF , T ∗

PUZZLE andT ∗
IP−FAIR

denote the time for the legitimate sender to successfully transmit a packet across multiple bottle-
necks.

Lemma A.4. Letλcj denote the total rate of traffic arriving atRcj , let λg be the rate at which the
legitimate sender injects packets.

E[TFFF ] =
1

λg
· Πk

j=1

λcj

µcj

Proof. The probability for each packet to successfully transmit isΠk
j=1

λcj

µcj
.

Theorem A.5. Regardless of the network topology and the adversary’s strategy,

E[TPUZZLE] = O(
n

µ∗
+ k

√
n)

whereµ∗ = mink
j=1 (µcj).

Proof. Each router picks the optimal puzzle levelℓ∗ as described in Theorem A.3, then the sender
spends expectedn

µ∗
to computate a puzzle solution to get accepted at all routers, and hasO(

√
n)

queuing delay at each router.

Theorem A.6. Regardless of the network topology and the adversary’s strategy,

E[TIP−FAIR] = O(
k · n
µ∗

)

Proof. Each host has a dedicated queue at each router. Hence, the legitimate client’s packet never
gets dropped, but has an expected queuing delay of at mostn

µcj
atRcj.

Theorem A.7. Under FFF, there exists a network configuration and adversary strategy, such that
the legimate sender can only transmit a packet inΩ(n) time.
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Proof. Consider a scenario where all hosts have equal access-link bandwidthB; and other than
access-link bandwidth restrictions, and the bottlenecks present onP ∗, the rest of the network has
sufficient capacity. An adversary withn compromised hosts can usen/2 hosts to sustain an arrival
rate ofBn/2 atRc1, and the othern/2 hosts to sustain an arrival rate ofBn/2 atRc2. According to
Lemma A.4, the legitimate sender needs at least1

B
· (Bn/2)2

µc1µc2
expected time to successfully transmit

a packet.
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