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Abstract

We present the design and implementation of OverDoSe, aragveetwork offering generic

DDoS protection for targeted sites. OverDoSe clients amdese are isolated at the IP level.
Overlay nodes route packets between a client and a sencregnlate traffic according to the
server’s instructions. Through the use of light-weightusiég primitives, OverDoSe achieves
resilience against compromised overlay nodes with a mihgedormance overhead. OverDoSe

can be deployed by a single ISP who wishes to offer DDoS ptioteas a value-adding service to
its customers.
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1 Introduction

Distributed Denial-of-Service (DDoS) attacks continudéoa serious problem in the Internet. In
a DDoS attack, an adversary controlling many hosts (oftes t§ thousands) uses these hosts
to simultaneously send traffic to a victim, exhausting thetims bandwidth or computational
capacity. These attacks may be used to capriciously brimghdoprominent website, but they
have also been used in extortion schemes against e-comsitEs§22].

Recently, researchers have proposed two categories of DBfE&se mechanisms. The first
approach requires router support for filtering attack traffior instance, in Pushback [11, 21] and
traceback [8, 25, 26], routers use an explicit signalingquol to detect the source of DDoS
attacks and filter bad traffic as close to the source as pessibletwork-capability architec-
tures [6, 20, 32, 33], on the other hand, use markings in tlikgteheader to encode permis-
sion to send traffic. The primary concern with infrastruetbased approaches is deployability, as
modifications to the current network infrastructure reguarlengthy standardization process and
significant economic lift to get off the ground. The secongdrapch is to deploy an overlay net-
work to route and filter traffic to the victim server. In corgr#o infrastructure-based approaches,
overlays are immediately deployable in today’s InternehisTapproach has therefore received
much recent attention in the research community [5, 17, 3828, 27]. Previous overlay-based
DDoS defense solutions, including Akamai’s SiteShieldiser[1], SOS [15, 27] and Mayday [5],
rely on a secret authenticator (e.g., the IP address of ttiewvserver) held by all or a subset of the
overlay peers. If the secret authenticator is revealedtackeer can bypass the overlay network
and directly flood the victim server.

The potential existence of compromised overlay nodes pasesious threat to the security
of overlay-based solutions. Previous work has studied wajimit the damage of compromised
overlay nodes [5, 15]. Their focus is mainly on preventindionaus overlay nodes from learning
and disclosing secret authenticators. The proposed coneésures require relatively expensive
mechanisms such as anonymous routing to protect the sethetgicator and the identities of the
overlay nodes holding the secret. These security mecharhsiwe a high run-time performance
overhead, and increase design-time complexity, introdpopportunities for new DDoS attacks.

In this paper, we propose OverDoSe, a high-performance angphmmise-resilient overlay
network offering generic DDoS protection for a spectrum pplecations. OverDoSésolates
clients from the victim server at the IP level. Only the oagrhodes have IP reachability to
the protected server; a client cannot reach the server y&olP must route its traffic through the
overlay network to communicate with the server.

To achieve the IP level isolation between clients and servee take an ISP-centric approach,
where the overlay network is deployed in strategic posgioy a single ISP who wishes to offer
DDoS protection as a value-adding service to its custonTédrs.ISP hosting the overlay network
must configure its routers to isolate the source and thenvisérver, but no new functionality is
required on the ISP’s routers. In addition, an ISP-cenpsraach requires no cooperation between
different ISPs, imposing fewer hurdles to deployment.

One of the main goals of OverDoSe is to provide resiliencéastjaompromised overlay nodes.
We examine a variety of potential DoS attacks by a maliciotexlay node, and propose novel
light-weight mechanisms to defend against these attacks.



Clients are recommended to install the OverDoSe clierdg-saftware, but need not modify
legacy applications. We also propose ways to support legikemts, although legacy clients get
weaker protection under DDoS attacks than updated clients.

Unlike Content Delivery Network (CDN)-like approachesttidfload the entire application
logic to the overlay network, OverDoSe provides a set of iappbn-independent primitives for
DDoS protection.

2 Problem Definition

2.1 Terminology and Definitions

OverDoSe involves three entities: @&ljents Internet hosts that request service from the server;
2) overlay nodegor asoverlay peers who route and regulate traffic between clients and servers
and 3)serverswho execute application-specific logic and serve the dieetjuests. Note that the
server could be a single server machine or a server farm yieghia a data center.

OverDoSe considers attacks in which attackers and legiimizents compete for some bot-
tleneck resource. Other types of DDoS attacks, e.g., th@ekploit server software vulnerabil-
ities are outside the scope of this paper. We assume thabttierteck resource is close to or at
the server, either processing-bound (i.e., the servengeation/storage capability), or network-
bound (i.e., the access link bandwidth to the server).

We assume the bottleneck resource is divided between garoimection setup requests (hence-
forth referred to as theonnection setup channet the request channglnd servingestablished
clients Connection setup is the process by which a client estaddigh identity and starts a con-
versation with the server. After connection setup, a clis@tomes an established client. For
example, consider a processing-bound web server. The wedr smn commit a fixed fraction of
its processing cycles to admit new clients, which requirpassword verification; and commit the
remaining processing cycles to serving established ljdnyt fetching static or dynamic content
from the local storage system and returning it to the clidrikewise, a network-bound server
divides its access-link bandwidth into a smaller portiorséove connection setup requests and a
larger portion to serve established flows.

2.2 Assumptions and Threat Model

We consider an adversary who has potentially compromisetdge Inumber of Internet hosts,
which then collaborate in launching a DDoS attack.

Once the overlay network comes into play, instead of diyeDiDoSing the victim server,
the adversary can also attack the overlay nodes. We asswanwitiie the attacker may have
enough resources to bring down a subset of the overlay nskdesannot disable the entire overlay
network.

A sophisticated adversary can also compromise overlaysiaddehis paper, we assume that a
compromised overlay node can exhibit arbitrarily mali@@ehavior. For instance, a compromised
overlay node can flood the victim server, it can drop packatsjjack the sessions of legitimate



clients. An important goal of OverDoSe is to provide resitie against compromised overlay
peers.

OverDoSe assumes that the overlay network is hosted by ke $8i¢ We assume that the ISP’s
routing infrastructure is trusted, and that a DDoS-resiliame lookup service can be achieved
through means of replication and IP anycast. We assumehdiasting ISP provides a manage-
ment infrastructure by installing special boxes close ®darver, through which the server can
turn off IP-level connectivity between a misbehaving osgrhode and the server. (Section 4.1).
We assume that the management infrastructure is not DDoSed.
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Figure 1: OverDoSe basic protocol. This figure illustrates OverDoSe’s basic protocol. The nersb
represent the temporal ordering of messages. Solid lingesent the messages in the request channel and
dashed lines represent the established channel.

3 OverDoSe Overview

3.1 Protocol Overview

OverDoSe uses a novel computational puzzle scheme to gréaiichess in the request channel.
When a client wishes to connect to a server, it first sends @estdo a name server to resolve
the IP address of the server (step 1 in Figure 1). The namerseturns a list of IP addresses of
overlay nodes (step 2 in Figure 1). The client selects arl@yaode to which it sends a connection
request (step 3 in Figure 1). The node selection algorithmbeabased on a variety of heuristics
such as network proximity [24, 31] or node reputation [13].résponse to a client’s connection
request, the overlay node replies with the lafstzle seedeleased by the server, as well as a
puzzle difficulty levedpecified by the server (step 4 in Figure 1). The client is etgqutto solve a
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puzzle at or above the specified difficulty level in order tocassfully set up a connection. The
client generates a puzzle based on the puzzle seed, sodveszhle, and sends the puzzle solution
to the overlay node (step 5 in Figure 1). The purpose of thelpiseed and the puzzle generation
algorithm will be detailed in Section 4.2.2. Now the oventende validates the puzzle solution and
forwards the request and the solution to the server (stef-&yure 1). The server assignsaokie

to the requesting client, and replies to the overlay nodé Wie cookie and #ow specification
(step 7 in Figure 1). The flow specification is a set of rulesdherlay node must enforce for
regulating an established flow. The flow specification canpmated dynamically by the server,
and is explained in more detail in Section 4.3. The overlayerihen replies to the client with the
cookie, successfully completing connection setup. Thentkttaches the cookie to all subsequent
packets to the server. The overlay node then routes traffiedes the client and the server, and
polices the client’s flow according to the flow specification.

3.2 Design Rationale
3.2.1 Securing Connection Setup, Established Flows

A complete DDoS solution must protect both the connectidnpsehannel and the established
flows. If a viable mechanism exists to distinguish legitienalients from malicious clients, we

should give better service to legitimate traffic, or simpldklist malicious clients. When inferring

legitimate traffic from attack traffic is hard (e.g., when zmes behave like legitimate clients), the
defense mechanisms should provide some fairness amongéehng both friend and foe, of the
service.

Securing connection setup. Connection setup may occur before clients establish theitities
with the server. As a result, differentiating between lieggtte requests and malicious clients is
difficult and remains an area of open research [14]. Overs8es computational puzzles to share
the connection setup channel resource fairly among cli€bdsnpared with schemes such as per
source-IP fairness, the puzzle-based scheme effectiwelpds the rate at which a compromised
overlay node can establish connections with a server. Thaation for choosing computational
puzzles in OverDoSe is explained in more detail in Secti@nl4.

Securing and regulating established flows. In contrast to connection setup, once a client estab
lishes a session with the server, the server can often eliffette between legitimate and malicious
behavior, by verifying application-level correctness,bgrapplication-level authentication (e.g.,
password authentication or the CAPTCHA [29] mechanism usethany websites). In Over-
DoSe, once an attack has been identified, a server can ingtrertay nodes to filter the attacking
traffic. OverDoSe also supports differentiated serviceeraes to specify to the overlay network
the service level of each client. The overlay then reguldtesending rate of each client based on
the client’s service level. In this way, the server can gnedgrence to high-priority customers, e.g.,
customers who spend more money shopping on an e-commeraitevelbor servers that cannot
distinguish between clients, OverDoSe fair shares thddmaitk resource among all established
clients.



3.2.2 Defense Against Compromised Overlay Nodes

Compromised overlay nodes can perform three general attadkflood the server themselves,
or collude with malicious clients to flood the server; 2) dugckets from legitimate clients; 3)
compromise data integrity, e.g., by injecting bogus dayanipersonating legitimate clients or by
hijacking TCP connections.

To defeat the first attack, OverDoSe ensures that the seamealways check whether an over-
lay node has correctly verified puzzles and performed pddkeing. A server can turn off IP
connectivity between itself and a misbehaving overlay nasiag techniques described in Sec-
tion 4.1.

Under the second attack, the victim client experiences pagtket loss. To defend against this
attack, clients are allowed to switch to a new overlay peerthEt client, the effect of a packet-
dropping overlay peer is indistinguishable from a well-&edd overlay peer that is being DDoSed,
or is simply overloaded. In all of these cases, however, lipatdhas motivation to switch to a new
overlay peer.

OverDoSe offers end-to-end authentication as an optiorefead data integrity attacks. This
assumes the existence of a PKI from which clients can obtegntdicate for a server’s public key,
and then uses the Secure Sockets Layer (SSL) protocol tbliseta symmetric key between a
client and a server.

Section 4.4 discusses more sophisticated attacks andsagefeechanisms.

3.2.3 Security vs. Deployability

One goal of OverDoSe is to find a good balance between seaumityleployability. Wide-spread
overlay deployment across different ISPs increases thactgpof the overlay network, reducing
the chance that the overlay network itself becomes the ttafge DDoS attack; in addition, it
allows the filtering of attack traffic closer to the source. tBa other hand, a universal overlay
deployment requires inter-ISP cooperation, and com@g#tie deployment process. OverDoSe
investigates a single ISP deployment scenario, in whichatikity to provide DDoS protection
as a value-added service to its customers provides an ecomnosantive for an ISP to deploy an
OverDoSe-like solution. We also hope that the successhlbgiement of OverDoSe by a single ISP
can spur incentives for inter-ISP cooperation, eventualying to the wide-spread deployment of
such an overlay network.

A second goal of OverDoSe is to support legacy clients aratchegpplications. Yet to achieve
such backward compatibility imposes severe design canstrand weakens the level of security
we can achieve. OverDoSe encourages clients to install eeD@Se client-side software to get
better protection under DDoS attacks. The client-sideasott is built on top of the OCALA [12]
framework, and allows legacy applications to use the oyewvithout being aware of its existence.
OverDoSe also supports legacy clients, but they are lessqieal from DDoS than updated clients.



4 Detailed Design of OverDoSe

4.1 |Infrastructure Support for OverDoSe

OverDoSe requires that servers only be reachable via gveddes, and requires that the server
can revoke permission for a particular overlay node to adnta

Isolation. OverDoSe isolates the home server by placing it on a priveti®ork that is logically
separate from the ISP’s IP routing infrastructure. The IBEhtconfigures tunnels between the
overlay nodes and the server, to allow only them to reachehees In practice, such a private
network can be established using an ISP’s existing VPN t@olgy, by configuring MPLS or other
tunnels between the overlay nodes and the edge. The servezside at a either public or private
IP address, provided that arbitrary hosts on the Internetaadirectly reach that address. This
approach provides isolation using only components widedylable in today’s network infrastruc-
ture.

Revocation. To deal with compromised overlay nodes, OverDoSe requirasa server be able
to prevent a node from communicating with it. We assume ti@hbsting ISP install boxes close
to the victim node running RSVP-TE [7] and similar protoctblat can dynamically establish and
destroy tunnels and configure QoS parameters such as gapadipriority. Using this function
requires the ability for a server that is untrusted by theéd®Rtwork to signal to the network its
desire for tunnel establishment and teardown. This coulddme using RSVP or via a relatively
simple client interface that validates requests and taa@sthem into internal RSVP-TE requests.

Origin authentication for overlay nodes. Compromised overlay nodes can spoof a well-behaved
overlay node and flood the server. To allow servers to idetitd attack source, OverDoSe requires
an authenticated communication channel. One way to actheves to have routers one hop away
from the overlay nodes filter spoofed IP packets. One coslol @nfigure each overlay node with

a different MPLS label, and use the MPLS label for origin @utfication. This requires that the
server understand MPLS, and the last-hop router to the isegtan the MPLS labels on packets
before handing them to the server. Alternatively, one caalafigure the last-hop router to the
server to rewrite the source IP address of every packet@ogpto its MPLS label.

4.2 Puzzle-based Connection Setup
4.2.1 Why Puzzles?

As we explain in Section 3.2.1, because differentiatingveen legitimate and malicious clients in
the request channel remains an open research topic, Over&ofs to share the request channel
fairly among clients. The question then reduces to how ialssi identify a client.

Typically, a client can be identified by its IP address. Unfoately IP-based fairness raises
several concerns: 1 spoofing by malicious client&lthough simple IP spoofing attacks can be
countered using an approach similar to SYN cookies, suchbappes provide no defense against
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an adversary who is able to sniff packets sent to an IP addressend packets spoofing that IP
address. In such cases, we say that the advesangthe IP address. For instance, a zombie
machine situated in a class B network can potentially spagflB address in the class B range,
even in the presence of ingress filtering. If an IP-fairnesgeme is used in the request channel,
an adversary gains an advantage proportional to the nunitlramldresses it owns, which could
be much larger than the number of machines the adversaryonagramised. 2)P spoofing by
malicious overlay nodesA compromised overlay node can flood the server with fake estju
packets from many sources. It can then open many differemtexddions with the server and flood
the server using the spoofed IP addresseblAJ)s.A practical concern with per-IP fairness is due
to the presence of Network Address Translators (NATs) aed/élls which can cause many users
to share a single IP address. Hence, per-IP fairness wosddminate against NATed hosts.

To address these concerns, OverDoSe instead uses comptiated fairness. A server pe-
riodically releases new puzzle seeds to the overlay nodedieAt obtains the latest puzzle seed
from an overlay node, generates and solves a puzzle baskd eedd, and attaches the solution to
a connection setup request. The server can control thefratapection setup requests by adjust-
ing the puzzle level. The overlay nodes verify puzzle sohgiand admit only requests with valid
puzzle solutions at or above the puzzle level specified bydineer.

Puzzle-based connection effectively defends against oommped overlay nodes. The server
can detect a cheating overlay node that passes incorretios® by re-checking the puzzle solu-
tion. By using computational puzzles, malicious overlage®malso have to solve computational
puzzles to open connections with the server. The rate atwahioalicious overlay node can open
new connections with the server is therefore bounded byitgoutational resources.

If every client had equal computational power, then pettehge fairness would be equivalent
to per-source fairness. Suggestions on how to mask the asysnim computational ability are
provided in Section 5.2.

4.2.2 Design of Puzzle Scheme

Puzzle seeds. The puzzle seeds are a sequence of pseudo-random numbenatgdry a server,
which periodically releases a new seed to the overlay n&twor

Generating and solving puzzles. After receiving the latest puzzle seadthe client picks a
random nonce and computes a flow-specific puzzle as

p = H(xl||r||s||¢||source IP|peer I, @)

whereH denotes a cryptographic hash function such as SHA-1||atehotes concatenation.

To solve the puzzle at difficulty levé| the client finds a 64-bit value such that the last bits
of p are zero. The client includes s, ¢/, and the puzzle solutionin a request packet.

Including the source IP in the hash computation preventerefia puzzle solution by different
zombie machines. Likewise, including the peer IP preventadversary from using the same
puzzle solution with different overlay nodes.



Puzzle verification. Upon receiving a connection setup request with a puzzldisalian overlay
node first verifies that the puzzle seecbntained in the request packet is one that has been recently
released by the server. Then the overlay node verifies thdgealution by computing the same
hash shown in Equation 1, using the nom¢¢he seeds, and the flow information in the request
packet.

4.2.3 Resource Scheduling in the Request Channel

Request channel resource scheduling must meet four regemts: 1) An overlay node must sup-
press all requests containing puzzle solutions below trestiold difficulty level specified by the
server. 2) To prevent an adversary from reusing the samdepsalution at high rates, an overlay
node should throttle the rate at which the same puzzle soligiused. 3) To prevent an adversary
from precomputing solutions and using them all at once, leusalutions must expire after a finite
amount of time. 4) When requests arrive at the server, thesarust check the puzzle solutions,
and preferentially admit clients that solved more diffiquitzzles.

When request packets arrive at an overlay node, the nodedni§es the puzzle solution and
drops requests containing invalid puzzle solutions, @jpgeeds, or a puzzle difficulty below the
current threshold level. Verified request packets entetesthaottler that enforces that each puzzle
solution is not excessively repeated. A puzzle solutioh hiag been seen in the pasgteconds is
dropped in this stage.is an adjustable parameter; when set to infinity, the ratatter reduces to
strict duplicate suppression.

4.3 Regulating Established Flows

Flow cookie. To receive prioritized service, a client must attach to i$adpackets the flow
cookie it received during connection setup. The cookie tifles the flow, and can be carried
across multiple TCP sessions to support HTTP-like apptinatthat complete over multiple TCP
transactions.

Compromised overlay nodes or zombie hosts can hijack atsliemnnection by eavesdropping
on the path from the client to the server and stealing tha@essokie. This attack is similar to
a TCP session hijacking attack [19], where an adversarysdavps on a TCP session and steals
TCP sequence numbers to inject bogus data. To mitigate thi@ecbijacking attack, OverDoSe
uses a short-lived cookie, and have the server periodicaliiate the cookie during the life-time
of the flow. When an old cookie expires, the server notifiesothexlay node, who in turn notifies
the client of the new cookie. The cookie expiring mechanisquires an adversary to constantly
tap the session to observe with the latest cookie. A strobigiemore expensive defense involves
the use of end-to-end authentication, and is discussed iia dedail in Section 4.4.

Flow specification. The flow specification represents the level of service theesassigns to
the flow. In OverDoSe, this is expressed as a maximum inboandwidth. Overlay node rate
limit the incoming flow beneath its maximum allowable bandiii

The server can dynamically update a flow’s bandwidth quotar. ifstance, the server can
instruct an overlay node to blacklist a client or reduce @adwidth if that client is suspected of
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cheating. The server could also upgrade a client if it is abmgpend money or after it has just
spent money on a hosted website. To dynamically update asflguota, the server sends to the
overlay node a flow update message, either piggybacked oof tap existing data packet, or in
the form of an explicit control message.

4.4 Defense against Compromised Overlay Nodes

An important goal of OverDoSe is to provide resilience to poomised overlay nodes. We now
discuss potential attacks from compromised overlay noaled,techniques to defeat them. Our
study is restricted to DoS attacks; other attacks such asbef data privacy are outside the scope
of this paper.

4.4.1 Data Integrity Attacks

A data integrity attack in the request channel is a packgiming attack, for it results in the clients’
inability to establish a connection with a server. We adslpescket dropping attacks separately in
Section 4.4.2, so the discussion below focuses on dateritytatfacks in the established channel.

Data integrity attacks can be detected either at the apiglickevel or at the OverDoSe level.
Applications are able to detect invalid data packets, eitim@ugh application-level data authen-
tication, or through application semantic checks. Ovem®alflows applications and users to to
switch to a new overlay node when such attacks are detected.

OverDoSe also provides an end-to-end data authenticgpitbonoat the OverDoSe level. Built
on top of the OCALA [12] framework, OverDoSe adopts OCALA®chanism for setting up a
secret authentication key between the client and the seagsuming the existence of a PKI from
which clients can obtain a certificate for a server’s pubég &nd using the Secure Sockets Layer
(SSL) protocol for symmetric key establishment.

4.4.2 Packet Dropping Attacks

Dropping legitimate connection setup packets preventgatdtom setting up a connection through
that overlay node. An OverDoSe client automatically trieea overlay node if it fails to set up a
connection through the current overlay node within a certianeout.

In the established channel, a malicious overlay node cap pazkets in transit between a
legitimate client and a server. Similar to data integritiaeits, packet dropping attacks may be
detected either by the application or by OverDoSe. The eattin perceives a packet dropping
attack as a broken connection, or low application throughprhen this happens, OverDoSe
allows applications and users to explicitly switch to a nexertay node.

OverDoSe itself detects packet dropping attacks. Over[2tiSets can be configured to send
periodic probe messages to the server which sends back mplyemessages. A missing probe
reply indicates lossy network conditions or a packet drogittack. When the loss rate exceeds a
certain threshold, the OverDoSe client automatically clwés to a new overlay node.

The probe mechanism must be combined with light-weighttogy@phy for enhanced secu-
rity:



Probe integrity.To defeat OverDoSe’s probes, malicious overlay nodes caelisonate clients or
a server and inject bogus probes and probe replies. Sudksattan be defeated by turning on the
end-to-end authentication option as described in Sectibi 40 ensure data integrity.

Defense against selective forwarding attacks malicious node can selectively forward probes
and reply messages but suppress normal data packets. Taldefainst the selective forwarding
attack, OverDoSe disguises so that probes are indistingbie from data packets. To do so, we
assume that the client and the server shares a secret kéjhe secret key can be established
in a similar way as the authentication key. Meanwhile, O3B dedicates a field in its packet
header to contain a random nongeand a number. A packet is a probe packet if and only
if © = MACk(r||msg, where MAG, denotes a message authentication code over secret key
K. If probe packets were sent at regular intervals, malicmerlay nodes might also be able
to distinguish probe packets from normal data through tymniormation. To avoid such timing
attacks, OverDoSe adds randomness to the time when prolsagessare sent.

4.4.3 Flooding Attacks

A compromised overlay node can attempt to flood a server ttemongestion, and deny service
to legitimate clients. A compromised overlay node can dasseveral ways: it can collude with
malicious clients and admit their flood traffic, or it can ety generate flood traffic. Floods can
target the request channel or the established channel.

Request channel floods. In the request channel, a malicious overlay node can attenfatili-
tate malicious clients by admitting requests without ad/plizzle solution at or above the specified
difficulty level. A malicious overlay node can also geneilatalid request floods.

OverDoSe ensures that servers can check whether an ovediaycorrectly verified puzzles
in the request channel. When an overlay node forwards a setuéhe server, it also attaches the
puzzle solution (including, r, ¢, ). The server can check if the seedsed in the generation of
the puzzle has been recently disclosed by the server. Thierdben verifies the puzzle solution
by recomputing Equation 1. In addition to checking the sohg, the server also checks whether
each overlay node has throttled the rate at which each piz#esed.

In OverDoSe, a malicious overlay node cannot inject inviadigliest packets at arbitrary rates,
because it must compute a puzzle solution for every reqaesiep it injects to avoid detection by
the server.

Established channel floods. In the established channel, a compromised overlay nodeadao f
shape a client’s flow, or actively generate floods. To detech sttacks, the server monitors the
incoming traffic rate of established flows and compares tlseded rate against the flow speci-
fication. In this way, a server can detect malicious overlagles that fail to regulate established
flows.
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4.4.4 Other Attacks

Slandering. A malicious overlay node can generate floods impersonatilegiimate overlay
node; hence, a server can mistakenly blame and revoke thienlate overlay node. Packet-level
authentication fails to address this attack, because deleny attacker can flood with unauthen-
ticated packets. The slandering attack is addressed thriofigastructure supported origin au-
thentication techniques as described in Section 4.1. Qa@eltrusts the hosting ISP’s network
infrastructure to prevent slandering by malicious overlagles.

Equivocation. A malicious overlay peer can help a zombie client by ignoargacklist or flow
downgrade message from the server. Similarly, a malicimesl@y node can admit request at
lower difficulty levels by ignoring a puzzle level upgradessage. The equivocation attack can be
addressed by a timeout. We require that the server peribdgznd flow update messages. If an
overlay peer does not hear any updates for a specific flowmilki@ timeout, it must suppress or
gradually downgrade the service level of that flow. To blestld flow, the server first sends explicit
blacklist messages to the overlay node; meanwhile, thees@rithholds further updates for the
suspect flow. If an overlay node does not respond to the explacklist message immediately, it
must still suppress the flow within a short time to avoid deétec A similar approach can address
equivocations on the puzzle difficulty.

Performance degradation. Instead of dropping all or the large majority of packets oégiti-
mate flow, a compromised overlay node can potentially avetdation with a performance degra-
dation attack, where it drops a small subset of legitimatkeis or delays packet delivery. This
attack is difficult to defeat. Although OverDoSe clients ntonreal-time connection statistics, it
is unclear when an alarm should be raised. The current ingaéation tries to switch to a new
overlay node when performance drops beneath a user spebifestold (e.g., delay 100 ms).
We recognize that this is an aspect of OverDoSe left for &utasearch. One promising defense is
to spread a single flow across multiple overlay nodes, astiggaroposed by Stavrou et al. [28].
More details on this approach are available in Section 8.

4.5 Supporting Legacy Clients

Thus far, we have assumed that clients install the OverDo8eare that bridges the legacy ap-
plications and the overlay. For incremental deploymenppses, we also describe techniques to
support legacy unmodified clients.

Identifying the destination of legacy packets. When multiple servers are behind the same over-
lay network, overlay nodes must be able to route packets ¢tmmts to the correct server. Updated
clients convey to overlay nodes the destination of eachgiatikough a designated server iden-
tification field in the packet header. Since legacy clientsidbprovide this information, overlay
nodes in OverDoSe rely on the following means to identifydiestination of legacy packets: 1)
For self-identifying applications such as HTTP, overlayles rely on the destination URL em-
bedded in the application data to identify the destinatidnWhen overlay nodes have multiple
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IP addresses, they can designate a different IP for eachgbeot server. Let denote the num-
ber of servers, angh the number of overlay nodes. LEp!,ips, ..., ip’) denote the: different

IP addresses associated with tHg1 < i < m) overlay node. When a legacy client sends a
DNS request for thg'*(1 < j < n) server, the DNS server returns seof IP addresses, where
S C {ip}, ip?, ...,ipj"}. 3) Since the OverDoSe endhost software is built on top of O&At can
also use OCALAs native approach for supporting legacynttigi.e., through the use of Legacy
Client (LC) gateways. The LC gateway is configured as thetdidocal DNS server. It intercepts
the clients’ DNS packets, sends back a DNS reply with an meteroutable address to the client
(a different IP address is used for each server), capturgetsasent by the legacy client to that
address, stamps them with the destination identifier, andssithem over the overlay [12].

Resource scheduling in the presence of legacy packetsOverDoSe reserves a small fraction
of the request channel to serve legacy request packets.vArsgrecifies to the overlay nodes the
maximum rate at which to admit legacy requests. In this wegacty requests only compete with
other legacy requests during congestion.

OverDoSe uses IP fair-queuing for legacy connection sedgpeasts. To counter IP-spoofing
attacks, the overlay nodes return TCP SYN/ACKs and SYN @miknpersonating the server such
that spoofed requests are filtered at the overlay networairbataching the server. Malicious
overlay nodes can spoof IP addresses and inject invalidesgquackets, but cannot exceed the
legacy request bandwidth without being detected.

After a legacy client establishes a connection with a seiver client’'s IP address and port
number are used to identify the established flow. Withouttamdhl application-level information,
an updated client’s flow should be given preference overachefow, because the updated client
paid a certain amount of computation to set up the flow. A seraa establish confidence in a
legacy flow through application-level authentication, &helate its service level. The following
section explains the server’s resource allocation pohayore detail.

4.6 Expressing Server Policies

The server is responsible for two decisions: 1) admissioitrog i.e., whether to admit or blacklist
a client; and 2) resource allocation, i.e., how much of theéldseeck resource to allocate to each
client. The server can often make admission control anduresaallocation decisions based on
application-level information or through means of apgima-level authentication. For instance,
an e-commerce website can give higher priority to clients Wave spent more money in the past.
A server can also blacklist a client who sends corrupt appba data, or data that contain a known
worm signature.

OverDoSe provides a generic framework for servers to eggtesr resource allocation poli-
cies. Letr, denote the rate at which the server can admit new clients;, ldenote the rate at
which the server can serve established flows. The ratesther expressed in number of packets
per second, or the bits per second.
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Policy for request channel. The server specifies to an overlay node a minimum puzzle level
The overlay node must suppress requests below lewsitially, when the request channel is free
of congestion/ = 0. The server increaséswhen congestion occurs in the request channel; and
decreasegé when request channel load falls beneath a certain threshold

Policy for established flows. OverDoSe implements a generic weighted fair sharing scieme
established flows. The server application specifies to Oe8ethe weight for each flow. Legt
denote the total number of established flows at a particuent pf time; letw; denote the weight
of the " flow, 1 < i < f. OverDoSe computes,, the bandwidth quota for thé" flow as

Ty Wy

r; =5F ur Settingw; to 0 is equivalent to blacklisting th&" flow.

The OverDoSe server software allows the server applicatidifferentiate between four types
of established flows and specify a default weight for eacle:tyl) updated and authenticated; 2)
legacy and authenticated; 3) updated and non-authertjcétéegacy and non-authenticated. A
flow is updated if it comes from an updated client. A flow is auttcated if the server application
is able to authenticate the client’s identity at the appiwcalevel, e.g., through password-based
authentication, or a CAPTCHA [29] mechanism.

5 Discussion

5.1 Accommodating NATs

As shown in Equation 1, a sender computes a puzzle based ¢ #ddress. If the sender’s
ISP uses a Network Address Translator (NAT), then a send@gsnal IP address differs from

its external IP address, so overlay nodes in OverDoSe wéttguzzle solutions computed for
a puzzle based on the internal address. To accommodate MAES) a sender behind a NAT
requests the latest puzzle seed from an overlay node, thilapvede includes not only a puzzle
seed and a puzzle level, but also the sender’s external IRRs&lth the reply. The sender can
extract the external IP address from the response packetsanidlin the computation of a puzzle
solution.

5.2 Asymmetric Computational Ability

One concern with using computational puzzles is that itgare advantage to endhosts with faster
CPUs. To address this problem, researchers have proposedrgreound puzzles [4, 9]. Another
possibility is use a database like ARIN WHOIS [2] to obtaigamizational information of an IP
address. This can help us infer what type of device is agsatigith an IP address. We plan to
study this further in future research.

5.3 Other Types of DDoS Attacks

Because clients and servers are isolated at the IP layerarD@%e, compromised zombies cannot
directly flood the server at the IP layer. However, a soptastid adversary can instead direct
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the flood towards hosts close to the targeted server. This@ase network congestion near the
targeted server, hence preventing legitimate clients facoessing the server. To defend against
this attack, we can either hide the location of the serveocate the protected server in an isolated
and well-connected part of the network with a very high cégac

6 Analysis

We analyze OverDoSe’s puzzle-based connection setup scffeldZZLE), and compare it with
Fighting Fire with Fire [30] (FFF), in which all clients, Hotegitimate and malicious, send aggres-
sively to ensure fairness. The results show that with a sibgttleneck, PUZZLE and FFF achieve
the same mean and variance.

For simplicity, assume that all Internet hosts are idehiilcdaerms of computational power
and access link bandwidth. Assume that the Internet baekbas sufficient capacity such that
in the case of FFF, each client is capable of injecting reqo@skets to the bottleneck as fast as
their access link bandwidth can sustain. Due to space hitpnly show the conclusions of our
theoretical analysis. We provide the detailed proofs irejgendix.

6.1 Response Time without Queuing

Assumen—1 malicious and 1 legitimate clients that concurrently trgstablish a connection with
a server, who is capable of handling new connection reqagestsleterministic rate of.

For FFF, we make the simplifying assumption that evefy seconds, the server accepts a
request at random from all requests that have been receitbe past /;. seconds. In PUZZLE,
the server accepts all requests carrying a valid puzzldisolaf level at least. / is selected such
that a client needs /. time in expectation to solve a levépuzzle. LetTrrr, Tpyzzrr denote
the time for a legitimate client to successfully get a retjaesepted at the server.

2

Theorem 6.1.E[TFFF] = E[TPUZZLE] = %, VAR[TFFF] = VAR[TPUZZLE] = %Z

6.2 Effect of Queuing

The analysis in the previous section does not take into at@pieuing delay in FFF and PUZZLE.
Consider FFF-Q-FCFS, a variant of FFF, where the server hase of lengtld), and requests
are serviced at a deterministic ratepoin First-Come-First-Serve (FCFS) order.

Corollary 1. E[Trrr—q-rcrs| =n/u+ Q/p,  VAR[Trrr_q-rors) = n?/u?.

Next, we analyze the effect of queuing on PUZZLE and show timatler FCFS policy, the
gueuing delay is sublinear with respect to the number otlkia.

Assume the server has an infinite-size queue, and adoptstadéme-First-Serve (FCFS)
service policy. The response time is the sum of the time spemiputing the puzzle and the
gueuing delay. To minimize the response time the serverdhelsdose between (1) a lower puzzle
level which translates to a lower computation time, but gdamqueuing delay (as more puzzle
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are computed), or (2) a higher puzzle value, which translatéower queuing delay, but a higher
computation time.

Assume at any point of timey, users concurrently request a connection setup. Define 7@b si
S to be the time spent servicing a request. We consider gedistabutions of job sizes. Let
denote the average rate at which the server can servicestesghencey E[S]| = 1. Letz = %‘E
x IS a quantity that roughly characterizes the variance ofdhesize distribution.

Theorem 6.2. To obtain the best expected response time, one must setzhle pevel to bé* =

log, “+;g‘m . And under*, the best expected response timg[ss]* = & + 2, /2.

Corollary 2. Particularly, with deterministic job sizé: = log, "+M5"/2,E[Tg]* = 2+v2n. When

job size is an exponential distributioft, = log, "2, E[Tg]* = 2 + 2,/n.

7 Evaluation

7.1 Implementation Details

We implement the client-side and server-side OverDoSevaoét on top of OCALA [12], a soft-
ware layer positioned below the transport layer in the IRkstthat allows legacy applications to
use features provided by an overlay network without beingravef the existence of the overlay.
On the client side, when OverDoSe captures a DNS requestgartacted server from a legacy
application, it resolves the name to a list of IP addressabebverlay nodes. OverDoSe then
establishes an end-to-end path to the protected serveheiavierlay. After setting up the path,
OverDoSe returns to the legacy application a DNS reply ¢oimg a fake IP address. OverDoSe
thereafter captures all packets sent to that IP addressatekrthem via the overlay network. As
described in Section 4.4, OverDoSe also uses probe medsagesitor end-to-end connectivity.
OverDoSe automatically tries to reroute traffic throughféedent overlay node when it observes
low throughput or high loss.

On the server side, in addition to connecting the serveriegdmn with the overlay network,
OverDoSe also provides an API through which server appdicatcan specify to OverDoSe how
to regulate established flows and the connection setup fsacke

Overlay nodes in OverDoSe run a single-threaded user-tlaehon under Linux, capturing
and forwarding packets using UDP. An OverDoSe overlay nddeates a different UDP port for
each server. All established data packets from or destorealderver, as well as control messages
from the server, are sent to a unique UDP port dedicated tostraer. In addition, all overlay
node use a unique UDP port to handle initial connection sefgpests.

7.2 Experiment Setup

To validate the design of OverDoSe, we ran several expetsrenEmulab [3]. All experiments
use Emulab’s pc3000 nodes, consisting of 3.0 GHz 64-bit Y@ocessors, 800MHz FSB, and
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Figure 2: Experimental topology. This figure illustrates the virtual and physical topologyedsin the
experiments. The virtual topology consists of a backbotiafriite” capacity and endhosts that are subject
to access-link bottleneck bandwidth constraints. We piakinodes and links to simulate many virtual
nodes (links) out of one physical node (link). The two gigBlthernets provide abundant capacity for all
experiments.
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Figure 3:Request channel experimental resultsThe server is capable of handling 30 new connections
per second. The connection setup time for OverDoSe inclideime for requesting the puzzle seed and
solving the puzzle.

2GB 400MHz DDR2 RAM. An underlying VLAN switched network cée configured to set up
the topologies needed for the experiments.

We emulate an Internet-like topology, consisting of a bacidwith infinite capacity, clients
with access-link bandwidth of 1Mbit/s, and peers and a sexaeh with access-link bandwidth of
100Mbit/s. This virtual topology is depicted in Figure 2(&jigure 2(b) shows the real topology
used in the established channel experiments. To emulateffiiet of large DDoS attacks, we
multiplex nodes and links to simulate many virtual nodeskg) out of one physical node (link).
Link multiplexing is achieved using customized Click [16ters that shape each virtual node’s
traffic to 1Mbit/s. The total amount of traffic sent into thecklbone in every experiment is below
1Gbps, so we use a Gigabit LAN to simulate an Internet baoklvath infinite capacity.
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RTT (std. dev.) | RTT reverse (std. dev)) Throughput| Throughput reverse
OverDoSe 0.499(0.051) ms 0.503(0.082) ms 185.3 Mbps 146.7Mbps
no OverDoSe 0.193(0.051) ms 0.198(0.052) ms | 694.3 Mbps 656.8Mbps

Table 1: Micro-benchmarks. The measurements are taken with a single client, peer antiseode
connected to the same gigabit Ethernet. Round-trip-tingethroughput are measured both from the client
to the server and in the reverse direction.

7.3 Micro-benchmarks

For micro-benchmarks, we connect a client, a peer, and &istyvhe same gigabit LAN. We
measure round-trip-time and throughput from the client® server, and vice versa; both with
and without OverDoSe. Table 1 shows micro-benchmarkingjt®sRound-trip-time is measured
by sending 10(i ng packets; and throughput is measured by runtihgp over 120 seconds.
The round-trip-time with OverDoSe is approximately twihe tound-trip-time without OverDoSe,
because with OverDoSe, the packet is routed through anayvwedde. The large drop in through-
put is caused by OCALA, which is running in user space; sinmégults are reported by Joseph
etal. [12].

7.4 Request Channel Evaluation

To evaluate the request channel, we configure the serventédieequest packets at a deterministic
rate of 30 requests per second. The server has a finite-ldngpktail queue of length 60, i.e., at
most 2 seconds of buffering; and adopts a First-Come-Bieste (FCFS) policy.

We compare three schemes, each with 10 to 80 clients: 1) @&88B puzzle-based scheme;
2) a Fighting-Fire-with-Fire (FFF) scheme [30]; and 3) remygressive legitimate senders under no
protection.

Because OverDoSe clients must solve puzzles, a compulfiontensive task, we use one
physical node to model each client. We use link multiplexamgl have every 10 clients share
a 100Mbit/s LAN. A customized Click router sits at the boradérevery LAN and shapes each
client’s traffic to 1Mbit/s. The same setup is used for the BRE no defense experiments.

The OverDoSe experiment involves 5 overlay nodes. All ¢ieepeatedly request for new
connections as quickly as they can. Each connection setematt times out after 10 seconds
at which time the client stops the current puzzle computatiequests a new puzzle seed, and
starts a new connection setup attempt. The connection setgpfor OverDoSe includes the
puzzle computation time. In the FFF experiment, all cliesgad request packets as quickly as
their access link bandwidth can sustain. Requests andrgesmonses are tagged with a sequence
number to mark which attempt a request packet belongs to. Fndhent floods with requests
under sequence numbgeuntil it hears a response at which time it completes the atinexjuest,
and starts to request under sequence numbel. The connection setup time for attempis
measured as the time when the first request taggedent out, till when a response taggeid
received. In the experiment with non-aggressive legitens&nders, one client is configured as the
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legitimate sender, sending requests at a uniform rate otkegte per second. The rest of clients
are malicious and inject request packets as quickly as taeyA& connection setup attempt times

out after 10 seconds for a legitimate sender, and a new onarted In all experiments, request

and response packets are 84 bytes in size including IP reaB#rernet headers and OverDoSe
headers are not counted in the 84 bytes.

Request channel experimental results are shown in FigufEh®. experimental results con-
firm the theoretical analysis in Section 6, showing that FRéFf @verDoSe’s puzzle scheme have
roughly the same mean and variance in terms of connectiop sete. However, with a queue of
length 60 at the server, FFF introduces a constant queuiag dé2 seconds, since the queue is
always full in FFF. The gap narrows as the number of clientsvgrbecause the queuing delay for
OverDoSe increases in the presence of more clients. In €heér3 of Section 6, we show that
the queuing delay is sublinear with respect to the puzzlepcdation time, assuming the server
has a queue of sufficient length.

Figure 3(a) shows, unexpectedly, that with 80 clients, Otl percentile line for FFF increases
sharply. This is because the server is using a softwarerimtemechanism for reading packets
from the Network Interface Card (NIC). Because the clieetsdssmall request packets at an ag-
gregate rate of 80Mbit/s, the software interrupt handl@oissuming almost the entire CPU. The
server request handling process therefore experiencetsoghages when it fails to get its schedul-
ing quantum. We also run the experiment with 100 clientstheiEFF server is so overloaded that
the request handling process gets too few CPU cycles. Forahson, the case for 100 clients is
not included in the figure.

Our experiments show that a non-aggressive legitimatessdras low probability of success-
fully setting up a connection. In the presence of 2 attackiagts, only 9 out of 917 connection
setup attempts completed within the 10 seconds timeout.tH®reason, the curve for a non-
aggressive legitimate sender is not shown in Figure 3(ajgalath FFF and OverDoSe.

In the OverDoSe implementation, the server dynamicallystdjthe puzzle level according to
real-time load, to keep the request arrival rate below 3Qests per second. The server notifies
the peers of the latest puzzle level every second, and & latizzle level is returned to the clients
along with the puzzle seed. Figure 3(b) plots the averagel@level as seen by the clients against
the number of requesting clients.

7.5 Established Channel Evaluation

To evaluate the established channel under DDoS attacksetwgsa web-server running Apache
v2.2.0. The Apache server is unmodified and running withwetaonfiguration, except that we

lower the client timeout value in to be 20 seconds, so thees@lwes not wait too long for unre-

sponsive clients under DDoS attacks. A simple detectionuteodins as an OverDoSe plug-in.
Once a malicious client is found, the plugging informs theefMoSe server, which then asks the
overlay nodes to blacklist the malicious client. The detectlelay is modeled in terms of the

number of packets the server receives from each client é@fioralarm is triggered. Meanwhile,

the server runs the default OverDoSe policy as describe@atic 4.6, aiming to fair-share the

server’s access link bandwidth between all legitimatentsie
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Figure 4:Established channel under bandwidth exhaustion attackThis figure shows the performance
of the established channel under a bandwidth exhausticaclatt Legitimate clients arrive at an Apache

web-server according to a Poisson process with an average-arrival time of 0.05s. 300 zombie machines
coordinate to inject attack packets from 60s to 180s.
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Figure 5:Packet dropping attack by compromised overlay nodesThe attack happens at 15s. Detection
and repair occur without interrupting TCP.

We model an adversary who floods with established trafficrd lgeno resource contention in
the request channel in this experiment, so we turn off thelpunechanism, enabling us to mul-
tiplex 5 physical nodes to emulate around 300 concurreitinggte clients. We use httperf [23],
a HTTP performance measurement tool, to emulate legitirtiagats’ behavior. In this experi-
ment, clients arrive according to a Poisson process witlvarage inter-arrival time of 0.05s. This
is achieved by having each of the 5 physical hodes simulateisséh process with an average
inter-arrival time of 0.25s. During a client’s session,ssues 15 requests for a 20KB file. The
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15 requests come in a sequence of bursts of length 5, whese@ative bursts are spaced by 5
seconds of user think-time. Clients arrive in a non-blogKashion; inside each client’s session, a
client waits for a response to its previous HTTP requestrea8suing a new one.

We model 300 zombie machines on 15 physical nodes, with elgsiqgal node simulating
20 zombie machines. Each client, attacker and legitimatatchlike, has 1Mbit/s of access link
bandwidth. All zombie machines attack at the same timeciimg packets as quickly as possible
to congest the uplink bandwidth to the server.

Figure 4 shows the behavior of the established channel uhdeattack. With no protection,
throughput drops and response time increases sharply jporédsence of 300 attackers. The per-
formance of the established channel improves greatly witarDoSe for two main reasons: 1)
Fair-sharing The default policy fair-shares the uplink bandwidth amafigegitimate clients.
Hence, even without any specialized detection mechanisendptted line in Figure 4), the attack
loses its strength after having been shaped by the overtayg pecording to each client’s fair-share
bandwidth. 2)Attack detection and blacklistin@nce the server detects that a client is misbehav-
ing, it asks the overlay network to blacklist the client; Be attack packets get dropped before the
bottleneck link.

7.6 Packet Dropping by Compromised Overlay Nodes

This experiment uses Apache with 8 overlay nodes and 20ts|iamo establish a persistent TCP
connection with the web server and repeatedly download 83 Compromised overlay nodes
start to drop all packets at the same point of time, and tie@ekide OverDoSe detects and repairs
the connection without disrupting TCP, as shown in FigureThe figure plots the throughput
over time under a varying number of compromised overlay aode this experiment, once an
OverDoSe client detects a packet dropping attack, it ta@spair the connection with two random
overlay nodes at a time, and if the attempt fails after a stima#out, it tries with two other overlay
nodes. A future version of OverDoSe might use a more sophisiil algorithm that incorporates
proximity information [24, 31] or overlay node reputatidi8].

8 Related Work

Proposed solutions to DDoS fall roughly into infrastruettiased approaches and overlay-based
approaches. The two approaches are complementary; werdéhat a promising direction in
DDoS defense is to introduce minimal changes to the curretwork infrastructure, and delegate
complex functionalities such as per-flow traffic shaping targe-scale overlay network.

8.1 Overlay-based DDoS Defense

In SOS [15, 27], Keromytis et al. first propose the idea of gsan overlay network to provide
DDoS defense. SOS assumes a network filter in the vicinithefprotected server that blocks
all incoming packets except those coming from a small subkegress nodes in the overlay
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isolation resilience. agst. overhead | secure conn| modification to

mechanism compromised peers setup infrastructure.
SOSs secret dst. IP low high no edge
Mayday secret IPs, ports, etc. low low ~ high* no edge

Si3 secret dst. IP (physicédl low low rate limit no (edge)

FoNet IP level low low partial** global
Spread-spectrum secret dst. IP low high no edge
OverDoSe IP level high low puzzle edge

Table 2: Comparison with related work. * Mayday presents several designs allowing us to trade-off
performance for security’* The Si3 paper describes two designs, one leveraging theeiBagvnetwork,

the other requiring modifications the the edge ISP’s infiadture. *** For services that have restricted
access, the server can provide the overlay network with aesscontrol list; however, FONet does not
protect connection setup for open services.

network. Hence, SOS relies on the identities of the egredesbeing secret; otherwise, zom-
bies could either spoof the source addresses of the egredes 00 selectively attack the egress
nodes. Mayday [5] generalizes SOS, and proposes an expaeateidoverlay routing and filtering
mechanisms, allowing a tradeoff between security and pedace. Like SOS, Mayday’s filtering
mechanism also relies on a secret authenticator that malobally transferable across different
clients. SOS and Mayday protect the secret authenticatbimenease resilience against compro-
mised overlay nodes through indirection, random routinggile secret updates. This increases
system design complexity, and creates the possibilitytatks against the overlay routing mech-
anism itself. Multi-hop overlay routing also increases ¢he-to-end latency and run-time load at
the overlay nodes. A final concern with SOS and Mayday-likgregches is where to deploy the
network filter. The network filter itself can be susceptilddXDoS attack if it is situated too close
to the victim, while moving it towards the core raises scailglissues.

Stavrou et al. extend SOS and Mayday, spreading traffic acnodtiple access points in the
overlay network for resilience to the “sweeping attack”][28here malicious zombies flood a
subset of the overlay nodes at a time. This approach reqalireserlay nodes to share a secret
key, and so is susceptible to a single compromised overldg.ndowever, spread-spectrum com-
munication is potentially valuable for resilience against only the sweeping attack, but also a
performance degradation attack in which malicious nodep drsubset of legitimate packets or
delay packet delivery in a way that is hard to detect.

Si3 [18] uses the i3 overlay network to route packets to tlwegoted server, proposing to
implement traffic shaping functionalities on i3 nodes. S8wanes that a trusted overlay network
hides the protected server’s IP; once the server’s IP agldgsagvealed, attackers can bypass the
overlay and directly attack the server.

FONet [17] proposes a federated overlay network acrosspteiiSes, offering different types
of DDoS resistance to suit different applications. FONepses to configure the network infras-
tructure to isolate senders and protected receivers aPthevel, and to give preference to traffic
between the overlay nodes. FONet assumes a trusted ovetlagnk and does not provide tech-
niques to defend against compromised overlay nodes.
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8.2 Infrastructure-based DDoS Defense

Firebreak decouples senders and protected receivers B tbeel [10] through Firebreak boxes
deployed near the edge of the network, that tunnel packets $ources to the server. Firebreak
is complementary to our work, for it can be used to providefr@astructure support required by
OverDoSe.

IP Pushback [21, 11] and traceback [8, 25, 26] use expligihaing protocols to discover
the sources of attack traffic and install filters to removedtiacking traffic as early as possible.
Network-capability systems [20, 6, 32, 33], on the otherdharse markings in the packet header
to encode permission to send traffic.

9 Conclusion and Future Work

This paper presents OverDoSe, a high-performance and conge-resilient overlay architecture
to protect targeted sites against DDoS attacks. OverDofaéeisded for deployment by a single
ISP who wishes to provide DDoS protection as a value-addetitsdo its customers. We imple-
ment OverDoSe endhosts on top of the OCALA architecture ppsu legacy applications. We
run a series of DoS experiments on Emulab and validate thgrdesOverDoSe.
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A Appendix

We compare three DDoS defense mechanisms, IP-based faimgu@P-FAIR), Fighting Fire
with Fire (FFF) and a puzzle scheme like the one adopted byld&e (PUZZLE). We study
the time it takes for a legitimate sender to successfullpgmait a packet in each scheme; and
each scheme is evaluated under two different scenarioBeipresence of a single bottleneck, or
multiple bottlenecks.
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For simplicity, assume that all Internet hosts are idehirceerms of computational power and
access link bandwidth. We assume that in the case IP-FAIRdtfPesses must be authentic and
cannot be spoofed.

A.1 Single Bottleneck

Assume that the Internet backbone has sufficient capadity that in the case of FFF, each client
is capable of injecting request packets to the bottlened¢asdsas their access link bandwidth can
sustain.

A.1.1 Mean and Variance

Assumen — 1 malicious and 1 legitimate hosts try to establish a conogaatiith a server, who is
capable of handling new connection requests at a deteirase of .

Because different variants of the IP-FAIR, FFF and PUZZLEesge exist, we consider the
following specific variantions in the analysis. For FFF,uame that everyt /1. seconds, the server
accepts a request at random from all requests that have eeeined in the past/,. seconds. In
PUZZLE, the server accepts all requests carrying a validlpusolution of level at least 7 is
selected in a way such that a client needg time in expectation to solve a levélpuzzle. In
IP-FAIR, assume that the server hagjueues, and each arriving request enters the queue corre-
sponding to its IP address. The server pollsitligieues in a round-robin fashion at a deterministic
rate ofy.

Let Trrr, Truzze @andTp_rarr denote the time for a client to successfully get a request
accepted at the server, for FFF, PUZZLE and IP-FAIR respelgti

In all of the analysis below, we do not take into account the tervice time for the request.
Theorem A.1.

n

n
ETrrr) = ETpuzzLE] = m ETip-raIr] = %

Theorem A.2.

n? n?

VAR[Trrr| = VAR[TpuzzLE] = 2 VAR[Tip_pair] = 2.2

Proof. (Theorem A.1 and Theorem A.2). In the case of FFF, a clientlliaschance of getting
a request accepted everyu seconds. Lefrrr denote the time for a legitimate client to get a

request accepted at the server; therl»rr follows a geometric distribution with /» being the
probability of success in each trial. Hence,

E[Trrr] =n/u
VAR[Trrr]| = VAR - Trrrp]/ i
(1—-1/n)

= W/Mz ~n’/p?
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In the case of PUZZLE, let denote the puzzle level underconcurrent users requesting
connection setup. Letdenote the time to compute one hash function. The probabilibitting
a level ¢ solution with one hash computation ig2¢, hence, a client need to perfor?h hash
computations in expectation to find a levedolution. The PUZZLE server select&n a way such
that the expected time to solve a le¥gluzzle equals/u; hence,

ETpuzzre) =62 =n/u
In addition,Tpy 221/ follows a geometric distribution with probability/2¢ of success in each
trial. Hence,
VAR[Tpuzz1E) = VAR[TpyzzLE/d] - 62
1-1/2f
(17292
In the case of IP-FAIR, assume the legitimate client arriaesa random point of time, then

Trp_rarrisauniformdistrition on the intervéd, n/pu). Hence E[Tip_parr] = n/u, VAR T p_rarr] =
2
n [ |

6% = n?/u?

12u2 "

A.1.2 Effect of Queuing for FFF and PUZZLE

The above analysis does not take into account queuing dellykF and PUZZLE.
Let FFF-Queue-FCFS be a variant of FFF, where the server lmpew@e of length), and
requests are serviced at a deterministic rate iof First-Come-First-Serve (FCFS) order.

Corollary 3.

E[Trrr—Queve—Fors] = n/p+ Q/u
VAR[Trrr-Queve—Fers) = n°/p?

Proof. After the attack has run for a sufficient amount of time, thewgiis always full. Hence,
each request gets served after a constant amount of queslang(gl/ 1. [ |

We now analyze the effect of queuing for PUZZLE and show theten FCFS policy and
sufficient queue length, the queuing delay is sublinear reisipect to the number of attackers.

Assume the server has an infinite-size queue, and adoptsta(déme-First-Serve (FCFS)
service policy. Now response time is the sum of the time spentputing the puzzle and the
gueuing delay. A tradeoff exists between queuing delay hadiine of puzzle computation. The
server can raise the puzzle level so every one spends maetmputing a puzzle solution; and
requests arrive at a slower rate; hence, the queue is lesk fillternatively, the server can lower
the puzzle level so every one spends less time computingzaepsalution, but now they must be
subject to a longer queuing delay.

Assume at any point of timey, users concurrently request a connection setup. Define @b si
S to be the time spent servicing a request. We consider gedistabutions of job sizes. Let
denote the average rate at which the server can servicestesghencey E[S]| = 1. Letz = %‘?
x is a quantity that roughly characterizes the variance ofdhesize distribution. Let denote the
time to perform one hash computation.
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Theorem A.3. To obtain the best expected response time, one must setzhle pavel to be

0" = log, VT +#V5" o

and under’*, the best expected response time

B[Ts] == +2, /=
p p
Proof. With one hash computation, the probability of successftifiging a level/ solution is
1/2¢. With n requesting clients, the number of clients who can succlgsflve a levell puzzle
in time § follows a binomial distributionB(n, 1/2¢). Assume the time to compute one hash is
infinitesimally small, then the clients’ arrival procesajgproximately a Poisson process with rate
A= .
2¢§
The expected queuing delay for a M/G/1/FCFS system

X ESY
T u—X 2E[9]

E[Tq)]

whereS is a random variable representing the job size, i.e., tingetvice each request.
Response timéy is the sum of the time spent solving a puzZle and the queuing deld,.
Hence,

n A
[Ts] = ElTc] + E[Tg] = 3 + =5 -2
E|[Ts] is a function of), and to minimize® [T, let 2551 — (, hence, we get
=t ElTs]* =~ +2,/7>

14 /48 H

Hence,
n n —+ \/prn
= 1
0" = log, (5/\ ) = log, I

Corollary 4. Particularly, with deterministic job size,
/n/2
* =log, %7571/, E[Ts]* = Z—i—vZn

When job size is an exponential distribution,

n++/n n
" =log , E[Ts]* = — +2v/n
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A.2 Multiple Bottlenecks

In general, consider an open communication network. Ailegite sender wants to send a packet
over pathP* = Ry, Rs, ..., R,,, whereR; ... R,, arem routers on the path. Among therouters,
k routers,R.., Re., ..., R.;, are overloaded. To simplify, we assume that it takes nexdgigime
for a packet to traverse a non-congested router; hence, lyestudy overloaded routers in the
picture.

We formally analyze the following variants of the PUZZLE;MRIR and FFF scheme.

In PUZZLE, assume that a trusted authority distributes thezle seeds. Once a sender solves
a computational puzzle, all routers on the path are able tibyvibe solution. All routers have
a queue of sufficient capacity and adopts a FCFS policy. Eauater independently adjusts the
current puzzle level té¢* as in Theorem A.3. We consider an FFF scheme with no queuveyyE

1 seconds, each router randomly picks a packet received |pabe¢ second, and forwards it

along The IP-FAIR scheme in this section behaves exacdysﬁme way as described in the
single bottleneck scenario.

Assumen — 1 malicious senders and 1 legitimate sender. Ligt,, 75, 7.0 ANAT p_parg
denote the time for the legitimate sender to successfidlysimit a packet across multiple bottle-
necks.

Lemma A.4. Let )\.; denote the total rate of traffic arriving at,;, let \, be the rate at which the
legitimate sender injects packets.

Acj
Jj=

1
E[Tprr] = = I, 1
g cj

Proof. The probability for each packet to successfully transrrﬂiﬂtj§1 2;

Theorem A.5. Regardless of the network topology and the adversary’'seggya
ETpuzzLE] = O(% + kv/n)

wherey* = mln 1 (ped).

Proof. Each router picks the optimal puzzle levélas described in Theorem A.3, then the sender
spends expecte@ to computate a puzzle solution to get accepted at all rougeic hasO(/n)
gueuing delay at each router. [ |

Theorem A.6. Regardless of the network topology and the adversary'segya

k -
E[Tip_rarr] = O( M*n)
Proof. Each host has a dedicated queue at each router. Hence, itiradégjclient’s packet never
gets dropped, but has an expected queuing delay of atﬂ{Btch. [ |

Theorem A.7. Under FFF, there exists a network configuration and adveysdrategy, such that
the legimate sender can only transmit a packe®{n) time.
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Proof. Consider a scenario where all hosts have equal accessdimwdth B; and other than
access-link bandwidth restrictions, and the bottlenecksgnt onP*, the rest of the network has
sufficient capacity. An adversary withcompromised hosts can us¢2 hosts to sustain an arrival
rate of Bn/2 at R.;, and the othen /2 hosts to sustain an arrival rate Bf. /2 at R.,. According to
Lemma A.4, the legitimate sender needs at I%asffg—ﬁf expected time to successfully transmit
a packet. [ |
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